
An Automated Verification Process Based on Scan Techniques

Gustavo R. Alves
DEE / ISEP
Rua S. Tome

4200 Porto – Portugal
galves@dee.isep.ipp.pt

Marcelo S. Lubaszewski Margrit Reni Krug
PPGC / UFRGS

Av. Bento Gonçalves, 9500
CEP 91501-970 Porto Alegre – Brasil

luba@iee.ufrgs.br margrit@inf.ufrgs.br

 José M. Martins Ferreira
DEEC / FEUP
Rua dos Bragas

4000 Porto – Portugal
jmf@fe.up.pt

Abstract

Matching the results achieved during circuit simulation with
those extracted from circuit functioning is a common
verification process. A large number of current verification
techniques use the input / output vectors produced during
functional simulation as the test vectors applied / compared
against the circuit responses. Techniques that are more
complete include extracting the values of internal sequential
nodes and comparing these using internal scans. This paper
describes a solution for verifying digital designs
implemented in currently commercial available CPLDs. All
internal flip-flops are included in a scan-chain accessible
through the BST infrastructure (using a user-defined
optional instruction), while the BS cells are used to apply the
input test vectors and capture the circuit responses. These
BS cells can either belong to the device-under-test or to
other devices, the first controlled through the optional
INTEST instruction and the second controlled through the
mandatory EXTEST instruction. To speed up the
verification process, the test program is automatically
generated from information that encompasses the design &
development phase.

1. Introduction

Comparing the results obtained from the simulation phase
with those extracted from real circuit behaviour is a
traditional method of circuit verification, sometimes
referred as functional test. While this method can be
extended to comparing the values of internal flip-flops
(FFs) [1, 2], the need for expensive test equipment
prevents such an approach for small research groups with
limited budgets. The presence of a Boundary Scan Test
(BST) infrastructure in current commercial available
Complex Programmable Logic Devices (CPLDs) is a
possible solution for implementing a similar approach
using two optional instructions described in the standard
[3] and a chip-level controller previously developed for
debugging & testing board-level applications [4, 5, 6, 7].
The INTEST instruction allows the application of a test
vector to input pins and the capture of a response vectors

in output pins, while a simple user-defined optional
instruction called ‘INTSCAN’ allows capturing the values
present in internal sequential nodes. The test controller
named PROcessor for DEbug Purposes (PRODEP) is
responsible for controlling all test operations, namely for
shifting in / out the test vectors through the CPLD Test
Access Port (TAP). The test program executed by
PRODEP is automatically generated from information
that encompasses the design & development phase. Key
points of our solution include: a low-cost approach
dispensing the use of complex test equipment, re-use of
simulation results, re-use of a board-level BS controller,
and use of in-house software relatively simple to develop
(the automatic test program generation tool). Additional
contributions include the identification of flaws in the
optional INTEST instruction (defined in the IEEE 1149.1
standard), and in the BSDL file, in what refers to access
to internal scan chains, through the BST infrastructure.
This paper is organised as follows: after this introduction,
section 2 describes the test program generation process,
namely the data flow, and the input / output information.
Some details of the internal data structure are provided to
highlight that most of this process is actually devoted to
ordering information extracted from existing files. The
considerations on the INTEST instruction and on the
BSDL file are included in this section. Section 3 describes
how PRODEP is connected to the circuit under
verification and how the test program is executed. Section
4 is devoted to the error1 detection / location / diagnosis
process. Finally, section 5 concludes this paper.

2. Test program generation

The data flow in the test program generation process is
illustrated in figure 1 that also serves as a basis for the
following description. Most of the input information
required by the automatic test program generation
(ATPG) tool is provided from earlier stages of the design
& development process. The tool requires five inputs:

1 An error is understood here as a mismatch between a captured
value and an expected value in either a pin or an internal FF.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143414063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• a file containing the simulation results (both the input
stimulus and the circuit values for both the output pins
and the internal FFs);

• the device’s BSDL file (provided by the CPLD
manufacturer or which may be automatically
generated using commercially available software);

• a file describing the internal scan chain ordering;
• a file containing the user options;
• the structural test vectors (optional).

The first file, provided by the simulation tool, contains a
complete description of all the simulation channels used,
i.e. the input / output / bi-directional pins and the internal
flip-flops (which may be all or just a fraction of the total
number of flip-flops existing in the circuit). Interpreting
this file is sometimes a major problem, as currently there
isn’t a widely used public or de facto standard for the
format of the simulation results file. The one generated by
the MaxPlusII development system2 comes in a tabular
form, in ASCII, where columns correspond to circuit
signals (inputs / outputs / internal nodes) and rows
correspond to time moments. The cell corresponding to a
row (time) – column (signal) intersection contains the
signal value of a particular circuit location in a particular
moment. Simulation files in this format (with minor
variations) are quite common to find, and in fact, they
represent a kind of files that are easier to process in order
to extract the needed information. In our case, we
developed a simple C program that performs this
operation, providing the information needed to the ATPG
tool in a pre-defined format, later presented in this paper.
The BSDL file maps the device’s input / output / bi-
directional pins to the corresponding BS cells. Our
approach includes two options: the vectors may either be
applied / captured through the BS cells of device, using
the optional INTEST instruction, or through the BS cells
of other devices, using the EXTEST instruction. The first
option has some drawbacks:
• it relies on a optional instruction that sometimes is

not supported by commercial available CPLDs;
• the standard defines several ways in which single-

step operation may be achieved. This presents some
problems to the ATPG tool, namely because there
isn’t a well-documented form of indicating which
option is actually implemented in a certain device.

• INTEST places the BS cells associated with the
device input pins in the control mode and those
associated with the device output pins in the capture
mode. While this is what is intended, when the
optional instruction used for accessing the internal
scan chain is loaded in the instruction register, the BS
cells will be placed in the transparent mode, thus
disrupting the permanent application of a stable input
test vector. If not properly considered, this switch
may cause potential hazards to the circuit-under-test.

2 Development system used for Atera’s CPLDs [8].

Figure 1: Data flow of the ATPG process

The second option requires additional components solely
used for providing the necessary BS cells acting as test
channels. The BSDL file contains also the opcodes of the
SAMPLE/PRELOAD, INTEST and ‘INTSCAN’
instructions. Currently there is a serious omission in the
contents of this file, namely the standard does not define a
way of presenting the ordering of an internal scan chain
accessible through the BST infrastructure. A different file
generated by another in-house tool provides this
information. The user configuration file contains
additional information for the way the test program will
be executed, namely some options closely associated with
the resources available in our board-level BS controller.
The last file is supposed to be provided in Serial Vector
Format (SVF), to enable a structural test of the circuit
implemented in the CPLD. The SVF program is actually
translated to our format and embedded in the final test
program. The possibility to run a structural test plus a
functional test thus expands the diagnosis capabilities.
The ATPG tool processes the input information and
produces two output files corresponding to the programs
to be executed by each one of the two controllers that are
embedded in PRODEP. One controller (CLT) is able to
control two BS chains and the other (CLF) is able to
control one system clock and several general-purpose
input / output pins The operations of both controllers are
synchronised at machine level (through a common input
clock) and at program level (through dedicated
instructions). Figures 2 and 3 provide an idea on how the
internal data structure is first formed, after reading the
several input files, while figure 4 provides an excerpt of
the test vectors to be applied / compared through shift
operations. These vectors are extracted from the file with
the simulation results, where the individual values (bits)
are placed in the right order using the information
provided by the internal data structure. Notice that the
simulation channels and the BS cells (or the internal FFs)
do not necessarily share the same order.

Nodes
________________ ________________
id: clock1 id: strobe
type: input type: output
boundary_cell: 37, BC_4 boundary_cell: 22, BC_1
________________ ________________
id: sel_d3 id: shutdown
type: input type: output
boundary_cell: 36, BC_4 boundary_cell: 21, BC_1
... ...

Figure 2: Extract of the internal data structure after reading the BSDL file

Nodes
________________ ________________ ________________
id: clock1 id: strobe id:core\count1\cnt_bits1
type: input type: output type: buried
boundary_cell: 37, BC_4 boundary_cell: 22, BC_1 internal_cell: 24
external_cell: 28 external_cell: 9
________________ ________________ ________________
id: sel_d3 id: shutdown id:core\count1\cnt_bits2
type: input type: output type: buried
boundary_cell: 36, BC_4 boundary_cell: 21, BC_1 internal_cell: 25
external_cell: 26 external_cell: 8
...

Figure 3: Excerpt of the internal data structure after reading the file describing internal scan chain and the file
containing the user options

BS register .
vector to be shifted in:
10010000101000011000000001111110111111
expected vector:
00000000000000011000000001111110111111
mask:
00000000000000011111111111111111111111

internal scan register .
expected vector:
00000000000000000000000000
mask: 11111111000000000000011110

Figure 4: Operands of the shift instructions after reading
the rows of the file containing the simulation
results and combining the information provided
by the internal data structure

The stepwise application / capturing of each test vector is
now described in the following section.

3. The test program execution
Two files form the test program, each one corresponding
to the instructions and operands interpreted by each one
of the two controllers embedded in PRODEP. The
internal structure of this device was already described in
previous papers [4, 5], therefore we will concentrate on
the test program execution. The basic procedure in our
verification process consists of:
• apply one input vector used during simulation;
• cause the device to advance one step in its operation;

• capture / shift / compare the values present at the
output pins, and shift / compare the values present at
the internal FFs.

The first action consists of moving the device’s TAP
controller to the Shift-DR state, shift in the test vector and
then moving to Update-DR. This action is similar if using
the INTEST instruction plus the device BS cells, or the
EXTEST instruction plus the BS cells of other devices
used as external test channels.
The second action may be performed in several ways,
according to the information provided in the user options
file. This information is closely related to the several
examples provided in the IEEE 1149.1 standard [3], on
how a step-by-step operation may be implemented for
internal test operations (triggered by the INTEST
instruction). As one of the controllers embedded in
PRODEP is able to control one system clock, the user is
further able to choose between an external or internal
clocks source (this last corresponding to the one
controlled through the BST infrastructure). Figure 5a) and
5b) illustrate these two options, respectively.
The third and last action includes two distinct parts. The
first corresponds to moving the device’s TAP controller to
the Capture-DR state (where the response to the test
vector is captured), moving further to Shift-DR, and then
shift out the captured vector. The second part corresponds
to loading the optional ‘INTSCAN’ instruction (move
TAP controller to Shift-IR, shift in the instruction code,
and then move to Update-IR, where the new instruction
comes effective) and then performing a circular shift, i.e.

the values shifted out of the internal scan chain are also
shifted in, so that the scan chain contents remain the
same. Meanwhile, the shifted values are also compared
(through a mask) against the expected ones, inside
PRODEP. This way, PRODEP is responsible for the error
detection phase.

Figure 5: Possible ways of providing the clock signal for
step-by-step operation

4. The detection/location/diagnosis process

Any mismatch between a captured value and an expected
value (when the comparison mask is active) cause
PRODEP to acknowledge error in a dedicated output pin.
The test program may then be halted through conditional
instructions that test the internal error flag, or continued
up to the end. Error location is performed by another in-
house tool that extracts the vectors captured by PRODEP
(values shifted into PRODEP are stored in an external
memory) and compares the last with the corresponding
expected one (the exact order is provided by the ATPG
tool that numbers all expected vectors). The next step
consists of identifying the offending bit, i.e. which value
differs in the captured vector, in relation to the expected
one, when the comparison mask is active. After the bit
order is identified, the tool combines the information
provided by the internal data structure to locate the
offending pin or flip-flop. Diagnosis then follows with an
additional simulation session. By looking into the time
slot where the error is detected, namely to the value of the
offending pin or flip-flop, the user is able to identify
possible error sources. If more information is needed the
user may run a more specific simulation session with
corner cases surrounding the exact error situation, and
then generate another test program (using the ATPG tool).
The new values extracted from the circuit behaviour may
then help the user to find a solution to the actual error.
This last process can be repeated several times until the
user is certain that the exact error condition has been
unequivocally identified and that the envisaged solution is
correct, namely by comparing the values obtained in
simulation with those extracted from circuit functioning.

5. Conclusions

This paper describes a low-cost circuit verification
methodology. The key points are: re-usability of files that
encompass the design & development phase, re-usability
of the BST infrastructure for debug purposes (besides the
traditional production test), use of easy-to-develop in-
house applications. This last point includes what is
considered the ATPG tool. Although this tool generates
the test program executed by our test controller, it differs
from traditional ATPG tools in the fact that it does not
follow a particular algorithm or fault model, but rather
combines information provided by already existing input
files. As the simulation results file provides the bulk of
the input information, it is arguable that the recent STIL
[9] (Standard Test Interface Language, or IEEE 1450
standard) may be a better way to establish the connection
between circuit simulation and circuit verification.
However, the author’s opinion is that this format is better
suitable to large, expensive test equipment, not to the low-
cost BST controller used by us, or possibly used by other
research groups with limited budgets.

6. References
[1] K. Holdbrook, S. Joshid, S. Mitra, J. Petolino, R. Ramon

and M. Wong, “microSPARCTM: A Case-Study of Scan
Based Debug,” in proceedings of the International Test
Conference, pp. 70-75, IEEE Computer Society Press, 1994.

[2] Hong Hao and Rick Avra, “Structered Design-for-Debug -
the SuperSPARCTM II Methodology and Implementation,”
in proceedings of the International Test Conference (ITC),
pp. 175-183, IEEE Computer Society Press, 1995.

[3] IEEE Standard Test Access Port and Boundary-Scan
Architecture, Oct. 1993, IEEE Std. 1149.1 (Includes IEEE
Std. 1149.1a), ISBN 1-55937-350-4.

[4] J. M. Ferreira, M. G. Gericota, J. L. Ramalho and Gustavo
R. Alves, "BIST for 1149.1-Compatible Boards: A Low-
Cost and Maximum-Flexibility Solution," in proceedings of
the International Test Conference (ITC), pp. 536-543, IEEE
Computer Society Press, 1993.

[5] Gustavo R. Alves, Telmo Amaral and José M. M. Ferreira,
“Board-level Prototype Validation: A Built-in Controller
and Extended BST Architecture,” in proceedings of the
International Symposium on Circuits and Systems (ISCAS),
IEEE Circuits and Systems Society Press, 1999.

[6] Gustavo R. Alves and José M. M. Ferreira, “From Design-
for-Test to Design-for-debug-and-Test: Analysis of
Requirements and Limitations for 1149.1,” in proceedings
of the VLSI Test Symposium (VTS), IEEE Computer Society
Press, 1999.

[7] Gustavo R. Alves, “Design for Debug and Test based on the
P114.4 and 1149.1 architectures”, PhD Thesis, FEUP, Apr.
1999.

[8] Altera Corporation Web site, http://www.altera.com, 1999.

[9] IEEE Std. 1450-1999, IEEE Standard Test Interface
Language (STIL) for Digital Test Vector Data, IEEE
Standards On-Line, at
http://standards.ieee.org/catalog/olis/testtech.html, 1999

