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Figure 1.  The ICnova AP7000 Base board (9,65 x 6,1 cm) 
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Abstract— This paper offers an open-source solution to 
implement low-cost workbenches serving a wide range of 
remote experiments in electronics. The proposed solution 
comprises 1) a small (9,65 x 6,1 cm) Linux server board; 2)  
a server core supporting two TCP/IP  communication 
channels, and general purpose I/O pin drivers to interface 
the remote experiment hardware; and 3) a client core based 
on a multi-tab user interface supporting text file 
management to exchange experiment scripts / status 
information, and a mini-browser for webcasting in distance 
learning scenarios, live image feedback from IP cameras 
located in the remote workbench, etc. Additional drivers 
and application-specific tabs can be added to the server / 
client cores, to suit the requirements of each application. 
Two remote workbenches for microcontroller and digital 
systems testing courses were developed, and are also 
presented in this document. 

Index Terms—Remote workbenches, virtual laboratories, 
microcontrollers, boundary-scan. 

I. INTRODUCTION 
The development of remote laboratories occurred rather 

randomly during the 1990s and throughout this last 
decade, but it is possible to perceive a standardisation 
trend in recent years, particularly along the MIT iLabs 
architecture [1] (initiatives to implement various iLabs-
compatible solutions are currently under way in Europe 
and Australia). Acceptance of a common standard in this 
area will benefit institutions and users, and enable content 
and resource sharing among partner universities. 
However, the resources required to set up an iLabs-
compatible architecture may not be within reach of small 
institutions, or perhaps will not be justifiable in cases 
where only a small number of remote experiments is 
envisaged. A low-cost solution would be preferable for 
these scenarios, particularly if based on open-source 
resources that might be reused and easily adapted to the 
needs of each institution.  

This paper describes a low-cost workbench server built 
upon the ICnova AP7000 Base board, and the 
corresponding client interfaces. At a cost of 95 EUR, this 
AVR32 32-bit MPU based Linux board offers an ideal 
solution to implement a low-cost remote workbench 
server, easily adapted to various application areas. To 
achieve this objective, two main development tasks had to 
be undertaken: 1) the board drivers and server code to 

interface the experiment hardware; and 2) a client 
interface adaptable to each application area. 

The following section introduces the ICnova AP7000 
Base board and describes all the development work that 
was done at this level. Section 3 presents the client 
interface and explains how it can be customised to 
different experimentation domains. Sections 4 and 5 
illustrate two remote workbenches that were built using 
the proposed AP7000 hardware and client interface (to 
support microcontroller applications and digital systems 
testing). A final section dealing with conclusions and 
further research directions closes the paper. 

II. THE ICNOVA AP7000 BASE BOARD 
This section introduces the Linux board that was used 

to implement the remote workbench server, and explains 
the development work needed to customise the workbench 
to the selected experimentation domains. 

A. Board resources 
The ICnova AP7000 Base board, also known as 

"grasshopper", is shown in figure 1.  

Its resources make it rather popular for developing 
embedded projects within the Linux community [2,3]: 
§ Software development support includes a GNU C 

compiler (http://gcc.gnu.org/), a C library optimized 
for embedded systems (http://www.uclibc.org/), small 
executable modules containing many common UNIX 
utilities (http://busybox.net/), a telnet daemon for 
remote command line access, Dynamic Host 
Configuration (DHCP), HTTP server, and full control 
over the general purpose input / output (GPIO) pins 
and other devices  
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Figure 3.  KEIL's µVision environment for off-line tasks  

§ All Linux sources are open source and delivered on 
the accompanying CD 

§ Main hardware features: The board has a 32-bit data 
bus, runs at 140 MHz (max. 200 MHz), offers 64 MB 
SDRAM and 8 MB Flash RAM, a USB-UART, 
10/100 Mbps Ethernet, 64 GPIOs, an I2C bus, and a 
built-in step-down voltage regulator. 

B. Server core 
All remote experiments rely on a core server that was 

written in ANSI C and compiled using GCC. Two 
communication channels using different TCP/IP ports 
were created – one bidirectional channel used to exchange 
commands / responses between server and client, and a 
unidirectional channel that enables the server to send data 
to the client application. This core is based on a 
multithreading TCP/IP socket server that launches two 
independent threads to monitor all connection requests to 
any of the two TCP/IP ports referred above. For each 
successful attempt, two threads are created to process the 
information generated by the connection associated to the 
requesting client. The first client obtains control of the 
server, and holds it until the end of its session (either by 
closing the connection, or by timeout in the case of 
connection problems). All clients attempting to connect 
during an on-going session are rejected with a BUSY 
response. 

A client that obtained control of the server is obliged to 
send PING commands at no longer than 30s intervals, to 
ensure that the connection is working properly, and is then 
able to send commands and retrieve responses. 

III. THE CLIENT SOFTWARE 
In this section we will present the client interface that 

enables access to our remote workbench server, and 
indicate how it can be adapted to suit the specific needs of 
each experiment. 

A. Interface design 
The client software was written in Visual Basic .Net 

2008 and offers an easy-to-use interface to all server 
applications. The functional core of the client interface 
comprises various windows selectable by the 
corresponding tabs. According to each specific remote 
experiment, further tabs can be added to the basic core, 
which includes a text editor window (to edit and exchange 
information with the server), and a mini-browser window 
(to enable integrated web casting / conferencing, live 
image feedback from the remote workbench, etc.).  

B. Core modules 
The core client code integrates the two TCP/IP 

communication channels that are also present in the server 
core (see section 2.2): 1) a bidirectional synchronous 
channel to exchange commands and 2) an asynchronous 
channel for data transfer. A text editor module is also 
available, supporting parser and syntax check routines that 
can be adapted to all applications where the remote 
experiment is controlled by a (text) script. 

The client core code also comprises a graphic engine to 
draw the digital waveforms at a selected subset of the 
ICnova AP7000 Base board GPIO pins. The waveforms 
window supports zooming in and out, and offers a “detach 

window” option to enable observation together with other 
tab windows. 

The two following sections will present remote 
workbenches built upon the proposed low-cost server and 
client interface software, supporting experiments in 
microcontroller programming, and digital systems testing.  

IV. CASE STUDY #1:  
80C51 MICROCONTROLLER CLASSES 

A. Experiment description 
Microcontroller programming is an excellent case study 

to illustrate the application of the proposed low-cost 
workbench server and client interface software. Students 
attending microcontroller courses are typically given lab 
assignments comprising a general purpose microcontroller 
board, and additional hardware to achieve the experiment 
objectives. An electronic dice is a good example of such 
assignments. In this case, four microcontroller parallel 
output pins control seven LEDs representing the dice dots, 
which should cycle through the six possible results shown 
in figure 2. 

 
 

      

 PP.1 0 1 0 1 0 1 

 PP.2 1 1 1 0 0 0 

 PP.3 1 1 1 1 1 0 

 PP.4 1 0 0 0 0 0 

Figure 2.  Parallel port patterns corresponding to the six e-dice results 

The patterns sent to the microcontroller parallel port 
will repeat the six results shown in figure 2, until a STOP 
button is pressed. Since the display rate is very high, the 
seven LEDs seem to be ON at the same time, and freeze 
into a specific result when STOP is pressed. 

The microcontroller program will be written, compiled 
and simulated off-line, e.g. using the KEIL's mVision 
environment illustrated in figure 3 [4]. 

A remote workbench to enable microcontroller 
programming experiments shall therefore comply with the 
following requirements: 
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Figure 4.  Remote microcontroller application –  

File transfer window 

 
Figure 5.  Remote microcontroller application –  

Information transfer window 

 
Figure 6.  Remote microcontroller application –  

Live video from the remote workbench 

1. Upload data or code files  
2. Run the uploaded code 
3. Set up external conditions (e.g. the STOP button in 

the e-dice example) 
4. Provide a live video stream from the remote 

workbench  
To validate the proposed remote microcontroller 

programming workbench, a general purpose 8051 (an 8-
bit microcontroller originally developed by Intel) card 
offering 4 digital inputs and 4 digital outputs was used to 
implement the e-dice experiment. The card receives the 
object code via a serial RS232C connection, which is also 
used to exchange status and control information. This 
serial link is managed by our ICnova AP7000 Base 
workbench server, which exchanges data and information 
with the client interface installed at the user's computer. 

B. Server customisation 
Further to the server core that was described in section 

2.2, the ICnova embedded device drivers were used to 
read and write to the GPIO pins. Since the GPIO outputs 
are only used to emulate push-buttons connected to 4 
parallel inputs of the 8051 microcontroller, the relative 
low-speed of these drivers does not degrade the 
workbench performance. Embedded drivers were also 
used to establish an RS232C serial channel between the 
ICnova board and the 8051 microcontroller hardware 
(used to send object code and to exchange commands and 
status information). 

C. Client interface 
The client core described in section 3 was adapted to 

the requirements of the microcontroller workbench, 
producing an interface that offers three tabs, and 
application-specific buttons on the right side. The hex file 
containing the object code to be executed is loaded using 
the "Select File" button, and is displayed in the middle tab 
window shown in figure 4. 

The object code can then be sent to the remote 
workbench using the "Upload" button shown in figure 5. 
The information transfer window (left tab in the client 
interface) shows the response of the microcontroller 
board, indicating that it waits for an order to start 
execution – pressing "Space" in a local keyboard, or 
"Run" in the client application.  

When the start order is received, the microcontroller 
board starts to execute the uploaded program, and the 
corresponding status information is sent to the client and 
displayed as shown in figure 5. 

In the case of the e-dice experiment, the uploaded code 
cycles continuously through the six possible results shown 
in figure 2, until the STOP button – "Key 1" in the client 
interface – is pressed. When that happens, the 
combination currently driven to the LEDs freezes and e-
dice result becomes available.  

The rightmost tab selects a mini-browser that can be 
used to watch the video stream provided by an IP camera 
located in the remote workbench. In the case illustrated in 
figure 6, the STOP button had been pressed, and the e-
dice result was "5". 

The mini-browser window may also be used for other 
purposes, besides showing the video stream produced by 
the remote workbench IP camera. Figure 7 shows it being 
used to run a Dimdim session [5], webcasting a 
presentation where the lecturer explains the remote e-dice 
experiment. 



 
 

 4 

 
Figure 7.  Remote microcontroller application –  

Mini-browser window showing Dimdim 

V. CASE STUDY #2:  
BOUNDARY-SCAN TEST (BST) CLASSES 

A. Experiment description 
Boundary-scan is a test technology developed in the 

mid-1980s and approved as IEEE standard 1149.1 in 1990 
[6]. Every 1149.1-compatible chip comprises a set of test 
cells placed in the device boundary, enabling observation 
and control of every functional pin. Access to the test 
infrastructure is done through a 4-pin test access port 
(TAP), ensuring a common protocol to all test data 
operations (shifting, capturing test responses, application 
of test vectors), irrespective of the device or its 
manufacturer. These 4 pins enable data shifting (TDI and 
TDO to shift in and out of each device), control (TMS to 
select the required test mode), and timing (TCK for test 
clock). Each device possesses an instruction register (IR), 
present in the same scan chain, which specifies the 
required operating mode for the test logic. 

Test generation is done automatically from the printed 
circuit board netlist, the description of the BS 
infrastructure present in each device, and eventual test 
vector sets generated for clusters of non-BS devices. The 
complete set of test vectors is then serialised, and the 
binary test vector streams represented using SVF (Serial 
Vector Format) [7].  

The example illustrated in figure 8 comprises two 
circuits, each of them with 8 functional pins (and the 
associated 8 BST cells). To find out if a short-circuit 
exists between two interconnects, opposing logic values 
shall be shifted into the two driving BS cells, and the 
responses captured at the corresponding inputs shall  be 
shifted out and checked against their expected values. 

 

The corresponding SVF code for this case might be 
represented as follows: 

 
 STATE RESET 

; initialise the test logic 
SIR 8 TDI(00) 

; set the two devices in external test mode 
(assumes 4-bit IRs) 

SDR 16 TDI(0800) 
; shift in the test data for the two driving 
cells 

SDR 16 TDI(0800) TDO(0010) MASK(0030) 
; shift out the test response and check the 
two receiving cells 

 
A remote workbench to enable practical BST 

experiments shall therefore comply with the following 
requirements: 
1. Provide text editing features to load / edit the SVF test 

code 
2. Execute the SVF test code in "step" / "run" modes 
3. Observe the waveforms in all TAP pins (logic 

analyser) 
In the case of mixed-signal circuits, where analogue 

signals are controlled by the digital BST devices, video 
streaming from the remote workbench will enable the 
users to visualise an oscilloscope or other measurement 
equipment. 

B. Server customisation 
Since all TAP signals come from ICnova GPIO pins, 

the corresponding server code dictates workbench 
performance. It may be necessary to shift long bit streams 
through the remote BST hardware, so the frequency of the 
test clock (TCK) signal should be as high as possible to 
minimise experiment latencies.  

Since the embedded ICnova GPIO drivers do not go 
beyond a few hundred Hz, new device drivers were 
written to execute all IO operations in kernel space. Figure 
9 summarises how these device drivers work, and the 
interaction between user and kernel space. 

 
Figure 9.  Device drivers and user / kernel spaces interaction  

The device driver / kernel module must be loaded 
dynamically via the command shell using the instruction 
insmod (this task can be done automatically when booting 
the system). Once this module is activated, it can interact 
with the user space application using the available system 
calls, e.g. open( ), close( ), ioctl( ), etc. This solution 
enables all low-level control functions to be executed by 
the device driver in kernel space, and the high-level 
operations to be executed in user space. 
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Figure 8.  A simple circuit comprising two BS devices. 
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Figure 10.  BST controller application – the SVF test program  

 
Figure 11.  BST controller application – waveform display  

 
Figure 12.  BST controller application – TAP state diagram  

 
Figure 13.  BST controller application –  
Live video from the remote workbench 

C. Client interface 

The requirements set up for the BST workbench led to 
the design of a client interface offering four tabs and an 
application-specific set of buttons on the right side. The 
SVF test code corresponds to the experiment script, and is 
displayed in the text editor window illustrated in figure 10. 
File management functions (Open, Save, Save as) are 
provided on the bottom-left corner ("Tools"). When ready, 
the SVF code can be executed step-by-step, or completely 
in one run, using the corresponding buttons shown in 
figure 10. 

The BST workbench client interface uses the graphic 
engine provided by the core client to produce a waveform 
display window showing the digital signals present in the 
two sets of  TAP pins. Following the execution of SIR 
(Scan Instruction Register), SDR (Scan Data Register), or 
of any other commands generating TAP activity, this 
window enables the users to see the effect of every SVF 
command on each pin. SVF line numbers are indicated 
below the sets of waveforms associated to each TAP, as 
illustrated in figure 11. The zoom function, available on 
the bottom left part of this window, allows the user to see 
longer segments, or to analyse finer details. 

The operating mode of the BST test logic inside each 
chip is specified by an instruction shifted into the 
instruction register, in combination with the state of a 
small finite state machine called the TAP controller 
(shifting test data or instructions only takes place when the 
TAP controller is in the corresponding "Shift-XR" state). 
An additional tab was therefore added to the client BST 

controller application, to show the current state of the TAP 
controller, as illustrated in figure 12. 

Live video feedback from the remote workbench may 
or may not be necessary for BST experiments. In the case 
of strictly digital test experiments, the waveforms and the 
data shifted out of the board under test will contain all the 
necessary information. When live video is required, the 
stream produced by an IP camera can be visualised in the 
mini-browser, as illustrated in figure 13.  

Likewise, this mini-browser window can also be used 
by the lecturer to webcast a demonstration / presentation 
of structural test detection in distance learning scenarios. 

VI. CONCLUSION AND FURTHER RESEARCH  
This paper presented a low-cost solution that enables a 

quick implementation of remote workbenches for a wide 
variety of practical experiments in science and technology 
courses. The workbench server is based on a Linux 
ICnova AP7000 Base board, selling at unit prices of 95 
EUR. The client interface was written in Visual Basic .Net 
2008 and can be easily customised to suit any required 
experiments. The proposed solution offers two main 
advantages: 1) low-cost; 2) easy reusability. The server 
and client open source code sets are available for the two 
workbenches from the following web addresses (Code 
license: GNU General Public License v3; Content license: 
Creative Commons 3.0 BY-SA): 
§ Server applications: http://code.google.com/p/rmws/ 

and http://code.google.com/p/rbstws/ 
§ Client applications: http://code.google.com/p/rmw-

client/ and http://code.google.com/p/rbstw-client/  
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For some types of remote experiments, it is also 
possible to envisage a low-cost workbench server based 
on a netbook computer, at a price similar to our proposed 
solution (the netbook webcam might be combined with a 
video streaming application to provide live images from 
the remote experiment). Although the prices of these two 
solutions would be similar, the netbook is far more limited 
in terms of general I/Os available to interface the 
experiment. If an external board is needed for this or other 
purposes (e.g. to provide a serial port connection to the 
experiment hardware, as happens in one of our examples), 
then the netbook approach clearly looses in favour of our 
proposed solution. Additionally, the ICnova has lower 
power consumption, and occupies less space. 

It is important to stress the fact our ICnova-based 
solution is able to run multiple remote experiments at the 
same time, provided that the requested server resources 
(e.g. IO pins, serial port, etc.) do not overlap. This is what 
happens with the two workbenches presented in this 
paper, which can be used at the same time. Simultaneous 
use of multiple workbenches is an added-value in relation 
to in-presence experiments, where a lab bench cannot be 
used by more than one group of students at the same time. 

Our remote workbench does not compete with higher-
end systems, such as those based on the iLabs architecture 
or National Instruments' ELVIS platforms [8]. On the 
other hand, it represents a satisfactory solution when the 
economic resources available are scarce, or the number of 
experiments does not justify the overhead of a full-fledged 
solution. The mini-browser included in the client interface 
enables the integration of web video-conferencing to 
support collaborative work (e.g. using Adobe Connect 
[9]), or webcasting to demonstrate practical experiments 
in distance / e-learning courses (e.g. using Dimdim). With 
a complementary IP camera, our proposed solution offers 
a complete lab environment supporting live video 
streaming, at a cost that is far below most other systems. 
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