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Abstract 

In this work Computational Fluid Dynamics (CFD) is used as a design tool in 

development of a new aeration method for oxidation ditches, consisting of an external 

unit, a pressurized aeration chamber (PAC), cooperating with slot jet agitators 

(hydrojets). Wide range of operating and hydraulic conditions in PAC and oxidation 

ditch is simulated with CFD codes aiming selection of the most energy efficient design 

comprising enhanced aeration with efficient mixing. The results are validated 

experimentally in reaeration tests conducted on lab-scale PAC.  

CFD simulations are also enabled to assess residence time distribution (RTD), and thus 

macromixing within the oxidation ditch. These results are compared with data from 

pilot- to full-scale oxidation ditches. 

It is shown that fluid velocity and mixing patterns within the ditch have strong impact 

on occurrence of oxygen-deficit zones, and when comparing oxygen and nutrients 

profiles along the ditch it is clear, that reactor hydrodynamics is a key parameter in 

nitrification, denitrification and biodegradation process control. According to that, 

simulated mid-depth slot jets configuration, having energy efficiency of 31% and 

yielding 3% higher power demand than the most energy efficient design, was selected 

as the one providing optimal mixing conditions for efficient oxygenation of the tank 

content. It is also shown that the RTD curves and the hydrodynamics characteristics can 

be obtained from the CFD simulations and then used to generate a suitable reactor 

model, where the biokinetic activated sludge models, ASM, can be implemented. 

Aeration in PAC using pure oxygen results in distinctly higher oxygen transfer 

efficiencies than the respective process parameters of current best available 

technologies (BAT), yielding Standard Oxygen Transfer Efficiency (SOTE) of minimum 

120% and Standard Aeration Efficiency (SAE) up to 8.0 kgO2/kWh. By overcoming SOTE 

limitations of air diffusers, aeration in PAC allows reduction of energy expenditure on 

aeration by over 90%.  

When comparing with current BAT devices commonly used in oxidation ditches, 

membrane diffusers supplied by air or pure oxygen and agitated with slow speed 

mixers, proposed aeration system consisting of PAC cooperating with hydrojets allows 

distinct energy savings through reduction of energy consumption by 67% up to 93%.   



 

 

Resumo 

Neste trabalho a Computação de Fluidos Dinâmicos (CFD) é usada como ferramenta de 

projeto no desenvolvimento dum novo processo de arejamento, a Câmara de Arejamento 

Pressurizada (PAC), para aplicação em valas de oxidação agitadas por hidrojatos. Uma 

gama abrangente de condições de operação e escoamento na PAC é simulada com CFD com 

o objetivo de selecionar a configuração que permite melhorar a eficiência energética e a 

mistura. Os resultados são validados experimentalmente em testes de rearejamento numa 

PAC piloto.  

A Distribuição de Tempos de Residência (RTD), ou seja a macromistura, na vala de 

oxidação também é estudada por meio de simulações de CFD. Os resultados são 

comparados com testes numa unidade piloto e em testes à escala real. 

É demonstrado o impacto que têm a velocidade de escoamento e a mistura na vala de 

oxidação na geração de zonas anóxicas. Através da comparação de perfis de concentração 

de oxigénio e nutrientes, verifica-se o papel fundamental que a hidrodinâmica na vala de 

oxidação desempenha nos processos de nitrificação, desnitrificação e oxidação da matéria. 

As valas com agitadores a meia altura, com eficiências energéticas de 31%, 3% inferior à 

configuração ótima, foram selecionadas por promoverem as melhores condições para uma 

oxigenação eficiente de toda a vala de oxidação. Também se demonstra a utilização de 

simulações de CFD para a caracterização da hidrodinâmica e da RTD nos processos de vala 

de oxidação, que podem ser utilizados na geração dum modelo de reatores para ser 

acoplado a modelos biocinéticos de lamas ativadas. 

Demonstra-se que o processo de arejamento na PAC com oxigénio puro é bastante mais 

eficiente que as melhores tecnologias disponíveis (BAT), atingindo valores de eficiência de 

transferência de oxigénio (SOTE) superiores a 120% e de eficiência de arejamento até 8.0 

kgO2/kWh. Ao ultrapassar o limite de SOTE dos difusores de ar, a PAC permite reduções de 

consumo de energia no processo de arejamento de aproximadamente 90%. 

A PAC instalada numa configuração com agitação da vala por hidrojatos permite poupanças 

de energia entre 67% a 93% relativamente às BAT para arejamento em valas de oxidação: 

difusores de fundo para ar ou oxigénio puro agitados por turbinas de baixa velocidade de 

rotação. 



 

 

Streszczenie 

W niniejszej pracy zastosowano numeryczną mechanikę płynów (ang. Computational Fluid 

Dynamics, CFD) jako narzędzie projektowe w opracowaniu nowej technologii napowietrzania 

rowów biologicznych utleniających, składającej się z ciśnieniowej komory aeracyjnej (ang. 

Pressurized Aeration Chamber, PAC), współpracującej z inżektorami szczelinowymi. Szeroki 

zakres warunków eksploatacyjnych i hydraulicznych w PAC i bioreaktorze symulowano za 

pomocą CFD celem wyboru najbardziej energooszczędnej konfiguracji zapewniającej 

intensywne napowietrzanie i wydajne mieszanie. Wyniki symulacji PAC zostały potwierdzone 

eksperymentalnie w testach reaeracyjnych przeprowadzonych w skali laboratoryjnej. 

Symulacje CFD użyto także do wyznaczenia rozkładu czasu przebywania płynu (ang. Residence 

Time Distribution, RTD) - makromieszania w rowie utleniającym. Wyniki symulacji porównano 

z danymi uzyskanymi z badań przeprowadzonych w skali pilotażowej i rzeczywistej.  

Wykazano, że prędkość przepływu i mieszanie płynu wewnątrz rowu mają wpływ na 

występowanie stref deficytu tlenowego. Na podstawie otrzymanych profili składników 

odżywczych i tlenu potwierdzono rolę hydrodynamiki reaktora jako kluczowego parametru 

w kontroli procesów nitryfikacji, denitryfikacji i biodegradacji. Symulowana konfiguracja rowu 

z inżektorami położonymi na połowie głębokości, o 31-procentowej wydajności energetycznej 

i zapotrzebowaniu na moc wyższym o 3% od optymalnego modelu została wybrana jako wariant 

zapewniający najlepsze warunki natlenienia objętości ścieków. Wykazano także, że krzywe RTD 

oraz dane hydrodynamiczne otrzymane z symulacji CFD mogą być użyte do generacji 

precyzyjnego modelu reaktora, z którym mogą zostać sprzężone modele biokinetyczne osadu 

czynnego z serii ASM. 

Zasilanie komory PAC czystym tlenem spowodowało wyraźnie wyższą skuteczność 

napowietrzania w porównaniu z najlepszymi obecnie dostępnymi technologiami BAT, dając 

wartości SOTE ≥120% i SAE ≤8.0 kgO2/kWh. Pokonując ograniczenia SOTE dyfuzorów 

drobnopęcherzykowych, zastosowanie PAC umożliwia obniżenie wydatku energetycznego na 

napowietrzanie o ponad 90%. 

System napowietrzania składający się z PAC i inżektorów szczelinowych umożliwia oszczędność 

energii w 67 do 93% w porównaniu z obecnymi urządzeniami BAT powszechnie stosowanymi 

w rowach utleniających- dyfuzorami membranowymi zasilanymi powietrzem lub czystym 

tlenem i współpracującymi z mieszadłami wolnoobrotowymi. 
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1 Introduction 

1.1 Wastewater Treatment - Health and Human Well-Being 

Activity of every community is inextricably linked to generation of both, solid and liquid 

waste and air emissions. Wastewater is defined as any liquid runoff, consisted of water 

adversely affected in quality by anthropogenic influence. From the point of view of sources 

of generation, it comprises liquid or water-carried wastes discharged by residences, 

institutions, commercial and industrial establishments, agriculture together with surface 

water, groundwater and stormwater runoff (Tchobanoglous et al., 2003). Wastewater 

composition varies depending on the characteristics of the source. For example, a typical 

municipal wastewater encompasses: water- 95% or more, including industrial cooling and 

process water; organic biodegradable compounds; nutrients; toxic non-biodegradable 

compounds; inorganic particulate matter; solids and emulsions; broad variety of pathogens 

(bacteria, viruses, prions and parasitic worms); and non-pathogenic microorganisms. It is 

estimated, that over 90% of the wastewater generated globally is discharged into the 

environment untreated. Besides nuisance conditions due to malodour emissions, it carries 

serious health risks due to air and waterborne diseases epidemics affecting either human 

or animal hosts, not to mention disastrous environmental consequences, such as 

eutrophication of the waterways and polluting water resources with bio-accumulative 

mutagenic and carcinogenic substances, potentially harmful for aquatic eco-systems. 

According to the U.S. Environmental Protection Agency (EPA, 1972b), overflows of raw 

wastewater from aging municipal sewer systems and urban stormwater runoff are one of 

http://en.wikipedia.org/wiki/Virus
http://en.wikipedia.org/wiki/Prion
http://en.wikipedia.org/wiki/Parasite
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major sources of pollution, contributing to the contamination of drinking water resources, 

beach and shellfish bed closures, and thus making water unsafe for drinking, fishing, 

swimming, and other activities. 

On the other hand, in world regions affected by limited water resources, one well known 

and common wastewater use is in agriculture as an irrigation water source, where nutrient 

recycling and increase of available water supply are major benefits. Unfortunately, the 

majority cases of the agricultural wastewater applications in low-income and developing 

countries (e.g. Mexico, India or China) are not planned on the basis of nutrient recycling, 

but on economical aspect. In such situations the problem emerges due to public health 

constraints, when raw or partially treated wastewater containing pathogenic and industrial 

contaminants is not properly managed and discharged directly to reservoirs, rivers and 

canals supplying irrigation water. Therefore, efforts have been taken by the World Health 

Organization (WHO), the Food and Agriculture Organization (FAO) of the United Nations 

and the International Water Management Institute, resulting in development of guidelines 

considering safe use of effluent to irrigation and defining quantity and quality of effluent 

parameters minimizing potential health hazards (ETWWA, 2010; Hussain et al., 2002; 

Pescod, 1992; WHO, 2006).  

Nowadays cholera, dysentery and other wastewater-related diseases manifested by severe 

diarrhoea are generally viewed as threats only in less developed countries in African and 

Southeast Asian regions. Epidemiologic reports revealed that gastrointestinal infections 

originated from water contamination due to lack of sanitation kill around 2.2 million 

people globally each year, mostly children under 5 years of age in developing countries, 

while there are approximately 4 billion cases of diarrhoea worldwide (WHO, 2000a, b). 

According to that, it seems surprising, that the number of households in small and rural 

communities in the U.S. still lack adequate facilities for the proper collection, treatment, 

and disposal of wastewater- all essential to protecting the environment and public health. 

However only in 90s, examples of large-scale outbreaks of the waterborne 

cryptosporidiosis in the United Kingdom, Canada, and states of Milwaukee and Wisconsin, 

help to illustrate the potential risk also to developed countries (Butler and Mayfield, 1996; 

Joseph et al., 1991). In the recent years also in Portugal, the problem of contamination of 

surface and ground water with nutrients and faecal coliforms emerged due lack of safe 

sanitation infrastructure in domestic and swine and cattle mini-industries in rural areas 

(Cabral and Marques, 2006; Vieira et al., 2013). 

http://en.wikipedia.org/wiki/International_Water_Management_Institute
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1.2 Water Policy – Tailoring Wastewater Treatment Objectives 

Water pollution prevention and control measures are of critical importance to improve 

water quality and reduce the cost of wastewater and drinking water treatment. Due to the 

number of the water pollution sources, a variety of pollution prevention and control 

measures are needed, such as proposed by the United States Environmental Protection 

Agency, U.S. EPA (EPA, 1972a): green infrastructure and low impact development 

approaches and techniques for wet weather management; impaired waters and Total 

Maximum Daily Loads (TMDL) management; National Pollutant Discharge Elimination 

System (NPDES) permit program (regulating point source pollution); polluted runoff 

(regulating nonpoint source pollution); sediments management; source water protection; 

stormwater management; vessel sewage discharges limitations; wastewater programs; and 

watershed management. 

Historically in the U.S., the real modern era in water pollution control began in 1972, when 

in response to public demand for safe, swimmable and fishable water, the Congress 

launched the amendments to Federal Water Pollution Control Act, commonly known as the 

Clean Water Act (CWA), which increased dramatically the role of government in water 

quality management and control of water pollution (Baker, 1997; EPA, 1972a). Pollution 

control strategy imposed by CWA in 1972 in section 402, established NPDES permit program 

(EPA, 1972b), an efficient legal tool linking ambient water quality standards with effluent 

limitation for discharges of industrial and municipal wastewater, i.e. by controlling point 

source pollution. Furthermore NPDES permitting program defined uniform, technological 

minimum standards for each discharger (Tchobanoglous et al., 2003). Such technology-

based standard, referred as Best Available Technology Economically Achievable (BAT) 

means the most appropriate means available on a national basis for controlling the direct 

discharge of toxic and nonconventional pollutants to navigable waters. According to that, 

imposed BAT effluent limitations guidelines, represent the best existing performance of 

treatment technologies that are economically achievable within an industrial point source 

category or subcategory (EPA, 1972b). Further amendments to the CWA, were introduced 

in 1977 and later by launch of the Water Quality Act in 1987, which strengthened federal 

water quality regulations by providing changes in permitting, adding substantial penalties 

for permit violations by illegal discharges, amending control of solids and toxic pollutants 

present in wastewater. Further federal regulations complete CWA in terms of planning and 

design of wastewater treatment facilities (Tchobanoglous et al., 2003): 40 Code of Federal 

Regulations (CFR) Part 503 (1993) - Standards for the use or Disposal of Sewage Sludge, 

imposing limits for pathogens and metals concentrations; U.S. EPA National Combined 

http://water.epa.gov/polwaste/nps/whatis.cfm
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Sewer Overflow (CSO) Policy (1994) - coordinates planning, selection, design, and 

implementation of CSO Management Practices and Controls to comply with CWA  

requirement; Clean Air Act of 1970 with 1990 Amendments - related to standardized 

acceptable emissions levels for specific air pollutants for prevention of significant 

deterioration in air quality; 40 CFR Part 60 – establishes air emission limits for sludge 

incinerators of defined capacity; and TMDL (2000) Section 303(d) of the CWA - 

development of  prioritized lists of impaired water bodies and to establish the maximum 

amount of pollutant that a water body can receive on daily basis and still meet water 

quality standards. The objectives of CWA remain valid today, however with the 

technological progress the required level of treatment has significantly increased due to 

more stringent water quality objectives established by the authorities.  

Similar to the U.S., the main initiatives towards the introduction of the environmental 

policy in the European Union (EU) were initiated as a follow-up of the Declaration of The 

United Nations on the Human Environment proclaimed in Stockholm conference of 1972 

(Baker, 1997). Due to the increasing demand by citizens and environmental organisations 

for cleaner surface water, groundwater and coastal beaches, furthermore limitation of the 

water resources resulted in establishment of European water policy, aiming protection of 

the water resources. The first wave of EU water policy was initiated in 1973 by a first of 

series of five-year Environmental Action Programmes. By the end of the 1970s several 

measures for the reduction and prevention of water pollution had been introduced in 

a number of Directives based primarily on a regulatory approach. These first wave 

Directives, considered subdivision of the aquatic ecosystems into individual protected 

commodities and defined quality targets, each of which had to be followed or achieved 

through pre-defined actions. In 1990, discharge of urban wastewater, due to its large 

volume, was identified as the major cause of water pollution resulting in increasing 

eutrophication of sea (Baltic, North and partially Mediterranean) and fish waters and 

deteriorating quality of European water resources. Consequently, two new legal rules, so 

called second wave Directives were adopted, setting strict rules on wastewater treatment 

and the use of nitrates in agriculture (Dworak et al., 2007). Thus, the Urban Waste Water 

Treatment Directive (UWWTD) 91/271/EEC concerned the collection, treatment and 

discharge of urban wastewater and treatment and discharge of wastewater from certain 

industrial sectors (UWWTD-REP, 2007). The Nitrate Directive 91/676/EEC aims to protect 

water quality by preventing nitrates from agricultural sources polluting ground and surface 

waters by limiting the amount of animal fertiliser used on fields and promoting good 

farming practices. Five years later, through implementation of the Integrated Pollution 

Prevention and Control (IPPC) Directive 96/61/EC (amended in 2008- IPPC Directive 
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2008/1/EC) a new rule for control emissions to the atmosphere, water and soil control was 

formulated, by imposing the obligations in which industrial and agricultural activities with 

a high pollution potential must comply, and similarly to U.S. legislation, and by imposing of 

the framework concept of BAT. Furthermore, the IPPC Directive establishes a procedure 

for authorising these activities and sets minimum requirements to obtain permits, 

particularly in terms of pollutants released. In addition to that, important aspects of water 

protection were included in a guideline Directive, controlling the dangers in the event of 

major accidents, known as the Seveso II Directive 96/82/EEC, replaced in 2012 by the 

Seveso III Directive (2012/18/EU). In 1996 the works of EC on a third wave Directives began 

(Dworak et al., 2007). In 1998, the Drinking Water Directive (DWD) 98/83/EC established 

the quality of water intended for human consumption. In 2000 a big step forward in 

integrated water management was achieved by the EU Water Framework Directive (WFD) 

2000/60/EC acting as a framework for water policy legislation. The main objective of WFD 

is to achieve a good quality ecological and chemical status of all EU water bodies by 2015. 

Contrary to the first and second wave Directives, WFD covers areas as diverse as 

groundwater protection and urban waste water, drinking water quality, bathing water 

quality and protection of waters against pollution caused by nitrates from agricultural 

sources. 

Today, the Water Supply and Sanitation (WSS) sector is managed by EU water policy 

confined to three Directives, on the basis of which each EU member state has introduced 

national legislation: UWWTD 91/271/EEC with amendments 98/15/EEC; DWD 98/83/EC; 

and WFD 2000/60/EC amended by 2008/32/CE. In addition to that, the institutional 

organisation of public WSS does not fall under the purview of the EU, but remains 

a prerogative of each member state. Water resources management in Portugal is 

responsibility of the Water Institute (Instituto da Água– INAg) created in 1993 and 

operating on the basis of the Water Law of 2005 (Law n.º 58/2005), which transposes the 

EU water framework directive into national law. While in 1997, the Water and Waste 

Services Regulation Authority (Entidade Reguladora dos Serviços de Águas e Resíduos – 

ERSAR) was created, as a national regulatory agency in charge of regulating public water 

supply services, urban wastewater management services and municipal waste management 

services.  

Nowadays, facing global shortages of clean water resources and exponential increase of 

the global amount of wastewater generation, such as the effect of demographic growth 

and urbanization, WSS is under pressure from climate change, economic progress and 

social changes. For this reason, the ultimate objective of wastewater engineering branch is 

http://en.wikipedia.org/wiki/EU_water_policy
http://www.ersar.pt/
http://www.ersar.pt/
http://www.ersar.pt/
http://en.wikipedia.org/wiki/Demography
http://en.wikipedia.org/wiki/Climate_change
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protection of public health in a manner commensurate with environmental, economic, 

social, and political concerns, by taking up scientific and engineering measures leading to 

immediate removal of wastewater from its sources of generation by collection systems 

(sewers), followed by appropriate level of treatment, reuse and dispersal into the 

environment (Tchobanoglous et al., 2003). 

1.3 Emerging Challenges: Water and Energy Nexus 

To comply with global water policy aiming responsible management of the water resources 

and protection of the public health, wastewater collected from municipalities and 

communities must be treated to achieve levels imposed by discharge permits and maximal 

daily loads, allowing ultimately to be returned to receiving water bodies, or to the land or 

even to be reused. In the last century, application of scientific knowledge and engineering 

practice led to considerable development in wastewater sector, particularly in biological 

secondary treatment based on aerobic biological methods, namely activated sludge (AS) 

process (Ardern and Lockett, 1914), which nowadays became a well documented standard 

for most wastewater treatment utilities. The objectives of secondary biological 

wastewater treatment in activated sludge process also expanded from an early emphasis 

on high levels of BOD and TSS removal to cover enhanced nutrients (nitrates and 

phosphates) removal, as the process itself has flexibility and numerous modifications can 

be tailored to meet specific requirements. One of the characteristics of the activated 

sludge process is the continuous operation of the aeration system and sludge recirculation 

pumps, and thus the process performance relies on a steady energy supply. When analysing 

the energy budget of a biological wastewater treatment train, aeration is the most energy-

intensive key unit process and accounts for the largest fraction of the total wastewater 

treatment plant (WWTP) net electricity expenditure, ranging in average from 45 to 75% 

(Reardon, 1995) and in extreme cases of stringent discharge limits imposed, requiring e.g. 

enhanced nitrification, even up to 85%, thus having significant effect on the operation and 

maintenance budget of utilities (WEF, 2009). Furthermore, according to the data gathered 

by the Water Environment Federation (WEF) and the U.S. EPA (EPA, 2010, 2013), water 

and wastewater treatment plants are considered as the largest energy consumers in 

municipal governments, accounting for 30 to 40% of the total energy bill, and thus the 

search of sustainable solutions based on wind, solar, and hydroelectric power became 

more urgent in recent years. Furthermore, the U.S. EPA in “Energy Efficiency: On the Road 

to Net Zero Energy” report estimates, that drinking water and wastewater systems account 

for approximately 3-4% of energy use in the United States, adding over 45 million tons of 

greenhouse gases to the atmosphere annually (Paulson, 2012). 

http://www.epa.gov/reg3wapd/infrastructure/EnergyEfficiency/index.html?tab1=3
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Due to the increased global emphasis on energy conservation, there is an urgent task in 

wastewater sector to reduce site energy usage. According to the reference guidelines 

(EPA, 2013; WEF, 2009) opportunities for improving energy efficiency can be obtained by: 

optimizing aeration processes or equipment upgrades, which focus on replacing items such 

as blowers with more efficient models; replacing the whole aeration system with less 

energy intensive systems (replacement of the surface aeration system by bottom 

diffusers); operational modifications, involving reduction of the energy requirements to 

perform specific functions by modification of the aeration control systems, which typically 

results in greater savings than equipment upgrades, and may not require capital 

investments; and modifications to facility buildings, such as installing energy-efficient 

lighting, windows, and heating and cooling equipment. 

1.4 Relevance and Motivation 

Major challenge in wastewater engineering sector is successful design and reliable and 

energy efficient operation, which ensures that the treatment efficiency will comply with 

the outflow quality restrictions, while keeping the investment and operating cost as low as 

possible (Brouckaert and Buckley, 1999; Do-Quang et al., 1999). Although the design of 

wastewater treatment plants is a key step to ensure these goals, it is usually based on the 

general guidelines and both, designers and operators experience, dominated by the rule of 

thumb (Bosma and Reitsma, 2007; Pereira et al., 2012; Stamou, 2008), therefore there is 

an urgent task in wastewater sector to introduce advanced engineering tools for 

development, diagnostics and energy-minded operation of site-specific wastewater 

treatment systems. 

In this work the emerging challenges of wastewater treatment engineering are met by 

application of advanced modelling tools, namely Computational Fluid Dynamics (CFD) in 

design of activated sludge process. The oxidation ditch system was used in this work as 

a showcase mostly due to its universal applicability – the process is suitable in any situation 

where activated sludge treatment (conventional or extended aeration) is appropriate (EPA, 

2000). Furthermore, as one of well known modifications of the AS process characterized by 

robust performance and high treatment efficiencies, oxidation ditch plants have been 

commonly adopted by many countries worldwide. Although being originally intended to 

serve small to medium-size municipalities, where the availability of the large land area is 

not a constraint, thus with the development of more efficient aeration systems, deep tank 

process configurations found numerous applications in large-scale wastewater treatment 

plants. Furthermore, as hydraulic and hydrodynamic properties of the oxidation ditches 

allow a wide range of aeration schemes to be implemented, therefore the emphasis in this 
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work was put on development of an innovative, energy-minded aeration scenario, allowing 

achievement of high process efficiencies (aeration and wastewater treatment) with 

maximal possible reduction of energy consumption during operation. 

1.5 Thesis Objectives and Layout 

The objective of this thesis was development of an innovative, energy-minded aeration 

system, based on the introduction of the external aeration unit – cooperating with 

modified jet aeration devices. The rationale behind the use of CFD codes in this work is to 

simulate a range of operating and hydraulic conditions: in the aeration unit - to evaluate 

overall aeration process performance and aeration efficiency and to compare results 

against conventional systems used in oxidation ditches; in the oxidation ditch - to assess 

the impact of the proposed aeration system configuration on overall mixing patterns within 

the oxidation ditch. Finally, for the proposed design of the wastewater treatment, the 

overall power requirements for mixing and aeration will be computed, selecting aeration 

schemes and device configurations allowing for maximal energy savings.  

In Chapter 2 fundamentals and importance of the aeration process in aerobic activated 

sludge process is given. Development of the aeration techniques, present technical status 

and the insight into ongoing research goals in the aeration sector are also comprehensively 

reviewed. Furthermore, the studies concerning applicability of two reactors, an innovative 

Pressurized Aeration Chamber (PAC) and a 2D bubble column reactor (BCR), as the aeration 

devices will be presented. Aeration in several configurations of PAC will be simulated with 

CFD aiming the selection of the most robust geometry in terms of enhanced oxygen mass 

transfer, leading to higher level of effluent saturation with oxygen. The most successful 

design will be later validated in lab-scale experiments carried on in accordance with 

standard clean water testing protocols for aeration devices. The same procedures will be 

used to determine the impact of the operating conditions on hydrodynamics and aeration 

efficiency of the BCR. The results obtained for PAC and BCR, thus oxygen transfer 

parameters and aeration efficiency will be later compared with the typical process 

parameters of the conventional aeration devices.  

Although the oxidation ditch process is commonly used worldwide, its flow regime is 

scarcely studied. Therefore Chapter 3 covers an experimental approach to determine 

hydrodynamics of the oxidation ditch, preceded by literature review on the process 

history, operating principles and the performance. Several works on experimental methods 

used in these systems to assess flow behaviour are also reviewed. Furthermore, the 

hydrodynamics and process performance of two oxidation ditches operating in different 
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aeration schemes (continuous and intermittent): a pilot-scale tubular piston flow reactor 

with recirculation (PFRR); and a full-scale oxidation ditch at Areosa WWTP (Viana do 

Castelo) will be experimentally determined. In these wastewater reactors, velocity, 

oxygen, nutrients and solids concentration profiles along the channel will be assessed, and 

PFFR ditch behaviour will be additionally evaluated in Residence Time Distribution 

experiments using pulse and step tracer techniques. Furthermore, from the results 

obtained for both ditches the impact of the hydrodynamics on the treatment efficiency 

will be assessed.  

Chapter 4 comprises the hydrodynamic studies of the oxidation ditch using CFD simulation. 

A literature review gives an extensive insight into the typical trends in engineering design 

of the activated sludge systems. The rationale behind the use of CFD modelling to optimize 

wastewater treatment operation and process efficiencies is explained on the basis of 

several literature examples. CFD studies of the oxidation ditch will be carried on to 

evaluate the use of several configurations of slot jets compromising the functions of 

aerator and mixer. The impact of the aerator on the hydrodynamics of the oxidation ditch 

will be assessed by determination of the flow field and RTDs of the fluid. Furthermore, the 

influence of different turbulence models on the flow patterns evolution within the 

oxidation ditch and the energy expenditure for mixing will be assessed.  For a chosen 

hydraulic configuration of the hydrojets and CFD model, further studies concerning the 

impact of mesh resolution and the near-wall treatment on the energy expenditure will be 

also made. Finally, the analysis of the effect of the turbulence models on the macromixing 

data obtained from the RTD simulations, which can be furthermore incorporated into the 

biokinetic Activated Sludge Models (ASM), will be also assessed.   

Chapter 5 concerns assessment of the energy budget in the proposed activated sludge 

system. Daily energy expenditure per habitant will be assessed from the power demand by 

different groups of aeration devices used in oxidation ditch process, operated on the base 

of atmospheric air and pure oxygen. Furthermore, detailed analysis of energy expenditure 

in the proposed oxidation ditch system, aerated by external aeration unit – PAC 

cooperating with hydrojets will be performed. Computations of power demand on aeration 

will consider actual oxygen requirements by PAC unit, power demand by blower and by 

oxygen generation in Vacuum Pressure Swing Adsorption process. Energy expenditure on 

mixing will encompass determination of power demand for wastewater pumping, based on 

the total system head computed for all piping components, PAC, and two hydrojets types – 

multi-slot and single-slot injector and power demand on mixed liquor recirculation. The 
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data obtained for proposed aeration scheme will be compared with power demand by 

conventional systems to determine possible energy savings.        

Finally, in Chapter 6 final remarks based on the conclusions from present work are 

gathered and future paths are proposed. 
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2 Aeration Technologies 

2.1 Introduction  

This chapter is divided in two main sections: in the first section, a review on the aeration 

technologies used in the aerobic wastewater treatment systems is done; while the second 

refers to the modelling and experimental approach to assess aeration potential of two 

different reactors.    

The review aims to present the fundamentals of the aeration process in the Activated 

Sludge (AS) systems. Short historical note concerning development of the aeration 

techniques and description of the conventionally used diffused air, mechanical and hybrid 

devices is also done. Furthermore, a theory behind the oxygen mass transfer and aeration 

efficiency is given. Alongside the standard method for aeration device testing, namely 

clean water test, typical ranges of the process parameters for selected aerators are also 

presented. At the end of this part, a short review on the recent research trends and 

achievements in the aeration sector with several literature examples is given.  

Second part of the chapter concerns the application of two reactors, Pressurized Aeration 

Chamber (PAC) and 2D bubble column reactor (BCR), as the aeration devices, which can be 

used in AS process.  

Computational Fluid Dynamics (CFD) was used to study the hydrodynamics and oxygen mass 

transfer in several geometries of PAC, aiming selection of the most efficient design, which 

was later applied in lab-scale studies. The experimental studies on PAC aim to determine 

oxygen transfer rate parameters in steady and unsteady clean water tests and validate 
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results obtained from the CFD studies. Aeration efficiencies obtained from clean water 

test were compared with the corresponding parameters, characteristic for the 

conventional aeration devices.  

Experimental studies on BCR aimed determination of the hydrodynamics and the oxygen 

mass transfer. Flow regimes and gas hold-up in BCR were assessed for varying operating 

conditions using standard imaging technique. Aeration performance, therefore oxygen 

mass transfer parameters were determined from the results of steady state clean water 

test. Finally, the aeration efficiencies obtained for BCR were compared with the 

conventional aeration systems.           

2.2 Aeration in Activated Sludge Processes 

Aeration process is key unit process in the biological wastewater treatment train, which is 

of the crucial importance for the majority of the aerobic processes, based on the both, 

suspended and attached growth systems, such as activated sludge process and its variants, 

aerated lagoons, rotating biological contactors or trickling biofilters. In such biological 

systems, molecular oxygen is used by the aerobic heterotrophic microorganisms indigenous 

to the activated sludge, as an electron acceptor necessary to metabolize biodegradable 

organic matter present in the wastewater (Benefield and Randall, 1980) and in the effect, 

to promote biomass growth. Generally, in most of the aerobic wastewater systems, 

significantly larger quantities of oxygen must be transferred to meet the following 

requirements (Tchobanoglous et al., 2003): satisfy oxygen demand for microbiological 

degradation of organic substrate, endogenous respiration and nitrification; to maintain the 

minimum level of residual dissolved oxygen of 2.0 mg L-1 throughout the activated sludge 

tank. However, in natural conditions poor solubility of oxygen in liquid media contributes 

to the low oxygen transfer rates through the surface gas-wastewater interface and in 

conditions of the oxygen deficit, microbial metabolism is inhibited, what leads to 

treatment process failure manifested by the immediate deterioration of the effluent 

quality. From this reason, to overcome low gas transfer rates and to satisfy oxygen 

demand, additional oxygen-wastewater mass transfer interfaces have to be created 

through the introduction of the “artificial” aeration system into the activated sludge tank. 

Aeration systems transfer oxygen into the wastewater by (Stenstrom and Rosso, 2008; 

Tchobanoglous et al., 2003; von Sperling, 2007): releasing air or oxygen through 

macroscopic orifices or porous materials, which constitute part of submerged aeration 

devices, such as diffusers; dynamic shearing the fluid surface by rotating blades of the 

surface or mechanical aerators, causing exposure of the liquid droplets into the 

atmospheric air and allowing the entrance of the air into the liquid.  
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Even though the aeration is irreplaceable unit process in the wastewater treatment train, 

it is largely energy-intensive and accounts for the largest fraction of the total wastewater 

treatment plant energy expenditure, ranging in average from 45 to 75% (Reardon, 1995) 

and in extreme cases, even up to 85%. Nowadays, due to the increased global emphasis on 

energy conservation, there is an urgent task in wastewater sector reduce site energy usage 

through the application of advanced design and modelling tools for development, 

diagnostics and management of energy-minded aeration systems.  

2.2.1 Diffused Aeration Systems 

Diffused aeration technique is defined as the injection of air or oxygen enriched air below 

the liquid surface. Typical diffused aeration systems used in wastewater treatment 

include: submerged in the wastewater aeration device that introduces air or oxygen 

bubbles into the liquid; air header manifold and air piping system; blowers; and other 

supporting equipment through which the pumped air passes (Tchobanoglous et al., 2003; 

von Sperling, 2007). In the past, depending on the bubble size, diffused aeration devices 

have been divided in fine, medium and coarse bubble devices. However, such 

differentiation of the devices based on the measured bubble size is difficult and in some 

cases may be confusing (Mueller et al., 2002; Tchobanoglous et al., 2003). From this 

reason, the current division criteria are based on the physical characterization of the 

equipment used. Three categories are defined: porous or fine-pore diffusers; nonporous 

diffusers; other hybrid devices, i.e. jet aerators, aspirating aerators, sparge turbine 

aerators and U-tube aerators. Aeration performance by aspirating aerators and draft tube 

aerators is based on introducing of air bubbles in the liquid medium accompanied by 

simultaneous mixing, due to rotating action of the impeller. From this reason, these 

devices are often classified as mechanical aerators.  

Historically, the first diffused aeration unit using perforated plate diffuser was patented in 

the UK in 1904. By the introduction of the activated sludge process in UK in 1914 (Ardern 

and Lockett, 1914), coarse bubble units such as nozzles and perforated tubes were already 

used in practice of wastewater aeration since late 1880s. The effects of bubble size, air 

flow rate, tank geometry and diffuser placement on oxygenation efficiency were already 

known, and thus intense research focused on applications of various porous materials, such 

as firebrick, sandstone, mixture of sand and glass and pumice, aiming development of the 

media producing fine bubbles. Most of these materials were characterized by low 

permeability creating high head loss. The first porous plate diffuser produced from foundry 

slag and cement was introduced in 1915. By early 1930s, cement-slag and cement-sand 

based plate diffusers, exploited in activated sludge systems in UK and British colonies for 
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around two decades, were substituted by alundum plate diffusers. At the same time in 

Germany, patented Brandol plate diffusers, produced from quartz sand bonded by binding 

resin, were commercialized. Later modifications led to introduction of tube diffuser, 

produced from silica sand bonded by phenol formaldehyde resin (Mueller et al., 2002; 

Schmidt-Holthausen and Zievers, 1980). 

In the U.S., patented in 1914 porous plates produced from bonded silica sand, were widely 

used in newly constructed activated sludge plants (Mueller et al., 2002). Parallel tests on 

aeration were conducted using porous tubes, porous wood, ceramic plates (Roe, 1945) and 

air jets (Mueller et al., 2002). Further research led to development of a wide range of 

porous media used in plate diffusers based on the alundum and silica sand bonded by 

various binding agents. Since the early years of exploitation, a serious operational problem 

was caused by diffusers clogging and thus their maintenance, especially in cases of more 

and more popular large capacity aeration tanks. From this reason, by the 1950s most of 

the wastewater treatment plants (WWTPs) in the U.S. turned to substitute fine pore 

diffused air units either with large orifice diffusers or mechanical aerators. Popularity of 

improved types of coarse bubble diffusers despite their lower oxygen transfer efficiency 

and higher power usage was mainly due to their resistance to fouling and easy 

maintenance. In the late 1950s fine bubble jet aeration became more popular in municipal 

systems due to its high oxygen transfer and mixing efficiencies, however industrial 

wastewater sector still remains as its biggest application field (Mueller et al., 2002).   

Meanwhile in Europe, to overcome the problems caused by fouling and maintenance of the 

porous plates, ceramic dome diffuser units were developed in the UK (EPA, 1985), taking 

advantage of integral piping systems and raising the aeration units above the basin floor, 

preventing in this way settling the sludge into the porous media. The ceramic domes 

evolved into discs, which became the standard for fine pore aeration systems for over two 

decades.  

Due to the energy crisis in 1970s in the U.S., the need of implementation of efficient but 

less energy-intensive aeration methods revived the interest in porous diffusers technology. 

Intense research in this field led to reintroduction on the global markets a wide range of 

new porous materials such as first generation of membranes, improved diffuser designs and 

configurations allowing for maximal efficiency with easier maintenance. New designs 

consider also energy efficient solutions for supporting equipments such as blowers. Further 

development of the membrane diffusers led to distinct improvement in the aeration 

performance and domination on the global markets. Nowadays coarse-bubble plants are 

being retrofitted by fine-pore diffusers. 
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In the last three decades, substitution of dissolved air systems by pure oxygen systems 

become competitive due to development of the new technologies allowing for more 

efficient dissolution of oxygen in the wastewater. The quantity of oxygen that can be 

injected into wastewater under specific process conditions yields four times the amount of 

oxygen delivered by air systems (Shammas and Wang, 2009). Due to that, significant 

savings can be achieved by reduction of operating costs for power demand by blowers. In 

design of new WWTPs, investment costs can be lowered due to reduced volume of aeration 

tank. Additional advantage is enhanced biokinetics of activated sludge, what makes the 

system suitable for operation in high rate mode and for efficient treatment of high-

strength effluents.   

2.2.1.1 Nonporous Diffusers 

Coarse bubble systems use macroscopic orifices, holes or slots of the average diameter 

ranging from 6 to 12 mm to release large bubbles of the diameter bigger than 6 mm. The 

most common types of coarse bubble devices are (EPA, 1989; Mueller et al., 2002): fixed 

orifice diffusers, i.e. perforated piping, spargers and slotted tube; valved orifice diffusers, 

equipped with check valve preventing backflow when the air is shut; and static tube 

diffuser, consisting of a vertical tube with drilled orifices, fixed above the air header. In 

the past, coarse bubble aeration dominated the municipal field, and was particularly 

popular in plug flow tanks, also in some oxidation ditches.  

The diffusers were arranged in a single, two or more rows, located on the sides of the tank 

in so called single- or dual-roll spiral, cross-roll, ridge or furrow configurations, with 

narrow or wideband diffusers placement (Henze et al., 2008; Mueller et al., 2002; 

Tchobanoglous et al., 2003). In the recent years, to optimize efficiency, these systems 

were upgraded the full-floor coverage configurations.  

The coarse bubble diffusers operate at high air flow rates, what makes them more 

resistant to the clogging and scaling. From this reason, the coarse bubble system requires 

little maintenance mainly due to the corrosion of the air mains or diffusers. Discharged 

from the orifices rising bubbles are characterized by high interfacial air-liquid velocity, 

and thus as the bubble retention time is short, the area for oxygen transfer is also limited. 

Discharge of the bubbles through the nonporous media is characterized by low diffuser 

surface pressure drop, referred as the dynamic wet pressure, DWP, accounting for around 

0.01 bar. On the other hand, to maintain high oxygen transfer rate in nonporous aeration 

system, large volumes of air must be delivered, and thus, high capacity compressors 

demanding more power must be used.  
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Nowadays, due to low aeration efficiency, existing coarse bubble installations are being 

successively replaced with porous diffusers. However despite of higher energy usage, 

coarse bubble units are sometimes the best choice, especially in aeration of the viscous 

fluid systems, such as found in aerobic digesters or membrane bioreactors operating at 

high Mixed Liquor Suspended Solids (MLSS), exceeding 8000 mg L-1 (Stenstrom and Rosso, 

2008). 

2.2.1.2 Porous Diffusers 

Due to the higher aeration efficiency and around half the power required by nonporous and 

mechanical aeration units, fine pore diffusers dominated the worldwide wastewater 

treatment market. The performance of the porous diffusers is based on the release of 

small spherical bubbles of the average diameter ranging from 2 to 5 mm from the micro-

orifices or pores in porous material. Porous media commonly used in diffusers are: 

ceramics, mainly alumina, silica and aluminium silicate; rigid porous plastics, made from 

several thermoplastic polymers, from which high density polypropylene (HDPP) and 

styrene-acetylonitryle (SAN) are the most popular (EPA, 1989); and perforated membranes, 

made from elastomers, such as rubber- ethylene-propylene diene monomers (EPDMs), 

flexible polyurethane, or silicone, having slits of the typical size of 1 mm (Mueller et al., 

2002).  

There are many shapes of diffusers from which the most popular are: domes, discs and 

plates, made of ceramic or porous plastic media; panels, made of flexible polyurethane 

membranes; and tubes, made of ceramic, porous plastic and perforated membrane media 

(EPA, 1985, 1999; Mueller et al., 2002; Tchobanoglous et al., 2003). Domes, discs and 

tubes can be mounted on the air mains, running by the sides of the tank, close to the 

bottom. New installations are usually mounted in grid pattern in full floor configurations, 

providing uniform and efficient aeration throughout the tank (Henze et al., 2008). 

Similarly, panel diffusers are mounted close or directly on the aeration tank bottom and 

fastened with the anchor bolts (Mueller et al., 2002; Tchobanoglous et al., 2003). 

High aeration efficiency of the fine pore diffusers made them suitable for almost all 

suspended growth and attached growth activated sludge systems, including MBRs with 

moderated MLSS loading, horizontal flow systems, such as oxidation ditch equipped with 

flow generators (vertical agitators or banana blade mixers) and recently – aerated lagoons. 

The main disadvantage of the fine-pore system is that the diffusers are prone to clogging, 

due to build-up of biological (fouling) and inorganic (scaling) precipitates on their surface 

or within their porous structure, depending on the device type. Porous devices have higher 

DWP than for nonporous diffusers, that for ceramic devices is of around 0.015 – 0.030 bar, 
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and for membranes – up to 0.045 bar. Due to the clogging, these values increase up to 

200% of the new device DWP. At the same time, with the increase of the head loss, overall 

aeration process efficiency decreases. Serious undesirable problems, such as tearing away 

the membranes or failures of blowers and overloaded motors are likely to occur due to 

diffusers clogging. From this reason, regular cleaning to remove foulants is always required 

to restore process efficiency and reduce power cost.  

2.2.1.3  Jet Aerators 

Jet aeration is a combination of liquid pumping with air diffusion which produces fine 

bubbles due to the hydraulic shear (Mueller et al., 2002; Tchobanoglous et al., 2003), 

through which both, oxygenation of wastewater and mixing of the tank content takes 

place. In such system, power demand accounts for energy used for wastewater pumping 

and air delivery. Jet aeration system includes: constant rate wastewater recirculation 

pump, such as end suction centrifugal pumps, vertical submersible pumps or vertical 

propeller pumps; jet aeration device; low pressure blower, e.g. rotary positive 

displacement blower, multi-stage centrifugal blowers, or turbine type compressor; and the 

air and wastewater piping. Typical jet device consists of: primary inner nozzle; mixing 

chamber, venturi or outer mixing nozzle; air inlet; and the secondary jet nozzle, having 

circular opening (conventional jet) or slot-shaped opening (slot injector) cross-section. 

Both, piping system and jet assembly are made of polypropylene, fiberglass reinforced 

plastics or stainless steel. Several types of jet aeration devices and the aeration systems 

configuration, has been developed (KLa Systems, Inc., Bayer AG) which are successfully 

commercialized.  

Jet aerators can be arranged as directional devices or as clustered or radial devices. Radial 

devices, distributing jets in uniform way around the circumference of a central pressurized 

chamber, are used in smaller scale biological utilities having circular tanks. Jet manifold 

configuration is used in larger scale aeration basins. Manifold type jet aerators consist of 

jets placed on either one or both sides of a liquid distribution pipe. The jet nozzles are 

attached to an air header manifold by individual air ducts, having functions of an air 

source for the jets and support for the air header pipe. The aerator configuration, number 

of jet nozzles and nozzle spacing is designed for individual wastewater systems to 

maximize oxygen transfer and effective mixing.  

The liquid phase, recirculated wastewater is discharged from the inner nozzle into the 

outer mixing chamber, where it converts into high velocity, low- pressure stream. At the 

same time, low pressure air pumped through a header is introduced perpendicularly to the 

wastewater stream into the mixing chamber. In conditions of high shear and intense mixing 
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of both fluids, air breaks into minute bubbles. The mixture is discharged into the tank 

through the secondary nozzle, forming high-velocity horizontal jet plume, carrying the 

cloud of fine bubbles. Air head loss through the jet is negligible, due to the ejecting action 

of the wastewater stream. The plume entrains the surrounding mixed liquor and disperses 

rising upwards to the surface bubbles, resulting in high oxygen mass transfer rate. 

Horizontal momentum from the discharged jet imparts velocity to the surrounding liquid, 

thus, besides efficient aeration, mixing process takes place.  

Slot injectors, introduced by Bayer in early 1980s operate at different air-liquid flow ratios 

than conventional jets. Diverging change in shape of the nozzle opening allowed larger 

shear surface for mass transfer, than a circular jet of identical area. Due to that, the 

plume retains more of its kinetic energy as it exits the device, resulting in more effective 

gas dissolution into the bulk liquid.  

Usually, depending on the air-wastewater flow rate ratios, in the continuous flow systems 

such as oxidation ditches, the energy of the jets is sufficient for keeping the mixed liquor 

in suspension and forcing the fluid circulation. Due to its high aeration- mixing efficiencies 

and its flow directional feature, jet aeration process is suited for a wide range of the 

activated sludge process: complete mix and plug flow activated sludge systems, 

sequencing batch reactors, oxidation ditches, high-purity oxygen activated sludge process 

(HPO-AS) systems and deep tank (>8 m) systems (Mueller et al., 2002; Shammas and Wang, 

2009; Tchobanoglous et al., 2003). 

2.2.1.4 U-tube Aerators 

U-tube aeration system consists of a deep shaft (U-tube), usually 9-150 m deep (Mueller et 

al., 2002), divided into inner and outer zone. The wastewater flow is forced downwards to 

the bottom of the shaft and returns upwards towards the surface for further treatment. 

Pressurized air is introduced into the wastewater stream into downcomer zone. As the 

pressurized mixture travels downwards, the more oxygen is transfer in the bottom zone of 

the shaft, due to the increase of the oxygen partial pressure in lower the temperature 

(Mueller et al., 2002; Shammas and Wang, 2009; Tchobanoglous et al., 2003). The deeper 

the shaft, the higher the oxygen saturation, however the atmospheric air-based process 

may be troublesome due to the risk of the simultaneous nitrogen super-saturation. From 

this reason, pure oxygen aeration combined with low velocity fluid pumping is often used, 

yielding higher DO concentrations (Taricska et al., 2009a).  

The power expenditure of the system depends upon the air demand on the biochemical 

processes and on the forcing the fluid circulation in the shaft. Usually, for the municipal 
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wastewater of the average quality, the quantity of air delivered for fluid circulation is 

sufficient for maintenance of the biological activity. For the concentrated wastewater, the 

air demand is governed by the biological oxygen demand, thus economics of the process 

increases with wastewater strength (Mueller et al., 2002).  

2.2.2 Mechanical Aeration Systems 

Mechanical aeration is defined as the transfer of oxygen to wastewater by mechanical 

devices, based on the liquid surface agitation and mixing, promoting the entrainment of 

atmospheric air and its dispersion in the bulk liquid (Mueller et al., 2002).  

Introduction of mechanical aeration in activated sludge process to overcome existing 

problems with diffusers clogging is dated to the late 1910s in Europe, mostly in the UK. 

During next twenty years only in the UK the number of WWTPs with mechanical aeration 

units doubled the number of diffused aeration plants. In early 1920s the majority of the 

first generation mechanical devices used in the shallow activated sludge tanks constituted 

horizontal shaft rotors with different configurations of paddle wheels or inclined shaft 

propellers. At the same time, first deep tank aeration unit- vertical draft tube aerator was 

introduced in the UK. The technique spread worldwide and by the 1950s, draft tube 

aerators became the most popular mechanical device implemented in the U.S. (Mueller et 

al., 2002). 

In late 1920s in Holland, Kessner developed so called brush aerator, which employed 

submerged in the wastewater street cleaning brushes mounted on the horizontal rotor, 

substituted later by paddles and blades. In 1954 the device was successfully implemented 

in the Pasveer oxidation ditch and by the 1960s, horizontal rotors with various 

configurations of blades and disks, patterned after the original Kessner brushes became 

popular device to aerate oxidation ditches. In case of small installations, horizontal cage 

rotors have been preferred. Nowadays, horizontal axis aerators are almost entirely 

associated with the oxidation ditches.  

In the late 1950s and 1960s in the U.S. intense engineering works were focused on 

development of the low-speed vertical shaft turbines, which established their position in 

the aerators market by the mid 1970s. Soon, with the increasing popularity of the high 

capacity activated sludge tanks, low-speed radial flow devices became popular also in 

multichannel oxidation ditch systems, up to 5.0 m depth. Nowadays, low-speed aerators 

are very popular in HPO-AS systems, deep tanks up to 8.0 m, in Carrousel™ oxidation ditch 

process, aerated lagoons and other activated sludge based processes. 
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In the 1970s, aspirating devices, involving floating inclined hollow shaft unit equipped with 

marine propeller and submersible pump units equipped with draft tube became popular 

solution to aerate large basins, lagoons and oxidation ditch systems.  

Parallel, floated configurations of the motor driven high-speed aerators, based on the 

nonsagging marine propeller were developed for lagoon and small aeration tanks 

applications. First generation of the motor-speed aerators encountered numerous 

mechanical problems during operation, mainly due to the motor failures. From this reason, 

intense works were made to improve device performance and reliability, and nowadays 

new versions of the high-speed aerators fitted with high efficient motor drives are 

commonly used.  

2.2.2.1 Horizontal Rotors 

The ditch system was originally fitted with Kessner brush aerator- a surface mechanical 

aerator extended across the ditch channel, consisted of horizontally placed cylinder rotor 

equipped with numerous bristles and submerged in the wastewater at approximately the 

one-half diameter (Mueller et al., 2002; Tchobanoglous et al., 2003; Thakre et al., 2008). 

Nowadays, the original Kessner bristled brushes are substituted by the rotors equipped 

with numerous configurations of angle steel, flat or curvilinear steel blades, or plastic 

bars, blades or discs (Mueller et al., 2002). The cylindrical shaft is driven by electric motor 

drive fitted with gear reducer providing rotor speed ranging from 40 to 80 rpm. Depending 

on the motor drive, aerator power requirements vary from about 2 to 90 kW.  

With the rotation of the shaft, fluid surface is being splashed by blades or discs, causing 

turbulent spraying of the droplets into the atmospheric air where the oxygen is transferred 

at the air-liquid interfaces. Simultaneously, rotating blades capture and re-enter falling 

droplets into the wastewater. Due to the propelling action of the rotor, both, imparting of 

the horizontal velocity to the bulk liquid and mixing of the ditch content takes place. 

Depending on the rotor size and speed, the velocity imparted to the fluid ranges from 0.3 

to 1.0 m s-1 (Mueller et al., 2002).  

The main disadvantage of the system is high energy expenditure on the fluid circulation, 

and additionally, the application of the horizontal rotors is limited by the wastewater 

depth in the ditch up to 4.0 m. Operation of horizontal shaft aerators is accompanied by 

liquid splash resulting in mists formation, carrying the risk of odour spread and air-borne 

diseases transmissions. In the cold climates, additional problems are caused by evaporation 

of the misty spray and cooling of wastewater, and as the result, to ice build-up during 

winter and slowing down the metabolic activity of the activated sludge. From this reason, 
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common practice to prevention excessive liquid splashing is installation of splash plates on 

the sides of the rotor protecting drive mechanism and also to reduce mist dispersal and 

heat loss by using rotor covers and heated hoods.                       

2.2.2.2 Low-speed Surface Aerators 

Low-speed surface aerators are commonly used in: oxidation ditches, especially in 

Carrousel™ configurations up to 8 m depth (Mueller et al., 2002); in deep tanks with HPO-

AS process; conventional and high-rate complete-mix AS systems. Such aeration system 

employs mechanical aerator, consisted of vertical shaft impeller positioned above the fluid 

surface, motor and gearbox reducing impeller speed to the range 40 to 100 rpm. Power 

demand ranges from 4 to 150 kW (Mueller et al., 2002). Low speed aerators are usually 

bridge or platform mounted, due to their size and weight, however currently, lighter 

floating units are being commercialised. Impeller design provides liquid pumping in a radial 

way, thus low-speed aerators are classified as the radial flow devices. There are number of 

impeller configurations, such as: flat disks with rectangular or slightly curved vanes 

attached to the periphery of the disk lower surface; curved blade disks; reverse curvature 

disks; pitched blade turbines; or inverted conical bodies with vertical blades.  

Rotating impeller pulls the liquid upward in vertical direction. Accelerated by the impeller 

vanes fluid is discharged in horizontal direction at the impeller rim. High velocity plume 

contacts with low velocity bulk liquid in the tank, yielding hydraulic jump, accompanied 

with generation of a large interfacial area of efficient oxygen transfer. During operation, 

large volumes of liquid are pumped to maintain high oxygen transfer rate and to force the 

fluid circulation throughout the ditch.  

Low-speed aerators are successfully used in deeper tanks, up to 10 m. These devices are 

usually equipped with draft tube system, providing sufficient oxygenation and mixing of 

the fluid. Other solution of deep tank aeration considers increase of the pumping and 

mixing capacity of the unit by introduction of the auxiliary submerged propeller mounted 

on the extension of the shaft. The main disadvantage of the low speed mechanical aerators 

is that the device performance depends rigorously on the impeller submergence. Slight 

changes in liquid level over the impeller may cause an increase of head and thus, increase 

of power demand on pumping ranging from 10 up to 50%, as well as affect the oxygen 

transfer. In the cold climates, generation of the surface spray “umbrella” during aeration 

may cause operational problems, especially during winter season due to possible freezing 

and also due to emission of odour and air-borne diseases. From this reason, common 

practice include montage of the mist shrouds above the impeller, allowing to lower the 

trajectories of the spray and reducing accumulation of the ice underneath the platform. 
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The other option considers installation of the space heaters in the motor frame, preventing 

condensation and freezing.      

2.2.2.3 Draft Tube Aerators 

Draft tube turbines found application in aeration of deeper tanks up to 10 m, thus they are 

used in aeration of deeper ditches, such as barrier ditch (Boyle et al., 1989; Mueller et al., 

2002). The device combines aeration and mixing functions and consists of a submerged 

down-pumping axial impeller, placed within a draft tube and equipped with an air sparger 

fixed below the impeller. The impeller shaft is driven by motor fitted with gear reducer.  

Typical rotational speed of impeller ranges from 50 to 100 rpm, and the motor size up to 

112 kW (Mueller et al., 2002). The air is supplied to the draft tube by blower. Even for the 

deep tanks, typical sparger submergence at the mid-depth of the ditch allows for efficient 

aeration with the conventional depth air pressures generated by blowers. Typical impellers 

used in draft tube aerators, flat blade or airfoil, are mounted on the vertical shaft driven 

by a gear motor.  

Aeration performance is based on the generation of the high-energy turbulent field by the 

rotating impeller just above the bubble column released by the sparger, promoting bubbles 

break up and their distribution within the bulk wastewater. Aeration performance and 

efficiency depends on the turbine and basin geometry, operating air flow rates and the 

turbine speed.  

2.2.2.4 Aspirating Aerators                                                                                    

Another group of equipment, commonly used to aerate and mix the content in the 

oxidation ditch systems and lagoons constitutes aspirating aerators, classified also as air-

diffusion devices (Tchobanoglous et al., 2003). Depending on the configuration of the air 

supply, self aspiration aerators and blower assisted aerators are considered. Power 

demand ranges from around 1 to 75 kW (Mueller et al., 2002). Self aspirating aerator 

consists of motor and air intake port located above the wastewater surface and hollow 

shaft equipped with propeller, submerged in wastewater at an adjustable angle. 

Depending on the activated sludge basin geometry, direction of the flow, mixing intensity 

and aeration requirements, the devices are mounted on booms, pontoons or float and at 

various angles.  

Due to rotating action of the propeller, liquid is draw down through the hollow tube 

generating local low-pressure zone at the propeller hub. Created pressure gradient causes 

aspiration of the atmospheric air through the intake port to the hub, where it contacts 
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with the wastewater in the conditions of the turbulent mixing, breaking up the air 

bubbles. Aerated stream is discharged into the ditch with the energy sufficient to provide 

efficient oxygen dispersion and mixing of the tank content.  

Other type of self aspirating aerators combines submerged aerator, mixer, and pump 

within one unit. The device uses submersible pump to draw the liquid and the vertical air 

intake standpipe open to the atmosphere (Mueller et al., 2002). The principals of the 

aerator performance are the same as the propeller based configuration, therefore the 

pressure gradient at the propeller hub accompanied by aspiration of the air occurs due to 

the pumping action, successively followed by intense mixing and discharge of the aerated 

plume through a nozzle. Submerged aspirators are usually mounted on the tank floor and 

fixed to the ditch side walls with the movable guide rails.  

Blower assisted aspirators provide passage of larger volumes of air through the aerator at 

higher operating gas pressures and velocities, thus they are recommended in cases when 

higher oxygen transfer rates are required. Each unit uses separate regenerative blower, 

mounted on the device float system or integrated with the motor and connected to the air 

intake port. Aeration performance is based on the same principals as the propeller based 

systems. For this group of devices mixing becomes independent from aeration and allows 

for direct control of oxygen levels by either turning on and off entire units or turning on 

and off only the unit blowers without sacrificing energy on mixing of the basin volume. 

2.2.2.5 High-speed Aerators 

High speed aerators are commonly used in lagoons, aerobic digesters and in lesser extent- 

in small activated sludge facilities. The typical device consists of a motor driven propeller 

placed in the rim, and the casing directing the fluid flow. The aerator operates with the 

speed of 900-1800 rpm. Available motor sizes range from about 1 to 112 kW (Mueller et al., 

2002). The first generation of the devices were equipped with marine nonsagging type 

propellers, but nowadays, among many new improved designs providing higher water 

pumpage rates than the original one, Archimedes screw-type impeller (screwpeller) and 

scooped impeller, are commonly used (Mueller et al., 2002).  

The operation of the typical aerator is based on the drawing the liquid upward by the 

rotating screwpeller through the vertical intake cone. The direction of flow changes from 

an axial to radial, and the liquid jets of high kinetic energy are discharged from the unit in 

the direction determined by the casing design. Liquid jets projected outwards the aerator 

break into the fine droplet spray, creating extended interfacial area for oxygen transfer. 

Falling droplets entrain and disperse atmospheric air into bubbles into the bulk liquid in 
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the tank. At greater depths, device is usually fitted with draft tube system attached to the 

intake cone providing enhanced oxygen transfer and mixing. The high-speed aerator units 

use smaller impellers with short shafts and operate with lower pumping rates than low-

speed devices. As they are lighter than the low-speed aerators, the typical configurations 

consider single float mounted units. The flow patterns generated by the aerator are similar 

but there is practically no liquid circulation within the tank.  

Aerator performance is accompanied by mist formation. To prevent excessive expansion of 

the spray umbrella, the device operation is based on generation of low trajectory jets by 

using casing designed to direct the flow downwards and away the unit. Other options 

consider installation of the spray containment domes, controlling and redirecting 

discharge, and also retaining heat. 

2.2.3  Oxygen Transfer in Clean Water 

Back in 1976, under the sponsorship of United States Environmental Protection Agency (US 

EPA), American Society of Civil Engineers (ASCE) set up an international committee on 

Oxygen Transfer Standard, which main task was to gather up to date state of the art in 

oxygen transfer measurements and finally, to standardize testing procedures for aerators 

in both, clean and process waters. Consequently, one of the main efforts was to establish 

consistent and repeatable test condition to estimate clean water parameters: mass 

transfer coefficient,    , and equilibrium saturation concentration of oxygen,   
  from 

reaeration data, and successively, translating clean water rates to process conditions. 

A long-term partnership of the committee members, manufacturers and practitioners in 

the field of aeration resulted in publication of the first ASCE Standard in 1984, which was 

subsequently updated and republished in 1991 and 2006 (Mueller et al., 2002). Worldwide 

application of Standard for the Measurement of Oxygen Transfer in Clean Water (ASCE, 

1991, 2007) and Standard Guidelines for In-Process Oxygen Transfer Testing  (ASCE, 1997) 

allowed characterizing unambiguously aeration device/system performance through 

determination of oxygen transfer in clean or process water, per quantity of energy 

delivered during aeration. Global spread of these standards, reduced variability not only in 

device testing procedures, affecting reliability of the data contained in the specifications 

of the unit, but also in the guidelines regarding design and dimensioning of the aeration 

systems.  
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2.2.3.1 Oxygen Mass Transfer Theory  

Modelling of oxygen transfer in water is based on two film theory (two resistance theory) 

postulated by Lewis and Whitman (1924). The theory (Lewis and Whitman, 1924; Stenstrom 

et al., 2006; Tchobanoglous et al., 2003) considers interface between films of two phases: 

gas and liquid. The interface between the films is in the equilibrium state, thus the 

resistance to the mass transfer across the interface can be neglected. The passage of the 

gaseous phase through the interface occurs due to the relatively slow rate of molecular 

diffusion. In case of the gases of low solubility, such as oxygen, the resistance of the gas 

film can be neglected and consequently, entire resistance to the passage of the gas into 

the liquid is due to the liquid film. It is assumed that beyond the films, the concentration 

and partial pressure in both, bulk liquid and bulk gas phase are considered uniform 

(completely mixed). 

Mathematical description of the gas mass transfer by molecular diffusion through the 

interface being in equilibrium is given by Fick’s first law of diffusion: 

     

  

  
 (2.1) 

where   denotes mass transfer rate per unit interfacial area per unit time, kg m-2 s-1;     

represents the molecular diffusion coefficient (diffusivity) in   direction, m-2 s-1;       is 

the concentration gradient; and   is a distance, m.  

Considering aeration process, to describe the passage of the oxygen into the water, 

Equation (2.1) can be written using film coefficients and concentration gradients 

expressed in each phase from the bulk values to the interface values. Hence, for the 

oxygen layer we have: 

            (2.2) 

and for the water layer:  

            (2.3) 

where    denotes gas film mass transfer coefficient, m s-1
,    – is the partial pressure of 

the oxygen in the bulk gas phase,    – is the partial pressure of the oxygen at the interface, 

being in equilibrium with concentration    of oxygen in water, mg L-1,    designates liquid 

film mass transfer coefficient, in m s-1 and    is the concentration of the oxygen in the 

bulk liquid phase, mg L-1.  
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The gradients         and         represent driving forces causing mass transfer in the 

either phase, in sequence. Substituting the values    and    by the overall gas and liquid 

film coefficients,    and   , and considering existence of the resistance, but only in the 

liquid film, mass transfer rate can be expressed as follows:  

                                (2.4) 

where    - is the concentration of the oxygen at the interface in equilibrium with the 

partial pressure of the oxygen in bulk gas phase, mg L-1, and    denotes the concentration 

of the oxygen in water phase, mg L-1.  

The relationship at the interface is expressed by Henry’s law of the following form: 

        (2.5) 

and 

        (2.6) 

where   denotes Henry’s constant. Combining Equations (2.4), (2.5) and (2.6), the 

balance of driving forces equals: 

                        (2.7) 

Combining Equations (2.2), (2.3) and (2.5), (2.6) yields the following: 

 

  
 

 

  
 

 

   
 (2.8) 

where the left side of the equation expressed as      denotes the total resistance to gas 

component transfer, calculated as a sum of the resistances to oxygen transfer in liquid 

(    ) and in gas phase (     ).  

Henry’s law given in Equation (2.5) is employed to assess the oxygen saturation 

concentration,   
 , defined as the concentration value in equilibrium with the 

concentration in the bulk gas phase, reached at the time approaching infinity. Since the 

resistance in the gas side is negligible, therefore the oxygen concentration at the interface 

equals bulk concentration in gas phase. Thus we have: 

  
  

  

 
 (2.9) 
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where   
  denotes oxygen saturation concentration, mg L-1, and    is the concentration in 

bulk gas phase, mg L-1.  

To assess the flux of oxygen from the gas phase to the liquid phase, water, Equation (2.4) 

is modified by replacing    for   : 

       
      (2.10) 

where    is concentration in bulk-liquid phase at the time  .  

To express the change of oxygen concentration in time, Equation (2.10) will be multiplied 

by interfacial area per unit volume: 

     

 

 
    

            
      (2.11) 

where    denotes rate of mass transfer per unit volume and unit time, kg m-3 s-1,     is 

volumetric mass transfer coefficient, s-1,   is the area through which the mass is 

transferred, m2,   denotes the volume in m3, in which the concentration of the oxygen is 

increasing and     denotes specific area,  . 

The Equation (2.11) expressed often as 

  

  
       

      (2.12) 

is the fundamental equation used to describe oxygen transfer in actual aeration systems. 

2.2.3.2 Clean Water Test  

To determine process water transfer rates the procedure based on aerator testing in clean 

water is commonly used, due to its reproducibility and validity for aeration devices 

operating in both, laboratory- and full-scale water volumes and for a wide range of mixing 

conditions. A method developed within the Standard (ASCE, 1984, 1991, 2007) covers the 

determination of the process parameters, related to the mass of oxygen transferred in 

a volume of water by an aeration device or system, operating under specified gas flow 

rate, power and process conditions.  

Depending on the flow characteristics within the considered aerated system, clean water 

test can be carried on using non-steady (unsteady) and steady methods (von Sperling, 

2007). Both methods require test water tank, previously washed with clean water and 

filled to the desired volume. Dissolved oxygen (DO) is removed from the water by oxidizing 
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with sodium sulphite in the presence of cobalt catalyst. During deoxygenation aeration 

device is switched off. Deoxygenation stage is followed by reoxygenation to near-the 

saturation level.  

Most aeration tests are performed using the unsteady- state type of experiment. Unsteady-

state method, called also reaeration method, is based on the monitoring of water volume 

DO inventory during reoxygenation stage, through measurements of DO concentration in 

the characteristic points, selected to represent the tank content. From the DO-versus-time 

data set, aeration capacity is calculated on the base of the rate of increase of the DO 

content during reaeration. Data obtained from each determination point during unsteady- 

state test are introduced into the simplified mass transfer model, defined by Equation 

(2.12), to estimate the values of apparent mass transfer coefficient,    , and the oxygen 

saturation concentration,   
 . 

Log deficit form for oxygen transfer parameter estimation (Mueller et al., 2002; Stenstrom 

et al., 2006) uses the integrated form of the equation (2.12):  

  
  

    

  
    

           (2.13) 

where    denotes initial DO concentration at time     , and the terms   
     and 

  
     represent the degrees of the undersaturation: initial at the time   , and after any 

time  , respectively.  

Log deficit method requires a priori methods of the   
  parameter estimation, based on 

the knowledge about the aeration system. These methods account for the effect of the 

hydrostatic pressure of the column water on gas bubble, therefore the value of   
  

becomes the function of tank depth, and the mass transfer efficiency. Thus, depending on 

the aerator submergence, the value of the oxygen saturation concentration varies 

considerably from the handbook values. Additionally, a priori methods revealed to have 

other pitfalls, such as unintended transformation of the actual DO measurement errors in 

the logarithms or bias due to the incorrectly determined value of   
 , that may affect the 

final overall transfer rate value. The extreme limits of bias of around ± 15 to 20% in     

estimation occurred when the   
  value applied into the log deficit form was too high. 

Nonetheless, performing log deficit for the data set using values up to 80% of saturation 

generates residuals of the range 2 to 4%. The alternative way to estimate aeration 

parameters from data obtained in reaeration test was introduced in the ASCE Standard. 

Nonlinear Regression Model, known also as the best fit method, based on nonlinear 

regression of equation (2.13) in the exponential form: 
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                     (2.14) 

The method is based on the selection of the best estimates of    ,   
  and   , as the 

minimized residual sum of squares between the data predicted in equation and obtained 

experiment, is reached. Fitting the experimental data to equations may generate inversely 

correlated errors in parameters estimates, increasing or decreasing slightly   
  and     

values. Although, contrary to a priori models, the ASCE Method eliminates bias, the 

computational procedure requires a computer or programmable calculator to estimate the 

parameters; therefore popularity of the method was delayed until wide-spread use of 

personal computers (PC). In case of rapid on-site estimates and for the data up to 80% of 

saturation, log deficit method should provide rapid estimates of     values, differing for 

less than 5% from the values obtained using nonlinear regression technique. 

The principles of the steady-state method of clean water testing are the same as those for 

non-steady. Steady-state test in clean water is performed on continuous flow system, in 

which all conditions are considered constant, such as the influent DO concentration, flow 

rate or mixing patterns within the tank (Abusam et al., 2001; ASCE, 1997; von Sperling, 

2007). Therefore, after addition of deoxygenation agents, aerator remains switched off 

while the DO concentration in the tank drops to zero. After starting up the aerator, DO 

concentration is monitored in several points of the tank, until the steady- state 

concentration is reached.   

Since the diffusivity of oxygen at the exposure time is constant, therefore overall liquid 

film coefficient,   , the specific area  , may also be considered constant. The test is 

performed on clean water and there is no oxygen consumption in the liquid medium during 

aeration, therefore the oxygen concentration increases to the steady-state value, that in 

this case is the saturation concentration:    
    .  

The rate of change of the oxygen concentration,   , in a steady-state system equals:  

  
  

  
            (2.15) 

After rearrangement, the oxygen transfer coefficient is: 

    
 

     
 (2.16) 

The mass of oxygen per unit volume and time is expressed through a rearrangement of the 

Equation (2.15) (von Sperling, 2007): 
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            (2.17) 

where    denotes mass flux of oxygen, kg s-1.  

After integration and rearrangement of the Equation (2.15), the concentration of the 

oxygen at any time can be computed from the following (ASCE, 1991): 

                              (2.18) 

where    denotes initial DO concentration at time     , and the term       represent 

the initial oxygen deficit initial at the time   .  

For the same aeration device tested in different tanks the key parameters determined 

from the clean water test may vary due to the impact of such physical conditions, as 

barometric pressure, water temperature, or salt content. To allow uniform 

characterization of the aerator and avoid bias, assessed transfer rate values are 

successively adjusted to the standard conditions, namely: clean water; zero DO 

concentration; water temperature of 20 ºC; barometric pressure of 1.0 atm; and altitude 

of 1.0 m (sea level). 

Depending on the water temperature, the oxygen saturation concentration will vary, 

therefore the adjustment to the standard conditions requires introduction of the 

correction factor,   : 

   
   

 

    
  (2.19) 

where    
  is the oxygen saturation concentration in the process temperature, mg L-1, and 

    
  is the saturation concentration at temperature of 20 ºC , 1.0 atm total pressure and 

zero salinity.   

The influence of the temperature on the     values can be expressed using following 

relationship:  

           
     (2.20) 

where      denotes     coefficient at any temperature  , s-1,       is the     coefficient 

at the standard temperature of 20 ºC, and   is the temperature coefficient. The 

recommended value of   is 1.024. 
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Presence of Total Dissolved Solids (TDS) in water affects solubility of the oxygen. Carrying 

multiple clean water experiments on the same water is a common practice, however due 

to the addition of deoxygenating chemicals salt content within the tank will constantly 

increase. Therefore, the upper limit of TDS concentration is 2000 mg L-1. The effect of the 

salinity on the dissolved oxygen can be described with the following formula (Pöpel, 1979):   

              (2.21) 

where   denotes solubility reduction factor (for clean water   equals 1), and      is 

concentration of dissolved salts, in mgCl- L-1.  

Presence of the dissolved organics, soaps and surfactants and other contaminants in the 

wastewater may have a significant impact on the     values. From this reason, an 

experimentally measured for each aeration device parameter -   factor, accounting for 

the reduction in oxygen transfer rate caused by impurities in the wastewater, was 

introduced.  

  
             

            
 (2.22) 

The   factor is the most uncertain of the various oxygen transfer parameters. Typically, 

the values of   vary from 0.6 to 1.2 for mechanical aeration systems, and from 0.4 to 0.8 

for diffused oxygen systems (Tchobanoglous et al., 2003).  

2.2.3.3 Oxygen Transfer Rate Parameters 

Oxygen Transfer Rate, referred also as the oxygenation capacity,   , is defined as the 

mass of oxygen transferred per unit time into a given volume of water   at the 

temperature  : 

           
   (2.23) 

where     denotes Oxygen Transfer Rate in clean water and under operating conditions, 

kgO2 h
-1. 

Employing standard conditions, Standard Oxygen Transfer Rate, is defined as: 

               
   (2.24) 
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where      denotes Standard Oxygen Transfer Rate in clean water and under standard 

conditions, kgO2 h
-1. 

Aeration Efficiency is referred as the oxygen transfer rate in clean water in kgO2 h
-1 per 

unit power consumed (kW), and is expressed as: 

   
   

 
 (2.25) 

where    denotes the Aeration Efficiency in clean water and under operating conditions, 

kgO2 kW-1h-1, and   denotes power input, kW.  

Thus, Standard Aeration Efficiency is: 

    
    

 
 (2.26) 

where     is the Standard Aeration Efficiency in clean water and under standard 

conditions, kgO2 kW-1h-1. 

The power input may be assessed from either on delivered    or on wired power    

(Mueller et al., 2002): 

     
  

 
 (2.27) 

where   denotes overall efficiency of the aeration equipment and is the product of the 

individual efficiencies of the mechanical equipment, such as blowers, motors, coupling or 

gearboxes. 

For diffused aeration systems, delivered power of blowers is computed from the adiabatic 

compression equation, expressed as: 

  
   

            
  

  

  
 
     

    (2.28) 

where   is the power requirement for each blower in kW,   is air mass flow rate in kg s-1, 

  is universal gas constant for air and  = 8.314 kJ kmol-1K-1, and    is the inlet temperature 

in K,   is the constant and equals 0.283 for air,    and    are absolute pressures upstream 

and downstream (inlet, outlet) of compressor in atm,    is blower efficiency, usually in the 

range 70-90%, and    is motor efficiency, usually in the range of 90–94%. 

The Oxygen Transfer Efficiency is one of the essential parameters characterizing diffused 

aeration systems, which is calculated from the following formula: 
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     (2.29) 

where     denotes Oxygen Transfer Efficiency in % and    
 is oxygen supply mass flow 

rate , kgO2 h
-1.Considering standard conditions, the Standard Oxygen Transfer Rate is: 

     
    

   

     (2.30) 

where      denotes Standard Oxygen Transfer Efficiency in %. 

2.2.3.4 Process Parameters for Selected Aeration Devices 

The typical values of the process parameters, Standard Aeration Efficiency, SAE and 

Standard Oxygen Transfer Efficiency, SOTE, for selected nonporous and porous diffusers 

and other hybrid fine bubble devices are listed in Table 2.1, Table 2.2 and Table 2.3. 

The values of SAE for mechanical aeration devices are presented in Table 2.4. 

 

Table 2.1 Summary of Standard Aeration Efficiency (SAE) and Standard Oxygen Transfer Efficiency (SOTE) 
for selected nonporous diffused air systems. 

Aeration device 
    

Reference 
     

Reference 
(kgO2 kW-1 h-1) (%) 

Nonporous 
diffusers 

0.6-1.5 
(Stenstrom and 
Rosso, 2008) 

9-13 
(Tchobanoglous et al., 
2003) 

0.6-1.2 (Quasim, 1999) 4-8 (Quasim, 1999) 

0.6-1.2 
(Taricska et al., 
2009b) 

- - 

Fixed orifice 

perforated tube 
2.0-2.2 

(Yunt and Hancuff, 
1988) 

17-20 (Yunt and Hancuff, 1988) 

Sparger 1.8-1.9 
(Yunt and Hancuff, 
1988) 

15-17 (Yunt and Hancuff, 1988) 

Static tube 
1.7-1.9 - 13-20 (Semblex, 1987) 

1.2-1.6 (Quasim, 1999)  (Quasim, 1999) 
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Table 2.2 Summary of Standard Aeration Efficiency (SAE) and Standard Oxygen Transfer Efficiency (SOTE) 
for selected porous diffused air systems. 

Aeration device 
    

Reference 
     

Reference 
(kgO2 kW-1h-1) (%) 

Porous diffusers 

3.6-4.8 
(Stenstrom and Rosso, 
2008) 

10-30 (Quasim, 1999) 
1.2-2.0 (Quasim, 1999) 

1.2-2.1 (Taricska et al., 2009b) 

Ceramic dome 3.4-6.0 (Mueller et al., 2002) 
27-37 

(Tchobanoglous et al., 
2003) 

25-44 (EPA, 1989) 

Ceramic disc 3.6-6.1 (Mueller et al., 2002) 
25-35 

(Tchobanoglous et al., 
2003) 

25-40 (EPA, 1989) 

Ceramic plate - - 26-33 
(EPA, 1989; 
Tchobanoglous et al., 
2003) 

Rigid porous 

plastic tubes 
4.5-5.2 (Mueller et al., 2002) 28-32 (EPA, 1989) 

Rigid porous 

plastic disc 
- - 22-32 (EPA, 1989) 

Rigid porous 

plastic plate 
- - 30-40 (Mueller et al., 2002) 

Nonrigid porous  
plastic tubes 

- - 26-36 
(Tchobanoglous et al., 
2003) 

Perforated 

membrane disc 
2.4-7.9 (Mueller et al., 2002)   

Perforated EPDM 
membrane tube 

3.4-5.8 (Mueller et al., 2002) 

21 (EPA, 1989) 

22-29 
(Tchobanoglous et al., 
2003) 

Perforated 

membrane panels 
3.1-6.9 (Mueller et al., 2002) 38-43 

(Tchobanoglous et al., 
2003) 
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Table 2.3 Summary of Standard Aeration Efficiency (SAE) and Standard Oxygen Transfer Efficiency (SOTE) 
for selected fine bubble aerators. 

Aeration device 
    

Reference 
     

Reference 
(kgO2 kW-1h-1) (%) 

Jet aerator 
1.2-1.8 

(Stenstrom and 
Rosso, 2008) 

  

1.2-2.4 (Quasim, 1999) 10-25 (Quasim, 1999) 

Directional 
configuration 

1.7-2.0 
(Yunt and 
Hancuff, 1988) 

15-24 
(Tchobanoglous et al., 
2003; Yunt and Hancuff, 
1988) 

Cluster 
configuration 

1.6-2.2 
(Yunt and 
Hancuff, 1988) 

21-33 (Yunt and Hancuff, 1988) 

U-tube aerator 1.3-2.4 (Quasim, 1999) 15-20 (Quasim, 1999) 
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Table 2.4 Summary of Standard Aeration Efficiency (SAE) for selected mechanical aeration systems. 

Aeration device 
    

Reference 
(kgO2 kW-1h-1) 

Horizontal rotor 

1.5 -2.1 (Mueller et al., 2002; Tchobanoglous et al., 2003) 

1.2-2-0 (von Sperling, 2007) 

1.5-2-1 (Stenstrom and Rosso, 2008) 

1.0-2.0 (Quasim, 1999) 

Low-speed aerators 

1.9-2.2 (Mueller et al., 2002) 

1.4-2.0 (von Sperling, 2007) 

1.5-2.1 (Tchobanoglous et al., 2003) 

Low-speed with draft 
tube 

1.2-2-8 (Tchobanoglous et al., 2003) 

1.2-2.7 (Quasim, 1999) 

Submerged turbines 
1.1-2.1 (Tchobanoglous et al., 2003) 

1.2-2-0 (Quasim, 1999) 

Axial flow 1.0-1.6 (Mueller et al., 2002) 

Radial flow 1.1-1.5 (Mueller et al., 2002) 

Submerged turbine 
with 

draft tube/sparger 

1.6-2.4 (Mueller et al., 2002) 

1.2-2.0 (Tchobanoglous et al., 2003) 

Submerged turbine 
with draft tube -

barrier ditch 
0.8-1.2 (Mueller et al., 2002) 

Aspirating aerators 

0.4-0.9 (Mueller et al., 2002) 

0.6-1.2 (von Sperling, 2007) 

1.5-2.5 (Quasim, 1999) 

High-speed aerators 

1.1-1.4 (Mueller et al., 2002; Tchobanoglous et al., 2003) 

0.9-1.3 (Stenstrom and Rosso, 2008) 

1.0-1.4 (von Sperling, 2007) 

1.2-2.7 (Quasim, 1999) 

 

 

2.2.4 Recent Achievements in Aeration Field 

Nowadays and not exclusively in wastewater sector, water-energy issues are of growing 

importance in the context of water shortages, higher energy and material costs and 
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a climate change. High energy use patterns of the aeration process impose implementation 

of the energy conservation measures and energy management programs, which are directly 

related to such cost‐effective energy conservation practices, as introduction of new 

technologies or upgrades of aeration devices and their operation strategies. From this 

reason, wide range of multidisciplinary approaches with a diverse methodology constitute 

an important input into current research on aeration of the AS systems: some of the 

studies concern aerator design and performance, others evaluate methods of oxygen 

transfer measurement, or focus on application of the advanced computational tools to 

predict and correct failures of the existing aeration systems. 

Accurate estimation of the     in AS basin is fundamental for verification of the aerator 

design specification and improved process design and operation. Standardized methods 

practiced extensively for     determination include: clean water test and process water 

tests; off-gas method based on the DO mass balance of the water column under a hood 

floating onto the aerated wastewater surface; and radioactive and non-radioactive tracer 

techniques (Abusam et al., 2001; Leu et al., 2010; Rosso et al., 2011; Rosso and Stenstrom, 

2005). Literature offers a  handful of examples of research studies focused on the analysis 

and the interpretation of the in situ measurements of     performed for different  

aeration systems and conducted on either full scale WWTPs (Brannock et al., 2010; 

Chiemchaisri and Yamamoto, 2005; Cornel and Krause, 2006; Cornel et al., 2003; Diamantis 

et al., 2010; Duchène et al., 2001; Fayolle et al., 2010; Gillot and Héduit, 2000; Le-Clech 

et al., 2003; Potier et al., 2005; Rosso et al., 2011; Rosso et al., 2008b; Vermande et al., 

2007) or laboratory scale systems (Fonade et al., 2001; Gillot et al., 2005; Jin and Lant, 

2004; Jin et al., 2006; Jing et al., 2009; Le Moullec et al., 2008a; Mineta et al., 2011; 

Nicolella et al., 1998; Zerari et al., 2013). Data obtained from the oxygen transfer 

measurements, i.e. DO profiles within the aerated tanks and oxygen transfer parameters 

(   ,     and   ) allow to evaluate the impact on the process efficiency and economy of 

the particular conditions, such as: operating air or oxygen rates; aerator type, placement, 

submergence, configuration and density, corresponding to percentage of the tank floor 

coverage with diffusers or the number of units in mechanical aeration systems (Bhuyar et 

al., 2009; Capela et al., 2001; DeMoyer et al., 2003; Fayolle et al., 2010; Fonade et al., 

2001; Gillot and Héduit, 2000; Kossay and Al-Ahmady, 2006; Rao and Kumar, 2007; Rao et 

al., 2009; Thakre et al., 2008). Nonetheless, data obtained from the onsite clean water 

tests performed for different aeration devices before the start-up of the WWTP may be 

insufficient to predict a series of factors affecting oxygen transfer, such as hydraulic and 

operating conditions, especially in case of deep tank aeration systems (Fayolle et al., 

2010; Gillot et al., 2005). 
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As the physics of the AS systems is complex, not only due to the presence of the 

multiphase flow, consisted of mixed liquor and air/oxygen, but also due the scale gap 

between tank dimensions, flocs and bubbles released by diffusers, and different velocities 

of the phases imparted by mixers and aerators (Pereira et al., 2012), therefore improved 

forecast of the oxygen transfer, based on the detailed insight into hydrodynamics of the 

aeration tank may be crucial for the process design and optimization. Moreover, since 

overall biochemical conversion reaction in AS are of orders greater than zero, thus 

wastewater treatment efficiency will also depend on the biological reactor hydrodynamics 

(Le Moullec et al., 2008b). Nowadays, increasing availability of computational resources 

have enabled the use of the Computational Fluid Dynamics (CFD) as a tool for the analysis 

of the multiphase flow behaviour, interfacial mass transfer and chemical reaction in gas-

liquid reactors, and it has been exploited by the academic and industrial community for 

the design and optimization of AS process equipment (Brouckaert and Buckley, 1999; Cockx 

et al., 2001; Fayolle et al., 2007; Gresch et al., 2011; Kochevsky, 2004; Le Moullec et al., 

2010a, b; Le Moullec et al., 2008b; Rigopoulos and Jones, 2003; Versteeg and 

Malalasekera, 1995). The flow patterns within the aeration tank are obtained from the 

solution of nonlinear partial differential equations, expressing balances of mass, 

momentum and energy coupled to the transport equations of the inert or reactive species 

in a local scale (Do-Quang et al., 1999). Linearization of these equations requires 

modelling of the fluctuating small flow structures and interaction forces between the 

phases by introduction of additional turbulence closures, such as two equation     model 

(Pope, 2000; Tabib et al., 2008; Zhang et al., 2006). The complete simulation of the 

aeration tank is difficult to handle, due to the complex hydrodynamics, resulting in high 

number of CPU required with long computational times involved. A common modelling 

practice is to simulate separately with CFD codes individual parts of the aeration tanks and 

afterwards couple the results (Karpinska et al., 2012a; Karpinska et al., 2012b; Pereira et 

al., 2012). Thus, some works focus mainly on the study and optimization of the aerator 

performance (Bhuyar et al., 2009; Cockx et al., 2001; Dahikar et al., 2007; Dhotre and 

Joshi, 2007; Do-Quang et al., 1999; Morchain et al., 2000), others model oxygen transfer 

and overall mixing phenomena in aeration tanks (Brannock et al., 2010; Dhanasekharan et 

al., 2005; Fan et al., 2010; Gillot et al., 2005; Le Moullec et al., 2010a, b; Le Moullec et 

al., 2008b; Moraveji et al., 2012; Tabib et al., 2008; Talvy et al., 2007; Wu and Chen, 

2011; Xu et al., 2010). Examples of biokinetic models incorporated in the CFD simulations 

of the aeration tanks can be also found in the literature (Fayolle et al., 2007; Gresch et 

al., 2011; Zima et al., 2009).   
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Determined in the CFD studies spatial distribution of such hydrodynamic features of the AS 

system as gas hold-up, DO profiles and axial velocity of the mixed liquor within the tank, 

provide precise information about the global and local physical phenomena occurring in 

the aeration basins, useful to optimize their operation and plan energy-minded upgrades. 

Nevertheless experimental calibration of the simulation input data and validation of a CFD 

results, especially in complex flow situations, is still desired. From this reason one of the 

scientific areas evolving dynamically next to the development of the aeration technologies 

and computational designing tools, are qualitative and quantitative methods associated 

with the dynamic measurements performed in such multiphase systems and based on the 

determination of liquid circulation velocity, gas hold-up and velocity, bubble distribution, 

and diffusion coefficients (Luo and Al-Dahhan, 2008).  

Typically, time-averaged velocity field in liquid volume is obtained from the measurements 

using such nonintrusive methods, as Laser Doppler Velocimetry, LDV (Le Moullec et al., 

2008b), Particle Image Velocimetry, PIV (Fan et al., 2005; Janzen et al., 2010), Acoustic 

Doppler Velocimetry (Gresch et al., 2011) or using Particle Dynamic Analyzer (PDA) (Fan et 

al., 2010). Several techniques have been developed to assess mass transfer and diffusion 

coefficients in water (Pinelli et al., 2010) using data obtained from clean water tests and 

dynamic tests such as dynamic peroxide method (Marcelino et al., 2009). Usually, dissolved 

oxygen measurements include use of zirconia ceramic, electro-chemical (galvanic) and 

luminescent digital probes and laser based methods (Suresh et al., 2009). Thus, several 

works focus on application of nonintrusive optical methods, such as Planar Laser Induced 

Fluorescence (PLIF), based on a local measurement of fluorescent dye concentration in air-

water reactor systems (Dani et al., 2007; Janzen et al., 2010; Jimenez et al., 2013). PLIF 

method found wide application in lab-scale aeration vessels and allows obtaining maps 

representing DO concentration fields, however its application in large scale tanks is limited 

by the costs of large quantities of expensive oxygen selective fluorescent dyes, such as 

pyrene butyric acid or ruthenium complexes (Dani et al., 2007; Jimenez et al., 2013). 

Instantaneous gas hold-up in aeration tanks is measured using flow intrusive probe-based 

methods, based on the local temperature, pressure and conductivity fluctuations (Shaikh 

and Al-Dahhan, 2007). Advanced techniques for gas hold-up and flow regime measurements 

include imaging and laser based methods, such as PIV, Laser Doppler Anemometry (LDA), 

Electrical Capacitance Tomography (ECT), Computer Automated Radioactive Particle 

Tracking (CARPT), gamma or X-rays Computed Tomography (CT) or Cone-Beam type X-ray 

Computed Tomography (CBCT), which allow to measure two- or three- dimensional 

distribution of the phases within the stirred vessels (Boden et al., 2008; Luo and Al-

Dahhan, 2008). Typical method used to determine bubble size distribution within aeration 
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tank involves Sauter mean bubble diameter computation, obtained from processing of 

sequence of images taken by high speed CCD camera (Díaz et al., 2008a).    

Overcoming relatively low      values of around 40% obtained for current most efficient 

commercially available aeration devices, i.e. membrane diffusers, has been a driving force 

to develop innovating technologies, such as bubbleless aeration in membrane modules, 

referred in the literature as parallel flow aerators (Ahmed et al., 2000, 2004; Li et al., 

2010) based on the same principals as the membrane-aerated biofilm reactor MABR (Syron 

and Casey, 2008), MF and UF membrane processes in water treatment, or aeration by 

supercavitation (Schmid, 2009), similar to modified jet aeration. The other trend in 

research concerns improvement of the aeration performance by modification and upgrade 

of the aeration unit, e.g. in case of vertical shaft aerators it was found, that even slight 

changes in the shape of blades or blade tip angle, introduction of multi-impeller 

configurations or system upgrade by fixing draft tubes below the aerators can have positive 

effects on the mixing patterns within the aeration tank, oxygenation capacity and power 

withdrawal by whole aeration system (Bhuyar et al., 2009; Fujasová et al., 2007; Janssen 

et al., 2002; Thakre et al., 2008). Similarly to vertical shaft aerators, positive effects were 

obtained by simple modification in the draft tube cross section in the jet loop bioreactor 

(Farizoglu and Keskinler, 2007).  

For the last three decades, porous diffusers, proven to be more efficient and energy-

minded have been extensively implemented in both, new WWTPs and existing plants, to 

retrofit less efficient aeration systems, such as coarse bubble diffusers or mechanical 

aerators. Large input in the studies on improvement of diffused air systems performance 

was made by Californian group of scientists under supervision of M.K. Stenstrom, by 

publishing over 30 scientific papers and even more reports on estimation of oxygen 

transfer in activated sludge plants, including HPO-AS systems. A number of papers 

concerned changes in performance of the diffusers made of different polymeric 

membranes over time in operation. The ageing of the diffusers, manifested with 

progressive membrane degradation due to scaling and fouling, is inseparably linked to the 

increase of the operating costs due to increase of the DWP and the headloss, with decrease 

of the operating efficiency of the system, and worsening of effluent quality. Due to that, 

understanding the character of changes in the porous material and selection of the 

mechanical properties parameters is of the great importance to ascertain diffuser fouling 

rates and develop cleaning techniques (Kaliman et al., 2008; Rosso et al., 2008a).  
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The assessment of the impact of process conditions, related to the   factor (Stenstrom and 

Gilbert, 1981), on decrease of      for the fine bubble diffusers was also intensively 

studied. Although   relates to the presence of many contaminants in wastewater, 

surfactants have the strongest impact on its value (Rosso et al., 2006; Rosso et al., 2005; 

Rosso and Stenstrom, 2006). For AS systems operating with low Mean Cell Residence Times 

(MCRTs) and with the higher biodegradable organic fraction content, small alphas will yield 

lower oxygen transfer efficiency. Contrary to that, the plants operating at high solid 

retention times (SRTs) yield higher   and slight decrease in the     , due to faster and 

more efficient uptake of soluble contaminants into the biomass, what can be easily 

observed in plug flow aeration tanks (Cornel et al., 2003; Rosso et al., 2006; Rosso et al., 

2005; Rosso et al., 2011; Rosso and Stenstrom, 2005; Rosso and Stenstrom, 2006; Rosso et 

al., 2008b). In these systems, fouling rates are lower, what makes operation and 

maintenance of the aeration system less costly. It can be said, that by now, although the 

great deal of research was done to assess the mechanisms and theory of transfer rate 

reduction due to presence of surfactants,   factor still remains the most uncertain of the 

oxygen transfer parameters.  

Assessment of the impact of process conditions related to the wastewater temperature on 

the equilibrium DO saturation concentration, and thus, oxygen transfer efficiency have 

been also made (Gillot and Vanrolleghem, 2003; Lippi et al., 2009). Although correction of 

the mixed liquor temperature is beyond the rational operation of the AS tanks, nonetheless 

the results of the modeling studies point out the manners of direct control of the factors 

impacting heat patterns in AS basins in the design stage. Thus, choice or upgrade of the 

aeration system, application of tank covers, surface to volume ratio, and aeration basin 

geometry can reduce the temperature amplitudes and improve the overall aeration 

performance.  

The conclusions withdrawn from the evaluation of the impact of process water (e.g. 

variable alpha values, and diffusers fouling) on the values of oxygen transfer parameters 

and the knowledge about the system hydrodynamics are useful for management and the 

optimization of the aeration through the process control. When investigating energy 

expenditure on aeration in the biological WWTPs, two essential factors need to be 

accounted: effluent properties should comply with the quality requirements defined by the 

authorities, e.g. expressed as maximum levels of total nitrogen or ammonia in the 

discharge from the aeration tank, commonly defined as effluent nitrogen criterion; and 

operational costs of the most energy intensive processes, i.e. aeration, recycled sludge 

pumping and wasted sludge disposal, need to be as low as possible. From these reasons it 
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is clear, that DO concentration is a key process variable, which controls both, nutrient 

removal and thus effluent quality, and the operating cost of the WWTP (Åmand and 

Carlsson, 2012; Fernández et al., 2011; Fikar et al., 2005). While the estimative of the 

best operating DO profiles and nitrogen patterns in the AS system are obtained from the 

biokinetics modeling with ASM1 (Activated Sludge Model No. 1), the proper modeling of the 

optimization strategies requires implementation of the complex computational algorithms 

and off-line optimization techniques, which allow for coupling of the biological process 

with pre-defined control variables such as minimal DO concentration in the aeration tank 

or effluent nitrogen criterion (Åmand and Carlsson, 2012; Chachuat et al., 2005; Cristea et 

al., 2011; Fernández et al., 2011; Fikar et al., 2005; Holenda et al., 2007; Holenda et al., 

2008; Kusiak and Wei, 2013). Examples of dynamic process control at WWTPs leading to 

energy efficient nutrient removal due to generation of alternating aerobic and anoxic 

conditions by switching on and off aeration can be found in the literature (Chachuat et al., 

2001, 2005; Fernández et al., 2011; Lessard et al., 2007; Mueller et al., 2002). Many 

research was done on the different methods and structures for the aeration automation 

control (Åmand and Carlsson, 2012; De Araújo et al., 2011; Ekman et al., 2006; Fernández 

et al., 2011; Machado et al., 2009; O'Brien et al., 2011); aeration control strategies, which 

include design of air distribution systems from the collector to the diffuser selection and 

constraints; overview of control loops, DO and pressure control in blowers, DO and 

ammonia controllers, and controller tuning (Olsson, 2011); and finally, blower control, 

modelling and sizing (Brischke et al., 2008).  

2.3 Pressurized Aeration Chamber – CFD studies 

In this section, design assumptions of a novel aeration device, Pressurized Aeration 

Chamber (PAC) and the rationale behind the implementation of the CFD tool to model 

aeration process are given. 2D and 3D geometries of the PAC, studied in the simulations 

are described. Furthermore, detailed description of the CFD approach in flow field and 

oxygen transfer modelling for various configuration of PAC geometry is presented, 

including specifications of the models involved, boundary and operating conditions, 

features of the solver and simulations set-up parameters. Finally, the results obtained in 

both, 2D and 3D simulations of the flow field and the oxygen mass transfer in PAC are 

presented. 

2.3.1 Design Considerations 

Efficiency of conventional aeration devices depends on the maximization of contact area 

and contact time between gaseous air (oxygen) and mixed liquor. Relatively low oxygen 
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transfer efficiencies (    ) up to 40% for best state of the art aeration technologies, 

porous diffusers, are mainly due to the convection of the bubbles escaping to the 

atmosphere, and thus short contact times between both phases, air (oxygen) and water for 

efficient, “longer lasting” saturation.  

In this work, Computational Fluid Dynamics (CFD) was enabled as a design tool in 

development of a new aeration device – Pressurized Aeration Chamber (PAC), aiming 

increase of the oxygen transfer efficiencies through an accurate prediction of the oxygen 

mass transfer. PAC is independent aeration unit, designed as a continuous flow 

component, included in the mixed liquor recirculation loop. The performance of PAC is 

based on the same principals as jet aeration. The device consists of a closed tank, filled 

with wastewater recirculated from the aeration tank, and supplied with air or oxygen 

delivered under pressure of up to 2.0 bars. High pressure conditions promote effective 

passage of the total delivered gaseous oxygen into dissolved in the wastewater form. 

Therefore, due to lack of bubbly form of the gas phase, the process in PAC can be 

compared with bubbleless aeration in membrane modules. Oxygen rich pressurized stream 

is later injected into the aeration tank. As the stream carries only dissolved oxygen, better 

oxygenation of the tank content is reached by delayed escape of the releasing bubbles to 

the atmosphere. Moreover, dissolved form of the oxygen is easier and faster assimilated by 

the activated sludge organisms yielding better wastewater treatment performance. The 

device can be fitted to every continuous flow activated sludge scheme and its performance 

can be fully used in plug flow and closed loop tanks. 

All simulations of the PAC used Finite Volume Method and were performed using ANSYS 

Fluent 6.3.26 commercial CFD code in a HP Workstation with Intel® Xeon® 2.33 GHz 8-

Core PC with 16.0 GB RAM memory.   

2.3.2 CFD Model  

CFD simulations consider a specific volume of water flowing through the PAC, being 

saturated with DO. The operation of the PAC is based on the intense mixing of both 

species, water and DO, and the high degree of turbulence generated due to the local 

velocity scales, PAC hydraulic features and the created flow patterns. The Reynolds 

numbers computed for the different velocity ranges are of the order 106 and from this 

reason turbulent flow regime within the chamber was simulated using transient 

formulation.  

Preliminary studies of PAC carried on the 2D models aimed to predict the patterns of 

oxygen transport within several chamber geometries. Selected layouts, which ensure most 

efficient level of saturation with oxygen, will be subsequently studied in 3D scheme. 
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2.3.3 2D Geometry 

2D PAC layouts were designed using ANSYS Gambit 2.3.16 pre-processing software. Several 

geometries of various chamber layouts were studied: from nearly square or rectangular, to 

rectangular with different topwall-bottom baffles arrangements. Square geometry has the 

dimensions of            , and the rectangular one is            . PAC geometry 

consists of: single inlet and outlet, each of 0.05 m, placed on both sides of the layout; 

topwall, having the function of the liquid-gas interface; and the bottom and side walls. For 

all geometries, meshes were built from structured grid of quadrilateral elements, as seen 

in the Figure 2.1. Several scaling tests were run to test grid convergence for coarser 

meshes of around 12 thousand elements to refined meshes having up to 200 thousand 

elements. Here, the grid independence test was conducted for each of PAC geometries. 

The initial simulations were run on the coarse mesh to assure the convergence for the 

residual error value of 10-6. For unsteady monitor points and the fluctuations higher than 

1%, the mesh was globally refined and the simulation was start over again for the same 

convergence criteria. The results, i.e. value of outflow concentration obtained for the 

finer mesh were compared against the results obtained for the coarser one. The 

differences higher than assumed 5% tolerance indicated dependency of the solution on the 

mesh resolution. This required further refinement and comparison with the results 

obtained for the antecedent mesh, and the procedure was repeated until the grid 

independent solution. At that point coarser mesh from the two was selected allowing for 

reduction of the simulation run time. All 2D geometries with chamber dimensions and 

mesh specifications are listed in the Table 2.5. 

 

 

Figure 2.1 Conformal quadrilateral mesh used in 2D geometries of PAC. 
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Table 2.5 Geometric models used in 2D simulations of PAC. 

PAC Layout  
Dimensions 

(m) 

Nº of mesh 
elements 

 

 0.50×0.60 33200 

 

 
0.10×0.76 134000 

 

 
0.10×0.76 133903 

 

 
0.10×0.76 133210 

 

 
0.10×0.76 133665 

 

 
0.10×0.76 133210 

 

 
0.10×0.76 130747 

 

2.3.4 Governing Equations 

For all considered PAC geometries, the flow field was simulated using unsteady Reynolds 

Averaged Navier-Stokes (URANS) equations. Flow is governed by the following mass 

conservation equation: 

    

   
   (2.31) 

and momentum conservation equation: 
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where    is the averaged pressure field,   and   are the fluid density and viscosity, 

respectively,   is the time,   ,    and    are the spatial coordinates,    ,    and    are the 

velocity components and     is the Kronecker delta.  

The velocity components are decomposed on a time averaged term,    , and a fluctuating 

term,   
 : 

         
  (2.33) 

URANS equations are linearized and solved, however the fluctuating flow structures 

smaller than the numerical grid discretization, which are represented by the Reynolds 

Stresses and denoted as     
   

  term, are unclosed, and thus they must be modelled. In 

this work, the turbulence model used for     
   

  closure is the standard      model, 

where   is the kinetic energy of the velocity fluctuation (turbulence kinetic energy) and   

is its dissipation rate. Reynolds stresses modelling employs Boussinesq hypothesis relating 

these stresses to the mean velocity gradients, as follows:  
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where    is the turbulent viscosity computed as a function of   and  :  

      

  

 
 (2.35) 

where    is a constant and amounts 0.09.  

The transport equations for turbulence kinetic energy,   and its dissipation rate,   are 

represented by the following equations: 
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In these equations, the term    represents the generation of turbulence kinetic energy due 

to the mean velocity gradients and    is the generation of turbulence kinetic energy due 

to buoyancy;    is the contribution of the fluctuating dilatation in compressible turbulence 

to the overall dissipation rate;    ,     and     are model constants – default values for     

and     are 1.44 and 1.92, and      is -0.33 ;    and    are the turbulent Prandtl numbers 

for   and  , and amount 1.0 and 1.3 respectively. 

The production of turbulence kinetic energy,   , is approximated in a manner consistent 

with Boussinesq hypothesis by: 

       
   

  
   

   
    

  (2.38) 

where   is the modulus of the mean rate-of-strain tensor, defined as follows: 

           (2.39) 

and  

    
 

 
 
   

   
 

   

   
  (2.40) 

Effect of buoyancy,  , is described by the following formula: 

      

  

   

  

   
  (2.41) 

where   is the coefficient of thermal expansion,    is the component of the gravitational 

vector in the i-th direction,     is the turbulent Prandtl number for energy and   is the 

temperature. For the standard     model the default value of     is 0.85.  

The coefficient of thermal expansion,  , is defined as: 

   
 

 
 
  

  
 
 
  (2.42) 

Contribution of the fluctuating dilatation in compressible turbulence,   ,  is defined as 

follows: 

        
   (2.43) 
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where    is the turbulent Mach number, defined as: 

    
 

  
   (2.44) 

where    is the speed of sound. 

Oxygen transfer in the volume of water in PAC is obtained from multiphase flow 

simulations using mixture approach. Mixture consists of two liquid non-reacting species, 

water and DO. Transport and mixing, and thus prediction of local mass fraction of each 

species, is modelled by solving conservation equation describing convection and diffusion 

of the species: 

 

  
                             (2.45) 

where    is the mass fraction of i-th specie;     is the diffusion flux of i species;     is net 

rate of production of i species due to chemical reaction;    is the rate of creation by 

addition from the dispersed phase plus any user-defined sources. Here, for non-reactive 

species    is 0.  

Equation (2.45) is solved for each of the fluid phase chemical species present in the 

considered system. Having only two species, water and DO, and knowing that the mass 

fraction of all species must sum to unity, second mass fraction is determined as one minus 

the solved mass fraction. 

Since the flow regime within the chamber is turbulent, the mass diffusion flux is computed 

from the following formula:  

            
  

   
         

  

 
 (2.46) 

where     is the turbulent Schmidt number;      is mass diffusion coefficient;      is the 

thermal diffusion coefficient. In this formula, turbulent Schmidt number is: 

    
  

   
 (2.47) 

where    is the turbulent viscosity and    is the turbulent diffusivity. The default     is 

0.7.  

The energy equation is expressed as follows: 
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                (2.48) 

where   is the specific energy of a fluid,      is the effective conductivity,    is the 

specific enthalpy for i-th specie,       denotes total stress tensor (accounting for viscous 

heating) and    is any source term which accounts for heat of chemical reaction, inter-

phase heat exchange and any user defined volumetric heat sources. 

Here, the effects of species diffusion on energy transport are expressed as the following 

term: 

          

 

   

  (2.49) 

where    denotes the specific enthalpy of i-th specie. 

2.3.5 Boundary and Operating Conditions 

In this study, mixture of two species, water and DO was set as the working fluid. The 

physical properties of water, density                and dynamic viscosity         

          are constant. Physical properties of DO were set as identical to those of water. 

The simulations consider operating pressure of 101325 Pa (1 atm) and the acceleration due 

to gravity is 9.81 m s-2. 

As the changes in density of the flow are assumed to be negligible, Boussinesq model was 

used to relate density as a function of temperature: 

                     (2.50) 

where    is constant density of water,    is operating temperature set at 288.16 K, 

  denotes thermal expansion coefficient, and the term             is known as 

Boussinesq approximation.  

 

Velocity inlet boundary condition was imposed on the PAC inlet. The velocity of the water 

phase at the inlet, in the normal direction to the boundary was set as 1.0 m s-1. The 

turbulence at the inlet was specified by setting values of turbulent kinetic energy   equal 

to 1.0 m2 s2 and its dissipation rate,   equal to 1.0 m2 s3. As only water is discharged to PAC 

through the inlet, therefore mass fraction of the water species at the inlet was set to 1. 
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It was assumed, that there is no backflow during fluid discharge from the PAC and the 

diffusion fluxes in the direction normal to the exit plane are zero, therefore an outflow 

boundary condition was imposed at the outlet.  

Topwall is simulated as the interface between two phases: water and gaseous oxygen, thus 

zero specific shear was set on the wall boundary. As the oxygen concentration at the wall 

was set as 20 mg L-1, corresponding to the saturation concentration for 0.5 bar, and a mass 

fraction of water of 0.99998.  

No slip condition was imposed on the chamber side and bottom walls, and thus the velocity 

component of the working fluid at fluid–solid boundary is equal to that of the solid 

boundary, i.e. zero. 

2.3.6 Flow Solver 

Flow and pressure fields are obtained using pressure-based coupled algorithm, which 

solves a coupled system of equations comprising the momentum equations and the 

pressure-based continuity equation. The remaining equations, thus energy, turbulence and 

species equations are solved in a decoupled fashion using the current values of the solution 

variables. Gradients necessary for constructing scalar values at the cell faces, computing 

secondary diffusion terms and velocity derivatives are computed using Green-Gauss Cell 

based method. Standard scheme was enabled for pressure interpolation. Momentum, 

turbulence, energy and species are interpolated using Third-Order MUSCL (Monotone 

Upstream-Centered Schemes for Conservation Laws) scheme. 

2.3.6.1 Solution Controls 

To stabilize the convergence, Courant Number value equal 50 was set. Due to nonlinearity 

of the momentum and continuity equations being solved, the changes in scalar values need 

to be controlled. From this reason, Explicit Relaxation Factors of 0.75 for the momentum 

and pressure were set, and all remaining Under-Relaxation Factors were accepted with the 

default value of 1.0, except from the   and  , for whose the factor is 0.8. Convergence 

criteria for the solutions were accepted for the scaled residuals to decrease below 10-6. All 

flow variables were initialized with a value equal to zero and considering volume of PAC 

filled with pure water.  

2.3.7 Numerical Simulation Set-up 

The CFD simulations of PAC were initially performed at steady- state, setting the transient 

term of Equation (2.32) equal to zero, such that: 
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   (2.51) 

Converged steady- state solution with the stabilized flow patterns within the PAC was set 

as the initial state for the transient URANS simulations. The Equation (2.32) was 

discretized with First Order Implicit formulation. Time step size,    between the 

iterations was computed from the following: 

   
  

  
 (2.52) 

where    denotes the average finite element cell size and    represents local average 

velocity.  For all geometries studied,     considered was 0.001 s. For each time step 20 

iterations were done.  

2.3.8 2D Studies - Results and Discussion 

The contour plots of the velocity and DO concentration, obtained from the 2D CFD 

simulation of the PAC, are shown in the Figure 2.2 and Figure 2.3. The values of DO  

concentrations in the outflow from the PAC, obtained for the various device layouts are 

presented in Table 2.6.  

When comparing the maps of the velocity magnitude within the simulated 2D geometries, 

shown in the Figure 2.2 it is clear, that the generated flow patterns will affect the degree 

of mixing of the tanks content, what will be decisive for the effective oxygen mass 

transfer. For squared geometry (Figure 2.2a), velocity distribution shows a markedly 

horizontal segregation of the flow, thus the mixing and the mass transfer between the 

fluid layers will be significantly hindered. The outflow DO concentration is also low and 

equals 0.5 mg L-1. DO mass transport improvement is noticeable for rectangular geometry, 

yielding in 5.4 mgO2 per L for simple configuration (Figure 2.2b and Figure 2.3b). As the 

oxygen rich zone is “fixed” at the topwall, the efficient aeration will depend upon the 

intense intermixing of the “pure” water fluid layers with the oxygen rich layers. However, 

by introduction of the baffles at the topwall, local dead zones (Figure 2.2c-d), 

characterized by high local dissolved oxygen concentration (Figure 2.3c-d) were created. 

Nonetheless, as more baffles are introduced, the fluid mixing at the topwall zone is being 

weaken, resulting in lower outflow DO concentrations, that are 6.4 mg L-1 for the central 

baffle configuration and 5.5 mg L-1 for the set of baffles. Introduction of the bottom 

baffles, deflecting the flow patterns towards the topwall (Figure 2.2 e-f) and contributing 
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to the creation of the wavy path, as observed in the developed zigzag flow (Figure 2.2g), is 

proven to be a good solution, when comparing the values of the DO concentrations in the 

outflow: 6.6 mg L-1 for central baffle (Figure 2.3e); 7.8 mg L-1 for the set of bottom baffles 

(Figure 2.3f); and 8.5 mg L-1 for the multi-baffled configuration (Figure 2.3g).  

Considering the conclusions withdrawn from the results of the CFD simulations in 2D 

scheme, rectangular, rectangular with bottom baffles and multi-baffled layouts were 

selected for further studies implemented within the 3D models.        
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

g) 

Figure 2.2 Maps of the velocity magnitude obtained for various 2D geometries of the PAC: a) squared; b) 
rectangular; c) with central topwall baffle; d) with topwall baffles; e) with central bottom baffle; f) with 
bottom baffles; g) with alternating baffles. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

Figure 2.3 Maps of the DO concentration obtained for various 2D geometries of the PAC: a) squared; b) 
rectangular; c) with central topwall baffle; d) with topwall baffles; e) with central bottom baffle; f) with 
bottom baffles; g) with alternating baffles. 
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Table 2.6 Concentration of the dissolved oxygen at the outlet of the chamber obtained for various 2D PAC 
layouts. 

PAC geometry 
DO concentration 

(mg L-1) 

Squared 0.50 

Rectangular 5.36 

Rectangular with central topwall baffle 6.40 

Rectangular with topwall baffles 5.54 

Rectangular with central bottom baffle 6.62 

Rectangular with bottom baffles 7.75 

Rectangular with alternating baffles 8.56 

 

2.3.9 3D Geometry 

3D PAC layouts were designed using ANSYS Gambit 2.3.16 pre-processing software. PAC 

was designed as rectangular chamber with the following dimensions:                  . 

In the squared front and back wall are sets of four orifices, each with diameter 0.01 m, 

serving as inlets and outlets. However, in the CFD simulations we are considering only one 

single inlet and outlet, located near the bottom of the chamber. 

Three geometry scenarios are considered: rectangular layout without baffles; rectangular 

layout with four bottom baffles; and rectangular layout with alternating system of baffles, 

three placed on the top and four on bottom. Each baffle was designed as a rectangular 

narrow plate and has the dimension of 0.08 × 0.16 × 0.002 m. The layouts of all geometries 

studied are shown in Figure 2.4. 

Designed PAC volumes were meshed with tetrahedral and hexahedral elements, as can be 

seen for the entire geometry with baffles fixed in the bottom, and in detail in Figure 2.5. 

Depending on the layout, the number of generated mesh elements varies from 270 

thousand for the rectangular; 320 thousand for the bottom baffled; and 500 thousand for 

the multi-baffled geometry. As for the 2D geometries, several preliminary scaling tests 

were run to test the grid adequacy for the CFD simulations.  
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a B c 

 
Figure 2.4 3D configurations of the PAC: a) without baffles; b) with bottom baffles; c) with alternating set 
of baffles. 

 

 

 

 
Figure 2.5 Example of surface mesh generated for the geometry with bottom baffles.  
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2.3.10 Governing Equations 

For all considered PAC geometries, the flow field was simulated using URANS equations. 

Mass and continuity conservation equation, transport equations for turbulence kinetic 

energy, its dissipation rate and the species of water and DO were described in detail in the 

Section 2.3.4 of the following work.  

2.3.11 Boundary and Operating Conditions 

The properties of the working fluid, boundary conditions for the inlet, outlet, and the 

chamber walls, and operating conditions were described in detail in the Section 2.3.5 of 

the following work.  

2.3.12 Flow Solver 

Solver preferences and solution controls used in the CFD studies of PAC were described in 

detail in the Section 2.3.6 of the following work. 

2.3.13 Numerical Simulation Set-up 

The initialization of the URANS simulations was described in the Section 2.3.7 of the 

following work. For all simulated geometries, the Equation (2.32) was discretized with 

Second Order Implicit formulation. Time step size,    between the iterations, computed 

from the Equation (2.52) was 0.001 s.  

2.3.14 3D CFD Studies - Results and Discussion 

The contour plots of the velocity and DO concentration, obtained from the 3D CFD 

simulation of the PAC, are shown in the Figure 2.6 and Figure 2.7. 

The values of the DO concentrations in the outflow from the PAC, obtained for the various 

device layouts are shown in Table 2.7. Similar to the results obtained from the CFD 

simulations performed in the 2D scheme, when comparing the contour maps of the velocity 

magnitude in the cross-sections through the simulated layouts (Figure 2.6), the effects of 

the geometry on the generated flow patterns and the degree of mixing of the PAC content 

is clearly seen. 

For the regular rectangular layout (Figure 2.6a), velocity distribution characterizes 

formation of the high velocity horizontal plume from the inlet, deflected slightly towards 

the topwall. Poor mixing throughout the PAC volume results in oxygen-rich layer build-up 

just below the topwall boundary, as can be seen in the Figure 2.7a. Nonetheless, the 

outflow DO concentration is 12.6 mg L-1, that is more than double value obtained from the 
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2D simulations. Introduction of the flow perturbation as baffles results in mixing 

improvement yielding higher DO outflow concentrations. From the velocity map obtained 

for the bottom baffled PAC configuration (Figure 2.6b) it is clear, that the large velocity 

gradients are generated due to the collision of the inflow plume with the first baffle. As 

a result, the flow patterns are directed to the topwall for enhanced saturation with DO, as 

can be seen in the Figure 2.7b, where the oxygen-rich zone spread in the last PAC 

compartments (separated with baffles), occupying almost 30% of the total volume.  The 

improvement in the DO concentration in the discharge from PAC is also noticeable, as it 

reaches nearly 18 mg L-1, also more than double of the concentration value obtained in the 

corresponding 2D CFD approach.   

Presence of the velocity gradients in the first “compartment” of the PAC, and sinuous flow 

patterns generated on the alternating baffles (Figure 2.6c) promotes mixing, and thus 

dispersion of the oxygen-rich water. Expansion of the oxygen-enriched zone to around 70% 

of the PAC volume is also noticeable (Figure 2.7c). Further slight improvement was 

observed for multi-baffled geometry, yielding 18.2 mgO2 per L in the discharged flow.   

 

Table 2.7 Concentration of the dissolved oxygen at the outlet of the chamber obtained for various 3D PAC 
layouts. 

PAC geometry 

DO concentration 

(mg L-1) 

Rectangular 12.56 

Rectangular with bottom baffles 17.75 

Rectangular with alternating baffles 18.21 
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a) 

 

b) 

 

c) 

 
Figure 2.6 Maps of the velocity magnitude obtained for various 3D geometries of the PAC: a) without 
baffles; b) with bottom baffles; c) with alternating baffles. 
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a) 

 

b) 

 

c) 
 
Figure 2.7 Maps of the DO concentration obtained for various 3D geometries of the PAC: a) without baffles; 
b) with bottom baffles; c) with alternating baffles. 
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2.4 Pressurized Aeration Chamber – Experimental Studies 

In this section the pilot PAC unit and experimental setup are described. Experimental 

procedure of steady and unsteady clean water test for Oxygen Transfer Rate determination 

is given. Aeration performance of the device is evaluated on the base of the results 

obtained from the several experiments. Finally, process parameters, describing PAC 

performance expressed as oxygen mass transfer and energy efficiency are compared with 

the conventional aeration techniques and the results from the CFD simulations of PAC in 3D 

scheme.   

2.4.1 Aerator Design 

A PAC unit was built for experimental validation. The pilot PAC is continuous flow reactor, 

designed as a transparent horizontal, rectangular tank with dimensions           

       (Figure 2.8).  

 

Figure 2.8 Pressurized Aeration Chamber (PAC) scheme. 

Due to the high pressure conditions in which the PAC will be operated, the tank was made 

of polycarbonate and equipped with pressure relief safety valve. The walls of the tank 

were glued and bolted to each other. The whole structure of the tank was additionally 

reinforced by fixing an outer steel casing (Figure 2.9). The tank is equipped with five 

acrylic removable baffles, placed at the bottom of the tank at intervals of 0.1 m from each 

other. Each baffle has the dimensions 0.16×0.08 m. The evenly spaced orifices in the front 
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and the rear wall each of 3/8" and the single one of the same diameter in the top wall, 

were fitted with quick fitting connectors to be integrated with the tubing system as the 

water-air/oxygen ports. During the experiments, water is supplied through the inlet orifice 

located in the front wall of the tank. Air or oxygen is delivered through the inlet located 

on the top wall and the aerated water is discharged through the outlet port located in the 

rear wall. While the single pair of water and gas inlet and outlet ports are in operation, 

the remaining are tightly blocked with acrylic plugs. 

 

 

a) 

 

b) 

Figure 2.9 Pressurized Aeration Chamber (PAC): a) without, and b) with outer steel casing. 
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2.4.2 Experimental Setup and Flow Loop 

The standard procedure of oxygen transfer measurement considers aerator placed in the 

water tank, to resemble field conditions as close as possible. Application of PAC as the 

external aeration unit operating in the continuous flow mode was taken into account while 

designing the experimental setup. Scheme of the experimental setup and the flow loop are 

presented in Figure 2.10. Test water was stored in transparent, acrylic reservoir of 

capacity of 135 dm3 (1), equipped with mechanical overhead stirrer (Heidolph, model RZR 

2021) and with vertical shaft crossed-blade impeller (2). Strictly defined standards of clean 

water quality in the reservoir during oxygen transfer experiments require constant 

monitoring, therefore DO concentration, electrical conductivity (EC) and temperature 

were continuously controlled with portable dual channel multi meter (3) (Hach Lange 

HQ40D) equipped with digital smart sensors (4): luminescent DO probe (IntelliCALTM 

LDO10103) and conductivity probe (IntelliCALTM CDC40103). The precision of the equipment 

is:       S cm-1 for conductivity probe;      mg L-1 O2 or    % of DO saturation for oxygen 

probe; and 0.3 °C for temperature. Water from the reservoir is pumped to the PAC using 

positive displacement gear micropump (5) with magnetically coupled drive (Pacific 

Scientific, model 220/560C) with an external rpm speed controller. Test water is delivered 

to the PAC (6) through the inlet placed in the front wall of the PAC. The flow rate through 

the PAC is measured and controlled by variable area correlated flowmeter (7) (Gilmont 

Accucal, model GF 1660). The accuracy of the measurement can be estimated as    % of 

reading or     of scale division. In-house compressed pure oxygen delivered from the 

external manifold is regulated by means of two pressure regulators (8) connected in series. 

The first pressure regulator, operates in the range 0.5 - 8 bar, and is integrated with the 

pure oxygen wall Point of Use (Air Liquide, PdG-8) with built-in diaphragm shut-off valve. 

Second reducer (Pneumax, model FIMET) equipped with air filter provides regulation of 

oxygen pressure from 0 to 4 bar. Oxygen is supplied to the PAC through the gas inlet, 

located in the top wall. The effluent stream of aerated water is discharged through the 

outlet in the back wall of the PAC to the pipeline. Pressure drop on the PAC is measured by 

means of differential pressure transducer (9) (Validyne, Type P0305D), inserted between 

inflow (10) and outflow tubes (11). DO concentration in the influent and effluent from the 

reactor are controlled continuously with a stand-alone measurement system, which 

consists of a standard controller display module (12) (Hach Lange sc100) and luminescent 

DO probes module (Hach Lange, LDO probe). The sensitivity of the probes is      mg L-1 DO 

or    % DO saturation. The probes are placed in a specially manufactured PVC flow cell 

adapters integrated with the PAC influent (13) and effluent tubing (14). Depending on the 

experiment type (steady or unsteady), the aeration test is conducted in an open or closed-
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loop flow system. Easy switch between the flow schemes was made possible by mounting 

the 3/2 way directional valve (Whitey) on a pump feed pipeline (15). Water and oxygen 

pipeline system used in the experimental installation consist of 3/8" polyurethane and 

stainless steel tubing (Swagelok) and all necessary fittings: tube adapters, quick connect 

fittings, elbows, tees and regulation valves.  

The measurements from the pressure transducer and LDO sensors are converted into 

digital data by Data Acquisition (DAQ) device (16) (National Instruments, NI SCC-68). Dell® 

Optiplex 755 PC (17) with a dual core Intel® Core™ 2 Duo CPU at 2.66 GHz and 2.33 GB of 

RAM controls the operation of the DAQ device and is used for processing and storing 

measurement data through an application made with LabVIEW (version 8.2).  

 

Figure 2.10 Experimental set-up and the flow loop: 1- reservoir; 2- stirrer; 3- multi meter; 4- probe; 5-
pump; 6- PAC; 7- flowmeter; 8- pressure regulator; 9- pressure transducer; 10, 11- tubing; 12- DO 
controller; 13, 14- flow cell adapter; 15- valve; 16- acquisition board; 17- PC. 

2.4.3 Clean Water Test 

The test tank was filled with 125 L of clean tap water, where DO concentration, 

temperature and EC are constantly monitored. The temperature of the water was kept 

constant and as close to the standard conditions (20 ºC) as possible, occasionally, by 

adding ice into the volume of water and additionally by controlling the room temperature 

with the air conditioner. For each experiment the salinity of the raw tap water and tap 

water after adding deoxygenation salts was determined through the EC measurement.  

The average conductivity of clean tap water was of around 350-370 µS cm-1, which 

corresponds to 224-237 mg L-1 TDS, and after addition of deoxygenating salts increases to 
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460-500 µS cm-1 equivalent to 294-320 mg L-1 TDS, therefore the effect of salinity on the 

oxygen solubility was not considered. 

Deoxygenation chemicals used in the experiments are anhydrous sodium sulphite, Na2SO3 

(Sigma Aldrich, ACS reagent grade, ≥98% assay) and crystalline cobalt (II) chloride 

hexahydrate, CoCl2∙6H2O (Sigma Aldrich, ACS reagent grade, ≥98% assay). It was assumed, 

that the dose of sodium sulphite added to the clean water should be sufficient to depress 

uniformly DO concentration in the whole volume of the reservoir and to maintain DO level 

below 0.5 mg L-1 for at least half an hour.  Na2SO3 dose was determined from theoretical 

demand for deoxygenation, which is 7.88 mg L-1 Na2SO3 per 1.0 mg L-1 DO increased by 25% 

of stoichiometric excess, as recommended in the Standard (ASCE, 1991, 2007). The 

solution was prepared in separate glass jar, by dissolving appropriate amount of sodium 

sulphite in tap water. The solution was homogenized by placing the jar on the magnetic 

stirrer (VWR, model VMS-C4) and mixing the content with intensity of 150 rpm 

approximately during 20 minutes. After this time, the solution was immediately added to 

the tank and uniformly distributed within water volume due to mixing action of the 

overhead stirrer.   

At the same time the catalyst solution was prepared by pouring into the beaker a small 

amount of clean water and dissolving a proper amount of CoCl2∙6H2O. Theoretical 

CoCl2∙6H2O dose was determined in accordance with the Standard guidelines, to ensure 

soluble cobalt concentration in the test water of 0.2 mg L-1. The catalyst solution was 

added to the test water tank prior to the beginning of the test and was let to be 

homogenized with the tank volume for a long enough period. 

When the oxygen in the water tank achieves steady close-to-zero DO concentration, the 

feed pump is turned on to fill the PAC and the tubing system with deoxygenated water 

during next couple of minutes. During this time, pressure transducer was cleansed to avoid 

errors in measurement, by unscrewing bleed ports to release trapped gas, clean the 

diaphragm and fill the pressure cavities with test water. Usually 5 to 10 minutes time is 

sufficient to obtain steady readings from both LDO probes, pressure transducer and to 

stabilize hydraulic conditions within the whole aeration system. Once the system is steady, 

the proper oxygen transfer test was initiated: the LabVIEW application for DO and pressure 

drop data recording with the time interval of 0.1 s was run and the oxygen supply shut-off 

valve was immediately opened. 

Characterization of PAC as the aeration unit was performed using steady and unsteady- 

state experiments. Steady- state clean water test is performed in the open fluid flow 

system. During experiment, PAC is continuously supplied with deoxygenated water from 

the tank and the effluent from the outflow DO flow cell is directed to the drainage 
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collector. The reaeration test is considered completed, once the DO effluent concentration 

reached a steady-state value, maintained for at least 10 minutes.  

Unsteady-state experiments were performed in closed-loop fluid flow system. Once the 

system reaches steady- state prior to switching on the oxygen supply, the directional valve 

position is manually changed and the effluent from the outflow DO flow cell is recirculated 

to the inlet of the PAC. The reaeration stage is considered completed, once DO 

concentration reaches a steady-state value, maintained for at least 10 minutes.  

2.4.4 Experimental Flow and Pressure Ranges 

The experiments were carried out with a water flow rate which ensures the constant level 

of water in the PAC, equivalent to approximately 49% of the chamber volume, with the 

remaining 51% to be filled with oxygen. The level of water was kept 5 mm above the 

baffles, with the spillway overflow after the last baffle. The thickness of the water behind 

the spillway is over 2 cm above the outlet port, as seen in the picture (Figure 2.11). 

Controlling the level of water in PAC, especially in the last compartment, minimised the 

risk of the exposure of the outlet to pure oxygen, what could overestimate significantly 

LDO sensor reading.  Thus, for the supplied oxygen pressure of 0.5, 1.0 and 1.5 bar, the 

corresponding water flow rates,   , were:          ,           and           m3 s-1.  

To determine Oxygen Transfer Rate and aeration process parameters (   ,     ,      

and    ) clean water test was performed in steady and unsteady schemes for each pairs of 

water flow rate- oxygen pressure. For each test, the standard value of oxygen saturation 

concentration,   , was determined on the base of the actual measurement of electrical 

conductivity, (  ), and temperature, ( ) (Tchobanoglous et al., 2003) of the test water in 

the reservoir. For the test conditions, the equilibrium concentration of oxygen      
 was 

calculated from the Henry’s law described by Equation (2.5). For the oxygen in water, at 

the standard conditions of temperature (293-298 K), the Henry’s constant is:       

                . The values of equilibrium concentrations of oxygen under operating gas 

pressures are presented in Table 2.8. Inlet (  ), outlet (  ) PAC DO concentration and 

pressure drop (  ), were continuously monitored and recorded with a time interval of 

0.1 s. 
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Figure 2.11 Flow conditions within PAC. 

 

Table 2.8 Oxygen  concentration in equilibrium for various values of operating pressure. 

   
      

 

(bar) (atm) (mg L-1) 

0.5 0.49 20.8 

1.0 0.99 41.6 

1.5 1.48 62.4 

 

 



2 Aeration Technologies 

68 

2.4.5 Determination of the Process Parameters 

In steady-state approach, to determine the     values using Equation (2.17), the water 

volume and the oxygen flux must be computed. Considering the constant level of water in 

the chamber, the active volume of the PAC is            . The mass flux of oxygen is:  

              (2.53) 

where    denotes mass flow rate of oxygen, kg s-1.  

Thus, the Equation (2.17) can be rewritten, as: 

          

 
             

After rearrangement, we obtain: 

    
          

         
 

 

 
 
       

       
 (2.54) 

 

where   is the residence time of the fluid in PAC. 

In unsteady- state approach,     values were determined using log-deficit method. The DO 

measurements made by high-sensitivity digital LDO probes are recorded continuously in 

short time intervals of 0.1 s, moreover, tendency of logarithms of the measured values is 

almost linear, minimizing the possibility of occurrence of the transformation errors. 

Determined     values correspond to the slope of the best fit line, representing gradient 

of the DO concentration over time, as shown in Figure 2.12. 

The remaining parameters were determined identically for both, steady and unsteady 

reaeration tests. The standardized mass transfer coefficient       was computed from the 

formula described by Equation (2.20), which after rearrangement has the form: 

      
    

     
  

 The Oxygen Transfer Rate in test and standard conditions was computed using Equations 

(2.23) and (2.24). To assess values of    and     described by Equations (2.25) and 

(2.26), power withdrawal by whole aeration system, i.e. by water and oxygen system must 

be computed.  



2 Aeration Technologies 

69 

 

Figure 2.12 Example of the determination of oxygen mass transfer coefficient (   ) using data obtained in 
steady-state clean water test. 

 

In incompressible fluid flow systems, power demand to pump water    is determined by 

the flow rate and the total head: 

          (2.55) 

where    denotes power expenditure on pump action, in W,    is water density in  kg m-3, 

  is gravitational acceleration of 9.81 m s-2 and    is total pressure head in m and    is 

water flow rate in m3 s-1.  

For PAC the Equation (2.55) can be written as: 

         (2.56) 

where    is the pressure drop of the water, Pa.  

The values of    measured during each experiment and recorded in the intervals of 0.1 s 

account for the local head loss at the entrance and discharge from the PAC. The final    

value used in the computation is the average from the all measurement data registered 

during experiment.  

For pure oxygen systems, power demand for oxygen generation in Vacuum Pressure Swing 

Adsorption (VPSA) process must be accounted. PAC is supplied with oxygen of standard 

purity: 93%. Considering technical data sheet of the commercial VPSA oxygen generators, 
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typical power demand is 0.35 kWh per Nm3 of oxygen produced (Ratanayaka et al., 2009). 

Typical process outflow oxygen pressures and power requirements are listed in the Table 

2.9. The typical outflow pressures for oxygen produced in the VPSA are low, thus when 

higher pressure is required, energy efficient oxygen compressor built-in the unit is 

considered. 

Table 2.9  Summary of typical operating parameters of the commercial VPSA systems. 

VPSA Manufacturer 

Power demand 

(kWh/Nm3) 

Output oxygen pressure 

(bar) 

Ally Hi-Tech Co  0.36-0.42 100 - 250 

AIRMAX 0.36-0.42 0.2 - 0.4 

Adsorptech EcoGenTM 0.35 0.3 - 2.0 

Adsorptech ModGenTM 0.34 0 - 10 

MVS Engineering 0.4 0 - 1.3 

Pioneer 0.32-0.37 0 - 5 

Radox Gases 0.35 1.3 - 50 

Sam Gas 0.35-0.52 2.0 - 150 

Sumitomo Seika Chemicals 0.34 0.5 - 1.0 

Universal 0.35 0 – 5.0 

 

To express power demand per volume of oxygen in standard pressure and temperature 

conditions of the clean water test, the Combined Gas Law must be applied: 

      
   

    
      

         

 (2.57) 

where       is the normalized volume of 1 m3 of oxygen at the reference gas temperature 

      of 273.16 K and the normalized pressure       of 101325 Pa,    
 denotes the actual 

volume of oxygen in m3,    
 and    

 are the actual oxygen temperature and pressure, 

respectively.  

http://allygas.en.alibaba.com/
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For each test, actual oxygen density was determined using the Ideal Gas Law equation as 

follows: 

   
 

   
 

    

 (2.58) 

where   is the molar mass of oxygen and amounts 32 g mol-1,   is the universal gas 

constant equal to 8.314 J K-1 mol -1. The actual volume of oxygen is computed from the 

oxygen flow rate,    
 (m3 h), which equals: 

   
 

         

   

 (2.59) 

Assuming, that the power demand for oxygen production in VPSA is 350 W per Nm3, and the 

pressure of generated oxygen is higher than 1.5 bar, power demand related to the whole 

oxygen system during clean water testing can be determined as follows: 

   
             (2.60) 

    and      for PAC are calculated from the Equations (2.29) and (2.30), where the 

oxygen supply mass flow rate,     , is computed from the following: 

   
          

 (2.61) 

where       denotes normalized density of gas (pure oxygen), which at the temperature of 

0 °C is 1.429 kg m-3.  

Considering air purity of 93%, and the oxygen flow rate expressed by Equation (2.59) the 

formula can be written as: 

   
            

         

   

 (2.62) 

Therefore the Equations (2.29) and (2.30) can be written, as follows: 

    
       

                     
 (2.63) 

and assuming that         
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 (2.64) 

2.4.6 Results and Discussion 

2.4.6.1 Steady- State Experiments 

The average values of the process parameters obtained from the multiple steady- state 

experiments are shown in the Table 2.10. When the pressure of oxygen increases from 0.5 

to 1.5 bar on the water surface in the PAC, an increase of 2.0 mg L-1 in the steady- state 

DO concentration per every 0.5 bar was observed. This linear trend can be seen in Figure 

2.13. At the same time, with the increase of the steady-state DO concentration, distinct 

decrease of     occurs, what may be explained when interpreting the Equation (2.54) 

applied for the     parameter estimation. Thus, for the increasing operating oxygen 

pressure, the difference between the oxygen saturation and the steady-state 

concentration, expressed by the term       is much higher than the term      , what 

for almost identical   yields lowering values of    . With the accordance to the above 

statement it can be said, that under steady-state, the higher is the concentration of 

oxygen maintained in the tank, the lower is the transfer rate. The values of     obtained 

from the test nearly overlap with the values computed for the standard conditions,        

(Equation (2.20)), as can be seen in the Figure 2.14.  

As the oxygen transfer rate,    , is a function of the oxygen mass transfer coefficient, 

therefore identical decreasing tendency in values was observed. For the oxygen pressure of 

0.5 bar the     is over 3.0 gO2 h-1 and decreases to around 1.0 gO2 h-1 for the oxygen 

supplied under pressure of 1.5 bar. The standardized values are distinctly higher than 

those computed for the test conditions, as they range from 6.0 to 4.0 gO2 h
-1, as can be 

seen in the Figure 2.15.  

Similar tendency is seen for the oxygen transfer efficiency     (Figure 2.16) calculated 

from the Equation (2.63), a parameter used in evaluations of the diffused air units in 

terms of the percentage of the oxygen absorbed, however the values obtained for 

different oxygen pressures vary within 16%. Thus, for the oxygen pressure of 0.5 bar, the 

average value of     is 66%, while for 1.0 and 1.5 bar decreases to around 50%. Contrary 

to that, at the standard temperature conditions,     , computed from the Equation 

(2.64), increases due to the level of water saturation with oxygen, thus with increase of 

the pressure of oxygen delivered to PAC. The lowest value of      close to 120% was 
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determined for the oxygen pressure of 0.5 bar, which is higher than the corresponding 

values of currently most efficient aeration systems, i.e. membrane diffusers, having the 

efficiencies up to 44%. For the oxygen pressure of 1.0 bar      is almost 150% and for 1.5 

bar - 200%.  

The aeration efficiency    is the function of     and the power demand for water 

pumping and oxygenation, as can be deduced from the Equations (2.25) and (2.26). In PAC 

system, power expenditure for water pumping is low, due to the low operating flow rates 

and low average pressure drop on the chamber of the range 20 to 24 cm H2O, 

corresponding to 2.0 to 2.4 kPa (Table 2.10). Therefore in PAC aeration, the most energy-

intensive step is oxygen generation in VPSA process combined with increase of the 

operating pressure. This tendency can be seen in the Figure 2.17. Thus, more energy 

efficient solutions were obtained for the operating pressure of 0.5 bar, accounting in 

average for 4.5 kgO2 kW-1 h-1 in test conditions, what gives nearly 8 kgO2 kW-1 h-1 after 

conversion into standard conditions. These values are distinctly higher than for most 

conventional mechanical and diffused aeration systems, except from the group of 

perforated membrane disc diffusers, having also the efficiency of 7.9 kgO2 kW-1 h-1 (Mueller 

et al., 2002). Average aeration efficiencies of 5.1 kgO2 kW-1 h-1 obtained from the 

experiments conducted with the oxygen pressure of 1.0 bar are comparable with the 

efficiencies of perforated EPDM membrane tubes, panels and ceramic discs or domes 

(Mueller et al., 2002). The lowest average     of 4.7 kgO2 kW-1 h-1, obtained for the 

oxygen pressure of 1.5 bar corresponds to the efficiencies reported for rigid porous plastic 

tubes (Mueller et al., 2002) and generalized group of porous diffusers (Stenstrom and 

Rosso, 2008).    

 
Table 2.10 Average aeration process parameters obtained from steady- state clean water tests. 

                                                 

(bar) (×10-5 m3 s-1) (Pa) (mg L-1) (h-1) (×10-3 kgO2 h
-1) (%) (kgO2 kW-1 h-1) 

0.5 5.90 2240 20.8 11.8 31.2 31.1 3.3 5.8 66 116 4.5 7.9 

1.0 5.32 2010 41.6 13.7 10.4 10.2 1.3 3.8 49 145 1.7 5.1 

1.5 4.73 2360 64.2 15.9 6.5 6.4 0.9 3.6 50 198 1.2 4.7 
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Figure 2.13  Steady-state DO concentration obtained in steady- state clean water test for various 
oxygen pressures. 

 

Figure 2.14 Oxygen mass transfer coefficient (   ) obtained in steady- state clean water test for 
various oxygen pressures. 
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Figure 2.15 Oxygen transfer rate (   ) obtained in steady- state clean water test for various 
oxygen pressures. 

 

 

Figure 2.16 Oxygen transfer efficiency (   ) obtained in steady- state clean water test for 
various oxygen pressures. 
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Figure 2.17 Aeration efficiency (  ) obtained in steady- state clean water test for various oxygen 
pressures. 

 
 

2.4.6.2 Unsteady- State Experiments 

The average values of the process parameters obtained from the unsteady-state 

experiments are shown in the Table 2.11. All experiments were run until DO saturation 

concentration in the PAC outflow,   , reached the stable value of 20.0 mg L-1, which is the 

upper limit for measurement range by LDO sensor. The     values obtained in the 

unsteady- state approach and determined from log-deficit method are nearly four times 

lower than in case of steady- state tests, but with the same decreasing trend depending on 

the oxygen pressures. Here, similarly to the steady-state tests results, the average values 

of     for several tests overlap with       , as can be seen in Figure 2.18.  

Again, similarly to the previous experiments,     computed on the base of the    , 

ranges from 0.3 to 1.4 g of oxygen per hour, for the oxygen input pressures from 1.5 to 0.5 

bar, respectively. After converting into     , these values vary from 1.0 to 1.5 gO2 h
-1, 

depending on the pressures used, as seen in Figure 2.19.  

On the other hand, with averaged values of     ranging from 16 to 10%, converted further 

into      in the range of 17 to 31%, the quantity of oxygen absorbed during aeration of 

water in PAC is five to seven times less than in the steady-state approach. These ranges of 

     correspond to the majority of the submerged aeration devices, including porous 
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diffusers, jet and U-tube aerators. The tendency in values is similar to the    -     

distribution obtained from the steady-state test, as can be seen in Figure 2.20. 

Aeration efficiencies    obtained from the unsteady-state experiments (Figure 2.21) are 

also lower than in steady approach, ranging for the test conditions from 0.2 

to 1.2 kgO2 kW-1 h-1 for the operating pressures from 1.5 to 0.5 bar. In standard conditions 

the increase in values is barely noticeable, and amounts 0.7-1.2 kgO2 kW-1 h-1. These values 

are similar to the      typical for some nonporous diffusers (Quasim, 1999; Stenstrom and 

Rosso, 2008; Taricska et al., 2009b), jet aerators (Stenstrom and Rosso, 2008), and a wide 

range of the mechanical units such as: submerged turbines, including devices equipped 

with draft tubes (Mueller et al., 2002; Tchobanoglous et al., 2003); high-speed aerators 

(Stenstrom and Rosso, 2008; von Sperling, 2007); and aspirating aerators (von Sperling, 

2007). These values may be to some extent a result of low    , affecting in the same way 

    values. On the other hand, considering average headloss on PAC of 25 cm, the largest 

contribution in the power expenditure would be due to intense oxygenation, as deduced 

from the      values.  

 

Table 2.11 Average aeration process parameters obtained from unsteady- state clean water tests. 

                                              

(bar) (×10-5m3 s-1) (kPa) (mg L-1) (h-1) (×10
-3
 kgO2 h

-1) (%) (kgO2 kW
-1
 h

-1) 

0.5 5.90 2.3 20.8 7.9 7.9 1.4 1.5 16 17 1.2 1.2 

1.0 5.32 2.7 41.6 2.7 2.7 0.5 1.0 11 23 0.4 0.8 

1.5 4.73 2.5 64.2 1.6 1.6 0.3 0.9 10 31 0.2 0.7 
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Figure 2.18 Oxygen mass transfer coefficient (   ) obtained in unsteady- state clean water test 
for various oxygen pressures. 

 

Figure 2.19 Oxygen transfer rate (   ) obtained in unsteady- state clean water test for various 
oxygen pressures. 
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Figure 2.20 Oxygen transfer efficiency (   ) obtained in unsteady- state clean water test for 
various oxygen pressures. 

 

 

Figure 2.21 Aeration efficiency (  ) obtained in unsteady- state clean water test for various 
oxygen pressures. 
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2.4.6.3 Validation of 3D CFD Studies of PAC 

To evaluate and compare the performance simulated with CFD in the 3D PAC with the 

results of the experiments carried on the lab-scale PAC, aeration efficiency of the device 

needs to be assessed. Aeration efficiency (  ) of PAC was computed from the following 

formula: 

   
      

 
 (2.65) 

where        is the mass flux of oxygen in the outflow from the PAC, obtained from the 

CFD simulations.  

Total power expenditure   accounts for the power demand on water pumping,    and on 

oxygenation,    
. Power demand,   , is proportional to the pressure drop in the PAC and 

the water flow rate.    is computed from the formula described by Equation (2.56), for 

  , volume flow rate of the chamber, obtained from CFD simulations and equal to  

              .  

When comparing contour maps of the static pressure in the plane cut throughout the PAC 

volume, pressure drop in the outflow zone is negligible and of the order of 1.0 Pa. Hence, 

to assess pressure drop on the PAC, computational outline must be extended to include 

short sections of the inflow and outflow pipes, having diameter equal to inlet/outlet 

orifices in PAC, thus of 0.01 m. Here, pressure drop on PAC can be determined from the 

local headloss, computed for the two exits: from an inflow pipe to PAC, and from the PAC 

to the effluent pipe. The first case considers water discharge from the pipe to the PAC, 

which is characterized by flow expansion due to the sudden enlargement of the flow area, 

as shown in Figure 2.22a. Second case considers flow discharge from the PAC to the pipe 

characterized by formation of vena contracta, followed by headloss due to sudden 

expansion of the flow area after contraction section, as seen in Figure 2.22b.  

For both cases presented in Figure 2.22 local headloss is determined from the Darcy´s 

formula in the following form: 

     

  

  
 (2.66) 

where    is the local loss in m,    denotes local headloss co-efficient, dimensionless and 

expression  
 

    is the velocity head. 
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The example computation below aimed derivation of the formula for    for the case of 

sudden contraction. The momentum equation can be written as: 

                 (2.67) 

 

a) 

 

b) 

 

Figure 2.22  Schematic discharge to and from the PAC through the: a) inlet, and b) outlet orifice. 
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where  , and   refer to the pressure and velocity in the contracted cross section area of 

the jet from PAC,  , and   ,    correspond to converged flow conditions in the outflow 

tube of the area   .  

From the continuity equation we have:  

          (2.68) 

and after rearrangement, Equation (2.67) is of the following form: 

    

  
 

  

  
        

From the Bernoulli’s energy conservation equation, for PAC and the outflow tube we have: 

 

  
 

  

  
 

  

  
 

  
 

  
    (2.69) 

After combination and rearrangement of the Equations (2.67) and (2.69) we obtain: 

   
      

 

  
 (2.70) 

If the continuity equation of the form:  

  
    

 
 

will be implemented into Equation (2.70), we obtain: 

    
  

 
   

   
 

  
 (2.71) 

Comparing this equation with (2.66) yields  

    
  

 
   

 

 (2.72) 
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To determine    for vena contracta, it can be assumed, that the contraction is about 40% 

of the flow area in the pipe (Chadwick and Morfett, 1998). Therefore considering the 

region where head loss occurs, i.e. section with contraction-expansion, having the areas of 

      and    respectively,    is 0.44.  

For the assumed in the CFD simulations   equal to 1.0 m s-1, the expansion headloss is 

0.022 m H2O, what corresponds to 216 Pa.  

Analogically, for the case of sudden enlargement the procedure to determine    includes 

all the computational steps described from Equation (2.67) to (2.72), where the variables 

without subscript refer to the flow characteristics within the inlet pipe and the variables 

with subscript are the ones of the PAC. Here, the final formula for    will have the 

following form: 

      
 

  
 
 

 (2.73) 

The value of    in Equation (2.72) is much greater than   thus    is 1.  

Hence for such sudden large expansion, the local headloss equals to the velocity head, 

which for    of 1.0 m s-1 equals 0.051 m, corresponding to 500 Pa.  

The total headloss on the PAC equals the sum of the local losses, which is 716 Pa, and thus 

the power demand for water pumping, computed from the Equation (2.56) is around 

0.1 W. Power demand on oxygenation,    
 was computed as for the experimental PAC 

using Equations (2.57), (2.58), (2.59) and (2.60), for the values of pressure and 

temperature referred in Section 2.3.5.    

The values of aeration efficiency obtained from the 3D CFD simulations of the PAC, which 

are presented in Table 2.12 are in good agreement with the results obtained from the 

steady-state experiments for the oxygen pressure of 0.5 bar, which account in average for 

4.5 kg kW-1 h-1. Nonetheless, when considering the pressure drop on a chamber, the values 

computed for the CFD layouts are around 3 times lower than those obtained during 

experiments on lab-scale PAC.  
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Table 2.12 Aeration efficiency obtained from the 3D CFD simulations of various PAC configurations.  

PAC geometry 
             

     

(mg L-1) (Pa)  (W)  (kg kW-1 h-1) 

Rectangular 12.56 716  0.06 1.46  3.87 

Rectangular with bottom baffles 17.75 716  0.06 2.06  3.92 

Rectangular with alternating baffles 18.21 716  0.06 2.11  3.93 

 

2.5 2D Bubble Column Reactor 

In this section, description of 2D Bubble Column Reactor (BCR) and experimental setup are 

given. Standard imaging followed by image processing procedure used to determine 

hydrodynamics of the water flow through BCR aerated with atmospheric air and operated 

in concurrent gas-liquid upflow is studied. Besides flow regime and gas hold-up 

assessment, experimental procedure of steady-state clean water test for Oxygen Transfer 

Rate and aeration process parameters assessment is described. On the base of the 

hydrodynamics parameters and the clean water test results, aeration performance of the 

BCR for process conditions, i.e. air and water flow rates, is evaluated. Finally, oxygen 

mass transfer and energy efficiency obtained from the multiple experiments are compared 

with the aeration process parameters characteristic for conventional devices used in AS 

systems.  

2.5.1 Bubble Column Reactors in Activated Sludge Systems 

Aeration is a key unit process in biological wastewater treatment and its efficiency in such 

multiphase system as the activated sludge tank depends on the gas-liquid interfacial area 

and the gas hold-up. Many studies have been focused on the relationship between the gas 

hold-up and the physical properties of the liquid phase, reactor hydrodynamics and the 

bioreactor efficiency. Although aeration basins equipped with mechanical or diffused air 

units predominate in suspended growth AS systems, many multiphase reactors, such as 

packed bed reactors, bubble columns and airlift reactors associated until recent decades 

exclusively with chemical and bioengineering industry, found to be suitable alternative for 

aeration of both, suspended and attached growth AS systems. In the recent years, special 

attention is paid to the attached growth (fixed-film or biofilm) AS, having better resistance 

to high loading rates and thus higher capability to treat high-strength effluents than 



2 Aeration Technologies 

85 

conventional suspended growth AS systems. Multiphase reactors used in biofilm AS systems 

are, among the others, bubble column bioreactors and airlift bioreactors.  

Bubble column reactors (BCR) or simply bubble columns, are inexpensive and easy and 

flexible in operation devices (Kantarci et al., 2005; Shaikh and Al-Dahhan, 2007; Wang and 

Zhong, 2007), consisted of vertical cylindrical vessel filled with the liquid and equipped 

with gas phase distributor, usually sparger or jet nozzle placed at the bottom. 

Performance of BCR is based on introduction of dispersing energy by gas injection into 

liquid or liquid-solid suspension. Flow patterns, and thus mixing within the vessel occurs by 

natural dynamics of the phases, and depends on gas-liquid velocities. Reactor performance 

yields in high mass and heat transfer efficiencies, however one of the serious drawbacks of 

bubble columns limiting their wide application in cell growth industry and also AS systems 

is large degree of backmixing in the liquid phase, decrease of the interfacial area due to 

bubble coalescence, and high pressure losses (Shaikh and Al-Dahhan, 2007; Wang and 

Zhong, 2007). To overcome these fails and improve mass transfer performance, 

modification in original design has been done by introduction of various kinds of packing 

and staging of the column height. In water and wastewater treatment technology BCRs are 

generally used in: advanced oxidation processes (AOPs) as ozone contactors, allowing for 

rapid and efficient dissolution of ozone in liquid media and air stripping in towers. They 

are also used, but still in lesser extent, in aeration of the AS process either in suspended 

growth or immobilized on packing biofilm systems.  

For bubble columns, literature offers handful of papers published on experimental 

hydrodynamics studies, concerning flow regime and superficial gas velocity investigation 

with application of CFD studies and supported by advanced measurement techniques such 

as PIV, LDA or CARPT (Dani et al., 2007; Dhotre and Joshi, 2007; Díaz et al., 2008a; Díaz et 

al., 2008b; Klusener et al., 2007; Kulkarni et al., 2007; Nogueira et al., 2006; Shaikh and 

Al-Dahhan, 2007; Spicka et al., 2001; Spicka et al., 1999; Tabib et al., 2008). The influence 

of gas velocity on oxygen mass transfer and gas hold-up in a bubble columns have been 

also widely studied, with application of such nonintrusive techniques, as PLIF and PLIF with 

Inhibition (PLIFI) (Dani et al., 2007; Díaz et al., 2008b; Francois et al., 2011; Kantarci et 

al., 2005; Kulkarni et al., 2007; Shaikh and Al-Dahhan, 2007). The hydrodynamics and 

biokinetics of the AS in slurry columns are also objective of intense studies (Jin and Lant, 

2004; Mineta et al., 2011; Terasaka et al., 2011). 

 Due to the relatively low power requirements for aeration and mixing, easy maintenance 

and potential for scaling up, airlift reactors (ALR) found wide applications in suspended 

growth systems, such as granular AS process conducted in SBR or biofilm systems, 
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operating as airlift activated sludge reactors. In the recent years, airlift bioreactors has 

been object of many studies using both, CFD and experimental approaches (Jin and Lant, 

2004; Jin et al., 2006; Luo and Al-Dahhan, 2008; Moraveji et al., 2012; Nicolella et al., 

1998; Šimčík et al., 2011; Talvy et al., 2007; Xu and Yu, 2008). Airlift bioreactor has 

similar reactor design to bubble column, equipped additionally with a draft tube providing 

performance-improving internal circulation. Depending on the draft tube function, airlift 

reactors with either internal loop (inner tube) or external loop (external tube) are used. 

The principles of ALR aeration performance are the same as those of deep shaft (U-tube) 

aeration systems. As the aerated by sparger section has lower effective density than the 

air deficit section, the difference in hydrostatic pressure between the two promotes liquid 

flow upward and creates a draft, improving circulation and oxygen transfer and equalizing 

shear forces in the reactor. To enhance overall mixing and reduce backmixing, ALR can be 

fitted with mechanical agitation devices, placed in the bottom zone.  

2.5.2 2D Reactor  

Depending on the type of AS process BCR can be used in similar way to PAC, i.e. as a high 

rate flow component of the aeration tank recirculation loop in suspended growth systems. 

Considering attached growth systems, BCR can be used as an AS bioreactor itself. BCR 

system, shown in Figure 2.23 consists of three main built-in components: bottom tank; 

central section, with a vertically positioned rectangular, transparent, acrylic reactor; and 

the top wall tank. The reactor is operated in concurrent gas-liquid upflow through the 

packed bed. Fluid is delivered through the inlet orifice located in the bottom tank. Bottom 

tank has the dimensions of 0.32×0.12×0.17 m and is of rectangular cross-section which 

changes towards the top into trapezoidal prism. The narrowing tank cross section allows 

smooth passage of the fluid to the central section. Additionally, a flat, rectangular plate- 

flow deflector was fixed at a distance of approximately 1 cm above the inlet, allowing 

uniform and continuous fluid upflow. Gaseous phase is introduced into the bottom tank 

through a gas sparger extended along the tank width and precisely aligned with the 

horizontal axis of the central section. The sparger was made of an acrylic perforated tube 

with        m diameter, with 40 equally spaced orifices, each having a diameter of 

         m. Sparger design and position enable reasonably uniform distribution of the flow 

of the gas bubbles into the central section of the reactor. 2D reactor consists of two 

rectangular plates of dimensions           m. The plates are spaced from each other and 

connected along the sides with two internal acrylic strips reinforced with external stainless 

steel chasing, ensuring constant column gap thickness of        m. The reactor bed 

packing consists of acrylic discs with diameter of        m and thickness of        m, 
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ordered in regular, diamond-shape matrix, as seen in the Figure 2.24. The horizontal 

distance between the centres of the adjacent disks is        m and the vertical interval 

between two adjacent rows of packing is        m, which results in bed porosity of 0.6. 

The upper tank has a function of gas-liquid separator, designed to maintain a stable level 

on the free liquid surface and therefore to minimize the risk of the undesirable changes in 

the hydrostatic pressure inside the reactor. The tank has two outlets: a gas outlet (vent) 

situated in the top wall; and the fluid outlet in the back wall of the phase-separator. 

 

 

Figure 2.23  Bubble Column Reactor layout. 
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             Figure 2.24 Image of structure packing. 

2.5.3 Experimental Set-up and Flow Loop 

Similarly to the oxygen transfer measurement experiments conducted on PAC, BCR is 

considered as an independent external aeration unit and a flow component included in the 

mixed liquor recirculation loop. Figure 2.25 shows the 2D reactor and the part of the 

experimental set-up. The entire installation and the flow loop are shown in Figure 2.26. 

Test water was stored in acrylic reservoir with capacity of 135 dm3 (1), equipped with 

mechanical stirrer (Heidolph, model RZR 2021) and with vertical shaft crossed-blade 

impeller (2). Strictly defined standards of water quality in the reservoir during oxygen 

transfer experiments require constant monitoring, therefore DO concentration, 

conductivity and temperature were continuously controlled with portable dual channel 

multi meter (3) (Hach Lange HQ40D) equipped with digital smart sensors (4): luminescent 

DO probe (IntelliCALTM LDO10103) and conductivity probe (IntelliCALTM CDC40103). The 

precision of the equipment is: 0.01 μS cm-1 for conductivity probe; 0.01 mg L-1 O2 or 0.1% 

of DO saturation for oxygen probe; and 0.3 °C for temperature. Water fed from the 

reservoir is pumped using positive displacement gear micropump (5) with magnetically 

coupled drive (Pacific Scientific, model 220/560C) that has an external rpm speed 

controller. The aeration unit is operated in concurrent gas-liquid upflow mode, which 

means that the test water is delivered to the BCR (6) through the inlet port in the bottom 

tank. The water flow rate is additionally measured and controlled by variable area 

correlated flowmeter (7) (Gilmont Accucal, model GF 1660). The accuracy of the 

measurements can be estimated as   2% of reading or   1 scale division. Atmospheric air is 

supplied through laboratory distribution manifold connected to an outdoor air compression 



2 Aeration Technologies 

89 

module mounted on the roof of the building. Pressurized air flow rate is regulated by 

means of two pressure regulators (8) connected in series. The first pressure regulator 

(Camozzi MC202-R00), connected to the lab air manifold below shut-off valve, operates 

with pressure range 0-25 bar. Second regulator (Pneumax, model FIMET) equipped with air 

filter provides regulation of pressure from 0 to 4 bar. Air flow through the BCR is measured 

by variable area correlated flowmeter (9) (Cole Parmer, model 60648), with the reading 

accuracy of    % of full-scale. Air is supplied to the BCR with the tubing connected directly 

to the gas sparger, located in the bottom tank. Mixture of water and bubbles flow upwards 

BCR to the upper tank, where the excess air is released from the water surface and 

escapes through the vent to the atmosphere. The effluent aerated water is discharged 

through the outlet in the back wall of the separator to the pipeline and flows downwards 

to the drainage collector. Pressure drop on the BCR is measured by means of differential 

pressure transducer (10) (Validyne, Type P0305D), inserted between reactor feed pipe (11) 

and outflow pipe from the separator (12). DO concentration in the influent and effluent 

from the reactor are controlled continuously with another stand-alone measurement 

system, consisted of a standard controller display module (13) (Hach Lange sc100) and 

luminescent DO probe module (Hach Lange, LDO probe). The sensitivity of the probes is 

     mg L-1 DO or    % DO saturation. The probes are placed in specially manufactured PVC 

flow cell adapters integrated with the BCR influent (14) and effluent tubing (15). Water 

and oxygen pipeline system used in the experimental installation consist of 3/8" 

polyurethane and stainless steel tubing (Swagelok) and all necessary fittings: tube 

adapters, quick connect fittings, elbows, tees and regulation valves.  

The signals from the pressure transducer and LDO sensors are converted into digital data 

by the Data Acquisition (DAQ) device (16) (National Instruments, NI SCC-68). Dell® 

Optiplex 755 PC (17) with a dual core Intel® Core™ 2 Duo CPU at 2.66 GHz and 2.33 GB of 

RAM controls the operation of the DAQ device and is used for processing and storing 

measurement data through an application developed with LabVIEW (version 8.2).  

During the experiment, the two-phase bubbly flow is imaged using high resolution imaging 

system. Image acquisition system consists of a 2 megapixel CCD camera (18) (TSI 

PowerviewTM Plus, model 630157) connected to a frame grabber (TSI, model 600067), 

a source of light (19)- halogen lamp, light diffuser (20) and frame grabbing software- TSI 

Insight 3G™ (version 9.0) installed in the Dell® Precision 690 PC with a dual core Intel® 

Xeon® CPU at 2.33 GHz and 2 GB of RAM (21).   
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             Figure 2.25 A photograph of experimental installation. 

 



2 Aeration Technologies 

91 

 

 

Figure 2.26 Experimental set-up and flow loop: 1- reservoir; 2- stirrer; 3- multi meter; 4- probe; 5-pump; 
6- BCR; 7- flowmeter; 8- pressure regulator; 9- air flowmeter; 10- pressure transducer; 11- influent tube; 
12- outflow from the separator; 13- DO controller display; 14, 15- flow cell adapter; 16- acquisition board; 
17- PC; 18-CCD camera; 19- halogen lamp; 20- light diffuser; 21- PC. 

 

 

2.5.4 Experimental Air-Water Flow Ranges and Experiments 

The experimental studies of BCR were conducted for different pairs of water and air flow 

rates. The ranges of water,   , and air,     , flow rates and the experiment objectives 

are listed in Table 2.13. Considering BCR bed porosity of 0.6, velocity of the liquid 

phase,   , is computed, as follows:  

   
  

       
 (2.74) 

where    is surface velocity of water, m s-1 and      denotes BCR cross section, in m2. 

Similarly, to assess the gas surface velocity,      , following formula must be used: 

     
    

       
 (2.75) 
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where      is surface air velocity, m s-1. 

 

Table 2.13 Water and air flow rates used in the experiments.  

               
                 

1.60 3.71 5.76 7.89 9.96 1,19 13.80 15.80 

0.57 

Imaging - Bubbly Flow Regime Characterization 
 

Imaging - Volume of Fluid Measurement 
 

Clean Water Test 
 

1.22 

1.92 

2.55 

3.38 

4.15 

4.95 

5.62 

 

2.5.5 Imaging Experiments 

Characterization of the multiphase flow in BCR concerned qualitative and quantitative 

measurements to determine multiphase flow regime and volumetric fraction of gas or 

liquid as a function of water-air flow rates. Both approaches involved nonintrusive 

technique of standard imaging for data acquisition. 

2.5.5.1 Image Acquisition 

High resolution image acquisition system (Figure 2.26) used in the experiments consisted of 

the black and white high-speed CCD camera connected with the frame grabber, the 

halogen lamp, the light diffuser, and the frame grabbing software (TSI Insight 3G™ ver. 

9.0) installed in the PC.  

To obtain the most representative images of the flow field in the BCR, the image 

acquisition region of the most uniformed flow in terms of bubble distribution was selected 

and marked with the white frame, as seen in the Figure 2.27. The dimensions of the 

selected region of interest are         cm. The camera was positioned on an aluminum 

supporting arm (MayTec) at a distance of 0.2 m in front of the reactor and aligned parallel 

to the center of the acquisition frame. The light diffuser, a white paper sheet of high 

grammage, was placed adjacent to the rear wall of the reactor. The light from the halogen 

lamp, positioned behind the diffuser at the distance of 1 cm, enabled an uniform 

illumination of the frame background. For each experiment, an ensemble of one hundred 
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frames of 16-bit gray scale was captured by the camera at the shutter speed of        s 

at frame rate of 14.5 frames per second. The size of each frame was           pixels 

with the resolution of 150 DPI (59.1 pixels per cm). The frames captured with the CCD 

camera were transferred to the computer through a frame grabber. 

 

 

Figure 2.27 Image acquisition system. 

 

2.5.5.2 Flow Regime Determination 

Precise characterization of the flow dynamics, i.e. flow regime in the multiphase reactors, 

such as BCR, is important from the point of view of the application and operation of the 

reactor, as well as aeration process efficiency. Classification of the flow regimes in typical 

cylindrical column reactors is based mainly on the ratio of gas-liquid superficial velocities 

(Kantarci et al., 2005; Shaikh and Al-Dahhan, 2007; Spicka et al., 1999). In bubble column 

reactors, depending on the interactions of dispersed gas phase and continuous liquid 

phase, four different types of flow patterns are commonly observed: homogeneous 

(bubbly); heterogeneous (churn-turbulent); slug; and annular flows. These flow patterns 

occur also in the bubble columns of rectangular cross section, however the classification of 
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the flow regimes in channel and narrow flat channel reactors is more often based on the 

identification of the gas-liquid distributions in the reactor (Spicka, 2001).  

In the present case of the gas-liquid flow in the 2D BCR of a high aspect ratio cross section, 

air bubbles tend to be flattened in narrow passages, therefore they can be considered two-

dimensional. The flow regime determination may be based on the shape of the bubbles 

observed through the wider front wall of the BCR. 

Homogeneous (bubbly) flow is characterized by circular or ellipsoidal bubbles of almost 

uniform size. At low gas rising and liquid velocities, there is almost no coalescence and 

break-up, hence the narrow bubble size distribution (Shaikh and Al-Dahhan, 2007; Takács, 

2005). The size of the bubbles depends entirely upon the gas distribution and reactor 

characteristics, thus in case of BCR, dimensions of the sparger orifices, reactor cross 

section and the packing. If the bubbles released from the sparger are bigger than the gap 

thickness between the walls, they will be flattened (Spicka, 2001) and constantly 

deformed due to the collisions with the packing disks.  

At low gas and relatively higher liquid velocities, increased turbulent forces break up large 

bubbles and prevent the coalescence of the smaller ones. The fluid phase imparts velocity 

to the small bubbles causing that the multiphase system behaves like a homogenous one, 

and such flow regime is referred as dispersed bubbly flow (Takács, 2005). 

Slug flow occurs over a wide range of intermediate liquid and gas velocities small bubbles 

coalesce into the bigger elongated and unstable bubbly forms. Due to that, most of the gas 

phase is accumulating in large bubbles, while the contribution of the fine bubble fraction 

decreases. With the increase of liquid velocity, turbulent fluctuations break up large 

bubbles into the smaller ones and the transition from the slug into the dispersed bubbly 

flow occurs. 

At the higher gas rates than those of slug flow, transition into a heterogeneous flow takes 

place. This turbulent flow regime is characterized by intense bubble-bubble interactions, 

leading to wide bubble size distribution. Next to the intense bubble coalescences and 

break up, existence of the high shear forces destabilize liquid slug structures. Collapsed 

liquid slugs are lifted by the larger bubbles of distorted shape followed by the clusters of 

smaller bubbles, forcing oscillatory motion of fluid in alternating directions. Since the 

large bubbles churn through the liquid, such heterogeneous flow is commonly referred as 

churn-turbulent flow (Shaikh and Al-Dahhan, 2007; Takács, 2005). 

Annular flow occurs at the extreme high gas velocities and is characterized by the 

presence of the continuous gas flow core, containing dispersed droplets of liquid and 

surrounded by the wavy liquid film flowing upwards (Takács, 2005). 
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2.5.5.3 Determination of Volumetric Fraction of Air via Image Processing 

Gas hold-up is one of the most important parameters characterizing hydrodynamics of the 

aeration systems (Coelho Pinheiro et al., 2000; Tang and Heindel, 2004). Gas hold-up is 

a dimensionless parameter, defined as the percentage fraction of the gas volume, such as 

gas bubbles, dispersed in the multiphase mixture in the reactor at any instant during gas-

liquid contact process. Volumetric fraction of gas depends largely on the superficial gas 

velocity, however influence of the liquid velocity and the gas distributor have to be 

accounted.  

Determination of the volumetric fraction of air in studied BCR involves application of the 

complex analysis of the grabbed images to measure the area (size) of the captured gas 

bubbles. In this work image analysis was performed using ImageJ, a public domain, Java-

based image processing software developed at the U.S. National Institutes of Health (NIH). 

One of the options available in ImageJ, which is used for counting and measuring objects in 

binary images, is automatic determination of the particle size distribution. However, to 

obtain reliable results from the analysis, several steps of image processing must be 

followed.  

A sample frame is shown in the Figure 2.28 and the sequence of the main steps of the 

image processing is presented in the Figure 2.29. As seen in the raw image, some of 

packing disks contain air bubbles trapped between the disk and the wall of the reactor, 

which cannot be accounted into the actual air fraction determination. Due to that, image 

pre-processing was made using Adobe® Photoshop® CS2 photo editing software and was 

based on the correction of the packing texture by simply creating a clipping mask with the 

white circles overlapping the disks, as seen in the Figure 2.29a. Enhanced in this way 

frames were consecutively processed using ImageJ. 

In the first step, 16-bit image was converted into 256 shades of grey (8-bit). For 

convenience, the image scale was set to convert the pixels into the centimetres. 

Various factors, such as limited number of grey scale levels, non-uniform background 

illumination and instability of the light source or room illumination affect the quality of 

the images. From the photographs shown in the Figure 2.28 and Figure 2.29a it is clear, 

that a dark to light gradient from the bottom right to the other upper left corner of the 

image, and some pixels affected by noise are scattered randomly within a frame. To 

correct non-uniform background illumination, background subtraction option was applied, 

and the result is presented in the Figure 2.29b.  

 

http://en.wikipedia.org/wiki/Public_domain_software
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/National_Institutes_of_Health
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                Figure 2.28 Example of the raw image captured by CCD camera. 

 

Air phase identification was performed as the combination of two separate image 

processing algorithms, having different purposes, thus leading to either bubble edge 

detection or gaseous phase detection.  

The edge tracing technique is based on the assumption that large intensity gradients are 

more likely to correspond to edges than the small intensity gradients. However, in most of 

the cases auto-thresholding operation is not sufficient to extract the gradients of the 

certain intensity, which might be directly associated with the particular boundaries. The 

common strategy to overcome that problem is to use thresholding with hysteresis (Canny, 

1986; Olsson, 1993; Russ, 2011), based on the double thresholding of the image. The 

operation requires application of high and low thresholds to track the faint edges, 

recognised as the genuine ones and to generate gradients allowing for their identification. 

For that purpose, the original frame, named Image 1 was duplicated and a copy was 

labelled Image 2. In case of Image 1, threshold levels were adjusted in such a way, that 

only the etched boundaries of the bubbles of maximum pixel value were outlined, as seen 

in the Figure 2.29c. Image 2 was processed with the lower threshold in order to enhance 

the contours of bubbles, as seen in the Figure 2.29d and converted into binary image.  
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a) b) 

  
c) d) 

  
e) f) 

  
g) h) 

Figure 2.29 Image processing algorithm. 
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The noise generated during thresholding was consecutively removed using Erode algorithm 

(Russ, 2011), which eliminates black pixels in     white neighbourhood. The contours of 

the bubbles were additionally enhanced by applying Dilate algorithm (Russ, 2011), which 

adds black pixels to the edges of black objects. Image 1 and 2 were successively combined 

using Binary Reconstruct operation, referred also as the Feature-AND procedure (Russ, 

2011), which reconstructs the outlined edges of the bubbles in the image called mask 

(Image 1), based on markers present in another image called seed (Image 2). The 

reconstructed image (Figure 2.29e) characterized by the thick edges was consecutively 

processed in binary thinning (skeletonization) algorithm (Lee and Kashyap, 1994), to 

extract the single pixel edges (centrelines), thus a topological skeleton of the bubbles, 

later enhanced in Greyscale Dilation algorithm (Figure 2.29f).  

To identify air fraction the original image processed in equalization of the background 

illumination (background subtracting operation), was overlapped with the skeletonized 

image obtained in the edge detection train (Figure 2.29f). The result image (Figure 2.29g) 

was then auto-threshold and subjected to particle size distribution analysis, allowing 

disjointing within the image air bubbles from the water phase. This procedure is based on 

the identification of the bubbles’ (particles) shapes, followed by measurement and 

characterization of their sizes (areas). The processed image may still contain some noise 

objects, such as small dots or the fragments of the disks outline. Because of that, the 

parameters of the particle size computing must be calibrated in such a way that the noise 

objects are excluded as much as possible, and thus by setting the limiting bubble area 

values in size filtering panel. Thus, taking into account visual inspection of the frames, the 

area of the filled, delineated air bubbles (masks) range was set from 0.05 cm2 to infinity. 

Due to the diversity of the bubbles shapes, circularity range was set from 0 (elongated 

polygon) to 1 (perfect circle).  

Finally, to determine volumetric fraction of air, it was assumed, that each bubble is a bi-

dimensional thin object, characterized by projected area    with maximal thickness 

corresponding to the reactor gap width. Thus, for each frame, the volumetric fraction of 

air will be calculated as follows:  

     
    

    
 (2.76) 

where      denotes volumetric fraction of air,      is volume of air bubbles and      is the 

volume of air-water mixture in the BCR. Knowing the bubble and the reactor thickness, 

and the reactor porosity, for each image with   bubbles       can be calculated as follows:   
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 (2.77) 

where    is total area of the bubbles, and       and      are image dimensions. 

2.5.6 Clean Water Test 

The procedure for the preparation of the test water using deoxygenating chemicals and 

stabilizing the whole aeration system was exactly the one described in Section 2.4.3. 

Characterization of the BCR as the aeration unit was performed using steady-state 

experiments, conducted in the open fluid flow system scheme. During experiment, BCR is 

continuously fed with deoxygenated water from the reservoir and the effluent from the 

outflow after passing through the DO flow cell is disposed in the drainage collector. The 

reaeration test is considered completed, once the DO effluent concentration reached 

a steady state value, maintained for at least 10 minutes.  

To determine Oxygen Transfer Rate and aeration process parameters (   ,     ,      

and    ) clean water test was performed for each pair of water-air flow rates (Table 

2.13). For each test, the value of oxygen saturation concentration,   , was determined on 

the base of the actual measurement of electrical conductivity (EC) and the temperature 

( ) (Tchobanoglous et al., 2003) of the test water in the reservoir. 

Inlet (  ), outlet (  ) DO concentration and pressure drop (  ) were continuously 

monitored and recorded with time intervals of 0.1 s. 

2.5.6.1 Determination of the Process Parameters 

To determine the     values using Equation (2.17), the volume of BCR and the oxygen flux 

must be computed. Knowing the porosity of the reactor, the active volume of the 2D 

reactor is             . The mass flux of oxygen is computed from the formula described 

by Equation (2.53). The standardized mass transfer coefficient       was computed from 

the formula described by Equation (2.20).  

The Oxygen Transfer Rate for test and standard conditions was computed using Equations 

(2.23) and (2.24).  

To assess    and     values described by Equations (2.25) and (2.26), the power 

consumed by the whole aeration system, i.e. by water and air system must be considered. 

Power demand on water pumping was computed according to the Equation (2.56). 

Pressure drop in the multiphase (water-air) flow is higher than in single water phase. The 

main reason is not only reduction of flow area of both phases, but also the differences in 

the densities of both phases, yielding additional body force, resulting in different phase 
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velocities, non-uniform phase distribution and increase of shear rate in the denser water 

phase (Spicka, 2001). Design of the aeration systems considers device operation in the less 

favourable conditions, and thus    used in the computation of power demand for water 

pumping refers to the total pressure drop of the influent deoxygenated water and 

degassed oxygen rich water. The values of    measured during each experiment and 

recorded in the intervals of 0.1 s account for the local headloss at the entrance and 

discharge from the BCR, frictional and local headloss due to multiphase flow through 

a packed bed. The final    value considered in the computation is the average from all 

data registered during experiment.  

Determination of power requirements for aeration in BCR was based on the determination 

of energy consumption by blower assessed from the adiabatic compression equation 

(2.28), considering blower efficiency of 70% and motor efficiency of 92%. Assumed blower 

inlet pressure equals 1.0 atm. For specific laboratory scale BCR system, computing power 

demand for blower requires proper blower sizing by prediction of the discharge pressure to 

give accurate values, which approximate experimental conditions to the real scale unit 

performance. Design discharge pressure of the blower,   , is generally calculated for the 

worst case conditions and the higher operating air flow rate and needs to compensate: 

head losses for air piping from the blower location to the experimental installation 

considering high pipe roughness, partially throttled valves and fittings; head losses due to 

DWP of diffuser increased by additional losses due to device ageing, i.e. progressive 

fouling; peak high headloss during flow through the packed bed; safety factor and 

overpressure preventing surge conditions within the blower. On the other hand, actual 

operating discharge pressure is much lower than design pressure, thus calculation of the 

energy efficiency based only on the design pressure may impose misleading conclusions.  

In this work, DWP of the fouled diffuser, safety factor and the overpressure, assumed 

according to blower design guidelines account for 0.3 bar. Pressure drop on the BCR is 

equivalent to the static head measured and determined for power demand for water 

pumping. The highest headloss accounts for frictional and local losses during flow through 

all devices and fittings, such as meters, blower’s air filter and silencer, valvings and 

piping. Unfortunately, an exact analysis of air distribution system and blower´s 

manufacturer data was not made, and from so, these losses have to be assumed 

accounting for the layout of a hypothetical full scale unit. 

In this work, both, the worst and normal operating conditions were considered for blower 

sizing and power demand computation. For worst scenario, the assumed pressure head was 

10.0 m H2O and for the normal operation – 5 m, respectively. Therefore, the absolute 

values of discharge pressure for compressor used in the calculations are 2.0 and 1.5 bar, 
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respectively, representing typical values for the wastewater treatment installations (EPA, 

2010; Quasim, 1999).  

    and      are calculated from the Equations (2.29) and (2.30), where the influent 

and the effluent oxygen fluxes are computed from the modified formulas (2.61) and 

(2.62), accounting for the aeration system supplied by atmospheric air. Therefore 

considering mass fraction of oxygen in air of 23.2%, the oxygen flow rate expressed by 

Equation (2.59) the formula can be written as: 

   
                   (2.78) 

where        is air density in normal conditions, i.e. 0 °C, which equals to 1.293 kg m3. 

Therefore the Equations (2.29) and (2.30) can be written, as follows: 

    
   

                 
 (2.79) 

and assuming that         

     
    

                 
 (2.80) 

 

2.5.7 Results and Discussion 

2.5.7.1 Flow Regime  

In the present work, determination of the multiphase flow regimes was based on the visual 

analysis of the registered sequence of the images, for the specified air–water flow rates. 

The flow regimes are presented as contour maps as function of air and water superficial 

velocities, see Figure 2.30. Horizontal, layered distribution of the contour paths suggests 

that the character of the flow regime in BCR depends to a greater extends on the air 

velocity. Bubbly, homogenous flow regime (blue colour in the contour map) was observed 

for low values of the air velocity, up to 0.15 m s-1, and characterized by the occurrence of 

the flat, rounded, oval, and drop-shaped bubbles, as can be seen in Figure 2.31a. The 

majority of the rounded bubbles have diameters up to 5 mm, while the drop shaped ones 

are up to 10 mm long. Dispersed flow (light blue colour) on the contour map was 

characterized by shredding bubble sizes due to the increased turbulence and coalescences 
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with the packing disks. This flow regime was observed at low air velocity range and with 

increasing water velocity. Slug flow (green colour) extends over relatively narrow gas 

velocity of the range 0.23-0.33 m s-1 when comparing with homogenous flow (bubbly and 

dispersed flow regimes). Slug flow regime is characterized by the passage of a sequence of 

slugs of liquid carrying dispersed bubbles of the diameter up to 3 mm, alternating with 

sections of separated flow within long bubbles, distorted due to the collisions with the 

packing disks, as seen in the Figure 2.31b.  

As the air velocity increases, large bubbles are constantly ruptured into the smaller due to 

intense collisions with the reactor packing, and the flow regime shifts to dynamic and 

diverse churn regime (orange to red colour). This turbulent flow regime is characterized by 

intense bubble-bubble interactions, leading to wide bubble size distribution within the 

liquid phase, from the large elongated forms to the clusters of tiny (1 mm) to medium 

sized bubbles (4 mm), as can be seen in the Figure 2.31c. 

Annular flow (dark red), was sporadically observed for the highest air velocity, 0.66 ms-1, 

and the lowest water velocity in the range of 0.02 to 0.10 ms-1. As seen in the Figure 

2.31d, gas phase occupies nearly whole void space of the BCR and the liquid film flowing 

upwards forms thin bridges connecting neighboring packing disks.  

 

           Figure 2.30 Flow regime contour maps obtained for the BCR. 
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a) b) 

  

c) d) 

Figure 2.31 Different flow patterns observed in BCR: a) bubbly; b) slug; c) churn; and d) annular flow. 
 

 

2.5.7.2 Gas Hold-up 

Gas hold-up (    ) was obtained via imaging technique coupled with computational 

procedure for different pairs of liquid-gas superficial velocities. Comparison of the results 

shown in contour maps of volumetric percentage of air (Figure 2.32) with flow regime 

(Figure 2.30) leads to the unambiguous conclusions, that in both cases, distribution pattern 

of the contour bands is mostly influenced by the surface air velocity, however the impact 

of the water flow rate on the gas hold-up is also visible in diagonal tendency of the 

contour bands.  

The lowest volumetric air fraction, which constitutes 11-13% of the BCR volume, was 

observed for dispersed bubbly flow regime at low air and high water velocities. For 

developed homogenous flow at low air-water velocities, due to the presence of bubbles of 

larger area,      reaches values of 35–40%, but with increase of the water velocity, the 

bubbles content in the volume of fluid decreases to 24%. As the flow shifts to slug, due to 
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the presence of large bubble formations at low water velocities, high values of gas hold-up 

were obtained, ranging from 0.45-0.55. In churn flow, clusters of bubbles contribute to air 

volume fraction of the range 0.60-0.69, with the lower limit around 0.42. The highest 

values of      were almost 0.80 and were observed for the transition flow from churn to 

annular. 

  

        Figure 2.32  Contour map of gas hold-up obtained for different gas-fluid velocities. 
 

2.5.7.3 Clean Water Test Results 

 When comparing the values of the aeration process parameters obtained from the steady- 

state clean water test experiments presented in Figures 2.33- 2.37 it is clear, that gas 

hold-up has strong impact on      ,     ,      and    . The maximal ranges of gas 

hold-up overlap the maxima of the transfer rate parameters, thus on the base of the 

volume fraction of air in BCR, optimal operating conditions in terms of air and water 

velocity ranges for the maximal efficiency of the aeration process can be defined.  

When comparing the contour maps related to the changes of volumetric mass transfer 

coefficient and the oxygen transfer rate with air and water velocity, shown in Figure 2.33 

and Figure 2.34, the same trend in values distributions are present, as      computations 

are based on the       value.  

The maximal values of the volumetric mass transfer coefficient in the range of 37–55 s-1 

were obtained for low water velocity of 0.08 ms-1 and high gas velocity ranging from 0.58 
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to 0.66 m s-1, thus for the transition region from churn to annular flow. For the same 

conditions, the value of standard oxygen rate is ranging from 0.2 to 0.3 kgO2 h
-1.  

For fully developed churn flow and the      above 50%, the values decrease to from 26 to 

10 s-1 for       and 0.1 kgO2 h
-1 for     .   

For slug flow and      above 45% further decrease of       to 2 s-1, and 0.02 kgO2 h
-1 for 

     was observed.  

Further 50% decrease in values for both oxygen transfer parameters were observed for 

bubbly flow regime, and for the air hold-up up to 0.35.  

At the lowest gas velocity and the highest water velocity the values, i.e. for dispersed flow 

with the air volume content of 0.11-0.13, the mass transfer is negligible.  

 

 

Figure 2.33  Standard volumetric mass coefficient       obtained in clean water test for different 
water and air velocities. 
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Figure 2.34  Standard Oxygen Transfer Rate      obtained in clean water test for different water 
and air velocities. 

 

Contour map of standard oxygen transfer efficiency of BCR, computed for the equilibrium 

oxygen concentration in standard pressure and temperature conditions is shown in Figure 

2.35. The impact of the flow regime and gas hold-up on the quantity of the oxygen 

absorbed results in identical  distribution of the contour bands as in case of oxygen mass 

transfer parameters,       and     . Thus the region of lowest      values, from 0-8% 

corresponds to dispersed flow regime. The highest      were obtained for the air-water 

flow rates characteristic for the transition from churn to annular flow, thus for the highest 

gas hold-up, yielding the average efficiencies in the range of 74-93%, with the maximal 

values from 121 to 150% for developed annular flow. For the wide band of churn 

flow,      values range from 37–51%, representing the maximal possible values obtained - 

for the top efficient state-of-the-art membrane diffusers, while for the slug flow, obtained 

efficiencies from 21–33% are comparable with the majority of the porous diffusers. For 

bubbly flow the percentage of oxygen absorbed is in average 13–16%. 
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Figure 2.35 Standard Oxygen Transfer Rate      obtained for different water and air velocities 

 

The results obtained for standard aeration efficiency,    , are shown as contour maps in 

Figure 2.36 and Figure 2.37.     is the function of      and the power expenditure of the 

aeration system. In BCR, power demand for water pumping depends on the pressure drop 

of the multiphase flow through the packed bed, which increases with the increase of the 

superficial velocities of the phases. Therefore    ranges from 0.03 to 0.90 W. Nonetheless, 

power demand on pumping is around one order lower than for air compression,    
, which 

depends on the operating air flowrate and blower discharge pressure. Therefore, for 

blower operating in normal conditions, i.e. with typical values of headloss in the pipeline, 

valves, fittings, diffuser and other devices included in the aeration system, power 

expenditure ranges from 1.0 to 10.0 W, due to changes in air flow rate with constant 

blower discharge pressure of 1.5 bar. The most demanding operating conditions in terms of 

headloss for air flow through rough pipeline, throttled valves and fouled diffuser, yield in 

a blower discharge pressure of 2.0 bar, corresponding to the power expenditure ranging 

from 1.8 to 17.8 W. The tendency of     values is similar to contour maps of     , as can 

be seen in the Figure 2.36 and Figure 2.37.  

For the average operating conditions, the maximum values of     obtained for the peak 

hold-up and shift from churn to annular flow, range from 20 to 25 kgO2 kW-1 h-1. These 

values are couple of times higher than the corresponding standard efficiencies of the 
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commercially used state of the art aeration devices, and are due to the optimal conditions 

for efficient mass transfer within packed structure of the bubble column. When the most 

challenging operating conditions are considered,     decreases to 12-14 kgO2 kW-1 h-1. 

For fully developed churn flow and the      above 0.5, average     values from 4.2 to 8.6 

kgO2 kW-1 h-1 were obtained for blower pressure of 1.5 bar. These efficiencies correspond 

to the upper range for membrane discs, panels and perforated EPDM membrane tubes 

(Mueller et al., 2002). The peak values from nearly 13.0 to 16.2 kgO2 kW-1 h-1 were 

observed for low water and high air velocities, contrary to the lowest values, from 2.0 to 

3.6 kgO2 kW-1 h-1 obtained for the high water and low air flow rates. In that range, the 

efficiency are approximately equal to the low efficient porous diffusers or non-porous 

perforated tubes (Mueller et al., 2002). Increase of blower pressure due to more 

demanding operating conditions yields with the average     values for churn flow from 2.4 

to 4.9 kgO2 kW-1 h-1, representing typical middle values for the majority for porous 

diffusers. Similarly, the maximum values from 7.0 to 9.2 kgO2 kW-1 h-1, were obtained for 

low water and high air velocities, and the minimum values from 1.1 to 2.1 kgO2 kW-1 h-1, 

which are in the range of typical values for nonporous, hybrid and mechanical devices, 

were observed for the high water- low air velocities. 

For slug flow and      above 0.45, the average values of aeration efficiency, which range 

from nearly 3.0 to 6.9 kgO2 kW-1 h-1 are obtained for low to moderate water velocities and 

moderate air velocities. These values correspond to the wide range of ceramic, plastic and 

membrane diffusers. The lowest values of 0.9 -1.3 kgO2 kW-1 h-1 are observed for low air - 

high water flow rates, and are typical of nonporous, mechanic, and hybrid aeration units. 

In the worst case scenario in terms of blower operating pressure, the average aeration 

efficiency decrease to 1.2 to 3.9 kgO2 kW-1 h-1, characteristic for broad range of nonporous, 

hybrid and mechanical units, and also for lower limits for porous diffusers. The lowest 

values ranging from 0.5-1.2 kgO2 kW-1 h-1 correspond to aspirating aerators and low 

efficient high-speed devices. 

For low gas hold-up of 0.35 and bubbly flow regime, the average     is 0.9-2.2 kW-1 h-1, 

which represents typical values for nonporous diffusers, jet aerators, U-tube aerators and 

the whole range of the mechanical aeration devices. The maximal values obtained at the 

same conditions ranged from 2.7 to 4.6 kgO2 kW-1 h-1, corresponding to the lower efficiency 

limits of ceramic discs and domes. Considering the worsening of the blower operating 

conditions, the average values decrease to 0.5-1.3 kgO2 kW-1 h-1 shifting towards the 

efficiencies typical for aspirating and high-speed aerators, while the peak efficiencies from 
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1.6 to 2.6 kgO2 kW-1 h-1 correspond to nonporous, both hybrid and mechanical units 

performance. For both operating scenarios, low values up to 0.7 and 0.6 kgO2 kW-1 h-1, 

respectively, were obtained for the higher water flow rates. At the lowest gas velocity and 

the highest water velocity the values, i.e. for dispersed flow with the air volume content 

of 0.11-0.13, the standard aeration efficiency is almost zero. 

 

 

Figure 2.36 Standard Aeration Efficiency     obtained for different water and air velocities. 
for blower discharge pressure of 1.5 bar. 
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Figure 2.37 Standard Aeration Efficiency     obtained for different water and air velocities for 
blower discharge pressure of 2.0 bar. 

 

2.6 Conclusions 

In this chapter, the process principles, standard methods for device testing and the review 

of the recent trends in aeration of the AS systems were given.  

A novel aeration device, Pressurized Aeration Chamber was introduced. 2D and 3D CFD 

studies of the PAC were made. The objective of 2D simulations was to represent the main 

trends in oxygen concentration distribution within all PAC layouts, pointing out the most 

efficient geometries in terms of oxygen transfer efficiency. Three out of seven geometries 

simulated outperformed the remaining ones, yielding higher DO content in the outflow, 

and consecutively were further studied with the 3D CFD simulations. It was shown, that 

PAC chamber with baffles placed in the bottom enhanced oxygen mass transfer up to 50%, 

when compared with the rectangular geometry. Further introduction of the baffles on the 

topwall yields negligible ca. 1% improvement of the outflow DO concentration. Efficient 

PAC geometry with baffles fixed at the bottom was constructed in lab-scale for reaeration 

tests, to determine oxygen transfer rate parameters in steady and unsteady clean water 

tests and validate results obtained from the CFD studies.  

Steady-state aeration experiments were performed in a PAC, showing high process 

efficiencies. The lowest value of     , 120%, determined for the oxygen pressure of 
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0.5 bar, is higher than the corresponding values of currently most efficient aeration 

systems, i.e. membrane diffusers, having the efficiencies up to 44%. With the increase of 

the operation pressure, SOTE increased to 200%. More energy efficient solutions were 

obtained for the lowest operating pressure, resulting in     of 8 kg O2 kW-1 h-1 that is 

higher than the most conventional mechanical and diffused aeration systems. Lowest 

average     of nearly 5 kg O2 kW-1 h-1 were obtained for the oxygen pressure of 1.5 bar, 

which corresponds to typical efficiencies of porous diffusers.  

Both unsteady-state and steady-state reaeration tests were performed. Standard aeration 

efficiencies obtained from the unsteady-state experiments are lower than in steady 

approach, ranging from 0.7-1.2 kgO2 kW-1 h-1. These values are similar to the aeration 

efficiencies typical for nonporous diffusers, jet aerators, and a wide range of the 

mechanical units such as: submerged turbines, including devices equipped with draft 

tubes; high-speed aerators; and aspirating aerators. The lower values from unsteady-state 

tests may be explained from the fact that the experiments were run in a close loop, and 

with time the system is operated closer to the DO saturation conditions, which means that 

in the PAC there is a reduction of the area where steeper concentration gradients between 

gas and liquid phases occurs, which reduces the respective oxygen flux.  

Simulated with CFD code 3D PAC complies with the process conditions of the steady state 

clean water test. The average value of the aeration efficiency obtained from the multiple 

reaeration experiments amounts 4.5 kgO2 kW-1 h-1, what is in good agreement with the    

obtained from the CFD simulations that is of almost 4.0 kgO2 kW-1 h-1.   

BCR was also studied for aeration in AS processes. Impact of the flow regime on the gas 

hold-up in the reactor was determined. The lowest gas hold-up of 13% was observed for 

dispersed flow and with increase of the air velocity reaches values up to 80% for the 

transition flow from churn to annular regime.  

In BCR gas hold-up has strong impact on aeration process performance, and can be used as 

a design parameter to set optimal operating conditions, i.e. air and water velocity ranges 

for the maximal oxygenation efficiency. Considering clean water test results it is clear, 

that the highest ranges of volumetric air content observed for transition from churn to 

annular flow regime overlap with the maxima of the transfer rate parameters, while in 

conditions of dispersed flow, the oxygen mass transfer is negligible. Thus the average 

values of      obtained from the experiments are in the range of 37-93%, thus distinctly 

higher than the top state-of-the-art aeration devices, and may reach up to 150%. 
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The values of standard aeration efficiency,    , depend in greater extent from the power 

demand by blower and thus operating air flow rates. The maximal values of     obtained 

for the peak hold-up are up to 25 kgO2 kW-1 h-1 and thus  higher than the corresponding 

standard efficiencies of the commercially used state of the art aeration devices. For the 

average operating conditions and hold-up of 50%, obtained     values were in the range of 

5-9 kgO2 kW-1 h-1 corresponding to the upper range for membrane diffusers.  

Adaptation of the BCR system to wastewater aeration imposes sharp limits, especially on 

the bubble regime involved. As the efficient aeration depends on the extended contact 

time between AS flocs and air bubbles, and later, delayed escape of the bubbles to the 

atmosphere, thus oxygenated stream should contain in majority fine bubbles. Therefore 

instead of operating in the air-water velocity ranges characteristic for annular flow, which 

characterizes with highest oxygen transfer rates, heterogeneous churn flow with the 

efficiencies corresponding to wide range of porous diffusers seems to be reasonable 

solution. Additionally, aerated effluent should have momentum sufficient to impart 

velocity to the wastewater volume, which allow for at least local mixing and mass transfer 

between the fluid layers in the aeration tank due to ascending pathlines of the bubbles. 

While PAC performance combines high efficient aerating with mixing due to energy of the 

discharged fluid plume, low pressure conditions in BCR may require implementation of 

additional momentum sources, such as pumps and mixers (flow boosters), which may have, 

to a greater or lesser extents, further adverse effects on power expenditure of the whole 

aeration system. In addition to that, application of BCR in activated sludge systems may be 

limited due to clogging of the column packing, which increases pressure drop in the system 

and requires frequent maintenance procedures, such as pressurized backflow washing.  



113 

3 Hydrodynamics of the Oxidation Ditch  

3.1 Introduction  

The main objective of the experimental studies was to assess the hydrodynamics of two 

different oxidation ditches, namely pilot-scale tubular piston flow reactor and full-scale 

oxidation ditch in municipal wastewater treatment plant. The chapter is divided in three 

parts concerning: literature review, pilot- and full-scale experimental studies. 

The main objective of the literature review section is the brief presentation of the 

oxidation ditch process and operation characteristics. A literature review considering 

studies performed on several ditches and the variety of methods used in these systems to 

assess flow characteristics is also given. 

Second section considers experimental studies carried out on a pilot-scale tubular closed-

loop reactor during system start-up. The obtained hydrodynamic data was the velocity, 

dissolved oxygen (  ), mixed liquor suspended solids and nutrients concentration (   , 

ammonia, nitrates and orthophosphates) profiles along the reactor. Additionally, reactor 

performance was evaluated from the results of Residence Time Distribution (RTD) 

experiments using pulse and step tracer techniques. 

Third part of this chapter considers experimental studies carried out on a real-scale 

oxidation ditch of the municipal wastewater treatment plant situated in Viana do Castelo. 

Here, to assess the overall flow patterns within the ditch,    content was measured at 

various depths of the tank, and the profiles along the ditch were made for intermittently 

operated aeration system. Additionally, to complete hydrodynamic data, horizontal 
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velocity close to the wastewater surface, nutrients (   , ammonia, nitrates and 

orthophosphates) and total solids content were determined for all sampling points along 

the ditch. 

3.2 Literature Review 

An oxidation ditch is a fully demonstrated secondary wastewater biological treatment 

technology and one of the well known modifications of Activated Sludge (AS) processes 

(Benefield and Randall, 1980; EPA, 2000), operated in the extended aeration mode and 

with long solids retention times (SRTs). This technology was developed in 1950s in the 

Netherlands (Pasveer, 1962), and although it has been the focus of relatively few 

publications, the process is widespread and it is still commonly used in new Wastewater 

Treatment Plants (WWTPs) serving small to medium-sized municipalities, due to its 

robustness and efficiency in terms of Biological Oxygen Demand (BOD) and nutrients 

removal up to 75–95 % (Benefield and Randall, 1980). The oxidation ditch can be operated 

as a continuous or intermittent process, due to its buffer capacity against variable flows, 

loadings and also unfavorable environmental temperatures.  

By the late 1970s and mid 1980s in Europe, over 2000 municipal WWTPs were using Pasveer 

ditches, alongside with over 200 Carrousel™ systems. Only in the U.S., by the year 2000, 

oxidation ditches found application in more than 9200 municipal WWTPs (EPA, 2000). 

Extended aeration process in oxidation ditches is also commonly used in WWTPs in 

Portugal, e.g. in Vila Nova de Gaia- Febros, Viana do Castelo– Areosa, Guimarães– 

Serzedelo II, Óbidos- Charneca, Resende– Mirão, Faro, Ponte de Lima, Seia, and more.  

A typical oxidation ditch is a closed loop system, consisting of a single or multi- channel 

configuration within a ring, oval or horseshoe shaped basin, equipped with aeration and 

mixing devices. Besides the original Pasveer-type oxidation ditches with the horizontal 

aeration, and the Carrousels, where the aerators are vertical (Potier et al., 2005), other 

type of systems with different channel, aeration and propulsion devices configurations had 

been developed, such as Orbal, Total Barrier Oxidation Ditch, or Jet Aeration Channel 

(Mandt and Bell, 1984). Due to such specific tank configuration, the oxidation ditches are 

classified as racetrack type reactors, in which the aeration and mixing devices promote 

unidirectional channel flow with average velocities in the range of 0.25–0.40 m s-1 (Abusam 

et al., 2002; Tchobanoglous et al., 2003), sufficient to maintain the activated sludge 

biomass suspended in the mixed liquor, and assuring high dilution of the influent stream.  

Biological wastewater treatment efficiency in such closed-loop continuous flow reactors, 

as the oxidation ditches, depends to a great extent on the overall flow patterns. 
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Therefore, overall mixing inside the ditch determines the distribution of the oxygen within 

the mixed liquor volume, creating aerobic and anoxic zones. Nonetheless, in the design of 

most activated sludge units, the assumption of ideal reactor model is used, and thus the 

actual reactor hydrodynamics is not taken into account (Stamou, 2008). Considering slow 

biochemical reactions in the activated sludge, oxidation ditches are usually classified as 

completely mixed systems over the hydraulic residence time (EPA, 2000), however when 

considering multi-channel configuration, strong plug flow characteristics are observed 

along one loop – channel, without accounting for the effects of internal recirculation 

(Barnes et al., 1983; Tchobanoglous et al., 2003). According to that, characteristic feature 

is occurrence of large    gradients along the ditch while the other components, such as 

ammonia or     concentrations are spatially homogenized (Nakamachi et al., 2012). From 

this reason the theoretical analysis of the flow regime within the oxidation ditch involves 

following types of ideal reactor models: Plug Flow Reactor with Recirculation (PFRR); and 

Continuous Stirred Tank Reactors (CSTRs) in Series with recirculation from the last reactor 

to the first one (Potier et al., 2005). However in most of the practical cases, none of the 

ideal assumptions corresponds to the actual flow conditions during operation of the real 

scale oxidation ditch. Therefore the knowledge about the actual flow behaviour, thus 

hydrodynamics, is of crucial importance to assess and evaluate design, reactor 

performance and for the troubleshooting (Levenspiel, 1999; Wolf and Resnick, 1963).  

In engineering practice, assessment of flow regime, and thus overall mixing phenomena 

can be achieved with an experimental approach by determination of the complete velocity 

distribution map within the tank, which is not a feasible task most of the times, 

considering dimensions of real scale units (Pereira et al., 2012; Stamou, 2008). The 

alternative approach to characterize non-ideal flow and mixing in the tank is 

determination of the residence time distribution (RTD) of the fluid. The RTD is the 

probability function, which describes the length of time a fluid element spends inside the 

reactor before the exit. The distribution of the times for the stream of fluid exiting the 

reactor system is defined as the exit age distribution, known as      function or the RTD of 

the fluid (Levenspiel, 1999 ). Considering different paths of the fluid elements within the 

continuous flow reactors, such as oxidation ditches, the RTD data can be used to predict 

such adverse phenomena, as channeling and recycling of the flow, or formation of the 

dead zones, and finally to assess the mixing time, which can be crucial regarding to the 

chemical or biochemical reaction yield, troubleshooting of the reactor and improved 

design of the future vessels. The experimental approach to assess RTD through non-

reactive tracer technique is based on the measurement of the system response to 

a disturbance applied to the reactor inlet, where the inert tracer is introduced as a pulse, 
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impulse, step or periodic function and its concentration is measured at the outlet in 

function of time (Wolf and Resnick, 1963).  

Within all the work published on the oxidation ditch performance, only few consider 

assessment of the hydrodynamics based on the RTD experiments. One of the works (Potier 

et al., 2005) considered determination of the impact of geometrical and operational 

parameters on the axial dispersion in bench-scale and full scale oxidation ditches through 

pulse tracer experiments using lithium chloride (LiCl). Follow-up studies (Le Moullec et al., 

2008b) in the same bench-scale oxidation ditch (Potier et al., 2005) consisted of over 80 

RTD experiments carried out by injecting pulses of a sodium chloride (NaCl) solution. From 

these experiments the mean residence time and axial dispersion coefficients were 

determined, and were used to validate RTD data obtained from the CFD simulations. To 

complete the hydrodynamic data, velocity field was additionally measured using Laser 

Doppler Velocimetry (LDV). In the other work carried out in a full scale oxidation ditch 

process, the CarrouselTM (Nakamachi et al., 2012), besides the measurements of the three-

dimensional velocity field, the RTDs data were obtained from the impulse tracer 

experiments using fluorescent uranium dye. Here, the assessment of the flow regime, 

which was strong plug flow, was used to optimize operation of the diffused aeration 

system and flow boosters, which could lead to energy savings.  

Most of the experimental work carried on the full-scale oxidation ditches considered flow 

field assessment based on the measurements of the horizontal velocity. It was proven that 

even small changes in the axial velocity may have dramatic effect on the oxygen profiles, 

and thus on the nitrogen removal in oxidation ditches. Therefore, the horizontal velocity 

should be treated as an important process variable to control total nitrogen removal 

efficiency. Furthermore it was stated, that decoupling of aeration and propulsion functions 

allows maintaining robust and energy efficient plant operation in such AS systems, and 

thus mechanical aeration should be replaced by air diffusers cooperating with flow 

boosters (Abusam, 2002).  

In the recent decade, an important input into the scientific achievements on the 

knowledge of oxidation ditch flow field was made by Cemagref (today Irstea) research 

group. The subject of several publications was development of the measurement methods 

for characterization of the hydrodynamics in the oxidation ditches with the degree of 

required accuracy to calibrate and validate CFD models (Fayolle et al., 2007; Fayolle et 

al., 2010; Fayolle et al., 2006; Gillot and Héduit, 2000). The experiments were carried on 

pilot to full scale ditches having various configurations within oblong and annular shaped 

tanks, and where the aeration process was dissociated from mixing by introduction of 
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membrane diffusers and slow speed mixers. The hydrodynamics of the oxidation ditch was 

obtained from the on-site measurements of the axial liquid velocity and the bubble size 

distributions within the tanks, aiming determination of the flow impact, the local gas hold-

ups and the oxygen transfer efficiency. It was shown, that the hydrodynamics of the 

channel reactors aerated with the bottom diffusers is controlled by the competition 

between the vertical bubble plume and the horizontal fluid flow. Thus, for the specific 

diffuser grid configuration, the influence of the air flow rate on the oxygen transfer 

coefficient can be distinctly higher with an absence of the horizontal motion of the fluid 

(Gillot and Héduit, 2000). Similar studies carried on the pilot scale oxidation ditch aerated 

with fine pore bottom diffusers and agitated with impeller (Vermande et al., 2007), 

concerned the impact of the agitator position and rotating speed on the horizontal velocity 

and oxygen profiles within the tank. Here it was also found, that with the absence of the 

horizontal velocity, an increasing, linear relationship can be obtained between the local 

mass transfer and air flow rate. Under such conditions a vertical liquid flow loop, known as 

spiral flow is generated by rising bubbles. Although spiral flow increases local gas hold-up, 

it is counteracted by increased absolute velocity of the gas bubbles and larger interfacial 

area. Under conditions of horizontal liquid motion induced by rotating impeller, increase 

of the wastewater velocity causes neutralization of the spiral flow patterns and decrease 

of the gas hold-up. Nonetheless, greater dispersion of the air plumes results in higher local 

mass transfer coefficient due to longer contact times between both liquid and gaseous 

phases. Thus, application of the axial velocity of 0.4 m s-1 may enhance oxygen transfer 

coefficient for up to 30% (Fayolle et al., 2007; Fayolle et al., 2010; Fayolle et al., 2006; 

Vermande et al., 2007).  

Another work (Diamantis et al., 2010) focus on flow behaviour in the oval, single channel 

oxidation ditch having uniform field of the bottom diffusers allowing for development of 

the aerated and anoxic zone within one tank. General rule of thumb is assumption that 

aeration system operating at high aeration rates ensures high DO content and adequate, 

“good” mixing. Nevertheless, the authors proved, that in oxidation ditches with incorrect 

aerators arrangement, even slight changes of the operating parameters, namely increase 

of the aeration rate may lead to undesirable consequences affecting mixing within the 

tank, such as strong stratification and short-circuiting of the flow, and creation of local 

zones in the mid-depth where the velocities drop to zero. As the result, distinctly reduced 

volume of the ditch was actually available for the effective biological wastewater 

treatment.  



3 Hydrodynamics of the Oxidation Ditch  

118 

The examples of different approach of the hydrodynamics assessment from the velocity 

and concentration profiles within the wastewater tank can also be found in the literature 

(Le Moullec et al., 2010a; Lesage et al., 2003). Several works consider numerical studies on 

coupling of the hydrodynamics with mass transfer and biokinetics models to simulate 

activated sludge reactor and validation of the results on pilot and real scale oxidation 

ditches (Le Moullec et al., 2010a, b; Lesage et al., 2003). In agreement with the 

conclusions from previous work (Abusam et al., 2002) it was found, that    and nutrient 

concentration profiles along the ditch depend on the horizontal liquid velocity. 

Furthermore, as the oxygen transfer capacity depends also on the horizontal liquid motion 

thus the hydrodynamics of oxidation ditch has an impact on overall nutrient conversion 

rates within the bioreactor.  

The knowledge of the accurate system hydrodynamics found practical application in design 

of new utilities and modification of the existing activated sludge systems aiming not only 

enhancement of the treatment process performance, but also maximal reduction of the 

exploitation costs allowing to maintain high quality effluent. And thus, one of the works 

(Yang et al., 2011) considered study on the hydrodynamics in multichannel CarrouselTM 

ditch simulated with CFD codes and validated experimentally on the full scale tank. 

Determination of the velocity and dissolved oxygen patterns within the ditch led to 

modification of the mechanical aerator placement, resulting in significant energy savings 

and maintain high effluent quality.  

Measurement of the flow characteristics in full-scale oxidation ditches is generally 

difficult, due to the presence of solid, liquid and gaseous phase and predominantly 

involves application of the flow disturbing measurement methods, based on the 

introduction into the system different sensors and sampling devices. At the same time, 

increasing popularity of the CFD-aided design requires application of advanced, non-

intrusive techniques to assess multiphase flow behaviour in the lab-scale models of the 

oxidation ditches. Thus, several works considered application of Laser Doppler 

Anemometry (LDA) to validate CFD simulations of the airlift oxidation ditch system (Xu et 

al., 2010) and oxidation ditch equipped with inversed umbrella surface aerators (Fan et 

al., 2010). Another work, which also focused on solid-liquid flow in oxidation ditch used 

Particle Image Velocimetry (PIV) to study settling velocity of the activated sludge (Chen et 

al., 2006). Here, the aim of LDA and PIV experiments, besides the overall flow patterns 

characterization, was to evaluate the influence of the aerator performance and tank 

geometry on the efficient dispersion of the particles mimicking the motion of the 

suspended activated sludge flocs within the ditch.   
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At the same time, other works consider validation of the simulated gas-liquid flow field in 

the oxidation ditches aerated with porous diffusers and agitated with slow speed mixers 

using Standard Imaging technique combined with LDA (Le Moullec et al., 2010a, b; Le 

Moullec et al., 2008b), aiming the assessment of the oxygen mass transfer and wastewater 

treatment efficiency.    

3.3 Pilot Scale Studies   

The aim of the experimental studies is characterization of the hydrodynamics of the pilot 

scale oxidation ditch. The experiments were conducted on a closed-loop tubular piston 

flow reactor with recirculation (PFRR ditch), which configuration is an approximation of 

the oxidation ditch system.  

In this work, hydrodynamics of the pilot scale oxidation ditch was assessed in two 

experimental approaches: by determination of the velocity,   ,     and nutrients 

concentration profiles along the ditch; and determination of the RTD of the fluid from 

tracer experiments.  

3.3.1 Piston Flow Reactor Set-up  

The pilot scale experimental system was built in the WWTP Pavilion, situated in the 

Faculty of Engineering campus (Porto, Portugal). The experimental set-up, shown in the 

Figure 3.1 consists of a tubular piston flow reactor with recirculation (PFRR); storage tank; 

feed and recirculation pump; secondary settler; and tubing connecting all components.  

The PFRR reactor was designed as 4.40 m long closed-loop reactor made of PVC tube with 

internal diameter 0.1 m. The total volume of the reactor is 35 L. A detailed view of the 

PFRR reactor is shown in Figure 3.2 Nine sampling points were made in the length of the 

reactor’s body, allowing for multi-sensor probe placement during measurements (Figure 

3.3). The distribution of the sampling points was chosen to give the best representation of 

the mixing and biokinetics along the ditch. Numbering of the sampling points was in 

accordance with the flow direction (counter-clockwise), starting with the first one located 

downstream the paddlewheel aerator. The scheme of the distribution of the numbered 

sampling points is presented in Figure 3.4. Point 1 is the ditch inlet, where feed tubing is 

placed. Outlet tube is located in the ditch bottom, between Point 1 and paddlewheel 

impeller, allowing for controlled gravitational discharge of the effluent into the clarifier. 

The recirculation pipe from the clarifier is connected to the feed pipe from the influent 

storage tank.  
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Figure 3.1 Pilot installation of the tubular closed-loop PFRR with feed tank and the secondary settler. 

 

The circulation of the mixed liquor within the PFRR in the counter-clockwise direction is 

kept by means of horizontal paddlewheel aerator, shown in detail in Figure 3.5. The device 

is made of stainless steel and consists of four paddles fixed to the horizontal shaft. The 

impeller is fitted with geared motor (Panasonic, model M9MC90GKP4W1) with variable 

speed drive (Panasonic, model MZ9G15B) and the propulsion rate is controlled by 

frequency inverter (Sinamics G110). During operation the reactor is filled with mixed liquor 

up to approximately 57% of the cross-section to avoid excessive splashing of the liquid out 

of the reactor by the paddlewheel aerator. Thus, the active volume of the vessel is 20 L.  

Besides surface aeration unit, the PFRR ditch is additionally equipped with the diffused air 

unit (Figure 3.6), consisting of five porous diffusers, each with 8 cm long connected in 

series to the air pipeline. The diffusers are placed in the bottom of the reactor in Point 4, 

opposite side to the paddlewheel rotor. Atmospheric air is supplied through distribution 

manifold connected to an outdoor air compression module mounted on the roof of the 

building. Air pressure is regulated by pressure reducer equipped with air filter (Pneumax, 

model FIMET), operating in the range from 0 to 4 bar, connected directly to the indoor air 

manifold below shut-off valve.  
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The PFRR ditch was fed by the synthetic influent stored in the polyethylene container 

having 500 L capacity and the effluent was directed to the radial secondary clarifier made 

of acrylic, having active volume of 40 L. As the mean hydraulic retention time of the fluid 

is 4 h, thus the influent, effluent and sludge recirculation flow rates were regulated by 

means of constant flowrate peristaltic pump (Watson Marlow SciQ 300), connected to the 

timer. The waste sludge was directed from the clarifier to the sewer drainage. 

 

     Figure 3.2  Pilot scale closed-loop PFRR reactor. 
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Figure 3.3 Schematic layout of the PFRR reactor. 

 

 

 

Figure 3.4 Distribution of the sampling points along the PFRR ditch. 
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    Figure 3.5  Horizontal paddlewheel impeller.  
 

 

 

 

                               Figure 3.6 Bottom diffused air system. 

 

 



3 Hydrodynamics of the Oxidation Ditch  

124 

3.3.2 PFRR Start-up and Operation 

The PFRR ditch filled with 10 L of synthetic wastewater was inoculated with 10 L of 

activated sludge. The synthetic wastewater was prepared according with the formula 

described in Activated Sludge Simulation Test (OECD/OCDE, 2001) and the list of the 

ingredients necessary to prepare synthetic feed in 1 L of tap water is shown in Table 3.1. 

The quality of the synthetic wastewater corresponds to the parameters characteristic to 

the typical municipal wastewater. Fresh inoculum was brought from the aerobic tank of 

the Sobreiros WWTP (Porto, Portugal).  

For assumed hydraulic retention time   of 4 h, the inlet flow rate,     equals the outlet 

flowrate (    ) and is 5.0 L h-1 (120 L d-1). Moreover,     is the sum of feed (     ) and 

recirculation (    ) flow rates and             2.5 L h-1 (60 L d-1). Considering operating 

flow rates, weekly demand for reactor feed was 420 L, thus the synthetic wastewater was 

prepared in large quantities and stored in 500 L feed tank. The aeration was switch on to 

ensure that level of    within the tank did not drop below 2.0 mg L-1. The rotation of the 

paddlewheel aerator was adjusted to reach the values of the velocity in the reactor 

approximated to the velocities in the real scale oxidation ditches. The operation of the 

pilot reactor was monitored on the daily basis. The samples withdrawn from the feed, 

recirculation, and Point 2 were analyzed for    ,      ,      ,      , and     to 

assess progress of AS acclimatization.  
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Table 3.1 Composition of the synthetic wastewater. 

Substance mg per L water 

Peptone 160 

Meat extract 10 

Urea 30 

NaCl 7 

           4 

           2 

       28 

 

3.3.3  Materials and Methods 

3.3.3.1 Sampling 

The list of the sampling points along the PFRR ditch and measured parameters at each 

point are shown in Table 3.2. During the pilot ditch operation, axial liquid velocity and    

concentrations in the sampling points were determined directly by on-site measurements 

using digital sensors with incorporated memory for data storage. Nutrient concentrations 

were determined indirectly, by analysis of the mixed liquor samples withdrawn carefully 

via a silicone tube suctioning in the middle depth of the reactor in the specified sampling 

points (Figure 3.4). The collected mixed liquor aliquots of 50 mL were immediately 

transferred into the labelled plastic containers and transported to the laboratory for    , 

     ,      ,      , and     assays. To minimize errors, duplicate analyses were 

run on each sample tested and the results were compared.   
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Table 3.2 Spatial distribution of sampling points with assigned to them measurements. 

Sampling Point Analysis Distance (m) 

Paddle wheel aerator - 0 

1    0.25 

2  ,   ,    ,      ,      ,      ,     0.85 

3    1.45 

4 (Bottom Diffusers)  ,   ,    ,      ,      ,      ,     1.8 

5    2.1 

6    2.4 

7    3 

8   ,   ,    ,      ,      ,      ,     3.75 

9    4 

Paddle wheel aerator - 4.4 

 

3.3.3.2 Measurement of the Axial Velocity 

Axial liquid velocity in the tubular pilot scale PFRR ditch was measured with the acoustic 

Doppler velocimeter Nivus PVM-PD, equipped with telescopic wading rod. The equipment 

accuracy is 1% of the measurement range in water. The measurements were performed for 

the three oval sampling points, as shown in the Figure 3.7. During measurement, sensor 

body was placed in counter-current to the flow direction in three different positions: near 

the bottom, in the mid-depth and below the fluid surface. The mean value of the 

experimental axial velocity was calculated as the arithmetic average of the instantaneous 

velocities measured in the sampling point. Two different operating frequencies of the 

paddlewheel rotor of 24 and 38 RPMs, measured with Hofbauer digital hand tachometer, 

were considered aiming selection of the one which ensure the most effective mixing of the 

reactor content. 
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Figure 3.7 Distribution of the sampling points for velocity measurement. 

 

3.3.3.3 Measurement of  Dissolved Oxygen 

For the selected rotor operating conditions and with the diffusers switched on,    

concentration was measured in all sampling points along the ditch (Figure 3.4) by means of 

portable multi-meter (Hach Lange HQ40D) equipped with digital luminescent DO probe 

(IntelliCALTM LDO10103). The precision of the equipment is      mg L-1 O2 or 0.1% of DO 

saturation. 

3.3.3.4 Determination of     

    in each of the samples was determined using Merck Spectroquant® COD Cell Test 

(1.14690.0001 and 1.14895.0001), according to the spectrophotometric method described 

by EPA Method 410.4, US Standard Methods 5220 D and ISO 15750. The sample was filtered 

through 1.0-μm-pore-diameter borosilicate glass fiber membrane filter (A/E Pall). 3 mL of 

the filtered sample was run from the pipette down into the cell with reagent. Afterwards, 

the cell was tightly screwed, vigorously mixed and placed in the preheated thermoreactor 

(Merck Spectroquant TR 420) in 148 °C for 120 min. After that time, the test vials were 

removed from the digester and placed in the test tube rack for cooling to room 

temperature for around 30 min. Finally, the cell was placed in the spectrophotometer 

(Merck Spectroquant® Pharo 100) for     value reading using the internal calibration 

curves of the spectrometer for the 1.14690.0001 and 1.14895.0001     tests.  
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3.3.3.5 Determination of        

       in each of the samples was determined using Merck Spectroquant® Ammonium 

Cell Test (1.14559.0001), according to the spectrophotometric method described by EPA 

350.1, US Standard Methods 4500-NH3 D and ISO 7510/1. The sample was filtered through 

1.0-μm-pore-diameter borosilicate glass fiber membrane filter (A/E Pall). 0.1 mL of the 

sample was pipetted into the cell and 1 dose of the NH4-1K reagent was added. The cell 

was closed tightly mixed vigorously until the complete dissolution of the reagent. After 15 

min-reaction time, the cell was placed in the spectrophotometer (Merck Spectroquant® 

Pharo 100) for       reading using the internal calibration curve of the spectrometer 

for the 1.14559.0001 Ammonium test. 

3.3.3.6 Determination of         

      in each of the samples was determined using Merck Spectroquant® Nitrate Cell 

Test (1.14563.0001). The sample was filtered through 1.0-μm borosilicate glass fiber 

membrane filter (A/E Pall). 1.0 mL of the sample was pipetted into the cell and 1 mL of 

the NO3-1K reagent was added, closed tightly with the cap, mixed and left to stand for 10 

min for reaction. Afterwards the cell was placed in the spectrophotometer (Merck 

Spectroquant® Pharo 100) for       reading using the internal calibration curve of the 

spectrometer for the 1.14563.0001 Nitrate test. 

3.3.3.7 Determination of        

       in each of the samples was determined using Merck Spectroquant® Cell Test 

(1.14546.0001), according to the spectrophotometric method described by US Standard 

Methods 4500-P C. The sample was filtered through 1.0-μm borosilicate glass fiber 

membrane filter (A/E Pall). 5.0 mL of the filtered sample was pipetted into the reaction 

cell, closed and mixed vigorously. Afterwards the cell was placed in the 

spectrophotometer (Merck Spectroquant® Pharo 100) for       reading using the internal 

calibration curve of the spectrometer for the 1.14546.0001 Phosphate test. 

3.3.3.8 Determination of      

    of the wastewater sample is determined according to the ESS Method 340.2. 1.0 μm 

glass microfiber filter disc of 4.7 cm diameter without organic binder (Whatman GF/A) was 

weighted, placed in the base, clamp on the funnel which was mounted on the 1 L suction 

flask. While the vacuum pump was on (KNF Neuberger Aeromat), the filter was rinsed with 

distilled water. A well-mixed sample of 20 mL was transferred to the filter using 

a volumetric pipette. After removal of all traces of water, the filter is carefully 
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transferred from the base to a watch glass and dried in preheated oven at 103-105 °C for 

the time of 1 h. Subsequently the filter was placed in the desiccator for cooling and 

weighted. The     concentration in mg L-1 was computed from the following formula: 

    
              

       
 (3.1) 

where      is the weight of filter with residue dried in 105 °C in mg,  

   is the weight of the filter, mg, and         is the sample volume in mL.  

3.3.4 RTD Determination 

RTDs of the fluid in the pilot scale oxidation ditch were obtained from a pulse and step 

tracer experiment. Both experiments required usage of non-reactive tracer substance, 

which is introduced into the reactor through the inlet and the response of the system was 

found by measurement of the tracer concentration at the PFRR ditch measurement point 

located in the neighbourhood of the outlet tubing. Design of the optimal system to 

measure the RTDs was based on proper selection of both mutually inert tracer and working 

fluid. It was assumed, that introduction of the tracer substance into the system cannot 

trigger changes in physical properties of the fluid medium, which might further modify the 

hydrodynamics of the flow within the vessel. Thus both materials should have similar 

physical properties, such as density, viscosity, and diffusion coefficient. Another crucial 

feature was the ease of the tracer detectability. From this reason, the experiments were 

conducted using clean, tap water as the working fluid and an aqueous solution of sodium 

chloride, NaCl, as the non-reactive tracer. Electrical conductivity,   , was measured to 

assess the content of Cl- and Na+ equivalents in the water, and therefore to determine 

tracer concentration at the outlet of the PFRR ditch.   

 

3.3.4.1 Pulse Tracer Experiment 

The experimental conditions consider reactor filled with 20 L of clean tap water and 

operating in the steady-state for the assumed   of 2 h (    is 10.0 L h-1) with the constant 

velocity of the flow ensured by the paddlewheel aerator operating with 38 RPMs. The 

experiment was carried out excluding the recirculation loop to the settler, therefore 

assuming that the reactor system has only one inlet and one outlet. NaCl solution was 

prepared by dissolving 18 g of salt in 75 mL of tap water. At time    , the tracer was 

injected instantaneously into the reactor feed (Point 1) and at the same time at the outlet 

(Point 9) the concentration of the salt was measured and recorded in function of time by 
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means of the digital multi-sensor (HI 769828 Multiparameter Probe).    of background, 

was 350 µS cm-1. The scheme of the experiment is shown in Figure 3.8 

 

 

Figure 3.8 Scheme of the RTDs experiments. 

 

3.3.4.2 Step Tracer Experiment 

In this approach we are considering PFR ditch filled with 20 L of clean tap water and 

operating at steady flow conditions, as described in section 3.3.4.1. The brine solution was 

prepared in a container by dissolving 62 g of NaCl in 100 L of tap water.    of the tracer 

solution was 1240 μS cm-1 and of the clean water– 140 μS cm-1. At the time     the input 

of the fluid is switched from tap water to the tracer solution. The concentration of the 

tracer at the reactor outlet is measured until the level of initial concentration in feed is 

reached. The measurement data is recorded over time by means of multi-sensor (HI 769828 

Multiparameter Probe). 
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3.3.5 Results and Discussions 

3.3.5.1 Wastewater Characteristics  

The quality of the synthetic wastewater prepared to feed the PFRR ditch during first 14 

days of the system start-up is shown in Figure 3.9. The feed characterizes with     

content in the range 300 - 350 mg L-1,       from 20 to 30 mg L-1 and       from 6 to 

10 mg L-1. Only in the case of     content in feed, variability over time can be observed. 

Low concentrations of        and the absence     in the synthetic feed were also 

observed.  

3.3.5.2 Reactor Start-up and Treatment Efficiency 

Figure 3.9 – Figure 3.14 show the changes in the concentration of nutrients and     in the 

influent (recirculation + feed) and within the reactor during 14-days. During this period, 

the values of     stabilized after 100 h of operation, yielding the effluent     

concentration in the range from 15 to 60 mg L-1 (Figure 3.10). At the same time, mutual 

changes in conversion of the nitrogen compounds are observed. Thus, with the increase of 

ammonia level within the reactor to 37 mg L-1 (Figure 3.11), the decrease of the nitrates 

from almost 4.0 to 1.0 mg L-1 is observed (Figure 3.12). On the other hand, slight increase 

of the orthophosphates from 3.5 to nearly 10 mg L-1       is also seen (Figure 3.13).  

When considering treatment efficiency, the effluent meets the quality standards in terms 

of     and the nitrates concentration. Nonetheless, at the end of the considered in this 

work start-up time, the worsening of the effluent quality in terms of the ammonia and 

orthophosphates content is noticeable. Here, the lowest observed       concentration 

occur simultaneously with the successive       and       build-up within the reactor.  

In the typical aerobic activated sludge system, the optimum ratio of C : N : P in the mixed 

liquor is thought to be as 100 : 5 : 1. In PFRR ditch, this ratio is not met in case of the 

mixed liquor quality, due to low carbonaceous nutrient content. From this reason despite 

of the excellent aeration conditions, poor treatment effects, inhibition of the ammonia 

uptake and the nitrification breakdown in the PFRR ditch could be explained as: the 

effects of the activated sludge starving, caused by low carbon content in feed; suspected 

instability of the feed composition; and changes in pH due to decrease of alkalinity. 

Variable     content in the pilot ditch and thus in the recirculation stream was observed 

during system start-up (Figure 3.14), which ranged from 5 to 360 mg L-1. Lowering 

tendency in the total suspended solids concentrations contributes also to the worsening of 

the reactor performance. Possible cause of the suspected sludge “washout” was the 
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operation of the recirculation loop resulting in observed excessive accumulation of biomass 

in secondary settler during start-up.  

The 14-days start-up time was too short to achieve the pseudo-steady state within the 

PFRR reactor, which is crucial to assess biochemical process efficiencies. Nonetheless, the 

considered period of time is sufficient to study local-scale phenomena, and thus 

hydrodynamics of the pilot ditch based on the determination of the velocity and nutrient 

profiles.   

    

 

Figure 3.9 Quality parameters of the synthetic wastewater during system start-up. 
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Figure 3.10     concentration in the influent and within the PFRR reactor during start-up. 

 

 

Figure 3.11        concentration in the influent and within the PFRR reactor during start-up. 
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Figure 3.12       concentration in the influent and within the PFRR reactor during start-up. 

 

 

Figure 3.13        concentration in the influent and within the PFRR reactor during start-up. 
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Figure 3.14     concentration in the influent and within the PFRR reactor during start-up. 

 

3.3.5.3 Velocity Profiles along the PFRR Ditch 

Evolution of the horizontal, axial velocity profiles along the pilot PFRR ditch obtained for 

two different rotor frequencies, namely 24 and 38 RPMs, are presented in Figure 3.15. The 

vertical lines on the plots mark the distance from the centre of the paddlewheel aerator in 

the counter-clockwise direction, i.e. 0.2 m, 1.8 m (diffused air unit), and 4.2 m, which is 

at the same time 0.2 m away from the paddlewheel aerator. In both cases, the highest 

velocities due to the paddlewheel aerator action were measured in Point 2 and 8. The 

lowest velocities are observed near the bottom and in the measurement point downstream 

diffused air system, i.e. at the distance 1.8 m from the paddlewheel rotor. Here, the axial 

fluid velocity profile is strongly impacted when the flow crosses bubble plume released 

from the diffusers. Fluid velocities obtained for the lower paddlewheel rotations were in 

the range from 0.5 near the bottom to 1.0 m s-1 near the surface. With increase of the 

rotor frequency, velocities in the reactor cross-section tend to be more uniform, without 

clear distinction between low velocity at the near-bottom zone and high velocity at the 

near- surface region. Here, the average mixed liquor velocity along the ditch is from 1.1 to 

1.4 m s-1 and drops to the value 1.0 m s-1 downstream the diffusers. Considering the choice 

of such operating conditions, providing efficient mixing of the pilot reactor content 
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(wastewater, activated sludge and air) and preventing formation of the local dead zones, 

the rotor frequency allowing for higher velocities, i.e. 38 RPMs, was used for further 

studies. 

 

 
a) 

 
b) 

Figure 3.15 Velocity profiles along the PFRR ditch obtained for the paddlewheel rotation obtained with 
frequency of a) 24 RPMs and b) 38 RPMs.  
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3.3.5.4 Dissolved Oxygen Profiles along the PFRR Ditch 

   content was measured in the mid-depth along the reactor several times for the 

wastewater temperatures varying from 17 to 22.2 °C. Figure 3.16 shows the concentration 

profiles obtained from the measurements obtained in six different measurement 

campaigns. It is clearly seen, that regardless of the diffuser and paddlewheel aerator 

placement, and for the constant rotor frequency of 38 RPMs,    concentration along the 

pilot ditch is almost constant. The factors affecting    content in the PFRR reactor are 

wastewater temperature, which has an influence on the oxygen solubility and the 

synthetic feed quality. It can be assumed, that for the studied tubular PFRR ditch, the 

oxygen profiles and the constant concentration within the reactor and at the outflow make 

this system very closed to a completely mixed system. 

 

 

Figure 3.16    profile along the pilot PFRR ditch. 

 

3.3.5.5 Nutrients Profiles along the PFRR Ditch  

The sampling campaign aiming determination of the changes in nutrients content within 

the pilot PFRR ditch took place three times during reactor start-up. The plots showing the 

concentration profiles along the tubular reactor are presented in Figures 3.17 - 3.21. 
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Similarly to the    distribution along the ditch, for most of the cases, concentrations of 

the     (Figure 3.17),       (Figure 3.18),       (Figure 3.19),       (Figure 

3.20) and     (Figure 3.21) are constant, suggesting complete mixing of the reactor 

content. Isolated cases of decrease of     and     content in the reactor section 

between paddlewheel aerator and diffuser may be explained by the local influence of the 

neighbouring influent injection point, supplying the PFRR ditch with synthetic feed mixed 

with the recirculated sludge from the clarifier.  

 

 

Figure 3.17     profile along the pilot PFRR ditch. 
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Figure 3.18       profile along the pilot PFRR ditch. 

 

 

Figure 3.19       profile along the pilot PFRR ditch. 
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Figure 3.20       profile along the pilot PFRR ditch. 

 

 

Figure 3.21     profile along the pilot PFRR ditch. 
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3.3.5.6 RTD of the PFRR Ditch 

The RTDs of the fluid in the PFRR reactor obtained in the pulse tracer experiment are 

plotted as a         curve (Figure 3.22a) describing changes in the water conductivity over 

time and as the exit age distribution curve, normalized by expression          (Figure 

3.22b). In both plots, the vertical dashed line designates the assumed mean retention time 

( ) of 2 h.  

The distance between inlet and outlet of the reactor is 4.4 m, and the average velocity of 

the fluid within the pilot vessel of 0.12 m s-1. As the PFRR system is operated without 

recirculation loop, the statistical fluid particle introduced through the inlet makes the first 

lap and reaches the outlet in around 37 seconds (~0.01 h) and for the assumed   the fluid 

will make in average 200 laps before exiting from the pilot ditch system.  

Conductivity of the tap water was 350 µS cm-1 corresponding to the 175 ppm TDS (NaCl). 

The shape of both concentration curves plotted in Figure 3.22 resembles the output 

profiles characteristic for the ideal CSTR vessel, consisting of a sharp peak with tail. Here, 

the large peak observed in the RTD plots might be associated to the large amount of the 

tracer particles detected at the ditch outlet– measurement point at early time instants 

equal to twenty laps around the ditch. However, when observing detailed plot made for 

first 20 laps (0.20 h) shown in Figure 3.23, it turns out, that the early large peak is actually 

made up of several peaks occurring in the identical time intervals, due to conductivity 

probe response time of 20 seconds (0.006 h). Furthermore, taking into account the fact, 

that the probe was actually placed in the sampling point, not in the outflow stream from 

the reactor, the PFRR ditch behaviour cannot be straightforwardly assessed. Nevertheless 

some observations can be made, such as the occurrence of the early peaks that may be 

due to the short-circuiting from inlet to outlet, and multiple decaying peaks that can be 

associated with internal fluid recirculation. Moreover, shortening of the observed mean 

residence time and the characteristic shallow tail of the early pulse curves can suggest the 

occurrence of stagnant fluid regions.  

Consequently, after 1 h (   ) the conductivity of the water in the outflow point decreased 

from the peak value of 3000 µS cm-1 (1500 ppm TDS) for around 50%. After 2 h, and thus 

the flow time equivalent in value to the assumed  , the    is still over twice the initial 

value of the clean water. As suspected, due to the existence of the dead zones in the 

reactor, the complete washout of the tracer from the PFRR ditch occurred only after 15 h 

(     ).  
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a) 

 
b) 

Figure 3.22 The plots of the response curves of the fluid in the pilot reactor obtained from the pulse 
tracer experiment presented as the a) conductivity curve b) normalized concentration curve. 
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Figure 3.23 Plot of the conductivity of the fluid in the pilot reactor obtained from the pulse tracer 
experiment. 

The RTDs of the fluid in the pilot ditch were further investigated in the step tracer 

approach. The experiment was conducted in the same conditions in terms of the flow rate, 

assumed   and the fluid velocities as for the pulse tracer experiment. The    of tap water 

was 140 µS cm-1 (70.0 mg L-1) and the conductivity of the tracer solution was 1240 µS cm-1 

(620 mg L-1). The plots of the step response curve        and the curve normalized by initial 

concentration of the tracer solution are presented in the Figure 3.24. Once again, the 

shape of the both curves, namely the slope of the curve and the presence of the long tail 

confirm the findings obtained from the pulse experiment results. After the observed time 

of     the conductivity of the fluid within the pilot ditch constitutes only 34% of the initial 

value in tracer solution. After flow time corresponding to  ,    measured in the outflow 

from the reactor reaches 56% of the initial value. After 10 h the TDS content within the 

reactor is 99% of the tracer solution, however due to the presence of the stagnant flow 

regions inhibiting efficient mixing and exchange of the fluid within the vessel, the 

complete substitution of the tap water by brine solution occurs only after 16 h (   ).   
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a) 

  

b) 

Figure 3.24 The plots of the response curves of the fluid in the pilot reactor obtained from the step tracer 

experiment presented as the a)       curve b) normalized concentration curve. 
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3.4 Real Scale Experiments  

The aim of the real scale experiments was to assess the hydrodynamics of the real scale 

oxidation ditch on the base of the velocity,   , and nutrient concentration profiles along 

the tank. To evaluate aeration performance, the    profiles were determined for several 

depths of the ditch. 

3.4.1 Areosa WWTP - Viana do Castelo 

Areosa WWTP serving Viana do Castelo city is located in the North - West coast of Portugal, 

at a distance of 50 m from the Atlantic Ocean. A bird’s eye view of the Areosa WWTP is 

shown in the photo in Figure 3.25. The plant, which was built and inaugurated in 1999 and 

later modernized in 2008, was designed for ca. 45260 PE (population equivalent). The 

maximal capacity of the WWTP is 8580 m3 d-1 of medium strength wastewater. The 

wastewater is treated in three stages. Primary treatment train consists of the screens, grit 

chamber, flotation tank equipped with skimming devices and radial primary settler. 

Secondary treatment of wastewater involves activated sludge process, based on the 

intermittent operation of the extended aeration process. The treatment train consists of 

the oxidation ditch and the radial secondary clarifier. The final effluent is disinfected with 

UV and discharged to the Atlantic Ocean.  

 

Figure 3.25 Areosa WWTP – Viana do Castelo (www.adnoroeste.pt). 

 

 

http://www.adnoroeste.pt/comunicacao/galeria
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3.4.2 Oxidation Ditch System 

The oxidation ditch system at the Areosa WWTP consists of the two single channel tanks 

each having dimensions of 50.0 x 10.0 x 4.0 m, as shown in Figure 3.26. This work concerns 

performance of one of the two oxidation ditches, where aeration and mixed liquor 

circulation is carried on by means of four opposite- sided horizontal brush aerators that 

extend throughout the whole channel width. The flow circulation in the clockwise 

direction is ensured by eccentric guiding walls placed in opposite corners of the ditch. The 

aeration process is operated intermittently, with the times of aeration on and off 

controlled by    level set point of 2.0 mg L-1, measured by galvanized    sensor mounted 

on float. Second ditch is additionally equipped with fine pore diffusers, which are switched 

on occasionally, in conditions of extreme overloading. The inlet pipe supplies the ditch 

with mechanically treated wastewater from the primary settler. Biologically treated 

effluent from the ditch is discharged through overflow weir downstream to the pipe 

feeding the secondary settler. The inlet of the sludge recirculation pipe is placed in the 

bottom of the ditch. The top view of the oxidation ditch layout considered in this work is 

shown in Figure 3.27.  

 

 

Figure 3.26 Scheme of the oxidation ditch in the Areosa WWTP. 
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Figure 3.27 Scheme of the oxidation ditch of Areosa WWTP – top view. 

 

3.4.3 Materials and Methods  

3.4.3.1 Sampling 

Sampling campaign took place four times during the period from July to October 2010, for 

the different weather conditions and the temperatures from 20 to 33 °C. The experimental 

studies of the oxidation ditch required selection of the measurement area allowing for the 

best possible representation of the mixing and biokinetics along the entire ditch. It was 

considered that the ditch is symmetric and so, the section of straight channel with two 

brush aerators and the bend were considered. Ten sampling points, numbered from P0 to 

P9 were distributed along the 44 m long measurement section, as shown in Figure 3.28. 

The numbers assigned to the sampling points are in accordance with the flow direction, 

which is clockwise. 

Stainless steel support with a 3.0 m telescopic arm was used to attach the sensors and 

sampling tube allowing for measurements and withdrawal of the samples from various 

depths and at various distances from the lateral wall of the ditch channel.  

Velocity and    concentrations in the sampling points were measured on-site using 

portable digital sensors with incorporated memory for data storage. The nutrients and     

content determination required a sequence of procedures associated with mixed liquor 

sampling, material storage, transport and finally, the analysis to obtain these data. The 

samples were withdrawn from the pre-defined position within the ditch, namely middle 

depth (2.0 m) in each sampling point (Figure 3.28) via suction tube connected to 

a peristaltic pump (Watson Marlow SciQ 300). The sampling tube, fixed to the submersed 

extended rod was positioned in the distance of 1.0 m from the lateral wall of the ditch. 

Each sample consisted of 50 mL aliquot transferred directly into the plastic labelled 

container. The collected samples in containers were stored for a short period of time in 
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the portable ice cooler box to endure the transport from the WWTP to the laboratory (in 

Faculdade de Engenharia da Universidade do Porto) for further analysis of    ,     

 ,      ,      , and     assays. To minimize errors, duplicate analyses were run on 

each sample tested and the results were compared with the within-laboratory precision 

statements for each parameter.  

 

 

Figure 3.28 Distribution of the sampling points along the oxidation ditch. 

 

3.4.3.2 Measurement of the Surface Velocity 

Horizontal velocity in the oxidation ditch was measured with acoustic Doppler velocimeter 

Nivus PVM-PD, equipped with telescopic wading rod and fixed to the extended arm of the 

support. The equipment accuracy is 1% of the measurement range in water. To assess the 

axial surface velocity, the sensor body was positioned in counter-current to the flow 

direction, in approximately middle width of the ditch channel at the distance of 2.5 m 

from the lateral wall. The sensor was submersed around 0.15 m below the fluid surface. 

The measurements were performed in all sampling points shown in Figure 3.28.  

3.4.3.3 Measurement of Dissolved Oxygen 

Dissolved oxygen concentration was measured in all sampling points along the ditch (Figure 

3.28) by means of portable multi-meter (Hach Lange HQ40D) equipped with digital 

luminescent DO probe (IntelliCALTM LDO10103). The precision of the equipment is      mg 

L-1 O2 or 0.1% of DO saturation. Optic sensor was fixed to the extended rod of the support 

allowing for measurement of the    content at several depths: below wastewater surface 

at 0.1 m, what corresponds to the submersion of the sensor head; 0.5 m; 1.0 m; 1.5 m; 

and 2.0 m equivalent to the mid-depth of the ditch. As the extended aeration process is 
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operated intermittently, the oxygen level was also measured during the aeration system 

switched-off. Here, the measurements considered the straight channel zone between the 

aerators, between the points P1 and P3.  

3.4.3.4 Determination of Nutrients and     Content 

Detailed procedures of    ,      ,      ,       and      determinations in each 

collected sample were described in sections 3.3.3.4 - 3.3.3.8 of this chapter. 

3.4.4 Results and Discussions 

3.4.4.1 Velocity Profiles along the Oxidation Ditch 

Evolution of the horizontal velocity profiles along the outer wall of the real scale oxidation 

ditch obtained during four sampling and measurement campaigns are presented in Figure 

3.29. The vertical lines on the plots mark the location of the brush aerators, positioned at 

the distance of 1.0 m and 25.0 m relatively to the first measurement point P0 (Figure 

3.28). All plots reveal similar tendency, thus the common feature for all profiles is the 

occurrence of the peaks associated with increase of the surface velocities downstream the 

aerators due to the action of brushes. Considering straight channel section, the peak 

corresponding to the increase of the local axial velocity up to 1.5 m s-1 occurs at the 

distance of 1.0 m downstream the brush aerator. With the increase of the distance, 

surface velocity decreases to the value of 0.7-1.1 m s-1 in the flow area upstream the 

second aerator. The region of the ditch bend is characterized by sudden increase of the 

velocity up to 1.5 m s-1 and immediate decrease to 0.5 m s-1, as can be seen in Figure 3.29 

for the ditch length starting from 37.0 m. Here, the main factor contributing to the 

features of the horizontal velocity profile is increased turbulence, associated with the 

presence of the guiding wall redirecting the flow and causing uneven velocity distribution 

in the channel, making it slower close to the inner wall and faster close to the outer wall. 

This effect is not so pronounced in the bend region due to the middle baffle.    

Additional feature of the full scale system performance is the operation that is made with 

almost four times higher average flow velocities than the typical values for the oxidation 

ditches, which lies in the range of 0.20-0.40 m s-1. 
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Figure 3.29 Velocity profiles along the oxidation ditch. 

3.4.4.2 Dissolved Oxygen Profiles along the Oxidation Ditch 

The climate has an influence on the wastewater temperature especially in the open tanks 

with large surface area, such as the oxidation ditch. As the wastewater temperature is 

a decisive factor in the solubility of oxygen in liquid medium and in the metabolic activity 

of the species, which constitute the activated sludge, thus it has an impact on the 

efficiency of the biological treatment process. During    measurement campaign, which 

took place four times in the period from July to October, wastewater temperature was 

measured simultaneously with    concentration by means of the same LDO sensor. The 

temperature data are presented in Table 3.3. 

The    profiles were made to investigate the changes of the concentrations along and 

within the oxidation ditch. The horizontal profiles of the oxygen concentration measured 

for different LDO sensor submergences and in conditions of the aerators switched on and 

off, are shown in Figures 3.30- 3.37. Regardless of the tank depth and wastewater 

temperatures, small variations of    content are observed in the straight section of the 

ditch downstream and upstream the aerators. Larger    gradients in the bend and in the 

neighbouring area are due to dynamic mixing of more or less oxygen enriched fluid layers, 

from the top to the bottom of the tank.  
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Table 3.3 The environment and wastewater temperature during sampling campaign. 

Sampling date 
Environment  
temperature  

(°C) 

Wastewater 
 temperature 

 (°C) 

July 29 32.5 30.0 

September 1 29.7 27.0 

September 7 26.2 23.5 

October 6 22.0 20.0 

 

Considering oxygen stratification within the ditch, it is clear, that elevated temperatures 

of the wastewater impede efficient oxygen transfer into the ditch. Thus in the days with 

the temperatures above 27 °C (Figure 3.30 and Figure 3.32), the    concentration just 

below the surface is around 2.0 mg L-1 with slight increase in the turbulent zone of the 

bend. For the wastewater temperature of 30 °C, at the mid-depth of the ditch the level of 

oxygen decreases to zero, while for slightly lower wastewater temperature of 27 °C, the 

   level drops below 1.0 mg L-1. Such conditions lead to formation of oxygen-poor to 

oxygen-deficit volumes in the lower parts of the straight channel sections. In these cases, 

despite intensification of the surface aeration process leading to higher fluid velocities, 

the unique zones along the ditch characterized with presence of    at half of the ditch 

depth, are bends. Such phenomena can be explained as the effect of oxygen solubility in 

the wastewater, which decreases drastically with the increase of the temperature. Thus 

the atmospheric air introduced into the wastewater due to rotating action of the brushes is 

consumed before being transported to the deeper parts of the ditch. With the aeration 

switched off, almost constant zero-   profiles extend through the section between the 

aerators, as can be seen in Figure 3.31 and Figure 3.33. Here, due to the backward order 

of the measurement points, slightly higher DO content was registered upstream the second 

aerator (first measurement point since switching off the brushes). 

Considering the temperatures below 25 °C, the improvement of the oxygenation capacity 

of the aeration system is visible. Here, for wastewater temperature of 23.5 °C, the 

average    concentration below the fluid surface is around 3.5 mg L-1 and decreases to 

around 2.0 mg L-1 at the depth of 2.0 m (Figure 3.34). For wastewater temperature of 

20.0 °C (Figure 3.36), the average    concentration measured below the fluid surface is 

slightly below 6.0 mg L-1. In this case, considering the distribution of the    concentration 
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with the depth of the tank, small variation up to 1.0 mg L-1 between the values in the mid-

depth and below the surface are observed. Therefore, it can be concluded, that the 

distribution of    within the whole volume of the ditch is uniform with the negligible 

differences in concentrations, and thus the    profile corresponds to a completely mixed 

tank.  

When comparing the oxygen profiles obtained during aeration–off time (Figure 3.35 and 

Figure 3.37) it is clear, that the backward order of measurement points (from the second 

brush aerator to the first) and the time intervals between measurements for support and 

sensor transporting allowed to assess    decay due to progress of endogenous respiration 

in time rather than actual    profiles along the ditch section. Such tendency was also 

observed in Figure 3.31 and Figure 3.33, however due to close to zero    content the 

effects of endogenous respiration were also negligible.    

 

 

 

Figure 3.30    concentration profile obtained for the wastewater temperature of 30 °C. 
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Figure 3.31    concentration profile under non-aeration period obtained for the wastewater temperature 
of 30 °C. 

 

 

Figure 3.32    concentration profile obtained for the wastewater temperature of 27 °C. 
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Figure 3.33    concentration profile under non-aeration period obtained for the wastewater temperature 
of 27 °C. 

 

 

Figure 3.34    concentration profile obtained for the wastewater temperature of 23.5 °C. 
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Figure 3.35    concentration profile under non-aeration period obtained for the wastewater temperature 
of 23.5 °C. 

 

 

Figure 3.36    concentration profile obtained for the wastewater temperature of 20 °C. 
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Figure 3.37    concentration profile under non-aeration period obtained for the wastewater temperature 
of 20 °C. 

3.4.4.3 Nutrients Profiles along the Oxidation Ditch 

Nutrients concentration profiles along the real scale oxidation ditch obtained during four 

sampling campaigns conducted in varying weather conditions are shown in Figures 3.38- 

3.41.  

Distribution of the     concentration along the ditch is almost uniform, with the maximal 

gradients up to 10 mg L-1, as can be seen in Figure 3.38. The lower values in all four 

profiles are concentrated in the ditch area characterized by higher    content, thus the 

section between the second aerator and the bend. Nonetheless, since the differences in 

concentrations do not exceed 8% it can be assumed, that the     profiles are as for 

a completely mixed system. During sampling campaign, the influent quality was not 

determined, due to that it can only be assumed that the differences in the     

concentrations obtained in different sampling days could be due to the variable 

characteristics of the raw wastewater. Nonetheless, if one plots the average values of     

and nutrient concentrations as functions of the average value of    as shown in Figure 

3.42, it is clear that this parameter is probably the main responsible for the variability of 

data with time. According to that, for higher    concentration more efficient nutrient 

conversion in the oxidation ditch was observed. Thus for average    content from 1.9 to 

2.6 mg L-1, the average     is up to 56.0 mg L-1. With increase of    to 5.3 mg L-1, the 

average     is 33.0 mg L-1. 
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The constant concentration values of the       profiles along the ditch (Figure 3.39) are 

as for the ideal CSTR.  Nonetheless, during sampling days characterized by the elevated 

temperatures and the poor aeration conditions, the values of       content within the 

tank ranging from 40-60 mg L-1. In conditions of the wastewater temperature of 20 °C, the 

outflow       concentration lowers distinctly to around 7.0 mg L-1. The content of 

      in the ditch depends to a larger extent on the oxygen conditions, as can be seen 

in Figure 3.42. Thus for the increase of    content from 2.6 to 5.3 mg L-1, the average 

ammonia concentration decreased from 56.0 to 6.0 mg L-1. 

Distribution of the nitrates concentration along the oxidation ditch is presented in Figure 

3.40. As far as the profile obtained from the data related to the highest wastewater 

temperature and the lowest    concentration differs from the other profiles with the 

higher       content up to 4.2 mg L-1 and the occurrence of the concentration gradient 

up to 1.0 mg L-1 in the straight part of the ditch channel. The remaining profiles obtained 

for the lower wastewater temperatures revealed the constant nitrate concentrations along 

the considered section of the ditch. Considering extremely high values of ammonia and low 

concentration of nitrates, one could conclude that the nitrifying capacity of the activated 

sludge is low due to poorer aeration conditions, particularly at higher temperatures. In 

contrary to that, for lower wastewater temperatures and better oxygenation conditions, as 

the result of the intermittent aeration process, low     and low nitrates concentrations 

seen in Figure 3.42, suggest intense biodegradation and denitrification processes occurring 

during the anoxic periods, however the course of partial nitrification should also be 

considered.  

The profiles of the       content along the ditch are presented in Figure 3.41. Here, one 

can also conclude that the distribution of the orthophosphates along the considered ditch 

section is linear and characteristic for the complete mixed systems. Slight increase of the 

       concentration downwards the first aerator was only observed for the highest 

wastewater temperatures. When comparing the average orthophosphates,     and 

      concentrations in function of    (Figure 3.42), it can be furthermore concluded, 

that intense denitrification process occurring during the anoxic periods are followed by re-

aeration are accompanied by intensified       uptake. And thus, for increasing dissolved 

oxygen content, the average       decreases from almost 10.0 mg L-1 and to 3.0 mg L-1. 

The profiles of the     content along the oxidation ditch are show in Figure 3.43. 

Regardless of the wastewater temperature, the mixed liquor suspended solids levels are 

constant along the ditch. Determined range of the     concentration which varies from 

2500 to 3500 mg L-1 is representative for the oxidation ditch process. 
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Figure 3.38     profile along the real scale oxidation ditch. 

 

Figure 3.39       profile along the real scale oxidation ditch. 
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Figure 3.40       profile along the real scale oxidation ditch. 

 

 

 

Figure 3.41       profile along the real scale oxidation ditch. 
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Figure 3.42 Nutrient concentration in function of    content in real scale oxidation ditch. 

 

 
Figure 3.43      profile along the real scale oxidation ditch.  
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3.5 Conclusions 

The aim of this chapter was to study the hydrodynamics in two different oxidation ditches, 

the pilot PFRR ditch and the real scale oxidation ditch at Areosa WWTP. 

The hydrodynamics in the pilot scale tubular ditch was assessed by determination of the 

horizontal velocity,   , solids and nutrients profiles along the reactor. It was observed 

that for the selected rotor frequency, and regardless of the distance from the paddlewheel 

aerator, average velocities are uniform in the reactor cross-section, without clear 

distinction between low velocity near-bottom zone and high velocity near-surface region. 

On the other hand, velocity decreases with the distance from the paddlewheel aerator, 

reaching the minimum in the bottom diffusers region. Regardless of the wastewater 

temperature, diffuser and paddlewheel aerator placement,    and nutrients 

concentrations were nearly constant along the pilot ditch yielding linear profiles. The only 

factor affecting    level in the PFRR reactor is wastewater temperature, which has an 

influence on the oxygen solubility. Sporadic gradients in     and     concentrations 

observed in the ditch zone affected by the proximity of the feed inlet, were caused only 

by varying quality of the influent and recirculation stream over time. Nonetheless one can 

conclude that for the studied tubular PFRR ditch, linearity of the profiles and the constant 

concentrations within the reactor and at the outflow are as for the complete mix system, 

characteristic for the flow conditions in the CSTR.  

Hydrodynamics of the PFRR reactor was further investigated through determination of the 

RTDs of the fluid via pulse and step tracer experiments. Both experimental techniques 

involved using the clean tap water as the fluid medium and the aqueous solution of NaCl as 

the inert tracer and were conducted for identical conditions the constant flow rate, fluid 

velocity within the reactor and  . The shape of both RTD curves obtained from the tracer 

experiments approach resembles the output profiles characteristic for the ideal CSTR 

vessel. Nonetheless, early peaks and the shallow tail observed in the normalized pulse 

curve and the slope and the long tail of the normalized step curve suggested the 

occurrence of the possible channelling, internal recirculation and stagnant fluid regions, 

which may have serious consequences in wastewater treatment efficiency.  

As the performance of the tracer experiments in the real scale tanks is not a feasible task, 

the hydrodynamics of the oxidation ditch at the Areosa WWTP was assessed on the base of 

the velocity,   ,     and nutrients profiles, determined along the wastewater tank. 

The distribution of the horizontal surface velocities along the oxidation ditch depends on 

the ditch geometry and aerators placement and performance. It was found that the fluid 
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velocities in the studied activated sludge system are nearly four times higher than the 

typical operating ranges for the oxidation ditches.  

For such operating velocities, distribution of the    concentration downstream and 

upstream the aerators in the straight section of the ditch is almost constant, as in the 

complete mix system. Wastewater temperature has a large influence on the    transfer 

within these sections. In conditions of the elevated temperatures above 27 °C only surface 

fluid layers are aerated. Despite higher operating capacities of the aerators yielding higher 

velocities, low solubility of air in wastewater causes formation of steep oxygen 

stratification in the ditch with the oxygen deficit zone ranging from the mid-depth of the 

ditch constituting 50% of the ditch volume. In such conditions, required    concentration 

at the point of introduction should be increased. 

Larger    gradients occur in the area of the ditch bend due to dynamic mixing of more or 

less oxygen enriched fluid layers. Thus, even for high wastewater temperatures, the bends 

are unique zones along the ditch characterized with presence of    at half of the ditch 

depth. Significant improvements of the aeration efficiency were observed for the 

temperatures around 20 °C, yielding slight changes of the    content along the ditch and 

between the values measured below the surface and in the mid-depth of the ditch, that 

are around 5.0 mg L-1. For such conditions, the considered ditch section behaves like CSTR.  

The differences in      concentration along the ditch, and thus considering values 

obtained for the straight channel section and for more intense oxygenated bend, do not 

exceed 8%. According to that it can be assumed, that the     profiles are as for 

a completely mixed system. Similar to     patterns, the concentration profiles obtained 

for the remaining nutrients:      ,       , and       along the oxidation ditch are 

constant and thus complete mixed tank conditions can be assumed.   

When evaluating treatment efficiency during sampling days characterized by the elevated 

temperatures, high values of ammonia within the tank are observed. As variable       

concentrations are low it can be suspected, that due to poor aeration, nitrifying capacity 

of the activated sludge is low. In lower wastewater temperatures and optimal oxygenation 

conditions within the ditch, the final       concentration drops nearly ten times. Low 

    and nitrates contents suggested efficient biodegradation and denitrification 

processes, which occur during anoxic periods, but at the same time, possibility of 

accumulation of nitrites should be taken into account. As in case of ammonia, decrease of 

      concentration within the ditch is observed. According with the above one can 

conclude, that the biological reactor performance, thus intensity of the biodegradation, 
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denitrification and   uptake and bioaccumulation depend on the    concentration within 

the ditch. 

The mixed liquor suspended solids levels are in the typical ranges for the oxidation 

ditches, and their content is constant along the studied ditch, suggesting complete mixing 

characteristic for the flow conditions, as in the CSTR. 
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4 CFD Simulations of the Oxidation Ditch  

4.1 Introduction  

This chapter is divided in two main sections: in the first section, a literature review on the 

use of CFD modelling in wastewater treatment engineering is done; while the second refers 

to a development of a CFD based model to simulate hydrodynamics in a specific 

wastewater treatment bioreactor- an oxidation ditch.    

The review aims to present the typical trends in design of Activated Sludge systems and 

rationale behind the use of CFD modelling approach to optimize wastewater treatment 

operation and process efficiencies.  

Second part of the chapter concerns the implementation of various configurations of slot 

jet aeration devices in oxidation ditched, compromising the functions of aerator and 

mixer. The design considerations and the CFD model are described with detail. 

Furthermore, the fundamental concepts of the flow field and macromixing simulations 

with the description of different approaches commonly used in turbulence modelling are 

given. The impact of the turbulence model on the flow patterns evolution within the 

oxidation ditch channel is assessed. Additionally, the influence of the aeration system 

geometry on the hydrodynamics and the energy expenditure for mixing in the oxidation 

ditch is evaluated. Further studies concerned the study of the hydrodynamics in the near-

wall region of the oxidation ditch. The influence of the mesh and the near-wall treatment 

coupled to the turbulence models on the accuracy of the boundary layer representation, 

and the energy expenditure is also made. Finally, the analysis of the effect of the 
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turbulence models on the macromixing data, which can be furthermore incorporated into 

the Activated Sludge Models (ASM), is also assessed.   

4.2 Literature Review 

One of the major challenges in wastewater sector is successful design and reliable 

operation, which ensure that the treatment efficiency will comply with the outflow quality 

restrictions, while keeping the investment and operating cost as low as possible 

(Brouckaert and Buckley, 1999; Do-Quang et al., 1999). Although the design of wastewater 

treatment plants (WWTPs) is a key step to assure these goals, it is usually based on the 

general guidelines and both the designers and operators experience, dominated often by 

the rule of thumb (Bosma and Reitsma, 2007; Pereira et al., 2012; Stamou, 2008). Thus, in 

majority of the designs, the assumption of the ideal reactor model is imposed to predict 

flow behaviour in the unit process tanks, while the actual reactor hydrodynamics is not 

taken into account (Stamou, 2008). The classical example is the assumption of complete 

mixed flow regime in aerobic, anoxic and anaerobic tanks. Other commonly practiced rules 

of thumb are (Tchobanoglous et al., 2003): the assumption that in AS basins equipped with 

diffused aeration systems, the air requirement to ensure good mixing will vary from 1.2 – 

1.8 m3 h-1 per cubic meter of tank volume; and typical power requirements for maintaining 

a completely mixed flow regime with mechanical aerators varies from 13 to 26 W per cubic 

meter of tank volume. None of these assumptions consider influence of the tank hydraulics 

(depth), energy input, or any variable affecting mixing. The one commonly used criterion 

for “good mixing” in AS process control is such, that the variations of solids concentration 

across the complete mixed tank profile is less than 10%. However, the proper design of 

such “well mixed” system requires use of sophisticated analysis of flow behavior 

accounting for mixing patterns in the tank, distribution of solids and determination of local 

densities.  

In engineering practice, assessment of flow regime, and thus overall mixing phenomena 

can be achieved in experimental derivation of local flow velocities through a tracer 

technique, which is not a feasible task most of the times, considering dimensions of real 

scale units (Pereira et al., 2012; Stamou, 2008). Several factors contribute to the 

increasing popularity of the modelling in engineering practice. Modelling is cost and time 

efficient risk-free solution, which allows: to evaluate whether a new unit or modification 

will operate properly; to foreseen the consequences before implementation; to isolate and 

quantify bottlenecks in liquid or solid handling lines in the AS system. In modelling 

practice, RTD determination allows to obtain these data by deriving the main convective 

and diffusive characteristics of the flow (Stamou, 1997, 2008). Thus, prediction of RTDs of 
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fluid is a fundamental tool to understand and analyze flow system allowing therefore 

realistic information on the hydrodynamics of the tanks (Nauman, 2007). Moreover, the 

RTD yields information about the macromixing within the reactor, allowing the recognition 

of mixing conditions that are not plug flow or complete mixing regimes, and that are 

usually described by tank-in-series models or even more complex arrangements of reactors 

(Pereira et al., 2012). Due to that, successful biological wastewater treatment modelling 

combining hydrodynamics, mass transfer and biochemical reactions kinetics remains one of 

the major goals in chemical engineering (Le Moullec et al., 2010a, b; Pereira et al., 2012). 

Nowadays, due to increasing availability of computational resources, dynamic modelling of 

the AS tanks involves different approaches, providing relevant and mutually 

complementary information (Karpinska et al., 2012a). Systemic approach is based on well-

established Activated Sludge Models (ASM), focused mainly on the reactions of biochemical 

conversion within the ideal reactors: one or a cascade of Continuous Stirred Tank Reactors 

(CSTRs) or plug flow reactor (PFR) (Abusam and Keesman, 1999; Abusam et al., 2001; Le 

Moullec et al., 2010b; Pereira et al., 2009). The results allow for prediction of quantitative 

oxygen consumption, nutrients removal and qualitative biomass growth and decay; 

however, the ideal reactor models do not account for the actual influence of the reactor 

hydraulics, temperature and oxygen spatial distribution on the treatment efficiency 

(Karpinska et al., 2012a). Additionally, since overall biochemical conversion reactions in AS 

occur at a significant rate, the wastewater treatment efficiency will depend on the 

hydrodynamics of the biological reactor (Le Moullec et al., 2008b). Consequently, to model 

accurately biological wastewater treatment in AS process and determine correct pollutant 

removal rates, biokinetic reactions have to be coupled to the reactor hydrodynamics. 

With the recent developments in multiphase flow research area (Kochevsky, 2004), CFD 

has been extensively used as a powerful tool allowing for precise analysis of the 

hydrodynamics in AS tanks which enables prediction of the influences of the operating 

parameters and of local scale phenomena, such as flow field coupled with mass transfer 

and chemical reactions. Behaviour of aeration tanks is complex, mainly due to the 

presence of multiphase (gas-liquid-solid) flow and the interactions between nano-, micro- 

and macro-scale elements of the system, such as between AS flocs, air/oxygen bubbles 

introduced by aerator and finally, geometry of the tank. Considering the sizes of the 

aeration tanks and the typical values of fluid velocity of 0.3 m s-1, the Reynolds numbers in 

the AS processes are turbulent (Pereira et al., 2012). Although the complete simulation of 

such biological system is difficult to handle due to the complexity of the hydrodynamics, 

resulting in long computational times involved and massive computer resources usage, 
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some few examples of complete modelling of wastewater treatment tanks with CFD codes, 

accounting for flow field, oxygen mass transfer and biokinetics can be found in the 

literature (Brannock et al., 2010b; Fayolle et al., 2007; Gresch et al., 2011; Le Moullec et 

al., 2010a; Zima et al., 2009).   

A more common engineering practice is to model the whole process with reasonable 

computational resources usage, by simulating separately with CFD codes its individual 

parts, such as aeration performance or flow field and afterwards couple the results 

(Pereira et al., 2012). Literature offers handful examples of the CFD application to study 

AS process in wastewater tanks. Here, CFD can be used as a hi-tech tool for design of the 

new efficient and energy minded unit processes at WWTPs or for optimization and retrofit 

of the existing systems. Thus, two-phase gas-liquid flow simulations enable prediction of 

oxygen mass transfer and gas hold-up in activated sludge tanks aiming both, process design 

and optimization through “tune-for-benefit” operating parameters of aeration devices 

(Cockx et al., 2001; Dhanasekharan et al., 2005; Do-Quang et al., 1999; Fayolle et al., 

2007; Gresch et al., 2011; Talvy et al., 2007). The focus of other works is on the aerator 

design, number of units and configuration within the AS basin, allowing for effective 

mixing and process performance (Bhuyar et al., 2009; Gresch et al., 2011; Le Moullec et 

al., 2010a, b; Luo and Al-Dahhan, 2008; Moraveji et al., 2012; Wu et al., 2012; Xu et al., 

2010). Two-phase, turbulent solid-liquid flow simulations enable representation of the 

main flow currents within the oxidation ditches considering the impact of aerators and 

propellers performance on mixing patterns, solids distribution and sludge settling (Fan et 

al., 2010; Zhang et al., 2010). Recently, CFD has been also successfully implemented in 

hydrodynamics modelling of specific gas-solid-liquid systems, namely Membrane 

Bioreactors (MBRs), allowing for optimization of mixing regime within full-scale units 

through RTD of the fluid determination. Until recently, desired mixing regime in MBRs, 

although being of crucial importance for overall process performance, was designed only 

from empirical techniques (Brannock et al., 2010a; Brannock et al., 2010b)). Nowadays 

numerous examples of hydrodynamics studies based on the RTD determination for various 

AS process modifications can be found in the literature (Brannock et al., 2010a; Brannock 

et al., 2010b; Fan et al., 2010; Glover et al., 2006; Le Moullec et al., 2008b; Stamou, 

2008; Wu et al., 2012; Zhang et al., 2010; Zima et al., 2009). Furthermore, the procedures 

of coupling AS hydrodynamics data obtained from CFD simulations into the ASM simulations 

have been also intensively studied (Glover et al., 2006; Le Moullec et al., 2010b; Pereira et 

al., 2012). Here the RTDs computed from CFD simulations are used to generate reactor 

model in which ASM can be applied.  
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Nowadays an alternative modelling approach to AS, namely compartmental model 

approach, is emerging, which is based on the description of the wastewater reactor as 

a network of interconnected compartments. The flowrates between the compartments are 

computed from the flow field obtained in the CFD simulations and accounting for local 

velocities and mixing due to turbulence (Le Moullec et al., 2010b; Pereira et al., 2012).  

This chapter considers the use of CFD to simulate hydrodynamics and macromixing in one 

of the well-known modifications of the AS process- the oxidation ditch. Typical oxidation 

ditch system consist of a ring, oval or horseshoe shaped basin, where the liquid phase, 

mixed liquor is circulated around the ditch by means of mechanical impellers. In the ditch 

there are aerated regions, where the air is introduced into the mixed liquor either through 

the surface by brush rotors or into the fluid volume, by bottom diffusers. Prediction of the 

flow regime with systemic approach in oxidation ditches is not straightforward. Usually, 

both, single- and multi-channel ditches are considered to be completely mixed over the 

hydraulic residence time (EPA, 2000), but simultaneously show strong plug flow 

characteristics, when observed over one loop (Barnes et al., 1983). Additional feature is 

occurrence of large DO gradients along the ditch while the other components, such as 

ammonia or COD concentrations are spatially homogenized (Nakamachi et al., 2012). Thus, 

simulation for such AS system has been mostly based on ideal reactor models: Continuous 

Stirred Tank Reactor (CSTR) or in a cascade of CSTRs (Karpinska et al., 2008).  

According to that, only CFD based modeling allows to reproduce the actual conditions of 

the ditch performance, based on the dynamic fluid circulation by the propellers and 

intense aeration with surface rotors or diffused aeration units. Several works on CFD 

modeling consider and oxidation ditch as a showcase to assess the system hydrodynamics, 

the paths of biochemical reactions represented by concentration profiles, and to optimize 

aeration and agitation devices (Chen and Wu, 2010; Do-Quang et al., 1999; Fan et al., 

2010; Fayolle et al., 2007; Glover et al., 2006; Karpinska et al., 2012a; Pereira et al., 

2012; Wu et al., 2012; Xia and Liu, 2004; Xu et al., 2010; Yang et al., 2011; Zhang et al., 

2010). 

4.3 CFD Model 

This section analyses the use of a specific slot jet aeration system in oxidation ditches, 

comprising the functions of aerator and mixer. CFD is used as the design and analysis tool 

to study oxidation ditch aerated with hydrojets, taking into consideration aeration and 

mixing performance, the influence of geometry (hydrojet placement) and the wall effects 

on the energy expenditure of the simulated system. The analysis of the effect of the 
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turbulence models on the macromixing data, which can be further incorporated into the 

ASM models, is also made. Moreover, the results obtained from the CFD simulations of the 

oxidation ditch are further used to set some guidelines of the application of CFD tools on 

AS processes design.  

All simulations of the oxidation ditch used Finite Volume Method and were performed using 

ANSYS Fluent 14 commercial CFD code in a HP Workstation with Intel® Xeon® 2.33 GHz 8-

Core PC with 16.0 GB RAM memory.   

4.3.1 Design Consideration 

Hydraulic design of the proposed oxidation ditch system (Figure 4.1) consists of: an 

oxidation ditch; a jet aeration device; an external aeration unit - Pressurized Aeration 

Chamber (PAC), introduced in Chapter 2 of this dissertation; mixed liquor recirculation 

pump; feed and discharge tubes; and a pipeline connecting all equipments. In such system, 

the increase of      and    is obtained through introduction of an external aeration unit– 

PAC cooperating with the mixing and propulsion devices- slot injector modules (hydrojets). 

Mixed liquor is recirculated from the ditch to PAC, where is saturated with oxygen up to 

18 mg L-1. The DO enriched stream is recirculated by pump and reinjected into the ditch by 

the hydrojets with the energy accelerating fluid flow throughout the tank with the 

velocities keeping the AS flocs suspended, and ensuring efficient mixing of the ditch 

content.  

In oxidation ditch systems, the average concentration of the Mixed Liquor Suspended Solids 

(MLSS) is in the range of 3000-5000 mg L-1 (0.3 – 0.5 % w/w). The main purpose of this work 

is to explore the use of CFD in the design of oxidation ditches, and so water was defined as 

the working fluid, which is not so accurate as far as viscosity is regarded. However, for the 

purposes of present studies a model fluid that enables a faster setup of the lab validation 

of CFD results will serve better considering the near future plans of this research.  
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Figure 4.1 Oxidation ditch system scheme: 1- oxidation ditch; 2- hydrojets; 3- inlet; 4- outlet; 5- PAC; 6- 
recirculation pump; 7- recirculated mixed liquor from the ditch; 8- air/oxygen manifold; 9- oxygen rich 
mixed liquor. 

 

4.3.2 3D Geometry 

The simulated ditch system consists of a closed-loop oval open channel filled with liquid 

(mixed liquor), and equipped with two jet aeration devices placed at opposite positions in 

the oxidation ditch. The 3D ditch geometry, which outline is shown in Figure 4.1, was 

designed for further laboratory scale applications and has the following dimensions: 12.8 m 

long, 3.0 m wide and 0.75 m deep. The surfaces of the oxidation ditch inlet and outlet are 

rectangular sections with 1.44 × 0.25 m, which are located on the top of the ditch. Inlet, 

outlet and hydrojets are distanced from each other by half of the ditch length. The 

hydrojets devices are designed as slot injectors extended throughout the ditch and have 

0.1 m height. Schematic design of what an actual hydrojets would be, is shown in the 

Figure 4.2. In this work it is assumed that the flow rate has a constant distribution at 

hydrojet suction face and outlet, i.e. a flat velocity profile. In this study, three different 

geometry scenarios were taken into consideration: hydrojets fixed near the bottom, at 1/3 

depth, in the middle of the ditch and below the fluid surface, at 2/3 depth. Inlet and 

outlet are located on the fluid surface. 

Geometries of the oxidation ditch with various hydrojets positions were made using ANSYS 

Workbench Design Modeller pre-processing software. An example of the ditch geometry, 

with hydrojets positioned in the middle depth is shown in Figure 4.3. 
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Figure 4.2 Schematic design of the hydrojet device. 

 

 

 

 

Figure 4.3 Geometry of the oxidation ditch with hydrojets placed in the middle depth of the tank. 
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In all geometries, the computational grid was generated by sweeping algorithm based on 

the projection of the source surface mesh created for the topwall onto the target surface 

of the ditch bottom. Different features of the source surface mesh, such as additional 

inflation of the lateral edges or defining of the sweep bias, yield six meshes composed of 

from 0.6×106 to 5.6×106 hexahedral cells. The rationale behind using meshes of different 

characteristics was their further application in simulations having different purposes and 

level of complexity, and thus requiring for more or less computational resources. The 

details concerning geometry of the oxidation ditch, meshing algorithm, number of 

generated mesh elements, average element size and the application to specific CFD 

studies, are listed in the Table 4.1. For each mesh several preliminary simulations were 

made to test grid independence. 
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Table 4.1 Characteristics of the meshes used in the simulations of the oxidation ditch. 

Mesh 
nº 

Mesh features 

Nº of 
mesh 

elements 

Average 

element 
size 

Application 

Million m 

1 

Sweep; surface mesh consisted of 

mapped/paved grid of 

quadrilateral elements 

0.6 0.0304 

Hydrodynamics and 

macromixing simulations 

using different turbulence 

models; energy expenditure 

and boundary layer 

determination 

2 

Sweep; surface mesh consisted of 

mapped quadrilateral and 

triangular elements; size function 

in the hydrojets zone 

1.7 0.0250 

Hydrodynamics simulations 

using different turbulence 

models; geometry studies; 

energy expenditure and 

boundary layer 

determination 

3 

Sweep; surface mesh consisted of 

mapped quadrilateral and 

triangular elements; 24 inflation 

layers with 1.1 growth rate factor, 

25 sweep bias 

4.7 0.0013 

Hydrodynamics simulations; 

energy expenditure and 

boundary layer 

determination 

4 

Sweep; surface mesh consisted of 

mapped quadrilateral and 

triangular elements; 24 inflation 

layers with 1.1 growth rate factor, 

32 sweep bias 

4.7 0.0011 

Hydrodynamics simulations; 

energy expenditure and 

boundary layer 

determination 

5 

Sweep; surface mesh consisted of 

mapped quadrilateral and 

triangular elements; 24 inflation 

layers with 1.1 growth rate factor, 

25 sweep bias; boundary refined in 

Fluent using y+/y* adapt algorithm 

5.4 0.0007 

Hydrodynamics simulations 

using different turbulence 

models; energy expenditure 

and boundary layer 

determination 

6 

Sweep; surface mesh consisted of 

mapped quadrilateral and 

triangular elements; 24 inflation 

layers with 1.1 growth rate factor, 

25 sweep bias; boundary refined 

twice in Fluent 

5.6 0.0063 

Hydrodynamics simulations; 

energy expenditure and 

boundary layer 

determination 
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4.3.3 Hydrodynamics Modelling 

The hydrodynamics of the oxidation ditch is obtained from single-phase flow field 

simulations. For all ditch geometries the flow field was simulated using steady Reynolds 

Averaged Navier-Stokes (RANS) simulations and Unsteady RANS (URANS) with different 

turbulence models and Large Eddy Simulation (LES) with Smagorinsky’s subgrid-scale model 

(SGS).  

4.3.3.1 Reynolds Averaged Navier-Stokes Simulations 

In most of the CFD related engineering practice, time-averaged properties of the flow 

provide the needed information. RANS simulations focus on the representation of the 

effects of turbulence on the mean flow properties by solving transport equations for the 

averaged flow quantities with whole range of the turbulent scales being modelled. Thus 

this modelling approach greatly reduces required computational effort and resources, and 

is widely adopted for practical engineering applications. 

In both approaches, RANS and URANS, flow is governed by the following mass conservation 

equation: 

    
   

   (4.1) 

and momentum conservation equation, which for RANS is: 
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and for time dependent, transient flow (URANS) is: 

    
  

 
 

   
         

   

   
 

 

   
    

   
   

 
   

   
 
 

 
   

   
   

   
 

   
     

   
    (4.3) 

where    is the averaged pressure field,   and   are the fluid density and viscosity, 

respectively,   is the time,   ,    and    are the spatial coordinates,    ,    and    are the 

velocity components and     is the Kronecker delta.  
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Here, the turbulent mean velocity field is described by Reynolds decomposition of the 

velocity using time averaged term,    , and a fluctuating term,   
 : 

         
  (4.4) 

RANS and URANS equations are linearized and solved, however originated from the 

momentum transfer by the fluctuating velocity field flow structures, which are smaller 

than the numerical grid discretization– represented by the term      
   

  - Reynolds 

stresses, are unclosed, and thus they must be modelled. In this work, three turbulence 

models are used for     
   

  closure, namely standard     model, standard     model 

and Reynolds stress model. 

Standard      Model 

The standard     model (Launder and Spalding, 1974), incorporated in most commercial 

CFD codes is likely to be one of the simplest complete turbulence models. Due to its 

robustness, economy in terms of computational effort and satisfactory accuracy in diverse 

turbulent flow issues, standard     model found the broadest range of applicability in 

both, academia and industrial sectors. The     model belongs to two equations models, 

which solves model transport equation for two turbulence quantities:   - the kinetic 

energy of the velocity fluctuation (turbulence kinetic energy) and   - its dissipation rate 

(Pope, 2000). Reynolds stresses modelling employs Boussinesq hypothesis relating these 

stresses to the mean deformation rates, thus mean velocity gradients, as follows (ANSYS, 

2011):  
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where    is the turbulent viscosity computed as a function of   and  :  

      
  

 
 (4.6) 

where    is a constant and amounts 0.09.  

The transport equations for turbulence kinetic energy,   and its dissipation rate,   are 

represented by the following equations: 
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and  
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In these equations, the term    represents the generation of turbulence kinetic energy due 

to the mean velocity gradients and    is the generation of turbulence kinetic energy due 

to buoyancy;    is the contribution of the fluctuating dilatation in compressible turbulence 

to the overall dissipation rate;    ,     and     are model constants – default values for     

and     are 1.44 and 1.92, and      is -0.33 ;    and    are the turbulent Prandtl numbers 

for   and  , and amount 1.0 and 1.3 respectively. 

The production of turbulence kinetic energy,   , is approximated in a manner consistent 

with Boussinesq hypothesis by: 

       
   

  
   

   
    

  (4.9) 

where   is the modulus of the mean rate-of-strain tensor, defined as follows: 
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and  

    
 

 
 
   

   
 
   
   

  (4.11) 

Effect of buoyancy,  , is described by the following formula: 

      
  
   

  

   
  (4.12) 

where   is the coefficient of thermal expansion,    is the component of the gravitational 

vector in the i-th direction,     is the turbulent Prandtl number for energy and   is the 

temperature. For the standard     model the default value of     is 0.85.  
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The coefficient of thermal expansion,  , is defined as: 

   
 

 
 
  

  
 
 
  (4.13) 

Contribution of the fluctuating dilatation in compressible turbulence,   ,  is defined as 

follows: 

        
   (4.14) 

where    is the turbulent Mach number, defined as: 

    
 

  
   (4.15) 

where    is the speed of sound. 

The values of   and   can be used to determine the quantities, representative for the large 

scale turbulence, i.e. velocity scale:    
 
  , and the length scale:   

 
 
  

 
.  

Standard Wall Functions approach involved in     model, specify wall boundary condition 

for velocity by determination of the flow resistance on the wall and diffusion coefficient. 

This approach relies on universal behaviour of the near-wall flows rather than direct 

integration of the modelled equations with the wall boundary and thus, for more complex 

wall bounded flow issues, viscous near-wall region modelling requires enhanced wall 

treatment approach.   

Standard      Model 

The second widely used 2-equation model, introduced by Wilcox (Wilcox and Traci, 1976), 

is     model, based on the model transport equations for   and the specific dissipation 

rate   referred as the turbulence frequency and expressed as the ratio of   and  , 

i.e.     .  

Analogically to the standard     model, Reynolds stresses in     model are modelled 

using Boussinesq hypothesis described by the Equation (4.5). Here, the turbulent viscosity 

is computed as a function of   and  :  

     
  

 
 (4.16) 
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where    is a coefficient related to the use of functions damping the turbulent viscosity 

causing a low-Reynolds-number correction.  

Transport equation for the turbulence kinetic energy,  , is computed as follows:  
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 here    is the effective diffusivity for  ,    is production of turbulence kinetic energy, 

defined previously by Equation (4.9) and    is dissipation of  , due to the average velocity 

gradients. 

Here, the effective diffusivity for   is computed from the following formula: 

     
  
  

 (4.18) 

where    is a constant Prandtl number for   equal to 2.0. 

Dissipation of   is given by the following equation: 

      
       (4.19) 

where   
  is a model constant equal to 0.09, and     is defined as: 
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and where    equals: 

   
 

  

  

   

  

   
 (4.21) 

The transport of the turbulent frequency  , is expressed by the following: 
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In these equations,    stands for generation of  ;    represents effective diffusivity of    

and    is the dissipation of   due to turbulence.  

The value of effective diffusivity    is given by the following equation: 

     
  
  

 (4.23) 

where     is the turbulent Prandtl number for   and its default value is 2.0. 

Production of   is given by: 
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where    coefficient is  

   
  
  

 
          

         
  (4.25) 

In this equation,    ,    and    are model constants equal 2.95, 0.52 and  
 

 
, 

respectively, and      is: 

    
  

  
 (4.26) 

Dissipation of   due to turbulence is given by:  

         
  (4.27) 

Here    is model constant equal to 0.072, and 

   
      
      

 (4.28) 

The variable    is obtained from the following: 

    
         
   

    
  (4.29) 
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where   
  is the model constant and   

  is 0.09, and     is the mean rate-of-rotation tensor  

is defined as:  

    
 

 
 
   
   

 
   

   
  (4.30) 

The values of   and   can be used to determine representative for the large scale 

turbulence length scale:       . Contrary to the     model, standard     model 

uses enhanced wall treatment approach to model wall boundary condition in flows 

characterized by high and low Reynolds numbers. Therefore it accounts for viscous effects 

in boundary layer and the streamwise pressure gradients and is applicable for both, wall-

bounded separated flows and fully turbulent flows.  

Reynolds Stress Model  

The Reynolds stress model (RSM) (Launder et al., 1975) is most elaborate and complex 

turbulence model, referred as Second Order Closure. In RSM the isotropic eddy-viscosity 

hypothesis is discarded, the RSM closes the Reynolds-averaged Navier-Stokes equations by 

solving transport equations for the Reynolds stresses, together with an equation for the 

dissipation rate, yielding seven additional transport equations to be solved in 3D scheme. 

Thus, the transport equation of the Reynolds stresses,    
   

 , can be written in the 

simplified form as (ANSYS, 2011; Versteeg and Malalasekera, 1995): 
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where 
 

  
    

   
   is local time derivative;     is transport by convection,       and       are 

transport due to turbulent and molecular diffusion;     and     are stress and buoyancy 

productions;     transport due to pressure strain interactions;      is dissipation rate; and 

    is production by system rotation.  

From all components of the Reynolds stress transport equation, the terms concerning 
turbulent diffusion, buoyancy production, pressure-strain and dissipation rate require 
further modeling to close equation set.  

Transport by convection is defined by: 

    
 

   
       

   
   (4.32) 

Turbulent diffusive transport        is expressed as: 
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Transport due to molecular diffusion,       equals 
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Stress production is expressed as follows: 
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Buoyancy production is defined as: 
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where    is mean potential temperature. 

Transport due to pressure strain interactions is:  
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Dissipation rate     is: 

         
   

 

   

   
 

   
  (4.38) 

Finally, production by system rotation is: 

            
   

        
   

       (4.39) 

It is clear, that as the RSM model accounts for such effects, as streamline curvature, 

rotation, and rapid changes in strain rate in a more exact manner than both 2-equation 

models, thus it has greater potential to give accurate predictions for complex flows, 

however, as in case of standard     model, it is based on the standard wall treatment 

approach. Nevertheless, the reliability of RSM predictions is still limited by the closure 

assumptions employed to model pressure-strain and dissipation-rate terms. The other 
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shortcomings are the problems with model convergence due to numerical issues associated 

with coupling of mean velocity and turbulent stress field through user-defined source 

terms resulting in distinctly higher computational costs (Versteeg and Malalasekera, 1995).  

4.3.3.2 Large Eddy Simulation 

LES was used as an alternative approach in hydrodynamics modelling. In this model, large, 

three dimensional unsteady scale motions affected by the flow geometry large eddies, are 

directly and explicitly solved in time-dependent simulation using space-filtered Navier-

Stokes equations. LES is one of the most expensive simulation options and requires 

a refined grid to accurately resolve eddies in the boundary layer. A filtering operation, 

analogously to the Reynolds decomposition in RANS, is based on the decomposition of the 

velocity into the resolved (filtered) component         and the residual, so called subgrid-

scale (SGS) component,         (Pope, 2000). Thus, the velocity field in LES can be written 

as: 

                       (4.40) 

Thus, the filtered incompressible continuity equation can be written as: 

    
   

   (4.41) 

Filtering yields momentum equation of the following form: 

   
  

 
 

   
        

 

 

   

   
 

 

   
  

   
   

  
 

 
 
    

   
 (4.42) 

where    , is the filtered pressure field:         

Filtering operation results in introduction of a residual, subgrid-scale stress tensor term, 

   : 

               (4.43) 

The term     cannot be directly solved and thus it must be modelled. The accuracy of the 

LES models is the result of modelling only the subgrid-scale motions, i.e. the smallest 

eddies, which tend to have more universal properties. In this approach, small eddies are 

modelled with the Smagorinsky´s subgrid-scale model, of the following form: 



4 CFD Simulations of the Oxidation Ditch 

184 

    
 

 
                    

   
   

 
   

   
  (4.44) 

where     is isotropic component of the subgrid-scale stresses         is the dynamic 

subgrid-scale viscosity and      is the rate-of-strain tensor for the resolved scale defined as: 
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Due to the large mesh requirements and high computational costs, wide application of LES 

approach to solve flow related issues is still limited. 

4.3.4 Channel Flow  

Performance of biological raceway reactors, such as oxidation ditches, is characterized by 

a fully developed turbulent flow through a long, open channel of rectangular cross-section. 

Most of the turbulent flows are bounded to at least one solid surface. Numerous examples 

of the bounded flows include: internal flows, e.g. flow through pipes or ducts; external 

flows, such as air/water flow around aircraft or ships’ wings and hulls; and the flows 

occurring in the natural environment, as e.g. atmospheric boundary layer or the river flow 

(Libby, 1996; Pope, 2000). The common feature of all the above-mentioned cases is that 

despite high    numbers and relatively low fluid viscosity, during fluid flow along solid 

surface at the regions adjacent to the stationary wall develops thin viscous boundary layer 

(Prandtl, 1904), while with the distance from the wall develops substantial quase-inviscid 

core flow, dominated by inertia forces.  

Over the last decades, extensive experimental and numerical studies have been conducted 

on the mean flow variables turbulence structure and the viscous boundary layer in fully 

developed open channel flow (Czernuszenko and Rylov, 2002; Farrell and Ioannou, 1998; 

Khosronejad et al., 2007; Kim et al., 1987; Moser et al., 1999; Nezu and Rodi, 1986; Salim 

and Cheach, 2009). A scheme of the fluid flow through the rectangular ditch cross-section 

is shown in Figure 4.4. The dimensions of the ditch channel are: height     ; length   

and      ; width  , and      . The mean flow currents dominate in the axial x-

direction, while the mean velocity fluctuations occur in the crosswise y-direction to the 

main current.  
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Figure 4.4 Sketch of a channel flow (Pope, 2000). 

It can be assumed, that the Reynolds number is: 

   
    

 
 (4.46) 

where    denotes bulk velocity, m s-1 and   is kinematic viscosity, m2 s-1.  

In turbulent flows,    number based on length scales is always high and of the order 105, 

due to the inertia forces. During fluid flow through the ditch, the total shear stress on the 

wall in the crosswise direction to the flow,       is determined as follows: 

        
    

  
         (4.47) 

where the term   
    

  
 denotes viscous shear stress;          is Reynolds shear stress; and 

  is fluid density in kg m-3. 

At the stationary wall (   ), no-slip boundary condition must be satisfied, and since 

turbulent velocity fluctuations are zero, all the Reynolds stresses also need to be zero 

(Pope, 2000). According to that, the wall shear stress     is purely viscous and defined as: 

      
    

  
 
   

 (4.48) 
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Consequently, close to the wall, turbulent flow is influenced by viscous effects and does 

not depend on the free stream parameters. With the given values of  ,   and   , viscous 

scales, and thus velocity scales and length scales, can be determined.  

The friction velocity is defined as follows: 

    
  
 

 (4.49) 

where    denotes friction velocity and    is the wall shear stress, Pa.  

The viscous length scale is defined by: 

     
 

  
 

 

  
 (4.50) 

The friction Reynolds number is: 

    
   

 
 

 

  
 (4.51) 

The distance from the wall is measured in viscous lengths, non dimensional “wall units”    

defined as: 

   
 

  
 
    
 

 
       

   
 

 
(4.52) 

 

where   denotes distance from the wall in m.  

Close to the wall boundary, in inner layer region dominated by friction forces, mean 

velocity of the fluid depends only on  ,  ,   and   , and therefore, solely on    (Prandtl, 

1925), what can be written as follows: 

   
   

  
 

 
(4.53) 

 

From the earlier work (Kim et al., 1987) it was proven, that in viscous sub-layer region, 

i.e. for     , the values of    and    are in linear relation, thus      . The 

departures from this linearity become significant with increase       (Pope, 2000).  

In the distance from the wall such, that      , the influence of the viscosity forces 

weakens and the mean velocity is described by the logarithmic law of the wall (log-law) of 

the following form: 
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(4.54) 

 

where   is von Káráman constant and        , and   is constant and typically      . 

The transient zone between viscosity dominated viscous layer and inertia dominated log-

law region, for which        , is called the buffer layer. In the outer layer, for  

      holds velocity defect law (von Kármán, 1930), which states, that the velocity-

defect, i.e. the difference between the mean and the centreline velocity value, 

normalized by the friction, depends upon the ratio    : 

      

  
    

 

 
  

 
(4.55) 

 

where    is the centreline velocity and         depends on the flow characteristics. 

In overlap region between inner and outer layer, both law of the wall and velocity-defect 

law are valid and for       : 

 

  

    

  
 
 

 
 

 
(4.56) 

 

As can be seen, the value of    is a criterion to determine layers in near-wall flow, 

influenced by predominance of friction or inertia forces. The wall regions characteristic for 

the wall bounded flow are listed in the Table 4.2 (Pope, 2000). 

Application of the     turbulence model with Standard Wall Functions to model near-wall 

phenomena is limited by mesh resolution. Nonetheless, literature offers handful examples 

of successful application of the RANS closed by standard     model to simulate fluid flow 

and sediment transport in the curved open channels and laboratory 180° bends, both with 

rectangular cross-sections, and also, meandering river systems (Baghalian et al., 2012; 

Demuren, 1993; Demuren and Rodi, 1986; Khosronejad et al., 2007; Leschziner and Rodi, 

1979; Wilson et al., 2007). Therefore, to obtain reliable results and for validity of the 

logarithmic law for the mean velocity parallel to the wall (von Kármán, 1930), non-

dimensional distance from the wall to the first mesh node referred as the wall unit   , 

should be in the range from 30 to 300. For this range of    the viscous effects in the 

adjacent to the wall boundary cells are neglected. Due to that, modeling of near-wall 

region in wall bounded flows characterized by strong adverse pressure gradients or flow 

separation requires application of Enhanced Wall Treatment approach. Here, due to 

application of near-wall model, the viscosity-affected near-wall region is completely 

resolved all the way to the viscous sublayer. The two-layer approach is an integral part of 
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the enhanced wall treatment and is used to specify both and the turbulent viscosity in the 

near-wall cells. In this approach, the whole domain is subdivided into a viscosity-affected 

region and a fully-turbulent region. 

 

Table 4.2  Wall regions and layers and their properties. 

Region Location Properties 

Inner layer         
Mean velocity is defined by    and    , independent 

from    and   

Viscous sub-

layer 
     

The Reynolds stress is negligible comparing with the 

shear stress 

Buffer layer         Transition between viscous layer and log-law layer 

Log-law region 
     ,  

        
Log-law holds 

Viscous wall 

region 
      The contribution of viscous forces is significant 

Overlap region 
     , 

        

Region of overlap between inner and outer layers at 

high    

Outer layer       
The effects of viscosity is negligible comparing to 

inertia forces 

 

4.3.5 Residence Time Distribution Computing 

The dynamic particle tracking in Discrete Phase Model (DPM) was used to determine the 

distribution of residence times in the oxidation ditch. RTD is computed from the time 

history of a continuous tracer concentration or from the rate at which discrete particles 

leave the oxidation ditch though the outlet deconvoluting the function of the 

tracer/particles injection. In this approach, fluid is simulated as a continuum by solving 

time-averaged Navier-Stokes equations in an Eulerian reference frame. The particle 

tracking is simulated using random-walk Lagrangian trajectory calculations for dispersed 

phase through the flow field of the continuous phase. The particles’ trajectories are 
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predicted by integrating the force balance on the single particle and recording the particle 

position.  

Here, the force balance, which equates the particle inertia with the forces acting on the 

particle, for the   direction in Cartesian coordinates, can be written as:  

   
  

           
        

  
    (4.57) 

In this equation, term           represent drag force per unit particle mass;    denotes 

fluid phase velocity, which in prediction of particles’ trajectories in turbulent flows equals 

the average velocity;    is the particle velocity;    and   are particle and fluid densities, 

respectively; and    is additional acceleration term, expressed as force per unit particle 

mass.  

Particle trajectory equations are solved by stepwise integration of the Equation (4.57) 

over discrete time steps, yielding velocity of particle at each point along the trajectory: 

  

  
    (4.58) 

Assuming constant body forces over small time step interval, particle density which is the 

same as of the fluid, and linearizing the remaining forces acting on the particle, the 

simplified form of equation (4.57) can be written as: 

   

  
 
 

  
       (4.59) 

where    is particle relaxation time. 

4.4 Boundary and Operating Conditions 

In this study water was set as a working fluid. The physical properties of water, density 

               and dynamic viscosity                   are constant. Particle 

tracking requires introduction of additional dispersed phase – inert particles. The physical 

characteristics of the particles were chosen to enable them to follow with water the flow 

eliminating deviations due to the particles inertia, i.e. their density is identical to the 

density of the working fluid, and they are spherical with a uniform diameter of 10-6 m.  

The simulations consider operating pressure of 101325 Pa, set at the ditch surface and the 

acceleration due to gravity is 9.81 m s-2. As the changes in density of the flow are assumed 

to be negligible, Boussinesq model was set to relate density as a function of temperature: 
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                     (4.60) 

where    is constant density of water,    is operating temperature set at 288.16 K,   

denotes thermal expansion coefficient, and the term             is known as 

Boussinesq approximation.  

The mean hydraulic residence time of the fluid in tank was 4 h.  

Velocity inlet boundary condition was imposed on the ditch inlet surface. The local 

velocity of the water at the inlet, in the normal direction to the boundary was set as 

       m s-1. The turbulence at the inlet was specified by setting values of turbulent 

kinetic energy   equal to 1.0 m2 s2 and its dissipation rate,   equal to 1.0 m2 s3. The 

turbulent length-scale at the inlet was assumed half of the inlet width and equal to 

0.125 m.  

In DPM simulations, 10 thousand particles were introduced through the inlet in a very short 

time of 0.001 s and in the normal direction to the inlet surface. Total flux of the particles 

injected through the inlet is       kg s-1.  

It was assumed, that there is no backflow during fluid discharge from the ditch and the 

diffusion fluxes in the direction normal to the exit plane are zero, therefore a parallel 

outflow boundary condition was imposed at the ditch outlet.   

The hydrojets were set as two fluid zones with a momentum source, each zone having 

a volume of 0.014 m3 and. The volumetric momentum source of the hydrojets in the flow 

direction having value of 450 N m-³ forces circulation of the fluid throughout the ditch with 

an average speed of     m s-1.   

At the top surface of the oxidation ditch a free surface flow condition was defined by 

setting the shear stress components to zero. No slip condition was imposed on the lateral 

walls of the ditch and the bottom, and thus the velocity component of the working fluid at 

fluid–solid boundary is equal to that of the solid boundary, i.e. zero. 

4.5 Flow Solver 

In RANS, URANS and LES simulations, flow and pressure fields are obtained using pressure-

based coupled algorithm, which solves a coupled system of equations comprising the 

momentum equations and the pressure-based continuity equation. The remaining 

equations, thus energy, turbulence or discrete phase equations are solved in a decoupled 

fashion using the current values of the solution variables. Gradients necessary for 
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constructing scalar values at the cell faces, computing secondary diffusion terms and 

velocity derivatives are computed using Green-Gauss Cell based method. Standard scheme 

was enabled for pressure interpolation. Momentum, turbulence,  ,  ,   and Reynolds 

stresses are interpolated using Third-Order MUSCL (Monotone Upstream-Centered Schemes 

for Conservation Laws) scheme.  

4.5.1 Solution Controls 

In all simulation schemes, to stabilize the convergence Courant Number value equal to 50 

was set. Explicit Relaxation Factors of 0.75 for the momentum and pressure were set, and 

all remaining Under-Relaxation Factors were accepted with the default value of 1.0, 

except from the   and   and   for which the factor is 0.8 whereas, discrete phase sources 

and Reynolds stresses were set to 0.5. Convergence criteria for the solutions were 

accepted for the scaled residuals to decrease below 10-6. All flow variables were initialized 

with a value equal to zero.  

4.5.2 Numerical Simulation Set-up 

Converged steady- state solution obtained in RANS with the stabilized flow patterns within 

the oxidation ditch was set as the initial state for the transient URANS and LES simulations.  

In all simulations, the momentum equation was discretized with Second Order Implicit 

formulation.  

Time step size,    between the iterations was computed from the following: 

   
  

  
 (4.61) 

where    denotes the average finite element cell size and    represents local average 

velocity.  

For all geometries studied,    considered was 0.001 s. For each time step 20 iterations 

were done.  

The RTD simulations in steady-state flow conditions (RANS) allowed disabling flow 

simulation while only unsteady particle tracking is performed. In URANS and LES, ten 

continuous phase iterations were made per one discrete phase iteration. The size of    

considered for particle tracking was 0.0001 s. The output record for DPM concentration at 

the outflow in function of flow time was set. 

With the stabilization of the flow patterns during both, URANS and LES simulations, time 

step size,    between the iterations was increased to 0.01 s, 0.1 s and finally to 1 s.  
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4.6 Results and Discussion 

4.6.1 Hydrodynamics of the Oxidation Ditch 

The hydrodynamics of the oxidation ditch was obtained for single phase flow field 

simulations using different models, namely RANS and URANS with     turbulence models 

and LES with Smagorinsky’s SGS model. The simulations were performed for the 

geometries with different hydrojets’ placement. Computational grid generated for all 

geometries consists of 1.7 million cells (mesh 2). The detailed properties of the mesh are 

listed in Table 4.1. 

Figure 4.5 shows the contour maps of the velocity in the vertical planes obtained from 

RANS, URANS and LES, for the geometry with hydrojets placed in the middle depth. The 

same overall distribution of the flow patterns within the oxidation ditch was obtained from 

RANS and URANS. For RANS and URANS the hydrojets create an average flow with great 

stratification inside the volume of the ditch, characterized by poor vertical transport. The 

only difference between the two models is the smooth waving of the injected stream in 

URANS while in RANS the jets are steady and straight. In LES (Figure 4.5), the presence of 

eddies changes the hydrojet plume into a sinuous path evolving dynamically throughout 

the ditch, promoting convective transport between the fluid layers, i.e. vertical transport.  

Figure 4.6 shows the velocity maps obtained for different hydrojets’ placement. The 

values of the average fluid velocity within the ditch are presented in the Table 4.3. For 

RANS and URANS the horizontal profiles of the velocity reveal the same tendency. Flow 

field obtained with different models and for the hydrojets fixed near-bottom is 

characterized by lowest average velocities of 0.10 m s-1. 10% increase of average velocities 

in RANS and URANS and 20% in LES, respectively, are observed for the mid-depth 

configurations. Regardless of the turbulence modelling, for the same momentum 

conditions imposed on the hydrojets, those placed at the surface exhibit average velocity 

values up to 30% larger than the others, however they lead to generation of the extended 

zones near the ditch bottom with the velocities close to zero, which in such biological 

reactor as oxidation ditch, may be related with the occurrence of the DO deficit zones or 

zones that promote the settling of the activated sludge flocks.  

The differences between the averaged and actual flow fields obtained from the 

simulations became clear, when comparing contour plots of the velocity magnitude on the 

surface of the ditch (Figure 4.7) obtained from URANS and LES. The isovelocity contours 

have maximum values near the outer wall zones, and minimum near the inner walls, 
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furthermore the features of the dynamic flow velocity distribution are close to the few 

values reported in literature for open channel flow in 180º bends (Chow, 1959; 

Khosronejad et al., 2007; Liu and Shen, 2010; Shukry, 1950). The zones distanced from 

each other for half of the ditch length are characterized by recurrent flow patterns as can 

be seen in Figure 4.7. Two zones of different turbulence scales can be distinguished, 

namely inlet – outlet neighbouring zones having more linearized flow currents and the 

ditch bends, characterized by the higher contribution of the transverse flow components.  

Regardless to the turbulence model, the same tendency as of the velocity magnitude can 

be seen in distribution of the gauge pressure on the surface of the ditch (Figure 4.8). The 

simulations were not made with free surface, but with a zero stress wall, so normal 

pressure components would account in an actual oxidation ditch as variations in the free 

surface quota. Thus during the fluid flow through the straight part of the ditch, linear 

distribution of the pressure iso-regions with slight increased values towards the outer walls 

can be seen, while increase degree of the turbulence in the ditch bend is accompanied by 

formation of large pressure gradients. 

To investigate further flow characteristics in these zones for different turbulence models, 

two control sections were created: one in the centre of the ditch at 0.0 m from the 

reference point and another one between the hydrojets and the bend, at the distance of 

4.8 m from the centre, as can be seen in an example image shown in Figure 4.9.   

Figure 4.10 shows the velocity maps in the central section through the ditch for the mid-

depth hydrojets’ placement. For RANS and URANS the main flow currents of the highest 

velocity extend to the third part of the cross-section area. As suspected, there is no mixing 

across the fluid layers due to flow channelling, contrary to the results obtained with LES, 

exhibiting dynamic mixing in the transversal direction to the flow current.  

Figure 4.11 shows the velocity maps obtained with RANS, URANS and LES for the cross-

sections through the ditch channel located at 4.8 m from the centre of the ditch. The left 

section shows the velocity profile of the fluid accelerated by hydrojet and approaching the 

ditch bend and the right section concerns fluid flow after passing through the bend. From 

RANS and URANS it is seen, that as the fluid is accelerated by hydrojets, the flow core with 

velocity exceeding 1.1 m s-1 spreads uniformly through whole cross-section from interior to 

exterior wall, and after passing the bend the high velocity vertical layer bounds to the 

outer wall and extends to 2/3 of the channel cross-section. In LES wavy transversal jet 

plume having velocities higher than 0.15 m s-1 promotes intense vertical mixing. After 

passing the bend, flow core consists of high velocity large eddies bounded to the outer wall 
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and expanded towards the fluid surface. The zone of lower velocity constitutes around 10% 

of the section area and is bonded to the bottom and inner wall. From Figure 4.10 and 

Figure 4.11 it is clear, that as it is typical in wall bound flow through open channels, fluid 

flow in the oxidation ditch is characterized by presence of large velocity gradients near-

wall regions due to friction forces, while the flow core is predominated by inertia forces.  

 

 

Figure 4.5 Velocity vector maps in the oxidation ditch using RANS, URANS and LES. 
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Figure 4.6 Velocity maps in the oxidation ditch obtained from RANS, URANS and LES for different 
hydrojets’ placement. 

 

 

Table 4.3 Average velocity of the fluid obtained with different turbulence models. 

Simulation Hydrojet placement 
   

(m s-1) 

RANS 

bottom 0.10 

surface 0.13 

middle 0.11 

 
bottom 0.10 

URANS surface 0.13 

 middle 0.11 

 
bottom 0.10 

LES surface 0.13 

 middle 0.12 
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Figure 4.7  Velocity distribution maps on the surface obtained from the simulations with URANS and LES. 
 

 

 

Figure 4.8 Maps of pressure field obtained from the simulations of the oxidation ditch with different 
models. 
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Figure 4.9 Location of the control section in the oxidation ditch. 
 

 

 
RANS 

 
URANS 

 
LES 

 

Figure 4.10 Velocity maps obtained with different models for the cross section located in the centre of the 
ditch. 
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RANS 

 

URANS 

 

LES 

 

Figure 4.11 Velocity maps obtained with different models for the cross-section through the bend, located 
at 4.8 m from the centre of the ditch. 

 

4.6.2 Energy Expenditure for Mixing  

The energy expenditure associated with keeping the fluid flowing inside the ditch and 

mixing its content is determined directly from the boundary condition inside the hydrojets 

volume that was set in RANS, URANS and LES as a volumetric momentum source. Thus, the 

power demand for mixing is defined as a product of momentum by volume integral of the 

velocity in the hydrojets, as follows: 

           (4.62) 
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where      is power demand for mixing in W,   denotes momentum source of the 

hydrojets and equals 450 N m-³.  

For each hydrojets configuration, power supplied to a fluid,   , to give its kinetic energy is 

computed as follows: 

   
 

 
  

 
  (4.63) 

where   is water density and   is average velocity and   is the flowrate. 

Energy efficiency was assessed as ratio of the power flow supplied for each hydrojets 

positions to power associated with their mixing performance. Table 4.4 shows the data set 

obtained from the fluid flow simulations with different turbulence models and for all 

hydrojets’ configurations. Regardless of the turbulence modelling, for the same 

momentum conditions in the hydrojets, those placed near the bottom demand for less than 

5% energy for mixing when comparing with mid-depth and near-surface configurations, but 

also yield lower average velocities, what affects overall mixing in the ditch. The power 

supplied to the fluid is also the lowest and constitutes 46% of the amount delivered to the 

near-surface configurations. Such configuration is most energy-intensive allowing use of 

only 24% of the total energy supplied. On the other hand, location of the hydrojets close to 

the surface improves fluid circulation and energy efficiency, which is in the range of 46-

52% and fluid circulation only, however in this case the DO profiles are not being 

considered. Therefore, when considering design guidelines aiming to prevent formation of 

the oxygen deficit or settling zones in the aeration tank, geometry scenario with the 

hydrojets fixed in the mid-depth of the ditch seems to be well justified choice, in terms of 

both, mixing and energy efficient performance allowing use of up to 38% of supplied 

power.  

The difference in energy efficiency obtained from all simulations with RANS, URANS and 

LES and for each specific placement of the hydrojets is 2-7%. Considering power 

expenditure for mixing this difference is up to 8%, and taking into account all hydrojets’ 

configurations, less than 13%. Therefore, the model that requires less computational 

resources, RANS, can be applied to analyse the effects of the geometry on the power 

demand and energy efficiency. 
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Table 4.4 Power demand and energy efficiency obtained with different turbulence models. 

Simulation Hydrojet placement 

                

(W) (%) 

RANS 

bottom 2.33 0.56 24 

surface 2.37 1.23 52 

middle 2.42 0.75 31 

 bottom 2.36 0.56 24 

URANS surface 2.35 1.23 52 

 middle 2.41 0.75 31 

 bottom 2.57 0.56 22 

LES surface 2.69 1.23 46 

 middle 2.56 0.97 38 

 

4.6.3 Modelling of the Boundary Layer 

As in the case of the fully developed turbulent flow in the open channel, fluid flow in the 

oxidation ditch is characterized by large velocity gradients in the neighbourhood of the 

solid wall boundaries, as can be seen from the maps in two regions of interest- cross-

sections through the ditch, shown in Figure 4.12.  

The focus of the hydrodynamics studies of the oxidation ditch was on the description of 

the phenomena related to inertia dominated regions. This section concerns the study of 

the turbulent shear flow near the oxidation ditch wall, based on determination of the wall 

unit parameter,   , and the wall shear stress,   , for several meshes while simulating 

fluid flow with different turbulence models. The objective of the simulations was also to 

assess the effect of different mesh resolutions and different turbulence models on the 

energy expenditure computation. All simulations consider hydrojets’ placement in the 

middle depth of the ditch. 

Boundary layer studies considered simulations of the single phase flow with the model 

accounting for less computational efforts, RANS with Reynolds stresses being modelled 
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with the following turbulence models: standard     with Standard Wall Functions; 

standard     with Enhanced Wall Treatment; standard    ; and RSM with Standard 

Wall Functions. 

 

 

 

Figure 4.12 Velocity maps in the control cross-sections considered in the near-wall region modelling.   

 

4.6.3.1 Grid Configuration in Near-wall Region Treatment 

As application of the     turbulence model with Standard Wall Functions to model 

viscosity-affected region is limited by mesh resolution. From this reason, grid 

independence test was performed for six meshes having different resolution and 

configurations (Table 4.1), aiming selection of the most robust mesh allowing for accurate 

presentation of the flow in the near-wall region. The section planes through the ditch 

channel (Figure 4.9) having different meshes considered in the simulations are shown in 

Figure 4.13. For each mesh, the distances of the first cell from the wall boundaries: 

bottom,    ; outer wall,    ; and inner wall    , correspond to the element sizes in the 

boundary zone, and are shown in the Table 4.5. 

 Within the selected control planes, located in the distance of 0.0 m and 4.8 m from the 

centre of the ditch, horizontal and vertical lines connecting opposite located wall points 

were defined, as can be seen in the Figure 4.14. The wall points were located in the 

middle length of each wall: bottom, inner and outer wall. For each point, the values of    

of first grid cell, adjacent to the wall and    were obtained directly from the CFD 
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simulations. The values of the mean streamwise velocity magnitude associated to the grid 

nodes along the lines were also obtained from the simulations. The values of    along the 

lines were determined following the Equation (4.52) for the constant value of the viscous 

velocity,   , assessed from the Equation (4.49).  For       the values of the    were 

calculated from the Equation (4.53), i.e. law of the wall, and for      , log-law of the 

wall, described by (4.54) was used.  

 

  

Mesh 1 Mesh 2 

  

Mesh 3 Mesh 4 

  

Mesh 5 Mesh 6 

Figure 4.13  Cross-section through the ditch channel geometry having different mesh. 
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Table 4.5 Element sizes of the meshes used in the CFD simulations of the boundary layer. 

Mesh nº 

Nº of mesh  

elements 

            
 

     m  

1 0.6 30.4×10-3 51.4×10-3 48.6×10-3  

2 1.7 25.0×10-3 25.0×10-3 25.0×10-3  

3 4.7 1.3×10-3 0.8×10-3 0.7×10-3  

4 4.7 1.1×10-3 0.8×10-3 0.7×10-3  

5 5.4 0.7×10-3 0.4×10-3 0.3×10-3  

6 5.6 6.3×10-3 6.3×10-3 6.2×10-3  

 

 

 

Figure 4.14 Determination wall points and lines within the control cross-sections in the oxidation ditch. 
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Figure 4.15 and Figure 4.16 show the velocity maps obtained from RANS with standard 

    model in the cross-sections through the central part and the bend of the oxidation 

ditch. It is clearly seen, that the grids of varying density, i.e. Mesh 3, 4 and 5, which are 

coarser in the flow core part and refined along the boundaries characterized by the 

presence of the large gradients. The algorithms incorporated into the simulation of the 

fluid flow in the volumes with coarser, structured mesh slightly refined along the wall 

boundaries, i.e. Mesh 1, 2 and 6, yield higher velocity values in the near wall zones, but do 

not account for wider-scale phenomena, such as transversal distribution of the jet plume.  

 As the velocity maps in left and right channel in the central part of the ditch correspond 

to each other, thus only one section was consider to study viscous interactions in the near-

wall region.  

Figure 4.17, Figure 4.18 and Figure 4.19 present the near-wall profiles of the mean 

streamwise velocity expressed as a function of a wall distance:          for the cross-

section in the central part of the ditch and through the bend. When comparing results 

obtained from the modelling of the wall region it is clear, that in case of dense meshes, 

independently to a certain extent on the number of computational cells, the finer the 

mesh at the considered boundaries, the higher accuracy of the reported results defining 

the flow in the near-wall region.  Refinement of the Mesh 3, 4 and 5 at the inner, outer 

and bottom wall boundaries yielding mesh element sizes smaller than 1 mm, lead to the 

wall units values in the considered cross-sections smaller than 10, therefore corresponding 

to the boundary sublayer. Mesh 5 allowed obtaining the lowest    being in the range from 

1 to 2, corresponding to the inner layer zone.  

Applicability of the     model coupled with Standard Wall Functions to simulate 

boundary layer is limited due its validity only for the region distanced from the wall (Salim 

and Cheach, 2009). Here, for the cells adjacent to the wall where determined    are 

smaller than 11, laminar stress-strain relationship is applied, so that       (Nezu and 

Rodi, 1986). As the     model uses always wall functions, it is generally not 

recommended to model boundary layer in flows with advert pressure gradients, as in case 

of bend region in the oxidation ditch (Figure 4.8). Due to that, the enhanced wall 

treatment should be applied to solve with high accuracy viscosity dominated flow in the 

cells adjacent to the wall. 

Structured grid of the highest total number of cells (Mesh 6), but distinctly coarser at the 

walls than Meshes 3, 4 or 5, revealed to be less efficient in terms of accuracy in 

representation of the results in the near-wall region, and yielding          
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corresponding to blending region between viscosity affected sublayer and inertia 

dominated turbulent flow. These values of wall units are sufficient to solve with high level 

of accuracy log-law region, considering lower limits of logarithmic law of the wall 

applicability, which is 30.  

For Mesh 1 and 2, the distance from the walls to the first node is in the range of       

   . Here, the viscous effects of the flow in the cells adjacent to the boundaries are 

neglected as in case of the finer mesh, however the log-law region is still solved with 

reasonable reliability. 

Table 4.6, Table 4.7 and Table 4.8 show the parameters related to the viscous wall region 

in the considered sections through the oxidation ditch. Different mesh properties and    

revealed to have influence on the computed wall friction coefficients, such as wall shear 

stress,   . The increase of the mesh resolution yields higher values of    and thus lower 

values of the streamwise velocity in the wall adjacent cells.  

When comparing the values of wall shear stress and the velocity parallel to the wall in the 

central section through the ditch it is observed, that the outer wall and the bottom are 

characterized by higher   , which depending on the mesh refinement along the boundaries 

ranges from 0.08 Pa for the outer wall to 0.02 Pa for the inner wall and for the average 

streamwise velocity ranging from 0.07 to 0.09 m s-1.  

Considering the cross-section through the ditch channel at the entrance to the bend, as 

the fluid flow through this section is accelerated by the hydrojets, the flow resistance at 

the walls increases and the boundaries affected by the highest shear stress of 0.2 Pa are 

both, inner and outer wall, with the average streamwise velocity of 0.1 m s-1. The lowest 

   in the range of 0.03 to 0.08 Pa is observed for the bottom wall, where the average 

streamwise velocity equals around 0.1 m s-1.  

Considering the cross-section following the bend, the shear stress in the low velocity zone 

of inner wall is the lowest and ranges from 0.003 to 0.01 Pa. The highest mean velocity of 

0.12 m s-1 was observed in the near-bottom zone, while the highest    values, up to 0.14 

Pa were observed for the exterior wall. 

According to the results obtained from the grid tests, Mesh 5 revealed to be the most 

accurate to represent the flow in both, viscous sublayer and inertia dominated flow core. 

One of the drawbacks is high computational cost, which is largely determined by resolution 

requirements, i.e. grid density and the time intervals (  ) defined in simulation set-up. In 

this work, the highest computational effort was required for Mesh 6, having the highest 

number of cells. On the other hand, in conditions of limited CPUs and computational 
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times, and with negligence of the detailed modelling of the laminar sublayer, application 

of adequate wall treatment functions make coarser Meshes 1 and 2 suitable to solve 

accurately both, log-law and fully developed turbulent flow regions.  

 

 

Figure 4.15 Velocity maps in the section planes for z= 0.0 m obtained for different meshes. 
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Figure 4.16 Velocity maps in the section planes for z= 4.8 m obtained for different meshes. 
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Figure 4.17 Streamwise mean velocity near-wall profiles in the central cross-section through the oxidation 
ditch. 
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Table 4.6 Viscous flow parameters in the near-wall region in the central cross-section through the 
oxidation ditch. 

Wall point Mesh nº    (Pa)    (m s-1) 

 

x = 1.50 m, y = 0.375 m, z = 0 m 

1 0.048 0.076 

2 0.061 0.090 

3 0.072 0.079 

4 0.079 0.083 

5 0.073 0.076 

6 0.063 0.092 

 

x = 0.125 m, y = 0.375 m, z = 0 m 

1 0.007 0.076 

2 0.008 0.090 

3 0.016 0.079 

4 0.019 0.083 

5 0.016 0.076 

6 0.009 0.092 

 

x = 0.75 m, y = 0 m, z = 0 m 

1 0.030 0.074 

2 0.038 0.084 

3 0.055 0.079 

4 0.058 0.079 

5 0.060 0.075 

6 0.042 0.089 
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Figure 4.18 Streamwise mean velocity near-wall profiles in the cross-section through the entrance to the 
bend. 
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Table 4.7  Viscous flow parameters in the near-wall region in the cross-section through the entrance to 
the bend. 

Wall point Mesh nº    (Pa)    (m s-1) 

 

x = 1.50 m, y = 0.375 m, z = 4.80 m 

1 0.081 0.100 

2 0.143 0.118 

3 0.142 0.125 

4 0.149 0.112 

5 0.156 0.121 

6 0.121 0.126 

 

x = 0.125 m, y = 0.375 m, z = 4.80 m 

1 0.089 0.100 

2 0.091 0.118 

3 0.189 0.125 

4 0.172 0.112 

5 0.208 0.121 

6 0.093 0.126 

 

x = 0.750 m, y = 0 m, z = 4.80 m 

1 0.025 0.090 

2 0.046 0.097 

3 0.038 0.074 

4 0.077 0.083 

5 0.051 0.070 

6 0.052 0.100 
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Figure 4.19 Streamwise mean velocity near-wall profiles in the cross-section through the exit from the 
bend. 
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Table 4.8  Viscous flow parameters in the near-wall region in the cross-section through the exit from the 
bend. 

Wall point Mesh nº    (Pa)    (m s-1) 

 

x = -1.50 m, y = 0.375 m, z = 4.80 m 

1 0.066 0.085 

2 0.082 0.102 

3 0.133 0.079 

4 0.140 0.083 

5 0.143 0.076 

6 0.096 0.104 

 

x = -0.125 m, y = 0.375 m, z = 4.80 m 

1 0.013 0.085 

2 0.009 0.102 

3 0.004 0.079 

4 0.009 0.083 

5 0.005 0.076 

6 0.003 0.104 

 

x = 0.750 m, y = 0 m, z = 4.80 m 

1 0.080 0.111 

2 0.084 0.125 

3 0.111 0.119 

4 0.117 0.120 

5 0.129 0.113 

6 0.090 0.132 

 

4.6.3.2 Turbulence Model in Near-wall Region Treatment  

In this section the impact of the turbulence model and associated wall treatment method 

on the boundary layer modelling was determined. As application of the turbulence models 

with Standard Wall Functions to model near-wall region is limited by mesh resolution, thus 

the most dense mesh, which enables lower values of    determined in the previous section 

of this study (4.6.3.1), Mesh 5, was used in the simulations.  
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As previously described and according to Figure 4.14, horizontal and vertical lines 

connecting opposite located wall points were defined within the control cross-section. The 

wall points were located in the middle length of each wall: bottom, inner and outer wall. 

For each point, the values of    of first grid cell adjacent to the wall and    were 

obtained directly from the CFD simulations, as well as the node values of the average 

streamwise velocity magnitude along the lines. The node values of    were determined 

following the Equation (4.52) for the constant value of the viscous velocity,   , assessed 

from the Equation (4.49).  For       the values of the    were calculated from the law 

of the wall described by Equation (4.53) and for      , log-law of the wall, expressed 

by Equation (4.54) was applied. 

Figure 4.20 and Figure 4.21 show the velocity maps obtained from RANS with different 

turbulence models in the cross-sections through the central part and the bend of the 

oxidation ditch. It is clearly seen, that both models using Enhanced Wall Treatment, i.e. 

    and     yield almost identical velocity distribution in the central part of the ditch, 

as can be seen in Figure 4.20. The different maps were obtained for models based on 

Standard Wall Functions, the     and RSM. Here the differences in the average velocity 

distributions and the presence of the vortices in the flow core obtained from RSM are due 

to the model completeness and accuracy in the direct solution with 7-equation approach of 

the small scales, i.e. Reynolds stresses, which in     approach are only modelled with 

two equations.  

For the cross-section through the entrance and exit of the bend, the maps obtained with 

both     models revealed the same tendency, with slight differences resulting from the 

fact, that while the model with Standard Wall Function solves directly the turbulent flow 

core, Enhanced Wall Treatment splits the solved flow domain on wall-affected region and 

fully turbulent region. The difference in maps obtained with the      and     model 

are due to poor sensibility of the      model to the streamline curvature and adverse 

pressure gradients, which occur in the ditch bend zone, as it was shown in Figure 4.7 and 

Figure 4.8. Contrary to the 2-equation models, the RSM model accounts for many effects, 

i.e. streamline curvature, rotation, and rapid changes in strain rate, thus it has greater 

potential to give accurate predictions for complex flows, however, as in case of standard 

    model, it is still based on the standard wall treatment approach, and due to that, 

both models are primary valid for turbulent core flows. Thus the velocity maps obtained 

from RSM (Figure 4.20 and Figure 4.21) are comparable with the model which accounts for 

the actual flow hydrodynamics, i.e. LES, as can be seen when comparing these results with 

those in Figure 4.10 and Figure 4.11.  
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When comparing the profiles of average streamwise velocity in function of wall distance in 

all cross-sections through the ditch, which are presented in Figure 4.22, Figure 4.23 and 

Figure 4.24 it is also clear, that the lowest values of          were obtained with the 

    turbulence model. This model is applied throughout the boundary layer to solve 

directly viscous flow region, thus it requires sufficient near-wall mesh resolutions. The 

accuracy of the model is increased as the cell sizes are closer to     , which enables to 

capture detailed flow features in the inner layer during computation.  

The values of wall    obtained from other models,     and RSM with the standard near-

wall treatment coupled to them, are almost identical and slightly higher, in the range of 2-

4, due to use of wall functions instead of direct solution flow in near wall cells. 

In a few cases, for lower velocities close to inner wall or the bottom,      model with 

Enhanced Wall Treatment yields values of    close to those obtained with    . This is 

due to application of two layer approach, which divides whole domain on viscosity affected 

near wall region and inertia dominated turbulent flow region. For the accurately inflated 

mesh in the wall region with    close to 1, application of two layer model allows that the 

viscosity-affected near-wall region is completely resolved all the way to the viscous 

sublayer, as well as turbulent flow far from the wall.  

When comparing the values of wall shear stress and the average streamwise velocity in the 

viscous wall region for different section planes through the ditch, shown in Table 4.9, 

Table 4.10 and Table 4.11 it is clear, that     and      model with Enhanced Wall 

Treatment yield almost identical values. The differences in values of streamwise velocities 

and    obtained with     and RSM with wall functions are also minor. The    values are 

only slightly higher than those obtained with other turbulence models but the wall shear 

stress in many cases is more than 50% higher. Therefore considering suitability of the all 

models to represent the flow close to the wall, the validity of     and      model with 

Enhanced Wall Treatment was assumed.  

In the middle section plane through the straight ditch channel, the highest    is for the 

outer wall and equals 0.06 Pa, while for the inner wall is almost zero. The values of    are 

almost constant in the cross-section and equal 0.1 m s-1. The section through the entrance 

to the ditch bend is characterized by the highest shear stress, which on the inner and 

outer wall is 0.1 Pa. The average velocity in the section at the inner and outer wall equals 

0.14 m s-1
 and decrease in the middle of the channel towards to 0.09 m s-1. After passing 

the bend, the higher    of 0.1 Pa is for the bottom and outer wall, while on the inner wall 
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is almost zero. The highest    of 0.13 m s-1 are in the middle of the channel, while close to 

the walls decrease to around 0.1 m s-1 is observed. 

In this study, the simulation of the fluid flow within the ditch using fine mesh allowing for 

detailed computation of the quantities in the near wall region accounts for relatively high 

computational cost and long computational times involved, that for 7-equation RSM are the 

highest. 

4.6.3.3 Surface Roughness 

The concept of existence of laminar sublayer in turbulent boundary layer explains the 

behaviour of surface roughness, which is a measure of the wall texture. If the average 

roughness height,   , is smaller than the height of the laminar sublayer, it can be said that 

the roughness elements are completely submerged in the viscous near-wall region. As the 

default value of wall   defined in the boundary conditions is zero, thus in such conditions, 

the roughness has no effect upon the inertia dominated flow region extending outside the 

laminar sublayer and the surface is defined as hydraulically smooth (Chadwick and Morfett, 

1998; Chow, 1959). 
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    with Enhanced Wall Treatment 

 

    

 

Reynolds Stress Model with Standard Wall Functions 

 

Figure 4.20 Velocity maps obtained from RANS with different turbulence models for the ditch cross-
section at z= 0 m. 
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Reynolds Stress Model with Standard Wall Functions 

 

Figure 4.21 Velocity maps obtained from RANS with different turbulence models for the ditch cross-
section at z= 4.8 m. 
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Figure 4.22 Streamwise mean velocity near-wall profiles in the central cross-section through the oxidation 
ditch obtained with different turbulence models. 
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Table 4.9 Viscous flow parameters in the near-wall region in the central cross-section through the 
oxidation ditch obtained with different turbulence models. 

Wall point Model    (Pa)    (m s-1) 

 
x = 1.50 m, y = 0.375 m, z = 0 m 

    with SWF 0.073 0.076 

    with EWT 0.057 0.086 

    0.057 0.087 

RSM with SWF 0.050 0.073 

 
x = 0.125 m, y = 0.375 m, z = 0 m 

    with SWF 0.016 0.076 

    with EWT 0.003 0.086 

    0.003 0.087 

RSM with SWF 0.029 0.073 

 
x = 0.75 m, y = 0 m, z = 0 m 

    with SWF 0.060 0.075 

    with EWT 0.030 0.078 

    0.031 0.080 

RSM with SWF 0.051 0.070 
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Figure 4.23 Streamwise mean velocity near-wall profiles in the cross-section through the entrance to the 
bend obtained with different turbulence models. 



4 CFD Simulations of the Oxidation Ditch 

222 

 

Table 4.10 Viscous flow parameters in the near-wall region in the cross-section through the entrance to 
the bend obtained with different turbulence models. 

Wall point Model    (Pa)    (m s-1) 

 

x = 1.50 m, y = 0.375 m, z = 4.80 m 

    with SWF 0.156 0.121 

    with EWT 0.097 0.134 

    0.100 0.135 

RSM with SWF 0.143 0.151 

 

x = 0.125 m, y = 0.375 m, z = 4.80 m 

    with SWF 0.208 0.121 

    with EWT 0.124 0.134 

    0.126 0.135 

RSM with SWF 0.245 0.151 

 

x = 0.750 m, y = 0 m, z = 4.80 m 

    with SWF 0.051 0.070 

    with EWT 0.020 0.081 

    0.021 0.083 

RSM with SWF 0.049 0.068 
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Figure 4.24 Streamwise mean velocity near-wall profiles in the cross-section through the exit from the 
bend obtained with different turbulence models. 
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Table 4.11 Viscous flow parameters in the near-wall region in the cross-section through the exit from the 
bend obtained with different turbulence models. 

Wall point Model    (Pa)    (m s-1) 

 

x = -1.50 m, y = 0.375 m, z = 4.80 m 

    with SWF 0.143 0.076 

    with EWT 0.093 0.087 

    0.095 0.088 

RSM with SWF 0.123 0.082 

 

x = -0.125 m, y = 0.375 m, z = 4.80 m 

    with SWF 0.005 0.076 

    with EWT 0.002 0.087 

    0.002 0.088 

RSM with SWF 0.011 0.082 

 

x = 0.750 m, y = 0 m, z = 4.80 m 

    with SWF 0.129 0.113 

    with EWT 0.089 0.127 

    0.090 0.128 

RSM with SWF 0.097 0.093 

 

4.6.4 Energy Expenditure for Different Mesh Properties and Turbulence Models 

The energy expenditure associated with keeping the fluid flowing inside the ditch and 

mixing its content is determined directly from the boundary condition inside the hydrojets 

volume that was set in RANS as a volumetric momentum source. The simulations 

considered the hydrojets configuration in the mid-depth of the ditch. Power demand was 

computed taking into consideration various mesh configurations and different turbulence 

models. The formulas used to determine power demand for mixing,     , and power 

supplied to the fluid,   , were described in section 4.6.2 with the Equation (4.62) and 

(4.63). Energy efficiency was determined as the ratio of    to     .     
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Table 4.12 shows the data set obtained from the fluid flow simulations with different 

turbulence models and for varying mesh cells numbers. For comparison, the values of 

power of the hydrojets, obtained with transient models, URANS and LES, were also shown. 

It is seen that with increase of the grid density and the refinement on the wall boundaries, 

the power for mixing increases due to the increase of the accuracy in flow solution. 

Nonetheless, the difference between the highest power demand value obtained for Mesh 4 

and Mesh 5, and the lowest value, obtained for the coarsest grid 1 is of 5%.  

Considering turbulence model involved in computations of fully developed flow region and 

viscosity affected boundary layer, increase of the power demand for the hydrojets zone 

with the solution accuracy was observed. Thus the highest value of power demand was 

obtained for     turbulence model, and the lowest for     with Enhanced Wall 

Treatment and the difference in these values is of 5%. Nonetheless, when comparing these 

values with the results obtained with unsteady-state models, as far as for URANS the 

values of power and energy expenditure are equal to those obtained with RANS, whereas 

LES yield the higher power numbers, only 2% lower than those obtained with     model. 

The values of power demand for mixing obtained for all grid configurations and turbulence 

models used in the simulations are shown in Figure 4.25. 

On the other hand when comparing the data presented in Table 4.12 it is clear, that 

average velocity of the fluid has large impact on values of power supplied to the fluid and 

thus on energy efficiency of the oxidation ditch system. Here, regardless of the turbulence 

model and mesh density, increase of the average velocities by 10%, yields 25% increase of 

power of the fluid, resulting in 6-8% increase of energy efficiency. Therefore the energy 

efficiency computed for the lowest velocity of 0.10 m s-1, obtained from simulations with 

standard     model using coarser mesh and RSM model using refined mesh, is only 23%. 

At the same time, the highest average velocity of 0.12 m s-1, obtained with RANS and 

standard     model using the finest grid, as well as with LES and much coarser grid, 

yielded energy efficiency of 39%. Nonetheless, seven out of eleven cases of simulations 

with RANS and URANS and using both, coarse and refined in different algorithms meshes 

yielded the average velocity of 0.11 m s-1 and energy efficiency of 31%, which was 

accepted as the most reliable value for further assessments.  
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Table 4.12 Power demand and energy efficiency obtained from RANS simulations with different turbulence 
models and for different mesh configurations. 

Mesh nº 

Nº of mesh 
elements 

 Turbulence model 

                   

     (m s-1) (W) (W) (%) 

6 5.6 RANS     with SWF 0.12 2.49 0.97 39 

5 5.4 RANS     with SWF 0.11 2.55 0.75 29 

4 4.7 RANS     with SWF 0.11 2.55 0.75 29 

3 4.7 RANS     with SWF 0.11 2.49 0.75 30 

2 1.7 RANS     with SWF 0.11 2.42 0.75 31 

1 0.6 RANS     with SWF 0.10 2.42 0.56 23 

5 5.4 RANS     with EWT 0.11 2.49 0.75 30 

5 5.4 RANS     0.11 2.61 0.75 29 

5 5.4 RANS  RSM with SWF 0.10 2.51 0.56 22 

2 1.7 URANS     with SWF 0.11 2.41 0.75 31 

2 1.7 LES Smagorinsky’s SGS 0.12 2.56 0.97 38 
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Figure 4.25 Power demand for mixing obtained from RANS, URANS and LES simulations with different 
turbulence models and for different mesh configurations. 

 

4.6.5 Macromixing 

In this work, CFD is used as a tool for assessment of the macromixing within the oxidation 

ditch. Particle tracking was used to determine the distribution of residence times in the 

oxidation ditch for the different turbulence models: RANS and URANS with standard     

turbulence model and LES with Smagorinsky’s SGS model. The simulations consider the 

hydrojets located in the mid-depth of the ditch. Due to large efforts in terms of RAM and 

CPU usage, Mesh 1 with 600 thousand cells was used in the simulations, due to its 

suitability to represent with reliable accuracy log-law and fully developed turbulent flow 

regions. The RTD was computed from the simulation of a pulse injection of 10 000 particles 

introduced into the ditch system through the inlet in a very short period, 10-3 s. The flux of 

the particles exiting the oxidation ditch through the outlet was recorded as function of 

flow time.  
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The computation of macromixing, and thus RTD of the fluid particles is strongly dependent 

on the turbulence model involved in the flow simulation. This can be seen from the RTD 

computed using the three models and shown in Figure 4.26. The average residence time of 

fluid in the tank,   is 4 h, i.e. 14400 s. The      function, presented here as the RTD 

curves, refer only to the first 4 hours, due to the high computational times involved, 

during which the most dynamic changes in the ditch outlet were registered. The mean 

travel time of the flow across the entire ditch is approximately 200 s, thus the average 

number of turns of fluid particles within the ditch before exiting is around 70. For RANS 

and URANS the peaks of the RTD at the early time instants are associated with 

a considerable amount of particles exiting in the first two turns. The results with RANS and 

URANS suggest that the hydrojets caused an intense vertical segregation of the flow, with 

strong channelling from inlet to outlet. The particles not being transported to lower 

regions of the ditch in the first turns render usage of a small percentage of the ditch 

volume. The particles that are transported to the lower part of the ditch will be trapped 

there for long time, yielding a long tail in the RTD. However, the RTD plot obtained from 

LES does not show the peaks related with huge amounts of particles exiting in the first 

turns. This is due to the convective patterns in LES that promote transport to the lower 

regions of the ditch, and thus a greater fraction of the actual ditch volume is used.  

The comparison of results from the different turbulence models is clear when the 

percentage of total injected particles exiting during the first 800 s is considered: 30% for 

RANS, 20% for URANS and 5% for LES. For a flow time equal to the mean hydraulic 

retention time, these values are 32% for RANS, 31% for URANS and 24% for LES, 

respectively. As seen from these figures, the turbulence model applied in the CFD 

simulations has a strong impact on the advection patterns taken by the particles in the 

oxidation ditch.  
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Figure 4.26 RTD curves obtained from oxidation ditch simulations with RANS, URANS and LES. 
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ASM1 has been widely employed to simulate and model wastewater treatment plants using 

ideal reactor models for its implementation. The ideal reactor models involved in ASM, one 

or a cascade of CSTRs assume a spatial invariance of the components concentration within 

the reactor, while in the PFR model, an axial dispersion term is rather sporadically enabled 

(Makinia and Wells, 2000a, b; Stamou, 1997). These simplified reactor models fail to 

represent the actual reactor flow dynamics, which is thus not consider on the results of 

the ASM1. The results obtained from ASM simulations may differ significantly from those 

from real scale units, particularly regarding the actual dissolved oxygen profiles along the 

ditch, which have a clear impact on the nutrient removal (Pereira et al., 2009). Even small 

changes in the horizontal velocity, ignored by ASM models, affect distinctly the oxygen 

profiles along the ditch and thus the nitrification process (Abusam et al., 2002; Gillot and 

Héduit, 2000). According to that, RTD curves and the hydrodynamics characteristics 

obtained from the CFD simulations of the oxidation ditch can be used to generate 

a suitable reactor model, i.e. in terms of number of CSTRs in series, recirculation rate and 

the flow pattern between each of the reactors, where the ASM can be implemented (Le 

Moullec et al., 2010b). 

4.7 Conclusions 

The hydrodynamics studies of the oxidation ditch concerned simulation of the fluid flow 

with different turbulence models. Regardless of the hydrojets placement, the same overall 

distribution of the flow patterns was obtained from RANS and URANS, where the hydrojets 

create an average flow with great stratification inside the volume of the ditch, 

characterized by poor vertical transport. In LES, the presence of eddies change the 

hydrojet plume into a sinuous path evolving dynamically throughout the ditch, promoting 

convective transport between the fluid layers.  

Considering geometry, hydrojets placed at the surface exhibit average velocity values up 

to 30% larger than the other configurations resulting in higher energy efficiency of the 

system up to 52%, however they lead to formation of the extended dead zones near the 

ditch bottom, which may be related to the occurrence of the DO deficit zones. On the 

other hand, the hydrojets placed near the bottom demand for less than 5% energy for 

mixing than mid-depth and near-surface configurations, but also yield lower average 

velocities, what affects overall mixing in the ditch and decrease energy efficiency to 22%. 

Thus, geometry scenario with the hydrojets fixed in the mid-depth of the ditch was 

selected as the most adequate in terms of energy efficient mixing. The difference in the 

energy efficiency and power demand for mixing obtained from all simulations with RANS, 

URANS and LES, is less than 8 % for the same hydrojet configurations, thus for geometry 
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and power demand studies, the model which requires less computational resources, RANS, 

should be used.  

In the hydrodynamic studies of the near-wall region, the grids refined at the boundaries, 

revealed to be the most accurate to represent the flow in both, viscous affected region 

and inertia dominated flow core. It was shown, that      with Enhanced Wall Treatment 

and     turbulence models enable with almost identical accuracy to solve boundary 

layer with the appropriate refined mesh. Nonetheless, the     and RSM turbulence 

models coupled with the Standard Wall Functions are unsuitable to represent the flow in 

the wall adjacent cells, through the application of the bridging algorithms, adapting 

parameters solved at the viscous wall regions to the log-law region. As far as the flow in 

the viscosity-affected layer can be neglected, standard     model is suitable to solve 

accurately both, log-law and fully developed turbulent flow regions with distinctly coarser 

meshes.  

Considering energy expenditure in the oxidation ditch, increase of the grid density yields 

higher power demand for mixing, nonetheless the differences in values obtained for the 

finest and the coarsest grid is less than 5%. Furthermore, considering the impact of the 

model and near-wall treatment, power demand obtained for the hydrojets zone increases 

with the solution accuracy. Thus the highest value was obtained for     turbulence 

model, which is only 2% higher than for LES, and 5% higher than the one computed with the 

    model with Enhanced Wall Treatment. According to that, for the same mesh and 

geometry conditions (hydrojet placement) the model which accounts for less energy and 

computational efforts, namely RANS with standard     turbulence model, is appropriate 

for energy computing. On the other hand, regardless of the mesh resolution and 

turbulence model used, the power in the fluid flow delivered to the oxidation ditch and 

thus energy efficiency of the system depend on the average velocity of the fluid. It was 

shown, that for the considered hydrojets’ configuration, increase of the average velocity 

by 10% yields 6 to 8% increase of energy efficiency of the system.  

Macromixing determination is a useful tool to describe the actual reactor performance. 

However, this work shows the limitations of some approaches to the computation of the 

RTD. The RTD simulations based on the average flow field, RANS and URANS, lead to 

overestimation of channeling effects. The flow dynamics underlies mixing at all scales, 

both macro- and micro-, and thus this should always be accounted for. Furthermore, is has 

been shown that CFD data for ASM must account with the dynamics components of the 
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flow, thus LES simulations, which demand for more computational resources should be 

used for some specific purposes. 
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5 New Designs and Energy Efficiency Evaluation  

5.1 Introduction  

This chapter is divided in two main sections: in the first section, a review on power 

demand by different aeration devices is given, while the second section refers to 

determination of overall energy expenditure for proposed activated sludge system.   

The review aims to present power demand assessment for aeration systems in wastewater 

treatment technology. Typical values of theoretic and actual daily oxygen and air demand 

per capita are given. Furthermore, depending on the source of oxygen and the type of 

aeration system, i.e. surface aeration or diffused aeration units, daily power and energy 

consumption per habitant is determined. Additional energy requirements by these systems 

due to operation of blowers and oxygen generators are also assessed.       

Second part of the chapter concerns detailed assessment of energy expenditure in the 

proposed oxidation ditch system, aerated with slot hydrojets and external aeration unit – 

Pressurized Aeration Chamber (PAC). Overall energy expenditure considers computations 

of power demand on aeration, mixed liquor recirculation and mixing of the ditch content. 

Firstly, actual oxygen and air requirements for proposed PAC unit are assessed. Power 

demand by blower is determined taking into account actual pressure losses in designed air 

piping system. Additional computations of energy expenditure by oxygen generation in 

Vacuum Pressure Swing Adsorption (VPSA) process are also made. As PAC performance is 

connected with mixed liquor pumping and recirculation, thus power demand by pump is 

also determined, considering two hydrojets types: multi-slot injector and slot injector. 
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Finally, power demand on mixing of the oxidation ditch volume, and thus power by 

hydrojets is given.       

5.2 Oxygen Demand for Wastewater Aeration 

Aeration in most of the suspended growth activated sludge systems, such as an oxidation 

ditch, are designed to achieve carbonaceous Biochemical Oxygen Demand (    ) removal 

and nitrification. Considering long solid retention times in the oxidation ditch system, 

where nitrification and biodegradation occur simultaneously, oxygen requirement for 

effective substrate conversion and endogenous respiration can be assessed on the basis of 

the mass balance using influent Biochemical Oxygen Demand (   ) concentration and the 

amount of the biomass wasted from the system per day. Typically, the values of     in 

the municipal wastewater depend upon the wastewater strength, and thus on water 

consumption, which varies from country to country, from rural to urban areas and from 

city to city. Typical value of the 5-day Biochemical Oxygen Demand (    ) daily mass 

loading per capita for medium strength and average quality domestic wastewater is 

54.0 gO2 (capita∙d)-1 (Tchobanoglous et al., 2003). The value of per capita total 

biochemical oxygen demand (        ) loading per day is computed from the following 

formula: 

         
    

 
 (5.1) 

where the conversion factor   from      to          total is 0.68.  

Thus the           mass loading is 79 gO2 per capita and day. 

Some amount of the     present in the influent to the aeration tank is incorporated into 

the activated sludge cells. Kinetic relationship between secondary biomass production and 

the solids retention time (SRT), defined also as the sludge age or the mean cell residence 

time (MCRT) can be written as follows:  

     
 

      
 (5.2) 

where      is observed biomass yield coefficient expressed in g     produced per g      

of substrate removed;   is the synthesis yield coefficient, g     per g     ;     denotes 

mean cell residence time, d; and    is the endogenous decay coefficient, d-1.  
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The value of   usually ranges from 0.3 to 0.7 and    for      is around 0.06 (Quasim, 

1999; Tchobanoglous et al., 2003). Thus, the values   and    equal 0.6 and 0.06, 

respectively were assumed for further computations, yielding: 

     
   

         
  

If the cell residence time,   , ranges from 5 to 15 d, thus      ranges from 0.46 to 

0.32 g     per g     .  

Considering average values of per capita flow rate    of 0.15 to 0.25 m3 d-1 (Tchobanoglous 

et al., 2003) the     inflow concentration varies from 216 to 360 g m3. For the oxidation 

ditch process, organic substrate removal efficiency is up to 99% (EPA, 2000), yielding total 

mass removed equal approximately to the daily loading per capita. Therefore, the cells 

production,   , is given by following formula: 

                            (5.3) 

where    net waste activated sludge daily production, g VSS  d-1. 

Therefore, the theoretical oxygen requirement,       , is lowered from the      by 

a quantity incorporated into cells mass (Tchobanoglous et al., 2003), in accordance to the 

following assumption (Karia and Christian, 2006; Tchobanoglous et al., 2003): 

Oxygen required (kg d-1) = total mass of     removed (kg d-1) – 1.42 ∙ mass of biomass 

(   ) wasted (kg d-1). 

In accordance with the Equation (5.3), this interrelationship can be written as: 

       
    

 
              

 

 
       (5.4) 

where         is theoretical oxygen demand expressed in g d-1 and 1.42 is stoichiometric 

conversion factor to obtain quantity (kg) O2 required for ultimate oxidation of 1 kg of the 

cells.  

Thus we have: 

           
 

    
        

According to the above, the quantity of consumed oxygen ranges from: 55 to 62 gO2 d
-1.  
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5.2.1 Actual Air and Oxygen Demand 

Knowing the total oxygen requirement, the determination of the quantity of atmospheric 

air that must be delivered to the system must consider the percentage of oxygen in air 

that is 23.2%. Thus we have: 

     
      

     
 (5.5) 

where      denotes air requirement expressed in g d-1.  

Thus, the oxygen demand corresponds to air mass from 237 to 267 g per day. To assess      

expressed as a volumetric flow rate, the air density at the sea level and the temperature 

of 20 °C must be considered in the Equation (5.5) 

     
      

             
 (5.6) 

where         is 1.2 kg m-3. Here, the air demand is of around 0.2 m3 d-1. 

Daily demand for the aeration systems supplied by oxygen depends on the actual purity of 

the oxygen gas generated in VPSA process, which in this work is assumed 93%. For pure 

oxygen system the Equations (5.5) and (5.6) can be written as: 

   
 

      

    
 (5.7) 

and  

   
 

      

           
 (5.8) 

where        is 1.33 kg m-3.  

The oxygen demand is 59 to 67 g d-1, equivalent to 44 to 50 L d-1. The data set presenting 

daily air/oxygen demand for considered mean cell retention time is shown in Table 5.1. 
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Table 5.1 Daily air/oxygen demand determined for mean cell residence time from 5 to 15 days.  

                  
 

d (g d-1) (g d-1) (m3 d-1) (g d-1) (m3 d-1) 

5 55 237 0.20 59 0.04 

15 62 267 0.22 67 0.05 

 

5.2.2 Actual Air/Oxygen Demand for Diffused Aeration 

For diffused air devices supplied either by atmospheric air or pure oxygen, the actual 

demand need to account for      (Karia and Christian, 2006), and thus the formulas 

described by Equations (5.5) - (5.8), will be: 

         
    

    
 (5.9) 

and 

        
   

    
 (5.10) 

Typical values of      for various types of devices within the group of diffused aerators 

commonly used in wastewater treatment technology are described in detail in Chapter 2, 

Section 2.2.3.4. For the purpose of the actual air and oxygen demand assessment, the 

average values of      for each group of devices will be used.  

The data set obtained for porous and nonporous diffusers and jet aerators is presented in 

Table 5.2. When comparing the data obtained for different devices it is seen that the 

highest daily demand values are for the devices characterized by the lowest     , and 

thus nonporous diffusers, accounting for 1.4 to 1.6 kg of air, equivalent to 0.3 to 0.4 kg of 

oxygen. Porous diffusers- devices having highest      yield lowest oxygen demand which 

is 0.2 kg d-1 or 0.8 to 0.9 kg d-1 of air. Jet aerators are considered intermediate group with 

daily oxygen demand of 0.3 kg, equivalent to air demand of 1.1 to 1.2 kg d-1.   
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Table 5.2 Actual air/oxygen demand for various aeration devices. 

Device 

                         

(%) (d) (g d-1) (m3 d-1) (g d-1) (m3 d-1) 

Porous 

diffusers 30 

5 790 0.66 197 0.15 

15 890 0.74 223 0.17 

Nonporous 

diffusers 17 

5 1394 1.16 347 0.26 

15 1571 1.30 394 0.29 

Jet 

aerators 22 

5 1077 0.89 268 0.20 

15 1214 1.01 305 0.23 

 

5.3 Energy Expenditure in Aeration Systems 

5.3.1 Surface Aerators 

Until recently, aeration of the oxidation ditch was linked only with mechanical devices, 

namely horizontal brush rotors or surface low speed aerators. Typically the power 

consumption for mechanical aerators, assessed for the standard conditions and in clean 

water, is expressed in units of the oxygen transfer rate (    , which ranges from 1.2 to 

2.8 kgO2 kW-1 h-1 equal to 29 to 72 gO2 W-1d-1 (Tchobanoglous et al., 2003). Usually, for 

design purposes, standard performance data obtained for the tap water have to be 

adjusted to the field conditions, thus wastewater, by using Eckenfelder and Ford equation 

of the following form: 

                        (5.11) 

where:    is power demand of mechanical aeration unit in field conditions;     is power 

demand by aerator in standard pressure and temperature conditions and in clean water;   

is ratio of     of wastewater to     of clean water;    is correction factor for field 

conditions salinity; and   is operating temperature.  
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The correction factor,    is computed from the following formula: 

   
            

    
 (5.12) 

where    is the salinity – surface tension factor usually equal to 1,        is the oxygen 

saturation at given temperature and altitude in clean tap water,    is operating oxygen 

concentration.  

The average field conditions used in to determine    are: operating temperature    equals 

15 °C; altitude – 150 m;   for the group of mechanical aerators is 0.85;     is 0.9; and the 

operating DO concentration is 2.0 mg L-1.  

Therefore, the power demand by mechanical aerators ranges from 0.5 to 1.5 kgO2 kW-1 h-1 

equal to 12 to 36 gO2 W
-1d-1 (Tchobanoglous et al., 2003).  

Knowing the actual daily oxygen demand that ranges from 55 to 62 gO2 per habitant per 

day, power consumption per capita and day is computed as follows: 

  

  
    

  
 

(5.13) 

where   is power consumption in kW. 

Thus, power consumption per habitant per day in activated sludge with surface aerators 

ranges from 1.5 to 5.2 W.  

To express the power demand in energy units, the following conversion shall be made: 

             (5.14) 

where      is hourly energy demand per habitant, in kWh, and   is power demand in kW. 

Thus, the daily energy demand per habitant will be: 

              (5.15) 

where      is daily energy demand per capita in kW d and   is power demand in kW.  

Therefore, for mechanical aerators, the energy consumption is 5.5 to 18.6 kWh that gives 

132 to 446 kWd. 
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5.3.2 Diffused Aeration Systems 

5.3.2.1 Air Piping 

Air piping system in wastewater treatment technology consists of mains, valves, meters, 

and other fittings such as elbows and tees which convey compressed air from blowers to 

the diffused air device (Tchobanoglous et al., 2003). In engineering practice it is assumed, 

that the air pipeline should be sized so that the total loss in headers and manifolds is small 

when compared with the losses in the diffusers (i.e. DWP). Furthermore, when the pipes 

are oversized, the aeration system is difficult to control, while in case of pipes of too small 

diameter, potential headloss forces application of higher capacity blowers. From this 

reason determination of the headloss and thus, the pressure drop in air piping system is 

used to assess blower power requirement. Nonetheless, this section focus on the 

evaluation of the energy expenditure by various aeration systems typically used in the 

oxidation ditches without deeper insight into air piping system, and thus few “typical” 

design data to determine blower power requirements will be also arbitrarily assumed. 

5.3.2.2 Power Demand by Blower - Air System 

For diffused aeration systems, delivered power of blowers is computed from the adiabatic 

compression equation, expressed as: 

  
   

            
  

  

  
 
     

    (5.16) 

where   is the power requirement for each blower in kW,   is required air mass flow rate 

in kg s-1,   is universal gas constant for air and  = 8.314 kJ kmol-1K-1, and    is the inlet 

temperature in K,   is the constant and equals 0.283 for air,    and    are absolute 

pressures upstream and downstream (inlet, outlet) of compressor in atm,    is blower 

efficiency, usually in the range 70-90%, and    is motor efficiency, usually in the range of 

90–94%. 

For specific real scale aeration tank, computing power demand for blower requires proper 

blower sizing by prediction of the discharge pressure to give accurate values. Design 

discharge pressure of the blower,   , is usually calculated for the worst operation scenario 

in the elevated temperatures typical for the hot summer day (Tchobanoglous et al., 2003) 

and the highest air flow requirements. Therefore it is assumed that the discharge pressure 

have to compensate: head losses for air piping from the blower location to the submerged 

aerators considering high pipe roughness, partially throttled valves and fittings; head 

losses due to DWP of diffusers increased by additional losses due to device ageing 
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(progressive fouling and scaling); safety factor and overpressure preventing blower surging. 

For such operating conditions, the assumed pressure head is 10.0 m H2O equivalent to the 

compressor discharge pressure of 2.0 atm, representing typical value for the wastewater 

treatment installations (EPA, 2010; Quasim, 1999). Here, the inlet design temperature 

considered equals typical summer air temperature of 27°C (300 K), and the blower inlet 

pressure equals to the atmospheric pressure, thus 1.0 atm. Furthermore, blower efficiency 

of 70% and motor efficiency of 92% were used in power demand computation. Thus we 

have: 

  
           

                     
  

   

   
 
     

     

Finally we obtained: 

        (5.17) 

where    denotes the air flow ranges equivalent to actual air demand in kg s-1, presented 

in Table 5.2.  

The power requirements per habitant will lie on the following intervals: 0.9 – 1.0 W for 

porous diffusers; 1.6 – 1.8 W for nonporous diffusers; and 1.3 – 1.4 W for jet aerators. To 

express the power demand in energy units per capita, i.e. in kWh, the Equation (5.14) was 

used. The data set presenting power and energy demand by blower considering different 

diffused air devices is shown in Table 5.3.  
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Table 5.3 Power and energy demand by blowers for different diffused aeration systems. 

Device 

            

(d) (kg s-1) (W) (kWh) 

Porous 

Diffusers 

5 9.1∙10-6 0.91 3.29 

15 1.0∙10-5 1.03 3.71 

Nonporous 

Diffusers 

5 1.6∙10-5 1.61 5.81 

15 1.8∙10-5 1.82 6.54 

Jet 

Aerators 

5 1.2∙10-5 1.25 4.49 

15 1.4∙10-5 1.40 5.06 

 

5.3.2.3 Power Demand by Blower - Pure Oxygen System 

Typical outflow pressures of oxygen produced in the Vacuum Pressure Swing Adsorption 

(VPSA), which are summarized in Chapter 2, Table 2.9 are low, therefore in aeration 

systems requiring higher operating pressures, energy efficient oxygen compressor built-in 

the unit is considered. In such cases it can be assumed, that if pure oxygen instead of 

atmospheric air is used, the power demand by blower needed for aeration reduces to 20%. 

Therefore energy consumption by compressor per capita drops to: 0.2 W for porous 

diffusers; 0.3-0.4 W for nonporous diffusers; and 0.3 W for jet aerators. The data set with 

computed values of power demand and energy expenditure per habitant is presented in 

Table 5.4. 
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Table 5.4 Power and energy demand by blowers for different diffused aeration systems supplied by pure 
oxygen. 

Device 

            

(d) (kg s-1) (W) (kWh) 

Porous 

diffusers 

5 2.3∙10-6 0.18 0.66 

15 2.6∙10-6 0.21 0.74 

Nonporous 

diffusers 

5 4.0∙10-6 0.32 1.16 

15 4.6∙10-6 0.36 1.31 

Jet 

aerators 

5 3.1∙10-6 0.25 0.90 

15 3.5∙10-6 0.28 1.01 

 

5.3.2.4 Power Demand for Oxygen Generation  

For AS systems aerated with high purity oxygen additional power demand for the oxygen 

generation in VPSA process must be considered. The typical values of power expenditure 

by commercial VPSA units were widely presented in Chapter 2, Section 2.4.5 

(Determination of the Process Parameters) of the following dissertation. Assuming, that 

the energy requirements for oxygen production in VPSA unit is 0.350 kWh per Nm3, the 

power demand    
 was computed from the following formula:  

   
            (5.18) 

where       is oxygen volume in standard pressure and temperature conditions, determined 

from the Combined Gas Law: 

      
   

    
      

         

 (5.19) 

where       is the normalized volume of 1 m3 of oxygen at the reference gas temperature 

      of 273.16 K and the normalized pressure       of 101325 Pa,    
 denotes the actual 

volume of oxygen in m3 assessed from the volumetric flow rate,    
 is the actual oxygen 

temperature, assumed identical as for the blower, thus of 300 K, and    
 is the actual 

oxygen pressure equal to blower discharge pressure, and thus 2 atm.  
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Power and energy demand for oxygen separation in VPSA for different aeration devices are 

shown in Table 5.5. When comparing obtained data it is seen, that the device 

characterized by the highest and intermediate oxygen demand, namely nonporous diffusers 

and jet aerators, will account for the power demand of 0.002 W. Slight improvement is 

seen for the most efficient systems of porous diffusers which yield power requirements by 

VPSA process of 0.001 W.    

Table 5.5 Power and energy demand by oxygen generation in VPSA process for different diffused 
aeration systems. 

Device 

                    
      

(d) (m3 h-1) (Nm3) (W) (kWh) 

Porous 

diffusers 

5 6.1∙10-3 0.011 1.1∙10-3 3.9∙10-3 

15 6.9∙10-3 0.013 1.2∙10-3 4.4∙10-3 

Nonporous 

diffusers 

5 10.8∙10-3 0.020 1.9∙10-3 6.9∙10-3 

15 12.3∙10-3 0.022 2.2∙10-3 7.8∙10-3 

Jet 

aerators 

5 8.3∙10-3 0.015 1.5∙10-3 5.3∙10-3 

15 9.5∙10-3 0.017 1.7∙10-3 6.0∙10-3 

 

5.3.3 Evaluation of Energy Expenditure of Aeration Systems 

When comparing all types of aeration devices used in activated sludge systems, which are 

supplied by atmospheric air, it is clear, that the most costly is mechanical surface 

aeration, yielding energy demand up to 19 kWh per capita. Considering values of daily 

energy demand determined for air compressor, porous diffusers are the most energy 

efficient, with energy requirements up to 4 kWh, which is about 5 times less than for 

mechanical aerators. The most energy intensive system within the diffused air 

technologies are nonporous diffusers, accounting for up to 6.5 kWh per habitat, yielding 

76% increase of energy demand in comparison with the porous devices. Increase of energy 

demand of 38% is observed for jet aeration systems, considered as the intermediate option 

in terms of power requirements.    
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Undoubtedly, pure oxygen systems, besides higher aeration efficiency and better biological 

treatment effects, allow saving distinct percentage energy, when comparing with aeration 

systems supplied by air. In high purity oxygen systems, besides reduction of power demand 

by blower to 20% in cases when operating oxygen pressures are higher that the respective 

discharge pressure from VPSA unit, the additional efforts due to oxygen generation by 

VPSA process account for only 0.001 kWh for porous diffusers up to 0.008 kWh for coarse 

pore devices. 

Therefore, from all aeration systems considered in the energy expenditure assessment, the 

most energy minded solution may be obtained by application of porous diffusers supplied 

by pure oxygen.      

5.4 Aeration of the Oxidation Ditch with Hydrojets – Energy Analysis 

The following sections considers assessment of overall energy expenditure for proposed 

oxidation ditch system, which accounts for power demand on aeration, mixed liquor 

recirculation and mixing of the ditch content.    

5.4.1 Oxidation Ditch System 

Hydraulic design of the proposed activated sludge system, which full-scale layout is shown 

in Figure 5.1, consists of: an oxidation ditch; a jet aeration device; Pressurized Aeration 

Chamber (PAC); mixed liquor recirculation pump; feed and discharge tubing; air manifold; 

and a pipeline connecting all equipments.  

The full-scale oxidation ditch and PAC dimensions in this case-study are five times larger 

than the CFD models described in Chapters 2 and 4. The approximate capacity of the ditch 

having dimensions of 64.0 × 15.0 × 4.0 m is 3900 m3. The dimensions of PAC are 

0.8 × 0.8 × 3.5 m. The mixed liquor, discharged from the ditch through the pipe fixed in 

the bottom is recirculated to PAC. Aeration chamber is placed 20.0 m to below the tank 

and supplied with atmospheric air/oxygen. Such hydraulic arrangement provides 

favourable conditions for effective saturation of mixed liquor with oxygen up to 18 mg L-1 

under pressure of 2 bars. The DO enriched stream from PAC is recirculated by pump 

through long vertical pipeline, splitting into two manifolds, supplying the hydrojets. 

Hydrojets reinject aerated mixed liquor into the ditch with the energy accelerating fluid 

flow throughout the tank with the velocities keeping the activated sludge flocs suspended, 

and ensuring efficient mixing of the ditch content. The advantage of such system 

configuration over conventional aeration is achieved by increase of      and    obtained 

through introduction of an external aeration unit, PAC, cooperating with the mixing and 

propulsion devices- slot jet modules (hydrojets). The studies on hydrodynamics, 
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performance and energy analysis of both, PAC unit alone and the oxidation ditch aerated 

with hydrojets, were previously explored in Chapter 2 and 4. 

The main purpose of this section is to determine overall energy expenditure of the full-

scale oxidation ditch system, which will account for power demand for aeration (PAC), 

mixing (hydrojets) and supporting equipment operation (air/oxygen and mixed liquor 

pipeline and the recirculation pump). Moreover, depending on the oxygen source 

(atmospheric air or pure oxygen) power demand by blowers or oxygen generation in VPSA 

will be also assessed.  

 

Figure 5.1 Oxidation ditch system layout: 1- oxidation ditch; 2- hydrojets; 3- inlet; 4- outlet; 5- PAC; 6- 
recirculation pump; 7- recirculated mixed liquor from the ditch; 8- air/oxygen manifold; 9- oxygen rich 
mixed liquor.  

  

5.4.2 Power Demand on Aeration 

The actual power demand on aeration depend on assumed aeration scenario, whether PAC 

will be supplied by atmospheric air or pure oxygen. According to that, energy expenditure 

due to blower performance and oxygen generation by VPSA unit will be determined. 

5.4.2.1 Air Piping 

Blower sizing, and thus accuracy of the headloss prediction requires an exact analysis of 

the air distribution system, which varies depending on the number of factors, such as: 

capacity of the wastewater treatment facility, and thus number and size of aeration tanks; 

the distance from the blower building to the tanks, and therefore the length of the air 
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header; type of aeration system, number of units and configuration within the activated 

sludge tank, and thus the distribution, number and length of the manifold sections; pipe 

material, inner diameter and operating flow rates; number and type of fittings, valves and 

other devices included in the pipeline; and blower silencer.  

Nonetheless, to serve a general case-study purpose, several design simplifications of the 

hypothetical piping has been assumed to determine total headloss in the air distribution 

system of the featured oxidation ditch layout (Figure 5.1). It was assumed, that: the 

system consists of pipes of the uniform diameter of 200 mm and the total length of the 

pipeline is 20.0 m. Velocity of the air flow through the pipes is of 12.0 m s-1. Stainless steel 

was selected as a pipe material considering its resistance against elevated temperature of 

air discharged by blower.  

The total headloss in the air piping system is a sum of the major losses due to the friction 

during air flow in the straight mains, and minor losses which are due to change of velocity 

occurring during air flow through the valves, bends, and other pipe fittings.  

The major (friction) headloss in the air pipeline are computed from Darcy-Weisbach 

formula of the following form: 

    
 

 
      (5.20) 

where    is friction loss in m of water,   is dimensionless Darcy friction factor,   and   are 

the pipe length and diameter in m, and      is velocity head of air, in m. 

For stainless steel air pipes, the friction factor   is determined from the following formula:  

  
              

      
 (5.21) 

where   denotes air flow rate under prevailing temperature and pressure conditions, 

expressed in m3 min-1. 

Substituting term   (5.21) in Equation (5.20) we have: 

              
     

  
  (5.22) 

where   is air temperature in pipe, in K and   is air supply pressure equal to blower 

discharge pressure, in atm.  
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The air temperature in the pipeline is computed from the following formula 

(Tchobanoglous et al., 2003): 

     
 

  
 
     

 (5.23) 

where    is the ambient air temperature equal to the maximum summer temperature, K 

and    is the ambient atmospheric pressure, atm.  

It was assumed that    equals 27°C (300 K), and   is typical discharge blower pressure of 

2 atm and assumed    is 1 atm. Therefore, the temperature   of the compressed air in the 

pipe is 365 K.  

Considering air velocity of 12.0 m s-1 and the tube diameter of 0.2 m, the airflow is 

22.6 m3 min-1 yielding   value of 0.018. The friction headloss computed for these data and 

the pipeline length of 20.0 m is 0.016 m of water. 

Minor losses are computed using equivalent length method     , based on the assumption, 

that the local loss through a fitting can be expressed in terms of the equivalent length of 

straight pipe (  ), that would yield the same head loss as the fitting. According to that, 

the Equation (5.20) will be: 

    
      

 
      (5.24) 

where    is the equivalent length of a pipe, m.  

   can be obtained from  the following formula: 

              (5.25) 

where   is the resistance factor, characteristic for the particular fitting. 

It was assumed, that considered in the show-case air piping system includes the following 

components: blower silencer, two control valves and four elbows. The value of   for blow-

off butterfly valve is 0.47 and 0.33 for flanged 90°long radius elbow (AWWA, 2001; 

Tchobanoglous et al., 2003), yielding additional    of 14.4 m to be accounted in the 

formula (5.24). Thus, the sum of the losses in the air piping, accounting for major losses in 

the straight mains and minor losses in the components is 0.028 m of water per 20 m of 

piping, however additional local loss of 0.15 m by blower silencer have to be considered 

(Tchobanoglous et al., 2003), yielding total headloss of 0.18 m of water.  
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Considering a rule of thumb, that a properly designed piping should have a pressure loss 

lesser than 10 percent of the compressor’s discharge pressure measured to the point-of-

use, computed head for the oxidation ditch air distribution system accounts for only 1% of 

the assessed blower operating pressure of 2 atm. From this reason, further computation of 

power demand by blower does not require increase of the discharge pressure.   

5.4.2.2 Power Demand by Blower - Air System 

Energy demand for air compression would be 3 times less than in case of porous diffusers, 

because the 30%      factor from bubbles is dropped for the PAC case. Therefore we can 

assume that the power demand will be from 0.31 to 0.34 W.  

The data set with computed values of power demand and hourly energy expenditure per 

habitant is presented in Table 5.6. 

 

Table 5.6 Power and energy demand by blowers for PAC supplied by air. 

Device 

          

(d) (W) (kWh) 

PAC 
5 0.31 1.10 

15 0.34 1.24 

 

5.4.2.3 Power Demand by Blower - Oxygen System 

Similarly to the diffused aeration units, if pure oxygen is used there is a reduction to 20% 

of the power needed for injection, thus the power consumption by blower drops to a range 

of values 0.06 to 0.07 W. The data set with computed values of power demand and hourly 

energy expenditure per habitant is presented in Table 5.7. 
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Table 5.7 Power and energy demand by blowers for PAC supplied by oxygen. 

Device 

          

(d) (W) (kWh) 

PAC 
5 0.06 0.22 

15 0.07 0.25 

 

5.4.2.4 Power Demand for Oxygen Generation  

For PAC aerated with high purity oxygen additional power demand for oxygen generation in 

VPSA process must be considered. Considering 93% oxygen purity and        is 1.33 kg m-3, 

daily oxygen demand computed from the Equations (5.7) and (5.8) is 59 to 67 g d-1, 

equivalent to 44 to 50 L d-1.  

Procedure for determination of power demand by VPSA system was widely described in 

Section 5.3.2.4 of this chapter. Therefore for PAC operating with pure oxygen, power 

demand for oxygen separation in VPSA is shown in Table 5.8. The overall power 

consumption by VPSA for PAC supplied by pure oxygen is up to 0.0004 W.  

Table 5.8 Power and energy demand by oxygen generation in VPSA process for different diffused aeration 
systems. 

Device 

                    
      

(d) (m3 h-1) (Nm3) (W) (kWh) 

PAC 
5 1.8∙10-3 0.003 3.2∙10-4 1.2∙10-3 

15 2.1∙10-3 0.004 3.7∙10-4 1.3∙10-3 

 

5.4.3 Power Demand on Mixed Liquor Recirculation and Reinjection  

Power demand on mixed liquor recirculation and reinjection depends upon: pump head 

necessary to recirculate mixed liquor through the PAC flow loop, which will need to 

balance headloss in the recirculation pipeline and the hydrojets; and a number of mixed 

liquor passages through PAC to achieve assessed level of oxygen saturation. 
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5.4.3.1 Head Loss in Piping System 

The quantity of power required for recirculation and reinjecting of mixed liquor saturated 

with air/oxygen depends on the head loss in the pipeline and equipment in the oxidation 

ditch system. Therefore proposed design of the wastewater pipeline (Figure 5.2) of the 

minimum number of components and linear dimensions aims the decrease of the headloss. 

Detailed description of the ditch geometry and dimensions can be found in Paragraph 5.4.1 

of the following section. The distance from the free surface of the wastewater to the 

pump centerline is 25.0 m, thus considering oxidation ditch depth of 4.0 m the pump is 

located 21.0 m below the bottom. PAC is positioned just 1.0 m above the pump centerline, 

thus at the distance of 20.0 m below the ditch bottom. Recirculation pipe lifts oxygen 

enriched mixed liquor at the level of mid-depth of the ditch, where the flow splits into 

two separate manifolds supplying the hydrojets, each having length of 10.0 m. The 

rationale behind the use of a long, vertical pipeline directing recirculated mixed liquor 

from the ditch to the external aeration unit is to induce optimal pressurized conditions for 

efficient saturation of wastewater with oxygen.  

For proposed hydraulic design of the oxidation ditch aerated by PAC, the system head is 

computed as follows: 

         (5.26) 

where    is system head, m,    is total discharge head, m, and    is total suction head, m. 

The total discharge head consists of three components: 

               (5.27) 

where     is discharge static head,     is discharge surface pressure head and     is 

discharge friction head. 

The total suction head also consists of three separate heads, as follows: 

               (5.28) 

where     is suction static head,     is suction surface pressure head and     is suction 

friction head. 
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Considering the fact, that oxidation ditch is a tank open to the atmosphere, discharge 

surface pressure head,     and the suction surface pressure head     are equal to 

atmospheric pressure plus the free surface quota. Moreover as the level of fluid in ditch is 

constant and thus relatively to the pump centerline static suction head     and static 

discharge head     are equal and of 25.0 m. According to that, the pump head will be 

equal to the sum of the discharge and suction friction heads.  

For considered oxidation ditch pipeline layout, the friction heads,     and     will be 

determined as the total headloss, i.e. a sum of the major losses due to the friction during 

wastewater flow in the straight pipe sections and minor losses which are due to eddies 

occurring during water flow through the inlets, outlets, bends, and other pipe fittings. 

Considering oxidation ditch layout (Figure 5.2) and from Bernoulli energy conservation 

equation we obtain: 

  

  
 

  
 

  
    

  

  
 

  
 

  
            (5.29) 

where 
  

    and 
  

    term denote pressure heads on the suction and discharge side of 

the pump, respectively, 
  

 

     and 
  

 

     are the velocity heads, and    ,    are elevation 

heads. 

Thus the system head, defined by Equation (5.26) will be equal to the sum of the frictional 

and local losses in the pipeline, as follows: 

                             (5.30) 

where     ,      are discharge and suction friction losses and     ,      are discharge and 

suction local losses, respectively. 
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Figure 5.2 Schematic layout of the wastewater piping system in the oxidation ditch. 
 

One of the methods to assess head loss in wastewater piping system is based on the 

computation of the head loss caused by water flow and multiplying the result by a constant 

factor, which is a function of the suspended sludge concentration in the mixed liquor. For 

oxidation ditches, having MLSS concentration in the range of 3000-5000 mg L-1, assumed 

multiplication factor is 2.  

Due to the corrosive character of the mixed liquor, pipes are assumed to be made of 

galvanized iron having a roughness factor of 0.15 mm. Following the design guidelines for 

the wastewater tubing, an internal pipe diameter of 300 mm was assumed in the 

calculations. Mixed liquor flow in long conduits carries the risk of harmful deposits. 

Therefore, following general guidelines for wastewater pumping (Grundfos, 2002), velocity 

in vertical pipes should be maintained between 1.0 – 3.0 m s-1. In this work, velocity of 1.5 

m s-1 was assumed in the piping system computations.   

Friction losses  

Following oxidation ditch hydraulic layout (Figure 5.2) the pipeline system considered in 

the suction friction headloss assessment consists of the following sections of the straight 

conduits: 21.0 m (ditch bottom – elbow distance); and 0.5 m (elbow – pump). Friction 

losses included in discharge head computing will be assessed for the pipes of the following 
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length: 0.5 m (pump-elbow); 0.5 m (elbow-PAC); 0.5 m (PAC-elbow); 22.0 m (elbow–ditch); 

10.0 m (split-flow into two parallel branches supplying the hydrojets).  

The major headloss is computed from Darcy-Weisbach formula for pressure loss expressed 

as: 

    
 

 
 
   

  
 (5.31) 

where    is pressure loss,   denotes water velocity in the pipe and   is the density. 

To express Darcy-Weisbach equation as headloss Equation (5.20) can be rewritten as: 

    
 

 
 
  

  
 (5.32) 

The Darcy’s friction factor    is obtained from the Moody diagram. For the laminar flow 

conditions, such that         ,   depends only on Reynolds number and can be obtained 

from the following formula: 

  
  

  
 (5.33) 

For the turbulent flow, and thus for         the value of   depends on both, Reynolds 

number and the pipe roughness. For such conditions, the friction factor is computed from 

the Colebrook equation of the following form:  

 

  
          

 

    
 

    

    
  

(5.34) 

where   is the absolute roughness of the pipe, m. 

After rearrangement we obtain:  

  
     

    
 

     
    
       

  
(5.35) 

Reynolds number is calculated from the following formula: 

   
  

 
 

   

 
 

(5.36) 

where   and   are kinematic and dynamic viscosity of water and    is its density. 
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Considering: water density of 998.2 kg m3, dynamic viscosity of 1.0∙10-3 Pa s, velocity of 

the water flow of 1.5 m s-1 and pipe diameter of 0.3 m, Reynolds number is turbulent and 

equals approximately 5.0∙105. Friction factor   assessed from the Equation (5.16) for the 

pipe roughness if 0.15∙10-3 m is 0.018. 

For the pipeline system from ditch to recirculation pump having total length of 21.5 m, 

assessed total major loss on the suction side of the pump,      is 0.15 m.  

Major loss of discharge pipeline is a sum of frictional head loss in straight pipeline from 

pump to the tee junction, i.e. point of branching, having length of 23.5 m and in 10.0 m 

branch pipes connecting recirculation pipe with hydrojets.  

In first case, i.e. considering the distance from the pump outlet to the pipe branching, the 

same flow conditions as in suction pipeline were assumed, for which computed frictional 

loss is 0.16 m.  

Considering wastewater flow rate   in the recirculation pipe which splits into a flow of    

in the pipe connecting one hydrojet and    in pipe connecting second hydrojet, we 

assumed that: 

      
 

 
 (5.37) 

Considering branch pipe diameter of 0.25 m, velocity is 1.1 m s-1. For these data, Reynolds 

number is turbulent and equals approximately 3.0∙105, therefore friction factor   is 0.019, 

yielding friction loss of 0.05 m.  

The sum of major discharge losses from the pump to the hydrojets manifold is 0.21 m.  

Local losses  

Minor headloss in the pipeline caused by presence of the fittings and other flow 

obstruction devices is computed from the Darcy´s formula of the following form: 

     

  

  
 (5.38) 

where    is a local loss in m, and    is a local loss coefficient.  

The    value is empirically determined and characteristic for the particular fitting. The 

values of local head loss coefficients of the devices and fittings in-series can be summed to 

determine the total    for the considered piping system. Therefore we have: 
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     (5.39) 

Following the oxidation ditch hydraulic layout (Figure 5.2) the pipeline system considered 

in the suction local headloss determination contains flush entrance from the ditch to the 

pipe and elbow. The assumed values of    for entrance to a pipe and flanged 90°elbow are 

0.5 and 0.3, respectively.  

Therefore, the total local loss coefficient on the suction side of the pump is 0.8 yielding 

the total local suction loss       of 0.09 m.  

Local losses included in discharge head computation for the pipeline from pump to 

hydrojets will be assessed for gate valve, two elbows, tee, entrance and exit from PAC and 

entrance to the hydrojets’ manifold. The value of    for gate valve and flanged 90°elbow 

is 0.3; for flanged tee splitting the flow    is 0.2. Considering geometry of the fitting 

connecting the pipe with hydrojets manifold, local loss coefficient was assumed equal to 

long radius 90° elbow, and thus 0.2. 

Entrance to PAC is characterized by sudden enlargement of the cross-section area, for 

which empirical value of    is determined also from momentum, continuity and Bernoulli’s 

equations, yielding the following: 

      
  

  
 
 

 (5.40) 

where    and    are pipe and expansion cross-section areas.  

Considering pipe of diameter 0.3 m and PAC having cross-section area of 0.64 m2,    is 0.8. 

The value of    for the cases of sudden contraction, i.e. discharge from PAC to a pipe has 

to be derived. Here we are considering flow discharge from the larger flow area to the 

pipe, which is characterized by formation of contracted jet just inside the pipe (vena 

contracta), followed by headloss due to sudden expansion of the minimized flow area 

downstream contraction section until filling the whole pipe area. Applying continuity and 

Bernoulli’s equation with headloss for the following case, the minor headloss will be:  

    
  

 
   

   
 

  
 (5.41) 

where   is the contraction cross-section area and    correspond to the velocity of flow in 

the discharge tube of the area   .  
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Comparing this equation with (5.39) yields  

    
  

 
   

 

 (5.42) 

To determine    caused by vena contracta, it can be assumed, that the contraction is 

about 40% of the flow area in the pipe (Chadwick and Morfett, 1998). Therefore 

considering the region where head loss occurs, i.e. section with contraction-expansion 

having the areas of       and    respectively,    obtained from Equation is 0.44. 

Therefore, headloss on PAC is 0.14 m.  

Each entrance to the hydrojet manifold is characterized with ca. 20% expansion of the flow 

cross-section area, and thus    determined from Equation (5.40) is 0.03.    

The values of    for assessed for particular fittings in considered oxidation ditch system are 

summarized in Table 5.9. The sum of the local losses,    in the pipeline system from pump 

to hydrojet manifold is 0.30 m.  

Table 5.9 Local loss coefficients for the selected fittings.   

Fitting / place in the oxidation ditch system    

Exit ditch 0.50 

Gate valve 0.30 

Entrance PAC 0.79 

Exit Pac 0.44 

Elbow 0.30 

Long radius elbow 0.20 

Tee junction 0.20 

Entrance – hydrojet manifold 0.03 

 

5.4.3.2 Head Loss in Hydrojets 

Power demand by recirculation pump, assessed for the operation of external aeration unit 

must be increased by a quantity necessary for hydrojets operation, i.e. reinjection of the 

oxygen enriched wastewater with the velocity sufficient to force circulation of the fluid 

throughout the ditch. Hydrojets operation is accompanied by headloss during flow 

discharge through the single or many slot nozzles, which must be included in assessment of 
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the total discharge head by recirculation pump. Computation of local losses on hydrojet 

aerator was made for two different hydrojets configurations: multi-slot injector (KLa 

Systems, 2007) and proposed single slot injector. 

Multi-slot Injector  

Each hydrojet aerator consists of the manifold extended across the ditch channel having 

slot nozzles distributed throughout the pipe length (KLa Systems, 2007). Schematic design 

of the hydrojet device is shown in Figure 5.3. The cross-section area of the manifold    is 

20% larger than of the recirculation tubing, thus equals 0.058 m2. The diameter of jet 

manifold is 0.27 m. Considering width of the middle wall of 0.6 m, separating ditch volume 

into two channels, the length of the hydrojet manifold is 7.2 m.  

Velocity of the flow through the hydrojet manifold is assessed from the continuity 

equation, as follows: 

                  (5.43) 

where    is the mixed liquor flow rate in the recirculation branch pipe,    is the flow rate 

in the hydrojet manifold,    is the cross-section area of the mixed liquor recirculation pipe 

supplying the hydrojets and    is 0.05 m2,    is the assessed in the pump head computation 

velocity of the flow in branch pipeline equal 1.1 m s-1, and    is velocity of the flow in the 

hydrojet manifold. 

Considering all data,     in hydrojet manifold is 0.92 m s-1 and the flow rate    and    is 

0.05 m3 s-1.  

The friction loss for hydrojet manifold must be considered in determination of the total 

discharge friction loss. For the Reynolds number of 2.5∙105, friction factor   assessed from 

Equation (5.35) is 0.019. Therefore considering    of 0.92 m s-1,    of 7.2 m and   of 0.27 

m,    computed from Equation (5.32) is 0.02 m.  

To ensure uniform flow distribution from the slot injector orifices, it was assumed, that: 

   
  

 
 (5.44) 

where    is total area of the flux from the slot jets.  

Therefore, for the assumed data, computed    is 0.029 m2.  
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If we assume, that the hydrojet aerator consists of 10 injectors, therefore the area of each 

nozzle    will be 0.003 m2 and the approximate dimensions of each slot are 0.03 × 0.10 m. 

As the flow in the manifold splits into 10 jet streams, therefore the flow rate from each 

nozzle is equivalent to      , and thus 0.005 m3 s-1. Velocity of the reinjected fluid into 

the ditch is computed from the continuity equation yielding:   

   
     

  
 (5.45) 

For all assumed data, computed velocity of the flow re-injected through the slot nozzles 

into the ditch is 1.8 m s-1. Considering results obtained from the CFD simulations 

(Chapter 4 Section 4.6.1.), velocity of the fluid reinjected by slot jets of 1.8 m s-1 is 

sufficient to maintain mixed liquor circulation throughout the ditch. 

Wastewater flow through the multi-slot injector is accompanied by pressure drop in the 

orifices. For convenience, discharge through long radius nozzle was assumed in the local 

loss computations. Here, the flow rate is computed from the following form: 

                  (5.46) 

where   is flow coefficient and    is local loss on the nozzle.  

After rearrangement we obtain: 

   
 

  
 

  

   
 
 

 (5.47) 

Value of flow coefficient   is computed as follows:  

  
  

    
   
  

 
 

 
(5.48) 

where    is discharge coefficient,     is a diameter of contracted jet (vena contracta), and 

   is nozzle diameter. 

Designed slot injector’s outlet has approximately a rectangular shape, therefore hydraulic 

diameter    of nozzle, defined as ratio of cross-section area of nozzle to its wetted 

perimeter was computed: 
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 (5.49) 

where   and   denote width and height of the rectangular nozzle cross-section. 

For   equal 0.03 m and   of 0.10 m, hydraulic diameter of each nozzle    is 0.045 m. 

Considering 40% contraction of the jet area discharged through nozzle, the diameter of 

vena contracta,     is 0.035 m.  

Coefficient of discharge can be calculated using standards like ISO 5167-1:2003 

“Measurement of fluid flow by means of pressure differential devices, Part 1: Orifice 

plates, nozzles, and Venturi tubes inserted in circular cross-section conduits running full” 

or other appropriate ASME (American Society of Mechanical Engineers) standards. 

For long radius nozzles,    is calculated using the following: 

                 
 

     
   
  

 

   
 (5.50) 

where     is Reynolds number computed for bigger diameter, i.e.   . 

Considering    of 0.045 m,    of 1.8 m s-1,   and   of water,     is 0.8 × 105. Therefore    

assessed from Equation (5.50) is 0.976, for which  , computed from Equation (5.48) is 

1.221. The local loss computed for multi-slot injector due to flow discharge through 

nozzle, defined by Equation (5.47) is 0.11 m. 
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Figure 5.3 Schematic design of the hydrojet device with multiple slot injectors. 

 

Slot Injector  

Proposed hydrojet aerator consists of the manifold extended across the ditch channel 

having a single slot nozzle extended throughout the pipe length. Schematic design of the 

hydrojet device is shown in Figure 5.4. As in the previous multi-jet design, the cross-

section area of the manifold,   , is 20% larger than of the recirculation tubing and equals 

0.058 m2. The diameter of jet manifold is 0.27 m and the length of the hydrojet manifold 

is 7.2 m. Considering velocity of 0.92 m s-1 and the Reynolds number of 2.5∙105, friction 

factor   assessed from the Equation (5.35) is 0.019. Therefore friction loss for hydrojet 

manifold,    computed from Equation (5.32) is 0.02 m.  

The dimensions of the slot aperture of 0.01 × 7.00 m guarantee uniform flow distribution 

throughout the jet. The area of the surface flux from the slot jet aperture    is 0.07 m2.  

For the parameters of the flow through the hydrojet manifold, velocity of the wastewater 

reinjected by slot jet,   , assessed from the Equation (5.45) is 0.76 m s-1. Considering 

results obtained from the CFD simulations (Chapter 4 Section 4.6.1.), velocity of the fluid 

reinjected by a single slot injector is sufficient to maintain mixed liquor circulation 

throughout the ditch. 

Wastewater flow through slot injector is accompanied by local loss due to contraction in 

the nozzle discharging of the jet into the ditch volume.  
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The same procedure as in case of multi-slot injector will be used to determine hydraulic 

diameters of: nozzle,    and vena contracta,    . Taking into account   of 0.01 m,   of 7.0 

m, and              , computed hydraulic diameter    is 0.020 m and     is 0.015 m. 

Considering    of 0.020 m,    of 0.75 m s-1,   and   of water,     is 1.5 × 105. Therefore 

   assessed from Equation (5.50) is 0.950, for which flow coefficient  , computed from 

(5.48) is 1.187. The local loss computed for multi-slot injector due to flow discharge 

through nozzle and defined by Equation (5.47) is 0.02 m. 

 

 

Figure 5.4 Schematic design of the hydrojet device with single slot injector. 

 

5.4.3.3 Pump Head 

Friction and local losses in the oxidation ditch piping system and the system head 

determined for two configurations of the hydrojet device, i.e. multi- and single- slot 

injector are presented in Table 5.10. The system head,   , computed from Equation (5.30) 

is a sum of frictional and local losses on both, suction and discharge sides of recirculation 

pump. Computation of    was based on determination of frictional and local losses due to 

water flow through the piping system. Therefore to assess pump head necessary for 

wastewater recirculation, differences in density and viscosity must be accounted, and 

conversion of data obtained for clean water is recommended. The conversion is based on 

multiplication of the headloss computed for water by a constant factor, which depends on 

the concentration of MLSS in wastewater being pumped. For oxidation ditch systems, 

having MLSS content of 3.0-5.0 g L-1, assumed multiplication factor is 2. And thus, the 



5 New Designs and Energy Efficiency Evaluation 

263 

pump heads obtained for both hydrojets device configurations account for 1.70 and 

1.52 m, respectively. 

When comparing the values of local head loss on hydrojets it is clear, that configuration 

with multi-slot injector requires higher pump head by 0.2 m than the single slot, resulting 

in higher power demand for wastewater recirculation. This work aims to select the most 

energy efficient solutions and from this reason further computations of power and energy 

demand will focus on proposed energy-minded configuration- single slot hydrojet. 

Table 5.10 Head loss and pump head in proposed mixed liquor recirculation and reinjection system. 

 
Multi-slot Injector Slot Injector 

Suction friction loss,      (m) 0.15 

Suction local loss,      (m) 0.09 

Suction friction     (m) 0.24 

Discharge friction loss,      (m) 
0.23 

 

Discharge local loss,      (m) 0.38 0.29 

Discharge friction head,     (m) 0.61 0.52 

Total system head (m) 

           

water 0.85 0.76 

wastewater 1.70 1.52 

 

5.4.3.4 Power Demand for Wastewater Pumping through PAC 

Design considerations and performance of PAC was widely described in Chapter 2. CFD 

simulations of PAC complemented by reaeration tests considered aeration process based on 

water saturation with high purity oxygen, what resulted in distinctly higher oxygen transfer 

rates and aeration efficiencies than the respective standard process parameters of current 

best available technologies. Several preliminary trial experiments were also conducted on 

PAC aerated by air. It was found that process of reoxygenation by air is inhibited by 

increase of partial pressure of nitrogen present in compressed air. As the result, the 

process of saturation with oxygen took place only during first few passages of water 

through the PAC and stopped, as the chamber was being flushed out of oxygen. At this 

point, the studies on aeration were interrupted and air was substituted with pure oxygen. 
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Although the results revealed that the device is not suitable for air systems, for 

comparison purposes, such scenario was considered in following assessment of power 

demand for wastewater pumping.  

 Considering aeration system supplied by atmospheric air, solubility of oxygen in water in 

20 °C and at the pressure of 2 bars is around 18 mg L-1. Considering daily      load of 

54 g, the      concentration depends on the wastewater flow rate per capita,   , as 

follows: 

       
    

  
 (5.51) 

where        is daily      concentration in g m-3, and    is daily flow rate per capita, in 

m3 d-1.  

Typically, the values of    are in the range from 0.15 to 0.25 m3 d-1 and thus        ranges 

from 216 to 360 g m-3. 

Similarly, the concentration of oxygen consumption,     
 , can be written as: 

    
  

   

  
 (5.52) 

where     
  is the concentration of daily oxygen consumption, g m-3, and daily    

 ranges 

from 55 to 62 gO2 per capita. 

According with the above, for assumed ranges of    
 and    the concentration     

  ranges 

from 220 to 413 gO2 m
-3. 

The number of times the wastewater is pumped through the PAC, designated as   , is 

given by the following formula: 

   
    

 

  
 

   

     
 (5.53) 

Considering the percentage of oxygen in air that is 23.2%, the air requirement      

corresponding to oxygen demand computed from Equation (5.5) is from 237 to 267 g per 

day. According to that, wastewater has to pass through the PAC 53 to 99 times.  

For the assumed flow rate    of 0.25 m3 d-1,    is in the range of 53 to 59.  
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Therefore, for computed in Paragraph 5.4.3.3 elevation head given by the pump, the 

power necessary to pump wastewater with the flow rate of 2.9∙10-6 m3 s-1, is computed 

from the following: 

  
      

 
 (5.54) 

where    is pump efficiency equal 0.8 and   is wastewater density assumed 1000 kg m-3 

and    is 1.52 m. 

Accordingly with the above, the power demand by pump is 0.05 W. Considering 53 to 59 

passages, the power demand will be in the range from 2.84 to 3.19 W. 

For the daily flow rate per capita of 0.15 m3 d-1, and thus 1.7∙10-6 m3 s-1, the power demand 

by pump wastewater drops to 0.03 W, however    in the range of 88 to 89 yields identical 

power expenditure of 2.85 to 3.17 W.  

Considering PAC system supplied by pure oxygen (93% of purity), its solubility in water at 

20 °C and at the pressure of 2 bars is around 18.0 mg L-1. In such conditions and for daily 

   
 from 59 to 67 gO2 per capita,    ranges from        to       . For    of 0.15 m3 d-1, 

wastewater have to pass through the PAC 22 to 25 times to achieve assumed level of 

oxygen saturation, while for    of 0.25 m3 d-1 – only 12 to 15 times. 

Power demand by pump assessed from (5.54) is the same as in case of air feed system, 

thus depending on the flow rate per capita, accounts for 0.03 W for 0.15 m3 d-1 and 0.05 W 

for 0.25 m3 d-1, respectively. Considering number of passages through PAC, power by pump 

for 0.15 m3 d-1 is 0.71 to 0.81 W and for 0.25 m3 d-1- 0.70 to 0.81 W. 

Computed values of power in W and energy demand in kWh by pump depending on number 

of passages and daily flow rates per capita are shown in Table 5.11. When comparing these 

values it is clear, that use of pure oxygen in PAC benefits in reduction of energy demand 

by recirculation pump unit by up to 75%.  
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Table 5.11 Power and energy demand by recirculation pump for PAC supplied by air and pure oxygen. 

Oxygen 

 source 

             

(m3 d-1)  (W) (kWh) 

Air 

0.25/0.15 

53/88 2.85/2.84 10.3/10.2 

59/99 3.17/3.19 11.4/11.5 

Pure  

oxygen 
0.25/0.15 

13/22 0.70/0.71 2.52/2.56 

15/25 0.81 2.90 

 

5.4.4 Energy Analysis 

The overall energy requirement by aeration systems commonly used in oxidation ditches, 

namely diffused air system (membrane diffusers) and surface aerators, as well as by 

proposed PAC system supplied by pure oxygen was summarized in Table 5.12. For 

comparison, the data obtained for membrane diffusers supplied by pure oxygen were also 

included in the table.  

When comparing the data obtained for different aeration systems it is clear, that even in 

situation requiring use of blower in VPSA process, aeration with PAC allows for 96-99% 

energy savings in comparison with surface aerators and 93% in case of diffused air systems. 

At the same time, energy demand for aeration with PAC constitutes 30-33% of the quantity 

required by membrane diffusers supplied by pure oxygen. 
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Table 5.12 Energy expenditure in oxidation ditch system aerated with PAC.  

Process Equipment 
Oxygen 
source 

Energy 
expenditure 

Energy savings 
(PAC) 

(kWh) (%) 

Surface 
aeration 

Brush rotor/low 
speed aerator 

Air 5.50 – 18.60 96 - 99 

Diffused 
aeration 

Blower Air 3.29 - 3.71 93 

Blower Oxygen 0.66 – 0.74 

67 

VPSA Oxygen 3.9×10-3 – 4.4×10-3 

Aeration in 
PAC 

Blower Oxygen 0.22 – 0.25 

- 

VPSA Oxygen 1.2×10-3 – 1.3×10-3 

     

5.5 Conclusions 

In the following chapter, energy demand by aeration systems commonly used in oxidation 

ditches was assessed. It was concluded, that the most energy efficient aeration scenario 

includes porous diffusers supplied by pure oxygen. Nonetheless, to assess overall energy 

expenditure in such systems additional computations of power expenditure for air piping 

and for mixing by e.g. vertical shaft impellers must be accounted for.  

The overall energy expenditure for aeration and mixing in proposed oxidation ditch system 

aerated with hydrojets was assessed. Introduction of the external aeration unit, 

Pressurized Aeration Chamber revealed to be a promising solution providing distinct energy 

savings through reduction of power demand by blower in both, atmospheric air and pure 

oxygen aeration scenario, and oxygen generation in VPSA process, when comparing with 

porous diffusers. It was found, that aeration with PAC accounts for up to 4% of the total 

energy required by surface aeration, up to 7% by current BAT devices- membrane diffusers 

supplied by air and up to 33%- by membrane diffusers supplied by pure oxygen. 

Furthermore, for featured activated sludge system, energy demand on mixed liquor 

pumping and reinjection was determined, considering two different hydrojets’ geometries. 

On the base of the required height of the elevation head, multi-slot injector configuration 
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was rejected due to generation of the higher local headloss in the system. PAC unit 

supplied by air and cooperating with the single slot injectors requires 1.5 m of the pump 

head, yielding energy expenditure of 10.2 to 11.5 kWh per capita for mixed liquor 

recirculation, saturation with oxygen and reinjection. Substitution of the air by pure 

oxygen allows reduction of the operation cost by pumping unit for 75%, yielding energy 

demand of 2.5 to 2.9 kWh per capita.  

From the above it can be concluded, that proposed aeration system consisting of PAC and 

slot injector seems to be promising solution allowing for distinct power demand cut and 

thus energy savings, even when comparing with most efficient state-of-the-art membrane 

diffusers.  
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6 Final Remarks 

6.1 Introduction  

The aim of this work was to develop efficient and targeted energy saving wastewater 

aeration scenario, applicable in oxidation ditch process. This challenge has been 

undertaken by implementation of hydrodynamics modelling with CFD codes into activated 

sludge systems design process. Proposed hydraulic configuration of the oxidation ditch 

aerated with external pressurized device, PAC, and agitated by slot injectors, allows 

accomplishing the objectives of integrated water pollution prevention control and 

standards set in Urban Waste Water Treatment Directive, with sustainable strategy for 

centralized wastewater treatment. 

The following chapter is divided into two sections: the first one, section 6.2, summarizes 

conclusions of the present dissertation, while section 6.3 provides the suggestions for the 

future work.    

6.2 General Conclusions 

In Chapter 2, the significance and principles of the aeration process in wastewater 

treatment were given, followed by historical review on development of aeration 

techniques, current technical status, and the ongoing research paths in the aeration 

sector. Typical design features, applications and operation of commonly used diffused air 

systems (several types of nonporous and porous diffusers, jet- and U-tube aerators),  
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mechanical devices (horizontal rotors, low- and high-speed surface aerators) and hybrid 

systems (sparge turbine and aspirating aerators) were comprehensively described. For 

selected types of the devices within presented aeration systems, typical ranges of the 

process parameters characterizing oxygen transfer and aeration efficiencies, assessed in 

clean water test method, were also summarized. It was concluded, that present BAT- 

perforated membrane panel diffusers, have the maximal      up to 43%, but are also 

characterized by high O&M costs. Therefore, the main goal of the Chapter 2 has been 

focused on the development of the technology overcoming efficiency limitations of the 

porous diffusers.  

In the following Chapter 2, the computational and experimental studies concerning 

development of an external pressurized aeration unit - PAC, had been described. Aeration 

in several configurations of PAC was simulated with ANSYS Fluent CFD code, aiming 

representation of the main trends in oxygen concentration distribution within all PAC 

layouts and pointing out the most robust geometry in terms of oxygen transfer, which 

ensures higher level of effluent saturation with oxygen. The most successful design of PAC, 

a rectangular tank equipped with system of baffles fixed to the bottom, having single gas 

(oxygen/air) and water inlets and one outlet, was constructed in lab-scale for reaeration 

experiments, to determine oxygen transfer rate parameters in accordance with ASCE 

standard clean water testing protocols. From the results of steady state clean water test 

run in PAC it was found, that with increase of the operating pressure from 0.5 to 1.5 bar, 

achieved      ranged from 120 to 200%, yielding three to five times higher values than 

the current BAT, i.e. membrane diffusers. Moreover, considering power expenditure on  

oxygen generation, the values of     up to 8.0 kg O2 kW-1 h-1 were higher than  commonly 

used porous diffuses, including membrane panels.   

Steady state experiments, described in Chapter 2 aimed also validation of the results 

obtained from the 3D CFD simulations of PAC. It was concluded that simulated operating 

conditions complied with process conditions of the clean water test, run at oxygen 

pressure of 0.5 bar. The average value of    obtained from the multiple reaeration 

experiments was 4.5 kgO2 kW-1 h-1, which is in good agreement with values obtained from 

the CFD simulations.  

In Chapter 2, studies concerning applicability of a lab-scale 2D bubble column reactor 

(BCR), as the aeration device had been given. The features of the experimental system, 

packed bed column characteristics, its performance and common applications in water-

wastewater technology had been widely described. The same experimental procedure of 
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ASCE steady state reaeration test used for PAC evaluation was applied to determine the 

impact of the operating conditions on hydrodynamics and aeration efficiency of the BCR. It 

was found, that gas hold-up has strong impact on aeration process performance, and can 

be used as a design parameter to set optimal operating conditions, i.e. air and water 

velocity ranges for the maximal oxygenation efficiency. The highest ranges of gas hold-up 

of 80% were observed for transition from churn to annular flow regime and overlapped 

with the maxima of the transfer rate parameters, while in conditions of dispersed flow 

with air content of 13%, oxygen mass transfer was negligible. The average values of      

obtained from the experiments were up to 93%, more than twice higher than the BAT 

devices, and may reach up to 150%. For BCR, the values of    , depend in greater extent 

from the power demand by blower and thus operating air flow rates. The maximal     

obtained for the peak hold-up was 25 kgO2 kW-1 h-1 and thus three times higher than the 

corresponding values obtained for PAC. For the average operating conditions and gas hold-

up of 50%, obtained     values were in the range of 5-9 kgO2 kW-1 h-1 corresponding to PAC 

and the upper range of BAT devices. Nonetheless, adaptation of the BCR system to 

wastewater aeration in oxidation ditch imposes sharp limits, especially on the bubble 

regime involved. As the efficient aeration depends on the long contact times and the 

extended contact area between activated sludge flocs and air bubbles, thus the 

oxygenated stream should contain fine bubbles. Therefore instead of operating in the air-

water velocity ranges characteristic for annular flow, yielding the highest      and    , 

heterogeneous churn flow with the efficiencies corresponding to wide range of porous 

diffusers seems to be reasonable solution. In addition to that, aerated effluent discharged 

from BCR should have a momentum sufficient for at least local mixing and mass transfer 

between the fluid layers in the aeration tank. While PAC operation combines efficient 

aeration with mixing due to energy of the discharged fluid plume, low pressure conditions 

in BCR may require implementation of additional momentum sources, such as pumps and 

flow boosters, which increase power expenditure of the whole system. Furthermore, 

application of BCR in activated sludge systems is limited by clogging of the column packing 

increasing pressure drop in the systems and requiring frequent maintenance and cleaning.     

Although the oxidation ditch process is commonly used worldwide, its flow regime is still 

scarcely studied. A literature review on the process history, operating principles and the 

performance was presented in Chapter 3. Several works on experimental methods used in 

these systems to assess flow behaviour were also comprehensively reviewed. One of the 

main goals of this dissertation was to prove the impact of the hydrodynamics on the 

treatment performance in the oxidation ditch process. Chapter 3 covers the experimental 

approach to achieve this goal through determination of velocity, oxygen, nutrients and 
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solids concentration profiles along the channels of a pilot-scale tubular piston flow reactor 

with recirculation (PFRR) and a full-scale oxidation ditch at Areosa WWTP (Viana do 

Castelo).  

It was concluded, that regardless of the horizontal velocity within the studied PFRR ditch, 

linearity of   , nutrient and solids profiles and the constant concentrations within the 

reactor and at the outflow were as for the complete mix system, characteristic for the 

flow conditions in the CSTR. PFRR ditch behaviour was additionally evaluated in Residence 

Time Distribution experiments using pulse and step tracer techniques. The shapes of tracer 

concentration curves resembled the output profiles characteristic for the ideal CSTR 

vessel. Certain features of the RTD curves, namely presence of the early peaks and long 

tail were also detected, suggesting possibility of flow channeling, internal recirculation 

and stagnant fluid regions occurrence, having adverse effects on the reactor performance. 

Nonetheless, exact description of the reactor behaviour from the concentration curves 

could not be made due to the long sensor response time intervals of 20 s and the 

placement of the measurement probe within the reactor. Furthermore, 14-day long PFRR 

start-up time revealed to be insufficient to achieve pseudo-steady state in terms of 

activated sludge biokinetic stability, and thus wastewater treatment performance was not 

conclusively evaluated.  

In case of the full scale oxidation ditch aerated with horizontal rotors, distribution of the 

   concentration along the straight channel section was almost constant. When observing 

vertical profiles in these sections it was clear, that wastewater temperature has a large 

influence on the oxygen mass transfer. At elevated temperatures above 27 °C only surface 

wastewater layers were aerated, and steep oxygen stratification leading to formation of 

the extended oxygen deficit zone occurred. Decrease of the temperature to 20 °C, yielded 

almost constant    content measured at different depths of the ditch. At the same time in 

ditch bend, dynamic changes in oxygen patterns were caused by dynamic mixing of fluid 

layers allowing oxygen transfer towards the ditch bottom independently on the wastewater 

temperature.  

The concentration profiles of    ,      ,       ,       and     along both, 

straight and curved channel sections were constant. As far as the oxygen mass transfer in 

the oxidation ditch depends on the local hydrodynamics, linearity of nutrients profiles 

should be associated with much slower biochemical reactions occurring in the activated 

sludge.  
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Wastewaters treatment efficiency in full scale oxidation ditch was also assessed in 

Chapter 3. When comparing    profiles against the nutrients it was observed, that in high 

temperatures effluent did not comply with the quality standards due to biokinetics 

slowdown, yielding high ammonia and phosphates levels. Therefore it can be concluded, 

that efficiency of biological reactor performance, namely intensity of biodegradation, 

nitrification, denitrification and   uptake and bioaccumulation depends on the    levels 

within the ditch, and thus indirectly relies on the system hydrodynamics.  

In Chapter 4 current trends in engineering design of the activated sludge systems and 

potential advantages of the use of CFD modelling in wastewater sector were extensively 

discussed. This chapter covers computational approach to assess the hydrodynamics of the 

oxidation ditches through CFD simulations, used as a powerful design and diagnostic tool. 

The showcase considered in the CFD studies was an oxidation ditch aerated with external 

PAC unit, supplying oxygenated wastewater to the slot jet aerators – hydrojets, comprising 

functions of aerator and mixer. One of the objectives of the CFD studies was to evaluate 

performance of several configurations of slot jets simulated with different turbulence 

models and to assess their impact on the ditch hydrodynamics and energy expenditure for 

mixing. It was proven, that regardless of the hydrojets placement, the same overall 

distribution of the flow patterns was obtained with RANS and URANS, where the hydrojets 

created an average flow with great stratification inside the volume of the ditch, 

characterized by poor vertical transport. In LES, the presence of eddies changed the 

hydrojet plume into a sinuous path evolving dynamically throughout the ditch, promoting 

convective transport between the fluid layers. Furthermore it was found, that hydrojets 

placed at the surface yielded up to 30% higher average velocities, than the other 

configurations improving energy efficiency, however they led to formation of the dead 

zones extended near the ditch bottom. On the other hand, the hydrojets placed near the 

bottom demand for less 5% energy than mid-depth and near-surface configurations, but 

also yield lower average velocities, what affects overall mixing in the ditch and reduce 

energy efficiency to only 24%. Thus, the geometry with the hydrojets fixed in the mid-

depth of the ditch was selected as the most economic and hydraulically efficient 

configuration, allowing use of up to 38% of supplied power in the fluid. For the same 

hydrojets’ configurations, the difference in the energy expenditure obtained from all 

simulations with different models was less than 8%, thus it was concluded, that for design 

studies and power demand estimation, use of model requiring less computational 

resources, RANS, is recommended. 

The hydrodynamics studies on the impact of mesh resolution and the models involved in 

boundary layer modelling on the energy expenditure were also presented in Chapter 4. It 
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was found, that the differences in values of power for mixing obtained for the finest grid 

of 5.7 million elements and the coarsest grid of 600 thousand elements is less than 5%. 

Furthermore, considering the impact of the model and near-wall treatment on the energy 

expenditure, it was found, that power demand increased with the solution accuracy. 

However, the highest value obtained for     turbulence model, was only 2% higher than 

for LES, and 5% higher than for     model with Enhanced Wall Treatment. Furthermore, 

regardless of the turbulence model and mesh density, only the average velocity of the 

fluid has the impact on quantity of power supplied and thus on energy efficiency of the 

oxidation ditch system. Considering results of grid independence test and simulations with 

different turbulence models, the average velocity of the fluid in the oxidation ditch is 

          , which for assessed power for mixing yields energy efficiency of 31%. Therefore 

one can conclude that the turbulence model accounting for less computational resources, 

RANS with     and Standard Wall Functions is appropriate for power expenditure and 

energy efficiency studies. 

The analysis of the effect of turbulence models on the macromixing data obtained from 

the RTD simulations using particle tracking method was also made in Chapter 4. This work 

showed the limitations of some approaches in the computation of the RTD. It was found, 

that the RTD simulations based on the average flow field, RANS and URANS, allow 

achievement of the solution in the shorter physical time and with lesser computational 

efforts, but lead to overestimation of the channeling effects. The flow dynamics in 

oxidation ditch underlies mixing at all scales, both macro- and micro-, what should always 

be accounted for. As efficiency of wastewater treatment in activated sludge process 

depends on the bioreactor hydrodynamics, therefore CFD data for ASM must account with 

the all dynamic components of the flow. For such purpose, use of more complex 

approaches with higher computational costs, namely LES, is highly recommended. 

Chapter 5 concerned determination of the energy expenditure on aeration in the oxidation 

ditch process. Computations were made to assess daily power consumption per capita by 

different groups of aeration devices commonly used in oxidation ditches and operated on 

the base of atmospheric air and high purity oxygen. It was concluded, that the most energy 

efficient aeration scenario are porous diffusers supplied by pure oxygen, accounting for ca. 

0.7 kWh per capita, while the most energy-intensive is mechanical surface aeration with 19 

kWh per capita. Nonetheless, to estimate overall energy expenditure in the oxidation ditch 

system equipped with porous diffusers, additional case-specific computations, such as 

determination of power consumption for air piping, mixed liquor recirculation and mixing 

by e.g. vertical shaft impellers or flow boosters, must be accounted for. 
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Detailed analysis of the energy budget in the proposed oxidation ditch system, aerated by 

PAC cooperating with hydrojets was made in Chapter 5. Computations of power demand 

on aeration considered actual oxygen requirements by PAC unit, and thus power demand 

by blower, and by oxygen generation. It was found, that introduction of the external 

aeration unit, PAC, is a promising solution providing distinct energy savings through 30% 

reduction of power demand by compressor in both, atmospheric air and pure oxygen 

aeration schemes, and thus oxygen generation in VPSA process, when comparing with BAT 

devices. Energy demand on mixed liquor pumping and reinjection was determined, 

considering two different hydrojets’ designs. However, when comparing required elevation 

head, multi-slot injector configuration was rejected, as the one generating higher 

headloss, suggesting implementation of the second pumping unit in the system.  

Scenario considering PAC unit supplied by air and cooperating with the single slot injectors 

required head of 1.5 m, yielding energy expenditure of up to 11.5 kWh per capita for 

mixed liquor recirculation and reinjection and up to 1.24 kWh for saturation with oxygen. 

Substitution of the air by pure oxygen allows reduction of the operation costs by blower by 

80% and pumping unit by 75% yielding total energy demand for aeration of up to 0.3 kWh 

and up to 2.9 kWh per capita for recirculation and reinjection, respectively. From the 

above it can be concluded, that proposed aeration system consisting of PAC and slot 

injector seems to be promising solution allowing for distinct reduction of power demand 

and thus leading to energy savings, even when comparing with most efficient BAT systems 

– perforated membrane diffusers.      

As final remark, the main achievements of this dissertation are: 

 A new, highly efficient aeration technique based on the introduction of external 

aeration unit, PAC, into internal recirculation loop, was developed. 

 Aeration performance in PAC is characterized by higher      and     than current 

state of the art technologies. 

 Considering pure oxygen systems, implementation of PAC allows reduction of 

energy expenditure on aeration by up to 67% in comparison with BAT devices. In 

comparison with aeration systems commonly used in oxidation ditches, energy 

demand by PAC constitutes 1-4% of the quantity required by surface aeration 

devices, horizontal rotors or slow-speed aerators and 7%- by membrane air 

diffusers.   

 Extensive CFD studies on the hydrodynamics of the oxidation agitated with 

hydrojets ditch led to preparation of the guideline on the applicability of 

turbulence models serving different purposes. For design and energy efficiency 
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studies, RANS with     model accounting for less computational resources is 

recommended. For the hydrodynamics studies based on the RTD simulation for 

macromixing assessment, more complex modelling approaches of higher 

computational cost, such as LES, are more suitable.  

 Proposed hydraulic configuration of the oxidation ditch aerated with PAC and 

agitated by slot injectors, allows to compromise objectives of integrated water 

pollution prevention control measures and standards set in Urban Waste Water 

Treatment Directive, combined with sustainable strategy for centralized 

wastewater treatment. 

6.3 Future Work    

Present work brought the insight into the ongoing research challenges in wastewater 

treatment sector. The suggestions for future work are as follows: 

 Design and overall energy budget assessment of net-zero-energy wastewater 

treatment plants based on the oxidation ditch process aerated intermittently by 

PAC – hydrojets system and considering energy recovery from sludge digesters. 

 Design studies on modification of height/length ratio in PAC aiming further 

enlargement of the oxygen/wastewater contact area, and thus diffusion layer 

surface.  

 Computational and experimental approach to assess adaptation of PAC to wider 

range of devices, such as diffusers, and to aerate different wastewater treatment 

reactors, such as various multichannel oxidation ditch configurations, plug flow 

reactors and membrane bioreactors (MBR). 

 Further CFD studies on oxidation ditch hydrodynamics involving solid – liquid 

modelling coupled to biokinetic reactions of wastewater treatment – aiming to 

overcome present modelling limitations concerning changes in growth and decay of 

biomass. 

 Detailed studies on coupling of the RTD data obtained from CFD simulations of 

several most common oxidation ditch configurations (OrbalTM, CarrouselTM, ...) into 

ASM models, aiming development of more case-sensitive modelling guidelines. 
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