

 1

Figure 1. The ICnova AP7000 Base board (9,65 x 6,1 cm)

Low-cost workbench client / server cores for
remote experiments in electronics

José M. M. Ferreira1,2, Américo F. S. Dias1,3, Paulo J. S. Sousa1
1 Universidade do Porto - Faculdade de Engenharia, Porto, PORTUGAL

2 Buskerud University College, Kongsberg, NORWAY
3 Instituto de Engenharia de Sistemas e Computadores, Porto, PORTUGAL

Zorica Nedic4, Jan Machotka4, Ozdemir Gol4, Andrew Nafalski4

4 University of South Australia, Adelaide, AUSTRALIA

Abstract— This paper offers an open-source solution to
implement low-cost workbenches serving a wide range of
remote experiments in electronics. The proposed solution
comprises 1) a small (9,65 x 6,1 cm) Linux server board; 2)
a server core supporting two TCP/IP communication
channels, and general purpose I/O pin drivers to interface
the remote experiment hardware; and 3) a client core based
on a multi-tab user interface supporting text file
management to exchange experiment scripts / status
information, and a mini-browser for webcasting in distance
learning scenarios, live image feedback from IP cameras
located in the remote workbench, etc. Additional drivers
and application-specific tabs can be added to the server /
client cores, to suit the requirements of each application.
Two remote workbenches for microcontroller and digital
systems testing courses were developed, and are also
presented in this document.

Index Terms—Remote workbenches, virtual laboratories,
microcontrollers, boundary-scan.

I. INTRODUCTION
The development of remote laboratories occurred rather

randomly during the 1990s and throughout this last
decade, but it is possible to perceive a standardisation
trend in recent years, particularly along the MIT iLabs
architecture [1] (initiatives to implement various iLabs-
compatible solutions are currently under way in Europe
and Australia). Acceptance of a common standard in this
area will benefit institutions and users, and enable content
and resource sharing among partner universities.
However, the resources required to set up an iLabs-
compatible architecture may not be within reach of small
institutions, or perhaps will not be justifiable in cases
where only a small number of remote experiments is
envisaged. A low-cost solution would be preferable for
these scenarios, particularly if based on open-source
resources that might be reused and easily adapted to the
needs of each institution.

This paper describes a low-cost workbench server built
upon the ICnova AP7000 Base board, and the
corresponding client interfaces. At a cost of 95 EUR, this
AVR32 32-bit MPU based Linux board offers an ideal
solution to implement a low-cost remote workbench
server, easily adapted to various application areas. To
achieve this objective, two main development tasks had to
be undertaken: 1) the board drivers and server code to

interface the experiment hardware; and 2) a client
interface adaptable to each application area.

The following section introduces the ICnova AP7000
Base board and describes all the development work that
was done at this level. Section 3 presents the client
interface and explains how it can be customised to
different experimentation domains. Sections 4 and 5
illustrate two remote workbenches that were built using
the proposed AP7000 hardware and client interface (to
support microcontroller applications and digital systems
testing). A final section dealing with conclusions and
further research directions closes the paper.

II. THE ICNOVA AP7000 BASE BOARD
This section introduces the Linux board that was used

to implement the remote workbench server, and explains
the development work needed to customise the workbench
to the selected experimentation domains.

A. Board resources
The ICnova AP7000 Base board, also known as

"grasshopper", is shown in figure 1.

Its resources make it rather popular for developing
embedded projects within the Linux community [2,3]:
§ Software development support includes a GNU C

compiler (http://gcc.gnu.org/), a C library optimized
for embedded systems (http://www.uclibc.org/), small
executable modules containing many common UNIX
utilities (http://busybox.net/), a telnet daemon for
remote command line access, Dynamic Host
Configuration (DHCP), HTTP server, and full control
over the general purpose input / output (GPIO) pins
and other devices

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143414372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Figure 3. KEIL's µVision environment for off-line tasks

§ All Linux sources are open source and delivered on
the accompanying CD

§ Main hardware features: The board has a 32-bit data
bus, runs at 140 MHz (max. 200 MHz), offers 64 MB
SDRAM and 8 MB Flash RAM, a USB-UART,
10/100 Mbps Ethernet, 64 GPIOs, an I2C bus, and a
built-in step-down voltage regulator.

B. Server core
All remote experiments rely on a core server that was

written in ANSI C and compiled using GCC. Two
communication channels using different TCP/IP ports
were created – one bidirectional channel used to exchange
commands / responses between server and client, and a
unidirectional channel that enables the server to send data
to the client application. This core is based on a
multithreading TCP/IP socket server that launches two
independent threads to monitor all connection requests to
any of the two TCP/IP ports referred above. For each
successful attempt, two threads are created to process the
information generated by the connection associated to the
requesting client. The first client obtains control of the
server, and holds it until the end of its session (either by
closing the connection, or by timeout in the case of
connection problems). All clients attempting to connect
during an on-going session are rejected with a BUSY
response.

A client that obtained control of the server is obliged to
send PING commands at no longer than 30s intervals, to
ensure that the connection is working properly, and is then
able to send commands and retrieve responses.

III. THE CLIENT SOFTWARE
In this section we will present the client interface that

enables access to our remote workbench server, and
indicate how it can be adapted to suit the specific needs of
each experiment.

A. Interface design
The client software was written in Visual Basic .Net

2008 and offers an easy-to-use interface to all server
applications. The functional core of the client interface
comprises various windows selectable by the
corresponding tabs. According to each specific remote
experiment, further tabs can be added to the basic core,
which includes a text editor window (to edit and exchange
information with the server), and a mini-browser window
(to enable integrated web casting / conferencing, live
image feedback from the remote workbench, etc.).

B. Core modules
The core client code integrates the two TCP/IP

communication channels that are also present in the server
core (see section 2.2): 1) a bidirectional synchronous
channel to exchange commands and 2) an asynchronous
channel for data transfer. A text editor module is also
available, supporting parser and syntax check routines that
can be adapted to all applications where the remote
experiment is controlled by a (text) script.

The client core code also comprises a graphic engine to
draw the digital waveforms at a selected subset of the
ICnova AP7000 Base board GPIO pins. The waveforms
window supports zooming in and out, and offers a “detach

window” option to enable observation together with other
tab windows.

The two following sections will present remote
workbenches built upon the proposed low-cost server and
client interface software, supporting experiments in
microcontroller programming, and digital systems testing.

IV. CASE STUDY #1:
80C51 MICROCONTROLLER CLASSES

A. Experiment description
Microcontroller programming is an excellent case study

to illustrate the application of the proposed low-cost
workbench server and client interface software. Students
attending microcontroller courses are typically given lab
assignments comprising a general purpose microcontroller
board, and additional hardware to achieve the experiment
objectives. An electronic dice is a good example of such
assignments. In this case, four microcontroller parallel
output pins control seven LEDs representing the dice dots,
which should cycle through the six possible results shown
in figure 2.

 PP.1 0 1 0 1 0 1

 PP.2 1 1 1 0 0 0

 PP.3 1 1 1 1 1 0

 PP.4 1 0 0 0 0 0

Figure 2. Parallel port patterns corresponding to the six e-dice results

The patterns sent to the microcontroller parallel port
will repeat the six results shown in figure 2, until a STOP
button is pressed. Since the display rate is very high, the
seven LEDs seem to be ON at the same time, and freeze
into a specific result when STOP is pressed.

The microcontroller program will be written, compiled
and simulated off-line, e.g. using the KEIL's mVision
environment illustrated in figure 3 [4].

A remote workbench to enable microcontroller
programming experiments shall therefore comply with the
following requirements:

 3

Figure 4. Remote microcontroller application –

File transfer window

Figure 5. Remote microcontroller application –

Information transfer window

Figure 6. Remote microcontroller application –

Live video from the remote workbench

1. Upload data or code files
2. Run the uploaded code
3. Set up external conditions (e.g. the STOP button in

the e-dice example)
4. Provide a live video stream from the remote

workbench
To validate the proposed remote microcontroller

programming workbench, a general purpose 8051 (an 8-
bit microcontroller originally developed by Intel) card
offering 4 digital inputs and 4 digital outputs was used to
implement the e-dice experiment. The card receives the
object code via a serial RS232C connection, which is also
used to exchange status and control information. This
serial link is managed by our ICnova AP7000 Base
workbench server, which exchanges data and information
with the client interface installed at the user's computer.

B. Server customisation
Further to the server core that was described in section

2.2, the ICnova embedded device drivers were used to
read and write to the GPIO pins. Since the GPIO outputs
are only used to emulate push-buttons connected to 4
parallel inputs of the 8051 microcontroller, the relative
low-speed of these drivers does not degrade the
workbench performance. Embedded drivers were also
used to establish an RS232C serial channel between the
ICnova board and the 8051 microcontroller hardware
(used to send object code and to exchange commands and
status information).

C. Client interface
The client core described in section 3 was adapted to

the requirements of the microcontroller workbench,
producing an interface that offers three tabs, and
application-specific buttons on the right side. The hex file
containing the object code to be executed is loaded using
the "Select File" button, and is displayed in the middle tab
window shown in figure 4.

The object code can then be sent to the remote
workbench using the "Upload" button shown in figure 5.
The information transfer window (left tab in the client
interface) shows the response of the microcontroller
board, indicating that it waits for an order to start
execution – pressing "Space" in a local keyboard, or
"Run" in the client application.

When the start order is received, the microcontroller
board starts to execute the uploaded program, and the
corresponding status information is sent to the client and
displayed as shown in figure 5.

In the case of the e-dice experiment, the uploaded code
cycles continuously through the six possible results shown
in figure 2, until the STOP button – "Key 1" in the client
interface – is pressed. When that happens, the
combination currently driven to the LEDs freezes and e-
dice result becomes available.

The rightmost tab selects a mini-browser that can be
used to watch the video stream provided by an IP camera
located in the remote workbench. In the case illustrated in
figure 6, the STOP button had been pressed, and the e-
dice result was "5".

The mini-browser window may also be used for other
purposes, besides showing the video stream produced by
the remote workbench IP camera. Figure 7 shows it being
used to run a Dimdim session [5], webcasting a
presentation where the lecturer explains the remote e-dice
experiment.

 4

Figure 7. Remote microcontroller application –

Mini-browser window showing Dimdim

V. CASE STUDY #2:
BOUNDARY-SCAN TEST (BST) CLASSES

A. Experiment description
Boundary-scan is a test technology developed in the

mid-1980s and approved as IEEE standard 1149.1 in 1990
[6]. Every 1149.1-compatible chip comprises a set of test
cells placed in the device boundary, enabling observation
and control of every functional pin. Access to the test
infrastructure is done through a 4-pin test access port
(TAP), ensuring a common protocol to all test data
operations (shifting, capturing test responses, application
of test vectors), irrespective of the device or its
manufacturer. These 4 pins enable data shifting (TDI and
TDO to shift in and out of each device), control (TMS to
select the required test mode), and timing (TCK for test
clock). Each device possesses an instruction register (IR),
present in the same scan chain, which specifies the
required operating mode for the test logic.

Test generation is done automatically from the printed
circuit board netlist, the description of the BS
infrastructure present in each device, and eventual test
vector sets generated for clusters of non-BS devices. The
complete set of test vectors is then serialised, and the
binary test vector streams represented using SVF (Serial
Vector Format) [7].

The example illustrated in figure 8 comprises two
circuits, each of them with 8 functional pins (and the
associated 8 BST cells). To find out if a short-circuit
exists between two interconnects, opposing logic values
shall be shifted into the two driving BS cells, and the
responses captured at the corresponding inputs shall be
shifted out and checked against their expected values.

The corresponding SVF code for this case might be
represented as follows:

 STATE RESET

; initialise the test logic
SIR 8 TDI(00)

; set the two devices in external test mode
(assumes 4-bit IRs)

SDR 16 TDI(0800)
; shift in the test data for the two driving
cells

SDR 16 TDI(0800) TDO(0010) MASK(0030)
; shift out the test response and check the
two receiving cells

A remote workbench to enable practical BST

experiments shall therefore comply with the following
requirements:
1. Provide text editing features to load / edit the SVF test

code
2. Execute the SVF test code in "step" / "run" modes
3. Observe the waveforms in all TAP pins (logic

analyser)
In the case of mixed-signal circuits, where analogue

signals are controlled by the digital BST devices, video
streaming from the remote workbench will enable the
users to visualise an oscilloscope or other measurement
equipment.

B. Server customisation
Since all TAP signals come from ICnova GPIO pins,

the corresponding server code dictates workbench
performance. It may be necessary to shift long bit streams
through the remote BST hardware, so the frequency of the
test clock (TCK) signal should be as high as possible to
minimise experiment latencies.

Since the embedded ICnova GPIO drivers do not go
beyond a few hundred Hz, new device drivers were
written to execute all IO operations in kernel space. Figure
9 summarises how these device drivers work, and the
interaction between user and kernel space.

Figure 9. Device drivers and user / kernel spaces interaction

The device driver / kernel module must be loaded
dynamically via the command shell using the instruction
insmod (this task can be done automatically when booting
the system). Once this module is activated, it can interact
with the user space application using the available system
calls, e.g. open(), close(), ioctl(), etc. This solution
enables all low-level control functions to be executed by
the device driver in kernel space, and the high-level
operations to be executed in user space.

IR IR

BST
 cell

BST
 cell

Short-
circuit?

1

0

Reads a
1 here?

Reads a
0 here?

Figure 8. A simple circuit comprising two BS devices.

TDI

 TDO TDI

 TDO

Kernel
space Initialisation

removal
I/O

control
BST low-level

routines

Shell
User space
application

User
space

insmod / rmmod

BST module

Registry removal

Open(), close(), ioctl()

Physical
I/O

 5

Figure 10. BST controller application – the SVF test program

Figure 11. BST controller application – waveform display

Figure 12. BST controller application – TAP state diagram

Figure 13. BST controller application –
Live video from the remote workbench

C. Client interface

The requirements set up for the BST workbench led to
the design of a client interface offering four tabs and an
application-specific set of buttons on the right side. The
SVF test code corresponds to the experiment script, and is
displayed in the text editor window illustrated in figure 10.
File management functions (Open, Save, Save as) are
provided on the bottom-left corner ("Tools"). When ready,
the SVF code can be executed step-by-step, or completely
in one run, using the corresponding buttons shown in
figure 10.

The BST workbench client interface uses the graphic
engine provided by the core client to produce a waveform
display window showing the digital signals present in the
two sets of TAP pins. Following the execution of SIR
(Scan Instruction Register), SDR (Scan Data Register), or
of any other commands generating TAP activity, this
window enables the users to see the effect of every SVF
command on each pin. SVF line numbers are indicated
below the sets of waveforms associated to each TAP, as
illustrated in figure 11. The zoom function, available on
the bottom left part of this window, allows the user to see
longer segments, or to analyse finer details.

The operating mode of the BST test logic inside each
chip is specified by an instruction shifted into the
instruction register, in combination with the state of a
small finite state machine called the TAP controller
(shifting test data or instructions only takes place when the
TAP controller is in the corresponding "Shift-XR" state).
An additional tab was therefore added to the client BST

controller application, to show the current state of the TAP
controller, as illustrated in figure 12.

Live video feedback from the remote workbench may
or may not be necessary for BST experiments. In the case
of strictly digital test experiments, the waveforms and the
data shifted out of the board under test will contain all the
necessary information. When live video is required, the
stream produced by an IP camera can be visualised in the
mini-browser, as illustrated in figure 13.

Likewise, this mini-browser window can also be used
by the lecturer to webcast a demonstration / presentation
of structural test detection in distance learning scenarios.

VI. CONCLUSION AND FURTHER RESEARCH
This paper presented a low-cost solution that enables a

quick implementation of remote workbenches for a wide
variety of practical experiments in science and technology
courses. The workbench server is based on a Linux
ICnova AP7000 Base board, selling at unit prices of 95
EUR. The client interface was written in Visual Basic .Net
2008 and can be easily customised to suit any required
experiments. The proposed solution offers two main
advantages: 1) low-cost; 2) easy reusability. The server
and client open source code sets are available for the two
workbenches from the following web addresses (Code
license: GNU General Public License v3; Content license:
Creative Commons 3.0 BY-SA):
§ Server applications: http://code.google.com/p/rmws/

and http://code.google.com/p/rbstws/
§ Client applications: http://code.google.com/p/rmw-

client/ and http://code.google.com/p/rbstw-client/

 6

For some types of remote experiments, it is also
possible to envisage a low-cost workbench server based
on a netbook computer, at a price similar to our proposed
solution (the netbook webcam might be combined with a
video streaming application to provide live images from
the remote experiment). Although the prices of these two
solutions would be similar, the netbook is far more limited
in terms of general I/Os available to interface the
experiment. If an external board is needed for this or other
purposes (e.g. to provide a serial port connection to the
experiment hardware, as happens in one of our examples),
then the netbook approach clearly looses in favour of our
proposed solution. Additionally, the ICnova has lower
power consumption, and occupies less space.

It is important to stress the fact our ICnova-based
solution is able to run multiple remote experiments at the
same time, provided that the requested server resources
(e.g. IO pins, serial port, etc.) do not overlap. This is what
happens with the two workbenches presented in this
paper, which can be used at the same time. Simultaneous
use of multiple workbenches is an added-value in relation
to in-presence experiments, where a lab bench cannot be
used by more than one group of students at the same time.

Our remote workbench does not compete with higher-
end systems, such as those based on the iLabs architecture
or National Instruments' ELVIS platforms [8]. On the
other hand, it represents a satisfactory solution when the
economic resources available are scarce, or the number of
experiments does not justify the overhead of a full-fledged
solution. The mini-browser included in the client interface
enables the integration of web video-conferencing to
support collaborative work (e.g. using Adobe Connect
[9]), or webcasting to demonstrate practical experiments
in distance / e-learning courses (e.g. using Dimdim). With
a complementary IP camera, our proposed solution offers
a complete lab environment supporting live video
streaming, at a cost that is far below most other systems.

ACKNOWLEDGMENT
The authors would like to acknowledge the contribution

of Pedro Alves, who designed the printed circuit board
interfacing the Linux board to the remote experiments
hardware.

REFERENCES
[1] iLabs: Internet access to real labs - anywhere, anytime, available

on-line at http://icampus.mit.edu/ilabs/ (visited on March 5th
2010).

[2] ICnova AP7000 Base, available on-line at http://www.ic-
board.de/product_info.php?language=en&info=p75_ICnova-
AP7000-Base.html (visited on March 5th 2010).

[3] icnova ap7000 base, available on-line at
http://www.avrfreaks.net/index.php?module=Freaks%20Tools&fu
nc=viewItem&item_id=874 (visited on March 5th 2010).

[4] µVision® IDE & Debugger, available on-line at
http://www.keil.com/uvision/ (visited on March 5th 2010).

[5] Dimdim for live meetings, demos and webinars, available on-line
at http://www.dimdim.com/ (visited on March 12th 2010).

[6] IEEE 1149.1-2001 (Revision of IEEE Std 1149.1-1990) Standard
Test Access Port and Boundary-Scan Architecture, IEEE
Computer Society (Test Technology Standards Committee), 25
October 2001.

[7] Serial Vector Format (SVF), available on-line at http://www.asset-
intertech.com/support/svf.html (visited on March 5th 2010).

[8] NI ELVIS: Educational Design and Prototyping Platform,
available on-line at http://www.ni.com/nielvis/ (visited on March
5th 2010).

[9] Adobe Acrobat Connect Pro: Web Conferencing, Web Conference,
Online Meetings, available on-line at
http://www.adobe.com/products/acrobatconnectpro/ (visited on
March 12th 2010).

AUTHORS
José M. M. Ferreira is with FEUP, Rua Dr. Roberto

Frias, 4200-465 Porto, Portugal, and HIBU, P.B. 235,
3603 Kongsberg, Norway (jmf@fe.up.pt).

Américo F. S. Dias, is with FEUP and INESC, Rua Dr.
Roberto Frias, 4200-465 Porto, Portugal
(americo.dias@fe.up.pt).

Paulo J. S. Sousa is with FEUP, Rua Dr. Roberto
Frias, 4200-465 Porto, Portugal (sousa@fe.up.pt).

Zorica Nedic, is with the University of South Australia,
Mawson Lakes Boulevard, Mawson Lakes, South
Australia 5095 (Zorica.Nedic@unisa.edu.au).

Jan Machotka is with the University of South
Australia, Mawson Lakes Boulevard, Mawson Lakes,
South Australia 5095 (Jan.Machotka@unisa.edu.au).

Ozdemir Gol, is with the University of South
Australia, Mawson Lakes Boulevard, Mawson Lakes,
South Australia 5095 Ozdemir.Gol@unisa.edu.au).

Andrew Nafalski, is with the University of South
Australia, Mawson Lakes Boulevard, Mawson Lakes,
South Australia 5095 (Andrzej.Nafalski@unisa.edu.au).

This work was supported in part by the Australian Learning and
Teaching Council.

