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Abstract. Social web sites, like Palco Principal (PP), have considerably sized 

databases with the most varied types of information from user subscription 

information to user interactions. All that information is susceptible of being 

processed using data mining algorithms in order to extract knowledge relevant 

for the business. This document describes the implementation and evaluation of 

a system that uses data mining techniques, and that has been developed with the 

specific intent of generating recommendations, namely music 

recommendations, to users of the PP web site. The implemented system uses 

collaborative filtering techniques to recommend music additions to a user’s 

playlist. The impact of the deployed system has been evaluated online. 

Keywords: collaborative filtering, recommender systems, deployment, online 

evaluation. 

1   Introduction 

One of the currently most popular means of interaction used by people are social web 

sites. In these web sites, and in the particular case of Palco Principal (PP), the web site 

of the company with the same name, users can share opinions about musical tracks 

they like or dislike, ear music from listed bands, comment on tracks, read news from 

the music world, etc. As stated in [3], Palco Principal is a company with a 

technological basis, founded in 2006, that has developed the web site 

www.palcoprincipal.com . 

PP web site provides a space where musicians, bands and other musical projects 

can promote themselves. Signing in the web site is free for all. Listeners can listen 

and download tracks that are usually outside the mainstream circuits. As any 

company, PP is continuously improving their product, in this case their web site, and 

they regarded as an important improvement to have a system that would recommend 

new tracks to their listener users (listeners). 

Originally, the recommendation system was planned to be applied to musical 

tracks but was conceived and implemented as a generic recommendation system so 

that it can be applied to other items of the PP web site. For example, it can be used to 
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recommend friends or related events. The deployed recommender system uses 

collaborative filtering techniques [5] to establish relations between musical tracks and 

creates a cosine Similarity Matrix. When a recommendation is requested, the tracks 

that are most related, according to the Similarity Matrix, with the ones on the user’s 

playlist are returned. Each user creates his/her playlist or playlists.  

This paper describes the generic recommender system, its implementation, 

deployment and evaluation in terms of performance and impact in the site. 

2   Objectives 

The main objective was to implement, deploy and evaluate a system that recommends 

additional music tracks to playlists. As in any project, the first task to be performed is 

the gathering of requirements as these will help define the development guidelines. 

Palco Principal (PP) wanted a black box system that received IDs of tracks, for a 

given user, and returned the IDs and names of recommended tracks. The track IDs 

passed on to the system would mostly be of tracks from one of the user's playlist. 

However, because the system is more general, it works with virtual playlists (i.e. any 

set of musical tracks and not necessarily just one user's playlist).  

Two other requirements of the company were that the system would be able to 

recommend in real-time, and that it would be easily integrated with their web site 

which is implemented in PHP [4] and MySQL [2]. For these reasons, it was decided 

to implement the recommendation system exclusively in SQL with Stored Procedures 

that are called directly from PP's web page. SQL also proved to be a very efficient 

approach. 

 

Figure 1: Final Recommendation System Interface 

Although the first recommendations returned by the system were considered very 

good by the representatives of the company, we anticipated a potential problem. Real 

users could accept recommendations, but could not reject them. This motivated the 

use of blacklists, which allows users to declare they do not want a specific track to be 

recommended to them. Thus, unwanted recommendations would not appear again in a 

later recommendation. Moreover, if many users did not like one specific track then 

that track would probably not be a very good recommendation. To exploit this 

information, a global blacklist was conceived to shorten the chances of highly 

recommending unpopular tracks.  



The historical playlist data required to build the recommender model was 

contained in PP’s database. The final system with blacklists, and the obviously 

required access to PP's DB, is presented in Figure 1. 

3   System overview 

To provide recommendations for one particular user, the implemented collaborative 

filtering algorithm uses the playlists of the other users. Two users that have many 

tracks in common will probably like the same tracks and will be willing to add each 

other’s tracks to their respective playlists. This means that, if users A and B have two 

identical playlists and A chooses music X to add to his playlist, then it is likely that B 

also likes music X and would like to have it in his own playlist. 

Algorithmically, the recommender establishes a relation between the tracks from 

the user’s playlist for which one wants recommendations, and the tracks in other 

playlists and creates a Similarity Matrix. The Similarity Matrix contains the degree of 

similarity between each pair of tracks [5]. Therefore, the only information required 

from the site’s DB is the playlists and their tracks. 

Having the Similarity Matrix, it is necessary to get the N tracks that have higher 

weight (higher similarity) for each track on the user's playlist, sort them by weight 

and return them to the web page to be displayed to the user. That weight is the 

measure of similarity between one track and the whole playlist. 

The system is therefore divided into two major modules. One builds the Similarity 

Matrix (Model Generation), and the other (Recommender) determines the 

recommendations from the Similarity Matrix and the active user's musical preference 

information (playlist, blacklist and global blacklist). 

 

 

Figure 2: Detailed high level image of functions and interactions 

The purpose of blacklists is to influence the results of the recommendations either 

by excluding tracks using the user's personal blacklist or by changing their weight to a 

lower value using the global blacklist (thus positioning the track in a lower position 

on the resulting recommendations set). The global blacklist is just the count of how 

many users have blacklisted each track. The entire system is presented in Figure 2. 



4   System description 

The Model Generation module builds a Similarity Matrix that has track IDs indexing 

lines and columns of the matrix. Each position of the matrix, indexed by row and 

column, is calculated using the cosine based similarity shown in Formula (1). 
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Where i indicates the row, j indicates the column, I(i, j) is the number of playlists in 

which both tracks i and j exist. Di is the number of playlists in which the row track i 

exists (similarly for Dj). Note that the Model Generation is a computationally 

intensive algorithm since the Similarity Matrix size is the square of the number of 

tracks and, as such, will not be executed in real-time. Instead, it will be executed from 

time to time (Example: Once a day). 

The Recommender will be run when a recommendation list is requested for a 

particular user. It starts by filtering out the personally blacklisted track IDs from the 

Similarity Matrix. After that, the collaborative filtering algorithm is applied. For each 

row track remaining in the filtered Similarity Matrix we obtain the top N column IDs 

with highest similarity. Those Top N are the nearest neighbors of each track. Then, 

tracks already in the playlist of the user are excluded so that they are not 

recommended again. After that, for each remaining row track, a set of 

recommendations is calculated using Formula (2). 
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Where i is the row track, Ni are the neighbors of track i, m are the tracks in the user's 

playlist, I(Ni,m) are the tracks in the intersection of Ni and m. The numerator is the 

sum of the weights of the tracks in I(Ni,m) and the denominator is the sum of the 

weights of all neighbors of track i.  

The weight of the tracks to recommend is multiplied by a Rejection Index that is 

calculated, from the global blacklist and all playlisted tracks, using Formula (3). 
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Where i is the track ID for which the Rejection Index is being calculated, Bi is the 

number of times that track i has been blacklisted by all users and Pi is the number of 

times that the same track occurs in playlists. After having their weight affected, the 

Top K row tracks are recommended. 



Since the number of neighbors for each track (the top N) is set constant, we can 

speed up the calculation of the recommendation score by computing offline the 

neighbors for every track. This will lead to a significant decrease in the time taken to 

perform recommendations. Moreover, the Similarity Matrix takes much more space 

than the matrix that stores only the nearest neighbors for each track. The flowchart of 

the operations is presented in Figure 3. 

 

 
Figure 3: Final system flowchart 

 

The deployed recommender prompts a recommendation listing when a user logs in 

(Fig. 4). The interface enables listening to the proposed track (button play), adding to 

the playlist (button heart) and adding to the blacklist (button cross). 

 

 
Figure 4: Recommendation list presentation. 



5   Recommender System Evaluation 

When the Recommender System was ready to go online, evaluation methods were 

devised to gather usage data for a posterior assessment of the impact on PP's web site. 

The first stage was to divide PP's authenticated user universe into two groups, as in an 

A/B test [1]. One group would be exposed to the recommendations (the test group) 

and the other group would keep seeing the web site without recommendations (the 

control group). This splitting has been done automatically and online through the use 

of cookies and on the http server. The test period lasted 9 days, from 2010-03-29 to 

2010-04-06. After 9 days the company decided to expose every user to 

recommendations. The 9 days period was too short for definite conclusions on the 

A/B test. No significant differences on session length were observed. However, 

through Google Analytics, we could observe a large difference in new additions to the 

playlists: 310 (test group) against 36 (control group). 

Table 1. - Playlist results: new additions. 

 Number of added 

tracks per playlist 

Number of playlisted 

tracks by user 

Number of times a 

music was playlisted 

Maximum 166 166 12 

Minimum 1 1 1 

Average 6,56 6,58 1,36 

Median 3 3 1 

Standard Deviation 13,72 13,74 0,85 

Total 309 playlists 308 users 1491 tracks 

Count below Average 235 playlists 234 users 1132 tracks 

Count below 50% 

Maximum 

307 playlists 306 users 1487 tracks 

Total playlisted  tracks 2026 2026 2026 

 

Tables 1 and 2 provide statistics obtained by analyzing directly the playlist 

database. Here, numbers are much higher since they are for all users, test group and 

non test group. This is because in the playlist database we do not have the information 

about which users are testers or non-testers. In an extreme situation, the same user 

could even move to a different group if he deleted the cookies or logged in from a 

different computer. 

Table 2 reveals that throughout the test period, 64 users added 242 unique tracks to 

blacklists with a total of 279 blacklisted tracks. From the other fields, it can be 

concluded that most users added few tracks to blacklists. This can either mean that 

most users enjoyed most of the proposed recommendations but did not add them to 

their playlists, or they just tried it and gave up. Also, the number of times each track 

was added to a blacklist was very small, with most tracks only being added once. 

Table 1, for the same period, reveals that 308 users added 1491 unique tracks to 

their playlists with a total of 2026 tracks added. For a more precise analysis of the 



impact of the recommendations, and besides the data gathered during the test period, 

the web site usage data was collected for two additional periods. Before the test 

period and after the test period. Results are presented in Tables 3 and 4. 

Table 2. - Blacklist results: blacklisted tracks. 

 number of blacklisted 

tracks by user 

number of times a music 

was blacklisted 

Maximum 43 4 

Minimum 1 1 

Average 4,36 1.15 

Median 2 1 

Standard Deviation 7,98 0,43 

Total 64 users 242 blacklisted tracks 

Count below Average 50 users 211 blacklisted tracks 

Count below 50% Maximum 61 users 237 blacklisted tracks 

Total blacklisted 279 tracks 279 tracks 

 

Table 3. - Playlisted tracks analysis 

Number of playlisted 

tracks by date: 

Prior to 

recommendation 

test period 

During 

recommendation 

test period 

After 

recommendation 

test period 

All time 

(prior+dur

ing+after) 

Max 275 297 366 366 

median 132.5 243 264 178,5 

Min 70 119 168 70 

Average 147.5 225,11 270.92 197,57 

Standard deviation 55.9 57,75 65.56 79,87 

Total playlisted 3540 2026 3522 9088 

Total days 24 9 13 46 

Linear regression 0.01 -0,01 0.02 0,13 

 

Around 31 tracks have been blacklisted per day and 225 were added to playlists 

during the test period. Those numbers kept increasing after the test period. The 

“Linear Regression” coefficient for blacklists reveals a decrease after the test period, 

which can be regarded as natural after the first impact. The overall growth in activity 

is, nevertheless, positive. Figure 5 and Figure 6 graphically present the evolution of 

the number of playlisted and blacklisted tracks over time. 

Figure 6 shows that the number of blacklisted tracks increased with time, from the 

start to the end of the test period. This is somewhat the expected behaviour for a new 



feature. Figure 5 shows that the number of playlisted tracks was more or less stable 

but increasing. In conjunction with the information from blacklisted tracks, this might 

indicate that users did not use the recommendations much to add tracks to their 

playlists. One could estimate that, if nothing else happens, the number of blacklisted 

tracks will continue to slowly increase and that the number of playlisted tracks will 

continue to increase at the same rate it would if there were no recommendations. 

Table 4. - Blacklisted music analysis 

Number of blacklisted 

tracks by date: 

During recommendation 

test period 

After recommendation 

test period 

All time (during 

+ after) 

Max 53 96 96 

median 32 45 35 

Min 3 13 3 

Average 31 44.85 39,18 

Standard deviation 15,41 22.68 20,81 

Total blacklisted 279 583 862 

Total days 9 13 22 

Linear regression 0,08 -0.06 0,07 

 

 

 
Figure 5: All time evolution of the number of playlisted tracks 

 

A further analysis of the data collected into the DB indicates that of all those tracks 

added to playlists and blacklists, 330 users added tracks to either their playlists or 

their blacklists and only 42 users added tracks to both their playlists and blacklists. 

This means that 22 (64-42) users have added tracks only to their blacklist! 

With respect to time taken by the SQL implemented recommender system, 

response times (recommendation times) are unnoticeable to the users and well under 1 

second. Model building time is below 30 minutes for a current database of 38 000 

tracks. This enables a frequent model update. The system is running on a single PC. 

SQL and stored procedures are not very easy to maintain from the point of view of the 



programmer, but provide very efficient executions and integrate smoothly with the 

database. 

 
Figure 6: All time evolution of the number of blacklisted tracks 

6  Conclusions 

We have described the effort for deploying and evaluating a music recommender 

system on a real web site. The system is currently working online for registered users 

(free of cost) and responding in real time (www.palcoprincipal.pt). The recommender 

algorithm is a classical item-based collaborative filtering, extended with blacklists. 

Users are prompted with recommendation lists upon login and have the options of 

adding tracks to their playlists, adding tracks to their blacklists or ignoring 

recommendations. The impact of the activity on playlist addition has been measured 

using an A/B test, and a before/after analysis. Results strongly indicate an increase in 

playlist activity in the site generated by the recommender. The blacklist facility is also 

frequently used which shows the need for blacklists. The recommender system is 

implemented in SQL and is running since April 9th 2010. Response times are 

unnoticeable to the users. Model building time enables daily model refresh. 

7  Future work 

Affecting the tracks' weight with the Rejection Index after the recommendations are 

calculated is not really the best choice since it does not influence the calculation of the 

neighbors. It has been implemented like this mainly for computational reasons. 

Ideally the Rejection Index should affect the weights right after the Similarity Matrix 

is calculated. 



The number of neighbors used during this project was fixed to a number thought to 

be acceptable (4). This parameter should be fine tuned with experiments. However, a 

higher number of neighbors will slow down the recommendation procedure. 

More care should also be taken in future online experiments. Negotiating live 

experiments with a company eager to expose all users to a new feature is not easy but 

is worth trying. 

This usage based recommender is currently being combined with content based 

recommenders to reduce the cold start problem (new tracks are not recommended 

because they are not in playlists) and to increase the width of the recommendation 

spectrum. Usage based recommendations tend to be more conservative. 
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