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Sumário 
Os eventos climáticos do passado influenciaram o padrão de distribuição actual 

da biodiversidade Africana. Por exemplo, as glaciações durante o Pleistoceno e os 

ciclos de avanços e recuos das principais zonas de vegetação tiveram efeitos 

profundos na distribuição e evolução dos mamíferos neste continente. Estes eventos 

conduziram à presença de áreas biogeográficas e climáticas únicas com uma riqueza 

biológica assinalável, tornando África um continente de particular interesse para 

estudos de biodiversidade. No entanto, ainda existe um grande défice de 

conhecimento sobre a diversidade de espécies em África e mesmo uma robusta 

taxonomia dos organismos já descritos. Além disso, há regiões particulares, como as 

áridas, que são normalmente consideradas pobres em espécies devido às difíceis 

condições para a sustentação de vida. No entanto, os desertos podem ser locais muito 

ricos em espécies endémicas (com adaptações únicas em ambientes extremos) 

devido aos eventos climáticos do passado. Igualmente, a intersecção biogeográfica 

entre regiões a Palearcticas e Afrotropicais na bacia do Mediterrâneo é considerada 

um ―hotspot‖ de biodiversidade no Norte de África. Contudo, a maioria dos estudos 

moleculares existentes sobre a biodiversidade em África envolvem vertebrados com 

baixa capacidade de dispersão, e uma boa compreensão da diversidade de 

organismos com maior capacidade de dispersão, como as lebres (género Lepus), está 

longe de ser alcançada. 

Das 32 espécies do género Lepus, 6 estão descritas em África. Os estudos de 

taxonomia e sistemática que se têm focado neste grupo de espécies em África são 

baseados maioritariamente em evidências morfológicas e/ou paleontológicas. Apesar 

de úteis, a utilização isolada desta informação é limitada, particularmente neste género 

em que há uma sobreposição de características entre as espécies. A identificação e 

classificação das diferentes espécies está deste modo aquém de ser bem 

estabelecida, havendo claras divergências sobre o número de espécies ou 

subespécies distintas presentes no continente Áfricano, bem como as suas 

respectivas distribuições. Para clarificar a história populacional das lebres africanas e, 

por conseguinte, contribuir para uma classificação taxonómica adequada destes 

organismos, a identificação das entidades evolutivas distintas bem como as suas 

relações filogenéticas é fundamental. Neste sentido, o uso de ferramentas moleculares 

é fundamental. 

Entre as lebres africanas, a Lebre do Cabo (Lepus capensis) é uma das 

espécies mais controversas. É uma das espécies de lebre com maior distribuição 

descrita, ocorrendo desde África (Norte a Sul) até à China, e compreendendo 
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populações com características diferentes ao longo das diferentes regiões. Esta 

heterogeneidade levou a que tenham sido identificadas 80 subespécies. Além disso, a 

sua distribuição sobrepõe-se à distribuição de outras espécies de lebre, principalmente 

de L. saxatilis e L. microtis, em África. Actualmente, o nível de diferenciação e 

divergência das populações de L. capensis ao longo da sua ampla distribuição são 

desconhecidos. Com o objectivo de compreender melhor a história evolutiva das 

lebres de África e adquirir conhecimentos para o esclarecimento da sua taxonomia e 

sistemática, neste trabalho investigou-se a estrutura populacional e os padrões 

filogeográficos da lebre do cabo, inferindo a história demográfica das populações. A 

diversidade genética foi ainda analisada no contexto das espécies com distribuições 

vizinhas. Para isso, foi delineado o esquema de amostragem mais amplo alguma vez 

realizado para Lepus capensis, incluindo tanto amostras recolhidas em museus de 

história natural como directamente do campo, compreendendo diversas localidades 

em África e com particular ênfase na região Noroeste. A caracterização molecular foi 

realizada com 18 microssatélites recém-desenvolvidos e sequências de ADN de um 

gene mitocondrial (mtDNA) e cinco genes nucleares. 

Os resultados da análise da diversidade genética revelaram uma forte 

estruturação biogeográfica, inferidos usando métodos Bayesianos a partir dos dados 

de microssatélites, e divergências filogenéticas profundas com base tanto em 

sequências de mtDNA como de loci nucleares. Cinco grupos geográficos principais 

foram identificados: dois no Próximo Oriente, Quénia, África do Sul e Noroeste 

Africano. Estes níveis de divergência intra-específica inferidos sugerem que L. 

capensis é uma entidade evolutiva heterogénea que possivelmente representa várias 

espécies crípticas. Várias linhagens divergentes que se inferiu terem-se separado no 

último milhão de anos foram encontradas geograficamente bem estruturadas, o que 

deverá ter resultado de fragmentação das distribuições ancestrais e divergência em 

alopatria. Estes resultados permitiram descrever possíveis barreiras ao fluxo genético, 

bem como regiões geográficas onde os haplótipos mitocondriais de diferentes clados 

se encontram em simpatria possivelmente após contacto secundário. A análise 

detalhada da variação mitocondrial sugeriu fragmentação genética adicional na parte 

Noroeste de África, ao contrário do resultado genético homogéneo sugerido pela 

análise dos microssatélites. Este padrão pode resultar de filopatria das fêmeas e 

dispersão mediada pelos machos. Algumas linhagens de DNA foram ainda 

encontradas filogeneticamente mais próximas de outras espécies de lebres. A 

hipótese de introgressão mitocondrial, fenómeno comum em lebres, na população da 

parte Próximo Oriente foi testada por meio de simulações de coalescência, e revelou 

que de facto introgressão mitocondrial ocorreu a partir da espécie vizinha Lepus 
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europaeus. Assim, as considerações taxonómicas e a reconstrução da história 

evolutiva neste trabalho envolvem também outras espécies vizinhas de L. capensis, 

incluindo espécies de lebre Africanas (L. saxatilis, L. microtis) e não africanas (L. 

timidus, L. europaeus). Tendo em conta a multidimensionalidade do conceito de 

espécie, a completa compreensão do nível de isolamento entre as diversas entidades 

evolutivas identificadas neste estudo e alterações à taxonomia em vigor devem, no 

futuro, usar uma caracterização detalhada não só da variação genética, mas também 

da morfologia, biologia e ecologia. Esta situação é particularmente relevante para a 

população da Arábia, que se sabe morfologicamente distinta e se mostrou aqui 

fortemente divergente geneticamente das restantes populações de Lepus capensis. 

As ferramentas moleculares aplicadas neste estudo permitiram avanços 

significativos na compreensão da história evolutiva, filogeografia, taxonomia e 

sistemática das Lebres do Cabo em África bem como das espécies de lebre vizinhas. 

Os resultados mostraram o papel dinâmico do deserto do Saara na diversificação das 

lebres da região noroeste de África, bem como a importância dos sistemas aquáticos e 

de montanhas que definem os maiores ramos evolutivos dentro da espécie. 

 

 

Palavras-chave: África, Saara, lebres, Lepus capensis, estruturação genética, 

taxonomia, sistemática, filogenética, filogeografia, demografia, fluxo de genes, 

sequências de ADN, microssatélites. 
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Abstract 

The combination of past climatic and stochastic dispersal events resulted in the 

contemporary pattern of species diversity and distribution in Africa. The Pleistocene 

glaciations and the cyclic contractions and expansions of major vegetation zones had 

deep effects on the distribution and evolution of African mammals. These events 

dictated the presence of unique biogeographic and climatic areas, making Africa a very 

special area for biodiversity studies.  Despite Africa being generally rich in biodiversity, 

there is still information deficiency in the organisms that are present, and the diversity 

and taxonomy of the already described organisms. Additionally, arid regions are 

normally assumed as plain areas with difficult conditions to sustain life, and therefore 

with less biodiversity when compared to other climatic regions. However, deserts can 

be superb endemic species repositories due to the past climatic events, and the 

Saharan desert is one example. Moreover, the biogeographical intersection between 

the Palearctic and Afrotropical regions in the Mediterranean basin is considered a 

hotspot of biodiversity in North Africa. But most of the existing molecular studies on 

African biodiversity involve vertebrates with low dispersal activity while relevant 

information on organisms with relative dispersal ability, like hares (genus Lepus), is far 

from being achieved. 

From the 32 Lepus species, 6 are described in Africa. However, the existing 

studies on this complex genus in Africa were mainly based on evidence of morphology 

and/or palaeontology, which are limited sources of information, due to the large overlap 

of characteristics between species. This species classification is far from being well 

established, and specialists commonly diverge on the number of distinct hares present 

in Africa, species or subspecies, and their distributions. To clarify the population history 

of these African hares and consequently contribute to a proper taxonomical 

classification of these organisms, the identification of the distinct evolutionary entities 

and their phylogenetic relationships is fundamental. The use of molecular tools 

therefore appears promising to this end. 

Among the African hares, the cape hare (Lepus capensis) is one of the most 

controversial species. This is one of the most widespread hare species, occurring from 

Africa to China, with distinct features in different regions that lead to the identification of 

80 subspecies. Also, its range distribution is overlapped with other hare species, mostly 

with L. microtis and L. saxatilis in Africa. However, the level of differentiation and 

divergence within the cape hare as it is currently classified along its broad distribution 

is unknown. In order to better understand the evolutionary history of African hares and 

provide valuable information to clarify its taxonomy and systematics, the population 
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structure and phylogeographic patterns of the species was investigated, inferring the 

demographic history of the populations in light of the large-scale climatic fluctuations of 

the Pleistocene. This genetic diversity was in addition analyzed in the context of the 

putative neighboring species. For this, the broadest sampling scheme ever performed 

in L. capensis was designed, including both museum and field collected samples and 

comprising several populations across Africa, with a particular focus on Northwest 

Africa, and sequences of other 4 Lepus species. The molecular characterization was 

performed with 18 newly developed microsatellites and sequences of 1 mitochondrial 

DNA and 5 nuclear DNA loci.  

The results revealed strong biogeographic structuring at the genetic level, 

inferred from the microsatellite data using Bayesian clustering methods, and deep 

divergences based on both on mitochondrial DNA alone and on the set of sequences 

from 5 nuclear DNA loci, based on phylogenetic analyses. Five major geographically 

explicit groups were identified: Near East, Arabia, Kenya, South Africa and Norwest 

Africa. These inferred high levels of intraspecific divergence suggest that L. capensis is 

a heterogeneous evolutionary entity that possibly represents several cryptic species. 

Several divergent lineages which probably diverged in the last million years were found 

to be geographically structured, which likely resulted from fragmentation of ancestral 

ranges and divergence in allopatry. Possible barriers to gene flow were also described. 

Regions where mtDNA haplotypes from different clades were found in sympatry 

probably result from secondary contact of the divergent lineages after expansion.  

Whether these evolutionary entities are reproductively isolated and should be 

considered distinct species should be assessed in the future using a detailed 

characterization of their genomes, morphology, biology and ecology. This is particularly 

relevant for the Arabian population, which appears strongly divergent and is also 

morphologically distinct. Furthermore, mtDNA variation suggested additional genetic 

fragmentation in the species‘ range in Northwestern Africa, contrary to the 

homogenous gene pool suggested by the microsatellite analysis. This may result from 

female philopatry and male-mediated dispersal. Interestingly, some mtDNA lineages 

were found to be phylogenetically more closely related to other species. The 

hypothesis of mtDNA introgression, a common event in hare species, into the Near 

East population was tested using coalescent simulations, and revealed that mtDNA 

flow occurred from neighboring Lepus europaeus. Thus, taxonomical considerations 

and the reconstruction of the evolutionary history in this work also involve other 

neighboring hare species of L. capensis, both African (L. saxatilis, L. microtis) and non-

African species (L. timidus, L. europaeus). 
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The molecular tools applied in this study shed light onto the species boundaries, 

evolutionary history, phylogeography, taxonomy and systematics of cape hares in 

Africa as well as of the neighboring hare species. The results contributed to the 

knowledge on the role of the landscape dynamics of the Sahara desert in the 

diversification of hares of the region, and how the mountain and water systems 

together with changes in the climate mediated the diversification. The evidences 

obtained open the door for more robust and thorough studies aiming at a deeper 

understanding of North African hare species and that seek to determine whether L. 

capensis should be decomposed into several taxonomic units. 

 

 

Keywords: Africa, Sahara, hare species, Lepus capensis, genetic structure, taxonomy, 

systematics, phylogenetics, phylogeography, demography, gene flow, DNA sequences, 

microsatellites. 
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1. Introduction 

Speciation is a natural process that contributes partly to a labeled view of 

nature, which is useful for its characterization and understanding. This concept 

represents an important process which leads to the divergence among entities at 

several levels, from genetics to morphology, providing information that can feed criteria 

for species classification and delimitation. The recognition of the different species and 

the characterization of its intraspecific diversity is not only a valuable tool to organize 

conservation efforts, but also an important starting point to understand relevant 

evolutionary processes, such as adaptation, the process of speciation itself or 

hybridization.  

1.1 The importance of using molecular tools in taxonomy 

Taxonomy describes, names and classifies living beings, so that it is possible to 

organize and understand biodiversity. Such task, although sometimes challenging, is 

important for many reasons, such as fundamental decision-making in conservation 

issues. The classical taxonomy makes use of morphology, geography, ecology and 

behavioral information to characterize the different entities (DeSalle et al. 2005). 

However, the number of described species rapidly increased for many groups of 

organisms, not only due to exploration of poorly known areas, but most importantly due 

to the complementation of ―pure taxonomy‖ with molecular genetics tools and 

technological advances, creating a new concept called ―integrative taxonomy‖ (Padial 

et al. 2010). Nevertheless, this new version of taxonomy continues to carry challenges 

in proving species hypotheses since it requires a careful and time-consuming labor on 

species delimitation and all the features and patterns that characterize these new 

species. 

After more than 250 years of prevalence of comparative morphology in species 

discovery, new methods, mainly molecular, have become a successful tool for 

taxonomy (Padial et al. 2010). This happens since genetic approaches can provide a 

dimension of information that is not easy to obtain using only the sources of information 

typical of classical taxonomy. While in some cases the use of molecular tools 

corroborates the taxonomical classification obtained with morphological characters 

(e.g. Cardoso & Vogler 2005; Gompert et al. 2006), and can be congruent with 

population structure from dispersal behavior inference (Coulon et al. 2008), the 

applications of these tools extend beyond simple taxonomical classification. For 

instance, it is possible to describe new species (e.g. Glaw et al. 2010), infer the 



FCUP 

      
2 

 

Population history and taxonomy of North African hares (genus Lepus) inferred from genetic variation 

presence of gene flow (Melo-Ferreira et al. 2012), estimate timing of divergence 

between species and populations (e.g. Jacobsen et al. 2012) or understand 

geographical patterns of diversity in taxonomically poorly studied species (e.g. Smith et 

al. 2005; Igea et al. 2013). Other important contribution of molecular tools is the 

discovery of cryptic species complexes. By definition, cryptic species are ―two or more 

distinct species classified as a single one‖  which leads to taxonomic challenges in a 

way that it is necessary to detect different morphologically similar species (Bickford et 

al. 2006). For some of these cases, producing the correct classification has an 

immediate impact by aggravating the conservation status of endangered species 

(Bowen et al. 1993; Ravaoarimanana et al. 2004). In other cases, it leads to the split of 

previously considered wide-ranging species, changing the biodiversity patterns (e.g. 

Frynta et al. 2010; Wagner et al. 2011; Boratynski et al. 2012). Molecular markers have 

been key to identify different cases of cryptic diversity (e.g. Mulvaney et al. 2005; 

Perera & Harris 2010; Roux et al. 2013; Vod et al. 2015), allowing to identify integrative 

biogeographic patterns in biodiversity distribution. The number of phylogeographic 

studies suggesting new entities as cryptic species is increasing due to the fact that 

although there is occasionally underestimation of species diversity based on 

morphological characters, the use of genetics is exponentially growing. On the 

contrary, molecular approaches can also evaluate if morphologically distinguished 

species are only a reflection of adaptation to local conditions, belonging in fact to the 

same species. This highlights the need for studies that help characterizing the planet‘s 

biodiversity and promote its conservation. Nevertheless, combining with broad 

sampling of taxa, molecular approaches allow to unravel micro-hotspots of biodiversity, 

and to better support biodiversity conservation planning (see e.g. Brito et al. 2014).  

Genetic tools contribute also to improve systematics. Systematics and 

taxonomy, despite being separate concepts, are often confounded and so it is 

important to clarify their meanings. While taxonomy is the classification and naming of 

individuals, systematics may be defined as the study of the diversity of organisms and 

the relationships between them, in an evolutionary perspective (Wheeler 2008). In 

other words, systematics reconstructs the relationship patterns between species at 

successively higher levels and through time and establishes classifications based on 

these patterns. Naming the groups obtained from systematic approaches is the 

objective of taxonomy.  
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1.2 The use of genetics in population ecology and conservation 

Conservation genetics is the union of different disciplines, using analysis, 

methods and genetic techniques to direct conservation efforts, ensuring that species 

preserve their genetic diversity to be capable of dealing with human-induced 

environmental change. Knowledge on the genetic variation and structure of natural 

populations is essential for the conservation of biodiversity. The use of genetic markers 

contributes significantly to a better understanding of genetic diversity and architecture 

at different levels. On the one hand, at the interspecific level, genetic markers help 

clarifying evolutionary relationships and contribute to a better classification of natural 

units and, on the other hand, by looking at intraspecific patterns, they help identifying 

levels of diversity and population structure. Research projects on conservation genetics 

have been contributing to study and more properly understand the action of natural 

selection, the impact of hybridization in natural populations or the influence of genetic 

variation in the adaptive ability of natural populations. When accessing genetic 

variation, this contributes to evaluate the viability of both individuals and populations. 

Furthermore, it is possible not only to access the population dynamics and 

demography, but also biological factors such as ecology or behavior (Hoshino et al. 

2012). With the loss of genetically and ecologically distinctive populations, severe 

problems appear as a consequence of the reduced genetic variation possibly leading to 

species extinctions, damaged ecosystems and destroyed ecological communities (Lacy 

1997). However, increasing knowledge on patterns of genetic structuring, diversity and 

distribution, and identifying taxonomic and populations units, can be the basis to 

recommend the delineation of separate conservation units. Therefore, understanding 

the evolutionary history that shaped the genetic structure of populations contribute to 

guide conservation efforts. 

Over the years, advances in molecular biology have led to the introduction of 

many new types of molecular markers, providing diverse kinds of information (Marsjan 

& Oldenbroek 2007). Understanding the nature of the information provided by each 

type of marker is thus important to make an informed decision about which marker 

suits best a particular study. Each molecular marker has its own mutation rate or 

expression level, and can be under different selective pressures, so the use of each 

marker depends on the objective to attain. Among other characteristics, they can vary 

in the level of polymorphism, number and nature of alleles, abundance, technical 

demands and costs (Maheswaran 2004). DNA sequence data and nuclear 

microsatellites are widely used markers. In animals, mitochondrial or nuclear genome 
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derived DNA sequences are frequently chosen to reconstruct phylogenies and 

historical patterns of population demography, biogeography and speciation.  

Regardless from the marker, by choosing merely one locus for molecular 

analysis, the capture of the coalescent variation will be compromised and part of the 

evolutionary history can be lost (even if the marker being used is neutral). The use of 

multilocus approaches is crucial to reveal the possible complex mechanisms that may 

have conditioned the evolution of species. It makes possible to infer a variety of 

ecological processes, such as the identification of barriers to dispersal (e.g. Latch et al. 

2008) or the inference of ancient population dynamics (e.g. Underhill & Kivisild 2007). 

By having information from different parts of the genome, we also have the advantage 

of obtaining a detailed and accurate picture of the global evolutionary history of the 

species. Nuclear loci are commonly used for phylogenetic tree reconstruction with 

multiple concatenated independent loci, being a traditional way of resolving species 

tree (Williams et al. 2013) with potential to yield  supported trees if increasing the 

number of loci used. When research studies are working with short evolutionary 

timescales of very recent dynamics, the use of nuclear microsatellite data appears 

suitable (Nardi et al. 2005; Sequeira et al. 2008). These molecular markers are highly 

polymorphic with high mutation rates, abundant and fairly distributed throughout the 

eukaryotic nuclear genomes (Jarne & Lagoda 1996). These characteristics make 

microsatellites one of the most popular genetic markers for population genetics and 

inference of population structure (Wang et al. 2009). They can also provide information 

about genetic admixture among individuals, even when they are closely related, and it 

is also possible to cross with geographic information. However, the high level of 

polymorphism can lead to allelic size homoplasy which have been identified in different 

species (e.g. Viard et al. 1998; Culver et al. 2001) leading to inaccurate phylogenetics 

and population assessments if not taken into account.  

Single-copy nuclear DNA (scnDNA) shows a slowest evolutionary rate, although 

mitochondrial DNA (mtDNA) still offers access to a distant range, on the order of 

potentially millions of years (Wan et al. 2004). Mitochondrial DNA is often the first 

molecular marker used to understand the genetic differentiation of species or 

populations and study phylogenies. It is technically easy to use, allowing gathering 

important initial information on the evolutionary history that can serve as basis to more 

complex and detailed molecular studies. Numerous mitochondria are found in cells, 

each carrying several copies of a single circular haploid molecule, which facilitates 

PCR amplification and analysis. Also, mitochondrial DNA has a higher mutation rate 

than nuclear DNA (nucDNA) and consequently provides a better resolution for recent 

evolutionary events. Therefore, the analysis of variation in mtDNA is useful to: 1) 
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reconstruct genealogies at the genus or the species level (Avise et al. 1987, 1998); 2) 

perform phylogeographic studies for species delimitation; 3) study intraspecific 

diversity. Among mtDNA regions, the cytochrome b is a mitochondrial protein coding 

gene and is also widely used for assessing intraspecific up to intergeneric level 

evolutionary associations (Kocher et al. 1989). Nonetheless, mtDNA only provides 

insights into the matrilineal pathways of ancestry, which represents only a small 

fraction of the complete historical record within the pedigree of a sexual reproducing 

organism (see e.g. Kryger 2002). Furthermore, mtDNA is also characterized by a 

substantial bottleneck due to its lower effective population size relative to the 

autosomes, which leads to within-individual diversity loss (Shoubridge & Wai 2007). 

Also, at distant evolutionary relationships (e.g. from the generic level to more ancient 

divergence events) mtDNA tends to accumulate redundant base substitutions 

(homoplasy) (Blouin et al., 1998; Harris et al. 1998). Therefore understanding the 

forces that drive the molecular evolution of mtDNA is necessary for a proper use of this 

molecule as a marker for population genetic, phylogeographic, and phylogenetic 

studies (Nabholz et al. 2008). Moreover, introgression events often seem to affect 

mitochondrial DNA (Melo-Ferreira et al. 2012), being a problem if just one marker is 

applied. To obtain a complete picture of population history and evolutionary potential, 

data from nuclear loci is essential, as well as the inclusion of other genetic markers.  

By incorporating modern phylogenetic/phylogeographic analyses, some 

important answers can be obtained, as for example inferences of demographic history, 

divergence times, migration rates, historical hybridization events or introgression 

(Hickerson et al. 2010). Combining both nuclear and mitochondrial DNA markers 

enriches the power of molecular data to test phylogenetic and phylogeographic 

hypotheses and allows to identify mito-nuclear discordances (conflicting results 

between the two types of markers) such as those identified in several animal systems 

(see Toews & Brelsford 2012). Still, the use of different types of markers for 

phylogeographic studies should be complemented with broad sampling across the 

species distribution area when possible.  

 

1.3 Different types of biological samples for genetic analyses 

Sampling is a crucial step for any population genetics and phylogeographic 

study and several approaches can be used to guaranty the necessary sample size. 

Direct handling and capture of animals to obtain samples can result in negative impacts 

such as altered animal behavior or inadvertent injury (e.g. blood or skin collection). As 
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an alternative, one recurrent way to obtain samples is from road killed animals 

excluding thus the need of pursuing live animals. Finding road kills is an effective way 

of acquiring DNA data that would be otherwise difficult to access, although the soil 

acidity and precipitation can be a problem in the preservation of DNA, both for tissue 

and bone samples. Non-invasive sampling arises as another alternative and consists 

on collecting animal signs, such as feces, urine or hair. Although obtaining genetic 

material from non-invasive sources has obvious benefits with regards to minimizing 

impacts on wildlife, some caveats of these samples include low DNA quantity and 

quality (fragmentation), contamination or presence of PCR inhibitors (Taberlet et al. 

1996). 

When fresh tissue sampling is not possible, the use of samples stored in 

museums is a viable and increasingly popular option that allows, for example, covering 

areas that are presently inaccessible. ‗Museum genetics‘ is important for several other 

reasons, for instance in conservation genetics to monitor temporal (current versus 

historical) changes in genetic diversity in threatened species (e.g. Godoy et al. 2004), 

since most of the times it is possible to access the age of the samples, as well as relate 

it with climate change or with a population decline due to human impacts. However, the 

DNA preserved in these historic materials is generally of lower concentration, highly 

fragmented due to general degradation along time, and prone to contamination. The 

main common problems are short fragment length, an increased occurrence 

depurination of the DNA and an increased deamination of cytosine residues that occur 

primarily in the single-stranded overhangs of DNA fragments (Briggs et al. 2007; 

Brotherton et al. 2007; Pääbo 1989). This can lead to difficulties in PCR amplification, 

PCR artifacts or even genotyping complications. Even though mitochondrial DNA is 

more easily amplified from substandard DNA extracts than are nuclear genes (Cooper 

1994), fragmented DNA template may cause incorrect bases to be incorporated in the 

PCR product (see Sefc et al. 2006 for artifact base changes in mtDNA). Also, caution 

and suggestions for detecting and avoiding errors in microsatellite genotyping in low 

DNA quantity samples have been published (e.g. Taberlet et al. 1996; Kalinowski et al. 

2006). Despite all of these difficulties, there were several successful studies based on 

museum specimens using microsatellites, mtDNA sequencing or even with Next-

Generation sequencing techniques (e.g. Bi et al. 2013; Themudo et al. 2014; Mitchell 

2015). Clearly, working with this type of samples can bring some challenges, but when 

rigorous controls and well optimized protocols for preventing contamination by foreign 

DNA on the extraction process are applied it is an invaluable genetic resource.  
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1.4 Biodiversity in North Africa 

Arid regions are normally assumed as plain areas with difficult conditions to 

sustain life, and therefore with less biodiversity when comparison to other climatic 

regions. Because of this, little attention is often paid to these regions and the 

biodiversity of these areas still poorly known and studied. However, deserts can be 

superb endemic species repositories due to past climatic events, and the Sahara 

desert is one example (Cloudsley-Thompson 1991). 

North Africa is of considerable importance for studying local biodiversity in many 

ways. On the one hand, it covers the Sahara desert and the neighboring arid Sahel that 

constitute two major ecoregions of the African continent (Olson et al. 2001), 

characterized by patterns of low moisture, high temperatures ranges and strong winds 

(Villiers & Hirtle 2002; Dobigny et al. 2005; Brouat et al. 2009). The past strong climatic 

oscillations led to major changes in vegetation cover (Wang et al. 2008; Claussen 

2009) and may often be reflected in geographic partitioning of genetic variation, which 

allows for the reconstruction of the evolutionary history of species. On the other hand, 

the Sahara separates the Mediterranean from the Tropical climate as well as it 

separates the Paleartic and Afrotropical biogeographical realms (Olson et al. 2001). In 

addition, Sahara desert not only has promoted vicariant speciation, but is also known to 

have acted as a barrier between mountain ranges that become isolated from each 

other and retain less harsh climatic conditions exchanges between North and Central 

Africa (Douady et al. 2003; Faleh et al. 2012). These mountains acted as refugia for 

many endemic species and isolated populations and display biogeographical island-like 

behavior (Gonçalves et al. 2012; Brito et al. 2014).  

The unstable rainfall patterns and the strong aridification in the Eastern and 

Southern Africa are a result of global glaciations during Pleistocene (Grant & Leslie 

1993). The cycles of contraction and expansion of major vegetation zones (see figure 

1) led to deep effects on the distribution patterns and evolution of the African mammals 

(Grubb 1978; Coe & Skinner 1993), and recurrent habitat fragmentation and isolation 

events may have led to sub-speciation, speciation or extinction (Ewer & Cooke 1964; 

Grant & Leslie 1993).  
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Fig. 1 - Temporal oscillations of the African ecosystems between the Last Glacial Maximum and the present; adapted 

from Adams and Faure (2004). 

 

The progression of arid conditions, together with the increasing human 

economic activities, are negatively affecting desert biodiversity, phenology, physiology 

and distribution of many species, causing biodiversity loss (species extinction) 

(McNeely 2003; UNEP 2006; Thorton et al. 2008; Trape 2009; Pimm 2008). Still, the 

dimension, inaccessibility and political instability in the region contribute to an 

incomplete knowledge of the biodiversity of the Sahara-Sahel, even though the number 

of published scientific studies has been growing in the last years, most of them 

focusing on vertebrates with low dispersal activity, such as reptiles and amphibians 

(Brito et al. 2014). This means that only a few unconnected or loosely connected 

exploratory missions obtained data and there is no continuous biodiversity evaluation, 

resulting in rough species distribution maps (Le Berre 1989, 1990).  

North African biodiversity is still poorly assessed and the fact that massive 

range oscillations occurred in the Sahara desert has probably induced events of 
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population isolation and opened the possibility for cryptic diversity to be formed. For 

instance, cryptic diversity has been reported by recent phylogeographic studies but the 

distribution of such diversity is mostly unknown (Brito et al. 2014). The North African 

biodiversity investigations in medium-sized mammals with relatively higher dispersal 

ability, such as the cape hare (Lepus capensis), are far from being completed due to a 

generalized lack of studies on this type of mammals. As such, there is a need to 

develop new studies, since few ones have explored the origin of Saharan biodiversity. 

It is of great importance to extensively sample these regions, to characterize its 

biodiversity, analyze taxa distributions, and relate them with environmental factors to 

identify biogeographic groups. 

 

1.5 Hares as a model species 

Genus Lepus is polytypic and belongs to the family Leporidae of the order 

Lagomorpha. The specimens of this genus are placental mammals and small to 

medium-sized herbivores that constitute the base of many predator-prey interactions 

(Chapman and Flux 1990; Mengoni 2011). Another important characteristic is that 

single individuals as well as whole populations can shift hundreds of kilometers in 

response to environmental changes or in search of better feeding grounds (Kryger 

2002). Moreover, this is an economically and scientifically central group of mammals as 

they are a major human food resource, model laboratory animals, valued game and 

provide scientific insights into entire trophic systems (Chapman & Flux 2008). 

Over the last years, hares have been used as model species in population 

genetics, not only to understand their phylogeography, but also to study significant 

evolutionary mechanisms, such as reticulate and adaptive evolution (Alves et al. 

2008b). Lepus is an evolutionary recent group (Chapman & Flux 2008) in which have a 

considerable ecological importance (Alves et al. 2008a). Fossil investigations propose 

that this genus had a rapid radiation just within the last 2 – 2.5 million years in 

evolutionary terms leading to a low genetic differentiation between the recently formed 

taxa (Suchentrunk et al. 2008). Additionally, the severe climatic fluctuations during 

Pleistocene or Holocene may have induced major shifts in species distributions, forcing 

them to retract, expand, move and/or fragment their ranges (Hewitt 1996). This may 

have also set the conditions for competition and secondary contact among hare 

species, producing patterns of genetic variation that reflect introgressive hybridization 

(Melo-Ferreira et al. 2007) and incomplete lineage sorting. Eventually, this could also 

contribute to the prevailing taxonomic uncertainties within genus Lepus and to wrong 
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systematic conclusions (Suchentrunk et al. 2008).  Within the genus, taxonomic 

difficulties may also result from low gene pool divergence among species, leading to 

vast sharing of characters due to recent common ancestry (Alves et al. 2003; Robinson 

& Matthee 2005).  

Hares have not adapted to a single particular environment: representatives of 

the genus have been extraordinarily successful in occupying the most diverse habitats 

throughout the world, from rather arid areas to open grassland or even snow (Colbert 

1980; Skinner & Smithers 1990). This genus is estimated to have arrived to Africa in 

the Pliocene or early Pleistocene (Carroll 1988). The oldest fossils of true 

representatives of the genus Lepus in Africa date back to the early Pleistocene (Walker 

1964; Lavocat 1978). Analysing mtDNA restriction sites, Biju-Duval et al. (1991) 

estimated that the most common ancestor of the genera Lepus, Oryctolagus and 

Sylvilagus lived 6-8 million years ago. At this time the African climate was 

characterized by cycles of cold and dry phases alternating with warm and humid 

phases (Grubb 1978; DeMenocal 1995).  

Over time, many different hare species have been identified in Africa, mostly 

relying on morphological traits (e.g. Suchentrunk et al. 2006; Palacios et al. 2008). 

From the approximately 32 worldwide Lepus spp (Hoffman and Smith 2005), six may 

be distributed in Africa (figure 2), in arid, semi-arid and savanna habitats - L. capensis, 

L. saxatilis, L. microtis, L. habessinicus, L. fagani and L. starcki. hese six African 

species are distinguished morphologically by body size, ratio of width of mesopterygoid 

space to minimum length of hard palate, teeth features (the shape of groove on 

principal incisor tooth and presence/absence of cement in that groove) and quantity of 

black coloration in the ears (Kingdon et al. 2013).  
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Fig. 2 - Distribution of the six African hare species. 

 

 North African hares are represented by two species – Cape Hare (Lepus 

capensis L Linnaeus, 1758) and African Savanna Hare (Lepus microtis, previously 

included in L. saxatilis and has been classified under several other names as victoriae, 

crawshayi or whytei, between others; although Lepus microtis, is considered a "nomen 

dubium" (Petter 1959; Angermann 1965), in this work we will referred to this species as 

it is identified at IUCN website - http://www.iucnredlist.org/). Azzaroli-Puccetti (1987) 

considers that whytei (from Malawi) is close to L. fagani (from Ethiopia), although they 

are distinguishable on cranial and dental characters, and the wide geographic 

separation between them merits recognition of whytei as a valid species. These two 

Northern species occupy large ranges and their distribution is overlapped as well as 

with the South African species L. saxatilis. Within the same zoogeographic region L. 

microtis has a small, isolated population in Eastern Algeria, although its large sub-

Saharan range extends North through Western Mauritania to incorporate the Southern 

third of Western Sahara (where this species may occur sympatrically with L. capensis). 

The subspecies taxonomy for Lepus saxatilis has mainly been derived from characters 

such as body size, fur coloration and geographic locality (Roberts 1951), since few 

studies were done and mostly based on mtDNA sequences (e.g. Kryger et al. 2004). 

Lepus fagani is distributed in Northern and Western Ethiopia on the plateau and in 

Kenya at high altitude, and Lepus starcki, the Ethiopian highland hare, is the less 
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widespread African hare species. Also, Tolesa (2014) reinforced that L. habessinicus 

has distinct mtDNA relative to L. capensis and both nuclear and morphological data 

suggest that L. habessinicus is closer to other hare species in Ethiopia. 

The two particularly widespread species in Africa, L. capensis and L. microtis, 

have many synonyms, testifying the large variation within each species, their wide 

distribution, complex evolutionary history and lack of comprehensive data on their 

phylogenetic position. The cape hare also occurs throughout most of the Middle East 

and Eastwards North of Himalaya Mountains to China, and its widespread distribution, 

inter-population variation and varying pelage colors might justify the many alternative 

names. Forty-four synonyms were listed by Hoffmann & Smith (2005) just in Africa and 

Near East, of which are considered to be subspecies (although 80 sub-species have 

been described by Flux & Angermann (1990), but from Africa until East China). Being a 

polytypic species, this shows the need to revise the taxonomy of the Cape hare. 

Furthermore, the confusion extends to a lack of agreement between classifications 

made by separate authors, with Hoffman and colleague (2005) describing five 

subspecies in Arabia and Near East, while Harrison & Bates (1991) referring to six sub-

species of Cape Hare living on mainland Arabia and two subspecies living on offshore 

islands. Other important facts that also need further clarification are the taxonomic 

limits of this species and its uncertain relationships with L. microtis. Morphological 

comparisons between these two overlapped species demonstrated that L. microtis, 

unlike L. capensis, has more colorful and thicker fur, with russet areas on the nape and 

chest sides and has incisors with deep grooves (Moores et al. 2012). Despite the 

description of these diagnostic characteristics, distinguishing L. capensis and L. 

microtis in the field can be very challenging. 

South Africa (Cape of Good Hope) is the type locality of the cape hare, in which 

a single species (capensis sensu lato) inhabits Africa and Near East in two separate 

non-forest areas. According to Hoffman and Smith (2005), there is no evidence of gene 

flow between the South African populations and the populations in East, West and 

North Africa. The same authors subdivided informally capensis sensu lato, in  four 

distinct groups that might be considered as distinct species, pending on sufficient data 

to support a formal revision: South Africa (e.g. centralis Thomas, 1903; granti Thomas 

and Schwann, 1904; aquilo Thomas and Wroughton, 1907), East Africa (e.g. aegyptius 

Desmarest, 1822; hawker Thomas, 1901; isabellinus (cretzschmar, 1826; sinaitocus 

Ehrenberg, 1833), Arabia and Near East (e.g. arabicus Ehrenberg, 2833; omanensis 

Thomas, 1894), and Northwest Africa (e.g. schlumbergeri Remy-St. Loup, 1894; 

atlanticus De Winston, 1898; whitakeri Thomas, 1902). 
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Despite the studies done focusing on Cape hares, no consensus was obtained 

concerning their phylogenetic relationships or distribution limits due to the lack of 

comprehensive data. But the presence of other species in the region has been 

suggested and contradicts Petter‘s (1959, 1961, 1972) concept that all these hares 

belong to L. capensis. Based on morphological data, the latter author even included 

brown hares (Lepus europaeus Pallas, 1778) from Europe and other parts of the 

Western Palearctis (e.g Anatolia) into L. capensis. Angermann (1965) likewise, based 

on morphological and morphometrical data, considered hares from northern Tunisia 

very similar to brown hares, but was later less secure of this possible classification 

(Angermann 1983). Conflicting results were also found when Suchentrunk and his 

colleagues (2009) analyzed 13 microsatellite loci and CR-1 gene in Cape hares from 

South Africa, which showed to be a monophyletic group. In contrast, Palacios et al. 

(2008) results suggest the split of Cape hare into two species L. capensis and L. 

centralis based on intensive skull morphometric data. Additionally, a population 

genetics study (Lado et al. 2013) using mitochondrial DNA sequences from sampled 

populations in different localities of North Africa, showed high levels of genetic 

diversity, and highly divergent and geographically structured lineages. This work 

suggested deep evolutionary fragmentation of these populations possibly with strong 

barriers to gene flow (figure 3) and possible cryptic species. Also, some haplotypes 

were found to be more closely related to other species, which can result from mtDNA 

introgression, a phenomenon widely described in the genus (e.g. Alves et al. 2003; 

Melo-Ferreira et al. 2012, 2014a; Cheng et al. 2014), or retention of ancestral 

polymorphism. These results suggest that the evolutionary history of these populations 

is far from being simple and may uncover relevant biogeographic and evolutionary 

processes.  
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Fig. 3- A. Distribution of the phylogenetic clades in North Africa; B. Distribution of clades B and C in the contact zone of 

the Atlantic Costal Sahara; adapted from Lado et al. 2013 (internship report). 

 

The present knowledge on some hare species is in general insufficient, and the 

taxonomy and the evolution of North African hares are far from being completely 

understood. At this stage, only a comprehensive characterization of the genetic 

diversity and divergence of these populations can clarify the existing taxonomic 

problems without a priori assumptions. It is necessary to clarify and precise the 

geographic distribution of the African species, and to collect field data on the 

abundance, habitat requirements and biology of the species so conservation efforts are 

possible. 

 

1.6 Objectives 

 The delimitation of the different species and subspecies of the genus Lepus is 

still unresolved, and this situation is magnified in Africa. Previous studies have 

demonstrated that African species Lepus capensis have high genetic diversity and 

strong population structure. The fact that individuals are morphological similar 

throughout the L. capensis range, but genetic evidence points to highly diverse and 

structured populations, brings the possibility of the existence of cryptic species. Also, 

the evolutionary relationship between this species with African and non-African 

neighboring species is still unclear. In order to clarify the phylogeny and 

phylogeography of African hares, and identify relevant units for conservation, the global 

levels and patterns of genetic differentiation between African populations and 
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neighboring species were investigated. To do so, an increased number of molecular 

markers when compared with the previous studies, was used, with representations of 

matrilineal and biparentally inherited genetic markers (18 newly developed nuclear 

microsatellites, and one mitochondrial and five nuclear autosomal genes), with the 

broadest sampling size to date (taking advantage of museum samples) and including 

sequences of four more hare species. The specific objectives of this research were to: 

1) determine the population structure of African hares, with a particular 

emphasis on Lepus capensis, and relate differentiation with geography; 

2) assess how different evolutionary lineages are related, inferring divergence 

time between populations and interpreting the results in light of the climatic 

history of the area; 

3) understand population dynamics and demographic history of the different 

entities; 

4)  infer the level of divergence among evolutionary units and identify possible 

cryptic diversity; 

5) verify mito-nuclear concordance and possible occurrence of gene flow.  

The results of the study were expected to provide valuable insights into the 

evolutionary history and biogeographic patterns of L. capensis and neighboring 

species, and contribute towards the clarification of Africa hares taxonomy by comparing 

the genetic lineages obtained in this study with the current systematics. 
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2. Materials and Methods 

2.1 Study area and sampling 

A total of 261 samples with different origins were included in this study. These 

samples will here be described considering the species to which they were originally 

attributed by their providers but, given the difficulties in properly classifying African 

species of hares, no a priori assumption of the species origin was considered for 

analyses. 

 In total, 219 samples from Lepus capensis were included, with different origins. 

Road killed samples (171) were mainly collected during fieldwork along Northwest 

Africa by the research group BIODESERTS (CIBIO/UP-InBIO), and the remaining ones 

were provided by other researchers and collaborators. All were preserved in ethanol 

(96%). This set of samples also included two feces and three bone samples. The 

remaining Lepus capensis samples (48) were collected in two distinct museums: the 

Vienna's and Berlin‘s Museums of Natural History. To prevent contaminations, museum 

samples were collected with plastic gloves, face mask, lab coat and handled with a 

different blade. From the South African hare species, Lepus saxatilis, six samples were 

available at the facilities and included in this study. In addition, 25 museum samples 

considered as L. victoriae, now taxonomically recognized as Lepus microtis and six 

unidentified species samples were included.  

All samples used in this work (including their geographical origin and 

presumable taxonomical classifications) are described in appendix 1. The detailed 

geographical location of samples from road killed animals and a few museum samples 

were recorded with Global Position System (GPS). For the remaining samples, 

approximate coordinates were given according to the available information about the 

geographic origin of each sample. The plot of the geographical locations of the 

samples (fig. 4) was done using the Geographical Information System ArcMap 10.1.  
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Fig. 4– Samples distribution and origin. Each square/circle corresponds to an individual sample. 

 

 

2.2 DNA extraction 

Genomic DNA was extracted from liver or ear tissues using the Jetquick 

GENOMED kit. DNA extraction of the two non-invasive samples was performed using 

the Tissue kit E.Z.N.A. and in an isolated and autonomous room (low-DNA-status 

room) with special and sterilized equipment, in order to prevent contamination. 

The museum samples were extracted under the same conditions as the non-

invasive ones, but before this step, the dry tissue samples were hydrated with T.E. 

(Tris + EDTA) solution changing the liquid every day during five days in a 37ºC 

incubator. After this step, the samples were conserved in 96% ethanol. Since DNA 

from these samples was expected to be a degraded, two different extraction kits were 

tested for a small museum dataset of five samples: 

1. QIAGEN‘s QIAmp® DNA Micro Kit, following the respective protocol for 

tissue samples; 

2. following Bi et al. (2013) which suggest a combination of DNeasy Blood & 

Tissue Kit, using its protocol and reagents, but with the QIAquick PCR 

Purification kit columns.  
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The results of both procedures were compared, from the DNA rough 

quantification by agarose gel electrophoresis (0.8%) to sequencing results, and the 

second approach was then chosen to do the DNA extraction of the other samples given 

the higher amounts of DNA obtained and the observation of DNA sequence 

chromatograms with less background noise. 

For the bone samples, an ancient DNA extraction protocol (Rohland & Hofreiter 

2007) was optimized for extracting DNA from bone powder. A negative control was 

used to check for contamination in the extraction proceeding and extractions were 

stored at low temperature (around -20ºC). In addition, samples that were already 

extracted in Lado et al. (2013) and extractions available at the facilities were tested to 

check if DNA was still in good conditions for analysis. When DNA was found in high 

amounts (big tight band of high molecular weight in the electrophoresis gel) or 

degraded (smearing band) extracts were properly diluted in ultra-pure water to avoid 

the amplification of PCR artifacts. Otherwise, DNA extractions were used directly for 

the following PCR and sequencing reactions.  

 

2.3 Genotyping of microsatellites 

2.3.1 Selection of microsatellites 

In this work, species-specific microsatellite multiplexes of African Lepus 

capensis were newly developed to produce population structure analysis. To 

accomplish the objective, 12 samples of this species were sent to GENOSCREEN 

(http://www.genoscreen.fr/) to produce high throughput microsatellite libraries on a new 

generation sequencer 454-GsFLX ® (Roche Diagnostics). The library results 

information containing raw files, microsatellite motifs and number repeats, and 

bioinformatic validated primer pairs were sent back as a database. In order to proceed 

with the analysis, a preliminary selection of suited markers was done and the 

microsatellites tested for multiplexing (multiple microsatellites amplification in a single 

PCR including more than one pair of primers in the reaction). 

In total, 35 markers were selected among those marked as ―best‖ section 

according to the GENOSCREEN assessment. The selection of markers followed the 

following criteria: 

1. With more than 12 repeats (high probability of polymorphism between 

individuals);  

2. After calculating annealing temperature, primers with more than 5ºC of 

difference between each other per multiplex were avoided and also between 

http://www.genoscreen.fr/
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Forward (Fw) and Reverse (Rv) primers of the same marker (better for 

amplification by PCR);  

3. After calculating the primers‘ sizes including tails, maximum of 250 base 

pairs were chosen and different repeat motifs were preferred;  

4. For each multiplex, the four different types of dye (FAM, VIC, NED, PET- 

M13 tails) had to be balanced. The minimal difference between loci labeled 

with the same dye color was 70 base pairs.  

AUTODIMER (Vallone & Butler 2004) was used to predict hairpin structures and 

primer dimers within multiplexes, in order to increase the probability of success of the 

multiplexed PCR reactions.  

 

2.3.2 Optimization of PCR conditions 

The test and optimization of PCR conditions of the microsatellite multiplexes 

was performed with a set of eight samples, selected along the samples distribution 

range in Africa. PCR amplifications were performed in BIOMETRA with a 10µl reaction 

volume of multiplex cocktail containing 1 or 2µl of DNA depending on the DNA 

concentration, 5µL Qiagen PCR Master Mix, 1 µl primer mix (containing forward and 

reverse primers and fluorescent dye of each primer – M13 tails) and water. 

Electrophoretic runs in agarose gel (2% p/v) with TBE (Tris-Borate-EDTA Buffer; Tris 

89mM, Boric Acid 89mM and EDTA 2mM, pH 0.8) buffer with the resulting PCR 

products to see the amplification success. The gel was stained with 17.5μL/L GelRed 

(Biotarget) to allow the visualization of DNA bands under UV light. To load the gel, 3μL 

of each post-PCR product was used in combination with 2μL of bromophenol blue, 

which helps to monitor the electrophoresis progress and provides extra density to the 

sample. In each electrophoresis run, 2.8μL of Marker 5 (molecular weight size marker; 

Eurogenetec) was used in a separate well to infer the approximated size of the DNA 

fragments in the gel. The electrophoresis was performed at 300V and gels were 

visualized under UV light. Samples with no observed band in the gel were not chosen 

to be sequenced. For the markers with apparently low quality, individual PCR‘s 

(uniplexes) were performed for a better understanding of marker‘s individual 

amplification success and profile. A negative control was used in every reaction. With 

consecutive tests of each multiplex, primer concentrations (increasing primer 

concentration for the weakest or decrease primer concentration for the strongest ones) 

and temperatures during PCRs of each loci with the test samples were optimized for 

amplification success, until overall amplification and genotyping was possible for all 
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samples. Some loci were excluded due to specific problems, such as lack of 

polymorphism, amplification failure or unreadable profile, and the multiplexes were 

rearranged. From the initial 35 microsatellites, 18 were finally optimized, organized in 

three multiplexes and all samples were amplified (final PCR conditions in the appendix 

2 and for multiplex organization, primers concentrations and amplification conditions 

see appendix 3). The museum samples, bones and feces were amplified four times 

each to ensure consistency of genotype determination. For the road killed samples, 

30% was validated with repetitions.  A consensus was made for all samples that were 

amplified more than once, where individuals with similar genotype between repetitions 

were accepted.  

 

2.3.3 Genotyping  

Genotyping was performed on an automatic sequencer ABI3130xl Genetic 

Analyzer (Applied Biosystems), where the products were separated by capillary 

electrophoresis using 1 or 2μl of PCR, for 10μl of LIZ NEW size standard mix (a size 

standard and allelic ladder – mix of 1000 L of formamide plus 75-400 (-250) for 20 L 

of liz). GENEMAPPER v4.0 (Applied Biosystems) was then used to read and score the 

genotyping results. In order to properly bin and score the allele calls, after each run the 

ladder recognition was manually edited. Automatic allele scores were then visually 

inspected by two independent researchers to avoid potential errors in the automatic 

process. Genotyping was repeated whenever uncertain allele calls were obtained. 

Samples with doubtful or inconsistent genotypes among replicates were considered 

missing data.  

 

2.3.4 Population structure analysis 

The final genotypes were filtered for missing data, with individuals with more 

than three loci with missing data being discarded. Using FSTAT (Goudet 1995), the 

number of alleles sampled were calculated. GenAlex v6.5 (Peakall & Smouse 2012) 

was used to produce the Genepop input file. Exact tests for pairwise linkage 

disequilibrium (LD) and deviation from Hardy-Weinberg expectation (HWE) for each 

locality using Bonferroni correction, were conducted with GENEPOP ( 

http://genepop.curtin.edu.au/; Web interface for remote computations). Markov chain 

parameters for exact tests were set at 10,000 dememorizations, 100 batches, and 

5000 iterations per batch (Raymond & Rousset 1995). Moreover, MICRO-CHECKER 
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(Van Oosterhout et al. 2004) was used to check for potential genotyping errors 

resulting from null alleles or scoring mistakes. The number of observed alleles was 

calculated with Genalex. STRUCTURE v.2.3.3 (Pritchard et al. 2000; Falush et al. 

2003), a Bayesian tool for inferring population structure, was then used to infer the 

uppermost hierarchical level of genetic groups of individuals. This software assumes a 

model where K populations exist, and individuals are assigned to one or more 

populations (if they have admix genomes) where loci are in HWE and LD within 

populations (Pritchard et al. 2003). This can have several applications such as 

unravelling population structure and identifying migrants and admixed individuals. The 

parameters were defined with admixture model, providing the proportion of the genome 

of each individual that can be assigned to the inferred.  Also, correlated allele 

frequencies model was assumed, for a number of clusters (K) from 1 to 25 with three 

replicates of each K, with a burn-in period of 1,000,000 generations and 1,000,000 

MCMC repetitions after burn-in, to assure similar posterior probabilities of the data in 

each run. With the same parameters, the datasets were run assuming now 

independent allele frequencies instead of correlated. Correlated allele frequencies 

model assumes a level of non-independence being more conservative and providing 

greater power to detect distinct populations that are particularly closely related. But 

independent allele frequencies model requires knowledge about the correlation levels 

across populations. Nevertheless, the first model will tend to give the same results as 

the independent allele frequencies model in the absence of high levels of correlation 

across populations (Porras-Hurtado et al. 2013). To identify the most likely K, Evanno‘s 

Delta K method was used (Evanno et al. 2005), as implemented in STRUCTURE 

HARVESTER v.0.6.94 (Earl & vonHoldt 2012). 

Additional substructuring of the dataset was then inferred using a hierarchical 

approach, where at each round of the analysis the dataset is split according to the best 

population structure defined in the previous generation, and STUCTURE re-run 

independently. This hierarchical analysis proceeded until no structure was found in 

each thread of the analysis. In each round only individuals with at least 80% 

association in a cluster were included in the succeeding analysis (Coulon et al. 2008; 

Cheng et al. 2014). The same model parameters were used in these analyses, just 

changing the K value according to the number of sampled populations in the cluster 

that was being examined.  

Another Bayesian clustering analyses was in addition performed using BAPS 

v.6.0 (Corander et al. 2008) which takes advantage of spatial clustering of individuals. 

This was followed by an admixture analysis with 200 iterations, 200 reference 

individuals, 50 iterations of reference individuals and no need for K values, since BAPS 
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directly infers the number of populations from the dataset. The admixed individuals 

were identified with the same parameters of the STRUCTURE analysis. In addition, 

results of the model-based clustering were compared to a Principal Coordinate 

Analysis (PCA; using individual-by-individual genetic between the identified clusters on 

subsets of data) calculated using GenAlex.  

 

2.4 DNA sequencing 

2.4.1 DNA amplification and sequencing of mitochondrial and 

nuclear DNA 

One mitochondrial DNA (partial Cytb) and five autosomal nuclear DNA (partial 

TF, SPTBN1, HPX, OXA1L and DARC) loci were amplified by polymerase chain 

reaction (PCR) and sequenced in this study (for primers and conditions see appendix 

4). The nuclear DNA primers were already available from Melo-Ferreira et al. (2009), 

Matthee et al. (2004) and Wallner et al. (2001). Cytb primer pair, LcpCytb, was 

designed in Lado et al. (2013). A new Cytb primer pair which comprehend a smaller 

fragment was designed, LcpCytb2, for PCR amplification with the Primer3Plus 

(Untergasser et al. 2007), for amplification from DNA extracts from museum samples 

and bones, which showed high levels of fragmentation and likely caused failure of the 

amplification of the larger fragment. This primer pair was designed in conserved 

regions within the largest fragment of LcpCytb. Primers with 18-22 bp, melting 

temperature of 52-58ºC, and a GC constitution of 40-60% were searched for. 

NetPrimer computer software (Premier Biosoft International, Palo Alto, CA, USA) was 

used to verify if there were events of primer secondary structures. Nuclear genes were 

amplified for a set of 80 road kill samples covering all the study area where museum, 

feces and bone samples were not included, since after trying to amplify them it was not 

successful (it is necessary to design primers for smaller fragments). All PCR‘s were 

performed in 10μl reaction volumes in which 5μl were QIAGEN PCR MasterMix, 3μl 

were of pure water, 0.5μl of both reverse and forward primers, and from 1μl to 3μl of 

template DNA depending on the sample quality. For museum samples, all pre-

amplification steps were carried out in a separate room with technical equipment that 

has never been used for fresh tissue samples or PCR products. Minor adjustments to 

conditions were required in some reactions, principally with the museum, bone and 

feces samples (diluting or adding 2μl of DNA instead of one). The choice of extension 

and annealing conditions in the programs sought a balance between high amplification 
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success of the target loci, and low amount of untargeted product. All the reactions took 

place in a BIOMETRA T-professional Thermocycler and PCRs were executed using 

again a negative control. The resulting PCR products were analyzed using an 

electrophoresis in a 2% agarose gel with TBE buffer with a concentration of 0.5X. The 

gel was stained with 17.5μL/L GelRed (Biotarget) to allow the visualization of DNA 

bands under UV light. To load the gel, 3μL of each post-PCR product was used in 

combination with 2μL of bromophenol blue, which helps to monitor the electrophoresis 

progress and provides extra density to the sample. In each electrophoresis run, 2.8μL 

of Marker 5 (molecular weight size marker; Eurogenetec) was used in a separate well 

to infer the approximated size of the DNA fragments in the gel. The electrophoresis 

was performed at 300V and gels were visualized under UV light. Samples with no 

observed band in the gel were not chosen to be sequenced. PCR products were 

purified using a combination of two enzymes, Exonuclease I and Shrimp Alkaline 

Phosphatase (USB® ExoSAP-IT® PCR Product Cleanup, Affymetrix) to remove 

residual primers and unincorporated nucleotides. Purified products were sequenced 

using in the facilities of Macrogen Inc (Netherlands) by traditional Sanger sequencing, 

using the same primers used in the amplification process. The museum samples were 

sequenced two times for Cytb due to the drawbacks caused by fragmented DNA. 

OXA1L fragment was sequenced with the forward and reverse primers. In cases of 

detection of heterozygous insertion-deletions (indels), fragments were sequenced both 

with forward and reverse primers. For the remaining situations, 20% of the sequences 

were obtained using both the forward and reverse primers for validation.  

 

2.4.2 Sequence alignment, data treatment and genetic diversity  

The software FinchTV 1.4.0 (Geospiza, Inc.; Seattle, WA, USA; 

http://www.geospiza.com) was used to view and edit by hand DNA sequence 

chromatogram data. All analyses were performed separately for the mitochondrial and 

nuclear genes to compare the concordance of results. The final alignments were 

complemented with previously published sequences downloaded from GenBank of L. 

capensis (when available), and also other species as L. europaeus, L. saxatilis, L. 

granatensis and L. timidus to take into account interspecific-divergence (note that no 

Lepus microtis sequences were available in GenBank). The European wild rabbit, 

Oryctolagus cuniculus, was used as outgroup (for GenBank accession number see 

appendix 5) in some analyses. The sequences were then imported into BioEdit (Hall & 

Hall 1999), a Sequence Aligner Editor software, for aligning and further manual editing 
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for each of the six genes, since not all the sequences were of the same length. Within 

the OXA1L sequence a region with tandem repeats was discarded.  

The International Union of Pure and Applied Chemistry (IUPAC) nucleotide 

ambiguity code was used for polymorphic positions in the diploid genes. For each of 

the five nuclear genes, PHASE v2.1.2 (Stephens et al. 2001; Stephens & Scheet 

2005), a Bayesian statistical method, was used to estimate the allelic states and the 

input files were generated on the online software SeqPHASE (Flot 2010). Information 

from known phased derived from heterozygote insertions-deletions (Flot et al. 2006) 

was incorporated in the analysis to improve phase determination. Three replicates of 

each PHASE run was performed with 1000 generations after 1000 generations of burn-

in with a thinning interval of 1, to ensure the consistency of the phase determination by 

frequency estimates. All individuals were maintained in the final datasets, choosing the 

most probable reconstructed haplotypes for population genetic analyses. PHASE has 

been shown to have a low rate of inferring haplotype pairs incorrectly and simply 

excluding unresolved genotypes with low probabilities may lead reductions in overall 

diversity, mainly by eliminating low frequency variants, and systematic bias in 

estimates of effective population sizes (Garrick et al. 2010). The software DNAsp 5 

(http://www.ub.edu/dnasp/) was used to calculate indices as nucleotide diversity, 

number of haplotypes, haplotype diversity and segregating sites for Cytb. 

 

2.4.3 Gene tree phylogenies 

Genealogical relationships among haplotypes were determined by constructing 

Median-Joining (MJ) networks (statistical parsimony) with Network version (Bandelt et 

al. 1999); http//:www.fluxus-engineering.com) for mitochondrial DNA sequence 

datasets. The median-joining network procedure infers haplotype genealogies 

frequently with median vectors (i.e. unsampled or extinct haplotypes). Two datasets 

corresponding to sequence alignments of different lengths, with and without museum 

samples, were analyzed. 

To find out which was the best evolution model, the fit of the alignment to 88 

models was performed using the software jModelTest V. 2.0 

(https://code.google.com/p/jmodeltest2) under the Akaike‘s information criterion, 

corrected for low sample sizes (AICc) for the six genes. Molecular phylogenies were 

derived using Bayesian Inference (BI) and Maximum Likelihood (ML) methods for the 

six genes.  Again, for mitochondrial DNA, both datasets with and without museum 

samples were used separately. 

http://www.ub.edu/dnasp/
https://code.google.com/p/jmodeltest2
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ML phylogenetic inferences were performed for each locus using Garli v1.0 

(Zwickl 2008) with five independent search replicate runs by specifying the optimal 

mutation model (model parameters for phylogenetic trees building were not fixed) and 

the outgroup. No starting topology was defined and the program was set to run until no 

significantly better scoring topology was encountered after 5,000,000 generations for 

the nuclear genes and after 50,000,000 generations for the Cytb. For the cytb 

phylogeny, the support of the resulting nodes was estimated using 500 bootstrap 

replicates.  Finally, the Shimodaira–Hasegawa (SH) test (Shimodaira & Hasegawa 

1999) using PAUP* (Swofford 2001) was implemented to test whether the resulting 

best trees were statistically significantly different. 

In addition, BI was performed for all genes using software BEAST v1.8.1 

(Drummond & Rambaut 2007) and the previously determined mutation model. This 

program assumes no gene flow and no recombination within locus. The input file for 

BEAST was created using the application BEAUti, part of the package. The posterior 

probabilities were determined after runs of 50,000,000 and 100,000,000 generations, 

sampling trees and parameter estimates every 5,000 and 10,000 generations, for each 

nuclear and Cytb (with and without museum samples) haplotypes respectively, with the 

strict clock and the Baysian skyline coalescent (BSP) model. Three replicates of each 

loci were run and its stability and convergence of the Markov chain Monte Carlo 

(MCMC) effective sample size (ESS) were measured using the software Tracer v1.6 

(http://tree.bio.ed.ac.uk/software/tracer/). Thus the initial 10% of the run were excluded 

as burn-in. With LogCombiner, also part of the BEAST package, combined files .log 

and .tree from the multiple independent runs and summary trees were generated with 

TreeAnnotator v1.8.1 (part of the BEAST package), and also an output for visualization 

in FigTree v1.4.2 software (http://tree.bio.ed.ac.uk/software/figtree/). The same 

conditions were set but for the Yule tree prior applied and the uncorrelated lognormal 

relaxed clock (Drummond et al. 2006) model in which the datasets with and without 

museum samples were reduced to haplotypes. While the BSP is a coalescent model 

suitable at population level, Yule is a speciation model appropriate for analyses of inter-

species relationships. Given the mixed nature of the datasets, both models were used 

and results compared.  

 Definition of the number of populations with the Cytb dataset was also 

assessed using BAPS v.6, the Bayesian approach of population structure but taking 

advantage of the spatial approach (coordinates of each sample were given) used also 

with the microsatellite data, excluding GenBank sequences from this analysis. The 

nuclear divergence between lineages was calculated by the Dxy genetic distance with 

MEGA 5 (Tamura et al., 2011) 

http://tree.bio.ed.ac.uk/software/figtree/
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2.4.4 Species tree reconstruction based on nuclear loci 

Due to the stochasticity of coalescent processes, it is likely that gene trees differ 

among loci and not matching the original species tree due to incomplete lineage sorting 

alone. The species-tree Bayesian inference method *BEAST (Heled & Drummond 

2010), implemented in BEAST software was used to infer the phylogeny in African 

hares based on the five nuclear loci. *BEAST also assumes that no recombination 

occurs in the analyzed sequences. Here we opted to maintain the full alignments, 

irrespective of possible recombination events because it has been shown that the 

negative impact of intra-locus recombination in the estimate of species-trees in 

coalescent based methods is negligible (Lanier & Knowles 2012). Input files for BEAST 

were generated in BEAUti. Specimens were a priori assigned to populations, a 

requirement of *BEAST, based on the main clades from microsatellite results, plus L. 

capensis from China (obtained from GenBank) and the other hare species included in 

the previous analysis. The outgroup was not included in the species tree as this 

method estimates the root of each gene tree and uses the multispecies coalescent. 

(Heled & Drummond 2010; Melo-Ferreira et al. 2014b). Four different datasets were 

analyzed and compared:  

1. All L. capensis populations and hare species, including five nuclear loci 

included to understand the relationship between populations and 

neighboring species; 

2. Same as the first inference, but in this case excluding South African 

population of L. capensis, since this population individuals only amplified for 

three of the five nuclear loci; 

3. The two genes which did not amplified for South African L. capensis 

population were excluded in all L. capensis populations and species 

analysed: this species tree only includes three nuclear loci, but all 

populations and species; 

4. L. capensis populations (excluding Chinese population) and L. saxatilis, to 

understand the relationship between African populations, including the five 

loci. 

 

Nucleotide substitution models were set for each locus as assigned by 

jModelTest. In cases for which the best-fit model as determined by jModelTest was not 

implemented on BEAST, the next most parameterized model available was used. 

Posterior phylogenies were determined in *BEAST using an uncorrelated lognormal 

relaxed clock and the Yule tree prior. Prior settings were set as default except for the 
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relaxed clock standard deviation prior which was set to an exponential distribution with 

a mean of 0.5 as recommended by the authors. Three independent runs of 

250,000,000 generations sampling every 25,000 generations were performed. 

Convergence of the Markov chain Monte Carlo (MCMC), stationary of the runs and 

effective sample size (ESS) for each parameter of interest in the analysis were 

evaluated using the software Tracer. The initial 10% of the runs were discarded as 

burn-in. Summary trees were generated in TreeAnnotator. The resulting trees were 

then analyzed in FigTree. Note that this model assumes no gene flow among the 

considered species/populations. Therefore, this was verified by other means (see 

below).  

 

2.4.5 Demography 

Demographic inference methods were applied by Bayesian skyline plots (BSPs; 

Drummond et al., 2005) with mtDNA for each phylogenetic lineage and the derivative 

extended Bayesian skyline plot (EBSP; Heled & Drummond 2008) including all five 

nuclear gene data for each microsatellite cluster using software BEAST v1.8.1. Both 

types of markers were separated in the analysis given the strong discordances found in 

some instances, with possible causes that would violate the assumption of panmixia. 

Operators of each EBSP run were adapted as indicated in the manual on the 

―operators section‖. Three independent runs of 100,000,000 generations were 

performed for each Cytb and nuclear cluster using the best-fit mutation model selected 

with JMODELTEST or the next-most complex model implemented in the program. 

Tracer was used to evaluate the combined runs, and LogCombiner performed the joint 

of log files and tree files. EBSPs were plotted using the GraphfromCSV python script 

provided with BEAST package v1.6.4. The substitution rates for Cytb and nuclear 

genes were taken from Melo-Ferreira et al. (2012). 

 

2.4.6 Inferring parameters of population divergence and testing 

for mtDNA introgression 

 The history of divergence among distinct evolutionary entities uncovered by this 

work was further explored using the isolation-with-migration framework (Hey 2010). 

This analysis was applied in three instances, with distinct objectives: i) to clarify the 

divergence of the Arabian population which was inferred to be a distinct evolutionary 

unit both for microsatellites and mtDNA analyses; ii) to understand to what extent the 
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geographical fragmentation between South and North African Lepus capensis 

corresponded to fragmented evolutionary history and divergence; and iii) to estimate 

parameters of nuclear divergence between the Near East L. capensis population and L. 

europaeus, which appeared as discordant in the analyses of mitochondrial and nuclear 

DNA. The inferred parameters of divergence, using Ima2 (Hey 2010) were effective 

population sizes, divergence times and migration rates (gene flow). The Isolation-with-

migration model (IM) assumes the divergence of an ancestral population into two 

descendent populations‘ t generations ago and since then gene exchange could have 

occurred based on nuclear genes (Hey & Nielsen 2004). Under this model, the 

likelihood of gene exchange among these 3 pairs of populations and relevant 

demographic parameters for the nuclear data were estimated. 

Given that the isolation-with-migration model assumes no recombination within 

each locus, each dataset was reduced to the largest non-recombining blocks, using 

IMgc software (Woerner et al. 2007), which has been shown to reduce the potential 

biases in the final estimates (Strasburg & Rieseberg 2010). In total, three independent 

runs were performed, varying the parameters‘ upper bound priors and the starting 

seeds and using the HKY mutation model (Hasegawa et al. 1985) (since there are 

multiple substitutions at single sites),  to assess the consistency of the estimates. 

Moreover, the likelihood ratio test was applied to assess whether migration was 

significantly different from zero as described by Nielsen & Wakeley (2001). The locus 

specific mutation rates calculated by Melo-Ferreira et al. (2012) were used. 

Additionally, demographic parameters (divergence time (t), effective population size 

(Ne) and population migration rate (2NM)) were calculated and converted into 

biologically meaningful demographic parameters from the highest posterior density of 

each parameter and using the geometric mean of the locus-specific mutation rates 

times. 

To investigate whether the mito-nuclear discordance inferred for the Near East 

Lepus capensis population was due to mtDNA introgression from Lepus europaeus, 

coalescent simulations were done with the software SIMCOAL V2.1.2 (Laval & 

Excoffier 2004). MtDNA datasets were simulated under a coalescent model with no 

gene flow using the parameter of divergence inferred with Ima2 from the nuclear loci. 

The methodology used is the same used by Melo-Ferreira et al. (2012, 2014). The 

estimates of population size and divergence time from the IM model calculations were 

used as input to simulate 10,000 sets of Cytb data. The assumed model applied was 

an ancestral haploid population of size NeA/2 which splits into two descendant 

populations of sizes Ne1/2 and Ne2/2, t generations ago, with no gene flow occurring 

after the split between the two descendant populations. The Cytb mutation rate used 
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was that calculated by Melo-Ferreira et al. (2012) for hares. Also, for each of the 

10,000 replicates, the minimum pairwise uncorrected p-distance between the simulated 

descendant populations was collected and a distribution of expected these minimum 

distances was created. The empirical pairwise distance for Cytb (calculated with MEGA 

v.6 software; http://www.megasoftware.net/mega.php ) was considered to reject the 

null hypothesis of strict lineage sorting model, i.e. to suggest introgression, if lower than 

the 5th percentile of the simulated minimum distances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.megasoftware.net/mega.php
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3. Results  

3.1 Laboratory analysis of samples from different sources 

The final set of samples used in this study had different origins, which 

corresponded to distinct rates of success in their analyses (final dataset represented in 

fig. 5 with samples for which at least one marker was analysed and included in this 

study). For mtDNA, PCR amplification and sequencing of road kill tissue samples, was 

generally successful, working properly for 155 out of 176 samples. From the 6 samples 

of L. saxatilis, only one amplified for Cytb. For the faeces and bones, Cytb amplification 

and sequencing was successful for all five samples. On the contrary, museum samples 

showed a low rate of amplification success, only a small part being correctly amplified 

(26 from the initial 79). Additionally, mtDNA sequencing showed evidences of DNA 

degradation in samples obtained from museum specimens: in a total of ten samples, 

double peaks due to deamination in the sequence electropherograms were observed. 

These ten sequences were excluded. In contrast, no double peaks were seen in 

sequences obtained from fresh tissue samples.  

Microsatellite genotyping also failed for most of the museum samples, likely due 

to DNA degradation: from the 79 available only 29 were successfully genotyped. For 

the road kill samples, the successful microsatellite genotyping was 148 samples out of 

176. Only one sample of Lepus saxatilis was correctly genotyped for the microsatellite 

loci used in this work. Neither bone nor faeces samples were correctly genotyped. 

A subset of the samples was selected for amplification and sequencing of 

nuclear DNA loci and, out of the 80 samples, the maximum amplification rate includes 

75 for the Transferrin gene and the minimum concerned 50 samples for OXA1L 

fragment. The same sample of L. saxatilis was successfully amplified for four of the five 

nuclear fragments (see appendix 1 for detailed description of samples‘ laboratory 

success).  
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Fig. 5– Samples integrating the final dataset (faeces and bone samples included in the road kill group). 

 

3.2 Microsatellite data 

From the 35 microsatellites initially tested, 18 polymorphic markers were used 

for genotyping. Groups (which could correspond to populations or eventually species) 

were not assumed a priori. For mere organization of the data, individuals were divided 

according to their country (in total 23) where the number of samples was asymmetric 

between groups (from 1 to 71), though this information was not used for any inference. 

There was no evidence for null alleles. When analysing all 176 samples as a 

population, from the 18 loci, significant deviations from HWE were found in all loci 

except LCP_26, LCP_34 and LCP_ 38 which were found in equilibrium. Significant LD 

was found in 15 out of 153 pairs of loci. The high level of disequilibrium can be due to 

the fact of possible population structure, and a partition by geographic regions was 

taken to check the consistency of the deviations. The dataset was divided into 4 distinct 

populations: North Africa, South Africa, Southeast Africa and Near East. HWE results 

show that for the North Africa population, all loci are in disequilibrium except loci 10, 
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16, 26 and 38.  For LD, results show six pairs of loci in disequilibrium for the Northern 

population, and only three from the six are the same loci in disequilibrium as the 

dataset as one large population. Significant deviations from HWE were also tested for 

each country and from the 18 loci, disequilibrium were found at locus 3 in Morocco, 

Western Sahara and Kenya; locus 37 in Kenya and Morocco; locus 6, 8 and 18 in 

Morocco, while the others were found to be in equilibrium. Only 5 out of the 153 pairs 

of loci showed a significant LD (again in Morocco and Western Sahara, including the 

same loci in HW disequilibrium). Still, before excluding the loci immediately and in 

order to test its potential influence, two independent runs were done with STRUCTURE 

(each with three replicates with the same parameter conditions) to detect if including or 

excluding the marker in apparent disequilibria induced changes in the results. Both 

dataset runs (with and without loci with significantly deviated from HWE) found to 

produce the same results (only slight differences in the proportion of admixture in a few 

admixed individuals was detected. The same happened with the run assuming 

independent allele frequencies: clusters were identical for the correlated and 

independent allele frequency models. Since the disequilibria observed with some of the 

loci were not associated more frequently with particular loci or pair of loci, this may be 

due to regional effects. Consequently, we retained all loci for subsequent analysis. All 

18 loci were highly polymorphic where the number of alleles per locus varied between 

8 (Lcp_37) and 28 (Lcp_8) (see table 1).   

 

Table 1– Number of alleles sampled per locus. 
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The hierarchical analysis of structure identified 22 out of the 176 specimens as 

potentially admixes (using a 0.80 threshold criteria). The final dataset of STRUCTURE 

was reduced from 176 to 154 individuals due to the maximum inferred ancestry below 

0.8 being identified which did not pass through the next rounds. STRUCTURE analyses 

identified hierarchical population division (Fig. 6), in which on the first round, the 

highest likelihood model (K = 2) identified mostly a Northwestern population (with two 

samples of Kenya, one from Tanzania and other from South Africa, corresponding to 

the red samples) and the other cluster with the remnant populations (in green). The 

second round of STRUCTURE did not split the Northwestern cluster into sub-clusters 

(left plot), but the other group was divided into four sub-clusters (K=4; right plot) – 

Kenya, Near East, Arabia and South Africa. Further rounds of the hierarchical 

STRUCTURE analysis did not found additional structure in any of the groups (four plots 

on the right of Fig. 6). Microsatellites detected presence of gene flow between different 

individuals, since 22 individuals were recognized as admix where it was not possible to 

assign them to a single population. In the first round, regions with only one (Sudan, 

Angola, Egypt and Niger) or two (Algeria) samples were admixed in K=2, as well as the 

only L. saxatilis sample. Moreover, regions with considerable sampling were found to 

have admixed individuals too: Morocco (four samples), Mauritania (three samples), S. 

Africa (two samples), Western Sahara and Saudi Arabia (one sample each). In the 

second round, two samples from Israel showed to be admixed with Arabia, one sample 

from Saudi Arabia showed admixture level with Near East population and one sample 

from Tanzania showed to be admixed with Near East and Kenya populations. The final 

hierarchical STRUCTURE clusters are represented in fig. 7. Note that the colors of 

each group indicated in fig. 7 will be from now on used to depict the evolutionary units 

in the following figures. 
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Fig. 6– STRUCTURE bar plots showing the assignment of the individuals to different hierarchical levels of population 

structuring according to the optimal number of clusters. The analysis was based on 18 microsatellite loci and for each plot, 

clusters are represented by a different color. 
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Fig. 7– STRUCTURE hierarchical results (five distinct clades) represented in a map. Each square represents an 

individual, and each lineage is represented by a different color (Near East – dark blue; Arabia – dark green; Kenya – 

light blue; South Africa- light green; the big NW African cluster – red). 

 

 

PCA based on subsets of individuals corresponding to the aforementioned 

groups of STRUCTURE produced plots which tended to resemble the same groupings. 

The first three principal coordinates that resulted from PCA accounted for 13% of the 

total variation (third axe not shown), and allowed identifying the five clusters inferred in 

STRUCTURE (fig. 8).  
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Fig. 8 – PCA output graph based on individual-by-individual genetic distances. Each square represents an individual, 

and each lineage is represented by a different color. The two first axes are shown. NEAST-Near East; SAF-South 

Africa; ARABIA-Arabia; NWA-Norwest Africa. 

 

Measures of pairwise FST across populations showed that all the five grouping 

of STRUCTURE results have a significant genetic differentiation at the highest level of 

genetic structure (Table 2). The values ranged between 0.1 (Near East and NW Africa) 

and 0.29 (South Africa and Kenya).  

 

Table 2 - Pairwise FST values of the five identified genetic clusters. 

 

 

 

 

 

 

 

 

 

 

Clustering results of the BAPS software (fig. 9) showed a substructure that was 

partly consistent with the groups found by STRUCTURE although with notorious 

differences. First, the South African group was included in the big NW African clade. 

Second, from the other four STRUCTURE groups, two were highly consistent (NW 

Africa and Near East) contrary to the other two clusters (Kenya and Arabia) which did 

not completely match the first results. In fact, BAPS structured almost at the individual 

level.  

Pop 1 Pop 2 FST 

S. Africa Kenya 0.29 
Kenya Arabia 0.26 

Near East Kenya 0.26 
S. Africa Arabia 0.20 
Kenya NW Africa 0.19 

Near East S. Africa 0.16 
S. Africa NW Africa 0.13 

Near East Arabia 0.11 
Arabia NW Africa 0.10 

Near East NW Africa 0.10 
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Fig. 9 – Population structure results from BAPS software. Each square represents an individual, and each lineage is 

represented by a different color. 

 

Given the difficulty in defining populations a priori, we tested again HWE, but 

this time for the 5 distinct microsatellite groups a posteriori. The largest group 

(Northwest Africa) was in HW disequilibrium for several loci, as well as with significant 

LD, while the other four populations were in equilibrium. 
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3.3 DNA sequence data 

The length of the final DNA sequence alignments is described in the table 3. In 

order to be possible to compare at the individual level, the final Cytb dataset including 

museum samples (the shorter fragment) used for the mtDNA analysis, was reduced to 

the most similar as possible to the final dataset of microsatellite genotyped samples. 

For the nuclear genes, note that South African population did not amplify for two of the 

five genes (HPX and OXA1L) and sequences of Chinese L. capensis from GenBank 

were only available for two of the five genes (TF and SPTBN1). 

 

 

Table 3 - Description of the final sequence datasets. 

Locus 
Number of 
individuals 

Final alignment 
(including GenBank 

sequences) 

Fragment size 
(base pairs) 

Gene 
position 

Annealing 
Temp. (ºC) 

Mitochondrial 

     Lcp_Cytb (Cytochrome b) 156 205 417 Exon 58 

Lcp_Cytb2 (Cytochrome b) 151 196 223 Exon 57 

     
 Nuclear 

    

 
DARC (Duffy blood group, 
chemokine receptor) 

67 93 880 Exon 58 

HPX  (Hemopexin) 70 96 789 Intron/Exon 60 

OXA1L (Oxidase Assembly 
1-Like) 

50 78 653 Intron/Exon 58 

SPTBN1(Spectrin, beta, 
non-erythrocytic 1) 

65 97 633 Intron 58 

TF (Transferrin) 75 133 419 Intron/Exon 60 

            

 

 

3.3.1 Phylogenetic and phylogeographic patterns 

Network results show that Cytb dataset with museum samples (see fig. 10; 

appendix 6 for dataset without these samples) suggests that nine evolutionary groups 

exist with a clear geographical pattern. Representation of the Network haplogroups on 

the African map can be seen in fig. 11 (with museum samples; appendix 7 without 

museum samples). Based on the microsatellite results, from the five microsatellite 

groups, four are highly congruent with the Network results (Near East, Arabia, Kenya 

and South Africa – represented with the same colors of the microsatellites groups), 

although the big red fifth one in Northwest Africa is now subdivided into five distinct 
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clades (Northwest - North; central; South; Southeast and Kenya/Tanzania). The three 

most Northwestern groups (North, Central and South) have a star-like configuration 

with a central haplotype that was spread and the additional haplotypes were mostly 

connected to the central one by just one mutation. Contrary to the microsatellite results, 

no haplotypes are shared between very distant geographic regions within each clade.  

 

 

 

Fig. 10 - Mitochondrial haplotype network. Each circle represents a different haplotype, proportional to the number of 

shared individuals per haplotype. Branch lengths are proportional to genetic distance between haplogroups. The 

number on the branches represents the number of mutated positions. Each lineage referred in the main text is 

highlighted with a different color. White dots correspond to the median vectors. (Near East- Dark blue; Arabia – dark 

green; Kenya – light blue; South Africa – light green; Northwest Africa is divided into 5 distinct haplogroups: red- the 

most northern one; pink – central; purple – South; orange – Southeast and grey – Kenya/Tanzania). 
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Fig. 11 - Distribution of the African mtDNA haplogroups. Each square represents a different individual. 

 

The phylogenetic tree allows understanding better the evolutionary relationships 

among different clades. The combined results of the BSP Bayesian inference and 

Maximum Likelihood analysis of the data in an unrooted tree are represented in the 

figure 12, including the museum samples (see appendices 8 and 9 for full results; 

appendix 10 for combined tree without museum samples). Low posterior probabilities 

for some nodes were recovered, and only nodes with a support higher than 50% are 

shown in figure 12.  

 

 



FCUP 

      
41 

 

Population history and taxonomy of North African hares (genus Lepus) inferred from genetic variation 

The results corresponding to the smaller sequenced fragment (with museum 

specimens) revealed 13 main clades represented in the map in the figure 13. The 

clades are designated by 1) L. capensis from China and L. timidus; 2) L. europaeus;  3) 

South Africa; 4) samples from Kenya and the sample from Niger; 5) Near East (Israel 

and  Iran);  6) L. granatensis; 7) Arabia and Oman;  four groups from Northwest Africa: 

8) North - which includes samples from Lybia to Maghreb (Morocco), 9) Central - that 

includes samples from Atlantic Costal Sahara (Western Sahara) and from the mountain 

Tagant (Mauritania), 10) South - that includes samples from Atlantic Costal Sahara, 

Southwestern Sahara (Senegal), and mountains Assaba and Afollé (Mauritania) and 

11) Southeast  - includes a sample from Central Sahel (Mali); 12) L. saxatilis from 

GenBank and samples from Kenya; 13) one sample of Lepus saxatilis and a sample 

from Angola. Without museum samples (appendix 11), there are only two small 

changes in the results: 1) without the museum samples from Togo, Ghana and I. 

Coast, the sample from Mali represents alone a distinct group; 2) without the museum 

Fig. 12 - Maximum likelihood and Bayesian inference phylogenies represented in an unrooted tree, estimated for mtDNA; bootstrap 

and posterior probability values above 0.50 are represented in front of each node (red and black respectively). The red dot 

corresponds to where the outgroup, Oryctolagus cuniculus would appear. Lineages: 1) L. capensis from China and L. timidus; 2) L. 

europaeus;  3) South Africa (light green); 4) samples from Kenya and the sample from Niger (light blue); 5) Near East (dark blue);  

6) L. granatensis; 7) Arabia and Oman (dark green);  four groups from Northwest Africa: 8) North - (red), 9) Central (pink), 10) 

South (purple) and 11) Southeast  (orange); 12) L. saxatilis from GenBank and 3samples from Kenya/Tanzania (Grey); 13) one 

sample of L. saxatilis and a sample from Angola (yellow). 
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samples from Kenya, the Niger samples belongs to the Near East group. The Bayesian 

inference with the Yule model corroborates all the major clades of the BSP 

phylogenetic tree (appendix 12). 

 

 

Fig. 13 - Distribution of lineages, based on the phylogenetic results. Each lineage referred in the main text is highlighted 

with a different color. GenBank individuals are not represented (e.g. L. saxatilis individuals which belong to the grey 

clade are not represented). The L. saxatilis sample from our dataset is represented with a star shape in the map. 

 

The estimates of the phylogeny of the mtDNA showed that sequences sampled 

in different species were often closely related or even found in the same clade: clades 

of Near East and Kenya are closely related to L. europaeus; samples from Kenya 

(grey) cluster with GenBank L. saxatilis and Angola sample and one S. African are 

closely related to L. saxatilis sample; sequences downloaded from GenBank classified 

as L. capensis (from China) were placed within or closely related to the L. timidus 

clade. The most highly supported clade was recovered for South Africa, although 

bootstrap values and Bayesian posterior probabilities (BPP) were in general not high. 
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However, there is a good coherence in the phylogeographical groupings. The inferred 

mtDNA phylogeny confirms the major groups inferred with the microssatellite loci, but 

shows further subdivision. Estimates of divergence times were 7.4 million years for the 

L. europaeus/Near East/Kenyan L. capensis clade and Africa (BPP = 0.19), 5.6 million 

years for Arabia and Africa (BPP = 0.18), and 4.5 million years for North and South 

African populations (BPP = 0.25). But due to the low posterior probability these 

estimates can lead to erroneous conclusions. By applying BAPS to the mtDNA 

sequence dataset (fig.14), the principal African lineages shown in figure 12 are 

corroborated, with the exception of lineages 4), 11) and 13) (represented in the figure 

13 by grey, orange and yellow respectively) which assembled together in just one 

cluster. Also, Kenya clade and Near East clustered together as well.  

Genetic distances of the mtDNA BI lineages, measured by pairwise Dxy values 

(table 4) were calculated. All clades showed values ranging from 0.03 (between Kenya 

and N. East) to 0.1 (between NW Africa - North and Arabia). Additionally estimates of 

genetic variability of L. capensis samples including museum samples were high: the 

total haplotype diversity (Hd) was 0.958, the variable positions (S) were in total 61, the 

nucleotide diversity (π) was 0.065 and 60 different haplotypes were found. After 

calculating the haplotype diversity per lineage (for populations with a minimum of five 

samples) the range values were from 0.476 (Kenya clade) to 0.971 (NW Africa – 

Southeast lineage).  Including L. capensis from China plus other hare species lineages, 

the results were for L. europaeus = 0.464; China/L. timidus = 0.914 and L. granatensis 

= 0.378. This means mtDNA populations along NW Africa have a high genetic 

diversity, even compared with other species. The Hd was not calculated for L. saxatilis 

since the dataset only included four samples. 
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Table 4 – Pairwise Dxy values between the principal phylogenetic lineages (NwA C/N/S/SE correspond to the four 

lineages of NW Africa – Center, North, South and Southeast respectively). 

 
Near 
East 

NwA_N NwA_C Arabia NWA_S NwA_SE S. Africa L. europaeus 
China/ L. 
timidus 

L. 
granatensis 

Kenya 
L. 

saxatilis 

Near East * 
           

NwA_N 0.097 * 
         

 

NwA_C 0.092 0.041 * 
        

 

Arabia 0.078 0.110 0.092 * 
       

 

NWA_S 0.088 0.043 0.028 0.095 * 
      

 

NwA_SE 0.085 0.058 0.050 0.093 0.037 * 
     

 

S. Africa 0.072 0.086 0.081 0.087 0.073 0.065 * 
    

 

L. europaeus 0.035 0.093 0.091 0.075 0.079 0.075 0.048 * 
   

 
China/ L. 
timidus 0.102 0.104 0.091 0.090 0.095 0.097 0.087 0.090 * 

  
 

L. granatensis 0.070 0.107 0.095 0.068 0.100 0.083 0.073 0.061 0.091 * 
 

 

Kenya 0.030 0.085 0.091 0.075 0.080 0.076 0.064 0.019 0.099 0.061 *  

L. saxatilis 0.088 0.087 0.072 0.059 0.065 0.068 0.081 0.081 0.094 0.073 0.071 * 

 

 

The nuclear gene trees (appendices 13 and 14) show low supporting values for 

the nodes, where no obvious population differentiation can be identified, contrarily to 

what it is observed with mtDNA and microsatellites results. The same was observed in 

an independent investigation with the same genes, but with other hare species (Melo-

Ferreira et al. 2012). 
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Fig. 14 - Distribution of lineages, based on the BAPS results. Each clade is highlighted with a different color. The L. 

saxatilis sample from our dataset is represented with a star shape in the map. 

 

*Beast is a Bayesian method that takes use of multi-locus data, to infer about 

the relationships between different populations/species (Heled & Drummond 2010). In 

this study, four species tree were reconstructed based on four distinct datasets (see 

Material and Methods). In general, all presented congruent results (see fig. 15 and 16). 

When analysing the African populations‘ dataset (fig. 15), two major clades appear: 

North and South African hares. The species trees which included all 

populations/species and genes (fig. 16) also showed two main clades, but in this case 

splitting African from the non-African lineages (except for the fig.16.1, the tree with only 

three from the 5 nuclear loci, which splits also NW Africa from the South African 

populations). When including South Africa and L. saxatilis (fig. 15, 16.1 and 16.3), 

species trees showed that these two population were recovered as sister taxa (BPP = 

0.63, BPP = 0.65 and BPP = 0.74 respectively). Similarly, is common in all four species 
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trees that Saudi Arabia and Near East are also closely related (BPP = 1). In this case, 

with the dataset which included other hare species, L. europaeus was not closely 

related to Near East, contrary to the mtDNA inferences. The same happened with L. 

capensis from China, which contrary to the mtDNA results, are not closely related with 

L. timidus. We attempted to date the divergence of major clades using the mutation 

rate calculated for the reference nuclear gene (in this case SPTBN1) by Melo-Ferreira 

et al. (2012) according to the Lepus-Oryctolagus divergence. Note that the low support 

found for most of the nodes advice extreme caution when interpreting these estimates. 

The split between NW Africa and S. Africa (BPP = 0.43) is estimated to be 932,098 

years ago (ya) (490,000 - 1,300,000 ya HPD 95% confidence intervals), and NW Africa 

and Saudi Arabia (BPP = 0.56) is 883,040 ya (490,000 - 1,400,000 ya HPD 95% 

confidence intervals). The timing of divergence between the South African L. capensis 

population and L. saxatilis (BPP = 0.74) was estimated in 735,867 (340,000 – 

1,130,000 ya HPD 95% confidence intervals) and around 686,809 ya (440,000 – 

989,000 ya HPD 95% confidence intervals) L. europaeus and N. East have split. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 - Nuclear DNA species tree for the five nuclear loci (the BPP of each clade is shown in each node) for African populations 

and Lepus saxatilis. 
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3.3.2 Demography 

Historical demographic trend was inferred for mtDNA (network haplogroups) 

and nucDNA (microsatellite groups) independently for each African L. capensis cluster 

(given the strong discordances in population structure found in some instances), except 

for 4) clade (two samples from Kenya and one from Tanzania) in the mtDNA since it 

only included three individuals (fig. 17 and 18 respectively). In general, BSP and EBSP 

did not show a clear pattern of population growth through time, although with few 

exceptions. With mtDNA, the method inferred a more evident demographic growth only 

for populations NW Africa – Central and Near East (fig. 17.2 and 17.6 respectively). For 

the nucDNA, the NW Africa population (fig. 18.1) suggests a relatively old expansion 

that may have begun around 600.000 years ago and then a less abrupt continued 

growth. It is important to highlight that although these results are worth considering, 

they must be viewed with caution, since some confidence intervals are very wide. 

Fig. 16 - Nuclear DNA species trees (the BPP of each clade is shown in each node) for African populations and Lepus 
Species (1- without 2 of the 5 genes; 2 – without S. African population; 3 – all populations/species). 
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Fig. 17- Bayesian skyline plots for the African Lepus capensis populations with the mtDNA dataset (1-4 – NW Africa 

clades North, Central, South and Southeast; 5 - Saudi Arabia; 6 - N. East; 7 – Kenya; 8 - S. Africa). Relative population 

sizes are in units of Ne vs. mutation rate and time in million years. Grey lines represent the 95% Confidence Interval 

(IC). 
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Fig. 18- Extended Bayesian skyline plots for the African Lepus capensis populations  with the nucDNA dataset (1 - NW 

Africa; 2 – Saudi Arabia; 3 – N. East; 4- S. Africa). Relative population sizes are in units of Ne vs. mutation rate and time 

backwards in million years ago. Grey lines represent the 95% CI. 

 

 

3.3.3 Population divergence – Isolation- with-migration model 

Under the Isolation-with-migration model, the maximum likelihood IMa2 

software generated co-estimated multi-locus population divergence parameters, 

inferred here for some pairs of populations (see model in fig. 19).  

The consistency of the runs were accessed between each replicate by the ESS 

values higher than 50, the parameter estimates trends along the run and the 

consistency across independent runs, and the shape of the curves. In general, 

parameter estimates did not differ much between replicates and the density curves of 

the parameters‘ estimates for the extant populations were consistent. Among the 

analysed populations, gene flow was never significantly different from zero. Moreover, 

the right tail of the posterior density curves for the ancient population size and the 

divergence time between the pair of populations L. europaeus and Near East failed to 

reach zero. The geometric mean of the nuclear DNA loci was estimated from the locus-

specific mutation rates calculated by Melo-Ferreira et al. (2012) for the estimated 
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parameters‘ values (table 5). Lepus europaeus - Near East and NW Africa - S. Arabia 

were estimated to have diverged about 811,363 and 685,569 years ago, respectively. 

The split time between NW African and South African population was also estimated in 

approximately 804,000.  Among the populations, NW Africa presented the largest 

estimates of effective population size 1,151,002.  

 

 

Fig. 19- The representation of the Isolation- Migration model for two populations, in which diverged T split between two 

populations at a time of divergence from a common ancestral population. The parameter θ1/2/a are the effective 

population size of population, and m is the migration from population 1 to population 2. 

 

 

 

Table 5 - ML estimates (95% posterior density intervals in parentheses) of demographic parameters obtained with IMa2 
between three pairs of populations. 

 

Notes: ᵃ Effective population size of population 1 (Ne1), 2 (Ne2) and the ancestral population (NeA); ᵇTime in years 

since species 1 and 2 split; ᶜPopulation migration rate into population 1 (2Nm2→1) and population 2 (2Nm1→2).  

 

 

Pop.1 Pop.2 Ne1ᵃ Ne2ᵃ NeAᵃ t ᵇ 2Nm1->2ᶜ 2Nm2->1ᶜ 

N. East   L. europaeus 239,889 152,825 173,665 811,363 0.01 0.05 

  
(120,871; 445,972) (76,413; 262,582) - - - - 

NW Africa S. Arabia 1,151,002 153,048 52,414 685,569 0.04 0.01 

    (836,520; 1,589,179) (69,186; 287,226) - (427,695; 997,954) (0.00; 1.65) - 

S. Africa NW Africa 210,602 841,319 37,549 805,403 0.01 0.03 

  - (527,321; 1,303,883) - (374,403; 1,436,665) - - 
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3.3.4 mtDNA introgression - Coalescent simulations 

 The estimates of effective population size and divergence time obtained under 

the IM model were used to simulate Cytb datasets under a model with no gene flow. 

This represents the expected distribution of minimum pairwise distances for Cytb 

between these population that would be expected from incomplete lineage sorting 

alone (fig. 20, blue bars). The observed pairwise mtDNA divergences (fig. 20 – red 

bars) were smaller than the 5th percentile of the simulated minimum distances, 

suggesting that incomplete lineage sorting does not explain the Cytb proximity, which is 

likely due to introgression. Distances between NW Africa and L. europaeus (fig. 20 – 

green bars) were found to lie mostly within the range of distances expected under a 

strict lineage sorting scenario (although some values are rather extreme emerging on 

the opposite 5th percentile of the Near East-L. europaeus results, which may indicate 

that our test was conservative). 

 

 

 

Fig. 20 - Results of the coalescent simulations of mtDNA sequences from population parameters estimated with multiple nuclear loci. The 

distribution of the simulated minimum pairwise uncorrected p-distances between L. europaeus and Near East population is given by the 

bars - lowest 5th percent (red bars), highest 95% (blue bars) and empirical data of NW Africa. Vertical line indicates the 5th percentile of 

the distribution of simulated distances. 
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4. Discussion  

The magnitude of a combination of past climatic and stochastic dispersal events 

resulted in the contemporary pattern of species diversity and distribution in Africa 

(Kingdon 2013). The climatic oscillations that characterized the Pleistocene led to 

distinct population dynamics depending on life history and geography, and the current 

genetic constitution of the populations and species carry signals of these past 

dynamics (Hewitt 2004). Consequently, by studying these patterns caused by alternate 

periods of expansion and retraction, it is possible to clarify the importance of historical 

events in shaping Africa‘s biodiversity (Menegon et al. 2014). North Africa has been 

affected by climatic oscillations, mainly in the Pleistocene, that influenced the range of 

the Sahara and organisms inhabiting it. The biogeographical intersection between the 

Palearctic and Afrotropical regions in the Mediterranean basin is considered a hotspot 

of biodiversity (Cheylan 1991; Kowalski & Rzebik-Kowalska 1991; Myers et al. 2000), 

although the historical processes that shaped biodiversity in the North African part of 

this region still remains only partly understood. Moreover, due to the intersection of 

climatic regions, Northwest area is also compared with an ―island‖ as it is isolated by 

the ocean and the desert, with natural endemism (Cooke 1963).  

Despite Africa being generally rich in biodiversity, information about what 

organisms are present and the diversity and taxonomy of the already described 

organisms is still deficient. Additionally, detailed studies on the evolutionary events that 

shaped the existing diversity and the relationship of the evolutionary patterns related 

with biotic (e.g. ecology) and abiotic (e.g. climate) factors are still missing. The existing 

studies on the complex genus Lepus in Africa were mainly based on evidences of 

morphology and/or palaeontology, which are limited sources of information, due to the 

large overlap of characteristics between species. This is a consequence of the rapid 

radiation and potentially reticulate evolution which has been widely studied in other 

regions where other species of this genus occur. Few molecular investigations on 

African hares were done, but mainly on small and specific areas (e.g. Ben Slimen et al. 

2005, 2006; Suchentrunk et al. 2009). Molecular data (e.g. Kryger 2002; Kryger et al. 

2004) are mainly restricted to South African species (L. saxatilis and L. capensis) with 

a small reference made to individuals from Mozambique and Morocco (Alves et al. 

2003a; Melo-Ferreira et al. 2012). Also, other molecular study for African and near 

African taxa include the Mediterranean hare (L. c. mediterranus) (Pierpaoli et al. 1999) 

and the African species L. starcki and L. habessinicus (Azzaroli Puccetti 1996; Tolesa 

2014). 
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 This study sought mainly to clarify the diversity, taxonomy and the relationship 

of the evolutionary patterns in Africa, using the genus Lepus as a model. Due to the 

lack of integrative investigations, the taxonomy and evolutionary history of this genus in 

Africa are still unclear. It is focused mainly on Lepus capensis, which is poorly 

understood and have been under less attention, being described as having one of the 

broadest distribution areas among hare species. We took advantage of multilocus 

analysis seeking to address the perspective of different types and levels of information 

that the different markers could provide. Molecular tools were chosen to infer possible 

biogeographic patterns related to intraspecific divergence, phylogenetic 

interrelationships and geographic distributions of the phylogenetic groupings so the 

taxonomy and systematics could be clarified. Although the nuclear dataset for gene 

and species trees datasets were not reduced to the large non-recombinant block, 

evidences were shown in other investigations that recombination had little influence in 

the phylogenies (e.g. Lanier & Knowles 2012; Melo-Ferreira et al. 2015).The results of 

this investigation not only answer the initial proposed objectives, but also open new 

avenues of research to be addressed in the future. Moreover, the advantage of using 

more than one class of markers, especially for species with large populations, high 

dispersal and recent colonization histories was shown.  

 

4.1 Population structure, phylogeny and phylogeography  

Analyzing genetic patterns gives insights into species colonization and 

sometimes uncovers unexpected genetic subdivision, distribution and mixture of 

species, which can greatly help our understanding of how organisms were affected by 

climate oscillations (Hewitt 2000). Several molecular biogeographical studies 

performed in North African species suggested high levels of genetic diversity, with the 

majority of taxa exhibited multiple endemic genetic lineages and divergence estimates 

for many clades date back to the Pliocene (e.g. Pook et al. 2009; Habel et al. 2012; 

Husemann et al. 2012). Also, splits between North African lineages are often deeper 

than among the European ones (Husemann et al. 2014). 

 One interesting comparison is the phylogeography of the African clades with 

the savannah ungulates just from sub-Saharan biomes, where harbors the highest 

diversity of these hoofed mammals. There is a striking concordance in the structure 

between 19 species with regional distinct lineages. This reflects the survival and 

divergence of isolated populations in savannah refugia during the climate oscillations of 

the Pleistocene in West, East, Southern and South-West Africa (Lorenzen et al. 2012). 
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These lineages are similar with the lineages found in this study in sub-Saharan areas, 

meaning that due to the environmental instability in some parts of Africa, it enabled 

several spatial refugia that is reflected in the high inter-and intraspecific diversity.  

Population genetic analyses continue to be one of the most common 

approaches to infer population differentiation, where unraveling unknown cryptic 

diversity is clearer when the systematics of the species is poorly understood. The 

arbitrary definition of population as a basis for genetic analysis can skew the analysis, 

inhibiting the detection of unknown patterns, leading to misinterpretation of the inferred 

patterns and possible unsuitable conservation strategies. So, in this work, individuals 

were assigned into genetically distinct groups based on their multi-locus genotypes and 

this was used to detection of population boundaries and structure. The results revealed 

strong biogeographic structuring at the genetic level, inferred from the microsatellite 

data using Bayesian clustering methods, and deep divergences based on both mtDNA 

alone and on the set of sequences from five nuclear DNA loci, based on phylogenetic 

analyses. Five major geographically explicit groups were identified in Lepus capensis 

based on microsatellite analysis, and mtDNA supports and suggests further 

substructuring in the Northwestern part of Africa. The divisions of the most widespread 

microsatellite group in NW Africa which divides into distinct 5 with mtDNA (fig. 13) will 

be here denominated by: I – the most Northern one (red; fig.13); II – Central (pink; 

fig.13); III – South (purple; fig. 13); IV – Southeast (orange; fig. 13) and V – 

Kenya/Tanzania (grey;fig.13) to be easier to distinguish them. 

The results underline the potential of these 18 loci to be useful in population and 

conservation genetics studies of important or endangered relevant units of African 

hares, where these groups might represent newly discovered evolutionary units or 

possible cryptic differentiation. It is also important to highlight that even with supposed 

less genetic resolution due to the smaller Cytb fragment, the use of museum 

specimens (and consequently taking advantage of more populations) allowed acquiring 

information that the other analysis based on modern samples and with a larger 

fragment did not.  
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4.1.1 Differentiation and diverging entities present in Africa and 

Near East 

Microsatellite analysis showed five distinct groups with good geographical 

coherence: Near East; Arabia; Kenya; South Africa; NW African (plus two samples 

from Kenya, one from Tanzania and one from S. Africa). These groups were 

corroborated by STRUCTURE and PCA (fig. 7 and 8), and FST results (table 2) support 

this population structure as well. However, the structure inferred using BAPS was more 

profound, sometimes almost at the individual level. This is relatively common since it 

was reported by other authors (e.g. Gordon et al. 2008; Bohling & Waits 2011) which 

used both programs with microsatellite analysis. But this extra-structure can be justified  

by  differences in the underlying algorithms (Frantz et al. 2009). Moreover, both 

software programs are assumed to be powerful Bayesian tools to detect genetic 

structure (Latch et al. 2006).  STRUCTURE has been shown to  better detect an 

admixed genotype when compared to BAPS and to correctly estimate an individual‘s 

true ancestry composition, but BAPS is more likely to classify single individuals as a 

group (Bohling et al. 2013). Alternatively BAPS may overestimate genetic structure 

when analysing at the individual level. Still, comparing the results of both programs, the 

largest populations are congruent: Northwest Africa, South Africa, Arabia, Near East 

and Kenya. Nevertheless, although BAPS and mtDNA datasets sub-structured more 

compared with STRUCTURE results, the sub-structuring is not congruent between 

BAPS and mtDNA. For instance, the NW African STRUCTURE group continues mainly 

intact with BAPS (few individuals are identified as different populations), but this same 

group is divided into five with the mtDNA dataset.  

Although the most widespread microsatellite group is mainly in NW Africa 

(which divides into distinct 5 with mtDNA), 4 more museum samples were also included 

in the group: two samples from Kenya, one sample from Tanzania and one sample 

from South Africa, and this can have several possible explanations. First, it can result 

from the retention of ancestral polymorphism or lack of sampling of lineages between 

Northwest and South. However, other plausible explanation is that individuals can 

occupy a large area from North to South and Kenya. The possible migrating until South 

can be explained by the vegetation along the coast as it is observed in other species 

(e.g. Honey Badger (Mellivora capensis; Begg et al. 2008). Additionally, the distribution 

until Kenya (West to East Africa) is also common with other species (e.g. Northern 

Lesser Galago (Galago selegalensis; Bearder et al. 2008); Patas Monkey 

(Erythrocebus patas; Kingdon et al. 2008); Zorilla (Ictonyx striatus; Stuart et al. 2008)) 

and can be due to areas of forests, vegetation and savannah that are found right below 
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the desert, forming a possible ecological corridor. Alternatively, the sample from South 

Africa can result from miss identification of the sample locality in the museum 

database. This however seems rather unlikely since the mtDNA analysis groups these 

samples with L. saxatilis and Angolan samples (yellow group; fig. 13), which makes 

geographical sense. Regarding the phylogenetic analysis based on mtDNA obtained 

for NW African populations, is worth considering the clearly higher structure in 

geographic space for the mitochondrial DNA when compared to the microsatellite 

results: the red microsatellite Northwestern group divides into five mtDNA lineages (fig. 

7 and 13). This can result, first, from the genomic features of the mitochondrial DNA – 

haploid and uniparentelly inheritated – leading to a complete process of lineage sorting 

faster than nuclear DNA (Funk & Omland 2003), or, second, from population evolution 

processes, such as sex-biased dispersal asymmetries (male mediated dispersal and 

female philopatry), other demographic disparities between males and females or 

human introduction (Toews & Brelsford 2012). Species with male-biased dispersal 

should have more mtDNA structure and therefore the use of nucDNA markers (in 

addition to mtDNA) will help prevent biases when determining population structure 

(Fahey et al. 2014). In this case, male mediated dispersal and female philopatry 

appears to be plausible leading to a low dispersion of the maternally inherited mtDNA. 

This is likely to happen since philopatry has been observed in different hare species. 

One example is hares in the Iberian Peninsula whose mtDNA suggests female 

philopatry, although in an introgression context (despite the successive introgressions, 

mtDNA remained in place) (Melo-Ferreira et al. 2014a). This sex-specific difference in 

gene flow was also evident even on small geographic scale between neighboring 

populations (Fickel 2003; Fickel et al. 2005) in European and Asian species (Hamill et 

al. 2007; Mamuris et al. 2010), and in the South African Cape hares and Scrub hares 

(Lepus saxatilis) by Kryger (2002) was concluded from molecular data too. One must 

also consider the possibility that our microsatellite dataset is not properly uncovering 

the detailed population structure on this region. We noted that several microsatellite 

loci were found to be in HW and linkage disequilibrium in the population from this 

region and its effective population size inferred with the IM model from nuclear 

sequence data is extremely large. Both patterns could be due to hidden structure. 

However, given that the microsatellite dataset proved efficient in detecting many other 

instances of population structure corresponding to variable levels of divergence, this 

possibility seems at this point unlikely. 

 Recognizable biogeographic provinces presumably exist in North Africa, 

because of environmental impediments (ecological and/or physical; historical as well as 

contemporary) to dispersal and gene flow. These impediments are conventionally 
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recognized as reflected in the coincidence of distributional limits for different species or 

populations, and lead to the divergence of evolutionary lineages. The 5 sub-divisions of 

mtDNA compared with one microsatellite group have shown several biogeographic 

aspects that are worth noticing. The distribution of the mtDNA clade I (represented in 

red in fig. 11 and 13) covers most of the Maghreb expanding throughout Tunisia and 

Libya, and the Atlas Mountains (see figure 20 for main mountain massifs and rivers) do 

not seem to be a barrier since some individuals occur above and below the mountain 

chain. However, for animals with low dispersion, for example Mediterranean Pond 

Turtle (Mauremys leprosa; Fritz et al. 2006) and Bibron‘s Agama (Agama impalearis; 

Brown et al. 2002), this mountain chain has been shown too to act as a barrier to gene 

flow, where distinct clades occur on the different sides of the mountains. On the 

contrary, the mtDNAclade II (represented in pink in fig 11 and 13) seems to be endemic 

to the Atlantic Coastal Sahara, occurring along the Atlantic coast from the southern 

slopes of the Atlas Mountains to the Tagant Mountain of Mauritania. The region 

exhibits also other endemic forms, such as the Helmethead Gecko (Tarentola 

chazaliae; Le Berre 1989) or Tarfaya Shrew (Crocidura tarfayensis; Le Berre 1990). 

Since they are limited by the desert, they benefit moisture winds from the Atlantic which 

leads to optimal conditions. Apparently, rivers do not constitute barriers to dispersal for 

the clade III (represented in purple in fig. 11 and 13), which occurs to the North and to 

the South of the relatively wide and deep Senegal River (fig. 21). The members of this 

clade are distributed also in the mountains of Adrar Atar (fig. 21) in Mauritania. 

Moreover, the region between clades II and III lacks evident barriers to gene flow: it is 

mostly flat and the single river present in the area (river Lakra; fig. 21) is dry most of 

the year. Thus, the contact zone apparently does not occur in an ecotone and probably 

constitutes a hybrid zone. The contact may result from expansion from refugia, when 

both clades meet in secondary contact.  Demographic inferences show that, for the 

nucDNA dataset, NW African clade (without museum samples, which comprehends 

these three mtDNA lineages) suggests a relatively old expansion that may have begun 

around 600.000 years ago. Even though the results do not seem robust, if this 

inference is accurate, it is coincident with the Pleistocene glaciations.   

  The mtDNA clade IV (represented in orange in fig. 11 and 13) was detected 

from the Central Sahel (Mali) until Togo/Ghana and further sampling is needed to 

delimit the distribution of this clade. But, one plausible explanation is that the Niger 

River (e.g. Brouat et al. 2009; Dobigny et al. 2013), as also seen in other river systems 

(e.g Robbins 1978; Nicolas et al. 2006), acted as geographic barrier and isolated this 

population. Considering the high diversity observed in NW Africa, this Lepus capensis 

species complex has probably occurred in this region as the mountain chains may 
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have played a role by acting as refugia in periods of climatic instability and facilitating 

isolation (Barata et al. 2012) as mtDNA suggests. But currently, with the Atlantic-

Sahara corridor (see fig. 22 for main ecological corridors), male migration along the 

Western coast is possible for all four lineages which is observed with microsatellites as 

these markers can tell a more recent history, while females tend to stay on their home 

places, if the female philopatry hypothesis is true. The final mtDNA clade, V 

(represented in grey in fig. 11 and 13), only incorporates three samples: two from 

Kenya and one from Tanzania. As mentioned before, it is possible that due to the 

vegetation that exists right below the desert, now it can act as an ecological corridor 

and the individuals can migrate from Northwest to East Africa, but in the past there 

could have been a barrier in between. But in Kenya exist 2 distinct lineages and 

despite this grey clade, microsatellites and mtDNA detected a distinct lineage with 

samples just from this country (represented in light blue in fig 7, 11 and 13). 

Additionally, an intriguing issue is the sample from the East Sahel (Niger; shown in fig. 

11 and 13), which clusters with this second Kenya lineage, independently of the large 

geographic distance. Probably there are lineages missing due to the sampling gap 

between these two areas. Samples constituting this light blue lineage belong to the L. 

capensis distributional range according to IUCN distribution map, but this lineage 

shows be a distinct evolutionary entity. Further sampling is needed to determine the 

distribution of the haplotype as well as other possible cryptic diversity present in the 

region. The results also suggested that probably there is a barrier to the dispersion and 

female gene flow between Mali and Niger since there were two distinct lineages 

according to mtDNA (Niger sample was an admix individual for microsatellites). 

 

Fig. 21– Main mountain massifs and rivers of North Africa (adapted from Brito et al. 2014). 
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The mtDNA phylogeny (network and tree, fig. 10 and 12 respectively) 

suggested obvious lineage divergences, overall revealing nine distinct 

haplogroups/lineages in Africa, Arabia and Near East with geographical meaning. 

Some of these groups are more divergent from the Northern populations (Near 

East/Kenya, Saudi Arabia/Oman and South Africa as well), which may represent 

different diverging entities. Also, some clades like Kenya and Near East are closely 

related to each other. But different origins can explain these situations. First, although 

some biodiversity corridors across the Sahara desert have been fragmented and have 

contributed to the isolation of certain populations, others continue to play an important 

role in species dispersal and in facilitating gene flow (Brito et al. 2014). Besides the 

Atlantic Sahara corridor which was described above, Nile River and Red Sea Sahara 

corridors (fig. 22) perhaps explains the proximity of the Kenya and Near East clades, 

where individuals can freely migrate, with suitable vegetation along the East track. 

 

 

 

 

Fig. 22 – Three ecological corridors in North Africa are represented with a black grid effect. The red dashes represent ecotones (adapted from 

Brito et al. 2014).  
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4.1.2 Saudi Arabian hares are a divergent evolutionary unit 

 Both in microsatellite (except for one individual which was admixed) and 

mitochondrial analysis, Saudi Arabia showed to be an independent and differentiated 

group. After testing possible nuclear gene flow under the isolation-with-migration model 

between NW Africa and this population, the results did not suggest gene flow. As water 

systems like seas and rivers acting as a barrier to gene flow between species and 

populations have been reported before, it is possible that with the disjunction of the 

Euroasiatic plate and with the opening of the Red Sea, it acted as a geographical 

barrier and desert in the North part also isolated populations of the Saudi Arabia/Oman 

from North African populations. This split was estimated to be between 700,000 to 

880,000 years ago, which dates back to the middle Pleistocene, where probably this 

population differentiated into a different evolutionary unit. Also, morphology supports 

the idea that we are in the presence of a new possible species, since the Arabian hare 

is much smaller than the hares in Europe and Africa, but its conservation status was 

not evaluated yet (Dubai desert conservation reserve; http://www.ddcr.org).  Although 

just in this region different L. capensis subspecies have been already identified based 

on morphological characters (Hoffmann & Smith 2005), this group may be recognized 

for their genetic, geographical and morphological differences. The identification of a 

subspecies should be sufficient as first-order systematic hypothesis when the aim of 

conservation is to preserve biological diversity (Green 2005).  

 

4.1.3 Phylogenetic relationships with neighboring Lepus 

species  

The understanding of the deep divergences found in L. capensis requires an 

integrated analysis including other neighboring hare species. Taking into account the 

ML and BI trees for mtDNA, the Network results of the African hares are corroborated. 

But, when adding more species and populations from GenBank, namely L. capensis 

from China, L. saxatilis, L. granatensis, L. europaeus and L. timidus, the phylogenetic 

trees allows better understanding the evolutionary relationships among different clades 

and species. Although the supports are not high, there is evidence for strong 

biogeographical structuring of genetic diversity and population differentiation where 

some populations are closely related with other species (e.g. L. saxatilis and South 

African populations; L. timidus and Chinese L. capensis; also Brown hares (L. 

europaeus) show phylogenetic affinities with Near East hares and Kenya). Since the 

proximity of the S. African population to L. timidus - L. capensis from China (fig. 12) 
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was not observed in the inferences without museum samples nor in Lado et al. (2013), 

interpretation will not be done.  

 

4.1.3.1 L. capensis and L. saxatilis 

Although Cape of Good Hope, in South Africa, is the type locality of the cape 

hare Lepus capensis, a single species (capensis sensu lato) that inhabits Africa and 

Near East, Flux & Angermann (1990) and Hoffman & Smith (2005) mentioned there is 

no evidence of gene flow between the South Africa and the populations in East, West 

and North Africa. Analyzing the results of this work, the South African population shows 

to be an independent entity from the other L. capensis populations. In fact when 

analyzing the nuclear divergence using the species tree method (i.e. based on the 

distinct microsatellites groups), the results showed two main clades: Africa versus ―no 

Africa‖, and North versus South African populations. The four species tree (Fig. 15 and 

16) showed geographical meaning and the level of divergence between some lineages, 

are as deep as between other species. In the species tree, L. saxatilis and S. African L. 

capensis population are more closely related (sister taxa) than these L. capensis to the 

North African ones. An isolation-with-migration model analysis suggested that these 

populations did not exchange genes since their divergence. The absence of sharing of 

mtDNA variation and of admixed individuals between these populations in the 

STRUCTURE analysis is also compatible with the absence of gene flow between north 

and South African L. capensis. Under the IM model, the split time was estimated to be 

800,000 ya in the Middle Pleistocene, and with the species tree inference (BPP = 0.74) 

South Africa and L. saxatilis were estimated to diverge 700,000 ya. This result 

suggests a disjunction between the taxonomic classification and the evolutionary 

history of these populations. Note that this pattern agrees with another independent 

study based on another set of nuclear genes and sampling (Tolesa 2014).   

 

4.1.3.2 L. saxatilis distribution range 

 The geographic range of L. saxatilis includes South Africa, Swaziland, Lesotho 

and the Southern regions of Namibia (Collins et al. 2008). In other mtDNA studies, 

there were evidences that suggested L. saxatilis comprises different lineages (Kryger 

et al. 2004) with at least seven forms as synonyms just in South Africa.  
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 The only L. saxatilis sample which could be amplified for mtDNA is from 

Botswana, which is not included in the original distributional range of the species, but 

geographically close. This sample clustered with the museum sample of cape hare 

from S. Africa and with the only sample from Angola (group 13 described in the fig. 13). 

However, the other mtDNA sequences of L. saxatilis specimens from GenBank 

clustered with the group  4 (two samples from Kenya and one from Tanzania; fig. 13). 

Assuming that the sample from Botswana and the sequences from GenBank truly 

represent L. saxatilis, can this translate a larger distribution of Lepus saxatilis 

corresponding to both mtDNA clades 4 and 13 represented in the figure 13. More 

samples are needed to address this question since due to sampling gaps the genetic 

diversity is underestimated, as well as the inclusion of other markers, to access the 

present of unknown lineages in the region. 

 

4.1.3.3 Lepus timidus and Chinese L. capensis 

Regarding mtDNA phylogeny results, Chinese cape hares clustered within the 

clade of L. timidus. This haplotype sharing may result from incomplete lineage sorting 

affecting mtDNA, genetic introgression events or indicate that these Chinese L. 

capensis correspond to a distinct species, closely related with L. timidus. When 

analyzing Chinese hare relationships, Wu et al. (2005) concluded that L. capensis, a 

species also with a broad distribution, does not occur in China since its mtDNA was 

similar to that of L. timidus. Also, Yu (2004) had previously proposed that the Chinese 

hares most probably derived from L. timidus. However, these conclusions were based 

on mtDNA alone which may lead to erroneous taxonomic assessments, as mtDNA 

introgression is frequent among hares (Alves et al. 2006). Considering that L. timidus 

was able to maintain a large and continuous area of distribution during the glacial 

periods (Melo-Ferreira et al. 2007), it seems possible that it could be in contact with L. 

capensis, leading to hybridization and introgression of mtDNA. Finally, the persistence 

of ancestral genetic variants in L. capensis could also eventually explain the presence 

of L. capensis haplotypes that were closely related with L. timidus, even if this 

hypothesis seems less likely. Regarding nuclear divergence results, there is mito-

nuclear discordance in the phylogenetic pattern, given that for mtDNA these two 

population belong to the same lineage, contrary to the nucDNA results, which may 

indeed result from mtDNA introgression. Note however that sequences for only two loci 

were available for Chinese L. capensis and a more thorough assessment would be 

needed in the future. 
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4.1.3.4 Lepus microtis and Lepus capensis 

Another interesting issue are the museum samples considered to be L. 

victoriae, now recognized as L. microtis that were not discriminated along the analysis. 

If these samples actually belong to the African Savannah hare, which in fact follow the 

known distribution according to IUCN distribution map (Smith & Jonhston 2008), the 

results did not show a distinct lineage for this species samples. According to 

microsatellite analysis, these samples do not show any genetically differentiation where 

all samples were included in the big red widespread clade. Even with BAPS, which can 

attribute to just one individual a single clade, there was no evidence for being a 

different population entity. Regarding the mtDNA phylogeny, it is clear that individuals 

assigned as L. microtis are two independent clades (IV and V), but close to the other 

North African lineages. Taking into account these results, several conclusions can be 

taken. If these samples are really representatives of L. microtis, genetically the 

divergence between the two widespread species is not sufficient to distinguish them. 

However, one hypothesis is the possibility of homoplasy of the microsatellites between 

species affecting the accuracy of the analysis, which has been reported before (see 

Culver et al. 2001). On the contrary, if these samples are in fact L. capensis and the 

samples‘ locality is accurate, the range distribution of these species needs to be 

reviewed. Another hypothesis is that the morphological differences observed and used 

to distinguish the two species are due to mere local adaptation, which would imply that 

all North African hares should be classified as L. capensis. But it is important to 

highlight that these are all suppositions based on genetic inferences, since the 

taxonomic difficulties are a result of inadequate diagnoses of the species. Also, due to 

the sampling gaps, the diversity is underestimated and since the morphology of the 

individuals was not accessed, this issue cannot be truly debated.  

 

4.2 Sampling gaps 

This work took advantage of a wide range of samples along Africa and Near 

East, both from road kill and museum specimens, incorporating several different 

populations. But one important point is that although there is a good coherence 

between geographical origin and genetic make-up of the populations, certainly there 

are still missing lineages to be described due to the sampling gaps. For example, the 

only difference between Networks considering museum samples or not is the Niger 

sample, which is included into distinct clades (Near East and Kenya, the two closely 

related clades), and this can be happening with other samples. Even this Niger 
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samples can constitute a third cluster. This shows that more sampling areas are 

necessary. Also, specifically for the mtDNA Northwestern substructure, sampling is 

needed for specific regions. For example, for clade I (represented in red in fig. 11 and 

13), the full extension of such expansion can be better assessed with a wider sampling 

in the regions of Algeria and Egypt. In addition, the IVth grouping (represented in 

orange in fig. 11 and 13) was detected from the Central Sahel (Mali) until Togo/Ghana 

and further sampling is needed to delimit the distribution of this clade. Samples mainly 

from Mali, Guinea, Sierra Leone, Liberia and Burkina would be a great help, although 

some regions are military zones and therefore exist numerous mining activities which 

makes this process really complicated. New sampling from Nigeria, Cameroon, 

Democratic Republic of the Congo and Uganda would clarify the clade V, since this 

group only included 3 samples (represented in grey in fig. 11 and 13). Also, for mtDNA 

and microsatellite Kenya group (represented in light blue, fig. 7, 11 and 13), further 

sampling is needed across the eastern half of the Sahara-Sahel, in countries like Chad 

and Sudan to determine the distribution of the haplotype as well as other possible 

cryptic diversity present in the region. But not only for L. capensis more sampling is 

necessary. For future work, additional sampling from Angola, Namibia, Mozambique 

and Botswana is needed to understand in detail the population structure, distribution 

and the systematics of presently classified L. saxatilis.  

For a better understanding of the distribution of the L. capensis lineages, the 

filling of such sampling gaps and molecular identification of populations may help, and 

consequently disentangle cryptic or unknown lineages which may be present. The 

molecular studies will likely continue to reveal biodiversity and genetic analysis of 

museum specimens will provide essential material from regions where sampling is 

currently nearly impossible. 

 

4.3 Evidences of mitochondrial introgression  

The lack of phylogenetic agreement between mitochondrial and nuclear 

markers is relatively common and can be explained by different phenomena. Although 

incongruence observed in gene trees among different markers are often assumed as 

introgression events, disagreements can be due to incomplete lineage sorting because 

of stochasticity of the evolutionary processes (see e.g. Melo-Ferreira et al. 2014b). 

Although distinguishing the type of event that shaped the observed patterns of 

multilocus genetic variation can be difficult, different methodologies have been 

developed to understand the impact of retention of ancestral polymorphism and gene 
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flow (Meng & Kubatko 2009; Hey 2010; Talavera & Vila 2011; Melo-Ferreira et al. 

2014b). 

 Since the persistence of the traces of introgression are related with the 

migration rate, in species with male-biased dispersal and female philopatry (which is 

the case of several mammals), female transmitted mitochondrial DNA are more 

vulnerable to persistent introgression (Melo-Ferreira et al. 2014a). And this may be the 

reason why substantial mtDNA introgression has been repeatedly observed in this 

class of animals, and is frequently more wide-ranging than for the nuclear genome 

(Petit & Excoffier 2009). This process has been reported by different researchers using 

molecular markers for several species (Sequeira et al. 2011; Bastos-Silveira et al. 

2012; Jezkova et al. 2013), but hares are one significant example in the study of 

genetic introgression (Arnold 2008). Indeed, previous works show introgression events 

in different hare species such as Lepus timidus, Lepus europaeus, Lepus granatensis 

or Lepus yarkandensis in Europe, Asia and North America (e.g. Melo-Ferreira et al. 

2005; Thulin et al. 2006; Alves et al. 2008b; Wu et al. 2011; Acevedo et al. 2015; 

between others), but never in African hares. 

Analyses of Northeast Africa samples detected discrepancies between 

mitochondrial and nuclear DNA markers. The histories of the origin of the relationships 

among these African samples relationships were further investigated here. This is an 

interesting geographic region for the group because it likely representing a zone of 

secondary contact, taxonomic transition and possibly admixture between cape hares 

and brown hares (Lepus europaeus). To disentangle if mtDNA gene flow occurs 

between the two species in the region and is the explanation for the mt-nucDNA 

discordance the expected mtDNA divergence under a model without gene flow was 

simulated using the parameters of divergence estimated from the nuclear loci. The 

results show that introgression is most plausible explanation for the mtDNA proximity 

because the empirical divergence is smaller than the expected minimum distance in a 

model where only incomplete lineage sorting occurs. The empirical divergence 

between NW African population and L. europaeus was also plotted and were found to 

lie within or even above the range of simulated distances, suggesting that our approach 

was realistic and even conservative.  
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4.4 Taxonomical remarks 

Molecular data adds an important dimension for taxonomic classification: the 

evolutionary history. This study based on genetic inferences allowed to identify several 

situations where the taxonomy may need to be reviewed and clarified. Nevertheless, 

this review may have inherently to integrate data from other sources, including 

morphology, palaeontology, ecology, physiology, behaviour, among other. Taxonomy 

and systematics of L. capensis are far from being resolved and several questions are 

still unanswered. It is considered a polytypic species distributed across large parts of 

Africa (from North to South), the Near and Middle East, and large parts of Central and 

Far East Asia (Angermann 1965, 1983; Flux and Angermann, 1990; Hoffmann 1993), 

although IUCN distribution map (Drew et al. 2008) shows a distribution until China. 

Nevertheless, this work shed light onto some arguments that are believed to review at 

least part of the L. capensis taxonomy and systematics.  

In the literature, only Hoffmann and Smith (2005) tended to restrict cape hares 

to South Africa. The authors informally suggested three more species division for 

capensis-type hares (East Africa, Northwest Africa and Arabia-Near East) which might 

be considered as distinct species, pending on sufficient data to support a formal 

revision. The basis for this division was the distribution gap between North and South 

populations and the presence of other species, Lepus microtis (synonym to Lepus 

victoriae). However, the results of this work show that not only these divisions are 

confirmed, but more diverging evolutionary groups were found, corroborated by mtDNA 

and microsatellite analysis. There is evidence for strong biogeographical structuring of 

genetic diversity and population differentiation North Africa and so L. capensis s. l. may 

consist of parapatric forms in various stage of divergence – ―subspecies, semispecies 

or allospecies‖ (Angermann 1983). The phylogeny was not completely resolved, but the 

different lineages and population structure clarify some phylogenetic relationships have 

and taxonomic implications, where status of L. capensis should be thoroughly revised.  

 Some lineages were fairly divergent and others were closer to different Lepus 

species. Possibly, the most significant area representing a zone of taxonomic transition 

is in the Near East where cape hares and brown hares are in contact (Angermann 

1965, 1983; Hoffmann & Smith 2005). The timing of divergence between Northwestern 

and Southern L. capensis calculated under this model was estimated to be 800,000 ya 

in the middle Pleistocene. South African samples are the closest samples of the 

dataset to the type locality of cape hare Lepus capensis. But this population, in all 

analyses was shown to be an independent lineage. Additionally, the level and time of 

divergence is bigger between supposed L. capensis populations than between a South 
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African L. capensis population and a second hare species, L. saxatilis. Relying just on 

genetic inferences, North African populations should not be considered bona fide L. 

capensis. 

Other important taxonomical remark is the Arabian population, today considered 

to be L. capensis. Our results show this population to be an independent group. Since 

geography, morphology and molecular studies confirm and support this population to 

be an independent entity, hares of this region should be considered for future 

taxonomical revision.  

More investigation in morphology, ecology, biology and species delimitation is 

needed concerning these African species and a focus in sampling L. microtis is the 

key. Also analysing nuclear DNA sequences would be important to reconstruct these 

populations‘ history. As long as no morphological or molecular data are available for 

type localities from the Cape of Good Hope region and Sudan, wherefrom Cape and 

African Savannah hares have originally been described, no final conclusion can be 

made on their identity and distribution. 

Several divergent lineages which probably diverged recently were found to be 

geographically structured, which likely resulted from fragmentation of ancestral ranges 

and divergence in allopatry. Regions where haplotypes from different clades were 

found in sympatry probably result from secondary contact of the divergent lineages 

after expansion. Whether these evolutionary entities are reproductively isolated and 

should be considered distinct species should be assessed in the future using a detailed 

characterization of their genomes and ecologies. Some haplotypes were found to be 

more closely related to those of other species, which can result from mtDNA 

introgression, a phenomenon widely described in the genus, or retention of ancestral 

polymorphism, which may uncover different taxonomic entities.  

The possible presence of gene flow, incomplete lineage sorting and the 

proximity of lineages leads to low posterior probabilities and bootstrap values, and due 

to its complex evolutionary history and rapid radiation, it is difficult to achieve the true 

African species tree. Otherwise, including genome-scale data may help resolving 

certain nodes, although there are cases where Tree of Life remains beyond resolution, 

even when confronted with these type of methods (Rokas & Carroll 2006). 
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5. Concluding remarks and future research 

Even though population history and taxonomy of African hares is still poorly 

known, clear progress has been made in this work. This is the first genetic investigation 

of Lepus capensis with a wide sampling area, including different populations along its 

range, using multi-locus data, which brought new insights about the complex history of 

this taxon. Moreover, this investigation had a particular emphasis on Northwest Africa 

where sampling was more comprehensive. This is an important first step towards 

solving the broad uncertainties that have impeded the establishment of a clear 

taxonomy and systematics of these organisms, and produced valuable information for 

future conservation planning. 

The cape hare in Africa and Near East was found to be composed by five major 

evolutionary units with clear geographic distributions: Near East, Arabia, Kenya, South 

Africa and Norwest African. Even though some differences were expected between 

cape hare inhabiting different regions, the level population structure identified here 

exceeds these expectations. In this respect, not only the use of a multilocus approach 

but also the different nature of the set of genetic markers used here (microsatellites, 

mtDNA and nucDNA sequences) contributed to i) identify the major evolutionary units 

without an a priori expectation, and ii) infer the level of divergence among the major 

lineages. Also relevant was the use of museum sampling to bridge some important 

sampling gaps, even if additional sampling efforts are need for a full understanding of 

the evolutionary history of the species. Within the Northwest African populations of the 

cape hare, mtDNA showed increased substructure, contrary to the homogeneous 

pattern of genetic variation found for microsatellites. This structure can be explained by 

multiple barriers and corridors found around the Sahara and suggest strong female 

philopatry.  

Interestingly, the level of divergence between particular lineages of cape hare is 

as deep as the divergence between other well recognized hare species, which point to 

the possible existence of cryptic speciation within what is so far recognized as Lepus 

capensis. Note however that the phylogenetic resolution obtained from the analysis of 

sequences of five independent loci did not allow retrieving high support for many of the 

clades, even if the branching pattern perfectly fits with the geographic proximity of the 

distribution of lineages. Increasing the battery of nuclear loci, either using similar PCR-

based approaches or next-generation sequencing will certainly contribute to solve this 

issue. On the reverse sense, there were no obvious genetic differentiation between L. 

capensis and the specimens identified as L. microtis used in this work. Also, 

mitochondrial DNA introgression from the brown hare was found to have affected cape 
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hare populations from the Near East, showing that the evolutionary history of these 

organisms is further complicated by reticulate events.  

Despite the geographical meaning, the species tree nodes and phylogenetic 

analysis in general were not well supported. This can be due to the rapid evolutionary 

divergence that leads to short branch-lengths between speciation events, where there 

is little time for informative substitutions to fix in populations, yielding gene trees that 

are unresolved with respect to the species tree. For future work, there is the need to 

increase the number of genes to improve the phylogeny.  

Overall, these results demonstrate that the current taxonomy of these African 

species is far from testifying the true relationships among the different populations. A 

thorough taxonomic revision is therefore needed, ideally coupling the information of 

different sources, such as genetic, morphological, paleontological, ecological, among 

many others, so that the classification of African hares reflects the biology and history 

of the natural populations. This is obviously a tremendous task that demands the joint 

effort of experts in these different areas and a strong emphasis on fieldwork, especially 

in remote geographical areas from which knowledge is inexistent. The revision of 

museum collections can also be valuable resources for this much needed taxonomic 

revision. In any case, this work was an important step in that direction.  
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Appendices 

Appendix 1 – Dataset information ( bone samples are highlighted in green and feces samples are highlighted in blue). 

LCP – Lepus capensis; LSX – Lepus saxatilis; LVT – Lepus victoriae (=L. microtis); XXX – no information. --- 

Represents no amplification/no genotyping result. Poli – double peaks in the electropherogram. The species name was 

attributed by who sampled and not according to the results of this study. 

  

 
 

Code Country 

Extraction Sequencing / Genotyping 

 
Intership 

This 
work 

Available Cytb Microsatellite HPX SPTB OXA1L TF DARC 

1 LCP.SAF.1902 South Africa 
  

X X X --- X --- X --- 

2 LCP.SAF.1903 South Africa 
  

X X X --- X --- X --- 

3 LCP.SAF.1904 South Africa 
  

X --- --- 
     

4 LCP.SAF.1905 South Africa 
  

X X X --- X --- X X 

5 LCP.SAF.1906 South Africa 
  

X X X --- X --- X --- 

6 LCP.SAF.1907 South Africa 
  

X X X --- X --- X --- 

7 LCP.ISR.1910 Israel 
  

X X X X X X X X 

8 LCP.ISR.1911 Israel 
  

X --- --- --- --- --- X --- 

9 LCP.ISR.1912 Israel 
  

X X X X X X X X 

10 LCP.ISR.1913 Israel 
  

X X X X X X X --- 

11 LCP.ISR.1914 Israel 
  

X X X X X X X X 

12 LCP.ISR.1916 Israel 
  

X --- --- --- X --- X --- 

13 LCP.ISR.1918 Israel 
  

X X X X X X X X 

14 LCP.KHE.1921 Morocco 
  

X X X 
     

15 LCP.KHE.1922 Morocco 
  

X X X 
     

16 LCP.KHE.1923 Morocco 
  

X X X 
     

17 LCP.RAB.1925 Morocco 
  

X X X 
     

18 LCP.RAB.1928 Morocco 
  

X X X 
     

19 LCP.RAB.1929 Morocco 
  

X --- --- 
     

20 LCP.RHE.1932 Morocco 
  

X X X 
     

21 LCP.RHE.1934 Morocco 
  

X X X 
     

22 LCP.RHE.1935 Morocco 
  

X X X 
     

23 LCP.RHE.1936 Morocco 
  

X X X 
     

24 LCP.RHE.1937 Morocco 
  

X X X 
     

25 LCP.TAJ.1938 Morocco 
  

X X X 
     

26 LCP.TET.1939 Morocco 
  

X X X 
     

27 LCP.TET.1940 Morocco 
  

X X X 
     

28 LCP.TET.1941 Morocco 
  

X X X 
     

29 LCP.TET.1942 Morocco 
  

X X X 
     

30 LCP.FOG.1947 
Western 
Sahara   

X X X 
     

31 LCP.HEC.1948 Mauritania 
  

X X X X X X X --- 

32 LCP.HEG.1949 Mauritania 
  

X X X X X --- X X 

33 LCP.TUN.1950 Tunisia 
 

X 
 

--- X 
     

34 LCP.TUN.1951 Tunisia 
  

X X X 
     

35 LCP.TUN.1952 Tunisia 
  

X X X 
     

36 LCP.TUN.1953 Tunisia 
  

X X X 
     

37 LCP.OMA.2394 Oman 
 

X 
 

X X X X X X X 

38 LCP.OMA.2395 Oman 
 

X 
 

X X X X X X X 

39 LCP.CEU.2430 Spain X 
  

--- --- --- --- --- --- --- 

40 LCP.CEU.2431 Spain X 
  

--- --- --- --- --- --- --- 

41 LCP.CEU.2432 Spain X 
  

--- --- --- --- --- --- --- 

42 LCP.CEU.2433 Spain X 
  

--- --- --- --- --- --- --- 

43 LCP.CEU.2434 Spain X 
  

--- --- --- --- --- --- --- 

44 LCP.CEU.2435 Spain X 
  

--- --- --- --- --- --- --- 

45 LCP.CEU.2436 Spain X 
  

--- --- --- --- --- --- --- 
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46 LCP.CEU.2437 Spain X 
  

--- --- --- --- --- --- --- 

47 LCP.CEU.2438 Spain X 
  

--- --- --- --- --- --- --- 

48 LCP.CEU.2439 Spain X 
  

--- --- --- --- --- --- --- 

49 LCP.CEU.2440 Spain X 
  

--- --- --- --- --- --- --- 

50 LCP.DAK.2778 Mauritania X 
  

X X X X X X X 

51 LCP.JER.2975 Morocco X 
  

X --- 
     

52 LCP.OUA.2976 Morocco X 
  

X X 
     

53 LCP.MEK.2977 Morocco X 
  

X X X X X X X 

54 LCP.FES.2978 Morocco X 
  

X X 
     

55 LCP.BOK.2982 Tunisia X 
  

X --- 
     

56 LCP.CHB.2983 Tunisia X 
  

X --- 
     

57 LCP.GAF.2986 Tunisia X 
  

--- X 
     

58 LCP.MZQ.2990 Libya X 
  

X X X X X X X 

59 LCP.MZQ.2991 Libya X 
  

X X X X --- X X 

60 LCP.AGA.2992 Niger X 
  

X X X X --- X --- 

61 LCP.SLO.2993 Senegal X 
  

X X X X --- X X 

62 LCP.ADR.2994 Mauritania X 
  

X X --- X --- --- --- 

63 LCP.FOG.2995 WestSahara X 
  

X X X X X X --- 

64 LCP.DAK.2996 WestSahara X 
  

X X X X --- X X 

65 LCP.DAK.2997 WestSahara X 
  

X X X X --- X X 

66 LCP.BJD.2998 WestSahara X 
  

--- X 
     

67 LCP.BJD.2999 WestSahara X 
  

X X 
     

68 LCP.LAA.3000 WestSahara X 
  

X X X X X X X 

69 LCP.LAA.3001 WestSahara X 
  

X X 
     

70 LCP.FOG.3002 WestSahara X 
  

--- X 
     

71 LCP.MAR.3003 Morocco X 
  

X X X X X X X 

72 LCP.TAN.3004 Morocco X 
  

X X X X X X X 

73 LCP.TAN.3005 Morocco X 
  

X X 
     

74 LCP.TBT.3006 Mali X 
  

X X X --- X X X 

75 LCP.BJD.3007 WestSahara X 
  

X X X --- X X X 

76 LCP.DAK.3008 WestSahara X 
  

X X 
     

77 LCP.GUI.3009 Mauritania X 
  

X X X X X X X 

78 LCP.LAA.3010 WestSahara X 
  

X X X X --- X X 

79 LCP.DAK.3011 WestSahara X 
  

X X X X X --- X 

80 LCP.DAK.3012 WestSahara X 
  

X X 
     

81 LCP.INC.3013 Mauritania X 
  

X X X X --- X X 

82 LCP.ASB.3015 Mauritania X 
  

--- X X X X X X 

83 LCP.SEH.3016 WestSahara X 
  

X X 
     

84 LCP.ORO.3017 WestSahara X 
  

--- X 
     

85 LCP.ORO.3018 WestSahara X 
  

X X 
     

86 LCP.TRZ.3019 Mauritania X 
  

X X X X X X X 

87 LCP.DAK.3020 Mauritania X 
  

X X X X --- X X 

88 LCP.ORO.3021 WestSahara X 
  

X X X X X X X 

89 LCP.KHE.3022 Morocco X 
  

X X X X --- X X 

90 LCP.TAN.3023 Morocco X 
  

X X X X --- X X 

91 LCP.ORO.3024 WestSahara X 
  

X X X X X X X 

92 LCP.TIR.3025 Mauritania X 
  

X --- --- --- --- --- --- 

93 LCP.ADR.3026 Mauritania X 
  

X X X X --- X X 

94 LCP.SEH.3027 WestSahara X 
  

X X X X X --- X 

95 LCP.SEH.3028 WestSahara X 
  

X X X X X X X 

96 LCP.LOU.3030 Senegal X 
  

X X X X X X X 

97 LCP.LOU.3031 Senegal X 
  

X X 
     

98 LCP.KAI.3032 Tunisia X 
  

X X X --- X X X 

99 LCP.OUJ.3033 Morocco X 
  

X X X --- --- X X 

100 LCP.NAD.3034 Morocco X 
  

X --- 
     

101 LCP.NAD.3035 Morocco X 
  

X X X --- --- X X 

102 LCP.BOU.3036 Morocco X 
  

X X X X --- X X 

103 LCP.BOU.3037 Morocco X 
  

X X X X X X X 
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104 LCP.KEN.3038 Morocco X 
  

X X X --- --- X X 

105 LCP.SLO.3039 Senegal X 
  

X X X X X X X 

106 LCP.SLO.3040 Senegal X 
  

X X X X X X X 

107 LCP.MIM.3041 Morocco 
 

X 
 

X X 
     

108 LCP.MIM.3042 Morocco 
 

X 
 

X X 
     

109 LCP.MIM.3043 Morocco 
 

X 
 

X X 
     

110 LCP.MIM.3044 Morocco 
 

X 
 

X X 
     

111 LCP.MIM.3045 Morocco 
 

X 
 

X X 
     

112 LCP.MIM.3046 Morocco 
 

X 
 

X X 
     

113 LCP.JMA.3047 Morocco 
 

X 
 

X X 
     

114 LCP.JMA.3048 Morocco 
 

X 
 

X X 
     

115 LCP.ROM.3049 Morocco 
 

X 
 

X X 
     

116 LCP.BOU.3050 Morocco 
 

X 
 

X --- 
     

117 LCP.BOU.3051 Morocco 
 

X 
 

X X 
     

118 LCP.EGA.3052 Morocco 
 

X 
 

X X 
     

119 LCP.EGA.3053 Morocco 
 

X 
 

X X 
     

120 LCP.EGA.3054 Morocco 
 

X 
 

X X 
     

121 LCP.EGA.3055 Morocco 
 

X 
 

X X 
     

122 LCP.EGA.3056 Morocco 
 

X 
 

X X 
     

123 LCP.EGA.3057 Morocco 
 

X 
 

X X 
     

124 LCP.SEH.3058 Morocco 
 

X 
 

X X 
     

125 LCP.SEH.3059 Morocco 
 

X 
 

X X 
     

126 LCP.TID.3061 Morocco 
  

X X X 
     

127 LCP.BEH.3063 Morocco 
  

X X X 
     

128 LCP.MIM.3066 Morocco 
  

X X X 
     

129 LCP.MIM.3067 Morocco 
  

X X X 
     

130 LCP.MIM.3068 Morocco 
  

X X X 
     

131 LCP.BAH.3069 Morocco 
  

X X X 
     

132 LCP.EGA.3070 Morocco 
  

X X X 
     

133 LCP.EGA.3071 Morocco 
  

X X X 
     

134 LCP.SFA.3072 Morocco 
  

X X X 
     

135 LCP.ESS.3075 Morocco 
  

X X X 
     

136 LCP.TAN.3124 Morocco X 
  

X X X X --- X X 

137 LCP.ORO.3125 WestSahara X 
  

X X X X X X X 

138 LCP.OUA.3126 Morocco X 
  

X X X --- X X X 

139 LCP.IRA.3292 Iran 
 

X 
 

X X X X X X X 

140 LCP.IRA.3293 Iran 
 

X 
 

X X X X X X X 

141 LCP.XXX.3318 Angola 
 

X 
 

X X X X X X --- 

142 LCP.XXX.3456 Marocco 
 

X 
 

X X 
     

143 LCP.TAN.3457 Marocco 
 

X 
 

X X 
     

144 LCP.ORO.3458 WestSahara 
 

X 
 

X X 
     

145 LCP.ORO.3459 WestSahara 
 

X 
 

X X 
     

146 LCP.ORO.3460 WestSahara 
   

X --- 
     

147 LCP.XXX.3461 Mali 
 

X 
 

X X X X X X X 

148 LCP.ESS.3462 Marocco 
 

X 
 

X X 
     

149 LCP.BOU.3463 Marocco 
 

X 
 

X X 
     

150 LCP.NAD.3464 Marocco 
 

X 
 

X X 
     

151 LCP.TAZ.3465 Marocco 
 

X 
 

X --- 
     

152 LCP.OUJ.3466 Marocco 
 

X 
 

X X 
     

153 LCP.AZI.3467 Marocco 
 

X 
 

X X 
     

154 LCP.XXX.3487 Marocco 
 

X 
 

X X 
     

155 LCP.XXX.3488 Marocco 
 

X 
 

X X 
     

156 LCP.TAN.3489 Marocco 
 

X 
 

X X 
     

157 LCP.SDA.3598 S. Arabia 
 

X 
 

X X X X X X X 

158 LCP.SDA.3599 S. Arabia 
 

X 
 

X X X 
 

X X X 

159 LCP.SDA.3600 S. Arabia 
 

X 
 

X X X X X X X 

160 LCP.SDA.3601 S. Arabia 
 

X 
 

X X X X X X X 

161 LCP.SDA.3602 S. Arabia 
 

X 
 

X X X X X X X 
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162 LCP.SDA.3603 S. Arabia 
 

X 
 

X X X 
 

--- X X 

163 LCP.SDA.3604 S. Arabia 
 

X 
 

X X X X X X X 

164 LCP.SDA.3605 S. Arabia 
 

X 
 

X X X 
 

X X X 

165 LCP.SDA.3606 S. Arabia 
 

X 
 

X X X X X X X 

166 LCP.SDA.3607 S. Arabia 
 

X 
 

X X X 
 

X X X 

167 LCP.SDA.3608 S. Arabia 
 

X 
 

X X X X X X X 

168 LCP.SDA.3609 S. Arabia 
 

X 
 

X X X X X X X 

169 LCP.SDA.3610 S. Arabia 
 

X 
 

X --- 
     

170 LCP.ORO.3613 WestSahara 
 

X 
 

X X 
     

171 LCP.ORO.3614 WestSahara 
 

X 
 

X --- 
     

172 LCP.TAN.3804 Marocco 
 

X 
 

X X X X --- X X 

173 LCP.TAN.3805 Marocco 
 

X 
 

X X X X X X X 

174 LCP.TAN.3806 Marocco 
 

X 
 

X --- X --- --- X X 

175 LCP.SEH.3807 
Western 
Sahara  

X 
 

X --- 
 

--- X X X 

176 LCP.SEH.3808 
Western 
Sahara  

X 
 

X --- 
     

177 LSX.BTS.3492 Botswana 
  

X X X X X --- X X 

178 LSX.sax1 
    

--- --- --- --- --- --- --- 

179 LSX.sax7 
    

--- --- --- --- --- --- --- 

180 LSX.mz2 
    

--- --- --- --- X --- X 

181 LSX.sax4 
    

--- --- --- --- --- --- --- 

182 LSX.sax5 
    

--- --- --- --- --- --- --- 

 

Museum 
samples            

 Code Museum Country 
Extraction Cytb 

Seqeuncing 
Microsat 

Genotyping 
    

 
Intership This work Available 

    

183 LCP.SAF.3468 MNHVienna South Africa 
 

X 
 

X X 
    

184 LCP.SAF.3469 MNHVienna South Africa 
 

X 
 

X X 
    

185 LCP.ISR.3470 MNHVienna Israel 
 

X 
 

X X 
    

186 LCP.ISR.3471 MNHVienna Israel 
 

X 
 

X X 
    

187 LCP.SAF.3472 MNHVienna South Africa 
 

X 
 

--- --- 
    

188 LCP.SAF.3473 MNHVienna South Africa 
 

X 
 

--- --- 
    

189 LCP.SOM.3474 MNHVienna Somalia 
 

X 
 

--- --- 
    

190 LCP.TUN.3475 MNHVienna Tunisia 
 

X 
 

poli --- 
    

191 LCP.SAF.3476 MNHVienna South Africa 
 

X 
 

--- --- 
    

192 LCP.SAF.3477 MNHVienna South Africa 
 

X 
 

poli X 
    

193 LCP.SAF.3478 MNHVienna South Africa 
 

X 
 

poli X 
    

194 LCP.SUD.3479 MNHVienna Sudan 
 

X 
 

--- X 
    

195 LCP.TUN.3480 MNHVienna Tunisia 
 

X 
 

poli --- 
    

196 LCP.TUN.3481 MNHVienna Tunisia 
 

X 
 

--- --- 
    

197 LCP.TUN.3482 MNHVienna Tunisia 
 

X 
 

poli --- 
    

198 LCP.TUN.3483 MNHVienna Tunisia 
 

X 
 

--- --- 
    

199 LCP.TUN.3484 MNHVienna Tunisia 
 

X 
 

--- --- 
    

200 LCP.TUN.3485 MNHVienna Tunisia 
 

X 
 

--- --- 
    

201 LCP.EGI.3486 MNHVienna Egypt 
 

X 
 

--- --- 
    

202 LCP.EGI.3493 MNHBerlin Egypt 
 

X 
 

--- --- 
    

203 LCP.ALG.3494 MNHBerlin Algeria 
 

X 
 

X X 
    

204 LCP.SUD.3496 MNHBerlin Sudan 
 

X 
 

--- --- 
    

205 LCP.SUD.3497 MNHBerlin Sudan 
 

X 
 

X X 
    

206 LCP.LIB.3498 MNHBerlin Lybia 
 

X 
 

--- --- 
    

207 LCP.SUD.3499 MNHBerlin Sudan 
 

X 
 

--- --- 
    

208 LCP.ALG.3502 MNHBerlin Algeria 
 

X 
 

--- --- 
    

209 LCP.ALG.3503 MNHBerlin Algeria 
 

X 
 

X X 
    

210 LCP.MAR.3504 MNHBerlin Morocco 
 

X 
 

--- --- 
    

211 LCP.EGI.3510 MNHBerlin Egypt 
 

X 
 

X X 
    

212 LCP.KEN.3511 MNHBerlin Kenya 
 

X 
 

X X 
    

213 LCP.KEN.3512 MNHBerlin Kenya 
 

X 
 

X X 
    

214 LCP.ETI.3513 MNHBerlin Eritrea 
 

X 
 

--- --- 
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215 LCP.KEN.3514 MNHBerlin Kenya 
 

X 
 

X X 
    

216 LCP.KEN.3515 MNHBerlin Kenya 
 

X 
 

X X 
    

217 LCP.KEN.3516 MNHBerlin Kenya 
 

X 
 

X X 
    

218 LCP.KEN.3517 MNHBerlin Kenya 
 

X 
 

X X 
    

219 LCP.SOM.3518 MNHBerlin Somalia 
 

X 
 

--- --- 
    

220 LCP.ERI.3519 MNHBerlin Eritrea 
 

X 
 

poli --- 
    

221 LCP.ETI.3520 MNHBerlin Ethiopia 
 

X 
 

poli --- 
    

222 LCP.KEN.3521 MNHBerlin Kenya 
 

X 
 

X X 
    

223 LCP.ETI.3523 MNHBerlin Eritrea 
 

X 
 

--- --- 
    

224 LCP.ETI.3524 MNHBerlin Ethiopia 
 

X 
 

--- --- 
    

225 LCP.ORO.3525 MNHBerlin West Sahara 
 

X 
 

poli --- 
    

226 LCP.ERI.3533 MNHBerlin Eritrea 
 

X 
 

--- --- 
    

227 LCP.ERI.3548 MNHBerlin Eritrea 
 

X 
 

--- --- 
    

228 LCP.EGI.3578 MNHBerlin Egypt 
 

X 
 

poli --- 
    

229 LCP.EGI.3579 MNHBerlin Egypt 
 

X 
 

--- --- 
    

230 LCP.XXX.3592 MNHBerlin Egypt 
 

X 
 

poli --- 
    

231 XXX.ALG.3495 MNHBerlin Algeria 
 

X 
 

--- --- 
    

232 XXX.MAR.3500 MNHBerlin Marocco 
 

X 
 

--- --- 
    

233 XXX.ALG.3501 MNHBerlin Algeria 
 

X 
 

X X 
    

234 LVT.CMA.3505 MNHBerlin Ivory Coast 
 

X 
 

--- --- 
    

235 LVT.CMA.3506 MNHBerlin Ivory Coast 
 

X 
 

X X 
    

236 LVT.CMA.3507 MNHBerlin Ivory Coast 
 

X 
 

--- --- 
    

237 LVT.CMA.3508 MNHBerlin Ivory Coast 
 

X 
 

--- --- 
    

238 LVT.CMA.3509 MNHBerlin Ivory Coast 
 

X 
 

--- --- 
    

239 LVT.TZN.3528 MNHBerlin Tanzania 
 

X 
 

--- --- 
    

240 LVT.TZN.3529 MNHBerlin Tanzania 
 

X 
 

--- --- 
    

241 LVT.TZN.3530 MNHBerlin Tanzania 
 

X 
 

X X 
    

242 LVT.SNG.3531 MNHBerlin Senegal 
 

X 
 

--- --- 
    

243 LVT.SNG.3532 MNHBerlin Senegal 
 

X 
 

X X 
    

244 LVT.KEN.3534 MNHBerlin Kenya 
 

X 
 

X X 
    

245 LVT.KEN.3535 MNHBerlin Kenya 
 

X 
 

X X 
    

246 LVT.SNG.3536 MNHBerlin Senegal 
 

X 
 

--- --- 
    

247 LVT.SNG.3537 MNHBerlin Senegal 
 

X 
 

--- --- 
    

248 LVT.SNG.3538 MNHBerlin Senegal 
 

X 
 

--- --- 
    

249 LVT.SNG.3539 MNHBerlin Senegal 
 

X 
 

--- --- 
    

250 LVT.TZN.3540 MNHBerlin Tanzania 
 

X 
 

X X 
    

251 XXX.REU.3563 MNHBerlin Reunion island 
 

X 
 

--- --- 
    

252 XXX.KEN.3581 MNHBerlin Kenya 
 

X 
 

--- --- 
    

253 LVT.TOG.3582 MNHBerlin Togo 
 

X 
 

--- --- 
    

254 LVT.TOG.3583 MNHBerlin Togo 
 

X 
 

X X 
    

255 XXX.NMB.3584 MNHBerlin Namibia 
 

X 
 

--- --- 
    

256 LVT.TZN.3585 MNHBerlin Tanzania 
 

X 
 

--- --- 
    

257 LVT.TZN.3586 MNHBerlin Tanzania 
 

X 
 

--- --- 
    

258 LVT.GHA.3587 MNHBerlin Ghana 
 

X 
 

X X 
    

259 LVT.TOG.3588 MNHBerlin Togo 
 

X 
 

X X 
    

260 LVT.TOG.3589 MNHBerlin Togo 
 

X 
 

X X 
    

261 LVT.TZN.3591 MNHBerlin Tanzania 
 

X 
 

--- --- 
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Appendix 2 – PCR-touchdown program conditions for the microsatellite multiplexes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Amplification step Temp (ºC) Time Nº cycles 

Initial denaturation 95 15' 1  

Denaturation 95 30'' 

x40 Annealing 56-52 60'' 

Extension 72 30'' 

Denaturation 95 30'' 

x31 Annealing 52 60'' 

Extension 72 30'' 

Final extension 60 30' 1  
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Appendix 3 – Microsatellite multiplexes information 
 

Multiplex Number Code 

PCR 

product 

size 

Primers Fw/Rv (5'-3') 
Repeat 

number 
Motif 

Qt. of 

primers (50µl 

mix) 

Tail 

1 

1 LCP_2 149 TGTAAAACGACGGCCAGTCCGTGAAGACTATCCTGATTCC 15 ga 4 

FAM    
GTTTGAGTGCATGTCTTGTTTAGCTCAT 

   
2 LCP_3 244 TGTAAAACGACGGCCAGTAGGTAGGGGCAAAAGGAGAA 12 ag 1.5 

   
GTTTCATCTGGAATGAAGATTGAACA 

   
3 LCP_4 92 TAATACGACTCACTATAGGGTTTACCTCTATTGCTGATTGCC 12 ca 2.5 

VIC    
GTTTCCTTGTCAGATGTAACTTTAACTAGA 

   
4 LCP_6 240 TAATACGACTCACTATAGGGGGGTATGCCCCTCTAGTTCC 12 ac 1.55 

   
GTTTGAAACCTAGAGAAAGATGGCA 

   
5 LCP_8 210 GATAACAATTTCACACAGGCTGAAGGCTGGGAGATCAAG 19 ga 1.2 

PET    
GTTTCACCCACATGAGTTGGTCTG 

   
6 LCP_17 123 GATAACAATTTCACACAGGACAGACAGGTTGCCCAATGT 15 gag 0.6 

   
GTTTACTGATGTGAGCACCACTGC 

   
7 LCP_9 91 TTTCCCAGTCACGACGTTGTCCTATTATCTTCTCCCTCCCTCT 12 ca 0.4 

NED    
GTTTCAATGTGAGAGAGCAGCAGG 

   
8 LCP_10 237 TTTCCCAGTCACGACGTTGCCGTGTCCGTCCTTGATTAT 12 ca 1.7 

   
GTTTCGATTTTCATTTGAACTGCC 

   

2 

1 LCP_23 105 TCACTAGTCTCCAACAGCAGTC 12 ca 1 

FAM    
CATTTCATTATCATATTGGATTCTCA 

   
2 LCP_12 169 TAGCCCAGTCCCAGCTATTG 12 tc 0.7 

   
GCTAGCTTTGGGGAAGAGAAA 

   
3 LCP_16 233 TCCACCGTCCTTTCTGTTTC 13 tg 0.3 

VIC    
GCCAGGACTCCAACTCATGT 

   
4 LCP_26 95 TTGTGTCTAGCTGCTCCCCT 14 ag 1 

   
ATGGCCTGGTTCCTGACTCT 

   
5 LCP_28 98 TTCTTTATGCTGCCAAATCG 14 tg 0.7 

PET 

   
AGAAAGTCCCTCCCTCTCCA 

   

3 

1 LCP_33 195 CCAAGGATTTGAAATGTCTATGA 13 ca 0.4 

VIC    
CCCTTGAATCTTTGTTGGGA 

   
2 LCP_34 123 GTTCTTTTCCCAGCCTCCTC 15 tg 0.4 

   
AACCCACGCTGGTAAGTCTG 

   
3 LCP_18 195 GGAAATCAAGACGCAACTGG 12 ca 0.7 

PET 

   
CCCGCATAATTGTAGGCACT 

   
4 LCP_37 184 AGCCAAATGCTCTACATGCC 12 ac 0.8 NED 

   
ATCATCCACTCCAACTCCCA 

    
5 LCP_38 112 GCAGTTACACATTCCTGATTTGA 13 ac 0.3 

 

   
GCAGTTACACATTCCTGATTTGA 
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Appendix 4 – Primers and PCR conditions for the nuclear and mitochondrial sequenced genes 
 

Loci PCR   PCR primers   

Number Symbol MgCl2
a
 AT

b
 E

c
 NC

d
 Fw/Rv (5'-3') Reference 

1 LcpCytb 1.8 58 40'' 35x ACATATTTGTCGAGACGTGAAC Lado et al (2013); unpublished 

      
GCGTAGGCAAATAGGAAGTATC Lado et al (2013); unpublished 

2 LcpCytb2 1.8 57 60'' 40x CGGCTGACTTATTCGTTAC This work 

      
GTTGAATGAATCTGAGGAGG This work 

3 DARC 1.8 58 40'' 35x CTCTCAGTTGACCCAAATTC Melo-Ferreira et al. 2009 

      
GCCTTTAATTCAGGTTGACG Melo-Ferreira et al. 2009 

4 HPX 1.8 60 40'' 35x GTGGAGAATGCCAAGATGAAGG Melo-Ferreira et al. 2009 

      
ACAGGATTGAAGCGGAGGAACT Melo-Ferreira et al. 2009 

5 SPTBN1 1.8 58 40'' 35x CTCTGCCCAGAAGTTTGCAAC Matthee et al. 2004 

      
TGATAGCAGAACTCCATGTGG Matthee et al. 2004 

6 TF 1.8 60 40'' 35x GCCTTTGTCAAGCAAGAGACC Wallner et al. 2001 

      
CACAGCAGCTCATACTGATCC Wallner et al. 2001 

7 OXA1L 1.8 58 45'' 35x TCGAATCAGAGAGGCCAAGTT Melo-Ferreira et al. 2009 

            ACCTGTCTCAGCACCTAGCTG Melo-Ferreira et al. 2009 
a
Concentration (mM); 

b
Annealing temperature; 

c
Extension step length; 

d
Number of cycles. 

 
 
 
 
 
 
Appendix 5 – Genbank accession number for sequence datasets 
 

Cytb TF DARC OXA1L SPTBN1 HPX 

Code       Access. Nº Code        Access. Nº Code      Access. Nº  Code      Access. Nº Code        Access. Nº Code      Access. Nº 

Chi1 HM233085.1  

Mar1 JN037061.1 Mar1 JN036923.1 Mar1 JN037141.1 Mar1 JN037035.1 Mar1 JN036951.1 

Chi2 HM233083.1  

Mar2 JN037062.1 Mar2 JN036924.1 Mar2 JN037142.1 Mar2 JN037036.1 Mar2 JN036952.1 

Chi3 HM233013.1 Tun JN037063.1 Tun JN036925.1 Tun JN037143.1 Tun JN037037.1 Tun JN036953.1 

Chi4 HM233016.1 China1 HM233541.1 Leup1 JN036917.1 Leur1 JN037135.1 China1 HM233497.1 Leup1 JN036945.1 

Chi5 HM233008.1 China2 HM233540.1 Leup2 JN036916.1 Leur2 JN037134.1 China2 HM233496.1 Leup2 JN036944.1 

Chi6 HM233022.1 China3 HM233539.1 Leup3 FJ811758.1 Leur3 FJ811601.1 China3 HM233495.1 Leup3 FJ811733.1 

Chi7 HM233039.1 Raba AY176278.1 Leup4 FJ811757.1 Leur4 FJ811600.1 China4 HM233494.1 Leup4 FJ811732.1 

Chi8 HM233019.1 Tet AY176277.1 Leup5 FJ811756.1 Leur5 FJ811599.1 China5 HM233493.1 Leup5 FJ811731.1 

Chi9 HM233082.1 Leur1 JN037056.1 Leup6 FJ811755.1 Leur6 FJ811598.1 Leur1 JN037029.1 Leup6 FJ811730.1 

Chi10 HM233078.1 Leur2 JN037057.1 Leup7 FJ811754.1 Leur7 FJ811597.1 Leur1 JN037028.1 Leup7 FJ811725.1 

Chi11 HM233042.1 Lsax AY176279.1 Leup8 FJ811753.1 Leur8 FJ811596.1 Leur3 FJ811651.1 Lgra1 JN036943.1 

Lsax1 AF009731.1 Leur3 FJ811626.1 Lgra1 JN036915.1 Lgra1 JN037133.1 Leur4 FJ811650.1 Lgra2 JN036942.1 

Lsax2 AY292730.1 Leur4 FJ811625.1 Lgra2 JN036914.1 Lgra2 JN037132.1 Leur5 FJ811649.1 Lgra3 FJ811724.1 

Lsax3 HQ596480.1 Leur5 FJ811624.1 Lgra3 FJ811752.1 Lgra3 FJ811595.1 Leur6 FJ811648.1 Lgra4 FJ811723.1 

LE1 JN037344.1 Leur6 FJ811623.1 Lgra4 FJ811751.1 Lgra4 FJ811594.1 Leur7 FJ811647.1 Lgra5 FJ811722.1 

LE2 JN037345.1 Leur7 FJ811622.1 Lgra5 FJ811750.1 Lgra5 FJ811593.1 Leur8 FJ811646.1 Lgra6 FJ811721.1 

LE3 JN037346.1 Leur8 FJ811621.1 Lgra6 FJ811749.1 Lgra6 FJ811592.1 Leur9 FJ811645.1 Lgra7 FJ811720.1 

LE4 JN037347.1 Leur9 FJ811620.1 Lgra7 FJ811748.1 Lgra7 FJ811591.1 Lgra1 JN037027.1 Lgra8 FJ811719.1 

LE5 JN037348.1 Leur10 AY176267.1 Lgra8 FJ811747.1 Lgra8 FJ811590.1 Lgra2 JN037026.1 Ltim1 FJ811746.1 

LE6 JN037349.1 Leur11 AY176266.1 Ltim1 FJ811770.1 Lgra9 FJ811589.1 Lgra3 FJ811644.1 Ltim2 FJ811745.1 

LE7 AF010161.1 Leur12 AY176265.1 Ltim2 FJ811769.1 Lgra10 FJ811588.1 Lgra4 FJ811643.1 Ltim3 FJ811744.1 

http://www.ncbi.nlm.nih.gov/nuccore/HM233085.1
http://www.ncbi.nlm.nih.gov/nuccore/HM233083.1
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LE8 AF010162.1 Leur13 AY176264.1 Ltim3 FJ811768.1 Ltim1 FJ811613.1 Lgra5 FJ811642.1 Ltim4 FJ811743.1 

LG1 JF298950.1 Leur14 AY176263.1 Ltim4 FJ811767.1 Ltim2 FJ811612.1 Lgra6 FJ811641.1 Ltim5 FJ811742.1 

LG2 JF299027.1 Leur15 AY176262.1 Ltim5 FJ811766.1 Ltim3 FJ811611.1 Lgra7 FJ811640.1 Ltim6 FJ811741.1 

LG3 JF298953.1 Lgra1 JN037055.1 Ltim6 FJ811765.1 Ltim4 FJ811610.1 Lgra8 FJ811639.1 Ltim7 FJ811740.1 

LG4 JF298944.1 Lgra2 JN037054.1 Ocun JN036940.1 Ltim5 FJ811609.1 Ltim1 FJ811663.1 Ocun JN036968.1 

LG5 JF298955.1 Lgra3 FJ811619.1 
  

Ltim6 FJ811608.1 Ltim2 FJ811662.1 
  

LG6 JF298963.1 Lgra4 FJ811618.1 
  

Ocun  JN037158.1 Ltim3 FJ811661.1 
  

LG7 JF298968.1 Lgra5 FJ811617.1 
    

Ltim4 FJ811660.1 
  

LG8 JF298971.1 Lgra6 FJ811616.1 
    

Ltim5 FJ811659.1 
  

LG9 JF299012.1 Lgra7 FJ811615.1 
    

Ltim6 FJ811658.1 
  

LG10 JF299034.1 Lgra8  FJ811614.1 
    

Ocun JN037052.1 
  

LT1 DQ882893.1 Lgra9 EU196169.1 
        

LT2 DQ882890.1 Lgra10 AY176258.1 
        

LT3 DQ882906.1 Lgra11 AY176257.1 
        

LT4 DQ882899.1 Lgra12 AY176256.1 
        

LT5 DQ882911.1 Lgra13 AY176255.1 
        

LT6 DQ882915.1 Lgra14 AY176254.1 
        

LT7 DQ882936.1 Lgra15 AY176253.1 
        

LT8 DQ882937.1 Lgra16 AY176252.1 
        

LT9  DQ882944.1 Lgra17 AY176251.1 
        

LT10  DQ882957.1 Lgra18 AY176250.1 
        

Ocun AJ001588.1 Lgra19 AY176249.1 
        

  
Ltim1 FJ811638.1 

        

  
Ltim2 FJ811637.1 

        

  
Ltim3 FJ811636.1 

        

  
Ltim4 FJ811635.1 

        

  
Ltim5 FJ811634.1 

        

  
Ltim6 FJ811633.1 

        

  
Ltim7 AY176276.1 

        

  
Ltim8 AY176275.1 

        

  
Ltim9 AY176274.1 

        

  
Ltim10 AY176273.1 

        

  

Ltim11 AY176272.1 
        

  

Ltim12 AY176271.1 
        

  

Ltim13 HM233544.1 
        

  

Ltim14 HM233535.1 
        

  

Ltim15 HM233534.1 
        

    Ocun AH005776.1                 

 
 
 Leur – Lepus europaeus; Lgra – Lepus granatensis; Ltim – Lepus timidus, Ocun – Oryctolagus cuniculus; the others 
are from Lepus capensis. Acess. Nº - accession number from GenBank. 
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Appendix 6 – mtDNA network without museum samples. 
 

 
 
Appendix 7 – Representation of the Network clades in the map, from the dataset without museum samples. 
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Appendix 8 – BSP Inference of the dataset with museum samples. 
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Maximum likelihood inference of the dataset with museum samples. 
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Appendix 9 -  BSP Inference of the dataset without museum samples 

 
 



FCUP 

      
105 

 

Population history and taxonomy of North African hares (genus Lepus) inferred from genetic variation 

Maximum likelihood inference of the dataset without museum samples. 
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Appendix 10 – Unrooted tree with BI (black) and ML (red) phylogenetic combined results without museum samples. Just 
the supports of the nodes above 0.5 are represented. Each lineage is represented by a different color. Red dot 
corresponds to where the outgroup would appear. 

 
 
 
 
 
 
Appendix 11 – Map representation of the phylogeny result without museum samples. 
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Appendix 12 – Bayesian inference with the YULE model, with the haplotypes corresponding to the dataset without museum samples, which confirms the principal phylogenetic clades. 
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Bayesian inference with the YULE model, with the haplotypes corresponding to the dataset without museum samples, which confirms the principal phylogenetic clades. 
 
 

 
 
 



FCUP 

      
109 

 

Population history and taxonomy of North African hares (genus Lepus) inferred from genetic variation 

Appendix 13 – Nuclear gene tree with Bayesian inference. Posterior probabilities were low, not represented. 
SPTBN1 
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TF 
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OXA1L 
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HPX 
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DARC 
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Appendix 14 – Nuclear gene tree with ML inference.  
SPTBN1 
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TF 
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OXA1L 
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HPX 
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DARC 
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