
From Circuit Simulation to Circuit Verification:
An Internal + Boundary Scan-based Solution

Gustavo R. Alves
galves@dee.isep.ipp.pt

J. Martins Ferreira
jmf@fe.up.pt

DEEC / FEUP
Rua dos Bragas

4000 Porto Portugal

Marcelo Lubaszewski
luba@iee.ufrgs.br

Margrit Reni Krug
margrit@inf.ufrgs.br

PPGC / UFRGS
Av. Bento Gonçalves, 9500

CEP 91501-970 Porto Alegre
Brasil

DEE / ISEP
Rua S. Tome

4200 Porto Portugal

CPLD
M1

M2

PRODEP

.CLF
Automatic generation
of the (debug and) test
program

Simulation
results

BSDL

.CLT

Internal
scan
chain(s)

BSDL file
generation tool

Tool that automatically
generates the memory
initialisation files

User
options

Pins,
signals,
etc.

Stimulae for
simulation

Structural
test vectors
(in SVF)

Development
system

(Test and debug
processor)

(Circuit under
debug and test)

IEEE European Test Workshop 2000
Cascais, Portugal, May 23rd-26th, 2000

From Circuit Simulation to Circuit Verification:
An Internal + Boundary Scan-based Solution

Gustavo R. Alves
DEE / ISEP
Rua S. Tome

4200 Porto – Portugal
galves@dee.isep.ipp.pt

Marcelo S. Lubaszewski Margrit Reni Krug
PPGC / UFRGS

Av. Bento Gonçalves, 9500
CEP 91501-970 Porto Alegre – Brasil

luba@iee.ufrgs.br margrit@inf.ufrgs.br

 José M. Martins Ferreira
DEEC / FEUP
Rua dos Bragas

4000 Porto – Portugal
jmf@fe.up.pt

Abstract
Matching the results obtained from circuit simulation

with those extracted from circuit functioning is a common
stage of the final verification process. Many current
verification techniques use the I/O vectors produced
during functional and / or timing simulation, for creating
the test vectors to be applied / compared against the circuit
responses. Techniques that are more complete include
extracting the values of internal sequential nodes and
comparing these using internal scans. This paper describes
such a solution for verifying digital designs implemented in
currently commercial available CPLDs. The test program
is automatically generated from information that
encompasses the design & development phase, namely: the
file containing the results from simulation, the BSDL file,
an internal scan chain description file, and one file
containing the user options.

1. Introduction

Comparing the results obtained from the simulation
phase with those extracted from real circuit behaviour is a
traditional method of circuit verification, sometimes
referred as functional test. While this method can be
extended to comparing the values of internal flip-flops
(FFs), the need for expensive test equipment prevents such
an approach for small research groups with limited budgets
[1]. The presence of a Boundary Scan Test (BST)
infrastructure in current commercial available Complex
Programmable Logic Devices (CPLDs) is a possible
solution for implementing a similar approach using two
optional instructions described in the standard [2] and a
chip-level controller for debugging & testing board-level
applications [3, 4]. The INTEST instruction allows the
application of a test vector to input pins and the capture of
a response vectors in output pins, while a user-defined
optional instruction called ‘INTSCAN’ allows capturing
the values present in internal sequential nodes. The test
controller named PROcessor for DEbug Purposes
(PRODEP) is responsible for controlling all test
operations. The test program executed by PRODEP is
automatically generated from information that
encompasses the design & development phase. Key points
of our solution include: a low-cost approach dispensing the
use of complex test equipment, re-use of simulation
results, a board-level BS controller, and use of simple in-

house software (the automatic test program generation -
ATPG - tool). Other contributions include: identification of
flaws in INTEST and in the BSDL file, in what refers to
access through the TAP to internal scan chains.

This paper is organised as follows: section 2
describes the test program generation process, namely the
data flow and the I/O information. Most of this process is
actually devoted to ordering information extracted from
existing files. The considerations on INTEST and on the
BSDL file are included in this section. Section 3 describes
how the test program is executed, section 4 is devoted to
the error detection / location / diagnosis process, and
section 5 concludes.

2. The test program generation data flow

The data flow in the test program generation process is
illustrated in fig. 1. Most of the input information required
by the ATPG tool is provided from earlier stages of the
design & development process. The tool requires: the
simulation results; the BSDL file; a file describing the
internal scan chain ordering; a file containing the user
options; and the structural test vectors (optional).

Fig. 1: Data flow of the ATPG process

The first file contains a complete description of all the
simulation channels used, i.e. the pins and the internal FFs.
Interpreting this file is sometimes a major problem, as
there isn’t a widely used public or de facto standard for its
format. The one generated by the MaxPlusII development

system [5] comes in a tabular form, in ASCII, where
columns correspond to circuit signals and rows correspond
to time moments. The cell corresponding to a row (time) –
column (signal) intersection contains the signal value of a
particular circuit location in a particular moment.
Simulation files in this format (with minor variations) are
quite common, and in fact, they represent a kind of files
that are easier to process. In our case, we developed a
simple C program that performs this operation, providing
the information needed to the ATPG tool. The BSDL file
maps the device pins to the corresponding BS cells. Our
approach includes two options: the vectors may either be
applied / captured through the BS cells of device, using
INTEST, or through the BS cells of other devices, using
EXTEST. The second option requires additional
components to provide the BS cells used as test channels,
while the first option has other drawbacks. The BSDL file
also contains the opcodes of all instructions. Currently
there is a serious omission in this file, namely the standard
does not define a way of presenting the ordering of an
internal scan chain accessible through the TAP. This
information has to be provided by a different file. The user
configuration file contains additional information, namely
some options associated with the resources available in our
board-level BS controller. The last file enables a structural
test of the circuit implemented in the CPLD. The ATPG
tool processes the input information and produces two
output files corresponding to the programs executed by
each of the two controllers embedded in PRODEP. One
controller (CLT) is able to control two BS chains and the
other (CLF) is able to control one system clock and several
general-purpose I/O pins.

3. The test program execution

The two controllers embedded in PRODEP interpret
the two files forming the test program. The internal
structure of PRODEP is described in [4], so we will
concentrate on the test program execution. The basic
procedure consists of apply one input vector used during
simulation; cause the device to advance one step in its
operation; capture / shift / compare the values present at
the output pins and internal FFs. The first action consists
of moving the TAP controller to Shift-DR, shift in the test
vector and then moving to Update-DR. This action is
similar if using INTEST plus the device BS cells, or
EXTEST plus the BS cells of other devices. The second
action may be performed in several ways, according to the
information provided in the user options file. This
information is closely related to the examples provided in
[2], on how a step-by-step operation may be implemented
for internal test operations. As one of the controllers
embedded in PRODEP is able to control one system clock,
the user is able to choose between an external or internal
clock source (this last controlled through the BST
infrastructure). The last action includes two parts. The first
corresponds to moving the TAP controller to Capture-DR
(where the response to the test vector is captured), moving
further to Shift-DR, and then shift out the captured vector.
The second part corresponds to loading the optional

‘INTSCAN’ instruction and then performing a circular
shift, i.e. the values shifted out of the internal scan chain
are also shifted in, so that the scan chain contents remain
the same. Meanwhile, the shifted values are also compared
(through a mask) against the expected ones, inside
PRODEP. This way, PRODEP is responsible for the error
detection phase.

4. The detection / location / diagnosis process

A mismatch between a captured / expected value
causes PRODEP to acknowledge error in an output pin.
The test program may then be halted through conditional
instructions that test the internal error flag, or continued up
to the end. Error location is performed by an in-house tool
that extracts the vectors captured by PRODEP (values
shifted into PRODEP are stored in an external memory)
and compares the last with the corresponding expected
one. The next step consists of identifying the offending bit,
i.e. which value differs in the captured vector, in relation to
the expected one. After the bit order is identified, the tool
combines the information provided by the internal data
structure to locate the offending node. Diagnosis implies
an additional simulation session. By looking into the time
slot where the error is detected, namely to the value of the
offending node, the user is able to identify possible error
sources. If more information is needed the user may run a
more specific simulation session with corner cases
surrounding the exact error situation, and then generate
another test program. The new values extracted from the
circuit behaviour may then help to find a solution to the
actual error. This last process can be repeated several times
until the user is certain that the exact error condition has
been unequivocally identified and that the envisaged
solution is correct.

5. Conclusion

This paper describes a low-cost methodology for
performing circuit verification. Key points are re-usability
of files that encompass the design & development phase,
re-usability of the BST infrastructure for debug purposes
(besides the traditional production test), and use of easy-to-
develop in-house applications.

6. References

[1] K. Holdbrook et. al., “microSPARCTM: A Case-Study of Scan
Based Debug,” in proceedings of the International Test
Conference, pp. 70-75, IEEE Computer Society Press, 1994.

[2] IEEE Standard Test Access Port and Boundary-Scan
Architecture, Oct. 1993, IEEE Std. 1149.1 (Includes IEEE
Std. 1149.1a), ISBN 1-55937-350-4.

[3] Gustavo R. Alves, T. Amaral and J. M. Ferreira, “Board-level
Prototype Validation: A Built-in Controller and Extended
BST Architecture,” in proceedings of the International
Symposium on Circuits and Systems (ISCAS), IEEE Circuits
and Systems Society Press, 1999.

[4] G. Alves, “Design for Debug and Test based on the 1149.1
and P1149.4 architectures”, PhD Thesis, FEUP, Apr. 1999.

[5] Altera Corporation Web site, http://www.altera.com, 1999.

