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: O cancro da próstata (CaP) é uma doença heterogénea, sendo, 

atualmente, a neoplasia maligna não-cutânea mais comum em homens nos países 

desenvolvidos e a sexta principal causa de morte por cancro a nível mundial. O 

conhecimento sobre o processo de iniciação e progressão da doença é ainda 

limitado, sendo reconhecida a necessidade de desenvolver e aperfeiçoar métodos 

inovadores para apoio à deteção precoce, diagnóstico e decisão terapêutica. A 

descoberta da metilação do DNA como mecanismo de regulação génica essencial 

à homeostasia celular e cuja desregulação constitui um evento comum na 

carcinogénese, tem possibilitado uma maior compreensão da biologia do CaP. De 

facto, diversos estudos revelaram que a alteração dos padrões de metilação nos 

promotores dos genes ocorre em etapas precoces do desenvolvimento do CaP. Os 

microRNAs constituem um outro mecanismo de regulação da expressão génica e 

cuja desregulação está também relacionada com a carcinogénese. A expressão 

desta classe de RNAs não codificantes de cadeia curta pode ser, igualmente, 

regulada por meio da metilação do DNA. Contudo, o potencial desta alteração 

como biomarcador de CaP não foi, até à data, cabalmente explorado. 

: Determinar, em doentes de CaP, o potencial como biomarcador 

diagnóstico e prognóstico da quantificação da metilação de regiões promotoras de 

microRNAs recentemente identificados. 

 : A análise prévia através de HumanMethylation450 

BeadChip permitiu a identificação dos dinucleótidos CpGs mais diferencialmente 

metilados localizados em regiões promotoras de microRNAs. A partir desta análise, 

os níveis de metilação das regiões promotoras de miR-34b/c, miR-129-2, miR-152, 

miR-193b, miR-663a e miR-1258 foram selecionados para validação através de 

qMSP, numa série alargada de tecidos prostáticos. Os níveis de metilação das 

regiões promotoras destes microRNAs foram igualmente analisados em amostras 

tumorais e não tumorais de bexiga e rim a fim de avaliar a sua especificidade para 

CaP. Posteriormente, os níveis de metilação das regiões promotoras de miR-34b/c, 

miR-193b e miR-1258 foram avaliados em sedimentos urinários, e os de miR-34b/c 

e miR-129-2 em biópsias prostáticas, para determinação do seu valor diagnóstico 

e prognóstico, respetivamente. 
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: Foi confirmada a elevação significativa dos níveis de metilação 

dos promotores dos microRNAs candidatos (selecionados a partir do array) em CaP 

comparativamente com tecido prostático normal. Excetuando miR-152, todos os 

candidatos apresentaram valores de AUC superiores a 0.90 nesta série de 

amostras. O miR-193b e miR-1258 demonstraram os melhores resultados, com 

valores de AUC=0.96 e AUC=0.99, respetivamente. Globalmente, níveis de 

metilação mais elevados associaram-se a estadio patológico mais avançado, tendo 

os níveis de metilação de miR-129-2 associado com grau combinado de Gleason 

mais elevado. Quando testados em amostras de tecido vesicais e renais, quer 

normais, quer neoplásicos, o miR-129-2 e miR-663a apresentaram níveis de 

metilação mais elevados em tumores vesicais comparativamente a CaP. Dos 

candidatos testados em sedimentos urinários, o miR-193b demonstrou melhor 

desempenho, com AUC=0.96, 91.6% de sensibilidade e 95.7% de especificidade. 

Numa série de amostras de biópsias prostáticas, níveis de metilação mais elevados 

do miR-129-2 demonstraram ser preditores independentes de menor sobrevivência 

específica e livre de doença. 

: A validação dos resultados do array confirmou a quantificação 

da metilação dos promotores de miR-34b/c, miR-193b e miR-1258 como 

biomarcadores específicos de CaP em amostras de tecido. Para efeitos de deteção 

precoce, sendo urina a amostra ideal, a quantificação dos níveis de metilação do 

promotor de miR-193b demonstrou um desempenho comparável ao dos melhores 

biomarcadores epigenéticos para CaP até à data descritos. No que respeita à 

avaliação do valor prognóstico, elevados níveis de metilação do promotor de miR-

129-2 demonstraram ser preditores independentes de um menor intervalo de 

tempo até recorrência bioquímica e mortalidade devida à neoplasia, sendo apenas 

superado pelo estadio clínico. 

: Neste estudo, foi demonstrado que a quantificação dos níveis 

de metilação dos promotores dos miR-193b e miR-129-2 tem potencial utilidade 

como biomarcadores de diagnóstico e prognóstico, respetivamente. Assim, 

poderão constituir ferramentas úteis no apoio à avaliação clínica e decisão 

terapêutica de pacientes com CaP. Contudo, a confirmação deste valor clínico 

requer validação em séries independentes. 

 

  



vii

 

: Prostate cancer (PCa) is a heterogeneous disease that 

constitutes the most common cancer in men from western countries and the sixth 

leading cause of death by cancer among men worldwide. Current knowledge about 

its onset and progression is still limited and better tools for improved diagnosis 

and therapeutic decision-making are needed. Insight into DNA methylation has 

shed new light on PCa biology. This gene regulation mechanism is essential for 

cellular homeostasis and its alteration is common in cancer. Indeed, altered 

patterns of DNA methylation occur at early steps of PCa development, including 

those occurring at gene promoter regions. MicroRNAs are a class of small non-

coding RNAs involved in gene expression regulation and its deregulation has been 

implicated in tumorigenesis. MicroRNA expression regulation by DNA methylation 

has been previously reported but its potential use as PCa biomarker has not been 

systematically explored. 

 

: To assess the diagnostic and prognostic biomarker potential of 

quantitative promoter methylation of newly identified microRNAs in PCa patients. 

 

: HumanMethylation450 BeadChip-based analysis 

previously enabled the identification of the most differentially methylated CpGs in 

known microRNA promoter regions. From this analysis, methylation levels in miR-

34b/c, miR-129-2, miR-152, miR-193b, miR-663a e miR-1258 promoter regions 

were selected to be validated by qMSP in a large set of tissue samples. Promoter 

methylation levels of those microRNAs were also assessed in bladder and kidney 

non-tumorous and tumorous samples, to determine its PCa-specificity. Then, 

promoter methylation levels of miR-34b/c, miR-193b and miR-1258 were evaluated 

in urine sediments and miR-34b/c and miR-129-2 in biopsy samples to test for 

diagnostic and prognostic value, respectively. 

 

: Higher promoter methylation levels in PCa compared to normal 

prostate were confirmed for all six candidate microRNAs selected from the array. 

Except for miR-152, all candidates displayed AUC values higher than 0.90 in this 

sample set. MiR-1258 and miR-193b disclosed the best performance with 

AUC=0.99 and AUC=0.96, respectively. Higher methylation levels of all candidates, 
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excepting miR-152, correlated with higher pathological stage. Moreover, higher 

miR-129-2 methylation levels also correlated with a higher Gleason grade. When 

tested in bladder and kidney tissues (normal and neoplastic), miR-129-2 and miR-

663a showed higher methylation levels in bladder cancer compared to PCa. Of the 

candidates tested in urine samples, miR-193b showed the best performance, with 

AUC=0.96, 91.6% sensitivity and 95.7% specificity. In a prostate biopsy sample set, 

higher miR-129-2 methylation levels independently predicted for shorter DSS and 

DFS. Although a similar trend was apparent for miR-34b/c, it did not achieve 

statistical significance. 

 

: In the initial validation of the array results, miR-34b/c, miR-

193b and miR-1258 promoter methylation levels were shown to be PCa-specific 

biomarkers in tissues, emerging as promising candidates for subsequent testing. 

For early diagnosis purposes, urine is an ideal sample and miR-193b quantitative 

promoter methylation demonstrated biomarker performance similar to the best 

epigenetic biomarkers thus far reported for PCa. Concerning assessment of 

prognosis, high miR-129-2 promoter methylation levels independently predict for 

shorter time to biochemical recurrence and decreased disease-specific survival. Its 

performance as prognostic biomarker was only surpassed by clinical stage. 

 

: Herein, we demonstrate that quantitative miR-193b and miR-

129-2 promoter methylation have potential clinical usefulness as early diagnostic 

and prognostic biomarkers, respectively. Nevertheless, these findings require 

validation in larger and independent sample sets. 
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The prostate is a retroperitoneal organ that surrounds the bladder neck and 

the urethra, being posteriorly separated from the rectum by the Denonvillier’s 

fascia [5, 6]. It has a pear-like shape, with its base at the bladder neck and the apex 

at the urogenital diaphragm, weighting about 20g in the adult male with a volume 

around 25cm
3 

[5-7]. 

The prostate, as an exocrine organ, consists of glands secreting a fluid that 

comprises the bulk of the seminal emissions and is emptied into the urethra. Due 

to its location and function, the development of prostatic cancer as well as its 

treatment options brings risks to the sexual, urinary and bowel functions [7]. 

Anatomically, the prostate gland is a heterogeneous organ. Throughout the 

twentieth century, the regional anatomy of the prostate did not gather consensus 

between investigators. In 1981 McNeal proposed the currently accepted model of 

zonal organization [5, 8]. According to this model, four basic anatomic regions can 

be identified. The peripheral zone constitutes over 70% of the glandular component 

and is located at the lateral and posterior sides of the organ. The vast majority of 

carcinomas, as well as the other pathologies affecting this organ, arise from this 

region [8]. The central zone represents 25% of the glandular prostate and is located 

posteriorly to the urethra surrounding the ejaculatory ducts. There are marked 

architectural differences between the central and peripheral zones, suggesting 

different biological roles [8]. The transition zone is centrally located, surrounding 

the prostatic urethra. Finally, the anterior fibromuscular stroma (AFMS) which is a 

band of fibromuscular tissue, contiguous with the bladder’s smooth muscle and 

the external sphincter, forming the anterior surface of the gland as a thick, non-

glandular layer [7, 8]. A partial capsule encloses the posterior and lateral sides of 

the prostate while the anterior and apical surfaces are covered by the AFMS [7].  

Concerning the gland’s histology, its architecture is that of a branched duct 

gland embedded in a fibromuscular stroma [5]. Prostate epithelium is composed 

of two layers of cells: secretory luminal cells (PSA producing and androgen receptor 

positive) and basal cells, with rare neuroendocrine cells being present as well [7, 

9]. 



 

4 

Prostate cancer (PCa) is the most common male cancer in western countries 

[10]. PCa is an age-related and a very heterogeneous disease, both genetically as 

well as clinically, ranging from relatively indolent to highly aggressive tumors. This 

disease is typically asymptomatic, thus leading to commonly late diagnosis which, 

in turn, impairs not only prognosis but also therapeutical strategies [11]. 

Currently, PCa is a major health concern in western countries standing as 

the second most common cause of cancer and the sixth leading cause of death by 

cancer among men, worldwide [12]. The burden brought by this malignancy is 

increasing simply due to the global population’s growth and aging [13]. In 2012, 

the number of PCa cases diagnosed worldwide accounted to approximately 15% of 

all new cases of cancer diagnosed in men [14]. The American Cancer Society yearly 

predictions for 2015 suggest that prostate cancer alone will account for 26% (about 

220,800) of newly diagnosed cancer cases and 9% (27,540) deaths in men in the 

USA alone [15]. 

Geographically, PCa incidence and mortality rates have a highly 

heterogeneous distribution. Specifically, incidence rates vary more than 25-fold 

worldwide with the highest rates being observed in North-America, Europe and 

Oceania mainly due to wide use of PSA based screening [12]. Temporal trends are 

influenced by usage of PSA testing as a diagnostic tool. Soon after the introduction 

of PSA testing, incidence rates rapidly arose followed by a sharp decline. This 

pattern was particularly evident in the USA, Canada, Australia and Nordic countries. 

On the other hand, in countries such as the UK and Japan, with a low and gradual 

increase in the prevalence of PSA-testing, rates continue to increase slightly [12]. 

Death rates have been declining in high-income countries, in part due to 

improvements in treatment with curative intent. The role of PSA-testing in this trend 

remains elusive with studies in Europe and the USA reporting little to no gains. On 

the other hand, mortality rates are increasing rapidly in Asian, central and eastern 

European countries [12, 13]. 
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Currently, there are only three risk factors well-established for PCa, namely: 

age, race and family history. However, smoking and increased body-mass have also 

been found to be associated with PCa, particularly with more aggressive tumors. 

Other factors, including exposition to ionizing or ultraviolet radiation,  endogenous 

hormones and urinary tract infections were suggested to be linked to PCa, but still 

require additional studies for confirmation [16]. 

Age is the most important factor in PCa. In unscreened populations, PCa has 

the steepest age-dependent incidence curve, with an increased slope in the seventh 

decade of life [16]. Similarly to other epithelial malignancies, PCa is a disease 

mainly related to aging, commonly afflicting men above 65 years of age with 

diagnosis earlier than this age being rare and incidence peaking between 70 and 

74 years old [16, 17]. Cases in men with less than 50 years of age are extremely 

uncommon, accounting for 0.1% of all cases [17]. 

Incidence and mortality rates vary significantly between races. Compared to 

their Caucasian counterparts, African-american individuals have a younger median 

age of diagnosis, 58% higher incidence and 144% greater mortality. On the other 

hand, individuals with Hispanic ancestry show 14% lower incidence and 17% lower 

mortality. Individuals of Asian origin appear to have a lower risk to develop the 

disease. For instance, Asian, Indians and Pakistanis living in the USA have a 

standardized incidence ratio of 0.54 when compared to American Caucasian 

populations [16]. 

Men with strong family history of PCa have two to four times higher 

incidence, when compared with control groups. This risk is particularly higher in 

patients with a first degree relative who was afflicted with the disease and also with 

relatives that were diagnosed at younger ages [18]. Association with X-chromosome 

has also been suggested. It has been found that individuals with a brother that 

harbored the disease have higher risk of developing this malignancy comparing to 

individuals in which the father was a PCa patient [18]. Although rare, BRCA2 

mutations increase by 8.6 times the risk of developing the disease at an age below 

65 years and are correlated with a more aggressive behavior [16, 18]. Other 
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mutations that confer higher risk, albeit rare, have been reported in BRCA1, 

HOXB13, NSB1 and CHEK2 genes [16]. 

The adoption and effectiveness of a screening program for PCa is still a 

matter of debate [12, 19]. In many countries, screening programs based on PSA 

testing in combination with digital rectal examination have been introduced [19]. 

A suspicion of PCa usually arises on the basis of DRE and PSA levels although a 

definitive diagnosis is always dependent in cytological or histological analysis from 

core biopsies or surgical specimens [20]. 

Since most prostate cancers are located in the peripheral zone, their 

detection is possible by DRE once their volume is 0.2mL or higher. In about 18% of 

the patients, PCa detection is made by DRE, irrespective of the patients PSA values. 

Abnormal DRE is associated with a higher Gleason score and, thus, is an indication 

for prostate biopsy [20].  

Usage of PSA as a serum marker revolutionized PCa detection. This enzyme 

is produced by prostatic epithelial cells and is organ, but not cancer, specific. 

Therefore, PSA serum levels may be increased in benign conditions such as BPH 

and prostatitis [20, 21]. The PSA value is a continuous parameter and a higher PSA 

value represents a higher likelihood of PCa existence. Currently, a positive PSA test 

with a value greater than 3 to 4 ng/mL is indicative for prostate biopsy [19, 20].  

The standard way to obtain material for histopathological examination is 

ultrasound-guided transrectal or transperineal 18G core biopsy [20]. On the 

histological analysis of the cores obtained, the glands are typically smaller and are 

lined by a single layer of cuboidal or low columnar cells. They have a more crowded 

aspect and are devoid of the basal cell layer that is present on the normal 

architecture and also in the benign afflictions of the gland. Nuclear size is increased 

and one or two nucleoli may be present [6].  



 

7 

Prostatic adenocarcinomas are often 

multifocal and heterogeneous neoplasms [20]. In 

this context, the Gleason Score was developed. 

Gleason’s grading evaluates the architectural 

features of the cancer glands, categorizing them 

into five distinct patterns from well to poorly 

differentiated. The Gleason Score is then 

obtained as the sum of the two most common 

growth patterns observed in the specimen, 

incorporating both a primary (the most prevalent) 

grade and a secondary (next most prevalent) 

grade, and ranging from 2 (1+1) to 10 (5+5) [5, 

7]. 

Both in radical prostatectomy specimens 

and needle biopsy samples, the Gleason Score is 

currently the strongest prognostic factor [20]. 

Albeit being globally accepted and used, 

the Gleason system displays several limitations. 

In particular, the Gleason grading is observer dependent, varying with the 

experience of the pathologist. Moreover, nowadays, most of the diagnosed patients 

fall in the Gleason 6-7 category, an intermediate prognostic range that limits the 

usefulness of the 10-point scale [11]. On the other hand, in neoplasms that have a 

minor high grade component, a tertiary Gleason Score may be reported, since it 

carries significant prognostic information [7]. Although the Gleason Score is the 

most powerful prognostic factor, other features must be taken into account during 

histopathological evaluation such as the presence of extracapsular invasion, 

perineural invasion, surgical margin status, lymph node status and seminal vesicle 

invasion [11]. 

Cancer staging is a key factor to ascertain prognosis and determining 

treatment. Several cancer staging systems are used worldwide and the most 

clinically useful is the tumor node metastasis or TNM system [22]. This system 

classifies cancers by the size and extent of the primary tumors (T), the presence of 

Figure 1 - The Gleason grades 

range from closely packed and 

uniform glands (grade 1) to 

almost complete loss of glandular 

differentiation (grade 5). Adapted 

from [1]. 
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involvement of regional lymph nodes (N) and presence or absence of distant 

metastases (M) [22]. 

There are two types of staging: the clinical and pathological. In prostate, 

clinical staging is determined mainly from data collected by DRE, TRUS and 

magnetic resonance imaging, although PSA level is also a factor taken into account. 

Clinical staging remains unchanged apart from the pathological stage which is, in 

turn, ascertained after radical prostatectomy and its data is provided by 

macroscopic and microscopic observation of the surgical specimen and dissected 

lymph nodes [23]. 

In PCa, T-staging is the first and most important since the distinction 

between organ confined (T1-T2) and extraprostatic disease (T3-T4) is the most 

impactful aspect on treatment decisions [20]. On the other hand, N-staging should 

only be pursued in cases where the potential findings will impact treatment 

decisions, particularly in patients where curative treatments are planned. The gold 

standard for N-staging is surgical lymphadenectomy although computer 

tomography and magnetic resonance imaging may be used [20]. 

 

Table 1 - Pathological staging of prostate cancer. Adapted from [19]. 

Primary tumor cannot be assessed 

No evidence of primary tumor 

Clinically unapparent tumor neither palpable nor visible by Imaging 

Tumor incidental histologic finding in 5% or less of tumor resected 

Tumor incidental histologic finding in more than 5% of tumor resected 

Tumor identified by needle biopsy 

Tumor confined within prostate gland 

Tumor involves one half of one side or less 

Tumor involves more than one half of one lobe but not both lobes 

Tumor involves both lobes 

Tumor extends through prostate capsule 

Extracapsular extension (unilateral or bilateral) 

Tumor invades seminal vesicle(s) 

Tumor is fixed or invades adjacent structures other than seminal vesicles, 

such as: external sphincter, rectum, bladder, levator muscles, and/or pelvic 

wall 
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Currently, the difference between PCa incidence and death rates is quite 

considerable. Many autopsy studies showed that 60-70% of aged men who die from 

different causes, harbor histological PCa, with an estimated 10-15% of these having 

a Gleason score of 7 or higher. Indeed, it is estimated that about 15-20% of men 

are diagnosed with PCa during their lifetime, but only 3% of those men die from it. 

At the same time, the incidence of small localized tumors is increasing, essentially 

as a result of early screening procedures. Therefore, there is a number of men who 

do not need aggressive and definitive forms of treatment. On the other hand, in 

patients with limited co-morbidities and limited life-expectancy, the need of a 

Organ confined 

Unilateral, involving one-half of one side or less 

Unilateral, involving more than one-half of one side but not both sides 

Bilateral disease 

Extraprostatic extension 

Extraprostatic extension or microscopic invasion of bladder neck 

Seminal vesicle invasion 

Invasion of rectum, elevator muscles and/or pelvic wall 

Regional lymph nodes were not assessed 

No regional lymph node metastasis 

Metastasis in regional lymph node(s) 

Cannot be assessed 

No positive regional nodes 

Metastasis in regional node(s) 

No distant metastasis 

Distant metastasis 

Non-regional lymph node(s) 

Bone(s) 

Other site(s) with or without bone disease 
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definitive treatment is questionable. Thus, the risk of overtreatment, ie, treatment 

of a disease that will not pose a threat to the patient’s well-being during his lifetime, 

is one of the major issues of PCa screening [24, 25]. As a result, two different 

approaches have been proposed: active surveillance and watchful waiting. Active 

surveillance was developed aiming to reduce overtreatment in patients with 

clinically confined low-risk PCa that are surveilled, but curative treatment is still 

available when needed. Therefore, active surveillance should only be applied to 

very carefully selected low-risk patients, specifically with PSA levels below 

10ng/mL, with a Gleason score lower than 7 and clinical stage of cT1c to cT2a [24, 

26].  

Watchful waiting comes from the knowledge that PCa is, usually, a slow 

progression disease. It is a strategy to avoid radical treatment in patients with 

serious co-morbidities from other diseases and/or less than a 5-year life 

expectancy [24]. Thus, tumor stage is of high importance, with tumor stage 3 

having very low survival rates and stages 1 and 2 showing a better 10-year cancer-

specific survival [24]. 

Concerning active treatment, radical prostatectomy (RP) and radiation 

therapy are the most common approaches for localized PCa. Active treatments are 

largely curative, despite the concern about overtreatment [24, 26].  

RP is the surgical treatment for PCa. This surgery consists in removing the 

whole gland, the seminal vesicles and enough surrounding tissue to ensure 

negative margins. This procedure may be accompanied by bilateral pelvic lymph 

node dissection. In patients with localized disease and life expectancy higher than 

10 years, the goal of this procedure is curative treatment with the preservation of 

continence and, if possible, potency. RP remains the only treatment for localized 

disease that showed cancer-specific benefit in comparison with watchful waiting in 

a prospective randomized trial. However, it must be taken into account that, so far, 

the benefit of RP over watchful waiting has only been observed in patients with 

intermediate or high-risk PCa [20]. 

Radiation therapy is a valid alternative to surgery as a curative therapy. 

External radiation beam therapy provides a quality of life comparable to surgery. 

Transperineal low-dose or high-dose rate brachytherapy is also widely used. 

Curiously, there have been no randomized studies comparing the radical 

prostatectomy with radiation therapy in localized disease [20]. 
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Metastatic PCa has a poor prognosis, although it depends highly on the 

extent of the disease. Minimal metastatic disease has been defined as involvement 

of the axial skeleton and lymph nodes while extensive disease involves the viscera 

and/or appendicular skeleton [25]. 

For more than half a century, androgen deprivation therapy has been the 

standard treatment for patients with metastatic disease. This therapy originated 

from the demonstration by Huggins in 1941 that orchiectomy or estrogens could 

induce dramatic remissions in advanced PCa. Posteriorly, it was found that 

sustained LHRH administration leads to a down-regulation of LH secretion which in 

turn causes a decline in the levels of testosterone [25]. 

Nevertheless, the median duration of response to ADT is, approximately, 18-

24 months, after which most cases progress to a form of disease called castration-

resistant prostate cancer. This late form of the disease is extremely aggressive 

rendering a rather grim prognosis with some studies reporting that without 

treatment median survival time is about 9 to 21 months [27]. 

Due to the complexity of PCa as a disease and the multiple variables that 

affect its outcome, the prediction and adequate management of each patient is still 

one of the problems in clinical practice. An approach to this difficulty has been the 

development of several multivariable models for disease progression prediction, 

based in the clinico-pathological information available at the time of diagnosis [28]. 

Many of those models have been in the form of nomograms, one of the most 

prominent being CAPRA score [29]. 

Proposed by Cooperberg et al. in 2005, this nomogram aims to predict the 

pre-operative probability of biochemical-recurrence-free survival after radical 

prostatectomy in patients with clinically localized prostate cancer [29]. This model, 

based in the PSA level, Gleason score, clinical stage, percentage malignant cells in 

biopsy core samples and patients’ age at diagnosis to generates a numerical value 

from 0 to 10. Values between 0-2, correspond to  low-risk tumors, 3 to 5 

intermediate and tumors above 5 are considered to have a high-risk for biochemical 

relapse [30].  

Different validation studies have confirmed its ability to correctly predict 

biochemical recurrence at 3 years after radical prostatectomy. Some studies 

reported that this ability can be extended to 5 years, although this is still 

controversial as some authors argue that this model significantly under-predicts 
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biochemical recurrence 5 years after RP [29]. Moreover, CAPRA score has been also 

shown to accurately predict cancer-specific mortality and metastasis development 

in patients subjected to other therapeutic strategies, namely radiation therapy, 

androgen deprivation or even without treatment (watchful waiting /active 

surveillance) [30]. 

In an attempt to improve 5-year predictive value, additional predictive 

variables were added to the original nomogram. This revised score also includes 

surgical margins of the surgical specimen, seminal vesicle invasion, extracapsular 

extension and lymph node invasion [31]. This revised model appears to improve 

the original’s prediction capabilities although further validation is needed [29]. 

Epigenetics is currently defined as the mechanisms that initiate and maintain 

heritable patterns of gene function and regulation in a heritable manner without 

interference in the genome sequence, hence the name: epi – an ancient Greek word 

meaning “what stays beyond” – genetics [32]. These mechanisms contribute to the 

cell diversity observable inside a single organism, despite all cells keeping the same 

genetic information [33].  

Currently, three epigenetic mechanisms are known: DNA methylation, 

histone covalent modification and non-coding RNAs. Together, these mechanisms 

constitute the epigenetic code, modulating the expression of the mammalian cell 

genome through developmental stages and various diseases, including cancer [4]. 

Epigenetics is an emergent field of research, which in the last two decades 

expanded rapidly, bringing new insights into cancer research [34]. Various 

discoveries in vitro, in vivo and human clinical and epidemiological studies have 

challenged the classical view of cancer as a genetic disease, and as such, epigenetic 

deregulations are now considered a hallmark of cancer [32, 35]. 

The most widely studied epigenetic mechanism, DNA methylation was the 

first epigenetic alteration to be associated with cancer [32, 35]. In mammals, DNA 

methylation occurs mainly by the addition of a methyl group (CH3) to the 5’ carbon 

of a cytosine nucleotide preceding guanine, originating 5-methylcytosine (5mC) in 
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CpG dinucleotides [36]. Additionally, this modification may interfere with the 

binding of transcription factors [4]. 

The cytosine methylation reaction is catalyzed by the DNMT family of 

enzymes, particularly DNMT1, DNMT3A and DNMT3B being S-adenosyl-methionine 

the methyl group donor. It is known that DNMT3A and DNMT3B are responsible for 

establishing DNA methylation patterns during embryo development while DNMT1 

is involved in the maintenance of these patterns [4]. 

CpG dinucleotides are not randomly nor evenly distributed throughout the 

genome. Instead, they tend to be concentrated either in short CpG-rich fragments 

or in long repeats called “CpG islands” or CGI [35]. There two criteria required to 

consider a certain DNA stretch as a CGI, namely to have more than 200 bases with 

a CG content of at least 50% and a ratio of expected CpG frequency of at least 0.6 

[37]. About 60% of human gene promoters contain CGI and DNA methylation in CGI 

within gene promoters correlates with condensed chromatin structure leading to 

gene silencing either inhibiting transcription factor binding or by attracting DNA-

binding proteins which in turn recruit repressive complexes [38]. However, 

methylation within the gene body does not block gene’s transcription but instead 

appears to promote transcription elongation and impacts in splicing. Moreover, 

methylation in repetitive regions, such as centromeres, is crucial for chromosomal 

stability. Strikingly 70-80% of these regions are methylated in the human genome 

[39]. 

During the development and differentiation stages, CpG islands are not 

methylated. However, in 

normal, mature tissues, 

some CpG islands in 

promoter regions can be 

methylated leading to 

permanent silencing of 

target genes. Therefore, 

the methylation pattern of 

a given tissue is acquired 

during differentiation and 

this pattern is tissue-

specific [33, 35]. 

Figure 2 - Global changes in DNA methylation from normal to 

cancer cells. In normal conditions, gene promoters usually are not 

methylated allowing gene expression. In cancer, methylation 

patterns are altered, with promoter hypermethylation and 

hypomethylation of gene bodies and noncoding regions. 

Adapted from [4]. 
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These specific methylation patterns may change in disease. These changes 

can be divided in into three categories: promoter-specific hypermethylation, global 

hypomethylation and loss of imprinting when comparing a pathological tissue with 

its normal counterpart [32].  

DNA hypermethylation is generally the gain of methylation in regions where, 

in normal conditions, there is no methylation and has been associated with loss of 

gene expression, occurring fundamentally on tumor suppressor genes [32].   

Hypomethylation is the loss of methylation and happens mainly in genome-

wide regions, being a well-established trait of cancer cells. DNA hypomethylation 

in cancer was discovered before DNA hypermethylation and its effects have greater 

impact [36]. It occurs in many gene-poor areas containing repetitive elements, 

retrotransposons leading to genome instability and causing translocations and 

chromosome rearrangements [32, 36].  

Loss of imprinting consists in the loss of allele-specific monoallelic 

expression of particular genes because of aberrant hypomethylation in one of the 

two parental alleles [32]. A classic example is the loss of imprinting at the IGF2 

locus in colorectal carcinoma [40]. 

Aberrant methylation has been established as a hallmark of cancer, both at 

individual genes and at a global genomic scale [41, 42]. The decreased levels of 

methylation in tumors comparatively to their normal-tissue counterparts was one 

of the first epigenetic alterations discovered in human cancer. It is also known that, 

during the progression of a neoplasm from a benign proliferation of cells to a 

malignant and invasive cancer, the degree of genomic hypomethylation increases 

[36]. In turn, these changes may favor mitotic recombination causing deletions and 

translocations, and promote chromosome recombination [43]. 

As previously stated, hypermethylation of CpG islands in the promotor 

region of a gene may lead to its inactivation. In many cancers, the inactivation of 

tumor-suppressor genes by this mechanism is a major event. However, 

hypomethylation is a general feature of cancer, whereas CGI hypermethylation is 

highly specific to each cancer type, to the point that every tumor type may be 

assigned a specific DNA “hypermethylome”. Inactivation of tumor-suppressing 

genes by methylation occurs both in sporadic as well as in hereditary cancers where 

hypermethylation may be the second hit in Knudson’s two-hit model [43]. 
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So far, the reason why some CGIs are methylated in some cancers and not 

in others remains unknown. Some DNA sequences show “opposite” methylation 

levels depending of the type of cancer such as NBL2 and D4Z4, two DNA repeats 

that are hypermethylated in certain cancers and hypomethylated in others. Another 

case is the hypomethylation of the justacentromeric Sat2 repeat, which is observed 

in gastric and breast cancer but not in colon cancer [36]. 

Concerning PCa, several methylation abnormalities have already been 

reported. Global hypomethylation has been observed in PCa which may have the 

already described effects in these cancer cells. Moreover, this hypomethylation is 

considerably higher in patients with metastatic disease when compared with non-

metastatic neoplasms [4]. Gene specific hypomethylation has also been described 

in PCa affecting genes involved in a wide range of cell functions: from invasion, to 

metastasizing properties, cell cycle control and activation of carcinogens [4]. 

Gene hypermethylation has been widely studied and found to occur at a 

large scale. Hypermethylated genes in PCa are involved in many biological 

processes such as DNA repair (GSTP1), signal transduction (RASSF1A), cell adhesion 

(E-cadherin, CD44 and galectins), hormonal response (RARβ , AR and ER), apoptosis 

(death-associated protein kinase), invasion, metastasis and cell cycle control [4]. 

In the eukaryotic cell, DNA is packed in the nucleus. However, it must be 

tightly regulated and then copied during cell division. Vital to both packaging and 

overseeing DNA stability are the histones. About 147 base pairs of DNA wrap 

around an octamer of histones which consist of two copies of H3, H4, H2A and 

H2B, forming the building block of chromatin, the nucleosome. Another histone 

protein, H1, binds to both the nucleosome and to the “linker DNA” thus keeping in 

place the DNA wrapped around the nucleosome [44]. 

Chromatin is a dynamic macromolecule with two distinct domains: 

heterochromatin and euchromatin, defined by the level of compaction and 

consequent genomic functions. Therefore, euchromatin is a more loose 

conformation allowing a higher level of transcription whereas heterochromatin 

(either constitutive or facultative) is the more condensed form and is typically 

transcriptionally repressive [44]. 
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Chromatin organization and regulation is achieved by numerous factors. Of 

particular interest are histone post-translational modifications. Typically, these 

occur in the C- and N- terminal domains, which protrude from the core of the 

nucleosome. However, a significant amount occur in the fold or globular domains 

of the protein thus interfering in the histone-histone and histone-DNA interactions. 

Several post-transcriptional modifications have been reported such as methylation, 

acetylation, phosphorylation, deamination, ubiquitylation, glycosylation and 

sumoylation [45]. 

Globally, each post-transcriptional modification confers different effects. 

Particular marks, such as acetylation traditionally leads to transcriptional activation 

[46]. Histone methylation, for instance, is a more complicated field than acetylation 

leading either to repression or promotion of gene transcription depending of the 

target residue and even of the degree of its methylation [47]. Behind all these marks 

and their effects is the cellular machinery that creates and maintains these patterns. 

The enzymes that constitute this machinery are usually classified into writers, 

laying the marks on the histones; readers, which recognize the marks; and erasers, 

the ones that remove the marks. The distinct patterns of histone post-translational 

modifications is called the “histone code” and, together with DNA methylation, 

plays a huge role in gene transcription [48]. 
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Table 2 - Examples of histone marks, their enzymes and their effect. Lysine (K), arginine (R), serine 

(S), threonine (T). Transcriptional activation (Ta), transcriptional repression (Tr), DNA repair (R), and 

DNA replication (Rep). Adapted from (48). 

H2A K5 Tip60, Hat1, P300/CBP Ta, R 

H2B 

K12 ATF2, P300/CBP Ta 

K20 P300 Ta 

H3 

K9 Gcn5, SRC-1 Ta, R 

K14 

Gcn5, PCAF, Tip60, SRC-1, 

hTFIIIC90, TAF1, p300/ Gcn5, 

Esa1, Elp3, Hpa2, TAF1, Sas2 

Ta, R, 

Rep 

K18 P300, CBP/Gcn5 (SAGA) Ta, R 

K23 P300, CBP/Gcn5 (SAGA), Sas3 Ta, R 

K27 Gcn5 Ta, R 

H4 

K5 
Hat1, Tip60, ATF2, p300/Hat1, 

Esa1, Hpa2 

Ta, R, 

Rep 

K5 
Gcn5, PCAF, Tip60, ATF2, 

p300/Esa1, Elp3 

Ta, R, 

Rep 

K12 Hat1, Tip60/Hat1, Esa1, Hpa2 
Ta, R, 

Rep 

K16 
MOF, Gcn5, Tip60, ATF2/Gcn5, 

Esa1, Sas2 
Ta, R 

H1 K26 EZH2 Tr 

H3 

K4 
MLL4, SET1, MLL1, SET7/9, 

MYD3/Set1 
Ta 

K9 SUV39H1, ESET/SETDB1 Tr 

K27 EZH2, G9A Ta, Tr 

K36 HYPB, NSD1/Set2, S.c. Ta 

K20 PR-SET7, SUV4-20/SET9 Ta, Tr, R 

H2A T119 NHK-1 Tr, R 

H2B S14 Mst1 R 

H3 

S10 
TG2, Aurora B, MSK1, 

MSK2/Snf1 
Ta 

T11 Dlk/ZIP Ta 

H4 S1 CK1 R 

H2A K119 Ring 1b Ta, R 

H2B K120 RNF 20/40 Ta, R 
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MicroRNAs (also called miRs or 

miRNAs) are a class of small non-coding 

RNAs with a length of 19-25 nucleotides 

[49]. They are encoded in the genome in 

diverse contexts, either expressed in 

intronic or intergenic transcripts that 

encode a single microRNA hairpin 

precursor or in clusters of multiple 

precursors [50].  

These small sequences are 

transcribed, mostly, by RNA polymerase 

II as long primary transcripts 

characterized by hairpin structures (pri-

microRNAs) and then processed in the 

nucleus by RNAse III Drosha into 70-100 

nucleotides long pre-microRNAs. These 

molecules are then exported to the 

cytoplasm by an Exportin 5-mediated 

mechanism. There, another RNAse III, 

Dicer, acts in complex with TRBP, 

generating a dsRNA with approximately 

22 nucleotides of length, called miRNA/miRNA*, including the mature miRNA 

guide, and the complementary passenger strand, the miRNA*. Many publications 

refer to these two strands as miR-5p and miR-3p, respectively. According to 

thermodynamic properties, one of the strands is selected as guide strand, whilst 

the other is usually degraded. Recent evidence suggests that miRNA* or miR-3p 

may not be just a byproduct of microRNA biogenesis but may also be selected as 

the functional strand and therefore play a biological role [3]. Finally, the mature 

microRNA is incorporated into RISC. It is through this complex that microRNAs 

exert their function upon their target mRNAs [51]. 

The partial or total match of a microRNA with the 3’ untranslated region of 

its target mRNA leads to its post-transcriptional inactivation and/or degradation. It 

is estimated that about 30% of human genes are direct microRNA’s targets which 

Figure 3 – MicroRNA biogenesis and effects. The 

mature microRNA is incorporated in the RISC 

complex and exerts its function by translational 

repression, mRNA cleavage or translational 

activation. Adapted from [3]. 
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implies that microRNAs are involved in mostly all cellular processes including cell 

cycle regulation, cell growth, cellular differentiation and apoptosis [4]. 

Similarly to protein-coding genes, in a normal cell, microRNAs need to be 

tightly regulated in order to maintain a distinct transcriptome signature of a 

particular cell. The loss of this tight regulation has been described in disease, 

including cancer [4]. In the last few years microRNAs became a major focus in 

cancer research with many studies demonstrating their importance in cancer 

biology and the impact of their deregulation in tumor growth, invasion, 

angiogenesis, apoptosis and immune evasion [50]. 

Interestingly, such as tumor suppressing genes and oncogenes, the location 

of a particular microRNA in the genome has consequence on its role in cancer. It 

has been found that many microRNAs are located in chromosomal loci prone to 

deletions or amplifications. As such, a microRNA that negatively regulates a tumor 

suppressor gene may be amplified causing silencing of its target. Conversely, 

microRNAs that repress oncogenes tend to be located in fragile loci and their 

mutation, methylation or deletion results in reduced microRNA expression and 

overexpression of respective target oncogenes [3]. Different tumors appear to have 

particular microRNA profiles and some of these were already reported as being able 

to discriminate tumor subtypes and to correlate with survival and treatment 

response [50]. 

Although the whole mechanism underlying microRNA deregulation in cancer 

is not fully understood, it is known that DNA methylation is involved in the 

regulation of microRNA expression. New technologies have enabled comprehensive 

analysis of the epigenome and as a consequence, the list of microRNAs silenced by 

methylation in cancer is growing rapidly. Indeed, many families of microRNAs have 

already been described as being silenced by methylation, including the miR-124, 

miR-34, miR-9, miR-200 and miR-205 families [52]. In PCa, several microRNAs are 

known to be hypermethylated. Among them is the miR-34 family, miR-126, miR-

193b, miR-145, miR-205, miR-21, miR-615 and miR-196b. MiR-34a appears to play 

an important role in metastasis and is also a target of p53. MiR34b/c targets 

DNMT1 and several histone deacetylases, besides MYC, CDK4, CDK6 and MET (a 

proto oncogene). MiR-145 is downregulated in about 81% of PCa. Its methylation 

has been shown to prevent p53 from binding to miR-145 promoter and regulate 

this microRNA expression [40]. 
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The introduction of biomarkers for cancer diagnosis and disease 

management has revolutionized modern oncology. Biomarkers are molecules 

whose detection or quantitation may be used to interpret the disease and its 

behavior, beyond the traditional clinical parameters [53, 54]. Proteins, metabolites, 

DNA, RNA and epigenetic alterations are all potential candidates to become disease 

biomarkers [54].  

Biomarkers may serve different roles. Currently, there are broadly seven 

different roles for biomarkers, depending on their use and the kind of questions 

they may help answering: disease predisposition, screening, diagnostic, 

prognostic, predictive, monitoring and pharmacogenomics. Concerning this work 

and PCa management current issues, two roles are of particular interest: diagnostic 

and prognostic. Biomarkers that are included in the former role help distinguishing 

patients that have cancer from those who do not harbor this malignancy. On the 

other hand, prognostic biomarkers assist in foreseeing the clinical outcome of a 

patient if therapy is not administered and therefore are useful in disease 

management decisions [53].  

The ideal marker is defined by its specificity to a given kind of pathological 

entity and its high sensitivity while providing advanced warning, ahead of an 

eventual clinical diagnosis. Also, the detection test should be cheap and non-

invasive in order to allow patient screening and be acceptable by the majority of 

the patients [55]. The biomarker should also improve decision-making abilities in 

conjunction with clinical and pathological parameters. It would be ideal to find a 

biomarker that fulfills all of the aforementioned requirements, however, in order 

to cover screening, diagnosis, prognosis and prediction to treatment, multiple 

biomarkers are typically required [53]. 

The use of biomarkers in PCa management, in contrast to most other types 

of cancer, has a long history. The first biomarker found was prostatic acid 

phosphatase which was noted, in 1930, to be elevated in the serum of patients with 

metastatic PCa. PAP remained in use until the 1980’s when it was replaced by 

Prostate specific antigen [53]. 

PSA has been the most commonly used marker for diagnosis and follow-up. 

Until recently, this marker was considered as the most reliable to predict PCa [55]. 
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The introduction of the PSA test, a highly accessible blood test, has revolutionized 

PCa diagnosis in the last three decades [21]. PSA is a kallikrein-related serine 

protease produced in normal prostate secretions [21]. In normal conditions, only 

low levels of PSA can be detected in blood and increased levels are associated with 

abnormalities in the normal architecture of the gland. A blood PSA level higher than 

4.0ng/mL is considered an indication for PCa [53, 55]. Since the advent of PSA, PCa 

prevalence in the USA has more than doubled [24]. 

However, PSA screening has fallen under controversy since it detects 30-50% 

of BPH but just about 20% of the PCa cases. At the same time, evidence has arisen 

that patients harboring PCa may present PSA levels below 4.0ng/mL and that PSA 

levels may rise with other afflictions such as prostatitis and urinary tract infection. 

Also, some drugs used to treat BPH are known to cause a reduction of PSA in the 

blood [55]. 

One of the hard lessons in biomarker design learned with the popularization 

of PSA as a screening test is that biomarker design requires a priori deliberations 

of the intended role [53]. PSA was, initially, thought only as a monitor for PCa 

recurrence but its use was quickly extended to the screening of asymptomatic men 

resulting in overdiagnosis and overtreatment of potentially indolent cancers [53, 

55]. Nevertheless, PSA testing remains in use, since it is inexpensive and sensitive 

(but not specific) for disease detection as well as for monitoring progression and 

recurrence after curative therapy of localized disease [53]. 

Due to the aforementioned limitations of PSA, the search for additional 

biomarkers that supplement or substitute PSA is a very active field of research. This 

is reflected by the number of currently available biomarkers in addition to the 

number of ongoing studies in this field that constantly bring up new potential 

candidates. 

Currently, two FDA-approved PCa biomarkers are available: Prostate Health 

Index (phi) and Progensa PCA3 assay. The Prostate Health Index consists in a 

mathematical formula, -(p2PSA/fPSA) × PSA½, of three biomarkers: the [2] Pro-PSA 

(p2PSA), free PSA (fPSA) and PSA. p2PSA is a molecular form of free PSA suggested 

to be associated with PCa and to be more specific allowing for a better 

discrimination of PCa from BPH than PSA levels [56]. The main intention of this test 
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is to distinguish PCa from benign prostatic conditions in men with more than 50 

years of age and a total serum PSA between 4.0 and 10.0 ng/mL with negative DRE. 

This test also appears to be an independent predictor of biochemical relapse [57]. 

Lazzeri et al., with a small cohort, indicated that phi outperformed tPSA and %fPSA 

with AUC values of 0.73, 0.55 and 0.60, respectively [58]. 

Regarding PCA3, the other FDA-approved PCa biomarker, is a long non-

coding RNA whose expression has been found to be elevated in 90% of PCa tissues, 

but is only slightly expressed in normal or BPH tissues and, contrary to PSA, its 

values are not influenced by the size of the gland [53]. The Progensa PCA3 assay 

uses post DRE urine specimens and consists in an in vitro amplification test 

measuring the concentration and then calculating the ratio of PCA3 RNA molecules 

to PSA RNA molecules originating the PCA3 score. Since its approval by FDA in 

2012 it has been used as a diagnostic test for PCa in the setting of suspect PSA 

levels, negative DRE and/or a previous negative prostate biopsy [53]. Different 

studies provided AUC values ranging from 0.66 to 0.75, sensitivity from 53-69% 

and specificity between 71-83% [56]. 

The following tests are not yet approved by the FDA but are offered under a 

laboratory’s CLIA certificate meaning that these tests are required to demonstrate 

certain performances from an analytical standpoint but their validation is far more 

limited than what is required for regulatory approval. Therefore, validation extent 

of the exposed tests is highly variable [56]. 

The advances of DNA sequencing and transcriptome profiling shifted 

biomarker research towards these “-omics” methods. A promising biomarker in this 

field is the presence of TMPRSS2-ERG gene fusions. These genetic events are among 

the most common alterations in PCa, accounting for 90% of all gene fusions. These 

fusions are highly specific (93%) and can even be detected in precursor lesions such 

as PIN. However, TMPRSS2-ERG is absent in about 50% of PCa cases leaving its 

potential use reduced and only being useful in conjunction with other biomarkers 

as in Mi-Prostate Score [53, 54]. Mi-Prostate Score is an attempt to combine the 

high specificity of TMPRSS2-ERG fusions with PCA3 and PSA measurements [56]. A 

study by Salami et al. although with a limited series of patients showed an AUC 

value of 0.88, 90% specificity and a 80% sensitivity [59]. 
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Oncotype DX is a multi-gene assay designed to be used in small FFPE 

samples obtained by needle-biopsy. This assay measures the expression of 12 

genes, representing four different biological pathways: androgen pathway (AZGP1, 

KLK2, SRD5A2, and RAM13C); cellular organization (FLNC, GSN, TPM2, and GSTM2); 

proliferation pathway (TPX2); and stromal response (BGN, COL1A1 and SFRP4 in 

addition to five reference genes [56]. The expression levels of these genes are then 

combined to calculate the Genomic Prostate Score which is an independent 

predictor of aggressive disease and, recently, showed promise by independently 

predicting biochemical relapse [60, 61]. 

The Prolaris test measures the expression of 31 cell cycle progression genes 

and 15 housekeeping genes to stratify disease risk of progression [56, 62]. It was 

designed to be used in paraffin-embedded specimens and it was found that lower 

expression levels are associated with low risk of disease progression and higher 

levels with increased risk [56]. 

Another multi-gene assay is Decipher, which was developed to assess 

disease progression risk after RP. This assay evaluates the RNA expression levels 

of 22 genes involved in multiple biological pathways implicated in the development 

and progression of PCa. Four studies reported the usefulness of this gene panel to 

predict biochemical recurrence, metastatic progression and disease-specific 

survival after RP [62]. Moreover, in a study using multivariate model this panel was 

the only parameter which correlated with metastatic progression [62]. 

Prostarix is a test designed to aid clinicians in deciding to perform a biopsy 

in patients with a negative DRE and modestly elevated serum PSA levels. It 

measures four metabolites (sarcosine, alanine, glycine, and glutamate) present in 

urine. The urine samples must be collected after a vigorous DRE and liquid 

chromatography–mass spectrometry is performed to acquire the metabolite 

signature which is different between cancer-free tissue and PCa [56]. 

The 4K Score measures PSA isoforms (total PSA, free PSA and intact PSA) in 

addition to hK2. Without hK2, this test uses practically the same isoforms of 

Prostate Health Index [56, 63]. It has been indicated that this score may be useful 

to distinguish indolent from aggressive neoplasms, thus reducing unnecessary 

biopsies and that 4K Score has a better diagnostic performance than PSA 

(AUC=0.83 vs AUC=0.68, respectively) [56]. 
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Some studies have also provided whole-genome information about PCa 

bringing to light some chromosome alterations. Among these, relative 8q gain has 

been proposed as a biomarker for aggressive disease. Indeed, patients with relative 

8q gains had worse prognosis compared with patients harbouring tumors without 

that genetic alteration. Particularly, when stratifying patients according to tumor 

grade or stage, relative 8q gains allowed to discriminate those with poorer outcome 

[54, 64]. 

Another interesting biomarker is α -methylacyl-coenzyme A racemase, 

currently used as a diagnostic ancillary tool in immunohistochemistry. However, its 

prognostic value has not been established so far [54]. Its sensitivity and specificity 

is quite high (>90%) when used as a tissue marker in prostate biopsy. On the other 

hand its potential remains uncertain since it is also significantly expressed in high-

grade prostatic intra-epithelial neoplasia[54]. 

Other potential biomarkers reported by high-throughput proteomics include 

prostate-specific membrane antigen, prostate-specific cell antigen and early 

prostate cancer antigen [53].  

As previously exposed, epigenetic alterations are a common trait in PCa 

lesions and are thought to be highly involved in disease onset and progression. 

Despite their exact roles and full involvement not being yet fully understood, the 

fact that they occur at a higher rate and at an earlier point than mutations makes 

them very attractive biomarkers for diagnosis, prognosis and treatment response 

[65]. 

Since DNA methylation is a tissue-specific trait as well as a tumor-specific 

one, its potential as a biomarker has also been extensively explored. Contrarily to 

protein biomarkers, methylated genes appear to have a higher specificity for 

cancer. This superior specificity is even more noticeable when using blood or other 

biological fluids that are the most attractive clinical samples to be analyzed using 

biomarkers [66]. 

From a practical standpoint, DNA methylation is an interesting alteration for 

laboratory testing since it is far more stable and easier to work with than RNA and 

its isolation and detection is rather straightforward. It can be isolated from most 
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specimens used in the clinic: from formalin fixed tissues to biological fluids that 

can be easily collected, such as urine and blood [67]. Its analysis is possible by 

digestion with restriction enzymes or bisulfite treatment. The latter in particular 

opens many possibilities by PCR based techniques like MSP, either using 

methylation-specific primers or methylation-specific probes; Pyrosequencing and 

bisulfite sequencing [67]. 

The most well studied methylation biomarker in PCa is GSTP1 [68]. This was 

one of the first genes found to be silenced in PCa. GSTP1 encodes an enzyme that 

catalyzes the conjugation of hydrophobic and electrophilic compounds with 

reduced glutathione, acting as a detoxifying agent. Promoter hypermethylation of 

this gene does not occur in normal prostatic tissue nor in BPH. On the other hand, 

it has been detected in PIN lesions [40]. GSTP1 is methylated in more than 90% of 

PCa cases being a particularly promising biomarker for early detection. Assays have 

been developed achieving high specificity for PCa (86-100%). However, sensitivity 

is highly variable depending both on the detection method used and the sample 

type: urine (19-83%) and serum or plasma (13-72%) [69]. Other interesting 

methylation biomarkers in PCa include promoter hypermethylation of APC, 

RASSF1A and RARβ2 [65, 70]. 

Besides being involved in familial adenomatous polyposis, APC is also a well-

known tumor-suppressor gene involved in the Wnt signaling transduction pathway 

and cellular adhesion. This gene is a well-known gatekeeper, preventing the 

transcription of products that lead to cell proliferation and survival. 

Hypermethylation of this gene causes the cell to become more vulnerable to 

additional epigenetic and genetic changes. Although APC promoter methylation is 

common in many malignancies, particularly in colon cancer, previous studies have 

found this gene to be involved in PCa progression and it is hypermethylated in 22-

100% of PCa cases but only in 5-6% of noncancerous prostate tissues [71]. 

Moreover, it was demonstrated to be an independent prognostic factor for worse 

outcome [72]. 

The RASSF1A gene belongs to the RAS proto-oncogenes family. Although 

these are well-known to be involved in signal transduction pathways involved in cell 

proliferation and survival, RASSF1A is a tumor-suppressor gene, known by its 

association with DNA repairing proteins and apoptotic effect [71]. Initially, no 

promoter methylation of RASSF1A was found in benign prostate tissue. More 

recently, it has been found in PIN and benign prostatic epithelium [68]. RASSF1A 
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promoter hypermethylation has been observed in 60-74% or 23-99% of PCa tissues, 

according to different sources, besides being clearly associated with aggressive 

cancers [68, 71]. 

Another interesting biomarker for prostate cancer is promoter 

hypermethylation of RARβ 2, a tumor-suppressor gene. Its expression is 

downregulated or absent in many tumor tissues and its promoter is 

hypermethylated in many tumors as well, including those of the prostate. 

Methylation frequencies in PCa vary according to different studies, ranging from 

22% to 98%. However, it is rarely hypermethylated in normal tissue or in BPH [73]. 

Interestingly, frequencies of 34-62% were observed in urine, and 39-70% in blood 

samples, making it an interesting non-invasive biomarker for PCa [71]. A high 

methylation level of this gene has also been reported as is associated with a 

biochemical recurrence after radical prostatectomy [74].  

Panels comprising two or more methylated genes have been proposed. For 

instance, Hoque et al. proposed a panel with methylation status from RASSF1A, 

RARβ2 and APC, in conjunction with GSTP1 [66]. Moreover, methylation-based 

laboratory-developed tests, not FDA-approved, are currently available. ConfirmMDx 

uses methylation analysis of GSTP1, APC and RASSF1A to detect an epigenetic field 

[62]. Its aim consists in distinguishing patients with a true negative biopsy from 

those who may have occult cancer [56]. This test achieved NPV of 90% and 88% in 

two different studies and showed to be the most significant predictor of biopsy 

results [62].  

Another proposed test that comprises methylation analysis of a panel of 3 

genes is ProCaM, developed by Baden et al. In this study, GSTP1, RARβ 2 and APC 

promoter methylation levels were analyzed in urine samples of patients with serum 

PSA levels between 2.0 and 10.0 ng/ml. AUC values for each marker ranged from 

0.63 to 0.68. When used in conjunction, the three markers yielded an AUC value of 

0.73, sensitivity of 60% and specificity of 80% [75]. Importantly, this assay displayed 

higher predictive accuracy than currently used parameters to decide a prostate 

biopsy and identifies a larger number of cases with high Gleason score [75]. 

As was previously mentioned, microRNAs are known to be silenced by DNA 

methylation in PCa. Therefore, the utility of microRNA promoter methylation as 

potential PCa biomarker has been also studied. A study by Shimizu et al. sought to 

determine a panel of four methylated microRNAs to detect bladder cancer with 



 

27 

interesting results: 81% sensitivity and 89% specificity and AUC=0.916 [76]. 

Moreover, it was reported that hypermethylation of miR-34b/c in normal gastric 

mucosa was an independent risk predictor of metachronous gastric carcinoma [77], 

whereas miR-148a was found to be an independent prognostic/predictive 

biomarker in advanced colorectal carcinoma treated with conventional 

chemotherapy [78]. In PCa, hypermethylation of the GABRE∼miR-452∼miR-224 

locus was able to discriminate normal tissues adjacent to tumors from prostatic 

tumors with 94.3% specificity and 95.5% sensitivity (AUC=0.98) [79]. MiR-205 is 

another microRNA that is known to be hypermethylated in PCa. Hulf et al. explored 

its role in PCa carcinogenesis as well as its potential as a biomarker reporting that 

it is a significant predictor of biochemical relapse in patients with low preoperative 

PSA levels [80]. 

Similarly to other epigenetic mechanisms, aberrant patterns of histone 

modifications are a hallmark of cancer and as such, their potential as disease 

biomarkers has started to be unveiled. For instance, in PCa altered levels of 

dimethyl-K4 and acetyl-K18 of histone H3 have been proposed as markers of high-

risk of recurrence [81]. Barlesi et al. reported that high dimethyl-H3K4 or low acetyl-

H3K9 levels have been related with better survival in non-small cell lung carcinoma 

[82]. Also, Barbisan et al. used global acetyl-H3K9 levels to identify patients with 

low-grade bladder cancer who experienced disease recurrence after transurethral 

resection of the bladder [83].   

Because histone modification patterns are altered in cancer in general, and 

in PCa in particular, the enzymes that establish and maintain these patterns it is 

reasonable to consider that these are also deregulated in malignanat cells [84, 85]. 

The best demonstration is provided by EZH2, a methyltransferase, which in PCa 

was shown to better predict tumor progression than serum PSA or Gleason score. 

Moreover, its expression in organ-confined PCa was reported to correlate with risk 

of biochemical recurrence [85]. LSD1, which is a demethylase, is another histone 

modifier with prognostic value, since higher levels were associated with shorter 

time to cancer relapse [86]. However, the role of histone modifications in PCa is 

still not fully understood and their potential as prognostic and diagnostic 

biomarkers is not fully explored. 
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An emerging and exciting field in prostate carcinogenesis field of research, 

different studies showed that microRNAs may be potential diagnostic and 

prognostic biomarkers for PCa. These non-coding RNAs are tissue and tumor-

specific, stable and detectable in body fluids [56]. Several microRNAs have been 

described as being altered in PCa and different expression profiles allow 

differentiation between benign and malignant conditions [87]. 

For instance, miR-141 expression levels were found to be highly increased 

in the sera of men harboring metastatic PCa, predicting the presence of neoplasms 

with 60% sensitivity and 100% specificity. Different studies confirmed this finding 

and thus miR-141 appears to be a suitable biomarker of metastatic progression 

[88, 89]. MiR-21 showed higher expression levels in patients with hormone-

resistant PCa and patients with androgen-sensitive metastatic disease. Moreover, 

in the hormone resistant group, miR-21 levels were higher in patients with 

docetaxel resistance [88]. In another study, miR-375 and miR-141 were found to 

be associated with pathological stage and Gleason score [54, 65].  

Several other studies have reported some microRNAs with diagnostic and 

prognostic value most of which require validation in larger cohorts. Due to their 

interesting performances so far, stability and ease of collection, we may admit that 

microRNA biomarker potential is yet to be fully realized [79]. 
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The PSA-era has brought lasting changes in the study of how biomarkers 

should be designed and used. Although an early diagnosis of PCa is important, 

from a clinical point of view, the high prevalence of indolent cancers detected by 

PSA testing requires surrogate biomarkers able to define clinically significant 

disease. Ideally, PCa biomarkers should reduce the need for biopsy while helping 

to stratify patients according to disease significance which, in turn, may lead to a 

reduction in radical prostatectomies and radiotherapy. 

DNA methylation is a highly specific tissue trait. Therefore, it encompasses 

a promising value as a cancer biomarker, including PCa. MicroRNA deregulation is 

known to be an early event in carcinogenesis and one of the mechanisms 

underlying this deregulation is aberrant DNA methylation. Moreover, since 

epithelial prostatic cells, normal or neoplastic, are often shed in urine, PCa-specific 

biomarkers can be easily tested in that bodily-fluid obtained by non-invasive 

procedures. 

This study is integrated in a broader project which aims to uncover how 

microRNAs’ deregulation contributes to prostate carcinogenesis. Therefore, its 

design was based on preliminary results obtained in that context. 

Specifically, the aims of this master’s dissertation were: 

- To assess promoter methylation status of newly identified microRNAs in 

prostate cancer to determine: 

a) Its potential as prostate cancer biomarkers in tissue samples; 

b) Its performance as biomarkers for early detection in urine samples; 

c) Its prognostic value in biopsy samples. 
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As part of another study of our group, epigenetically regulated microRNAs 

were previously investigated. For this, tissue samples (5 controls and 25 tumors) 

were used for gene methylation profiling using HumanMethylation450 BeadChip 

(Illumina, USA). 

DNA samples were assessed for integrity, quantity and purity by 

electrophoresis in a 1.3% agarose gel, PicoGreen quantification assay and nanodrop 

measurements. 

All samples were distributed into 96-well plates. Bisulfite conversion of 500 

ng of genomic DNA was performed using EZ-96 DNA Methylation-Gold Kit (Zymo 

Research, USA) following manufacturer’s instructions. About 200ng of bisulfite-

converted DNA was used for hybridization using HumanMethylation450 BeadChip 

(Illumina, USA). Briefly, samples were whole genome amplified followed by an 

enzymatic end-point fragmentation, precipitation and resuspension. The 

resuspended samples were hybridized onto the BeadChip for 16h at 48°C and 

washed. A single nucleotide extension with labeled deoxy-nucleotides was 

performed, and repeated rounds of staining were applied with a combination of 

labeled antibodies differentiating between biotin and 2,4-dinitrophenol. Color 

balance adjustment and quantile normalization were performed in order to 

normalize the samples between the two color channels. DNA methylation level is 

displayed as beta-values ranging from 0–1. Beta-values with detection P-value > 

0.01 are considered to fall below the minimum intensity and threshold and were 

consequently removed from further analysis. 

To identify consistently differentially methylated CpG sites Wilcoxon rank 

sum paired test was performed for normalized beta-values. The p-values were 

adjusted using false discovery rate, and those CpGs with p-values <0.05 were 

selected. 
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For this study, 180 PCa samples were prospectively collected from patients 

with clinically localized disease consecutively diagnosed and submitted to radical 

prostatectomy with curative intent from 2001 to 2006, in IPO-Porto Francisco 

Gentil. Control samples, totaling 15, were collected from cystoprostatectomy 

specimens from patients with bladder cancer not harboring PCa. After surgical 

resection and examination, samples were immediately frozen at -80°C. 

Histological examination of the specimens was performed by a pathologist 

in histological slides obtained from formalin-fixed paraffin-embedded tissues of 

these specimens for assessment of Gleason Grade and TNM staging. Other relevant 

clinical data was collected from clinical charts. 

Furthermore, samples from prostatic biopsies from 74 patients were 

collected from individuals referred to IPO-Porto Francisco Gentil due to elevated 

PSA levels, from 2001 to 2003. In addition to the standard diagnostic cores, two 

tissue core samples were collected from the most suspicious areas and fresh-frozen 

at -80°C. Frozen sections with 5 μm were cut and stained and histological evaluation 

was performed by an experienced pathologist. 

Urine samples were collected from 95 patients diagnosed with PCa, before 

being submitted to radical prostatectomy, from 1999 to 2002. Control samples 

were collected from 46 healthy donors. 

Collected samples were centrifuged at 4,000 rpm for 20 minutes and washed 

in PBS 1X. The supernatant was discarded and the procedure was repeated. Pellets 

were re-suspended in 1mL of PBS 1X and centrifuged again at 4,000rpm for 5 

minutes. The pellets were then frozen at -80°C. 

All patients enrolled signed an informed consent and this work was 

approved by the institution review board (CES-IPOFG-EPE 019/08 and CES-IPOFG-

EPE 205/2013) of IPO-Porto Francisco Gentil. 
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DNA was extracted by phenol-chloroform method, with minor variations 

between fresh-frozen tissues and urine pellets. From the fresh-frozen tissues, 15 

μm sections were cut and transferred to 15mL tubes. Then 2,700 mL of SE buffer 

(75mM NaCl and 25 mM EDTA), 300 μL of 10% SDS and 25 μL of proteinase K 

(Genaxxon bioscience, Germany) were added. Samples were incubated overnight at 

55°C. After this period, digestion was prolonged according to necessity with 

subsequent addition of Proteinase K at every 12h until complete digestions was 

achieved. 

Urine samples were first centrifuged at 13,000 rpm for 5 minutes after which 

any remaining supernatant was removed and the pellet re-suspended in 500μL of 

SE buffer. Digestion was achieved by further adding 30μL of SDS at 10% and 15μL 

of Proteinase K at 20 mg/mL and incubating samples at 55°C until digestion was 

complete.  

Following digestion, all samples were transferred to Phase Lock Light 2mL 

tubes (5 Prime, Germany) previously centrifuged at 12,000 rpm for 5 minutes, and 

mixed with 500μL of PC8 (Sigma-Aldrich, USA). 

After centrifugation, at 13,000 rpm for 15 minutes, the aqueous phase was 

transferred to new Phase Lock Light 2mL tubes previously centrifuged and 500μL 

of PC8 were added followed by another centrifugation. 

DNA precipitation was accomplished by transferring the aqueous phase to 2 

mL tubes and adding 1 mL of cold absolute ethanol, 135 μL of ammonia acetate at 

7.5M and 2 μL of glycogen. After mixing, samples were left at -20°C overnight. 

Posteriorly, samples were washed in ethanol 70%, the pellets air dried and 

then eluted in 30 μL (tissue samples) and 20 μL (urine samples) of sterile distilled 

water. DNA concentration and purity were assessed using NanoDrop Lite 

Spectrophotometer (Nanodrop Technologies, USA) and stored at -20°C until further 

use. 
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Sodium bisulfite modification of DNA is the basis of methylation studies 

involving sequencing and PCR. By this process, DNA is firstly denatured and, as 

displayed in Figure 4, unmethylated cytosines are sulfonated giving origin to a 

cytosine sulfonate, then deaminated and finally desulfonated, thus losing the 

bisulfite group and, finally, becoming uracils. Since methylated cytosines resist this 

modification, discrimination between methylated and unmethylated cytosines 

becomes possible [2]. 

 

Genomic DNA from all samples used was modified by sodium bisulfite using 

EZ DNA Methylation-Gold™ Kit (Zymo Research, USA) according to the 

manufacturer’s guidelines. From DNA obtained from frozen tissues, 1 μg of DNA 

was used. Due to the scarcity of the material, the used quantity of DNA extracted 

from urine samples was adjusted to 500 ng. 

The required volume of DNA was diluted in sterile water to a total volume of 

20 μL in a PCR tube, according to the specified concentration of each sample. To 

each sample, 130 μL of CT Conversion Reagent was added and then incubated in a 

GeneAmp PCR System 2700 thermal cycler (Applied Biosystems, USA) at 98°C for 

10 minutes and then at 64°C for 3 hours. 

Once finished the incubation, samples were transferred to a Zymo-Spin IC 

column with 600 μL of M-binding buffer and centrifuged at 10,000 rpm for 30 

seconds. After being washed with 100μL of M-Wash buffer and again centrifuged 

at 10,000 rpm for 30 seconds, desulphonation was achieved with an incubation at 

room temperature with 200 μL of M-Desulphonation buffer for 20 minutes. M-

Figure 4 - DNA modification by sodium bisulfite. Cytosine is deaminated becoming 

uracil while methylcytosine resists this treatment. Adapted from [2].. 
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Desulphonation buffer was discarded following a centrifugation at 10,000 rpm for 

30 seconds. Then two washings were carried out with 200 μL of M-Wash buffer 

followed by centrifugations at 10,000 rpm for 30 seconds. 

Finally, the collumn was placed in a 1.5mL tube and DNA was elluted by 

incubating with 60 μL of M-Elution buffer for 5 minutes at room temperature 

followed by a centrifugation at 10,000 rpm for 30 seconds. The modified DNA was 

stored at -80°C until further use. 

One μg of CpGenome™ Universal Methylated DNA (Millipore, USA) was also 

modified, according to the method described above and eluted in 30μL of M-elution 

buffer. 

 

To assess methylation levels, quantitative real-time methylation specific PCR 

was performed in all samples using KAPA SYBR FAST qPCR Kit Master Mix. The 

modified DNA was used as template and samples were submitted to reactions with 

the target genes: miR-34b/c, miR-129-2, miR-152, miR-193b, miR-663a and miR-

1258; as well as the reference gene, ACTβ. 

Reactions were carried out in 384-well plates using LightCycler 480 II (Roche, 

Germany). Briefly, per each well 1 μL of modified DNA and 5 μL of 2X KAPA SYBR 

FAST qPCR Master Mix were added. The volume of primers used varied (according 

to Table 3) and sterile distilled water was added in order to total 10 μL of reaction 

volume. 
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Table 3 - Primers sequences used and qMSP conditions for each of the tested candidates. 

   
  

β 

TGGTGATGGA

GGAGGTTTAG

TAAGT 

AACCAATAAAA

CCTACTCCTCCC

TTAA 

60 0.4 μL 

 
GTTTAGTTACG

CGTGTTGTGC 

CGAAAAACGCC

CTACCATA 
60 0.3 μL 

 
CGGCGAATCG

AAGAAGTC 

TACGCCCTCCG

CAAATAC 
62 0.4 μL 

 
TCGTCGTTCG

GGATTTTC 

ACTAACCACGT

CCGCACC 
62 0.4 μL 

 
AGCGGGGTGT

TTGTGTTC 

AAACATAAACG

ACGCATTCCA 
62 0.2 μL 

 
GGGATAGCGA

GGTTAGGTC 

CATTCGTAACG

AATAAAACCC 
60 0.3 μL 

 
TCGGTATATTT

GGCGGAGTC 

TCCGACGAAAA

TAAACCCC 
60 0.3 μL 

 

The PCR program consisted of a period of 3 minutes at 95°C for enzyme 

activation followed by 45 cycles with 3 seconds at 95°C (for DNA denaturation) and 

30 seconds at 60°C (for annealing, extension and data acquisition). 

All samples were run in triplicates and in each plate one negative template 

control was run. Modified CpGenome™ Universal Methylated DNA was used to 

create five serial dilutions by a 5x dilution factor. These serial dilutions were run in 

each plate and were used to generate a standard curve thus allowing absolute 

quantification as well as ascertaining PCR efficiency. All plates had an efficiency 

between 90-100%. 

Methylation levels were calculated as a ratio between the target gene mean 

quantity and ACTβ mean quantity: 

 

Methylation level =
Target gene mean quantity 

ACTβ mean quantity 
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Non-parametric tests were performed to determine statistical significance in 

all the comparisons made. In particular, Kruskall-Wallis test was used in 

comparisons between 3 or more groups, whereas Mann-Whitney U test was used 

for comparisons between two groups. Survival function was performed to evaluate 

correlation between methylation levels and disease specific survival. Logistic 

regression models were also built in order to evaluate the potential of using the 

targets as a panel to increase performance. Spearman nonparametric correlation 

test was performed to correlate methylation levels with patients’ serum PSA. 

Statistical significance was set at P<0.05. Bonferroni’s correction was applied to 

pairwise comparisons.  

When assessing the targets’ performance as biomarkers, ROC curves were 

built. Moreover, biomarker parameters [specificity, sensitivity, positive predictive 

value, negative predictive value and accuracy] were determined using the formulas 

provided in Table 4. For this, the cut-off established was the highest value obtained 

by the ROC curve analysis (sensitivity + (1-specificity)). 

Statistical analysis was performed using SPSS Statistics 20 (IBM, USA). 

Graphics were assembled using GraphPad 5 Prism (GraphPad Software, USA). 

Table 4 - Formulas used for biomarker parameters calculation. 

(C/A) x100 

(F/B) x 100 

A B (C/(C+D)) x 100 

C D (F/(E+F)) x 100 

E F ((C+F)/(A+B)) x 100 
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For the purposes of this study, clinical samples (tissues and urine) from 

different patient cohorts were collected. The relevant clinical and pathological data 

are depicted in Tables 5 and 6.  

Table 5 – Clinical and pathological data of all the PCa samples used in this study.  

MNPT PCa 
Healthy 

donors 
PCa PCa 

15 180 46 95 74 

63 

(45-80) 

65 

(49-74) 

61 

(58-77) 

64 

(45-80) 

68 

(49-85) 

- 
8.30 

(3.4-23) 
- 

8.80 

(3.5-20.4) 

18.22 

(4.52-542) 

 

- 96 (53.3) - 46 (48.4) 48 (64.9) 

- 84 (46.7) - 49 (51.6) 12 (16.2) 

- - - - 14 (18.9) 

- 56 (31.1) - 37 (39.0) 30 (40.5) 

- 108 (60) - 50 (52.6) 33 (44.6) 

- 16 (8.9) - 8 (8.4) 11 (14.9) 

- 50 (28) - 24 (25) 32 (43) 

- 9 (5) - 4 (4) 17 (23) 

MNPT - morphologically normal prostatic tissue; PCa - prostate carcinoma 

 

Table 6 - Number, age and gender of vesical and renal tissue samples 

used as controls in this study. 

9 43 9 50 

61 

(52-75) 

63 

(43-83) 

64 

(20-83) 

63 

(37-83) 

 

9 (100) 

- 

 

36 (83.7) 

7 (16.3) 

 

6 (66.7) 

3 (33.3) 

 

29 (58) 

21 (42) 

NBl – normal bladder; BlCa - bladder carcinoma; NK - normal kidney; 

RCT - renal cell tumor. 
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As part of an ongoing PhD thesis project, aiming at the discovery and 

characterization of new epigenetically regulated microRNAs in PCa, results from 

the analysis of a HumanMethylation450 BeadChip array were used. This array is 

designed to evaluate thousands of methylation sites across the genome. The most 

differentially methylated CpGs observed in known microRNA promoter regions 

were depicted for miR-34b/c, miR-129-2, miR-152, miR-193b, miR-663a, and miR-

1258 (Figure 5).  

 

Figure 5 - HumanMethylation450 BeadChip results. The microRNAs displayed showed the 

most significant differences between MNPT and PCa samples were selected for further 

analysis. 
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After primer design and optimization, validation of the selected candidate 

microRNAs was achieved using qMSP assays to assess the methylation levels in 

MNPT and PCa samples for each. 

In accordance with the array’s results, all microRNAs tested showed higher 

promoter methylation levels in PCa compared to MNPT. Because our first goal was 

to discover novel microRNAs fit for PCa detection, ROC curve analysis was 

conducted in the validation cohort (Figure 6) and an empirical cut-off value was set 

for each microRNA. 
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Figure 6 - Box-plots (left panel) depicting higher promoter methylation levels in PCa tissues 

compared to normal prostatic tissues and ROC curves (right panel) displaying high 

biomarker performance, in all candidates tested.  

 

The standard validity and information estimates for each microRNA were 

also calculated to further characterize its performance as PCa biomarkers (Table 

7). 

Table 7 - Performance of epigenetic biomarkers for the detection of PCa in RP specimens. 

94.4 (170/180) 86.7 98.8 56.5 93.8 

90.6 (163/180) 86.7 98.8 43.3 90.3 

79.4 (143/180) 86.7 98.6 26.0 80.0 

90.0 (162/180) 100.0 100.0 45.5 90.8 

84.4 (152/180) 100.0 100.0 34.9 85.6 

97.8 (176/180) 100.0 100.0 78.9 97.9 

 

Notably, all candidate microRNAs, except miR-152, displayed AUC values 

above 0.90. In the testing cohort series (tissue samples from prostatectomy 

specimens), miR-1258 showed the best performance with AUC=0.99, 97.8% 

sensitivity and 78.9% NPV, followed by miR-193b, with AUC=0.96 and then miR-

34b/c and miR-663a, both with AUC=0.95, although miR-34b/c showed higher 

sensitivity, accuracy and NPV. 

Additionally, for each microRNA, promoter methylation levels were found to 

be associated with the standard clinicopathologic parameters. As depicted in Figure 

7, higher methylation levels of miR-34b/c, miR-129-2, miR-663a and miR-1258 



 

50 

were significantly associated with higher pathological stage. Moreover, increased 

methylation levels of miR-129-2 were also found in less differentiated tumors 

(Gleason Score ≥ 7). Owing to the inferior biomarker performance of miR-152, it 

was not further tested. 

 

   

Figure 7 - Distribution of methylation levels according to Gleason score and pathological stage. 

The candidates displayed had statistically higher methylation levels in samples with higher 

Gleason score and pathological stage. 
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To verify whether the candidate microRNAs were prostate cancer-specific, 

the methylation levels of each microRNA were evaluated in tissue samples from 

other urinary organs tract, namely bladder and kidney, both normal and neoplastic.  

  

  

 

Figure 8 - Distribution of microRNAs’ promoter methylation levels in prostatic, vesical and 

renal tissues. MNPT - morphologically normal prostatic tissue; PCa - prostate carcinoma;             

NBl - normal bladder; BlCa - bladder carcinoma; NK - normal kidney; RCT – renal cell tumor. 
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Since the ultimate goal of this study was to develop an assay powerful 

enough to detect PCa in bodily fluids, namely in urine samples and because both 

kidney and bladder exfoliate cells for urine, it was critical to ensure that 

methylation levels of cells (both normal and neoplastic) shed from those organs 

would not confound our assay. 

Globally, promoter methylation levels of all microRNAs were lower in renal 

tissues (both normal and malignant) compared to PCa samples. However, 

methylation levels of miR-129-2 and miR-663b were significantly higher in BlCa 

than in PCa. Thus, miR-34b/c, miR-193b and miR-1258, were selected for further 

testing in urine sediments as its promoter methylation was shown to be PCa-

specific. 

 

Validation of miR-34b/c, miR-193b miR-1258 was subsequently assessed in 

urine sediments collected from both healthy donors and PCa patients. 

Whereas promoter methylation levels of miR-34b/c and miR-193b were 

significantly higher in urines from PCa patients compared to those from healthy 

donors, the opposite was observed for miR-1258 methylation levels. 
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Figure 9 - Box-plots (left panel) depicting higher promoter methylation levels in PCa patients for 

miR-34b/c and miR-193b (but not for miR-1258) and ROC curves (right panel) displaying miR-

34b/c, miR-193b and miR-1258 biomarker performance across urine sediments. 

 

Table 8 - Performance of epigenetic biomarkers for the detection of PCa in urine sediments. 

89.5 (85/95) 47.8% 78.0% 68.8% 75.9% 

91.6 (87/95) 95.7% 97.8% 84.6% 92.9% 

7.4 (7/95) 43.5% 21.2% 18.5% 19.1% 

 

ROC curve analysis, revealed that miR-193b allowed for a better 

discrimination of PCa from normal samples, compared to miR-34b/c, with AUC 

values of 0.96 vs. 0.71, as well as 91.6% sensitivity and 95.7% specificity vs. 89.5% 

and 47.8% respectively. Although the sensitivity of miR-34b/c was about 90%, 

specificity was below 50%. Remarkably, PPV and NPV values for miR-193b were 
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97.8% and 84.6%, respectively. No statistically significant association between 

microRNAs promoter methylation levels and clinicopathological parameters was 

depicted, in urine samples. 

 

The last aim of this Master thesis consisted on the assessment of the 

prognostic value of microRNA promoter methylation in prostate biopsy tissue 

cores. The median follow-up in this PCa patient cohort was 104.04 months (range: 

9.11–170.10 months). At the time of the last follow-up, 17 patients (22.97%) had 

died from PCa and 32 out of of 74 (43.24%) developed biochemical recurrence. In 

3 patients, serum PSA levels >0.2 ng/ml persisted following treatment and these 

were not further considered for disease-free survival analysis. 

Hence, disease-specific survival (DSS) and disease-free survival (DFS) curves 

were constructed based on clinical variables, namely clinical stage, Gleason score, 

PSA levels and CAPRA Score, to validate our data. Since CAPRA score values range 

from 1 to 10, for the purpose of this analysis this variable was categorized as 0-2 

(low-risk tumors), 3-5 (intermediate risk) and 6-10 (high-risk tumors) [30]. For 

statistical purposes, microRNA methylation levels were dichotomized using the 

percentile 75 as threshold value. Except for serum PSA, all clinicopathologic 

parameters tested and miR-129-2, but not miR-34b/c, methylation levels, 

associated with DSS in univariate analysis. 
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Figure 10 – Higher clinical stage (upper left), Gleason Score (upper right) CAPRA Score (lower 

left) and miR-129-2 methylation levels (lower right) associated with worse disease-specific 

survival curves on a biopsy cohort of 74 PCa patients. 

 

Moreover, a Cox regression analysis was also computed to assess the 

potential of both clinicopathological and epigenetic variables in predicting DSS 

(Table 9). Of the clinicopathological variables, only clinical stage was statistically 

significant. Interestingly, high miR-129-2 promoter methylation levels also 

independently predicted shorter DSS, although with a lower hazard ratio. 
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Table 9 - Cox regression assessing the potential of clinical and epigenetic 

variables in the prediction of disease-specific survival for 74 PCa patients. 

II 1   

III/IV 8.12 2.63-25.1 <0.001 

≤P75 1   

>75 3.30 1.26-8.61 0.015 

 

Because biochemical recurrence is an important primary endpoint in PCa, we 

further tested the prognostic value of standard clinical variables and methylation-

based markers in this setting. 
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Figure 11 – Higher clinical stage (upper left panel), Gleason score (upper right panel) and 

miR-129-2 methylation levels (lower) associated with poorer disease-free survival in a biopsy 

cohort of 71 PCa patients. 

 

PSA levels and CAPRA score did not associate with DFS in univariate analysis. 

Nonetheless, higher clinical stage, Gleason score and miR-129-2 promoter 

methylation levels statistically associated with worse DFS. MiR-34b/c methylation 

levels displayed a trend similar to that of miR-129-2, but did not reach statistical 

significance (P=0.06). 

Similar to DSS, only higher clinical stage and increased miR-129-2 promoter 

methylation levels independently predicted shorter DFS, in multivariate analysis 

(Table 10).  

 

Table 10 - Cox regression assessing the potential of clinical and epigenetic 

variables in the prediction of disease-free survival for 71 PCa patients. 

 

 

   

II 1   

III/IV 2.46 1.20-5.03 0.014 

   

≤P75 1   

>75 2.26 1.08-4.73 0.031 
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PCa remains one of the most prevalent neoplasms worldwide and constitutes 

a leading cause of morbidity and mortality by cancer in men. Due to PSA screening, 

improvements have been achieved in clinical management of this malignancy. 

Indeed, its introduction, not only has led to a lower median age of diagnosis, but 

also to a decrease in the number of men presenting with metastatic disease at the 

time of diagnosis. Conversely, more men have been diagnosed with PCa, most of 

which with indolent tumors, and more men with benign conditions such as BPH and 

prostatitis have been biopsied. Thus, the potential benefits of PSA screening have 

been challenged by overdiagnosis of prostate carcinomas that would not cause 

harm or death if left undiagnosed and untreated [65]. Thus a strong 

recommendation against PCa screening through serum PSA levels has been issued 

recently, prompting the search for more effective biomarkers that allow for 

patients’ risk stratification. In this project, we aimed to contribute to this relevant 

scientific and clinical quest through the discovery of new biomarkers for PCa 

detection and prognostication. For that purpose, we performed DNA methylation 

analysis in multiple patient cohorts and sample types for identification and 

validation of novel PCa biomarkers with improved performance. 

Deregulation of epigenetic mechanisms is a key factor in carcinogenesis. 

Besides providing insight into the complex process that is prostate carcinogenesis, 

DNA methylation analysis has also brought forward valuable detection biomarkers 

for this disease, such as GSTP1, APC, RARβ2 and RASSF1A [69]. Indeed, epigenetic 

silencing of cancer-related genes by aberrant promoter methylation is now 

recognized as a key event in prostate carcinogenesis and a promising tool for 

screening, early diagnosis and prognostication of PCa [40]. Besides gene promoter 

methylation, microRNA deregulation is an acknowledged epigenetic feature of 

cancer. Aberrant microRNA promoter methylation has been recognized as an 

underlying cause of this deregulation in several neoplasms, including PCa [90]. 

Owing to our previous experience in DNA methylation analysis [70, 72, 73], 

we decided to seek for altered methylation patterns at the promoter regions of 

microRNAs deregulated in PCa. This information was then used to develop novel 

biomarkers, instead of microRNA expression levels, as previously attempted by 

others [91-93]. Indeed, DNA methylation is easier to assess than microRNA 

expression, it is more specific and, importantly, more stable. Moreover, because 

microRNAs downregulation in cancer is more common than upregulation, it 
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seemed likely that aberrant promoter methylation might constitute an underlying 

mechanism, similar to protein-coding genes [52].  

Although several strategies might be used to identify microRNAs putatively 

downregulated due to promoter hypermethylation, high-throughput technologies 

such as methylation-array analysis is able to simultaneously pinpoint putative 

candidates [94] and the reliability of the results might be readily assessed through 

the analysis of well-known hypermethylated loci. Indeed, the results of the 

methylation array experiments that gave rise to this dissertation confirmed the high 

prevalence of GSTP1 and APC promoter methylation (data not shown). To increase 

the likelihood of finding robust candidate biomarkers, we used stringent conditions 

based on high fold-variation of methylation levels between cancerous and non-

cancerous tissue samples. Nevertheless, subsequent validation of the results from 

the array are mandatory to definitively assess the performance of the candidate 

biomarkers. 

From methylation-array analysis, six candidate microRNAs, putatively 

deregulated by promoter hypermethylation were identified. Among those, miR-

1258 was the most promising due to very high sensitivity, specificity and accuracy 

in tissue samples. Moreover, it demonstrated substantial PCa-specificity compared 

with other tumors from the urinary tract, a feature that would make it the most 

attractive candidate to test in bodily fluids. MiR-193b was also a very promising 

candidate with a very good performance. Like miR-1258, its methylation seems to 

be very specific for PCa. Finally, miR-34b/c was also considered for testing in urine 

samples since it showed interesting results albeit not as promising as the previous 

two. Although it had better sensitivity and accuracy than miR-193b, its specificity 

was lower than that of miR-193b. Nevertheless, it was also very specific for PCa 

when compared with bladder and renal tissues, either cancerous or non-cancerous. 

MiR-129-2 and miR-663a showed modest results as diagnostic biomarkers but their 

inability to distinguish PCa from bladder cancer rendered them unsuitable to be 

tested in urine samples. 

Correlation between the methylation levels measured by qMSP in the tumor 

tissue samples and standard clinicopathological variables (serum PSA at diagnosis, 

pathological stage, Gleason score) was also assessed for all candidates. In this 

analysis, increased promoter methylation levels of miR-129-2 were associated with 

higher Gleason score and stage, indicating that this microRNA could be a putative 

prognostic biomarker. MiR-34b/c, miR-663a and miR-1258 methylation levels also 
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correlated with pathological stage, but its higher diagnostic performance 

underscores the potential for detecting PCa at early stages instead of prognostic 

assessment, as we previously reported for EFEMP1 promoter methylation [95]. 

Importantly, these results are in line with previous observations by our research 

team and others concerning the association of higher gene promoter methylation 

levels with clinicopathological features of more advanced and aggressive disease.  

The next step consisted in testing the best performing diagnostic candidates 

in urine samples. Urine is a very attractive clinical sample to evaluate DNA 

methylation biomarkers for PCa. It is easily obtainable and biomarkers are diluted 

to a smaller extent than in plasma, providing higher sensitivity [96]. Nevertheless, 

the amount of DNA potentially deriving from prostatic cells is rather variable, 

usually low, entailing the need to use a panel with limited number of biomarkers. 

Thus, only miR-34b/c, miR-193b and mir-1258, were tested in urine samples 

obtained from healthy donors and patients harboring PCa. Mir-193b displayed the 

best results in this assessment, with high AUC, sensitivity, specificity and PPV, 

whereas miR-34b/c performance was modest. Intriguingly, miR-1258, which 

showed the best performance in tissue samples, displayed a strikingly different 

result in urines as its methylation levels were higher in healthy donors’ samples 

than those from PCa patients.  The reason for this discrepant result is not 

immediately apparent, but it could be due to high miR-1258 promoter methylation 

in non-epithelial cells, such as leucocytes that might be relatively more abundant 

in urine than in tumor tissue samples. Moreover, median miR-1258 promoter 

methylation levels in urines from PCa are substantially inferior to those of miR-

193b, thus, impairing the robustness of the qMSP assay. It should be recalled that, 

contrarily to other studies, the urine samples we used were not collected following 

DRE or prostatic massage, which are usually employed in an attempt to yield a more 

representative sample to increase sensitivity. Studies dealing with PCa biomarkers 

in urine  vary in the method of urine collection and the real impact of prostatic 

massage has never been evaluated [97]. It could be argued that the distance from 

the peripheral zone to the urinary tract flow may render urinary based tests less 

sensitive, which would be an important issue since most malignancies arise from 

this zone. Nevertheless, studies on PCA3 did not find a difference in the levels of 

this biomarker between patients with peripheral versus transitional zone PCa [98, 

99]. 
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Interestingly, studies using post-DRE collected urine samples have reached 

different levels of success. GSTP1, RARβ2 and APC promoter methylation levels 

assessed in urine samples collected after DRE showed modest performance as 

biomarkers for PCa detection (AUCs varied from 0.63 to 0.68) [75]. Even GSTP1 

promoter methylation sensitivity in urine differs among reports, from 21.4% to 

38.9%, depending on the assay used, although it is improved by prostatic massage 

to 75% [100]. Moreover, in our study, miR-34b/c and miR-193b had higher 

methylation levels in urine samples from patients with PCa, as would be expected, 

with miR-193b showing better results than those mentioned above for GSTP1, 

RARβ2 and APC. In another study using urine samples following prostatic massage, 

Rouprêt et al assessed methylation levels of several genes (including GSTP1, 

RASSF1A, CDH1, APC, DAPK, MGMT, p14, p16, RARβ2, and TIMP3) by qMSP. Of 

these GSTP1, RASSF1A, APC and RARβ2 were those that best discriminated 

malignant from non-malignant cases, with AUC values ranging from 0.74 to 0.86. 

The combination of these four genes yielded the greatest discriminatory power 

with 86% sensitivity and 89% overall accuracy [101]. Importantly, the diagnostic 

performance of miR-193b in urine compares favorably with the aforementioned 

biomarkers, but it should be tested in a larger and independent dataset. 

Notwithstanding, the performance of miR-193b in urine samples needs to 

be compared with that of serum PSA and urinary PCA3, as these are the only 

biomarkers approved for clinical use. As previously mentioned, the performance of 

serum PSA as a PCa biomarker is rather modest, with AUC ranging from 0.54 to 

0.70 [53, 100]. Even other serum PSA-derived measurements, like PSA-density, free 

PSA percentage and PSA-velocity have not improved this value above that interval 

[53]. On the other hand, PCA3, which is currently the most widely used non-PSA 

based first-line test, performed better that serum PSA, both in urine and ejaculates, 

with AUC varying from 0.66 to 0.79 [53, 100, 102, 103]. Once again, miR-193b 

performance compares well with those two PCa biomarkers and might constitute a 

promising tool for early non-invasive detection of PCa, if these results are 

independently confirmed. It should be emphasized that combining miR-193b with 

miR-34b/c did not increase the diagnostic performance of the assay (data not 

shown). 

The last aim of this study consisted on the determination of the prognostic 

value of the candidate microRNAs. For this purpose, miR-34b/c and miR-129-2 

promoter methylation levels were analyzed in set of prospectively collected 
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prostate biopsies. Because the major goal was to discriminate the clinically 

aggressive PCa from those that do not pose a threat to the patient’s life and might 

be left untreated, it was critical to test the prognostic value of the microRNAs in a 

pre-therapeutic setting. In univariate analysis, most standard clinicopathological 

parameters associated with DSS and DFS, thus clinically validating this prostate 

biopsy dataset.  The CAPRA score, however, only correlated with DSS but not DFS 

in this series. This was an unexpected result as CAPRA score determined at 

diagnosis, correlates with DFS in patients submitted to radical prostatectomy, i.e., 

those with clinically localized disease [30]. Notwithstanding, our prostate biopsy 

series included PCa at diverse clinical stages, submitted to different therapeutic 

modalities: radical prostatectomy, radiotherapy or androgen-deprivation therapy. 

This feature might explain the failure of CAPRA score to predict DFS. In multivariate 

analysis, only clinical stage, amongst all clinicopathological parameters tested, 

retained independent prognostic value, both for DSS and DFS. Remarkably, high 

miR-129-2 promoter methylation levels also predicted shorter DSS and DFS, 

suggesting that it might constitute a useful prognostic biomarker for PCa patients. 

It should be recalled that miR129-2 and miR-34b/c were selected for this analysis 

based on their association with pathological stage or Gleason score in the radical 

prostatectomy cohort. Considering the results of the multivariate analysis in the 

prostate biopsy cohort, we might assume that miR-129-2 promoter methylation 

levels are indicative of more clinically aggressive PCa, irrespective of disease extent 

at diagnosis. 
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In this study we explored the biomarker potential of six candidate microRNA 

that were previously found to be hypermethylated in PCa by our group. 

All candidates were validated in a large RP sample set. Moreover, we tested 

the PCa-specificity of methylation levels from each candidate, in comparison to 

other urinary tissues and neoplasms. Thus, the most promising diagnostic 

biomarkers (miR-34b/c, miR-193-b and miR-1258) were tested in an independent 

set consisting of voided urine samples, in which miR-193b was shown to be a very 

promising diagnostic biomarker with potential use as a non-invasive test for early 

detection of PCa. 

Moreover, those microRNAs whose methylation levels were found to be 

associated with aggressive disease in the validation set (miR-34b/c and miR-129-

2) were tested in a set of biopsy samples, seeking for prognostic value. MiR-129-2 

surfaced as independent predictor of survival as higher promoter methylation 

levels associated with poorer DSS and DFS. 

Although additional studies, preferably involving multiple institutions, are 

required to further validate these findings, we demonstrated herein that 

quantitative assays for specific microRNA promoter methylation (miR-193b and 

miR-129-2) might constitute important diagnostic and prognostic ancillary tools for 

clinical decision making. 

 

 

 



 

 
70 

 

  



 
71 

 



 
72 

  



  

73 

Table 11 - Current knowledge of the six putative candidates analyzed in this study. 

chr11: 111512938-

111513021 

chr11: 111513439-

111513515 

Promoter polymorphisms increase risk of HCC and 

RCC, and decrease risk in gastric cancer [104-106]. 

Promoter hypermethylation is associated with late 

clinical stage in patients with soft tissue sarcomas 

[107]. 

Promoter methylation in 

stool samples for 

colorectal cancer [108]. 

Downregulated by 

promoter 

methylation [109, 

110]. 

chr11: 43581394-

43581483 

Epigenetically repressed in gastric, esophageal, 

endometrial, lung, colorectal and hepatic tumors 

[90, 93, 111-113]. 

Expression in gastric 

juices [92]. 

Expression in plasma 

for HCC [93].  

Not reported. 

chr17: 48037161-

48037247 

Downregulated in lung, liver, ovarian, laryngeal and 

bladder cancer [114-118]. 

Proposed tumor-suppressor role in NSCLC [119, 

120]. 

Expression 

differentiates high-risk 

from low-risk PCa [91]. 

Promoter is highly 

methylated. 

Has a tumor 

suppressor role 

[121, 122]. 

chr16: 14303967-

14304049 

Downregulated in pancreatic tumors causing 

impaired cell growth [123]. 

Downregulated in ovarian carcinoma promoting 

metastasis [124, 125]. 

High expression correlates with poor survivability in 

melanoma and drives breast cancer progression 

(11). 

Not reported. 

Silenced by promoter 

methylation [126]. 

Has a tumor 

suppressor role 

[127]. 

chr20: 26208186-

26208278 

Downregulated in chordomas and pancreatic tumors 

[128, 129]. 

Expression in serum 

samples for chordomas 

and pancreatic tumors 

[129]. 

Not reported. 

chr2: 179860836-

179860908 

Has a negative correlation with heparanase 

expression and is downregulated in NSCLC and 

breast tumors [130, 131]. 

Not reported. Not reported. 
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