
Deployment and Evaluation of a Usage Based

Collaborative Filtering Recommendation System with

Blacklists

Luís Lemos
1
, Alípio M. Jorge

2
, José Paulo Leal

3

DCC – FCUP, Universidade do Porto, Portugal
1 INESC Porto

2 LIAAD – INESC Porto L.A.
3 CRACS – INESC Porto L.A.

llemos@inescporto.pt , amjorge@fc.up.pt , zp@dcc.fc.up.pt

Abstract. Social web sites, like Palco Principal (PP), have considerably sized

databases with the most varied types of information from user subscription

information to user interactions. All that information is susceptible of being

processed using data mining algorithms in order to extract knowledge relevant

for the business. This document describes the implementation and evaluation of

a system that uses data mining techniques, and that has been developed with the

specific intent of generating recommendations, namely music

recommendations, to users of the PP web site. The implemented system uses

collaborative filtering techniques to recommend music additions to a user’s

playlist. The impact of the deployed system has been evaluated online.

Keywords: collaborative filtering, recommender systems, deployment, online

evaluation.

1 Introduction

One of the currently most popular means of interaction used by people are social web

sites. In these web sites, and in the particular case of Palco Principal (PP), the web site

of the company with the same name, users can share opinions about musical tracks

they like or dislike, ear music from listed bands, comment on tracks, read news from

the music world, etc. As stated in [3], Palco Principal is a company with a

technological basis, founded in 2006, that has developed the web site

www.palcoprincipal.com .

PP web site provides a space where musicians, bands and other musical projects

can promote themselves. Signing in the web site is free for all. Listeners can listen

and download tracks that are usually outside the mainstream circuits. As any

company, PP is continuously improving their product, in this case their web site, and

they regarded as an important improvement to have a system that would recommend

new tracks to their listener users (listeners).

Originally, the recommendation system was planned to be applied to musical

tracks but was conceived and implemented as a generic recommendation system so

that it can be applied to other items of the PP web site. For example, it can be used to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143414449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

recommend friends or related events. The deployed recommender system uses

collaborative filtering techniques [5] to establish relations between musical tracks and

creates a cosine Similarity Matrix. When a recommendation is requested, the tracks

that are most related, according to the Similarity Matrix, with the ones on the user’s

playlist are returned. Each user creates his/her playlist or playlists.

This paper describes the generic recommender system, its implementation,

deployment and evaluation in terms of performance and impact in the site.

2 Objectives

The main objective was to implement, deploy and evaluate a system that recommends

additional music tracks to playlists. As in any project, the first task to be performed is

the gathering of requirements as these will help define the development guidelines.

Palco Principal (PP) wanted a black box system that received IDs of tracks, for a

given user, and returned the IDs and names of recommended tracks. The track IDs

passed on to the system would mostly be of tracks from one of the user's playlist.

However, because the system is more general, it works with virtual playlists (i.e. any

set of musical tracks and not necessarily just one user's playlist).

Two other requirements of the company were that the system would be able to

recommend in real-time, and that it would be easily integrated with their web site

which is implemented in PHP [4] and MySQL [2]. For these reasons, it was decided

to implement the recommendation system exclusively in SQL with Stored Procedures

that are called directly from PP's web page. SQL also proved to be a very efficient

approach.

Figure 1: Final Recommendation System Interface

Although the first recommendations returned by the system were considered very

good by the representatives of the company, we anticipated a potential problem. Real

users could accept recommendations, but could not reject them. This motivated the

use of blacklists, which allows users to declare they do not want a specific track to be

recommended to them. Thus, unwanted recommendations would not appear again in a

later recommendation. Moreover, if many users did not like one specific track then

that track would probably not be a very good recommendation. To exploit this

information, a global blacklist was conceived to shorten the chances of highly

recommending unpopular tracks.

The historical playlist data required to build the recommender model was

contained in PP’s database. The final system with blacklists, and the obviously

required access to PP's DB, is presented in Figure 1.

3 System overview

To provide recommendations for one particular user, the implemented collaborative

filtering algorithm uses the playlists of the other users. Two users that have many

tracks in common will probably like the same tracks and will be willing to add each

other’s tracks to their respective playlists. This means that, if users A and B have two

identical playlists and A chooses music X to add to his playlist, then it is likely that B

also likes music X and would like to have it in his own playlist.

Algorithmically, the recommender establishes a relation between the tracks from

the user’s playlist for which one wants recommendations, and the tracks in other

playlists and creates a Similarity Matrix. The Similarity Matrix contains the degree of

similarity between each pair of tracks [5]. Therefore, the only information required

from the site’s DB is the playlists and their tracks.

Having the Similarity Matrix, it is necessary to get the N tracks that have higher

weight (higher similarity) for each track on the user's playlist, sort them by weight

and return them to the web page to be displayed to the user. That weight is the

measure of similarity between one track and the whole playlist.

The system is therefore divided into two major modules. One builds the Similarity

Matrix (Model Generation), and the other (Recommender) determines the

recommendations from the Similarity Matrix and the active user's musical preference

information (playlist, blacklist and global blacklist).

Figure 2: Detailed high level image of functions and interactions

The purpose of blacklists is to influence the results of the recommendations either

by excluding tracks using the user's personal blacklist or by changing their weight to a

lower value using the global blacklist (thus positioning the track in a lower position

on the resulting recommendations set). The global blacklist is just the count of how

many users have blacklisted each track. The entire system is presented in Figure 2.

4 System description

The Model Generation module builds a Similarity Matrix that has track IDs indexing

lines and columns of the matrix. Each position of the matrix, indexed by row and

column, is calculated using the cosine based similarity shown in Formula (1).

()
()

ji

ji,

ji,
DD

I
=M

*
 . (1)

Where i indicates the row, j indicates the column, I(i, j) is the number of playlists in

which both tracks i and j exist. Di is the number of playlists in which the row track i

exists (similarly for Dj). Note that the Model Generation is a computationally

intensive algorithm since the Similarity Matrix size is the square of the number of

tracks and, as such, will not be executed in real-time. Instead, it will be executed from

time to time (Example: Once a day).

The Recommender will be run when a recommendation list is requested for a

particular user. It starts by filtering out the personally blacklisted track IDs from the

Similarity Matrix. After that, the collaborative filtering algorithm is applied. For each

row track remaining in the filtered Similarity Matrix we obtain the top N column IDs

with highest similarity. Those Top N are the nearest neighbors of each track. Then,

tracks already in the playlist of the user are excluded so that they are not

recommended again. After that, for each remaining row track, a set of

recommendations is calculated using Formula (2).

()

()∑

∑

i

i
N

i
N

m,I

=R . (2)

Where i is the row track, Ni are the neighbors of track i, m are the tracks in the user's

playlist, I(Ni,m) are the tracks in the intersection of Ni and m. The numerator is the

sum of the weights of the tracks in I(Ni,m) and the denominator is the sum of the

weights of all neighbors of track i.

The weight of the tracks to recommend is multiplied by a Rejection Index that is

calculated, from the global blacklist and all playlisted tracks, using Formula (3).

1
1

+P+B

B
=RI

ii

i

i − . (3)

Where i is the track ID for which the Rejection Index is being calculated, Bi is the

number of times that track i has been blacklisted by all users and Pi is the number of

times that the same track occurs in playlists. After having their weight affected, the

Top K row tracks are recommended.

Since the number of neighbors for each track (the top N) is set constant, we can

speed up the calculation of the recommendation score by computing offline the

neighbors for every track. This will lead to a significant decrease in the time taken to

perform recommendations. Moreover, the Similarity Matrix takes much more space

than the matrix that stores only the nearest neighbors for each track. The flowchart of

the operations is presented in Figure 3.

Figure 3: Final system flowchart

The deployed recommender prompts a recommendation listing when a user logs in

(Fig. 4). The interface enables listening to the proposed track (button play), adding to

the playlist (button heart) and adding to the blacklist (button cross).

Figure 4: Recommendation list presentation.

5 Recommender System Evaluation

When the Recommender System was ready to go online, evaluation methods were

devised to gather usage data for a posterior assessment of the impact on PP's web site.

The first stage was to divide PP's authenticated user universe into two groups, as in an

A/B test [1]. One group would be exposed to the recommendations (the test group)

and the other group would keep seeing the web site without recommendations (the

control group). This splitting has been done automatically and online through the use

of cookies and on the http server. The test period lasted 9 days, from 2010-03-29 to

2010-04-06. After 9 days the company decided to expose every user to

recommendations. The 9 days period was too short for definite conclusions on the

A/B test. No significant differences on session length were observed. However,

through Google Analytics, we could observe a large difference in new additions to the

playlists: 310 (test group) against 36 (control group).

Table 1. - Playlist results: new additions.

 Number of added

tracks per playlist

Number of playlisted

tracks by user

Number of times a

music was playlisted

Maximum 166 166 12

Minimum 1 1 1

Average 6,56 6,58 1,36

Median 3 3 1

Standard Deviation 13,72 13,74 0,85

Total 309 playlists 308 users 1491 tracks

Count below Average 235 playlists 234 users 1132 tracks

Count below 50%

Maximum

307 playlists 306 users 1487 tracks

Total playlisted tracks 2026 2026 2026

Tables 1 and 2 provide statistics obtained by analyzing directly the playlist

database. Here, numbers are much higher since they are for all users, test group and

non test group. This is because in the playlist database we do not have the information

about which users are testers or non-testers. In an extreme situation, the same user

could even move to a different group if he deleted the cookies or logged in from a

different computer.

Table 2 reveals that throughout the test period, 64 users added 242 unique tracks to

blacklists with a total of 279 blacklisted tracks. From the other fields, it can be

concluded that most users added few tracks to blacklists. This can either mean that

most users enjoyed most of the proposed recommendations but did not add them to

their playlists, or they just tried it and gave up. Also, the number of times each track

was added to a blacklist was very small, with most tracks only being added once.

Table 1, for the same period, reveals that 308 users added 1491 unique tracks to

their playlists with a total of 2026 tracks added. For a more precise analysis of the

impact of the recommendations, and besides the data gathered during the test period,

the web site usage data was collected for two additional periods. Before the test

period and after the test period. Results are presented in Tables 3 and 4.

Table 2. - Blacklist results: blacklisted tracks.

 number of blacklisted

tracks by user

number of times a music

was blacklisted

Maximum 43 4

Minimum 1 1

Average 4,36 1.15

Median 2 1

Standard Deviation 7,98 0,43

Total 64 users 242 blacklisted tracks

Count below Average 50 users 211 blacklisted tracks

Count below 50% Maximum 61 users 237 blacklisted tracks

Total blacklisted 279 tracks 279 tracks

Table 3. - Playlisted tracks analysis

Number of playlisted

tracks by date:

Prior to

recommendation

test period

During

recommendation

test period

After

recommendation

test period

All time

(prior+dur

ing+after)

Max 275 297 366 366

median 132.5 243 264 178,5

Min 70 119 168 70

Average 147.5 225,11 270.92 197,57

Standard deviation 55.9 57,75 65.56 79,87

Total playlisted 3540 2026 3522 9088

Total days 24 9 13 46

Linear regression 0.01 -0,01 0.02 0,13

Around 31 tracks have been blacklisted per day and 225 were added to playlists

during the test period. Those numbers kept increasing after the test period. The

“Linear Regression” coefficient for blacklists reveals a decrease after the test period,

which can be regarded as natural after the first impact. The overall growth in activity

is, nevertheless, positive. Figure 5 and Figure 6 graphically present the evolution of

the number of playlisted and blacklisted tracks over time.

Figure 6 shows that the number of blacklisted tracks increased with time, from the

start to the end of the test period. This is somewhat the expected behaviour for a new

feature. Figure 5 shows that the number of playlisted tracks was more or less stable

but increasing. In conjunction with the information from blacklisted tracks, this might

indicate that users did not use the recommendations much to add tracks to their

playlists. One could estimate that, if nothing else happens, the number of blacklisted

tracks will continue to slowly increase and that the number of playlisted tracks will

continue to increase at the same rate it would if there were no recommendations.

Table 4. - Blacklisted music analysis

Number of blacklisted

tracks by date:

During recommendation

test period

After recommendation

test period

All time (during

+ after)

Max 53 96 96

median 32 45 35

Min 3 13 3

Average 31 44.85 39,18

Standard deviation 15,41 22.68 20,81

Total blacklisted 279 583 862

Total days 9 13 22

Linear regression 0,08 -0.06 0,07

Figure 5: All time evolution of the number of playlisted tracks

A further analysis of the data collected into the DB indicates that of all those tracks

added to playlists and blacklists, 330 users added tracks to either their playlists or

their blacklists and only 42 users added tracks to both their playlists and blacklists.

This means that 22 (64-42) users have added tracks only to their blacklist!

With respect to time taken by the SQL implemented recommender system,

response times (recommendation times) are unnoticeable to the users and well under 1

second. Model building time is below 30 minutes for a current database of 38 000

tracks. This enables a frequent model update. The system is running on a single PC.

SQL and stored procedures are not very easy to maintain from the point of view of the

programmer, but provide very efficient executions and integrate smoothly with the

database.

Figure 6: All time evolution of the number of blacklisted tracks

6 Conclusions

We have described the effort for deploying and evaluating a music recommender

system on a real web site. The system is currently working online for registered users

(free of cost) and responding in real time (www.palcoprincipal.pt). The recommender

algorithm is a classical item-based collaborative filtering, extended with blacklists.

Users are prompted with recommendation lists upon login and have the options of

adding tracks to their playlists, adding tracks to their blacklists or ignoring

recommendations. The impact of the activity on playlist addition has been measured

using an A/B test, and a before/after analysis. Results strongly indicate an increase in

playlist activity in the site generated by the recommender. The blacklist facility is also

frequently used which shows the need for blacklists. The recommender system is

implemented in SQL and is running since April 9th 2010. Response times are

unnoticeable to the users. Model building time enables daily model refresh.

7 Future work

Affecting the tracks' weight with the Rejection Index after the recommendations are

calculated is not really the best choice since it does not influence the calculation of the

neighbors. It has been implemented like this mainly for computational reasons.

Ideally the Rejection Index should affect the weights right after the Similarity Matrix

is calculated.

The number of neighbors used during this project was fixed to a number thought to

be acceptable (4). This parameter should be fine tuned with experiments. However, a

higher number of neighbors will slow down the recommendation procedure.

More care should also be taken in future online experiments. Negotiating live

experiments with a company eager to expose all users to a new feature is not easy but

is worth trying.

This usage based recommender is currently being combined with content based

recommenders to reduce the cold start problem (new tracks are not recommended

because they are not in playlists) and to increase the width of the recommendation

spectrum. Usage based recommendations tend to be more conservative.

Acknowledgements

We are mostly grateful to the Palco Principal company for their enthusiastic

collaboration and enriching feedback, in particular to João Carvalho, Pedro Trindade

and Daniel Botelho. This work is being supported by QREN AdI Palco3.0/3121

PONORTE and Multi-Year Funding Program for R&D Units (FEDER).

References

1. Ron Kohavi, Roger Longbotham, Dan Sommerfield, Randal M. Henne: Controlled

experiments on the web: survey and practical guide. Data Min. Knowl. Discov. 18(1):

140-181 (2009)

2. MySQL main web page, http://mysql.com/

3. Palco Principal web site, http://www.palcoprincipal.com

4. PHP main web page, http://php.net/index.php

5. Badrul M. Sarwar, George Karypis, Joseph A. Konstan, John Riedl: Item-based

collaborative filtering recommendation algorithms. WWW 2001: pp. 285-295

