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Abstract: A vector-valued impulsive control problem is considered whose dynamics,
defined by a differential inclusion, are such that the vector fields associated with
the singular term do not satisfy the so called Frobenius condition. A concept of
proper solution based on a reparametrization procedure is adopted which enables the
derivation of optimality conditions of the Hamilton-Jacobi type. These conditions are
obtained by taking a limit of those for an appropriate sequence of auxiliary “standard”
optimal control problems approximating the original one. Copyright c© 2001 IFAC
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1. INTRODUCTION

Dynamic optimization problems arising in a va-
riety of application areas such as finance, me-
chanics, resources management, and space nav-
igation, (see, for example, (Brogliato, 1996),
(Clark, Clarke, Munro, 1979), (DalMaso, Ram-
pazzo, 1991), (Lawden, 1963), and (Marec, 1979))
whose solutions might involve discontinuous tra-
jectories have been, over the years, motivating
a significant research effort on the so-called Im-
pulsive Control Problem (for a selected set of
references see (Pereira, Silva, 2000) and references
therein).

1 The authors are indebted to FCT support under the

grants to fund the research projects COSH and CorDyAL.
2 The author is indebted to FAPESP and CNPq of Brazil.

In this article, we address a class of impulsive con-
trol problems previously treated by (Silva, Vinter,
1997), in which the dynamics are defined by a
measure differential equation. However, now, we
consider vector valued measures without assum-
ing commutativity of the singular vector field,
similarly to the problem addressed in (Pereira,
Silva, 2000). In this new context, the concept of
proper solution is presented. Besides providing a
meaning to the dynamic optimization problem, is
also endowed with a robustness property allowing
the extension of conditions of optimality of the
Hamilton-Jacobi type for the considered class of
impulsive control problems. The conditions pre-
sented here can be regarded as an extension to
the impulsive optimal control problem of the stan-
dard ones for conventional dynamic optimization
problems.
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Impulsive control problems have been addressed
in a number of publications, namely, (Bressan,
Rampazzo, 1991), (Dykhta, Sumsonuk, 1997), and
(Kolokolnikova, 1997), (Rishel, 1965), (Rockafel-
lar, 1976), Rockafellar, 1981) and (Warga, 1966).
In the first four, closer in spirit to this article,
impulsive control problems with vector valued
control measures were addressed by imposing the
Frobenius condition on the vector fields associated
with the singular term. This very strict assump-
tion ensures an unique jump endpoint, x(t+), once
specified the value of the state variable at t− and
the measure dµ(t). In (Bressan, Rampazzo, 1994),
this commutativity assumption is lifted by noting
that a certain quotient control system, obtained
by an appropriate nonlinear local change of coor-
dinates in the state space, is an impulsive one sat-
isfying the above mentioned commutative hypoth-
esis. In (Mota, Rampazzo, 1996), a dynamic pro-
gramming approach for nonlinear systems driven
by ordinary and impulsive controls is considered
whose solution is given by a value function that
depends on the time variable and on the variation
of the control measure. A maximum principle is
also proved and the relations between the adjoint
variable and the value function are established.

The problem formulated in this article is quite
different from the ones above and, instead, falls
into the control context of (Pereira, Silva, 2000). It
adheres to important classes of problems involving
the coordinated control of multiple dynamic sys-
tems. Basically, the idea is to control a dynamical
system with several viable configurations in such
a way that a given performance criterion is maxi-
mized during the execution of the given activities.
Transitions between different configurations are
not, in practice, instantaneous, although ideally
might be considered so. Therefore, it is of interest
to incorporate its management in the global opti-
mization problem. This can be regarded as choos-
ing the best path between the jump endpoints.

This article is organized as follows: In the next
section, we will state the optimal control problem
in detail and present the required assumptions. In
the third section, we explain the adopted solution
concept and, in the fourth section, we present
an auxiliary result that is used in the derivation
of Hamilton-Jacobi type optimality conditions.
These conditions are stated in the fifth section
and a brief outline of the proof is given.

2. STATEMENT OF THE PROBLEM

We will consider the following optimal control
problem:

(P ) Minimize h(x(1)) (1)

subject to

dx(t) ∈ F (t, x(t))dt+

G(t, x(t))µ(dt) ∀t (2)

µ(dt) ∈ K, (3)

x(0) = x0. (4)

Here, h : Rn → R is the cost functional, F : [0, 1]×
Rn ⇒ Rn, andG : [0, 1]×Rn ⇒ Rn×q are given set
valued functions describing the dynamics, K is a
positive convex pointed cone in Rq, and x0 ∈ Rn.

By (3) it is meant that µ ∈ C∗([0, 1];K), i.e.,
µ(A) ∈ K for any Borel set A ⊂ [0, 1], denoting
C∗([0, 1];K) the set in the dual space of continu-
ous functions from [0, 1] to Rq with values in K.

The short notation used in (2) to express the
dynamics (which are a significant extension of the
one in (Silva, Vinter, 1997)), requires a careful
explanation on how the interaction between the
evolving state variable and the impulsive integrat-
ing control measure at times when the trajectory
is discontinuous, is taken into account. This prob-
lem is a complementary formulation of the one
in (Vinter, Pereira, 1988) in the sense that in
this reference the singular dynamics depends on
the ordinary control variable instead of the state
variable.

Let us denote by xac and by xs, respectively the
absolutely continuous and the singular compo-
nents of the trajectory, x, and consider a given ini-
tial condition x0. Then, x(t) = xac(t)+xs(t) ∀t ∈
[0, 1] with

x(0) = x0

ẋac(t) ∈ F (t, x(t)) +G(t, x(t)) · wac(t), L-a.e.

xs(t) =
∫

[0,t]

g(τ)µ̄s(dτ) ∀t ∈ [0, 1].

Here µ̄ is the total variation measure associated
with the vector-valued measure µ (which, in this
case, is given by

∑q
i=1 µi), µs and µac are, respec-

tively, the singular and the absolutely continuous
components of µ, wac is the time derivative of
µac, and g(·) is a µ̄s-a.e. measurable selection of a
certain set valued function

G̃(t, x(t−);µ({t})) : [0, 1]× Rn ×K ⇒ Rn.

Defined in the next section, this set valued func-
tion is such that a concept of control process
will fulfill the requirements underlying the well-
posedness of the optimization control problem as
well as the derivation of conditions of optimality.

Remark that the fact that G̃ is set valued accounts
for the nonuniquess of the solutions to (2) for a
given initial state and control function. As can
be seen in (Pereira, Silva, 2000), each one of
these solutions can be regarded as the limit of



a convergent (in a certain sense) subsequence of
conventional control processes.

A solution to (P ) is a feasible control process
(x, µ), in the sense that satisfies the constraints
(2)-(4) as explained above, that minimizes h.

The following hypothesis were assumed on the
data of (P ):

(H1) h is Lipschitz continuous with constant Kh.
(H2) F is continuous, and for each t is Lipschitz

continuous with respect to x with constant
Kf .

(H3) F is a nonempty, convex and compact valued
set-valued function.

(H4) There are constants K1 and K2, such that,
∀(t, x);∀v ∈ F (t, x) |v| ≤ K1 +K2|x|.

(H5) G is bounded and Lipschitz continuous with
respect to (t, x) with constant KG.

(H6) F and G have closed graphs.

Although a set of weaker assumptions could have
been adopted, we preferred to preserve clarity at
the cost of sacrificing additional technicalities.

In the quest of dropping the commutativity as-
sumption, two main goals were considered. One
is to overcome the technical difficulty associated
with the nonuniquenes of the trajectory. The sec-
ond consists in providing useful practical infor-
mation in the sense that the obtained conditions
should support the approximation to the optimal
control process, possibly involving a trajectory of
bounded variation, by a sequence of conventional
ones.

3. SOLUTION CONCEPT

The definition of Proper Solution to (P ) requires
the auxiliary definitions of reparametrization and
graph completion which can be readily adapted
from (Pereira, Silva 2000). For the sake of com-
pleteness, they will be restated here. In what fol-
lows, AC([0, 1]; Rn) and BV +([0, 1]; Rn) denote,
respectively, the space of absolutely continuous
Rn-valued functions, and the space of Rn-valued
functions of bounded variation which are right
continuous on (0, 1], and L × B is the product σ-
field where L are the Lebesgue subsets of [0, 1] and
B the Borel sets in Rq.

Definition 1. A µ-graph completion (where µ ∈
C∗(0, 1;K)) is a pair (θ, γ) : [0, α] → R+ × K
where:

• θ : [0, α] → [0, 1] is the “inverse” of η̄ (i.e.,
θ(s) = t, ∀s ∈ η̄(t)) and

• γ : η̄(t) → Rq given by

γ(s) :=


M(θ(s)) if µ̄({t}) = 0

M(t−) +
∫ s

η(t−)

v(σ)dσ if µ̄({t}) > 0,

where α = 1 + µ̄([0, 1]), v(·) ∈ V t, a set of
functions v : η̄(t) → Rq, with v(s) ∈ K and∑q

i=1 vi(s) = 1 ∀s ∈ η̄(t), and
∫

η̄(t)
v(s)ds =

µ({t})}.

Here, M := col(M1, ...,Mq), with Mi(0) = 0
and, ∀t > 0, Mi(t) =

∫
[0,t]

µi(ds), µ̄(dt) :=∑q
i=1 µi(dt), and the set valued function η̄(t) is

given by [η(t−), η(t)] if µ̄({t}) > 0 and by {η(t)}
otherwise, being the time reparametrization η(·)
defined by

η(t) := t+
q∑

i=1

Mi(t).

Proposition 1 in (Silva, Vinter, 1998) concerning
the relevant properties of graph completions can
be easily extended in a straightforward manner
to the case of vector valued control measures
when the above reparametrization procedure is
adopted.

In opposition to the scalar valued control mea-
sure case, we have to deal with a set valued
reparametrization. More specifically, when more
than one component of the control measure is
supported at the same point in time, multiple con-
ventional trajectories can be associated with the
given generalized control process. This is a conse-
quence of the noncommutativity of the semigroup
composition of the vector fields associated with
the columns of the matrix G. In order to single out
one conventional reparametrized control process,
we adopted the definition of h-graph completion
presented below.

For a given feasible measure µ and an initial
state x0, consider the family of reparametrized
trajectories Fx0,µ defined by

{y ∈ AC([0, α]; Rn) : ẏ(s) ∈ F̃ (s, y(s))θ̇(s) +

G̃(s, y(s))γ̇(s), (θ̇(s), γ̇(s)) ∈ K1,

[0, α]-a.e., y(0) = x0}

where

• α = 1 + µ̄([0, 1])
• F̃ (s, y(s)) = F (θ(s), y(s)),
• G̃(s, y(s)) = G(θ(s), y(s)),
• γ(0) = 0, and γ(η(t)) = µ([0, t]) ∀t ∈ [0, 1],
• K1 = {w ∈ [0, 1]×K :

∑q
i=0 wi = 1}.

Definition 2. A given pair of functions (θ, γ)
is a h-graph completion related to (x0, µ) if it
minimizes h(y(1)) over all y(·) in Fx0,µ. The set
of h-standard processes

∑
h is the set of all triples



(y, θ, γ) s.t. y ∈ Fx0,µ, ∀ h-graph completion
(θ, γ).

Definition 3. A function x ∈ BV +([0, 1]; Rn) is
a Proper solution to (2) relative to the objective
functional (1) if there exists a L-integrable func-
tion f, f(t) ∈ F (t, x(t)) L-a.e., and a h-graph
completion yielding a µ̄-integrable function g, g(t)
∈ G̃(t, x(t−);µ({t})) µ̄-a.e., such that ∀t ∈ (0, 1]

x(t) = x(0) +
∫ t

0

f(τ)dτ +
∫

[0,t]

g(τ)µ̄(dτ).

Here, the set valued function G̃ : [0, 1] × Rn ×
K ⇒ Rn is given by

{G(t, z)w(t)} if |α| = 0

{ [ξ(η(t))− ξ(η(t−))]
|α|

:

ξ̇(s) ∈ G(t, ξ(s))γ̇(s), η̄(t)-a.e.,
ξ(η(t−)) = z, γ(η(t))− γ(η(t−)) = α}

otherwise

where |α| =
∑q

i=1 αi, w(·) is the Radon-Nicodym
derivative of µ w.r.t. µ̄, (ξ, γ) is an element of
AC([0, 1]; Rn+q), and the pair (θ, γ) is a µ-graph
completion with θ̇(s) ≡ 0 on η̄(t).

Note that the definition of a solution to (2) for a
given (x0, µ), includes the specification of a path
joining the endpoints of every discontinuity. This
path corresponds to an arc which satisfies the
singular dynamics, i.e., ξ̇t(s) ∈ G(t, ξt(s))v(s),
for ξt(η(t−)) = x(t−) and for some v ∈ K.
The good definition of the solution is guaranteed
by selecting the additional control v in such a
way that resulting trajectory is the one obtained
as the limit over all minimizing sequences of
conventional control processes for problem (P ).
This definition provides not only a framework for
the derivation of optimality conditions, but also to
support the design of computational algorithms.

By only requiring that F be L-measurable, G
be B-measurable and both take closed values,
for a given measure µ, there is an equivalence
between the set of solutions of (2) and the set
of standard processes

∑
h in the sense that for

each solution to (2) there corresponds one and
only one h-standard process (y, θ, γ) such that
x(t) = y(η(t)) for all t ∈ [0, 1]. This statement
is a straightforward extension of Theorem 4.1 in
(Silva, Vinter, 1997). Furthermore, it can also be
shown that ‖x‖TV ≤ ‖y‖TV .

Given a sequence of measures µi and a sequence of
initial values xi

0 we denote the associated sequence
of h-standard processes by

∑i
h. Solutions to (2) (as

defined above) are “robust” in the sense that the
set of solutions has desirable “closure” properties
with respect to perturbations of the driving mea-

sure µ and the initial state. The following result is
a direct generalization of Proposition 5.1, (Silva,
Vinter, 1996) which concerns the approximation
of measure differential equations.

Proposition 1. Let the hypotheses (H1)-(H6),
stated above, be in force. Take a sequence {xi

0}
in Rn and a sequence {µi} in C∗([0, 1];K), and
x0 ∈ Rn and µ ∈ C∗([0, 1];K) such that xi

0 → x0

and µi → µ weakly∗, as i → ∞. Take also a
sequence {xi} in BV +([0, 1]; Rn) such that xi is
a robust solution to (2) for each i and assume
the existence of β(t) ∈ L1 and c > 0 such that
F (t, xi(t)) ⊂ β(t)B a.e. and |G(t, xi(t))| ≤ c for
all t and i.

Then, there exist:

(a) a sequence of h-standard processes (yi, θi, γi)
in

∑i
h,

(b) (y, θ, γ) ∈
∑

h and
(c) a solution x to (2) ,

such that xi(t) = yi(ηi(t)) ∀t ∈ (0, 1] and x(t) =
y(η(t)) ∀t ∈ (0, 1].

Along a subsequence, we have dxi → dx weakly∗

and xi(t) → x(t) for all t ∈
(
[0, 1] \Mµ

)
∪ {0, 1}

(where Mµ denotes the atoms of µ) and yi → y
strongly in C([0, 1]; Rn).

4. PRELIMINARY RESULTS

In this section we present a result concerning the
approximation of arcs by reparametrized trajecto-
ries for the impulsive control system. This result
resembles the Fillipov approximation theorem, de-
rived for absolutely continuous control systems,
see (Aubin, Cellina 1984).

Theorem 1. Let F : R× Rn ⇒ Rn and G : R×
Rn ⇒ Rn×q be such that F (·, x) and G(·, x)
are Lebesgue measurable ∀x ∈ Rn, and F (t, ·)
and G(t, ·) are Lipschitz continuous of rank k
for all t ∈ R. Take a > 0 and consider two
Lipschitz continuous functions θ : [0, a] → R and
γ : [0, a] → Rq, satisfying

(θ̇(s), γ̇(s)) ∈ K1, s ∈ [0, a]− a.e..

Take also z ∈ AC([0, a]; Rn) such that

ż(s) = φ(s)θ̇(s) + ψ(s)γ̇(s), s ∈ [0, a]− a.e.

where φ ∈ L1([0, a]; Rn) and ψ ∈ L1([0, a]; Rn×q).
Let p ∈ L1([0, a]; R) be such that

dF (θ(s),z(s))(φ(s)) ≤ p(s) θ̇(s) 6= 0− a.e.
dG(θ(s),z(s))(ψ(s)) ≤ p(s) γ̇(s) 6= 0− a.e.

and take x0 ∈ Rn. Let λ : [0, a] → R be defined as

λ(s) = |z(a)− x0|ek(s−a) +
∫ s

a

ek(s−σ)p(σ)dσ.



Then there exist x ∈ AC([0, a]; Rn), f and
g, measurable selections of F (θ(s), x(s)) and
G(θ(s), x(s)), respectively, satisfying

ẋ(s) = f(s)θ̇(s) + g(s)γ̇(s), s ∈ [0, a]− a.e.,
x(0) = x0,

and such that

|x(s)− z(s)| ≤ λ(s) ∀s ∈ [0, a]
|f(s)− φ(s)| ≤ kλ(s) + p(s) s ∈ [0, a]− a.e.
|g(s)− ψ(s)| ≤ kλ(s) + p(s) s ∈ [0, a]− a.e.

5. OPTIMALITY CONDITIONS

The statement of the derived optimality condi-
tions governing minimizers for (P ) over state tra-
jectories which are interpreted as proper solutions
to (2) requires the introduction of some notation
and a few concepts from nonsmooth analysis.

Let f : Rn → R be a lower semicontinuous func-
tion. The lower Dini derivative, or subderivative,
of f w.r.t. x in the direction v is given by

Df(x; v) := lim inf
w→v δ↓0

f(x+ δw)− f(x)
δ

.

∂Df(x) denotes theD-subdifferential of f at x and
is the set {ζ ∈ Rn : Df(x; v) ≥ 〈ζ, v〉,∀v ∈ Rn}.
Elements of this set are called D-subgradients.

Properties and calculus rules of subderivatives, as
well as their relations with generalized gradients in
the sense of Clarke or of proximality are addressed
more in detail in (Clarke 1983), (Clarke, Ledyaev,
Stern, Wolenski 1998), (Aubin, Ekeland 1984) and
(Mordukhovich, 1985).

Consider also X(τ, ξ) to be the set of feasible
trajectories, in the sense of Definition 3 , for (P )
starting at (τ, ξ), i.e.,

X(τ, ξ) := {(x(·), µ) : (x, µ) is solution to

(2) and (3) with x(τ) = ξ},

the Reachable set from (τ, ξ) by

R(τ, ξ) := {x(1) ∈ Rn : (x, µ) ∈ X(τ, ξ)},
and the value function

V (τ, ξ) := min{h(z) : z ∈ R(τ, ξ)}.

Definition 4. W : [0, 1] × Rn → R is a solution
to the Generalized Hamilton-Jacobi Equation on
a certain tube T in the phase space if, for all
t ∈ (0, 1), all x ∈ Rn, with (t, x) ∈ T ,

min
(w0,w)∈K1
f∈F (t,x)
g∈G(t,x)

DW ((t, x); (w0, fw0 + gw)) ≥ 0, (5)

and for all t ∈ [0, 1], all x ∈ Rn, with (t, x) ∈ T
min

(0,w)∈K1
g∈G(t,x)

DW(t)(x; gw) ≥ 0, (6)

where, for each t ∈ [0, 1], W(t) : Rn → R is
the function defined as W(t)(x) = W (t, x), for all
x ∈ Rn.

Conditions (5) and (6) characterize the mono-
tonicity of solutions of the generalized Hamilton-
Jacobi equation when evaluated along feasible tra-
jectories. While (5) has to be satisfied along the
continuous component of the trajectory, (6) has to
hold along the path joining the jump endpoints.
If x(·) is a trajectory solution to (2), this path
is in fact an arc satisfying the singular dynamics
as defined in the solution in the sense of Defini-
tion 3, i.e., it has to be parametrized by an h-
reparametrization pair (θ, γ).

We define the notion of verification function along
the lines of (Vinter, Wolenski 1990).

Definition 5. W is a verification function for (P )
if

• It is locally Lipschitz..
• For all x ∈ Rn, W (1, x) ≤ h(x).
• It is a solution to the Generalized Hamilton-

Jacobi Equation as defined above.

Now, we are ready to state the main results of
this article which can be regarded as extensions of
the corresponding ones in (Vinter, Wolenski 1990)
to impulsive control problems. It is assumed that
the data of (P ) satisfies hypotheses (H1)-(H6) and
also ∀r > 0,∃ko,∀(s, y) ∈ [0, 1] × Rn,∀(x, µ) ∈
X(s, y), |y| ≤ r ⇒ ‖µ‖ ≤ ko.

Theorem 2. For each (τ, ξ) ∈ [0, 1] × Rn, the
value function V is a verification function which
is maximal, i.e.,

V (τ, ξ) = max{W (τ, ξ) : W is a

verification function}.

Furthermore, V is such that (5) holds with equal-
ity and, for all x ∈ Rn,

min{h(x)− V (1, x), min
(0,w)∈K1
g∈G(1,x)

DV(1)(x; gw)} = 0.

The next result concerns the Hamilton-Jacobi
verification theorem.

Theorem 3. (x, µ) ∈ X(0, x0) is an optimal
solution to (P ) if and only if there exists a
verification function W satisfying W (0, x0) =
g(x(1)).

The general idea behind the proof of the above
results involves the concept of reparametrized tra-
jectories defined above. The monotonicity of veri-



fication functions evaluated along reparametrized
trajectories results from the the absolute continu-
ity of such trajectories as well as the properties of
the lower Dini derivatives. The Lipschitz continu-
ity of the valued function can be shown to follow
from a simple application of theorem 1, under the
assumed hypotheses. To show the other properties
of the value function, one can proceed as in in
(Vinter, Wolenski, 1990), once more working with
reparametrized trajectories.
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