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Resumo

O reconhecimento automático de cenários com base em informações presentes numa imagem é
uma tarefa importante para dispositivos portáteis com muitas aplicações práticas (por exemplo, de-
teção facial num smart phone). Por outro lado, o consumo energético e a espessura de dispositivos
portáteis são duas considerações importantes subjacentes ao projeto de telefones e tablets. O prin-
cipal efeito colateral destas restrições é um módulo de câmara mais pequeno, que funciona com
lentes com pequenas aberturas e sensores com pixéis pequenos - ambos limitando a quantidade
de luz detetada pela câmara. Isto resulta numa redução da qualidade de fotografias em condições
adversas de imagem, como por exemplo, pouca luz ou tempo de exposição pequeno para a deteção
de objetos em movimento. A qualidade reduzida manifesta-se num aumento do ruído, aumento de
blur, e falta de contraste. Por sua vez, estas condições não ideais limitam, em prática, a precisão
do reconhecimento de cenários.

Neste trabalho, é apresentado um mecanismo para a eliminação de ruído em imagens (image
denoising), que opera em tempo real e com pouco esforço computacional, melhorando a qualidade
das fotografias tiradas com uma câmara e, consequentemente, a precisão do reconhecimento de
cenários. Uma nova arquitetura de hardware é proposta para implementar o algoritmo de restau-
ração de imagens acima mencionado com o suporte de uma FPGA.

O objetivo principal do trabalho é melhorar drasticamente a qualidade das imagens e, conse-
quentemente, a qualidade de classificação em tempo real, tirando partido da implementação em
FPGA proposta.
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Abstract

Automatic recognition of a scene based on the information present in an image is an important
task for portable devices with many practical applications (e.g., face detection on a smart phone).
On the other hand, power consumption and thinness of portable devices are two important con-
siderations behind the design of cell phones and tablets. A side-effect of these constraints is a
smaller camera module that works with lenses with small apertures and sensors with tiny pixels
- both limiting the amount of light sensed by the camera. It results in reduced quality of pho-
tographs under adverse imaging conditions such as low light and small exposure time for imaging
fast moving objects. The reduced quality manifests itself in increased noise, increased blur, and
lack of contrast. These non-idealities, in turn, limit the accuracy of scene recognition in practice.

In this work, it is proposed to build a real time, computationally inexpensive image denoising
engine that enhances the quality of photographs taken by a camera and, consequently, the accuracy
for scene recognition. A novel hardware architecture is proposed to implement the aforementioned
image restoration algorithm with FPGA.

The main goal is to largely enhance the quality of images and, hence, the quality of classifica-
tion in real time by taking advantage of the proposed FPGA implementation.
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Chapter 1

Introduction

1.1 Motivation

In the rising market of portable devices, thinness and power consumption are two main considera-

tions when producing a competitive and successful device, for example, a cell phone or a tablet. A

negative side effect of these constraints is a smaller camera module, which in turn has lenses with

small apertures and sensors with tiny pixels. Both these characteristics limit the amount of light

that is sensed by the camera, resulting in a reduced quality of photographs under adverse condi-

tions, such as, low light environments and small exposure times when dealing with fast moving

objects. This reduced quality appears in the image as increased motion blur, lack of contrast and

increased noise, all non-idealities that limit the accuracy of scene recognition.

Automatic scene recognition based on the information present in an image is an important

task for portable devices with many practical applications, for example, face detection on a smart

phone. This way, the corrupted image needs to be restored in order to achieve better results

of recognition, which motivates the use of an image restoration algorithm to process the image

before the recognition task. Hence, it is of major importance to have fast and effective restoration

of an image in order to process the recognition task in real time.

The image restoration task is a heavily researched subject, with many algorithms being pro-

posed in the past few years, originating from various areas of research such as probability theory,

statistics, linear and nonlinear filtering, and spectral analysis. On the other hand, all these algo-

rithms share a similar concept: they rely on implicit or explicit assumptions about the true image,

in order to separate it properly from the noise. This separation is made possible by applying trans-

forms to image patches or using dictionaries, in order to make the resulting image representation

sparse. Then, a simple thresholding operation can be applied, discarding the smaller coefficients,

which are assumed to be noise.

Nonetheless, most of the these algorithms are highly computational demanding, due to the use

of transforms or dictionaries (which in turn involve training). Hence, they take a large amount of

time to produce a restored image, when implemented in software on a general purpose CPU. This
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2 Introduction

motivates the implementation of specialized hardware to deal with a corrupted image in real time,

producing the restored image in the fastest time possible and with enhanced quality.

In this work, a computationally inexpensive, low power and real time image denoising ap-

proach will be presented, based on modifications of the BM3D image denoising algorithm, pro-

posed in [1]. This algorithm enhances the quality of photographs taken by a camera and, conse-

quently, the accuracy for scene recognition. A novel hardware architecture will be presented to

implement the aforementioned image denoising algorithm using an FPGA.

1.2 Objectives

Image denoising algorithms can be implemented using general purpose CPUs, GPUs or special-

ized cores. The easiest solution is the implementation in a high level language such as C or C++

in a CPU, however it is also the slowest. A GPU is specialized to deal with graphics and therefore

it is more adequate to use as an image processor. On the other hand, most GPUs consume a lot of

power when faced with the kind of tasks posed by most denoising algorithms. Therefore, the best

solution is the development of a specialized core, able to denoise an image in real time and with

low power consumption, without compromising the quality of the restored image.

With the reduction of costs in the fabrication of CMOS circuits, the FPGA platforms are a very

appealing solution for the fast prototyping of novel hardware implementations. Hence, the main

objectives of this work are: the development, on an FPGA, of a fully specialized core for image

denoising using the BM3D algorithm; achieve extensive improvements of the quality of images;

and guarantee real time performance, with low power consumption.

1.3 Challenges

The hardware implementation of an image denoising algorithm poses many challenges. To the

best of the author’s knowledge, there is no work on the literature addressing the hardware imple-

mentation of the BM3D image denoising algorithm, which establishes the main challenge of this

work. Furthermore, a second challenge is that the BM3D algorithm is highly complex, containing

intensive arithmetic operations that need to be optimized. This is a challenge for designing fast

hardware that can perform such operations without a loss of precision in the results obtained. The

third challenge is the small amount of work found in the literature regarding the implementation of

other denoising algorithms in hardware. Hence, the architecture must be developed almost from

scratch. The final challenge regards the real time performance and power consumption trade-off.

It is necessary to push the limits when designing hardware that needs simultaneously to be the

fastest possible, while operating with minimal power consumption.
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1.4 Structure

In addition to the Introduction, this document contains five more chapters. In chapter 2, the back-

ground on image denoising concepts is presented. This is done in a top down approach, starting

from more general concepts and towards more specialized ones with direct applications in the al-

gorithm implemented. Furthermore, in this chapter, the current state of the art in image denoising

algorithms and their hardware implementations is presented. In chapter 3, the chosen image de-

noising algorithm is analyzed, as well as its software implementation in MATLAB. The results of

this implementation are also presented and discussed. Follows chapter 4, in which the hardware

implementation is analyzed in extensive detail, since this is the main focus of this work. In chap-

ter 5, the performance of the implemented design is evaluated, and several results are presented.

Finally, in chapter 6, the results and contributions of this work are summarized, and possibilities

for future work are presented.
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Chapter 2

Image Denoising and current State of
the Art

In this chapter a simplified approach to all the concepts necessary for understanding the literature

on image denoising will be presented. Furthermore, related work on image denoising algorithms

and respective hardware implementations will be analyzed and discussed.

2.1 Image Denoising

In the process of capturing an image, for example, using a CMOS image sensor in a regular photo-

graphic camera, there are various constraints that influence the quality of the image produced. This

constraints generate non-idealities in the image that from a visual standpoint manifest themselves

as distortion, blur, degradation in an apparent random way (Gaussian noise), etc. The purpose of

image restoration is to restore such an image to its original content and quality.

Image Restoration is the operation of taking a corrupted/noisy image and estimating the

clean original image. Corruption may come in many forms such as motion blur, noise, and camera

misfocus. [2]

Image Denoising is a method of image restoration that deals specifically with restoring an

image that has been corrupted with noise. Image noise can be defined as a random variation of

brightness or color in images produced by the components of a digital camera that intervene in the

process of forming said images. Image noise can be of the following types [3]:

• Gaussian noise: statistical random noise, that affects each pixel independently of its posi-

tion and signal intensity. It is caused primarily by Johnson-Nyquist noise (thermal noise)

coming from the signal amplifier in CMOS image sensors. This is the cause of the constant

noise level that can be seen in dark areas of an image, which is commonly known as white

noise.

• Salt and Pepper noise: a wide variety of processes that result in the same basic image

degradation are referred to as Salt and Pepper noise. This degradation occurs only for a

5
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few pixels, but these pixels are very noisy, causing an effect similar to sprinkling white and

black dots on the image (thus the name salt and pepper). This type of noise can be caused

by ADC errors, bit errors in transmission and others.

• Shot noise: also called photon counting noise, it is caused by statistical quantum variations

in the number of photons sensed at a given exposure level. Given its quantum nature, this

type of noise is always present in any imaging device, and it follows a Poisson distribution,

with an intensity proportional to the square root of the image intensity.

• Quantization noise: converting a continuous random variable to a discrete one results in

quantization noise. In images, this occurs in the acquisition process, when the pixels of a

sensed image are quantized to a number of discrete levels. This type of noise has an uniform

distribution.

• Anisotropic noise: this type of noise is, as the name states, orientation dependent and it can

cause periodic artifacts in images, visible as vertical or horizontal stripes for example.

From all the noise types the most frequent and thus the one with an increased impact in im-

age quality is Gaussian noise. Considering this, the focus of this work will be applying image

denoising in order to restore an image affected by Gaussian noise with different powers.

The classic image denoising problem can be described as follows: an ideal image y is affected

by additive zero-mean white and homogeneous Gaussian noise, n, with standard deviation σ(n).

The measured image z is given by

z(x) = y(x)+n(x), x ∈ X (2.1)

where x is a 2D spatial coordinate that belongs to the image domain X . In order to be able to

compare different image denoising algorithms, a measure of their performance must be chosen.

This can be done by computing some well known quantities, for example, the signal to noise ratio

(SNR), peak signal to noise ratio (PSNR) or mean squared error (MSE). The SNR can be defined

[4] as

SNR =
σ(y)
σ(n)

, (2.2)

where σ(y) denotes the empirical standard deviation of y,

σ(y) =

√
1
|X | ∑x∈X

(y(x)− ȳ), (2.3)

and ȳ is the average gray-level value. However, in order to compute the SNR it is necessary to

know beforehand the value of the standard deviation of the noise σ(n), which can only be obtained

by estimation or formally computed when the noise model is known. In order to eliminate this



2.2 Transform domain denoising 7

dependency of the noise variance, one can use the MSE which is given by

MSE =
1
|X | ∑x∈X

(y(x)− ŷ(x))2, (2.4)

where ŷ is the estimation of the original image produced by the algorithm. It is obvious that this

measure relies on the knowledge of the original (noise free) image, which is used to evaluate and

compare different algorithms in a controlled simulation where noise is added to a set of images

and applied to the algorithm. A similar measure to the MSE is the PSNR, which, assuming that

the images are normalized, is given in dB by

PSNR = 10log10

(
1

|X |−1 ∑x∈X(y(x)− ŷ(x))2

)
= 10log10

(
1

MSE

)
(2.5)

Being specified in dB, the PSNR leads to an easier comparison of results and performance

of different algorithms, which is why it is the most commonly used measurement of denoising

performance in the literature.

Another quantity used for evaluating the quality of images is the Structural Similarity (SSIM)

index, proposed by Wang et al. in 2004 [5], which computation relies on trying to approximate

the way images are perceived by vision. This is achieved by comparing local patterns of pixels

intensities. The SSIM measurement is obtained by computing the following expression:

SSIM(y, ŷ) =
(2µyµŷ + c1) · (2σyŷ + c2)

(µ2
y +µ2

ŷ + c1) · (σ2
y +σ2

ŷ + c2)
, (2.6)

where c1 and c2 are two constants that have the function of stabilizing the division and are propor-

tional to the dynamic range of the pixel representation of the image, i.e., the number of pixels. For

grayscale images of 8 bits, the dynamic range is 0 to 255, yielding c1 = 6.5025 and c2 = 58.5225.

In the past few years, plenty of image denoising methods were studied and created, originating

from various areas of research such as probability theory, statistics, linear and nonlinear filtering,

and spectral analysis. One common aspect shared by all these methods is that they rely on implicit

or explicit assumptions about the true image, in order to separate it properly from the noise. Two

methods that have become the state of the art in denoising, and the most researched in the past

decade, are transform domain denoising and compressed sensing based denoising.

2.2 Transform domain denoising

In natural images it is frequently observed the repetition of familiar structures and textures, which

means that the image signal is not random, and similarity between regions of an image (local

similarity) and between different regions (nonlocal similarity) occurs.

This encouraged the development of transforms that can approximate an image by linear com-

bination of few basis elements, leading to a sparse representation of the image in the transform do-

main. Therefore, when an image is affected by Gaussian noise, it is expected that in the transform
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domain this noise appears as low magnitude coefficients. By discarding this small coefficients,

after applying the inverse transform, an approximation of the original image is obtained, which

means that this method can be used to effectively denoise an image.

The quality of the denoised image depends mainly on the sparsity of the representation of the

image in the transform domain. This sparsity depends on the transform used and on the original

signal properties. Obviously, the original signal cannot be controlled, so the efficiency of the de-

noising relies on the transform chosen. There are various types of transforms that can be applied

to images in order to obtain a sparse representation, but in this work there is a special interest

in evaluating two of them: the discrete wavelet transform (DWT) and the discrete cosine trans-

form (DCT). Regarding the process of discarding the small coefficients, which is usually called

shrinkage, two different methods will be presented: hard thresholding and wiener filtering.

2.2.1 Wavelets

As defined in the celebrated book of I. Daubechies, Ten Lectures on Wavelets, the wavelet trans-

form is a tool that cuts up data or functions into different frequency components, and then studies

each component with a resolution matched to its scale. [6]

Wavelets are a mathematical tool with applications in many areas, for example, signal analysis,

numerical analysis and physics. In the scope of this work, the intended application is signal

analysis, specifically image processing. This way, a brief analysis on wavelets will be presented,

inspired in the books of M. Jansen [7] and I.Daubechies [6].

There are various types of wavelet transforms, for example, continuous wavelet transform

(CWT), discrete wavelet transform (DWT), lifting scheme, etc. An image produced by a digital

camera is a discrete signal in both spatial directions, meaning that the appropriate transform to

analyze an image is the discrete wavelet transform.

Wavelets are defined by a wavelet function ψ(x) called the mother wavelet and a scaling

function ϕ(x) called the father function, both in the time domain. Translating and dilating these

functions allows the definition of child functions, forming a subspace on which the signal being

transformed is decomposed. These sets of functions are given by

ψm,n(x) = 2
−m/2ψ(2−mx−n) (2.7)

ϕm,n(x) = 2
−m/2ϕ(2−mx−n) (2.8)

Any signal f (x) can then be reconstructed using the following formula

f (x) = ∑
m,n
〈 f ,ψm,n〉ψm,n(x), (2.9)

where 〈 f ,ψm,n〉 represents the inner product between the signal and a given child function, which

is called a wavelet coefficient. For this reconstruction to be valid it is necessary that the set of
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Figure 2.1: One step of a wavelet decomposition and reconstruction. Taken from [7]

functions {ψm,n : m,n∈Z} form an orthonormal basis of L2(R). However, there is an exception to

this rule, used for example, by the family of bi-orthogonal wavelets, which require two scaling and

two wavelet base functions, resulting in the associated DWT to be invertible but not necessarily

orthonormal.

In image processing, the set of scaling functions corresponds to the classical pixel represen-

tation of an image, while the wavelet basis "breaks" the image into a set of details at different

locations and scales. This is said to be a more accurate way of representing an image, because it is

closer to how we look at them: first we see general features and at a more careful inspection, we

uncover the details. This is the main motivation for using the DWT to represent natural images.

In order to reveal details at different scales, the DWT takes advantage of something known

as multiresolution analysis (MRA) which is defined as a nested set of function spaces. This is an

algebraic concept that extends beyond the scope of this work, so it will not be explained. Interested

readers should refer to [6] for a detailed mathematical treatment of MRA, or to [7] for a slightly

lighter and concise approach.

From the study of MRA two main equations of wavelet theory arise, which are called the

dilation equation and the wavelet equation. These equations are given, respectively, for the father

and mother functions, as

∃h ∈ `2(Z) : ϕ(x) =
√

2 ∑
k∈Z

hkϕ(2x− k) (2.10)

∃g ∈ `2(Z) : ψ(x) =
√

2 ∑
k∈Z

gkψ(2x− k) (2.11)

In the case of a bi-orthogonal basis, there are duals h̃ and g̃. Given these filters, each corresponding

base function can be obtained by solving dilation and wavelet equations. An efficient realization of

the DWT can then be implemented using filter banks with the filters h, h̃, g and h̃, which are used

to decompose and reconstruct the signal, as can be seen in figure 2.1. Usually the wavelet filters

are high pass (explaining the HP in the figure), meaning they enhance details, and the scaling filters

are low pass, which means they have a smoothing effect. The filter bank DWT implementation

has the advantage that MRA becomes simply a cascading of filter banks, using the low pass output

as the new signal.



10 Image Denoising and current State of the Art

Figure 2.2: 2D separable implemention of DWT and its inverse. Taken from [8]

In order to analyze images, it is necessary to use a 2D DWT. This can be done by simply

applying the DWT on all rows and then on all columns of the image, which results in four types

of coefficients, or sub-bands. These sub-bands contain different image information according

to the filtering applied, for example, the HH sub-band contains diagonal features of the image,

because it corresponds to high pass filtering in both directions and the LH sub-band contains

vertical structures, corresponding to low pass filtering the columns and high pass filtering the

rows. The same logic applies to the remaining sub-bands HL and LL. A separable implementation

of the 2D DWT using filter banks can be seen in figure 2.2.

Choosing the wavelet function and the corresponding scaling function (or equivalently the

decomposition and reconstruction filters) can be a cumbersome task. To this end, the extensive

studies on wavelets originated several families of wavelet functions that are used in all wavelet

related applications. Examples of this families are the Haar-Wavelet, which is the first wavelet

ever defined; the Daubechies wavelets, Dbp with p vanishing moments; and the bi-orthogonal

wavelets BiorNd .Nr with Nd vanishing moment in the decomposition and Nr in the reconstruction.

2.2.2 DCT

The discrete cosine transform (DCT) is a frequency domain transform, that decomposes a given

signal into a sum of cosine functions with different frequencies [9]. By discarding small high

frequency components, the DCT is used to do lossy compression of audio (MP3 standard) and

images (JPEG standard). The DCT is very similar to the familiar DFT, with the obvious distinction

being that it uses only cosine functions to decompose a signal, instead of both cosines and sines.

There are eight types of DCTs, however, the most commonly used is the type II DCT, which is

referred to as "the DCT" and is given by

Xk =
N−1

∑
n=0

xn cos
[

π

N

(
n+

1
2

)
k
]

k = 0, . . . ,N−1 (2.12)

This transform is equivalent to a DFT of 4N real inputs where the even indexed elements are

zero. The corresponding inverse transform is the type III DCT, which is referred to as IDCT, and
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is given by

Xk =
1
2

x0 +
N−1

∑
n=1

xn cos
[

π

N

(
k+

1
2

)
n
]

k = 0, . . . ,N−1 (2.13)

The 2D DCT is simply a separable product of the DCT along each dimension of an image,

i.e., the 1D DCT performed along the rows and then the columns of the image. Fast computation

of the DCT can be done by a special fast cosine transform (FCT) which is simply an adaptation

of the DFT counterpart, the FFT. In image processing, the 2D DCT is used to process blocks,

commonly of size 8x8 (as in JPEG), which produces a matrix of 64 coefficients that represents

how much of each basis functions the image contains. A visual representation of this basis func-

tions for grayscale images can be seen in figure 2.3. The first coefficient represents the lowest

frequency (DC), and traveling in a zig-zag pattern from the upper left corner to the lower right

corner represents an increase in frequency of both dimensions.

Figure 2.3: Basis functions for a 8x8 2D DCT

2.2.3 Hard thresholding

The hard thresholding operator is necessary for filtering the transform domain coefficients of an

image, when a good estimation of the original image power spectrum is not available. Hard

thresholding is the simplest shrinkage operator and it can be seen as a "keep or kill" procedure [7],

because all values below a certain threshold λ are set to zero, while values above the threshold

remain the same. This is given by the following expression

wλ =

w if |w| ≥ λ

0 if |w|< λ

(2.14)

A similar shrinkage operator is soft thresholding, where coefficients above the threshold are

shrunk in value by the amount of the threshold λ . This means that the soft thresholding function

is continuous, which is an advantage to some algorithms where discontinuous operators cause

problems. Plots of both operators can be seen in figure 2.4.
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Figure 2.4: a) Hard thresholding operator. b) Soft thresholding operator. Adapted from [7]

2.2.4 Wiener filtering

Wiener filtering is a statistical based approach used to produce an estimate of a target random

process, when a noisy measurement is available, as well as the signal and noise spectra. This way,

the Wiener filter minimizes MSE between the estimated process and the desired one [10]. Deriving

the expression of the Wiener filter requires a statistical approach to images. In this approach, an

image is modeled as a random noise field whose expected magnitude at each frequency is given

by [8]

E[S(wx,wy)
2] = Ps(wx,wy), (2.15)

where Ps(wx,wy) is the power spectrum of the image, and E[·] denotes the expected value. Us-

ing this expression and probabilistic arguments, for example, the Bayes’ Rule, the 2D Fourier

transform of the optimum Wiener filter needed to denoise an image, can be expressed as

W (wx,wy) =
Ps(wx,wy)

Ps(wx,wy)+σ2
n
, (2.16)

where σ2
n is the power of the AWGN that corrupts the image. This way, the Wiener filter can be

used for denoising an image, when a good estimation of its original power spectrum is available.

For interested readers, the complete analysis to derive the Wiener filter expression can be found in

[8].

2.3 Compressed Sensing based denoising

Sparse representation of signals has been a heavily researched subject in the past decade. The

brief introduction of this subject presented here is based on M. Elad’s book, Sparse and Redun-

dant Representations [11]. The main concept consists in using an overcomplete dictionary matrix

D ∈ Rn×K , containing K prototype signal atoms, to represent a signal y ∈ Rn as a sparse linear

combination of these atoms. Using this dictionary, an exact representation for the signal is given
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as y = Dx. However, in many applications, an exact representation is hard to obtain, and thus, an

approximate solution is y ≈ Dx, subject to ‖y−Dx‖p ≤ ε . Measuring the approximation error is

usually done using the `p norms with p=1,2, and ∞.

When using overcomplete dictionaries, i.e., n<K, an infinite number of solutions are available

for the representation problem. This way, it is necessary to impose constraints on the solution, and

since high sparsity is desired, the solution with fewest nonzero coefficients is the most appealing.

This sparsest approximate representation is the solution of

(P0,ε) min
x
‖x‖0 subject to ‖y−Dx‖2 ≤ ε, (2.17)

where ‖ · ‖0 is the `0 norm, counting the nonzero entries of a vector.

As was already discussed, images can be sparsely represented using for example a wavelet

transform, leading to effective denoising algorithms using wavelets that exploit overcomplete rep-

resentations. In the case of wavelets, the dictionary is completely defined when choosing the

wavelet and scaling functions and their childs. However, in the case of compressed sensing (CS),

the goal is to achieve the sparsest representation of an image in the spatial domain, i.e., the dic-

tionary has to contain the building blocks (atoms) necessary to represent any image. This requires

solving 2.17, which is proven to be an NP-hard problem [12]. Therefore, approximate solutions

to the problem are considered instead, with many approximation algorithms being proposed in the

last few years. These algorithms are in general greedy and examples are the matching pursuit and

orthogonal matching pursuit. There is also the basis pursuit, which relaxes the `0 norm in 2.17 to

an `1 norm, convexifying the problem. Details about these algorithms extend beyond the scope of

this work, hence, detailed descriptions can be found, respectively in [13], [14] and [15].

In order to develop an efficient denoising algorithm using a CS prior, the choice of dictionary

is of particular importance. For this choice there are two options: a set of pre-specified functions,

as is the case when using wavelets, DCT or other transforms; design the dictionary by adapting it

to fit a given set of signal examples, as is the case when using training based methods, such as the

PCA and K-SVD.

2.3.1 PCA

Principle component analysis (PCA) is a statistical procedure that "extracts" the principal compo-

nents of a set of observations with correlated variables using an orthogonal transformation. This

principal components are linearly uncorrelated, and thus PCA can effectively decorrelate a signal.

It was first formulated by Pearson in [16], and was further developed by Hotelling in [17].

As described in the original work of Pearson, the PCA can be seen as the line or plane that

closest fits a system of points in an n-dimensional space. Each component of the PCA "explains"

the variance in the data that the previous component is unable to fit to, i.e., the first component is

a linear combination of original variables weighted so that it represents the maximum variance in

the data, the second accounts for the variance not represented in the first, and so on.
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The PCA can be used to develop a dictionary for the dataset it is applied to, so it can be used

to obtain such a dictionary that leads to a sparse representation of an image, which can then be

used to denoise said image. Usually the PCA is done by a singular value decomposition (SVD),

which means it is a highly computationally intensive method.

2.3.2 K-SVD

The K-SVD is a dictionary training algorithm, that utilizes effective sparse coding and a Gauss-

Seidel like accelerated dictionary update method. It is an extension of the popular k-means algo-

rithm, which is used to train data sets in clustering problems. The full operation of this algorithm

is complex and so, it will not be presented here. The algorithm itself is presented in figure 2.5 and

was taken from the original paper of M. Aharon, M. Elad and A. Bruckstein, K-SVD: An Algorithm

for Designing Overcomplete Dictionaries for Sparse Representation [18]. For those interested in

the algorithm, please refer to this article for a detailed explanation.

Figure 2.5: The K-SVD algorithm. Taken from [18]
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2.4 Related Work

2.4.1 Denoising Algorithms

Donoho and Johnstone were the first to explore the wavelet based denoising and the development

of the shrinkage algorithm. In their works, they applied wavelet theory to signals in general, and to

different concepts of signal processing and mathematics, such as minimax estimation [19], spatial

adaptation [20], and smooth functions [21]. In Donoho’s work [22] the shrinkage of wavelet

coefficients by applying soft thresholding is used to denoise signals. Other works using wavelet

shrinkage found in the literature are [7], [23] and [24]. The wavelet transform can be used to

form redundant representations of blocks in an image, which results in a shift invariant property,

as described in [25].

Regular wavelet transforms are not effective when representing certain image features, such

as smooth textures. This results in blurring when reconstructing or denoising an image from its

wavelet coefficients. Taking this into account, new methods to denoise an image were devel-

oped, using new multiscale and directional (anisotropic) transforms, such as the wedgelet [26],

contourlet [27], curvelet [28], bandelet [29] and steerable wavelet [30].

Dabov et al. [1] proposed in 2007 a novel method for image denoising based on collaborative

filtering in transform domain. This algorithm is called block matching and 3D filtering (BM3D)

and comprises three major steps. First, a set of similar 2D image fragments (i.e. blocks) is grouped

into 3D data arrays that are referred to as groups. This step is referred to as block matching.

Second, a 3D transform is applied to the groups, resulting in a sparse representation, that is filtered

in the transform domain, and after inversion of the transform, produces the noise-free predicted

blocks. This step is referred to as collaborative filtering. Finally, the predicted noise-free blocks are

returned to their original positions to form the recovered image. BM3D relies on the effectiveness

of the block matching and collaborative filtering to produce good denoising results.

Chen and Wu [31] proposed a modification to the BM3D algorithm that achieves better PSNR

and visual results for images contaminated with high levels of noise. The method is called bounded

BM3D and it differs from the original BM3D in the block matching and collaborative filtering of

the second stage of the algorithm, i.e., the basic estimate is computed in the same way to generate

a pilot signal for the second stage. The difference starts in the beginning of the second step, where

the basic estimate is partitioned into regions (image segmentation) and the boundaries between

those regions are detected. This allows for a bounded search in the block matching, i.e., only

blocks in the same image region of the reference block are candidates for grouping. However,

a block can be contained in two or more regions (coherent segments), and in this case, partial

block matching is applied, where blocks that belong to several regions are partitioned using bi-

nary masks to separate the segments. This poses a great advantage when compared to BM3D: the

partitioning avoids dealing with edges, hence avoiding problems when representing them in 3D

transform domain. Nevertheless, in order to do the wiener filtering of these non square segments,

shape adaptive DCT has to be applied as the 2D transform, which is more computationally in-

tensive. As proposed, this method achieves better PSNR, with gains of 0.23 - 1.33 dB compared
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to BM3D, and better visual results, specially in edges and textures. It is worth to remark that a

similar approach was also taken by Dabov et al. in [32] with the development of shape adaptive

BM3D. Continuing this research, in [33], Dabov et al. presented an improvement to their previous

SA-BM3D algorithm, called BM3D-SAPCA, where SAPCA stands for shape adaptive principle

component analysis. The PCA is applied instead of wavelets or DCT for the 2D transform, and it

achieves better denoising results than the previous BM3D methods.

Elad and Aharon [34] devised an image denoising method based on sparse representations over

learned dictionaries. In the transform domain methods, there is also an implicit dictionary, given

by the atoms defined by the 2D DCT or a wavelet transform. However, this dictionaries, in spite of

being overcomplete, cannot represent efficiently all the information in an image. This way, Elad

and Aharon researched the possibility of using K-SVD to train a global dictionary, using a database

of noise free images. They found that for the task of image denoising, the choice of images to train

on is crucial, and while a good general dictionary that fits all images well can be found, in order to

achieve high denoising performance (comparable to BM3D and other methods), a more complex

model is necessary using several dictionaries switched by content. Therefore, in their work, they

adopted a different direction, by training the dictionary directly on the noisy image. At a first

sight, this seems to have no impact in the overall quality of the algorithm. However, Elad and

Aharon found a way to combine the denoising and training steps into the same framework. The

algorithm starts with the DCT dictionary and then performs J iterations of sparse coding followed

by dictionary training, minimizing the representation error in each iteration. The results using this

adaptive dictionary were far more promising than those using a general dictionary, which makes

this a very attractive and robust method for image denoising.

Dong et al. [35] presented a novel sparse representation model for image restoration tasks,

called centralized sparse representation (CSR). They introduce the concept of sparse coding noise

(SCN), which is simply defined as the difference between the coding vector of the noisy image and

the coding vector of the original noise free image. However, in most cases, the original image is

not available, and so, its coding vector is not known. Nevertheless, a good estimator for this vector

is its mean value, which in turn can be approximated by the mean value of the coding vector of the

noisy image, by assuming that the SCN has nearly zero mean (which is confirmed empirically in

their work). This model is named centralized sparse representation because it enforces the coding

vector to approach its distribution center, i.e., the mean value. In order to compute the mean

value of the coding vector, groups of similar patches are created, so that their sparse codes can be

averaged, for each patch in the image. This way, the CSR model can be written as a minimization

problem, unifying the local sparsity of each patch and the nonlocal similarity induced sparsity

(from similar patches) into a variational formulation (two variable parameters control the weight of

each type of sparsity). This model can be iterated until convergence: by setting the initial estimate

for the mean value of the coding vector to zero, an initial estimate is obtained, from which the

groups are formed and the new mean value is computed and used in the following iteration. Being

a sparse representation based model, CSR relies on a dictionary, that in this work is obtained by

PCA. The CSR model converges to the desired sparse code when the joint sparse coding and non-
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local clustering falls into a local minimum. Results of this method for image denoising are very

similar to those achieved by BM3D. In 2013, Dong et al. [36] proposed a modification of their

previous work on CSR, by adding the idea of nonlocality to the sparse model, allowing to remove

the local sparsity term. This way, the nonlocally centralized sparse representation (NCSR) model

achieves better denoising performance with the same computational effort.

One of the most recent works on image denoising found in the literature is by Zhong et al.

[37]. In their work a combination between the BM3D algorithm and the nonlocal centralization

prior exploited in [35] allows for very competitive results, particularly for images corrupted with

high levels of noise. The main idea is to replace the 1D transform with a shrinkage model based on

the nonlocal centralization prior. This allows the combination of the efficiency and effectiveness

of wavelet or DCT transforms (when compared with the iterated approach of the CSR model) and

the nonlocal and local sparsity unification provided by the CSR model. Moreover, the CSR model

is expanded by allowing the norms used in the shrinkage function to vary. This way, three differ-

ent shrinkage functions are proposed: one taking advantage of the `1 norm for the local sparsity

and the `2 norm for the nonlocal, other with a double `1 norm, and a final one using a nonlocal

prior to remove the local sparsity term (as proposed by [36]). In concluding remarks, essentially,

this work proposes an efficient combination of the transform domain approach for sparse repre-

sentation of images and group matching (from BM3D), with more options for advanced shrinkage

functions (based on CSR and NCSR) to replace the 1D transform and the hard thresholding or

wiener filtering used in BM3D.

From the methods presented in this section, the algorithm chosen for this work was the orig-

inal BM3D, because of its high efficiency and very good denoising performance, with average

computational burden (when compared with dictionary based methods for example). This way, in

chapter 3 the BM3D algorithm will be analyzed in full extent.

2.4.2 Hardware Implementations

Memik et al. [38],[39] were among the first to propose an FPGA implementation of an image

restoration algorithm. The algorithm used is a simple neighborhood iterative restoration algo-

rithm, that for each pixel in the image applies a convolution with a kernel that uses the eight

neighbor pixels to restore the actual pixel value. The algorithm is run for the number of iterations

necessary so that the residual is under a specified threshold, and in each iteration, all the image

pixels are processed. However, this is the software approach of the algorithm, that is very slow,

which motivates the hardware implementation in order to achieve a faster solution. The setup of

the hardware consists on a memory to store the image, a pixel processor that executes the algo-

rithm, and the channel of communication between both. Since the communication in this channel

is the bottleneck of the system, there is no gain in executing the algorithm as it is done in soft-

ware, by sending nine pixel values at a time and writing back to memory. Instead, parallelism of

the algorithm is exploited, and an array of pixel processors allows for a parallel computation of

several pixel values. Nevertheless, space in an FPGA is usually limited, and the number of pixel

processors usually is lower than the number of pixels in an image (for usual image resolutions of
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256x256 or 512x512). This way, the image is segmented into regions, and each region is loaded

into the FPGA, processed, and stored back into memory. To avoid border effects and block ar-

tifacts, the segments of the image are allowed to overlap, and the overlapping restored portions

are discarded. The hardware implementation described achieves up to a ten times speedup in the

runtime of the image restoration algorithm.

Saldaña and Arias-Estrada [40] developed a reconfigurable systolic-based architecture for low

level image processing tasks on an FPGA. The architecture is tuned to allow the efficient convo-

lution of a filter kernel with an image, in a windowing based approach. The main module is a

2D customizable systolic array, with the size of the window to be used, of processing elements

(PEs). The image pixels are read from an external memory and are placed on internal memories

implemented as Block RAM’s, using a Router to manage the data transfers. The 2D systolic array

is built by interconnecting several PEs, which are activated every clock cycle, following a pipeline

scheme. The PEs are specially designed in order to support the operations involved in most win-

dow based operators, and their architecture consists of an ALU, a shift register and an accumulator.

Each processing element executes three operations in every clock cycle: computation of the pixel

value to be passed to the next cycle, accumulation of the output register calculated at the previ-

ous cycle with the new value at the output of the ALU and loading the new mask coefficient and

transmission of the previous to the next PE. With the pipelined systolic architecture, a throughput

of one window output per clock cycle is achieved. Finally, the architecture was synthesized in

a Xilinx VirtexE FPGA, with a 7x7 systolic array (and corresponding sized window operation),

resulting in 49 PEs and an overall area occupancy of 37%. The clock frequency achieved was

66MHz, resulting in 200 fps for 640x480 resolution gray level images.

Joshi et al. [41] presented an FPGA implementation of a wavelet based image denoising al-

gorithm. This implementation consists of four chained main modules: the lifting scheme based

wavelet module, the windowing module, the denoising module and the inverse wavelet module.

The first module computes the 2D DWT on the rows and columns of the image, by applying a

lifting scheme implementation of the Daubechies 9/7 biorthogonal wavelet. Each wavelet module

computes 4 rows and 4 columns at a time thanks to 4 parallel row and column modules. The

second module is the windowing module, which contains various shift registers in order to im-

plement neighborhood observation and to analyze the wavelet coefficients for the different image

sub-bands. Then, the denoising module computes the denoised coefficient, using different arith-

metic operations implemented as a 10 input squaring module, followed by a subtraction module,

a summation unit and a comparator. Finally, the inverse wavelet module applies the inverse DWT

to the denoised coefficients and stores the denoised image in the image memory. The results are

presented in terms of frames per second (fps), i.e., how many images can be denoised per second,

and the values are 83 fps for a 256x256 size image and 28 fps for 512x512.

Brylski and Strzelecki [42] proposed the implementation of a parallel image processor. The

main idea of the implementation consists of a matrix of active nodes, which correspond to the

image pixels, connected with each other by weights that depend on the neighboring pixels. The

implementation is intended to perform segmentation operations in binary images. The design con-
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sists of a microcontroller connected with the PC by Ethernet and with an FPGA by SPI. The FPGA

contains a control unit and the active matrix of NxN nodes. The central unit block implements the

SPI connection and the clock manager that controls the matrix of nodes. The node block contains

several input/output signals in order to communicate with neighboring nodes, and its structure is

fairly complex. The main block is the C driver, that performs the node algorithm and controls the

work of other node unit. The complete module was synthesized in a Xilinx FPGA with 17x17

matrix elements and uses approximately 85% of the slices in the FPGA.

In the work of Di Carlo et al. [43], an adaptive image denoising IP core (AIDI) is presented,

intended for real time applications. The algorithm implemented is based on an adaptive gaussian

filter, which adapts its variance pixel by pixel according to estimates of the gaussian noise cor-

rupting the image and the local variance of the expected noise free image. This way, the AIDI

core contains three main modules: the noise variance estimator (NVE), the local variance esti-

mator (LVE) and the adaptive gaussian filter. First, the image pixels are sent in parallel to the

NVE and an external memory through a 32 bit interface, and the NVE computes the estimation

of the Gaussian noise affecting the image. Then, when this step is complete, the image is loaded

to the LVE, that computes the local variance associated with each pixel and outputs one of this

values per clock cycle, thanks to its pipelined architecture. Finally, the outputs of the LVE and

NVE are fed into the adaptive gaussian filter, which computes the optimal filter variance and then

filters the image applying Gaussian smoothing. The AIDI core was synthesized in a Xilinx Virtex

6 FPGA, occupying close to 20% of the LUTs and 1.7% of the block RAMs, and achieving 68 fps

for images with 1024x1024 pixels.

In Gabiger-Rose et al. [44], image denoising is done in real time by a bilateral filter im-

plemented in a fully synchronized architecture on an FPGA. The implementation presented has

three main advantages, enabling real time processing and effective utilization of resources: data is

sorted into equal groups assigned to separate pipelines, the clock frequency is raised accordingly

to the data flow and no external image buffer is necessary. Each functional unit of the bilateral

filter consists of a register matrix, a photometric filter and a geometric filter. The register matrix

is composed by several cascaded registers and multiplexers, allowing the parallel calculation of

24 weights used by the following filter stages, and its output consists of six groups which are fed

to the photometric filter stage at four times the pixel clock. The photometric filter consists of six

identical pipelines, each processing a group of pixels at every clock cycle, and the output consists

of the weighted pixels sorted into six groups, the current center pixel being computed and the pho-

tometric coefficients for each group. The final stage is the geometric filter, that is implemented as

a separable 1D filter for the vertical and horizontal directions, and its output consists of the filtered

kernel result and a normalization factor. The normalization of the results is done by a simple divi-

sion stage at the end of the data path. The algorithm was synthesized in a Xilinx Virtex 5 FPGA,

achieving 52 fps for a 1024x1024 resolution image, and occupying 14% of slices, 23% of block

RAMs and 60% of DSP slices. In terms of the denoising results, an approximate 0.2 dB loss was

verified when comparing with the MATLAB implementation of the algorithm.

In all the works presented, some similarity in the hardware implementation of image denoising
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algorithms can be recognized. These similarities consist of the main ideas that are used when

designing such systems. These main ideas are: the use of multiple parallel instances of a pixel

processor; usage of large external memories to hold the complete image, and smaller internal

memories to hold image sections currently being processed; transferring the image data in bursts of

many pixels (usually full sections), in order to reduce the bottlenecks usually found in data transfer

protocols; the use of pipelined architectures whenever possible, in order to minimize the execution

time. All these main ideas are employed in this work, in order to develop the hardware architecture

for the BM3D denoising algorithm in the most efficient way. The developed architecture is fully

described in chapter 4, where it will be possible to recognize these ideas in different parts of the

implementation. Furthermore, due to the complexity of the BM3D algorithm, the usage of parallel

processors and efficient memory modules are the main advantages of the hardware implementation

designed in this work.



Chapter 3

BM3D Denoising Algorithm

In this chapter, a more detailed explanation of the BM3D denoising algorithm will be provided.

Then, some modifications to the algorithm will be presented as well as a MATLAB implementation

and the respective results.

3.1 BM3D Algorithm

As previously referred in section 2.4.1, the BM3D algorithm is a novel image denoising algorithm

proposed in 2007 by Dabov et al. [1]. Since this is the algorithm used in this work and only a brief

description was given, a more detailed explanation follows. Recalling the previous explanation,

it is already known that the BM3D algorithm consists of three steps: the block matching, the

collaborative filtering and the final aggregation.

In the block matching step, blocks that are similar are grouped together in a 3D array, which

enhances the sparsity in the transform domain. This is done by matching: the process of finding

a block similar to a given reference one. The similarity of two blocks is inversely proportional to

their distance, i.e., the smaller the distance between two blocks, the more similar they are. In order

to form a group, a bound (threshold) on this distance is set, and if an `2 norm is used, this threshold

is the radius of the circle containing the blocks of the group and the reference block is the center

of this circle. The block matching is performed for every reference block in an image, using a

sliding window approach, producing a group for every block, meaning that these groups are not

necessarily disjoint, which provides an overcompleteness property. Usually, similar blocks are

only found in the same regions of an image, which motivates the restriction of searching candidate

blocks in a fixed neighborhood around the currently processed block. This restriction makes the

block matching step faster, which significantly affects the total running time of the algorithm.

Another restriction that provides a speedup of the algorithm is limiting the maximum number of

blocks in a group, i.e., only a specified number of blocks with the lower distances to the reference

block are kept in the group.

The collaborative filtering comprises three steps. First a 3D (or separable 2D and 1D) trans-

form is applied to a group. Then, the transform coefficients are shrunk, by using hard thresholding

21
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or wiener filtering in order to attenuate the noise. Finally, inverting the transform produces the

estimates for all grouped fragments. The transform takes advantage of correlation in each grouped

fragment (a peculiarity of natural images) and correlation between fragments of the same group to

produce a sparse representation of the blocks of the group, making the shrinkage very effective in

attenuating the noise. In order to reduce the complexity of applying the transforms, which results

in faster execution, 2D and 1D separable transforms are desired. This way, the transforms used

can be wavelet decompositions such as Daubechies or biorthogonal wavelets, the Haar wavelet or

the DCT. The authors compared several transforms and higher PSNR values were obtained for the

DCT transform for the 2D transform, and the Haar wavelet for the 1D transform.

After the estimates for each block are available, they are returned to their original positions,

and because of the overcompleteness of the block matching, there can be more than one block

containing the same image pixel, i.e., overlapping. This way, in the process of aggregation, the

blocks are summed by a weighted average, using a kaiser window for reducing border effects

because of the block processing.

The BM3D algorithm is comprised of two "runs" of the aforementioned described steps. First,

the noisy image is processed using the block matching, collaborative filtering and aggregation,

using hard thresholding in the shrinkage of the transform coefficients. This produces a basic

estimate for the original noise free image. Then, using this basic estimate as input, block matching

is applied, being more accurate because the noise is already significantly attenuated. The same

groups formed in this basic estimate are formed in the original image. Then, the collaborative

filtering and aggregation is applied, but wiener filtering is used instead of hard thresholding for the

shrinkage. The wiener filter uses the basic estimate energy spectrum as the true energy spectrum

of the image, and allows for a more efficient filtering than hard thresholding, improving the final

image quality.

3.2 Implications for Hardware Design

With a full explanation of the BM3D algorithm provided, one can see that it is quite complex and

computationally demanding. This means that some bottlenecks need to be identified and possibly

modified for hardware feasibility.

Looking closely at the BM3D algorithm, the first possible bottleneck is the calculation of the

distance between two blocks in the block matching step. This calculation consists of the `2 norm

of the difference of the two blocks being matched, meaning that, for example for an 8x8 block, 64

multiplications are necessary, which is foreseen to be a problem in terms of hardware resources.

The second implication for the hardware implementation is set by the maximum number of blocks

in a group, Nmax, which requires a sorting operation, that chooses the Nmax blocks with the smaller

distances to the reference block.

The collaborative filtering step of the BM3D algorithm is where most computational effort is

required, when applying the 2D and 1D transforms to the blocks. The sequence of computations

of this step, i.e., 2D transform, followed by 1D transform in the 3rd dimension, followed by hard
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thresholding or wiener filtering and inversion of the transforms, and the fact that this sequence is

applied to every group, evidences a possibility of a fully pipelined architecture for the collaborative

filtering step.

The final step of the BM3D algorithm is the aggregation of the denoised blocks to form the

final image. This task does not imply a large computational effort, as only additions and one last

division per image pixel is necessary. However, due to the high overcompleteness provided by the

algorithm, many denoised blocks overlap, which means that the best approach to build the final

image is to create an image buffer with the same pixel size as the original image (and another

one for the weights of the groups). This means that for large image sizes (3, 5 and 8 megapixels

for example) the memory necessary for these buffers is very large, meaning that an hardware

implementation is very hard to accomplish.

3.2.1 Modifications

In order to tackle the bottlenecks and implications derived by the BM3D algorithm, the following

modifications and decisions were made:

• In the calculation of the distance between two blocks, the `2 norm is replaced by the simpler,

multiplier-less `1 norm. With this change, the absolute value of the distance will be different,

while the relative value is expected to remain similar, leading to very similar matching,

hence effectively producing the same grouping for each reference block.

• With the distance calculation planed to be pipelined, a new distance is produced at each

clock cycle, and can be sorted in a process similar to the well known insertion sort, meaning

that the threshold for the distances can be removed, because in terms of clock cycles there

is no difference if the distance is bigger or smaller than the threshold.

• In the collaborative filtering step, when implementing the algorithm in software, the blocks

of a group are available all at the same time, which allows for a full decomposition in the

3rd dimension (same pixel position of each block in the group) using log2 (Nmax) levels of

the haar wavelet. However, as a pipelined implementation of this step is desired, paralleliza-

tion is required in order to have at least two blocks being processed at each clock, so that

one level of the haar wavelet decomposition can be applied. For each additional level of

decomposition, the number of parallelization doubles, which in turn halves the execution

time of this step and enhances denoising because signal sparsity increases with each level

of wavelet decomposition. Nevertheless, this approach has the disadvantage of doubling the

hardware resources needed for this pipeline between each level of parallelization.

With these modifications to the BM3D algorithm, denoising performance is expected to drop,

mainly due to the use of lower levels of decomposition of the haar wavelet, leading to lower signal

sparsity, which in turn leads to an ineffective denoising by hard thresholding. On the other hand,

by taking advantage of a specialized hardware implementation for the modified algorithm, the

execution time and power consumption are expected to decrease.
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3.3 MATLAB Implementation

In order to set a benchmark for direct comparison with the results of the hardware implementation,

the BM3D algorithm was implemented in MATLAB, including the described modifications.

3.3.1 Initialization

The first step of the implementation is the definition of the parameters that control the BM3D algo-

rithm, which influence the quality of denoising and the run-time of the algorithm. This parameters

are:

• N: the block size of image patches to be processed. The value is set to N = 8.

• Nstep: the step used in the processing of reference blocks. This value is chosen to be bigger

than one in order to speedup the algorithm by a factor of approximately N2
step. The value is

set to Nstep = 4.

• Nmax: this is the maximum number of blocks in each group, also decreasing the runtime of

the algorithm, as already mentioned. This value is set to Nmax = 16.

• NS: the size of the neighborhood centered in the reference block from where candidate

matching blocks are searched. This value is set to NS = 39.

• λ3D: the hard thresholding constant for the first stage, which is set to λ3D = 2.7.

• β : the parameter for the Kaiser Window used to reduce border effects. This value is set to

β = 2.0.

With all the parameters set, a noisy test image is created. For this, the same dataset of images

is used as in the original work. The image is read into MATLAB and a random Gaussian noise

with power (standard deviation) σ is added. Next, the transform matrix for the 2D DCT is hard

coded, so it can be used to apply the transform to each block by a simple matrix multiplication,

and the kaiser window used in the aggregation is also computed and stored.

With the noisy image created and the 2D DCT transform matrix computed, the next step is

the initialization of the algorithm. The first step is the pre computation of the 2D transform on

every possible image block, with each block of coefficients being stored on a cell array called

tBlocks. Follows the initialization of two buffers used in the aggregation step at the end of the

algorithm: the image buffer, which will store the filtered blocks estimates, and the weights buffer,

which stores the weights for the aggregation process.
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3.3.2 Noise power estimation

The next step is the estimation of the noise standard deviation, which is done by applying the

Median Absolute Deviation (MAD) estimator. The MAD estimator for a certain parameter of

interest of a statistical distribution is defined as [45] :

MAD = σ̂ = K mediani|xi−median j x j|, (3.1)

where K is a constant scale factor, which depends on the distribution and the parameter of interest.

In the case of a Gaussian distribution and for estimation of standard deviation, K has the value of

1.4826. The MAD estimator is applied on the set composed by the high frequency coefficients

of each distinct 8x8 block on the image, which are almost pure noise. However, an upward bias

can affect this estimation due to the presence of true signal in the high frequency coefficients [20].

Noise power estimation is necessary in the collaborative filtering step, to define the threshold in

hard thresholding, which is given by:

λ = σ̂λ3D, (3.2)

and for the group weight calculation, given by:

w =
1

Nharσ̂
2 , (3.3)

where Nhar is the number of retained (nonzero) coefficients after hard thresholding.

3.3.3 Execution

Next, the execution of the algorithm begins. Starting at the top left pixel of the image and moving

Nstep pixels along the horizontal direction, the BM3D algorithm is applied to each block defined

by the current pixel position. For each block, group matching is applied, searching all blocks in

the neighborhood and storing the positions and distance to the reference block of those that match.

Then, the positions are ordered by ascending distance, and the first Nmax blocks are extracted

from the tBlocks array, creating a group. The next step is the collaborative filtering, starting with

applying the 1D transform, i.e., one level of the haar wavelet decomposition, producing the 3D

transform domain representation of the group. Follows the actual filtering, which is performed by

hard thresholding using the previous computed threshold λ (equation 3.2). Along with the filter-

ing, the weight for the group in the final aggregation step is computed by equation 3.3. Then, the

1D and 2D transforms are inverted, resulting in the estimated noise free blocks of the group. Fi-

nally, the denoised blocks are added in the image buffer in the correct position, after multiplication

by the Kaiser Window and the weight. At the same time, the weight is added to the corresponding

position in the weights buffer. When all the image is processed, the basic estimate is obtained by

simple element wise division of the image buffer by the weights buffer.
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3.3.4 Results

With the MATLAB implementation complete, its performance is tested on two different images

(Cameraman and Lena) and compared against the original BM3D.

Table 3.1: PSNR (dB) results for 256x256 Cameraman Image

σ Noisy Image Original BM3D Modified BM3D

5 34.16 38.20 34.79
10 28.13 33.94 31.25
15 24.62 31.67 29.42
20 22.12 30.24 28.18
25 20.18 29.14 27.16
30 18.60 28.25 26.28
35 17.30 27.41 25.53
40 16.10 26.33 24.83
45 15.08 26.07 24.21
50 14.16 25.55 23.65

Table 3.1 shows the PSNR results in dB for the image Cameraman for both original and modi-

fied BM3D. As expected, it can be seen that the modified BM3D achieves worse denoising results,

mainly due to the loss of sparsity by only using one level of the haar wavelet decomposition. This

results amount for an average absolute PSNR loss of 2.13 dB (relative loss of 7.11%). The di-

minished performance of the modified BM3D can be confirmed by the lower visual quality of the

result image, which can be seen in figure 3.1.

Table 3.2: PSNR (dB) results for 512x512 Lena Image

σ Noisy Image Original BM3D Modified BM3D

5 34.15 38.63 36.84
10 28.14 35.65 34.30
15 24.62 33.83 32.58
20 22.12 32.47 31.32
25 20.19 31.37 30.32
30 18.60 30.46 29.52
35 17.26 29.65 28.84
40 16.10 28.72 28.24
45 15.08 28.45 27.72
50 14.16 27.92 27.24

Table 3.2 shows the PSNR results in dB for the image Lena for both original and modified

BM3D. Once again, the modified BM3D achieves worse denoising results. However, this results

amount for a smaller average absolute PSNR loss of only 1 dB (relative loss of 3.08%). This

smaller difference can be explained by the fact that the Lena image is bigger (512x512 versus
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256x256 for Cameraman), meaning that there are more similar blocks in the image, which en-

hances the sparsity of the transform domain coefficients of each group, consequently improving

filtering. The result images can be seen in figure 3.2.

(a) Original Image (b) Noisy Image

(c) Modified BM3D (d) Original BM3D

Figure 3.1: a) Original Cameraman image with size 256x256; b) Noisy image with σ = 25
(PSNR=20.18 dB); c) Basic estimate image obtained by modified BM3D (PSNR=27.16 dB); d)
Basic estimate obtained by original BM3D (PSNR=29.14 dB)
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(a) Original Image (b) Noisy Image

(c) Modified BM3D (d) Original BM3D

Figure 3.2: a) Original Lena image with size 512x512; b) Noisy image with σ = 25 (PSNR=20.19
dB); c) Basic estimate image obtained by modified BM3D (PSNR=30.32 dB); d) Basic estimate
obtained by original BM3D (PSNR=31.37 dB)
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Hardware Implementation

In this chapter, the hardware implementation of the modified BM3D algorithm will be described

in detail. This will be done in a top to bottom approach, starting from the system architecture and

high level description, followed by a complete characterization of each individual block and its

operation.

4.1 System Architecture

This section presents a simple analysis of each block contained in the system architecture, and its

operation. An overview of the system architecture is shown in figure 4.1. The architecture can

be divided in four main elements: the array of matching processors; the denoising pipeline; the

various memory modules, with different functions; and the multitude of control modules, which

are not shown in the figure for simplification purposes.

The array of matching processors is responsible for the block matching step of the BM3D

algorithm. Each of the 16 matching processors performs block matching for a different reference

block in parallel. This reference blocks have overlapping neighborhoods (two consecutive refer-

ence blocks have a shift of 4 pixels), meaning that the array of processors operates on a "big"

neighborhood, which is a concatenation of all neighborhoods for each individual reference block,

and overlapping data is shared by successive processors. When the array of processors completes

its operation, each processor outputs the positions of the 16 blocks that have matched the refer-

ence block (the first position is the reference block itself), and, since there are 16 processors, this

positions are concatenated in a 16x16 bus.

With the matching step done, and the group positions available, follows the collaborative filter-

ing step. This step is performed in the denoising pipeline, which operates as follows: the positions

outputted by the matching processors are stored in a fifo; then, the blocks corresponding to two

positions are extracted from an internal memory containing the "big" neighborhood, at a rate of 1

row per clock cycle; then, the collaborative filtering is performed on these blocks by an efficient

pipelined architecture that implements the 2D DCT and Haar transforms, hard thresholding and

29
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Figure 4.1: BM3D System Architecture Block Diagram

the inversion of said transforms; finally, the denoised blocks, their positions and the group weight

are outputted and stored in memory blocks.

As can be seen in figure 4.1, there are 8 memory modules in the system architecture:

• Input Block RAM (BRAM), size 128 KBytes, 32 bit wide: holds the image data in line

order, i.e. consecutive memory positions contain 4 consecutive pixels of a line of the image.

• Next neighborhood memory, size 104x39 pixels (4056 bytes), input 32 bit wide, output

104 pixels wide (832 bit): contains the next neighborhood to be processed by the matching

processors.

• Buffer neighborhood memory, size 104x39 pixels (4056 bytes), 104 pixels wide (832 bit):

holds the neighborhood currently being processed and feeds it to the denoising pipeline

when the matching step finishes.

• Positions output memory, size 512 Bytes, 32 bit wide: each memory position contains two

relative positions of its corresponding image block.

• Weights output memory, size 16 Bytes, input 8 bit wide, output 32 bit wide: each memory

position holds the weight of a group.

• Two data output memories, size 8 KBytes each, input 64 bit wide, output 32 bit wide: each

memory position contains a row of a denoised image block.

• Output BRAM, size 32 KBytes, 32 bit wide: holds the output data of the BM3D algorithm:

the denoised blocks, their positions in the original image and the group weights.
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All the blocks described above need very strict control in order to operate properly. This is

achieved by the following 7 control modules:

• Next memory control module: responsible for controlling data transfers between the input

BRAM and the next neighborhood memory.

• Load denoise memory control module: responsible for loading the contents of the buffer

memory to the denoising pipeline.

• Positions memory control module: responsible for storing positions data in the positions

memory.

• Weights memory control module: responsible for storing weight data in the weights mem-

ory.

• Data memory control module: responsible for storing denoised blocks data in the parallel

data output memories.

• Copy memory control module: responsible for controlling data transfers between the 4

output memories and the output BRAM.

• Master control module: as indicated by the name, this module is responsible for the control

of the whole system, i.e. it controls all the modules described above, plus the internal control

modules present in the array of processors and the denoising pipeline.

With the system architecture explained, the following sections contain a meticulous descrip-

tion of the operation of each module in the system.

4.2 The Matching Processor

This section elaborates on the operation and design of the matching processor. The schematic for

the processor is presented in figure 4.2. As can be seen, the processor consists of three modules:

a memory; an arithmetic unit that calculates the `1 distance between two blocks; and a sorter unit

that orders and stores the 16 smaller distances and respective block positions.

The matching processor needs two control modules in order to operate correctly: a memory

control module and a processor control module. However, as already mentioned, the BM3D sys-

tem uses an array of 16 matching processors operating in parallel, meaning that only one of each

control modules is necessary in order to control all processors at the same time.

4.2.1 Memory Module

The memory module is responsible for feeding the 8x8 blocks to the `1 norm unit. The memory is

structured in a specific way such that it is possible to provide each consecutive 8x8 block. This is

achieved by using five, 64 bit wide memory LUTs that have 39 positions and are byte addressable.
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Figure 4.2: Matching Processor Schematic

The width is set to 64 bits because this is exactly the size of one block row (8 pixels = 8x8 bits).

Hence, five memories in parallel contain 40 pixels, which means that 8 bits (1 pixel) are never used,

since the neighborhood size is 39x39. However, this structure is necessary and very effective for a

sliding window approach as will be explained next.

Firstly, the number of bits for each coordinate needs to be defined. Within a 39x39 neighbor-

hood, 32x32 distinct 8x8 blocks can be found. Therefore, 5 bits are enough to code each coordinate

of the block, i.e., each position has 10 bits: the y coordinate in the 5 most significant bits (MSBs)

and the x coordinate in the remaining 5 bits. Now, let us consider for example that the current

block being processed is at x = 13 and y = 25. The 8x8 block defined by this coordinates spans

from x = 13 to 20 and y = 25 to 32. The y coordinate simply chooses the memory position, 25 in

this case, of the first row to be extracted, meaning that 8 clock cycles are necessary to provide a

full 8x8 block. This, as it will be seen later, is not a problem, since the `1 norm unit accepts block

rows as input. The x coordinate however, has a different treatment: the 2 MSBs define a signal

called block and the remainder 3 bits define a signal called shi f t. The value 13 in binary is given,

in 5 bits, by 01101, meaning that block = 1 and shi f t = 5. The block signal chooses the pair of

memories to be read, i.e., in this case, the value 1 indicates that the desired block is read from

memories 2 and 3 (memories are numbered 1 to 5). Then, the shi f t signal indicates how many

bytes (pixels) of each memory should be selected, i.e., in this case, the value 5 indicates the 3 least

significant bytes from memory 2 and the 5 most significant bytes from memory 3.

Another advantage of this memory structure is that a full neighborhood row can be loaded

into memory at each clock cycle, because the five internal memories can be loaded in parallel.

This saves some clock cycles when initializing the memory, and processing can even start after the

first row that contains the reference block is loaded. This will be further explained in the control

modules subsection (4.2.4).
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4.2.2 `1 norm Unit

In the block matching step, the distance that needs to be calculated is given by:

d =
8

∑
i=1

8

∑
j=1
|X i, j

REF −X i, j|, (4.1)

where X i, j
REF is line number i and column number j of the reference block, and, accordingly, X i, j is

the same line and column from the block being matched.

Let us consider two consecutive 8x8 blocks in the vertical direction of the image, X1 and X2.

The distances for these blocks are given, respectively, by:

d1 =
8

∑
i=1

8

∑
j=1
|X i, j

REF −X i, j
1 | and d2 =

8

∑
i=1

8

∑
j=1
|X i, j

REF −X i, j
2 | (4.2)

However, as the blocks are consecutive, i.e., they only differ in one row from one another, we can

write the following relation:

X2 =
8⋃

i=1

X i
2 =

7⋃
i=1

X i+1
1 ∪X8

2 (4.3)

This way, combining equations 4.2 and 4.3, we get the following expression for d2:

d2 =
7

∑
i=1

8

∑
j=1
|X i, j

REF −X i+1, j
1 |+

8

∑
j=1
|X8, j

REF −X8, j
2 | (4.4)

With this result, it is possible to see, that to calculate the distance for each new 8x8 block, 7 rows

from the previous block can be reused. This is of major importance for the design of the `1 norm

unit, because it means that a pipelined architecture can be developed, taking advantage of seven

shift registers in order to store the old rows of previous blocks. With this architecture, an output of

a new block distance per clock can be achieved, after a lag of eight clocks for the first 8x8 block

for each neighborhood column. As grayscale images are used, the maximum value possible for

the distance is 64× 255 < 26× 28 = 214, meaning that the `1 norm unit is designed with 14 bit

operations, in order to avoid overflows.

Taking into account the design considerations described, the `1 norm unit operates as follows:

1. The reference block is loaded line by line into 8 registers connected in series (shift register),

meaning that in the end, the first line is at the last register.

2. The same is done for the first block of the first neighborhood column, with the difference

that there are only 7 shift registers to store the 7 previous lines, while the current line is

directly at the input of the module.

3. Follows an array of subtractions and a modulus operation that process each pair of row

registers, producing the `1 norm of each pixel of each row.
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4. Then, an adder tree with intermediate pipeline stages sums each pixel distances to produce

the final distance for the block being processed. This tree starts with 32 adders (since there

are 64 pixels) and 32 registers and then at each stage the number of blocks is halved.

The register transfer level (RTL) schematic of the `1 norm unit can be seen in figure 4.3. With

this pipelined architecture, the `1 norm unit introduces a delay of 5 clock cycles, plus the initial

8 clock cycles for loading the first block of each column. Hence, there is a 13 clock cycle delay

between the start of processing and the cycle when the first correct distance is at the input of the

sorter unit.

R0 R1 R2 R3 R4 R5 R6 R7

X1 X2 X3 X4 X5 X6 X7

|.| |.| |.| |.| |.| |.| |.| |.|

DATA

REF

LOAD

EN

… …

DIST

Figure 4.3: RTL schematic of the `1 norm unit

4.2.3 Sorter Unit

The sorter unit is responsible for choosing the 16 smaller distances, from the 1024 (39x39 neigh-

borhood has 32x32 distinct 8x8 blocks) that are produced by the `1 norm unit. The design of this

unit was adapted from the work of Hussain et. al [46]. It consists of 16 sorter cells in series and

each cell contains two registers, one to store the distance and another to store the block position

associated to that distance, and a comparator, that checks if the input distance of the cell is smaller

than the currently stored one. If it is indeed smaller, the input distance is stored in the cell, and the

previously stored one is passed onto the next sorter cell, otherwise, if the input distance is larger, it
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is directly passed onto the next sorter cell. This way, at each clock cycle all the sorter cells operate

in this manner and a new distance is inputted to the first cell of the chain, effectively sorting the

16 smaller distances. Hence, after all distances have been computed, there is a delay of 16 clock

cycles, at the worst case. This happens when the last distance available is the 16th smaller and

needs to be passed by all the sorter cells until it reaches the last and its finally stored. The RTL

schematic of one single sorter cell can be seen in figure 4.4.

At the end of this 16 clock cycles, the first cell in the chain contains the smaller distance,

the second contains the second smaller distance, and so forth. Each cell has a parallel output

connected to the positions register, and at the end of the sorting, the output of each cell is gathered

into a bus, that now contains the 16 positions for all the blocks that matched the reference one,

effectively forming a group. In order to allow a correct sorting, each cell’s register is initialized

with the maximum possible value (14 bits at 1), so that at initial stages any distance compared

is always smaller. Due to the `1 norm unit’s architecture, the values at the input of the sorter

are not always correct. Hence, an holding mechanism was implemented, consisting of a simple

multiplexer controlled by an input denominated hold, that when is set to one, inputs the maximum

possible value to the sorter, so that no register is changed.

Figure 4.4: RTL schematic of one sorter cell

4.2.4 Control Modules

As previously mentioned, the array of matching processors is controlled by two control modules:

the memory control module and the processor control module.

The memory control module is modeled as a finite state machine (FSM) with four states and

its state diagram can be seen on figure 4.5. It operates as follows:
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1. Waiting in IDLE state for the signal start, sent by the top level master control, that signals

the beginning of the block matching step.

2. When the signal start is detected with the value 1, the state machine moves to state LOAD_MEM,

that loads each processor’s memory, by incrementing the write address from 0 to 38.

3. When the address reaches 14, the state changes to LOAD_REF, where the memory keeps

being loaded and the load control signal is activated, enabling the reference block’s registers

in the `1 norm unit, which are then loaded with the correct block row (this is done by a simple

bit selection from the data bus).

4. When the address reaches 22 the state changes to SEND_INIT, a single clock cycle state

that sends the init signal to the processor control module. After one clock cycle the state

goes back to LOAD_MEM.

5. When the address reaches 38, the state goes back to IDLE and each processor’s memory is

fully loaded with the respective neighborhood.

RST

LOAD_MEM

WEN=1
LOAD=0

ADDR_RST=0

START

IDLE

WEN=0
ADDR_RST=1

LOAD_REF

LOAD=1
INIT=0

ADDR=14

SEND_INIT

LOAD=0
INIT=1

ADDR=22

ADDR=38

Figure 4.5: State diagram of the matching processor’s memory control module

The processor control module is also modeled as an FSM with six states and its state diagram

can be seen on figure 4.6. It operates as follows:

1. Waiting in IDLE state for the signal init, sent by the memory control module, which signals

that the reference block is loaded into the `1 norm unit and thus the processor can start.

2. When the signal init is detected with the value 1, the state machine moves to state START_PROC,

that enables the shift registers in the `1 norm unit, so that block rows can be loaded, but keeps
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the sorter on hold by setting hold = 1. Simultaneously, the read address is incremented from

0 to 38 at each clock cycle.

3. When the read address reaches 13, the first correct distance is available, thus the state

changes to PROCESS, hold is set to 0 and the y coordinate starts being incremented.

4. When the read address reaches 38, the state is changed to NEXT_COL, where the variable

controlling the column being processed (col) is incremented and the read address is reset.

On the next clock cycle the state changes to START_NEXT;

5. While the read address is smaller than 5 the state is kept on START_NEXT. This is due to

the fact that while a new column is already being inputted to the `1 norm unit, due to its

pipelined architecture with 5 stages, there are still 5 distances of the previous column that

need to be sorted. When the read address reaches 5, the state changes depending on the

value of col: if it is bigger than 0 the state changes to NEXT_POS, else it changes to IDLE,

i.e. the processing is over.

6. In the NEXT_POS state, the x coordinate is incremented and, one clock cycle after, the state

returns to START_PROC.

RST
START_PROC

EN =1  
ADDR_RST=0 
POSX_RST=0

INIT

IDLE
HOLD=1 
EN =0  

ADDR_RST=1     
POSY_RST=1   
POSX_RST=1

PROCESS

HOLD=0
POSY_RST=0

ADDR=13

NEXT_COL

ADDR_RST=1 
COL++

ADDR=38

START_NEXT

ADDR_RST=0

NEXT_POS

HOLD=1
POSX++

ADDR=5 & COL>0

ADDR=5 & COL=0

Figure 4.6: State diagram of the matching processor’s control module

The processor control module is also responsible for the generation of two signals that are

inputs of other control modules in the architecture. These signals are: load_den_mem, that indi-

cates the buffer memory control module to load the neighborhood to the denoising pipeline; and

start_den, that indicates to the denoising pipeline that the groups are formed and it can start its

operation.
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Figure 4.7: Denoising Pipeline Schematic

4.3 The Denoising Pipeline

This section elaborates on the operation and design of the denoising pipeline. The schematic for

the pipeline is presented in figure 4.7. As can be seen, the pipeline consists of seven modules:

two 2D DCT transforms, one haar wavelet transform, one hard thresholding module, one inverse

haar module and two 2D IDCT transforms. This modules are all connected in series, forming a

continuous pipeline where two 8x8 image blocks are parallelly processed. Furthermore, to support

the operation of the pipeline, there are two memory modules: one for the positions of all groups

and another for the neighborhood data; a position decoder and a control module.

The pipeline data path is 32 bits wide, using a fixed point implementation with 16 bits for the

integer part and another 16 for the decimal part. In order to avoid overflow, at the beginning of the

pipeline, input data is placed at the decimal point and then shifted 7 bits to the right (division by

27). The data flows in the pipeline as follows:

1. The positions register outputs two consecutive group positions for eight clock cycles.

2. The positions are converted from each group’s local neighborhood to the "big" neighbor-

hood in the position decoder and are inputted into the data memory module.

3. The memory module outputs a row of each of the desired 8x8 blocks at each clock cycle.

4. Each row is inputted to the respective 2D DCT module, that performs the transform and

outputs a block column at each clock cycle.

5. The haar transform is performed on the two block columns and the coefficients are inputted

into the hard thresholding module.

6. This module discards the coefficients bellow the threshold and then inputs them into the

inverse haar transform.
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7. This module inverts the haar transform and then the two 2D IDCT modules invert the 2D

transform.

8. The end of the pipeline is reached with two block rows being outputted at each clock cycle.

4.3.1 Multiplier-less DCT and IDCT

The 2D DCT and IDCT transform modules have the same basic design: one 1D DCT module

transforms the first dimension (rows in the case of the DCT and columns in the case of the IDCT),

then a skewed array of registers transposes the data (rows to columns or columns to rows) and

then another 1D DCT performs the transform on the second dimension. Furthermore, the 2D

IDCT module also contains a rounding module at the output.

First, lets address the design of the 1D DCT and IDCT blocks. These blocks are crucial

to the performance of the pipeline, because they account for the largest arithmetic effort of the

implementation. In order to optimize the DCT and IDCT transforms, various algorithms have

been proposed. One of the most efficient algorithms was proposed by Loeffler et al. [47] in 1989,

using only 11 multiplications and 29 additions. This number of multiplications was proven to be

the lowest achievable by a theoretical bound. However, in order to obtain high clock frequencies

and lower hardware resource usage, multiplier-less DCT and IDCT transforms are desired. To

achieve this, the multiplications in the flow graph algorithm (FGA) are replaced with additions

and shifts. This is exactly what Chen et al. [48] and Aakif et al. [49] did in their works. In the

latter, there is a direct comparison with the work of Chen et al. with better results being achieved.

This way, to achieve better performance, the design of the DCT and IDCT modules is based on

the work of Aakif et al..

All the multiplications in the DCT and IDCT have a constant operand, i.e. the signal from

the flow graph is multiplied by a constant value. This values are dual in the DCT and IDCT, i.e.,

the same constants are used, but in symmetric positions in the FGA, meaning that the same shifts

and additions modules can be implemented for replacing the multiplications in both the DCT and

IDCT designs. This way, only the design of the IDCT will be analyzed, since all the design choices

are mimicked in the DCT.

The FGA of the IDCT implementation proposed in [49] can be seen in figure 4.8. The 11

multiplication blocks have 10 different coefficients (
√

2 is used two times), meaning that 10 blocks

need to be implemented using shifts and additions to replace the multiplication. In order to achieve

this, a fixed point representation of the coefficients is needed. Aakif et al. chose an unsigned 12

bit precision representation, as recommended by the IEEE 1180-1990 standard [50]. Using this

fixed point representation it is possible to implement any coefficient needed for the IDCT with a

maximum delay of 3 additions/subtractions. Let us analyze for example the a coefficient, with the

value
√

2, which is given by 1.011010100001 in the 12 bit precision representation. Let x be the

input of the multiplier and z the output,i.e., z =
√

2 x. Looking at the binary value of a, one can
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Figure 4.8: IDCT Flow graph algorithm. Taken from [49]

see that z can be given by:

z = x+ x >> 2+ x >> 3+ x >> 5+ x >> 7+ x >> 12 (4.5)

However, in their work, Aakif et al. tried to minimize the number of additions and shifts used.

Hence, they tried to find common expressions (similar to a factorization operation) that could

simplify the multiplication, and use parallel additions. Therefore, they defined the following im-

plementation for the a coefficient:

y1 = x >> 12+ x >> 7;

y2 = x+ x >> 2;

y3 = y1 + y2;

z = y3 + y2 >> 3;

This implementation uses 4 shifts and 4 additions, and only a delay of 3 additions, because y1 and

y2 are computed in parallel, followed by y3 and finally z.

This analysis is repeated for all the coefficients necessary for the IDCT implementation, but

this will not be covered in this work. With the multiplier-less modules designed, the FGA of the

IDCT can be developed. This is done by following the design shown if figure 4.8, applying the

operations to each input and adding registers at the end of each stage to achieve a pipelined design.

This means that the 1D IDCT module is responsible for a delay of 3 clock cycles in the denoising
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Figure 4.9: Transposer structure. Adapted from [51]

pipeline.

With the 1D DCT and IDCT modules analyzed, let’s now look to the skewed array of registers.

This module is placed between the first and second 1D DCT and IDCT modules to transpose the

data without breaking the pipeline. The design of the transposer was proposed by Aggoun and

Jalloh in 2003 [51]. For a block size of 8x8, it consists of two arrays of skewed registers, with 36

registers each, and eight 8to1 multiplexers. The structure of the transposer can be seen in figure

4.9.

Let Ri
1 and Ri

2 be the row with i registers of, respectively, the first and second arrays of registers

and M j, the multiplexer of row j. It can be seen that for each row i, the multiplexer Mi is connected

to the row of registers R9−i
2 . All the multiplexers are controlled by the same 3 bit signal, meaning

that for the data transposition to be correct, the order of the inputs in each multiplexer has to be

different. For the first multiplexer, the order of inputs is the same as the first array of registers,

i.e., input i is connected to Ri
1. However, for the second multiplexer, each input is shifted in a

circular manner, i.e., input i, with i from 2 to 8, is connected to Ri−1
1 and input 1 is connected to

R8
1. This shift is repeated for each following multiplexer. This way, a full cycle of operation of the

transposer is given by:

1. The first 8 coefficients of the 1D DCT/IDCT are loaded into the first position of the Ri
1

arrays.

2. The second 8 coefficients from the first transform are loaded into the first position of the Ri
1

arrays, leading to the shift of the first coefficients and the multiplexer select signal has the

value 1. Hence, the data from R1
1 is shifted into R8

2, while all the other data from the first

coefficients remains in R1.

3. A similar shift occurs as in the previous step and the select signal is incremented. Hence,

the data from R1
1 is shifted into R7

2 and the data from R2
1 is shifted into R8

2.

4. The last step is repeated for 6 more clock cycles, and at the last one, the value from R1
1 is

shifted to R1
2, R2

1 is shifted to R2
2 and so on.

At the end of the last cycle, the transposed data can be found at the first register of each row of

R2, and it can be loaded to the second 1D DCT/IDCT transform. After this initial 9 clock cycles,
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new data is always flowing from the 1D transform into the transposer, which starts its operation

from the beginning (the select signal of the multiplexer overflows and starts from 0), effectively

pipelining this process. This means that the transposer contributes with a delay of 9 clock cycles

for the denoising pipeline.

Using 8 bits for the grayscale representation of the input noisy image means that all the values

are between 0 and 255. However, when filtering is performed, the transform domain coefficients

of each patch are modified (some are discarded), resulting in the possibility of producing negative

values and values larger than 255 when inverting the haar and DCT transforms. Hence, a rounding

module is necessary in order to avoid overflow/underflow when truncating the 32 bit representation

used in the denoising pipeline to the 8 bit one used in grayscale images. The rounding module

analyses the 32 bit value, and if it is bigger than 255, it is truncated to 255. On the other hand, if it

is smaller than 0, it is truncated to 0. Values between 0 and 255 are rounded to the nearest integer,

and ties (decimal part equal to 0.5) are rounded towards the nearest even number.

Finally, the clock delay of the 2D DCT and IDCT modules can be computed by adding the

individual delays of each component of the module. Each module has an input pipeline stage,

followed by the 1D transform, the transposer, and another 1D transform. This yields a delay

contribution of 1+3+9+3=16 clock cycles for the denoising pipeline.

4.3.2 Haar Transform Modules

As previously mentioned, there are two haar related modules in the pipeline: the haar transform

and the inverse haar transform modules. The design of both modules is very simple, since the haar

transform itself is also very simple.

As it is applied on the 3rd dimension of the group, and only one level of decomposition is

possible, the haar transform takes the same pixel position from each column of the two blocks and

computes its sum and difference. This originates 8 sums and 8 differences, which are divided by

2 and correspond, respectively, to the low pass and high pass coefficients. This can be expressed,

for each column pixel, by the following equations:

CLP =
X1 +X2

2
and CHP =

X1−X2

2
(4.6)

This way, the haar transform module contains: two input registers, one for each block’s col-

umn; then, eight adders and eight subtractors that compute the coefficients; and an output register.

This means that the haar transform contributes with a delay of 2 clock cycles for the denoising

pipeline.

The inverse haar module is a purely combinational module, that reconstructs the column data

from the low pass and high pass coefficients. This reconstruction simply requires additions and

subtractions of the correct high pass and low pass coefficients. Considering again each column

pixel, we have the following expressions:

X1 =CLP +CHP and X2 =CLP−CHP (4.7)
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This way, the inverse haar module contains eight adders and eight subtractors that operate on

each pair of high pass and low pass coefficients, outputting the two block’s columns. The RTL

schematics of both the haar transform module and inverse haar transform module can be seen on

figure 4.10.
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Figure 4.10: RTL schematics of the haar and inverse haar transform modules

4.3.3 Hard Thresholding Module

The hard thresholding module is responsible for filtering the transform domain coefficients that are

considered to be noise. As previously explained, this is done by setting to zero the coefficients that

are lower, in absolute value, than a certain threshold. Furthermore, the hard thresholding module

is also responsible for counting the number of non-zero coefficients in each group. The module

operates as follows:

• The modulus of each of the 16 coefficients is computed and after the result is compared to

the threshold, using a less than operator.

• The output of each of the comparators drives the reset signal of a register, so that if the value

is 1, the register is set to zero, otherwise it holds the original value of the coefficient.
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• In parallel, the comparators outputs are negated and summed by a tree of adders, in order to

count the number of non-zero coefficients. This value is added to an accumulator register,

that at the end of 64 clock cycles (16 blocks per group, 8 rows per block, 2 blocks in parallel,

yields 16*8/2=64) holds the value of the group weight.

• This register is then reset at the end of processing of each group.

The hard thresholding module only contains 1 register for each input, meaning that it con-

tributes with a single clock cycle delay for the denoising pipeline. The RTL schematic of the hard

thresholding module can be seen in figure 4.11.
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Figure 4.11: RTL schematics of the hard thresholding module

4.3.4 Position Memory and Decoder

The positions memory consists of a wide register, that holds all the positions for the 16 groups

formed in the block matching step, and outputs two positions in parallel. Since each pair of

coordinates has 10 bits, and each group has 16 blocks, the register has 10x16x16=2560 bits. In

order to output the correct positions, the position memory also has two counters: a 3 bit clock

counter and a 7 bit position counter. The clock counter is necessary so that the positions are

outputted for 8 clock cycles, since the memory module outputs one block row per clock cycle.
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Then, when the clock counter reaches 7, the position counter is incremented. Finally, there is a

multiplexer that selects the positions from the register according to the position counter, i.e., when

the position counter is zero, the 1st and 2nd positions of the register are outputted, and for each

increment in the counter, the following two positions are outputted. This means that to process

all the groups the number of clock cycles necessary is 8*16*16/2=1024. The position memory is

controlled by two signals: load that enables the input of the register, and en, which enables the

clock counter.

In between the output of the positions memory and the data memory, there is a position decoder

module. This module is purely combinational and converts the positions to the correct addresses

and shifts in the memory module. This is done by summing the clock counter value to the y co-

ordinate (in order to select the correct row). Since each matching processor operates on a local

neighborhood, its positions are also local, meaning that the x coordinate needs to be translated to

the "big" neighborhood that contains all the 16 matching processors. The step between each refer-

ence block is 4 pixels, which means that this translation is simply a sum of the local x coordinate

with 4 times the matching processor ID (from 0 to 15). This way, it is assured that the correct

blocks are extracted from the data memory module.

4.3.5 Memory Module

The data memory module used in the denoising pipeline follows the same design as the mem-

ory in each matching processor. However, there are two main differences. The first is the size:

in the matching processor each memory holds a 39x39 neighborhood, meaning that five, 64 bit

wide, memories with 39 positions are used. However, for the denoising pipeline, the mem-

ory needs to hold the full neighborhood of all the 16 matching processors, which is of size

(39+4*15)x39=99x39. In order to store 99 pixels without modifying the size of each individ-

ual memory (8 pixels, i.e. a block row), 13 memories are necessary, which amounts to 104 pixels.

This means that the last 5 pixels of the last memory are not relevant.

The second main difference is the fact that this memory module can output two rows in par-

allel. This is needed due to the parallelism necessary for the haar transform to be applied in the

3rd dimension. To achieve this, the memory contains two ports, each accepting a line address

and shi f t and block signals, as in the matching processor memory. Furthermore, as happened in

the matching processor’s memory, a full neighborhood row can be loaded in a single clock cycle,

because all 13 internal memories operate in parallel.

4.3.6 Control Module

The control module is extremely important for the correct operation of the denoising pipeline,

because it needs to enable each module at the correct clock cycle, in order not to break the pipeline.

The clock cycle delay that each module contributes to the pipeline was addressed in each module’s
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subsection. Hence, the total delay of the pipeline is given by:

NCLK = 16+2+1+16 = 35 (4.8)

RST

FIFO_DCT
FIFO_EN =1
DCT_EN=1
CNT_RST=0 

POS_FLAG=1

START

IDLE
FIFO_EN=0
DCT_EN =0  
CNT_RST=1

POS_FLAG=0

HAAR

HT_RST=1
HAAR_EN=1
POS_FLAG=0

CNT=15

IDCT

HT_RST=0 
IDCT_EN=1

CNT=18

IDCT_DATA 
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DATA_VALID=1
HT_RST=0

FLAG=0

RST_HT

HT_RST=1
FLAG=1

GROUP++

FINAL

HOLD=1
POSX++

CNT=34

GROUP=0 & FLAG

CNT=17

CNT=34

Figure 4.12: State diagram of the denoising pipeline control module

The denoising pipeline control module is modeled as an FSM with seven states and its state

diagram can be seen on figure 4.12. It operates as follows:

1. Waiting in IDLE for the start signal, sent by the processor control module in the array of

matching processors, that signals the end of the block matching step.

2. When the start signal is detected with the value 1, the state machine changes to state

FIFO_DCT, that enables the positions memory and the two 2D DCT modules, as well as a

position flag. Furthermore, an internal counter is activated.

3. When the counter reaches 15, the state machine changes to state HAAR, that enables the

haar transform module. Although the 2D DCT introduces a delay of 16 clock cycles, the

transition value for the counter is 15, because the enable signal will only be seen with the

correct value at the haar transform module one clock later of being changed in the control

module.

4. When the counter reaches 18, the state machine changes to state IDCT, that enables the

IDCT module, and disables the reset signal for the accumulator that stores the group weight

in the hard thresholding module.



4.4 Top Level Module 47

5. When the counter reaches 34, the state machine changes to state IDCT_DATA_VALID, that

activates the data_valid signal, indicating that the data output of the pipeline is already

valid.

6. When the counter reaches 17, after intended overflowing, the state machine changes to state

RST_HT, that is a single clock state responsible for resetting the group weight accumulator.

In this state, there is also an active flag, that enables a register, which stores the current group

weight, before being reset. After one clock cycle, the state returns to IDCT_DATA_VALID.

7. This process is repeated for every group, and when a group counter overflows (reaches 0 for

the second time), the state machine changes to state FINAL.

8. In this last state, there is still a need to wait 16 clock cycles, so that the last data rows can

reach the end of the pipeline (from the hard thresholding module to the end there is a delay

of 16, introduced by the 2D IDCT module). When this happens, the state machine changes

to state IDLE, and the collaborative filtering step is done.

4.4 Top Level Module

This section elaborates on the operation and design of the top level module. This module is

responsible for connecting the array of matching processors with the denoising pipeline, plus

the memory and control modules necessary for the correct operation of the system. There are six

memory modules and seven control modules, which will all be explained in the following sections.

4.4.1 Memory Modules and Control

The first memory module is the next neighborhood memory, which is responsible for holding the

next data to be processed, while the matching processors are working on the current neighborhood.

This memory contains 26 parallel, 32 bit wide memories with 39 positions, so that it holds a full

104x39 neighborhood. Each individual memory is loaded sequentially, selected by the shi f t input.

However, the output port of the memory gathers the output of the same position of all individual

memories. This way, the output of the memory can provide a full neighborhood row (104 pixels)

at each clock cycle.

This memory module is controlled by the next control module. This module is an FSM with

four states and operates as follows:

1. Waiting in state IDLE for the start signal sent by the master control module, which signals

that a new neighborhood should be loaded from the input BRAM.

2. When the start signal is detected with the value 1, the state machine changes to state

LOAD_ROW, that activates the write enable for the memory, and starts the counter for

the shi f t signal.
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3. When the shi f t signal reaches the value 24, the state machine changes to state ADDR_INC,

that increments the write address and resets the shi f t value.

4. If the write address is smaller than 38, meaning that there are still rows to be loaded, the

state goes back to LOAD_ROW, and the previous step is repeated. Otherwise, the state

goes to FINAL, which is just a single clock cycle buffer state that resets the state machine

variables and sends the end pulse to the master control module. Finally, the state machine

moves back to state IDLE.

This control module is also responsible for determining the correct read address from the input

BRAM, in order to fetch the correct data. The read address is calculated from 5 other variables: the

write address, the shi f t signal, the two coordinates for the current neighborhood being processed

and a parameter called line_width. The read address is given by:

read_addr = x_addr+(K +8)∗ y_addr, (4.9)

where x_addr is the address part due to the x coordinate, y_addr is due to the y coordinate and

K is the image width divided by 4 (32 bit positions can hold 4 pixels). This multiplication simply

"skips" the number of rows, so that the correct row is selected. In order to avoid this multiplication,

the allowed values for image widths are hard coded, and the line_width parameter controls a

multiplexer that adds different shifts off the y_addr to achieve the correct result. The allowed

image widths and corresponding line_width and K values can be found in table 4.1. These values

are the usually found in test images (256x256 and 512x512) and real images with 1, 2, 3, 5 and 8

megapixels.

Table 4.1: Hard coded image widths

line_width Width K

0 256 64
1 512 128
2 1280 320
3 1920 480
4 2048 512
5 2560 640
6 3264 816

The constant value 8 in equation 4.9 is due to zero padding the image. The image is padded

with a frame of zeros of size 15 in the top and left sides, and 17 in the right and bottom sides. This

means an additional 32 (hence, 8 memory positions) pixels in each image row. The multiplication

by (K +8) is then implemented as additions and shifts, by finding the correct sum of powers of 2

that sum to K. For the image widths considered, the shifts from 3 to 9 are hard coded, and then

line_width controls a multiplexer that sums the correct shifts. For example, if the image width is

1280, K is 320, which means that the shifts 6 and 8 need to be summed, plus the zero pad (shift of

3), which is independent of the image width.
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The values of x_addr and y_addr are given by the following equations:

x_addr = x_curr << 4+ shi f t,

y_addr = y_curr << 2+w_addr,

where x_curr and y_curr are the coordinates of the current neighborhood (these are signals sent

by the master control module). The shift of 2 in the y coordinate is due to step of 4 pixels between

reference blocks. However, in the x coordinate, the shift is 4, since 16 processors in parallel mean

that the first reference block from consecutive neighborhoods are 16*4=64 pixels apart.

The second memory module in the top level is the buffer memory. This memory is the simplest

in the architecture, because it only serves as a buffer between the matching processor and the

denoising pipeline. When the neighborhood to be processed is loaded from the next memory to

the matching processors, it is parallely loaded into the buffer memory. Then, when the processor

control activates the load_den_mem, the buffer control loads the contents of the buffer memory

into the internal memory of the denoising pipeline.

The buffer control module is a very simple FSM with only two states: IDLE and LOAD_MEM.

The state is IDLE until the load_den_mem signal has the value of 1. Then the state machine

changes to state LOAD_MEM and a counter is activated. When this counter reaches 38, the state

goes back to IDLE and the denoising pipeline memory has the contents of the buffer memory.

The third memory module is the positions memory. This memory stores the positions of the

blocks that are outputted by the denoising pipeline. There are 16x16=256 positions to be stored,

and each position occupies 16 bits, which means that the positions memory has a depth of 128 and

is 32 bit wide. The two most significant bytes of a memory position hold the position of the block

outputted by the second 2D IDCT module, and the remainder bytes hold the other position.

The position memory is controlled by the position control module. This module is an FSM

with four states and operates as follows:

1. Waiting in state IDLE for the pos_ f lag signal, sent by the denoising pipeline control when

the first positions are being outputted.

2. When the pos_ f lag signal is detected with the value 1, the state machine changes to state

WRITE, that enables the write enable of the memory and starts a counter, writing the first

positions value in the memory. On the next clock cycle, the state changes to WAIT and the

write enable is set to zero.

3. When the counter reaches the value 7, meaning that the positions are going to change, the

state goes back to WRITE and the new positions are written to memory.

4. This steps are repeated until the address overflows. When this happens, the state machine

changes to state FINAL, which is a buffer state, and then back to IDLE.

The fourth memory module is the weights memory. This memory stores the group weights

outputted by the denoising pipeline. Since there are 16 groups, and each weight occupies 8 bits,
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the weights memory is composed by 4 smaller memories, 8 bit wide and with 4 positions. The

memory input is only 8 bits and there is a byte enable to choose in which memory to store data.

However, as the output will go to the output BRAM, data is read from all four memories in parallel

in order to have 32 bits width.

This memory is controlled by the weights control module. This module is an FSM with three

states: IDLE, WRITE and INC_ADDR. When in state IDLE, the state machine waits for the

weight flag, that signals a new weight is available, and then moves to the WRITE state. In this

state the write enable of the memory is activated and the weight is stored. Furthermore, the byte

enable is incremented, so that the next weight is stored in the next smaller memory inside the

weight memory. If the byte enable has the value of 3, the state changes to INC_ADDR, and the

write address is incremented, and then the state changes back to IDLE. This process is repeated

each time the weight flag as the value 1. Otherwise, if the byte enable is not 3, the state goes

directly to IDLE, because an increment of the write address is still not necessary.

The fifth and sixth memory modules are the same: data memory. This memory stores the

actual denoised blocks of the image. There is a need of two modules in parallel because the

denoising pipeline outputs two block rows per clock cycle. The data memory consists of two 32

bit wide memories in parallel, with 1024 positions. This value is due to the size of the data in 8x8

block rows, which is 16x16x8=2048, and each row occupies 64 bits (8 pixels). This way, each of

the memories is loaded with half of a row at the same address. When reading the data out of the

memory, the LSB of the read address acts as the memory selector, in order to consecutively output

the correct half rows. These memories are controlled by the data control module. This module is a

simple counter with the same bits as the address of the memories (10 bits). This counter is enabled

by the data_valid signal, meaning that while the data outputted from the denoising pipeline is

correct, the address is incremented and the data is correctly stored in the data memories.

Finally, there is an additional module regarding the memory interfaces and its control. This

is the copy control module, which is responsible for copying the data from the positions, weights

and data memories into the output BRAM. It is modeled as an FSM with eight states, that controls

the read address for each memory and the write address of the output BRAM. There is also a

multiplexer that is changed according to which memory is being copied. The four memories are

copied sequentially, starting by the first data memory, then the second data memory, the positions

memory, and finally the weights memory. Between each copy there is a state that resets the

read address and increments the multiplexer select signal. The write address however, is always

incremented so that data is not overwritten in the output BRAM. The final composition of the

output BRAM is then: all the data from even numbered blocks of the groups (8 KB), followed

by all the data from odd numbered blocks (8 KB), followed by all the positions (512 Bytes), and

finally all the group weights (16 Bytes).
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4.4.2 Master Control

The last module of the top level design is the master control module. As the name states, this

module is responsible for controlling all the remaining control modules and the BM3D system

in general. This module has three registers to communicate with the outside: a status register, a

control register and an image size register. The control register is used to issue commands to the

BM3D module, while the status register contains the current status of operation of the system, and

the image size register is used to input the image size, so that the master control can compute how

many neighborhoods the image is divided into. The master control module is modeled as an FSM

with 12 states and its state diagram can be seen on figure 4.13. It operates as follows:
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Figure 4.13: State diagram of the master control module

1. Waiting in state IDLE for the BM3D_INIT command in the control register. When this

command is detected the state changes to LOAD_FIRST, that sets the status register to the

value REQ_DATA. This tells the user of the BM3D system that the input BRAM can be

filled with data.
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2. Waiting in state LOAD_FIRST for the DATA_AVLB command in the control register. When

this command is detected, it means that the input BRAM contains the first 39 lines of the im-

age (first neighborhoods). Then the state changes to COPY_FIRST, that sends the start_next

signal to the next memory control module, in order to load the first neighborhood.

3. When the end signal from the next memory control module has the value 1, the state ma-

chine changes to state START_PROC and the curr_x and curr_y counters are properly in-

cremented. In this state, the start_processor signal is sent to the processor control, in order

to start the block matching step.

4. Then, there are three possibilities:

(a) If the curr_x and curr_y counters indicate the last neighborhood, the state machine

changes to state WAIT.

(b) If the curr_x counter is zero and the processor is starting, signaled by init, the state

machine changes to state LOAD_NEXT. This state has the same behavior as state

LOAD_FIRST and the following state is COPY_NEXT instead of COPY_FIRST.

(c) Else, when the processor is starting, the state machine changes to state COPY_NEXT.

This state has the same behavior as state COPY_FIRST and the following state is

WAIT.

5. When in the WAIT state, if the data_valid signal is detected with value 1, the state changes

to COPY_MEM. This state sends the start_copy signal to the copy control module in order

to copy the data as soon as possible.

6. When the copy_done signal is detected with the value 1, the state machine moves to state

DATA_DONE. In this state, the value REQ_WRITE is written in the status register, to signal

the user that the output BRAM has new data that can be read.

7. When the user finishes reading the data, it writes the TRANSF_CMPLT command in the

control register, and the state changes to DECIDE. In this state a decision is made: if the last

neighborhood as been reached but the last flag is zero, the state changes to LAST_PROC,

where the last processing is done; else the state changes to START_PROC and processing

continues.

8. When in the LAST_PROC state, the last flag is set and steps 5 to 7 are repeated, with the

difference that in the DECIDE state, as the last flag is 1, the next state is FINAL.

9. In this last state, the status register is set to BM3D_DONE, signaling that the BM3D system

has finished processing the image.
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Figure 4.14: BM3D IP core block

4.5 BM3D IP Core

This section elaborates on the design of the BM3D IP core, which is responsible for connecting

the BM3D top level module with an AXI Lite Slave interface and a Mixed-Mode Clock Manager

(MMCM) module in order to package the whole system as an IP core that can be integrated in any

embedded system that supports the Advanced eXtensible Interface (AXI) standard for inter-chip

communication. The BM3D IP core functional block can be seen in figure 4.14. It contains the

following inputs and outputs:

• s00_axi: AXI Lite interface port.

• s00_axi_aclk: Input clock for the AXI interface.

• s00_axi_aresetn: Input reset for the AXI interface.

• blk_mem_gen_0_doutb: 32 bit data input from the input BRAM.

• clk_bm3d_out: Output clock from the BM3D IP, that is the clock input for port B of the

BRAM’s.

• blk_mem_gen_0_addrb: 17 bit address output for port B of the input BRAM.

• blk_mem_gen_0_enb: Enable output for port B of the input BRAM.

• blk_mem_gen_0_rst: Reset output for port B of the input BRAM.

• blk_mem_gen_1_addrb: 15 bit address output for port B of the output BRAM.

• blk_mem_gen_1_dinb: 32 bit data output for port B of the output BRAM.

• blk_mem_gen_1_enb: Enable output for port B of the output BRAM.

• blk_mem_gen_1_web: Write enable output for port B of the output BRAM.

• blk_mem_gen_1_rst: Reset output for port B of the output BRAM.
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4.5.1 AXI Lite Slave

The AXI Lite Slave block is responsible for handling the AXI communications coming from the

outside of the IP block. The AXI protocol is part of the Advanced Microcontroller Bus Archi-

tecture (AMBA) open standard from ARM, which defines specifications for on chip interconnects

and communications, that facilitates the development of system on chip (SoC) designs. AXI is

a master-slave based protocol, and the BM3D IP is a slave, meaning that it cannot initiate data

transfers. The Lite interface is used for control purposes, i.e., it does not allow memory mapped

or stream access (which are also specified in the AXI protocol). This way, the AXI Slave block

contains four registers: the three registers described in the master control subsection 4.4.2 and an

extra debug register. In the case of the control and image size registers, these can be written and

read trough the AXI interface. On the other hand, the status and debug registers, are written by

the master control module, so only reading from the AXI interface is allowed. This block was not

developed, because it is included in the intellectual property (IP) of the Vivado Design Suite, and

can be directly instantiated in the design.

4.5.2 The MMCM

The MMCM module is used to generate multiple clocks with defined phase and frequency relation-

ships to a given input clock. Since the AXI Lite block can only operate at a maximum frequency

of 50 MHz, the MMCM was included in the design in order to allow the BM3D module to operate

at higher frequencies. This higher speed clock is outputted by the BM3D IP core and connected to

the external BRAMs, in order that the whole system is synchronized. This way, the usage of the

MMCM module creates two clock domains in the design. This can be problematic, as problems

of meta-stability can occur in the domain crossing. Hence, a synchronizer module was included

in each signal that crosses the two clock domains. This module consists of two stages of registers,

that are clocked by the destination clock in the domain crossing, so that the input signal can be

detected and stored. The module is included in the BM3D IP core, to synchronize the connections

between the AXI Lite module and the master control module. This way, four 32 bit synchronizer

modules were used to sync the four registers, plus one 1 bit synchronizer module for the AXI reset

signal, which is also used to reset the master control module, and thus, the whole system.



Chapter 5

Test Methodology and Results

In this chapter, the tools and methodology used to test the BM3D hardware implementation will be

presented. Furthermore, the results obtained will be exposed and discussed. These results include:

denoising performance evaluation; execution time comparison against a CPU implementation of

the algorithm; and power consumption versus speed trade-off assessment.

5.1 Experimental Setup

The BM3D system was tested in the ZYNQ-7000 ZC706 SoC evaluation board from Xilinx. This

board contains the XC7Z045 system on chip from Xilinx, which is divided into two sections: the

Processing System (PS) and the Programmable Logic (PL). The PS section contains:

• Dual core ARM Cortex A9 processor with maximum frequency of 800 MHz, 32 KB of L1

cache and 512 KB of L2 cache.

• 256 KB on-chip memory.

• External memory interfaces with DDR3 support and an 8 channel DMA controller.

• Several I/O peripherals and interfaces, such as, Ethernet, USB, CAN, SPI, UART, among

others.

The PL section is based on a Xilinx Kintex-7 FPGA, which contains:

• 350K logic cells (approximately equivalent to 5.2M ASIC gates).

• 218,600 lookup tables (LUTs).

• 437,200 flip-flops (FFs).

• 545 BRAM’s, which amount to 2,180 KB of memory.

• 900 DSP slices.

55
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Figure 5.1: Board Design Schematic

The connection between PS and PL is assured by a high bandwidth interconnect based on the

AMBA AXI specification. The ZYNQ board also contains 1GB of DDR3 RAM that can be used

to store data by the PS, or the PL if the necessary hardware is implemented.

5.1.1 ZYNQ Board Setup

Designing an application for the ZYNQ board can be done in two different ways. The first option

is a bare-metal application, i.e., the application runs directly on the SoC, with the ARM processor

and programmable logic being programmed via JTAG. This option makes it difficult to load data

into the system, in this case, the image to be denoised. This would be done using one of the

communication ports of the SoC, for example UART, which would mean designing a program on

the computer side in order to transfer the image to the board.

The second option is installing a linux based operating system (OS) in the SD card that is

provided with the board. This OS runs on the ARM processor and the board can be accessed via

UART or Ethernet, for example, using a secure shell (SSH) connection. This way, the image and

the bitstream of the design can easily be loaded into the board and a C program can be developed

to run on the OS. This option was the selected for testing the BM3D system, because it is simpler

and less time consuming when compared with the first option.

In order to program the PL of the ZYNQ system and be able to access it from the PS, a board

design must be created in the Vivado Design Suite. This design specifies how the PL and PS are

connected and various IP modules can be added to the design. This modules are for example the

BRAMs necessary for the input and output data of the BM3D system, and the respective AXI

control modules. The schematic of the board design can be seen in figure 5.1. It contains five

different elements, numbered from 1 to 5:

1. ZYNQ Processing System: This block represents the ZYNQ PS and it can be customized

in order to configure AXI Master and Slave ports, alter the clock frequency, among other
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configurations. For the BM3D system, 2 AXI General Purpose Master ports (GP0 and

GP1) are enabled: one for communicating with the AXI Lite Slave and the input BRAM

controller, and another dedicated to the output BRAM controller.

2. The BM3D IP block: This is the BM3D system, which is connected to port B of each BRAM

and to the GP0 port of the PS.

3. BRAMs: This two blocks are, respectively from top to bottom, the output and input BRAMs.

4. AXI BRAM Controllers: This blocks are the BRAM controllers, which also have an AXI

Slave port, so that they can be controlled by the PS.

5. Interconnects and Reset system: These blocks represent the interconnects that are actually

present in the ZYNQ SoC and are used to connect AXI Masters to their respective Slaves.

In order that the PS can access the BRAM’s and the AXI Lite registers, each AXI slave is

mapped to a specific memory address. This way, data transfers are simply performed by writ-

ing/reading to/from each address. The address for the first AXI Lite register is 0x43C00000. The

remaining registers are accessed by adding 4 to this address, since the registers are 32 bit wide.

The order of the registers is: control register, image size register, status register, debug register.

The base address for the input BRAM is 0x40000000 and for the output BRAM is 0x80000000.

With the board design done, a bitstream can be generated. This bitstream configures the SoC

with the desired design, by programming the PL and the interconnects between the PS and the PL.

The bitstream is then sent to the board via a terminal with an SSH connection to the ZYNQ board.

Then, to program the board, there is a device driver called xdevcfg that is supplied with the linux

OS from Xilinx, that programs the SoC via the ARM processor’s JTAG port.

5.1.2 C Program

In order to control the BM3D system with the ZYNQ PS from the linux OS, a C program must be

developed. This program is responsible for sending the correct commands to the BM3D system

and answering to its requests, as well as placing the image data in the input BRAM and reading

the processed data from the output BRAM. Furthermore, the ARM CPU running the program also

performs the aggregation process, i.e, the last step of the BM3D algorithm. This way, the BM3D

IP can be seen as a co-processor, that speeds up the block matching and collaborative filtering

steps of the algorithm. The C program operates as follows:

1. The image to be denoised is contained in a binary file. At the beginning of the program this

file is opened and the image is zero padded and copied to a known RAM address. Since this

is a user space program, and the linux kernel does not allow access to physical addresses,

a special function called getvaddr is used in order to map the desired physical address into

virtual memory pages.
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2. The pointers for writing/reading to/from the BRAMs and the AXI Lite registers are created,

by using the getvaddr function. Then, an unsigned char array called data, where the data

from the output BRAM is going to be stored, is allocated in memory. Furthermore, two

2D float arrays with the size of the image are allocated in memory, in order to perform the

aggregation process, as described in section 3.1.

3. The image size register is loaded with the image width and height and the system is reset by

writing 0xFF to the control register. Then, the BM3D_INIT value is written to the control

register, as well as the estimated noise power of the image.

4. The BM3D system starts, and the program waits for the ACK value on the status register.

Then, it waits for the REQ_DATA value, which signals the first data request from the system.

Waiting is implemented as busy polling, i.e., a while control loop checking the value of the

status register.

5. The first 39 rows of the image are loaded into the input BRAM, by directly copying the data

from RAM to the BRAM, inside a for loop. Once the transfer is complete, the DATA_AVLB

command is written to the control register, followed by waiting for the ACK.

6. The program enters a while loop, with exit condition being that the status register has the

value BM3D_DONE, which signals that processing is done. Inside the loop there are two if

blocks: one for data requests and another for write requests.

7. If a data request is detected (control register with value REQ_DATA), the program loads the

next 4 rows of the image into the input BRAM. Then, the same procedure as in step 5 is

repeated.

8. If a write request is detected (control register with value REQ_WRITE), the program stores

the data from the output BRAM sequentially in the data array. This is done in a for loop, by

directly copying from the output BRAM address pointer to each position i of the data array.

Then, the aggregation step is performed for the data available.

9. The aggregation step consists of a chain of for loops. The first loop runs through each of

the 16 matching processors (16 groups). Inside this loop, another one runs for each pair of

blocks in the group (1 to 8). Finally, there are two more loops for each pixel of each block.

In the most inner loop, each pixel value is multiplied by the kaiser window and the group

weight, and then added to the correct position of the image buffer. At the same position

of the weight buffer, the multiplication of the kaiser window with the group weight is also

added.

10. Once the aggregation is complete, the TRANSF_CMPLT command is written to the control

register, followed by waiting for the ACK.

11. When the BM3D system finishes processing, the BM3D_DONE value is placed in the status

register, and the while loop finishes. Follows a write in the control register to reset the
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system, and the final cleanup of the C program (closing files and clearing memory). Then,

the division of the image and weight buffers is computed, in order to generate the result

image. This is done by a loop, doing an element-wise division and writing the resulting pixel

value into an output file. At the end of the program’s execution, this binary file contains the

pixel values of the whole image.

During the execution of the C program, the clock function is used to keep track of the time

spent in processing tasks by the CPU (aggregation) and in data transfers, as well as the total time.

This way, the time spent by the algorithm on the BM3D co-processor is computed as the difference

between the total time and the processing and data transfers times.

5.2 Results

5.2.1 FPGA Resource Usage

As refered in section 5.1, the ZYNQ board’s programmable logic has different resources available

in different quantities for the implementation of reconfigurable designs. Table 5.1 shows the re-

source usage of the BM3D system in terms of absolute values and also percentage of utilization of

the ZYNQ board.

Table 5.1: FPGA Resource Usage

Resource Utilization Available Utilization (%)

FF 87251 437200 19.96
LUT 89270 218600 40.84

Memory LUT 15081 70400 21.42
BRAM 40.5 545 7.43
MMCM 1 8 12.50

As can be seen, the BM3D system needs a high number of hardware resources, due to the

complexity of the operations performed. However, the highest utilization percentage is for LUTs

at around 41%, meaning that the ZYNQ PL is under 50% utilization in all resources. Nevertheless,

the ZYNQ PL contains a large number of resources, which can be misleading when analyzing the

occupation of the BM3D system. The high number of LUTs is due to the arithmetic operations

performed in both the matching processor’s `1 norm units and the denoising pipeline’s 2D DCT

and IDCT modules. The flip-flop utilization is mainly due to the pipeline stages that are used in the

whole architecture, while the memory LUT usage can be explained by all the special memories

included in the design, that cannot be synthesized in BRAMs. The input and output BRAM’s

occupy 40.5 of the BRAMs in the PL, while only 1 out of 8 MMCMs is used. The values presented

are for a frequency of 50 MHz in the whole system. With other tested frequencies for the BM3D

system (75, 100 and 125 MHz) the occupation is virtually the same, as only the number of LUTs

changes, with a maximum variation of 3 LUTs, which is negligible.
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(a) Modified BM3D (MATLAB) (b) Modified BM3D (HW)

Figure 5.2: a) Basic estimate image obtained by modified BM3D (PSNR=27.16 dB) in MATLAB;
b) Basic estimate obtained by modified BM3D (PSNR=27.17 dB) in hardware. Noisy image was
corrupted with noise power of 25.

5.2.2 Denoising Performance

In order to test the denoising performance of the BM3D system, the output raw image file is

downloaded from the ZYNQ board to the PC and read into an array by a MATLAB script. This

script then computes the PSNR of the result image, by comparing it with the original image.

Table 5.2: PSNR (dB) results for 256x256 Cameraman Image

σ Noisy Image Original BM3D Modified BM3D (MATLAB) Modified BM3D (HW)

5 34.16 38.20 34.79 34.82
10 28.13 33.94 31.25 31.31
15 24.62 31.67 29.42 29.46
20 22.12 30.24 28.18 28.19
25 20.18 29.14 27.16 27.17
30 18.60 28.25 26.28 26.29
35 17.30 27.41 25.53 25.52
40 16.10 26.33 24.83 24.83
45 15.08 26.07 24.21 24.23
50 14.16 25.55 23.65 23.65

Table 5.2 shows the PSNR results in dB for the image Cameraman for the original BM3D

algorithm, as well as both the modified versions: implementation in MATLAB and hardware. As

mentioned in subsection 3.3.4, the modified BM3D achieves worse denoising performance. In

the table, it can be seen that the hardware implementation results are as expected by the values

obtained in MATLAB, with the majority of times even being slightly better. However, the PSNR

difference is minimal (in the range of 0 to 0.03 dB), meaning that in terms of visual quality the
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images are virtually the same. This can be confirmed by comparing both images side by side,

as shown in figure 5.2. Nevertheless, this small PSNR difference can be explained by the fact

that different rounding is used in the MATLAB and hardware implementations. In MATLAB,

each pixel is rounded to an 8 bit grayscale representation after the aggregation step, i.e., there is a

possibility that some pixels are larger than 255 or smaller than 0, because each pixel of each filtered

block is not individually rounded. However, in the hardware implementation, this is exactly what

happens, with each pixel being rounded at the output of the denoising pipeline. This way, it is

guaranteed that during the aggregation step, since a weighted average is used, the pixel values

never go outside the 0 to 255 range.

Table 5.3: PSNR (dB) results for 512x512 Lena Image

σ Noisy Image Original BM3D Modified BM3D (MATLAB) Modified BM3D (HW)

5 34.15 38.63 36.84 36.86
10 28.14 35.65 34.30 34.33
15 24.62 33.83 32.58 32.61
20 22.12 32.47 31.32 31.36
25 20.19 31.37 30.32 30.35
30 18.60 30.46 29.52 29.55
35 17.26 29.65 28.84 28.87
40 16.10 28.72 28.24 28.25
45 15.08 28.45 27.72 27.73
50 14.16 27.92 27.24 27.24

Table 5.3 shows the PSNR results in dB for the image Lena for the original BM3D algorithm,

as well as both the modified versions: implementation in MATLAB and hardware. Once again,

the modified BM3D achieves worse denoising results, and the implementations in MATLAB and

hardware have the same results. Figure 5.3 shows the result images for both implementations of

the modified BM3D algorithm.

With the BM3D system validated against the MATLAB implementation, a more extensive

experience was performed. This experiment consisted of testing all 512x512 images in the image

dataset used by the original BM3D paper with the same noise powers from the experiences before:

5 to 50 in steps of 5. Then, all the results obtained for each noise power are averaged for all the

images in the dataset. This dataset consists of 6 images with 512x512 resolution: Lena, Barbara,

Boats, Man, Couple and Hill. These are all standard images used for testing in image processing.

The PSNR and SSIM of each image was measured, and a comparison of the results for the noisy

image, the original BM3D and the modified BM3D on hardware can be seen in the graphs shown

in figure 5.4.

The results show that both the PSNR and SSIM measurements for the hardware implementa-

tion have a relatively large decrease when compared to the original BM3D algorithm for low noise

powers, with a slight increase when compared with the noisy image measurements. However,

as the noise power increases, the results of the hardware implementation start to get on par with
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(a) Modified BM3D (MATLAB) (b) Modified BM3D (HW)

Figure 5.3: a) Basic estimate image obtained by modified BM3D (PSNR=30.32 dB) in MATLAB;
b) Basic estimate obtained by modified BM3D (PSNR=30.35 dB) in hardware. Noisy image was
corrupted with noise power of 25.

those of the original BM3D, and both of them are extremely larger when compared to the noisy

image. The PSNR difference between both implementations ranges from an absolute maximum

of 2.48 dB for noise power of 5 to a minimum of 0.81 for noise power of 50, which corresponds,

respectively to 6.58% and 2.97% in relative difference. Regarding the SSIM measurements, the

difference ranges from a maximum of 0.046 for noise power of 15 to a minimum of 0.011 for

noise power of 50, which corresponds, respectively to 5.46% and 1.61% in relative difference.

Table 5.4: PSNR (dB) results comparison for 1,2,3,5 and 8 MP images.

σ Noisy City Coat Bridge Palace NYC
SW HW SW HW SW HW SW HW SW HW

10 28.14 34.27 31.95 37.61 36.59 35.21 33.02 35.83 34.29 38.08 37.29
20 22.11 30.31 28.28 34.32 33.29 31.45 29.24 32.23 30.44 34.29 33.59
30 18.59 28.15 26.28 32.28 30.85 29.18 26.97 30.14 28.21 32.02 31.25
40 16.09 26.01 24.88 30.70 28.84 27.02 25.30 28.47 26.56 30.24 29.38
50 14.14 25.30 23.83 29.83 27.06 26.11 23.98 27.43 25.20 29.31 27.76

Now that the good performance of the BM3D system for images of low resolutions is estab-

lished, more tests are necessary for images of higher resolutions. Since there are no standard

test images with high resolutions available, an 8MP camera was used to take some pictures and

then these pictures were downsampled to the following resolutions: 1MP - 1280x960, 2MP -

1920x1080, 3MP - 2048x1536, 5MP - 2560x1920 and the original resolution of 8MP - 3264x2448.

In order to maintain the quality of the pictures, the downsampling was performed in a free image

processing software. This experiment consisted of testing these images with noise powers of 10 to
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50 in steps of 10, in both the original BM3D algorithm and hardware implementation, and com-

paring the results by measuring PSNR and SSIM. The results of this experiment can be found in

tables 5.4 and 5.5.

Table 5.5: SSIM results comparison for 1,2,3,5 and 8 MP images.

σ Noisy City Coat Bridge Palace NYC
SW HW SW HW SW HW SW HW SW HW

10 0.582 0.944 0.920 0.927 0.920 0.941 0.921 0.940 0.924 0.951 0.949
20 0.331 0.882 0.856 0.874 0.882 0.889 0.871 0.878 0.858 0.896 0.910
30 0.222 0.819 0.804 0.817 0.844 0.831 0.824 0.818 0.811 0.834 0.877
40 0.162 0.748 0.761 0.759 0.809 0.766 0.780 0.759 0.776 0.770 0.848
50 0.124 0.715 0.725 0.739 0.775 0.737 0.740 0.727 0.747 0.746 0.821

The results show that for larger image resolutions the BM3D system continues to under-

perform the original implementation’s PSNR results at about 1 to 2 dB. However, for high noise

powers, it can be seen that the SSIM values achieved by the BM3D system surpass the ones ob-

tained by the software implementation. Some result images obtained in this experiment can be

found in appendix A, as well as the original images.

5.2.3 Execution Time

Regarding the execution time of the algorithm, testing was done on two different CPUs and on the

ZYNQ board. In the CPUs, the original C software provided by the authors of the original BM3D

paper was used 1.

Table 5.6: FPGA execution time results (in seconds) for images of increasing resolutions and
frequencies.

Image (Resolution) FPGA @50MHz @75MHz @100MHz @125MHz

Cameraman (256x256) 0.02883 0.01962 0.01492 0.01216
Lena (512x512) 0.11640 0.07911 0.06008 0.04864

City (1MP - 1280x960) 0.54903 0.37282 0.28280 0.22884
Coat (2MP - 1920x1080) 0.92683 0.62986 0.47768 0.38681

Bridge (3MP - 2048x1536) 1.40597 0.95502 0.72380 0.58497
Palace (5MP - 2560x1920) 2.20020 1.49499 1.13421 0.91690
NYC (8MP - 3264x2448) 3.58071 2.43341 1.84608 1.49307

Table 5.6 contains the execution times for images of increasing resolutions with constant noise

power of 20, running on the ZYNQ board, with the BM3D system operating at 50,75,100 and 125

MHz. Table 5.7 contains the results for the execution times of the same images on two CPUs:

CPU1, which is an Intel i5-3317U processor, running at 1.7 GHz, and CPU2, an Intel i5-4570

processor, running at 3.2 GHz. Better results are expected from CPU2, since it is a desktop

1Software available at http://www.cs.tut.fi/ foi/GCF-BM3D/



64 Test Methodology and Results

processor, with more processing power and running at a higher frequency, while CPU1 is a low

power laptop processor.

Table 5.7: Comparison of CPU and FPGA @125MHz execution time results (in seconds) for
images of increasing resolutions.

Image (Resolution) CPU1 @1.7GHz CPU2 @3.2GHz FPGA @125MHz

Cameraman (256x256) 0.59360 0.35580 0.01216
Lena (512x512) 2.38350 1.49210 0.04864

City (1MP - 1280x960) 11.2099 7.26179 0.22884
Coat (2MP - 1920x1080) 20.3389 12.9978 0.38681

Bridge (3MP - 2048x1536) 30.0177 19.3971 0.58497
Palace (5MP - 2560x1920) 47.5931 30.8079 0.91690
NYC (8MP - 3264x2448) 82.4164 51.3583 1.49307

As can be seen by these results, the BM3D system is significantly faster than both CPUs tested.

To better evaluate these results, the speedup value is computed, which is simply the division of the

execution time on the CPUs and on the ZYNQ board. This value was computed for all frequencies

of operation and comparing with both CPUs and the results are presented in the graphs shown in

figure 5.5.

As can be seen in the graphs, the profile of the speedup results is quite similar, with an almost

monotonic increase with the resolution of the image. For the BM3D system running at 50 MHz

(blue) and comparing with CPU1, the speedup values range from 20.6 to 23.0, averaging 21.4. For

increasing frequencies, the values are even higher: average of 31.4 for 75 MHz (grey), 41.4 for

100 MHz (orange) and 51.1 for 125 MHz (yellow). When comparing with CPU2, the values are

smaller, due to the higher performance of this processor. Even so, the speedup ranges from 12.3 to

14.3 in the slower frequency of 50 MHz, up to 29.3 to 34.4 for the highest frequency (125 MHz).

These results are very satisfactory, since the ZYNQ board runs at a much lower frequency than the

CPUs. It is also worth noting that as the image resolution increases, the speedup also increases,

meaning that the BM3D system can handle bigger images with more ease than the CPUs.

Not included in the execution time results are the data transfer times and aggregation times.

The data transfers using the experimental setup available are quite slow. This is due to a bottleneck

in using the AXI general purpose master ports of the PS, which can only operate at 50 MHz, and

the interconnect to the PL is not an high bandwidth one (only 32 bit wide). A solution to this

would be to use one of the high performance (HP) AXI ports available in the connection between

the PS and the PL, which allow 64 bit wide direct access to the system’s RAM. However, these

are AXI slave ports, meaning that the BM3D IP would have to implement an AXI full Master in

order to control all the data transfers itself. While this is an advantage, because the BM3D IP

operates without supervision of the CPU, directly fetching data from the RAM through the HP

slave ports, the AXI Master logic is harder and more time consuming to implement and it is not

available in the IP catalog of the Xilinx Vivado tool. Since this are data transfers, and their time is

not counted as time actually performing the BM3D algorithm, the easier and faster approach was
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taken, and the data transfer times disregarded. The same applies to the aggregation process, which

is done simultaneously by the ARM CPU while the BM3D system is operating. The ARM CPU

operates at a frequency of 666 MHz, and has much less processing power than the CPUs used to

run the BM3D algorithm on a PC. This way, a direct comparison of the two times wouldn’t be

possible. Furthermore, the aggregation only contributes for about 2% of the time consumption in

the BM3D algorithm, since the block matching and collaborative filtering steps are much more

computationally intensive.

5.2.4 Power Consumption

The power consumption distribution of the BM3D system for the different synthesized frequencies

is shown in figure 5.6. These values were obtained using the analysis provided by the Vivado

Design Suite after the design is implemented.

For all frequencies, power consumption is between 2 and 3 Watts, which is low considering

the amount of FPGA resources used and the complexity of the BM3D algorithm. Furthermore, it

is possible to see that a good distribution of dynamic versus static power is achieved, with 89 to

91% of dynamic power and 11 to 9% static power. The static power increase with frequency is

completely negligible, with only an increase of 4 mW between 50 and 125 MHz. On the other

hand, the dynamic power increases fairly with the frequency, which amounts for the total increase

of the power consumption. This increase is perceptible in the Clocks, Signals and Logic categories

of the dynamic power, whilst the BRAM and MMCM modules power usage stays constant. This

is due to the fact that the increased frequency is applied to the BM3D IP core, and not to the

remainder of the design (AXI Lite, BRAM, PS), meaning that all the signals and logic will have

increased switching, therefore consuming more power.

From the power distribution charts, it can be seen that the values of each category do not add

up to the dynamic power shown. When this discrepancy was detected, the values of each category

were summed and then the sum was subtracted from the value shown. For all frequencies this

calculation always yielded the same value, 1.568 W, which is the dynamic power consumption

estimation of the PS of the ZYNQ board, because this value never changes. Furthermore, when

synthesizing only the BM3D IP core, the static power consumption stayed about the same value

of 0.25 W. This is believed to be the static power consumption of the PL part of the ZYNQ SoC.

This way, the power consumption can be recalculated to split the power usage of the PS and the

PL. The results of this recalculation can be found in table 5.8.

Table 5.8: PL and PS power consumption (W) for different frequencies of operation.

Frequency @50MHz @75MHz @100MHz @125MHz

Power Usage 2.350 2.538 2.748 2.928
PS Power 1.568 1.568 1.568 1.568
PL Power 0.782 0.970 1.180 1.360
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(a) Average PSNR

(b) Average SSIM

Figure 5.4: a) Average PSNR (dB) for 512x512 images with noise powers from 5 to 50. b) Average
SSIM for 512x512 images with noise powers from 5 to 50.
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(a) FPGA vs CPU1

(b) FPGA vs CPU2

Figure 5.5: a) FPGA vs CPU1 speedup for increasing image resolutions. b) FPGA vs CPU2
speedup for increasing image resolutions. Images are in the same order as in tables 5.6 and 5.7.
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(a) 50 MHz (b) 75 MHz

(c) 100 MHz (d) 125 MHz

Figure 5.6: Power consumption distribution of the BM3D system for different operating frequen-
cies.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work a novel hardware implementation for the BM3D image denoising algorithm was

presented. Taking advantage of an FPGA, the BM3D IP core accelerates the process of image

denoising, allowing for excellent denoising performance, whilst having a low power consumption.

Considering its complexity, this work was developed in multiple phases.

The first phase was an extensive study of the background and state of the art in image de-

noising in order to understand and compare the BM3D denoising algorithm with others. The

second phase was developing the BM3D algorithm in MATLAB, in order to gain some experience

with image denoising and to further analyze in full extent the bottlenecks of the algorithm. Then,

the third phase consisted of adjusting or modifying these bottlenecks in order to optimize these

steps towards an efficient hardware implementation. Followed the most extensive phase of the

work, which is the actual development of the hardware. This consisted in a sequential develop-

ment of various hardware blocks, followed by their simulation, validation and testing. Then, the

connection of all blocks to create the BM3D IP was performed, which eventually lead to more

simulations and some design tweaks in order to achieve a fully working system. Finally, the last

phase was the final testing of the system with noisy images, and the evaluation of several perfor-

mance parameters: denoising performance by calculating the PSNR and SSIM measurements; run

time comparison between hardware and software implementations of the algorithm; and power

consumption of the hardware implementation.

Experimental results show that the BM3D IP can effectively denoise images of various reso-

lutions and with a wide range of noise powers. Furthermore, although denoising performance is

negatively affected when compared to the software implementation of the BM3D algorithm, the

gains in execution time and power consumption are significant enough to consider the BM3D IP

as an alternative for image denoising in software.
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6.2 Future Work

Despite the fact that the results achieved by the BM3D system are quite satisfactory, there are

some improvements worth mentioning as possibilities for future work.

The first improvement is the hardware implementation of the wiener filter in order to further

improve the denoising results, specially in terms of SSIM. The design of this new implementation

was already analyzed and involves the development of the wiener filter block, which includes im-

plementing a division operation. This block would then be included in parallel to the hard thresh-

olding block in the denoising pipeline currently implemented in the BM3D system and data would

be multiplexed in order to choose which denoising technique to use. The second improvement

would be increasing the parallelization of the data in the denoising pipeline, so that more levels of

the haar wavelet decomposition could be applied. This improvement would lead to increased de-

noising performance, while also decreasing execution time. On the negative side, implementation

area would increase dramatically.

The third improvement regards an extension of the system to color images. As proposed in

the original paper, the BM3D algorithm can also be applied to color images, by converting an

RGB colorspace to an YCbCr one, for example. In this colorspace, the Y channel is the luminance

and Cb and Cr are the chrominance channels. With this separation, the BM3D is applied by per-

forming block matching on the Y channel, and reusing the groups formed on all three channels

in order to perform collaborative filtering separately on each channel. Regarding an hardware im-

plementation, the same structure as the current BM3D system could be used, with an additional

modification that would allow to skip the block matching step for the Cb and Cr channels. This

way, on a first run, the Y channel would be processed exactly as a grayscale image, and all the

group positions would be kept. Then, the Cb and Cr channels would be consecutively processed,

using the groups previously formed and skipping the block matching step. However, this process-

ing would eventually triple the execution time, since the size of the image data is also the triple of

a grayscale image.



Appendix A

Result Images

In this appendix some denoised images for resolutions of 1,2,3,5 and 8 megapixels are presented.

The noisy images counterparts are also shown. All the original images can be seen in figure A.1.
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(a) City (b) Coat

(c) Bridge (d) Palace

(e) NYC

Figure A.1: a) Original image City with 1MP resolution (1280x960). b) Original image Coat
with 2MP resolution (1920x1080). c) Original image Bridge with 3MP resolution (2048x1536).
d) Original image Palace with 5MP resolution (2560x1920). e) Original image NYC with 8MP
resolution (3264x2448).
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(a) Noisy Image with sigma=40

(b) Denoised Image

Figure A.2: a) Noisy image City with noise power of 40. b) Denoised image with PSNR=24.88
dB and SSIM=0.761.
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(a) Noisy Image with sigma=20

(b) Denoised Image

Figure A.3: a) Noisy image Coat with noise power of 20. b) Denoised image with PSNR=33.29
dB and SSIM=0.882.
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(a) Noisy Image with sigma=50

(b) Denoised Image

Figure A.4: a) Noisy image Bridge with noise power of 50. b) Denoised image with PSNR=23.98
dB and SSIM=0.740.
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(a) Noisy Image with sigma=30

(b) Denoised Image

Figure A.5: a) Noisy image Palace with noise power of 30. b) Denoised image with PSNR=28.21
dB and SSIM=0.811.
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(a) Noisy Image with sigma=40

(b) Denoised Image

Figure A.6: a) Noisy image NYC with noise power of 40. b) Denoised image with PSNR=29.38
dB and SSIM=0.848.
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