

MESTRADO

MULTIMÉDIA - ESPECIALIZAÇÃO EM MÚSICA INTERACTIVA E SOUND DESIGN

Development of Tools for Live
Networked Musical Performance
System using Smartphones

Alexandre Resende Clément

M
2015

FACULDADES PARTICIPANTES:

FACULDADE DE ENGENHARIA

FACULDADE DE BELAS ARTES

FACULDADE DE CIÊNCIAS

FACULDADE DE ECONOMIA

FACULDADE DE LETRAS

Development of Tools for Live

Networked Musical Performance System

using Smartphones

Alexandre Resende Clément

Mestrado em Multimédia da Universidade do Porto

Orientador: Rui Luís Nogueira Penha (PhD)

Coorientador: Rui Pedro Amaral Rodrigues (PhD)

Junho de 2015

© Alexandre Resende Clément, 2015

Development of Tools for Live Networked Musical
Performance System using Smartphones

Alexandre Resende Clément

Mestrado em Multimédia da Universidade do Porto

Aprovado em provas públicas pelo Júri:

Presidente: Doutor Marcelo Freitas Caetano, Professor Auxiliar Convidado da

Faculdade de Engenharia da Universidade do Porto

Vogal /Arguente: Doutor Paulo Maria Ferreira Rodrigues da Silva, Professor

Auxiliar da Universidade de Aveiro

Vogal / Orientador: Doutor Rui Luis Nogueira Penha, Professor Auxiliar Convidado

da Faculdade de Engenharia da Universidade do Porto

Resumo

Esta tese contempla o desenvolvimento de um conjunto de ferramentas de Pure Data, bem

como a sua integração em aplicações móveis através de libPD, como parte de um projeto maior

que abrange a concepção e implementação de um sistema que permita a interacção entre artista e

público via smartphones. O projeto " Bridging the gap between performers and the audience

using networked smartphones", doravante designado pelo seu nome interno – “Abel”, tem como

objetivo providenciar aos artistas uma forma de interagir facilmente com seu público, fazendo

uso da sua contribuição e participação para criar performances participativas.

Este conjunto de ferramentas consiste de uma série de objectos para Pure Data específicos,

desenvolvidos em C e acompanhados com exemplos de aplicação para ilustrar a sua utilização.

Usando a suite desenvolvida, os artistas multimédia poderão criar e distribuir conteúdo

interativo de forma fácil para dispositivos móveis por meio deste sistema em rede, simplesmente

através da criação de algoritmos de alto nível através da interface familiar do Pure Data,

proporcionando-lhes uma forma imediata de utilização deste sistema.

Abstract

This thesis contemplates the development a suite of Pure Data tools, as well as their

integration into mobile applications via libPD, as part of a larger project encompassing the design

and implementation of a system allowing for interaction between performer and audience via

smartphones. The “Bridging the gap between performers and the audience using networked

smartphones” project, henceforth referenced in this document by its working name - “Abel”, aims

to provide artists with a way to easily interact with their audience, making use of their input to

effectively craft participative performances.

This toolset consists of a series of custom-built Pure Data external objects developed in C,

accompanied with examples to illustrate their use.

Using the developed suite, multimedia artists can easily create and distribute interactive

content unto mobile devices by means of this networked system, simply by creating high-level

algorithms through the familiar interface of Pure Data, providing them with an immediate way of

using this system.

Acknowledgements

First and foremost I wish to thank my project colleagues Rafael Henriques and Carlos

Leocádio, who made working on this project a really enjoyable experience, whose work pushed

me to try to do more and more and whose company and help ended up being the main “line-of-

defense” against all the trials and tribulations that arose.

I also wish to thank Dr. Rui Penha for his support and guidance throughout this project (and

for trusting my work enough to get me involved) and Dr. Rui Rodrigues for his availability,

criticism and help both with my part of the work and with articulating with my colleagues’ work.

Gilberto Bernardes for the help on the PD test patches and for all the criticism, ideas and

suggestions.

I must also thank my former professor Pedro Santos, who first got me into audio

programming, and whose review and support proved central in getting into this master’s degree.

My family, who always saw more possibility in my future than even myself, and encouraged

me to reach ever higher.

My girlfriend Ana for ever-present and continued support, for believing in me more than

myself, giving me confidence and keeping me grounded on all the moments of doubt.

All my friends who helped and supported me in any way throughout this experience.

Dedicated to my parents.

Alexandre Resende Clément

Table of Contents

Introduction ... 1

1.1 Motivation .. 2

1.2 Objectives ... 3

1.3 Tests ... 3

1.4 Structure ... 4

State of the Art .. 5

2.1 Introduction .. 5

2.2 Development Environments, Toolkits & Utilities .. 6

2.3 Cooperative, Collaborative and Networked Music Systems 12

2.4 Mobile apps .. 16

2.5 Summary .. 18

The Abel project .. 20

3.1 Overview .. 20

3.2 Tools ... 24

3.3 Developed objects .. 25

3.4 Developed abstractions ... 36

3.5 Test application .. 40

3.6 Final considerations .. 41

Tests .. 43

4.1 Overview .. 43

4.2 Single device testing ... 44

4.3 Multiple device testing ... 46

4.4 Conclusions .. 47

Conclusions .. 52

5.1 Future work .. 53

References .. 57

External object commented source code ... 60

7.1 Abel_dataIn .. 60

7.2 Abel_dataOut.. 63

7.3 Abel_accIn.. 66

7.4 Abel_proximityIn ... 69

7.5 Abel_touchIn .. 70

7.6 Abel_colorOut .. 72

7.7 Abel_msgOut.. 74

7.8 Abel_scale .. 76

7.9 Abel_seqTarget .. 78

7.10 Abel_movTarget ... 80

Test applications source code ... 83

Testing result charts .. 89

9.1 Device #1 – HTM ... 90

9.2 Device #2 – Galaxy Tab ... 91

9.3 Device #3 – Galaxy S3 LTE ... 92

9.4 Device #4 – Galaxy S4 Mini .. 93

9.5 Device #5 – Ainol Novo 7 Venus... 94

9.6 Device #6 – Jiayu G3 ... 95

9.7 Device #7 – One plus one ... 96

9.8 Device #8 – Lazer ... 97

9.9 Device #9 – Moto G ... 98

9.10 Device #10 – Nexus 7 .. 99

9.11 Device #11- Galaxy S3 i9300 (cyanogen) .. 100

xiii

Figure list

Figure 1 – Max 6 example patch 8

Figure 2 – Pure Data example patch 9

Figure 3 – A view from within PLOrk (Trueman & Cook, 2006) 13

Figure 4 – The Stanford Mobile Phone Orchestra (Oh et al., 2010) 16

Figure 5 – Global system structure and data-flow 21

Figure 6 – Zone targeting sub-division example 22

Figure 7 – Pure Data patch contexts 25

Figure 8 – Abel_dataIn helper patch 27

Figure 9 – Rotation types in 3D space 29

Figure 10 – Abel_accIn helper patch 30

Figure 11 – Abel_proximityIn helper patch 31

Figure 12 – Abel_touchIn helper patch 31

Figure 13 – Abel_colorOut helper patch 32

Figure 14 – Abel_msgOut helper patch 33

Figure 15 – Abel_scale helper patch 34

Figure 16 – Abel_seqTarget helper patch 35

Figure 17 – Structure of the AbelSim_accel abstraction 37

Figure 18 – Structure of the AbelSim_proxim abstraction 38

Figure 19 – Structure of the AbelSim_touchIn abstraction 38

Figure 20 – Structure of the AbelSim_deviceOut abstraction 39

Figure 21 – Structure of the AbelSim_deviceSimulator abstraction 40

Figure 22 – Test patch embedded into application 41

xv

Table list

Table 1 – Single device testing device specifications 45

Table 2 – Averages per sending interval 47

Table 3 – Device behavior over sending intervals 48

Table 4 – Single device averaged global latency test results 48

Table 5 – Device message reception/loss overview 49

xvii

Abbreviations and Symbols

AP Access Point

API Application Programming Interface

APP Application (mobile)

APK Android Application Package

BSSID Basic Service Set Identification

GUI Graphical User Interface

IDE Integrated Development Environment

OSC Open Sound Control

PD Pure Data

SDK Software Development Kit

SMELT Small Musically Expressive Laptop Toolkit

Chapter 1

Introduction

Smartphone spread among population is growing rapidly and steadily, with a projected 50%

spread in western countries by 2015 (Emarketer, 2014). Couple that with the devices’ capabilities

in the fields of multimedia and their growing array of diverse sensors, and they emerge as the

perfect choice to use as a simple and readily available way of establishing communication and

interaction between performers and audiences. By developing a system built on top of a dedicated

communication network which allows the distribution of performance-specific content and data

and the establishment of interaction between the performer’s system and the audience’s devices,

a multitude of possibilities are created.

Even though the use of laptops and mobile phones in networked performance systems is not

new, their role has mostly remained one of an instrument, dedicated to the performers on stage.

Stanford University and Princeton University have both implemented performance systems based

on laptop computers (so-called Laptop Orchestras) – the Slork (Wang, Bryan, Oh, & Hamilton,

2009) and Plork (Trueman & Cook, 2006). Since then, other implementations of the idea have

been made, like the Carnegie Mellon Laptop Orchestra (Dannenberg, Cavaco, & Ang, 2007) or

the Linux Laptop Orchestra (Bukvic & Martin, 2010). All these have in common the fact that they

consist of a network of interconnected laptops, used simultaneously to reproduce a musical

piece/performance. This kind of approach has also been taken to mobile phones, ever since 2001

with Golan Levin’s “Dialtones (A Telesymphony)”, which made use of the audience’s ringtones

as an instrument (Levin, 2001), by calling each one at a given time. This approach is, in a

particular way, related to this project’s, as it makes the audience a part of the performance. The

major distinction lying in the audience’s role: “Dialtones” makes the audience a passive

participant in the performance, while this project aims to make it an active one.

Ever since 2001, however, much has changed in the field of mobile phones. Current

smartphones, with increased processing, stability, number of sensors, and overall power and

Introduction

 2

precision have become a great tool not only for use as instruments in a given performance, but to

also work as “feedback” mechanisms, establishing genuine interaction and interactivity. The more

recent Mobile Phone Orchestra or “MoPhO” at Stanford University (Oh, Herrera, & Bryan, 2010;

Wang, Essl, & Penttinen, 2008) takes advantage of the more recent device’s capabilities even

though devices remain as instruments used by performers on stage.

Since the main objective of this project is to allow composers to make use of audience mobile

devices as part of their performance, two main issues are to be addressed:

 Firstly, a framework for multimedia content should be developed, able to run both as in

musical piece/composition context and as embeddable content. This framework should

provide a simple and unobtrusive way for the composers to focus on their creative work

and not on the technical specificities.

 Secondly, a targeting system should be developed, allowing the composer to directly

target a given specific group or section of the audience whenever needed. This would

effectively allow him to, much like a maestro, address it as an independent entity and

assign a specific function or behavior to it in the context of his piece.

By building this described system, we hope to allow for a performance to operate in a

“Performer – System – Audience” model such as described by Bert Bongers (Bongers, 2000).

1.1 Motivation

My involvement with music dates to a long time back, from the piano lessons at 6 years of

age. From that moment on it has been an integral part of my growth and development. From

formal music training to garage bands, from classical to heavy metal or electronics, music has

always been one of the most defining aspects of my life. At the same time, my first computer

science and software development experiments also date back, although not as much. Around 16

years of age I first programmed on Visual Basic and on my Texas Instruments calculator. From

then on, programming and development has also accompanied me in life. When, back in 2009, I

was admitted to the Music Production and Technologies specialization of the Bachelor in Music

at Porto’s Escola Superior de Música, Artes e Espectáculo, I had my first contact with things that

united these two passions of mine. From synthesis to audio programming, a new world opened

up before me, and has been my day-to-day ever since.

This thesis contemplates a work that is part of a larger project, encompassing the design and

implementation of a system allowing for interaction between performer and audience via their

smartphones, taking these devices’ role beyond that of personal devices, and bringing choice

literally into the audience’s hands.

Introduction

 3

From a personal point of view, both as a music enthusiast and as a musician, the possibility

of helping develop a system that not only allows but encourages the creation of performances that

create a connection between the performer and the audience is highly motivating.

Furthermore, as a multimedia developer, the possibility of experimenting and forwarding

my own knowledge in the fields of mobile audio development and, in particular, of Pure Data

development greatly contributed to the appeal this project had to me.

1.2 Objectives

Client/audience-side assets are to be created by composers with Pure Data, and integrated

into Android/iOS applications through the libPD wrapper library, while main/performer-side

assets consist of a standalone Pure Data application1. Both client and server patches will take care

of all audio and visual manipulation and feedback.

On the server/performer side, operation will be 100% controlled and designed by the

composer, both from previously created processes and on-the-fly manipulation. The client-side

application, on the other hand, will operate with minimal input from the user with the previously

created embedded patches taking care of all audiovisual content associated with the performance,

via information gathered both from composer/performance provided data (through network

communication) and from the device’s own sensors.

A toolset of external objects was thus needed to give composers easy access to the system’s

data communication, audience’s mobile devices’ functionalities (sensor data or user interface

feedback), and all other system’s functionalities. Taking care of all data parsing, structuring and

communication by themselves, removing any kind of technological know-how other than Pure

Data operation out of the equation, this toolset needed to be as straight-forward and simplified as

possible, allowing it to become an unnoticed part of the workflow of the composers.

1.3 Tests

Considering the nature of the global project in which this particular work is inserted, a

number of tests are necessary to assess the system’s performance in view of future work and

further development and refinement of said system. Usability issues which can only arise with a

functioning prototype should also be assessed at this stage.

After the implementation of the proposed prototype, tests were run to assess:

 Performance of developed assets

1 Please refer to section 2.2 for an in-depth overview of Pure Data

Introduction

 4

 Adequacy of value scale and information structure

 Impact of technological specifications of mobile devices on final result

o Audio and visual perceived synchronization

o Device response time (from network message reception to device reaction)

o Processing capabilities (especially on low-end Android devices)

 Results of some desired events to be used in performance (audio/visual crossfades,

particular targeting)

1.4 Structure

In addition to this introduction, this dissertation is comprised of 4 other chapters.

In chapter 2, a global bibliography and project review is done, going over selected and

important publications concerning this system’s context, as well as some similar or in some way

related project.

Chapter 3 explains the approach to this particular project, explaining the proposed tools and

the structure, usage and objective of each tool. It also documents the development of the objects,

going over any particularity for each (commented source code is included in Appendix A –

“External object commented source code”).

Chapter 4 goes over testing results.

The fifth and final chapter presents conclusions and future work.

Chapter 2

State of the Art

2.1 Introduction

Mobile phones are nowadays a common part of everybody’s life. They have become part of

most countries inhabitants’ lifestyle. Smartphones in particular have garnered great popularity,

bringing complex and powerful interfaces, alongside a multitude of additional functionalities into

the day-to-day of their users. Music, already a common staple in most people’s life, has found in

smartphones a new approach. Multimedia capabilities of smartphones and mobile devices bring

to the consumer a new myriad of resources, previously only available on personal computers. In

that field, however, mobile phones have been used primarily as consumer devices, doing little

more than a common multimedia player would do, while bringing some social aspect into it. In

the context of concerts they have always been considered as little more than nuisances, frequently

addressed at pre-performance time with notices asking for them to be turned off or muted.

Nowadays smartphones have mainly become a way to record and/or share a performance on social

media, which is also frequently considered as disruptive of the concert experience, since it shifts

the focus from the performance to the device. Nonetheless, with the advent of technology and the

fast development and evolution of smartphones, mobile phones have gained the possibility to

function not only as reproduction and consumption device, but rather as control devices, directly

integrated into music making.

Interaction and interactive devices have also changed, as has their adoption in media and, in

particular, music. The British band Coldplay, for example, has been using, since 2012, interactive

devices consisting of simple bracelets with embedded LEDs and an RFID chip (Pixmob, n.d.;

Xylobands, n.d.). This allows the band to make the audience part of the performance, by activating

the devices and producing light effects. Still, this remains as passive one-way communication,

with the performer bringing the audience into the performance but still removing from them the

State of the Art

 6

possibility of bringing something in by choice. This is an example of the growing desire among

the artistic community to make the audience a part of the performance, instead of just passive

consumers, allowing them to contribute in some way to the end result.

Networked systems have also been used as part of the performances, although mostly as

static parts of the performance, like in the case of the laptop orchestras. Elements interact with

each other to create a performance where the individual composer/performer is responsible for

the establishment of the rules, much like a composer would go about creating a musical piece for

a “conventional” orchestra.

Most digital music making tools target a single user, and thus have mostly been used by solo

artists or by individuals within a larger, un-networked group. The performer uses said tools as

way to operate, mutate and create his work, all from his own input and as a primarily singular

means of interaction.

Building upon John Cage’s pursuit of performer-audience interaction as the core of a

performance’s creation in itself, as a mutable, ever-changing entity, it should be possible to

integrate both aspects into a single system, while at the same time introducing a second direction

of communication. Instead of regarding the audience merely as end-receivers, consider them as

contributors to the performance in itself.

2.2 Development Environments, Toolkits & Utilities

There are a number of possibilities from which to choose when aiming at audio development.

Before listing some of the most notable options, a brief distinction between concepts is important:

 IDE: these are self-contained editors with specific support for developing. Typically an

IDE operates on its own, with all necessary tools available integrated or accessible from

its interface.

 Toolkit (also referred to as SDK): is a library which provides specific functionalities

and tools aimed at developing software for a specific system. It doesn’t feature

development tools, but rather facilitates code and specific functionalities adapted to the

specificities of the system it is built around. It needs an external tool for development.

2.2.1 IDEs and Programming Languages

These development environments and/or programming languages provide abstract ways to

create audio specific software without having to deal with particular details such as audio engine

implementation, generator coding, etc. By abstracting a given set of operations/algorithms in this

State of the Art

 7

manner, the programmer/creator can focus immediately on the musical and sonic part of the

implementation, instead of having to manually implement those low-level functionalities.

There are some other environments and languages that allow for audio manipulation (e.g.

Csound and Faust programming languages, C++ and Python audio engine libraries, Matlab and

other math-based scripting solutions, Native Instruments’ Reaktor), but these are the ones which

provide a higher-level of abstraction while retaining enough complexity for advanced

customization, and at the same time are the most common in the context of interactive/real-time

music/sound performance and generation.

2.2.1.1 Max/Msp

Max’s development started with Miller Puckette during the 80s, while at IRCAM, as

Patcher, an editor taking care of MIDI and control processing, communicating with outboard

systems. In 1990 a commercial version was released by Opcode Systems, developed and modified

by David Zicarelli. The software ended up being dropped by Opcode Systems and being picked

up by Zicarelli’s own company, Cycling’74 in 1999. It has since been developed and

commercialized by the same company. In 1997 David Zicarelli modified the audio engine,

including some innovations and enhancements, and released it as the MSP package for Opcode’s

Max. In 2003, a video processing package was introduced (Jitter) and in 2011 a code-compiling

package was added (Gen). (Cycling 74 Website, n.d.; IRCAM Website, n.d.)

Max (general name) is a graphical programming environment, commonly used in music and

multimedia. It is developed for the Windows and OSX operating systems. It is commonly referred

to as a building-blocks environment, consisting of a canvas and a set of graphical modules, each

encapsulating a code block responsible for a given function. Each module has built-in inputs and

outputs, depending on its functionality. Module interconnection is achieved graphically by

connecting each with the aid of lines (called patch-cords), symbolizing information flow. This

module set can be expanded with user-created functions/modules, called externals. The whole

environment consists of 4 main packages, each specializing in a different type of

information/value handling and processing:

 MAX: this is the base package, and comprises the graphical user interface, timing,

communications and MIDI support. The patch-cords for MAX information are solid

black.

 MSP: this package handles real-time information manipulation, and is aimed mainly

at audio synthesis and digital signal processing. Patch-cords for MSP information

are dashed and alternate yellow and black dashes.

 Jitter: this package is aimed at video and matrix data processing. Its patch-cords are

dashed, with green and black dashes.

State of the Art

 8

 Gen: this package features an integrated patching canvas with a custom set of

modules, derived from the core Max/Msp modules, and a code editor. It is possible

to design audio algorithms graphically in the same way as in a regular Max patch,

or integrate parts via code. The result of these sub-patches / gen modules can be

used as modules in other Max patches.

Max is currently in its seventh version, and aims at simplifying as much as possible the

development of multimedia content, as it doesn’t require any programming experience and allows

for strictly visual-based editing and creation.

Figure 1 – Max 6 example patch

2.2.1.2 Pure Data

In 1996 Miller Puckette, the original creator of Max, started developing Pure Data aiming to

correct some weaknesses in Max.

It consists of graphic-based or visual programming audio-specific development IDE, and is

one of the most widely used tools in the field of computer-assisted and computer-based musical

composition. It operates with graphical blocks corresponding to specific algorithms (referred to

as “objects”), connected between themselves in a graphical way so as to be arranged in larger,

more complex sound processing and generating programs (referred to as “patches”). As can be

seen by comparing Figure 1 – Max 6 example patch and Figure 2 – Pure Data example, Pure Data

and Max/Msp’s modus operandi is really similar. PD has, nonetheless, a more simplistic GUI. It

also allows external expansion via externals, but has a major difference from Cycling ‘74’s Max:

its open source nature. By adopting the open source approach, several new possibilities arise,

most notably the access to the core code aspects of the engine, its customization and recompilation

and even redeployment. (Puckette, 1997a, 1997b)

State of the Art

 9

Figure 2 – Pure Data example patch

One relevant example of this repurposing aspect brought by PD’s open source nature is

LibPD, a library for external inclusion of Pure Data’s audio engine into other software. Like stated,

LibPD is a repackaging of Pure Data to allow its inclusion into other software solutions, stripping

the graphical part of Pure Data and trimming some parts of its core engine, while keeping its audio

engine and base generators/functions available. (Brinkmann, Mccormick, Kirn, Roth, & Lawler,

2011) This opens the possibility of using Pure Data patches in other software, thus greatly

simplifying the process of audio algorithm/processing design. For example, LibPD has been used

in videogames to allow the creation of real-time procedural sound effects and integrated into

mobile applications as a sound-generation tool, while other software makes use of its already

implemented audio engine to skip that implementation phase.

Another worthy example of the customization of Pure Data is tied to the L2ORk project (as

described in section 2.3.1.1 – “The *Ork paradigm”) and consists of PD-L2Ork. This distribution

of PD was created in the context of the L2Ork project, based on PD-extended and focusing on

core engine enhancements, GUI modifications and improvements and visual editor

customizations, suited for use within the ensemble.

2.2.1.3 SuperCollider

“SuperCollider is a dynamically typed, single-inheritance, single-argument dispatch,

garbage collected, object-oriented language similar to Smalltalk.”(McCartney, 2002)

State of the Art

 10

SuperCollider was created in 1996 by James McCartney for real-time audio synthesis and

algorithmic composition. It is an environment designed to sit halfway between a high-level

programming language and a synthesis engine. It features a built-in programming language with,

among others, an object-oriented class system, a GUI builder, a graphical wavetable and envelope

designer, built-in signal and musical data processing and synthesis functions library. The same

language is used to create the audio processing algorithms and the musical performance aspects.

Its program flow is tied to the audio sample rate in which it is set to work: each program “cycle”

will correspond to one sample. Audio synthesis, signal processing and any other function will

output its result once per sample instead of just providing results “as fast and many as possible”.

These results are then stored in a buffer which corresponds to the end audio buffer to be

reproduced or stored.

2.2.1.4 ChucK

ChucK is an on-the-fly-programming language developed at the Princeton Computer

Science Department. This means that it’s a programming language that the programmer modifies

in real-time without the need to stop or restart the program. It is implemented as a virtual machine

with a virtual instruction set (Wang & Cook, 2003) and (Wang & Cook, 2004).

ChucK derives its name from the common name given to the “=>” operator, which

symbolizes flow of information (from left operand to right operand). This is the basis of ChucK

programming, with said operator working as a connector between a given number of generators,

in the form of:

𝑔𝑒𝑛1 => 𝑔𝑒𝑛2 => 𝑔𝑒𝑛3 => 𝑔𝑒𝑛4

(Generator identifiers non-existent in ChucK, only for illustration purposes)

This information attribution/feeding from one operand to the next is commonly referred as

chucking, and can be chained (as in the previous example) and nested (with parentheses) just like

a regular math operation. The other basis of ChucK functioning is time. Most sound

generation/manipulation ChucK operations are time-dependent, and it is up to the

programmer/composer to control said timing. ChucK programs are organized in shreds, which

are simply code blocks that can run in parallel (much like a parallel thread in traditional OOP).

These are also used to manage multiple input/outputs (multiple MIDI channels inputting

information simultaneously to different program parameters, for example)

State of the Art

 11

2.2.2 Toolkits

2.2.2.1 Small Musically Expressive Laptop Toolkit

“SMELT is an open-source toolkit to facilitate rapid development of and

experimentation with expressive musical interfaces built on the laptop's native

physical input capabilities (e.g., keyboard, mouse, motion sensing, and

microphone). It's implemented in C and ChucK, and based much on our work with

PLOrk.” (Fiebrink, Wang, & Trueman, n.d.)

There is an extremely wide range of external inputs to be used for real-time manipulation,

but each of them has particular methods and usage types, which proves to be a hurdle or hindrance

to their easy inclusion into a laptop orchestra or otherwise meta-instrument ensemble. SMELT

targets the laptop’s various built-in input methods, and tries to standardize a number of possible

interactions with them, making its usage faster. Keyboard, trackpad, webcam, microphone and

speaker are components pretty much any laptop has carried for the last 10 years or so. By

standardizing a set of actions and interactions with each, this toolkit provides an easy in-box

access to a decent number of input methods to be used as control devices for musical/performance,

without the need to use any external devices (thus avoiding the customization/testing time needed

to integrate those).

2.2.2.2 NRCI Pure Data tool suite

This suite of Pure Data tools was developed at the Wisconsin-Milwaukee University to

facilitate laptop ensemble performance (Burns & Surges, 2008). It was initially created targeting

the Milwaukee Laptop Orchestra (MiLO) while aiming to be as open as possible, allowing for

easy usage from any other ensemble.

“NRCI provides both a friendly welcome to custom software design for novice

users, and near-instant gratification which motivates more advanced learning and

design” (Burns & Surges, 2008)

It is developed in the form of PD abstractions (as it is the most widely used software in

MiLO) with both novice and advanced users in mind, providing modular, reusable and modifiable

tools to facilitate rapid prototyping, serving at the same time as a test bed for its developers. It is

not supposed to be the sole software in use for the MiLO, but its aim is to become so easy to use

that it becomes the go-to choice. It draws some of its inspiration from the SMELT toolkit,

State of the Art

 12

developed at Princeton University, providing abstractions to take care of most stages/components

of building a laptop orchestra instrument, from networking to input parameterization, from timing

handling to audio generation. The idea is to provide an empty canvas and give the user the tools

to quickly and easily implement instruments, and allow for their real-time manipulation and

modification.

2.3 Cooperative, Collaborative and Networked Music Systems

2.3.1 Laptop based Ensembles

2.3.1.1 The *Ork paradigm

The Princeton Laptop Orchestra (PLOrk) is an ensemble of 15 computer-based meta-

instruments created in 2005 at the Princeton University. Each meta-instrument consists of a

laptop, multichannel hemispherical speaker, a number of control devices and control/performance

software.

The PLOrk consists of 3 different layers/ components: a set of Max/Msp abstractions

responsible for mapping input from devices to the sound processing/synthesis components, a

frontend layer responsible for the saving and loading of composition related presets and a set of

network utilities responsible for the communication between the conductor and the meta-

instrument machines, allowing broadcast type messages or single-machine targeting. These

network utilities operate over OSC and allow easy communication with any other OSC-enabled

hosts. Communication operates on a wireless network and has a measured latency of 30-40ms

taking into account synchronization between all of the 15 machines.

One of the problems that arose early in the project was how to synchronize the performance.

Traditional orchestras follow a conductor, but this ensemble could benefit from network protocols

and synchronization. A system was developed to allow for inter-performer and performer-

conductor communication through networking protocols. It was possible to integrate this

communication system into the performance software (ChucK and Max/Msp) and also use it for

tempo synchronization. Most pieces performed were created in either or both the software

environments, although other pieces created in or making use of SuperCollider and Java have

been performed by the ensemble too.(Trueman & Cook, 2006)

Interacting with these meta-instruments of the ensemble proved to be a challenge, as did

composing for it. Even though it builds up on the traditional concept of an orchestra/ensemble,

State of the Art

 13

the particularities of its instruments, both in terms of sonic capabilities and spatialization approach

became an open and unknown field.

Figure 3 – A view from within PLOrk (Trueman & Cook, 2006)

The PLOrk set an implementation paradigm for laptop orchestras that was followed by many

other ensembles subsequently. Ge Wang transitioned to Stanford University founding an

implementation of the so-called *ORK based ensemble there – the SLOrk. It is in all aspects

similar to the PLOrk, drawing from the same inspiration and making use of different tools

developed in the context of the later. The configuration of the meta-instruments follows the same

approach, consisting of a six-channel hemispherical speaker, an audio interface, input devices and

laptop. Its software is based on the ChucK programming language, developed at Princeton

University, and it makes use of the “Small Musically Expressive Laptop” toolkit as simplified

way to rapidly prototype laptop instruments, also developed at Princeton University. (Wang et

al., 2009)

Partly inspired by the successes of PLOrk and SLOrk and in part encouraged by the rapidly

developing Linux hardware and software support, in the fall of 2008 DISIS (Digital Interactive

Sound & Intermedia Studio) partnered with Virginia Tech’s College of Engineering to explore

the ensuing synergy and form L2Ork, the first *Ork based on Linux. (Bukvic & Martin, 2010)

Its meta-instrument components are in all aspects similar to the PLOrk and SLOrk, with the

particular aspects that it was created targeting a maximum of $800 cost per workstation, and that

it standardized the input device used. In terms of software, in the absence of the Windows/Mac

exclusive Max/Msp, most of the development environments remain the same as in the 2 other

laptop ensembles, notably ChucK, SuperCollider and Pure Data, all of which are multi-platform.

State of the Art

 14

2.3.1.2 The Carnegie Mellon Laptop Orchestra (CMLO)

The CMLO is a collection of computers that communicate through a wireless network and

collaborate to generate music.(Dannenberg et al., 2007)

It differs from the PLOrk mainly in its approach to the orchestra, choosing to maintain a

more traditional concept, both in organization and instrumentation, and in the fact that there is no

set number of instruments (new ones can join in and existent ones can exit the network at any

time). Since it was created as part of a Computer Science degree, its approach to music generation

takes a somewhat secondary role in face of the networking and communication design and

implementation aspect. Communication is not made via OSC messages, but rather through a

specifically created protocol, in this case over TCP/IP.

The system is built around a central hub machine, which works both as a conductor and as a

provider of the performance’s information (e.g. key, tempo, time signature, musical style). The

client machines take conventional roles, such as drummer, bass player, chord player, melody

player and arpeggiator. Taking these roles as base, the generative algorithms are free to compose,

as long as they respect the information given by the hub.

The system’s main program is responsible for setting up the main performance’s details, as

described above, and communicates said information to a program called Harmony, responsible

for algorithmically generating a chord progression which is then sent to the individual “musician”

clients in the network. These messages are time stamped and sent before real-time, so as to give

time to the clients to make any necessary calculations and changes and still remain in sync. Client

programs poll the main system at regular intervals, getting all incoming messages, and feature a

scheduler which applies all necessary actions on the beat defined in the received messages.

2.3.1.3 The World Laptop Orchestra (WLO)

This is an ensemble of 50 performers each using live laptop computing, which gave its first

performance in 2007.Its goal was to perform powerful, auditorium filling musical works over a

multichannel PA system, with spatialization techniques that could be accessed independently of

the physical layout of the orchestra. (Harker, Atmadjaja, & Bagust, 2008)

Contrary to the PLOrk ensemble, the WLO did not have a strict positioning of the musicians,

whose location and presence might vary. Hence, mobility was one of the main issues dictating

the use of WIFI technology as a communications means, and UDP as a communication protocol.

Software was developed using C++, Max/Msp, Pure Data, Python and Google Earth.

State of the Art

 15

2.3.2 Mobile phone Orchestras

While mobile phones have been used for artistic expression before, it isn’t before 2007 they

are used as part of an ensemble, in a similar way to the several laptop orchestras already in place.

In the aforementioned “Dialtones (A Telesymphony)” piece (Levin, 2001) participants

registered their mobile phone numbers prior to the concert and, subsequently, had access to

custom ringtones downloaded onto their phones, associated with a specific seat that was assigned

to them. The performers could then, during performance, call specific phones that were at pre-

determined specific locations and with specific ringtones, creating musical and spatial patterns at

will. Nonetheless, this approach still viewed and used the mobile phone as a passive instrument,

without interaction or participation.

Mobile phone ensembles have, since, been implemented, drawing inspiration from the

aforementioned laptop ensembles, which make use of the phones as active parts of the

performance creation. MoPho, the Mobile Phone Orchestra of CCRMA(Wang et al., 2008), is the

foremost example of this approach. It originally consisted of 16 mobile phones (Nokia N95) and

players, each corresponding to a gesture-driven instrument. Equipped with a 330MHz CPU and

running Symbian OS, the system designed for use in the MoPho was developed partly in C++

(for the audio synthesis and hardware access) and Python (for the graphical interfaces). This is

where one of the main differences between this orchestra and laptop orchestras resides: whereas

the laptop orchestras where open to any number of input/control devices, either inbox or out-box,

these instruments rely solely on the in-box input devices. Although the available hardware is

diverse enough (5MP camera, front camera, microphone, speakers, 20-button keypad, 3-axis

accelerometer), these constraints impose a performance limitation when creating a piece for this

ensemble, whereas in the case of a laptop orchestras external devices might be added as needed

and desired. The lower computational power of the devices also limits the complexity of the meta-

instruments’ sonic capabilities in terms of audio synthesis and processing. Sound reproduction is

also limited to the phones’ built-in speaker (and occasional musician vocalization).

From its original creation, the MoPho has since been updated. From the original N95, it

switched to using iPhones as the mobile device of choice, and starting making use of a framework

developed specifically for it – the Mobile Music Toolkit (MoMu). A number of hardware changes

and additions also were implemented, namely in including mobile phone speakers, so as to

provide extra amplification and allow for bass frequency boosting. (Oh et al., 2010)

A number of orchestras and ensembles based on this new incarnation of MoPho have

appeared, all based on the same toolkit, hardware and general premise. From the KAIST Mobile

Phone Orchestra, to the Helsinki Mobile Phone Orchestra or the Michigan Mobile Phone

Ensemble, all are derived from the original MoPho at Stanford.

State of the Art

 16

Figure 4 – The Stanford Mobile Phone Orchestra (Oh et al., 2010)

Another example of this approach lies in the Casa da Música iPhone Orchestra (Carvalho,

2009), created in 2009 as an initiative of the Digitópia project, supported by the Educational

services of Porto’s Casa da Música. This ensemble, organized by Rui Penha and Filipe Lopes,

was presented in a public workshop, where people were invited to become an active part of it.

The ensemble as a whole acted as controller for the robotic gamelan instrument at Casa da Música,

with each of the iPhones being assigned to one of three distinct sections of the instrument. By

choosing and changing parameters on the custom application developed for this purpose, the

participant would control some of the robotic instrument’s mechanic actions and, alongside other

devices, create a unique performance.

2.4 Mobile apps

2.4.1 Cooperative/collaborative apps

 MoodifierLive is a mobile application for interactive control of rule-based music

performance. (Fabiani, Dubus, & Bresin, 2011). It is written in Python and designed to

run on Nokia S60 phones with the PyS60 interpreter, and aims at combining automatic

performance with gesture analysis. It operates by giving the user several different modes

of operation, manipulating the musical performance by means of his gestures.

State of the Art

 17

 Mobile Phone Orchestra is a free iOS app which plays unique five minutes

compositions by taking small snippets from the user’s media library. It requires at least

four iPhones which play together a unique performance. The phones are placed close

together (20-100cm) and can be arranged in any spatial pattern. The app performs the

composition based on the “now playing” song on the music player. If no song is playing,

the app selects random songs from the library (Bluff, n.d.)

2.4.2 LibPD based apps

These applications allow the user to upload externally created PD assets into a mobile

application.

 RjDj, by Reality Jockey Ltd. is considered the original PD-based musical app. RjDj

allowed to load Pure Data patches into an iOS app, with minimal GUI support. It is now

defunct and unavailable, but allowed the user to get data from a number of sensors on

the device and using simple image and text visual output.(Kincaid, n.d.)

 ScenePlayer is Android’s version of RjDj, and is mostly compatible with the former. It

is included in PdForAndroid, the libPd Android distribution (“PDforAndroid GitHub,”

n.d.).

 MobMuPlat is a free (although closed-source) mobile application. Its use comprises

two distinct parts: the mobile application in itself, and a GUI creation application

(MobMuPlat Editor). The former is the one responsible for loading both the Pure Data

assets and the created GUI and allowing both to be run and operated, while the latter is

responsible for creating the frontend for the developed patches, from control inputs to

visual arrangement (Iglesia, 2013).

 PdDroidParty runs all the core audio functionalities just like libPD and, in addition,

renders some of Pure Data’s GUI elements as interactable Android controls (number

boxes, sliders, toggles, bangs, comments and canvases). It also implements a number of

particular objects, allowing the user to use input types not particular to Pure Data via

GUI controls, as well as communicate internally between patches loaded by

PdDroidParty (Mccormick, 2011). PdDroidParty is open source and available as a GIT

repository (Mccormick, n.d.).

 PdParty is to iOS as PdDroidParty is to Android (Wilcox, n.d.)

 mPD has little information other than its Google Store page and a thread by the author

on the Pure Data forum presenting the release of the application. The application appears

State of the Art

 18

to attempt to translate Pure Data’s GUI onto a mobile application, providing a usage

equal to the regular usage of the Pure Data IDE (Viejo, n.d.).

2.4.3 OSC control apps

OSC control apps are slightly different considering they aren’t, by themselves, tools for

music creation or collaboration tools. However, by allowing to remotely control other tools or

software and to establish communication over a network, they also fall into the context of this

work. These kind of applications are nowadays very common, making it impossible to list them

all. Some do stand out and are worthy of mention, either because they bring some particular aspect

or are especially different in their approach, but a search for “OSC” in either the Google Play

Store or Apple Store wields a very long list of both free and commercial applications, ranging

from customizable control interface to simple sensor data output.

 Control is available for both Android and iOS, and has a number of particularities that

make it a distinctive application. In addition to the normal sensor access, it features MIDI

output (in addition to OSC), dynamic interface creation via JavaScript and dynamical

interface “pushing” via OSC (Roberts, n.d.)

 TouchOSC also is available for Android and iOS, It also allows for MIDI

communication and allows advanced customization of the interface with a wide variety

of control widgets, to better adapt it to what is being remotely controlled (“h e x l e r . n

e t | TouchOSC,” n.d.)

 Lemur is an advanced OSC controller application which implements customized

controls and custom code editor, allowing for development of complex control widgets.

It also features an in-app sequencer widget (“Lemur – Liine,” n.d.)

2.5 Summary

It becomes clear that neither the notion of computer/mobile based collaborative systems nor

that of embeddable asset mobile applications have anything really novel or new. Both concepts

have been approached and implemented in a growing number of different ways. However,

considering the aforementioned projects and systems, joining both ideas is something somewhat

different from what has been done so far. Networked collaborative systems are mainly in-house

dedicated systems with specifically designed APIs and frameworks, forcing anyone wishing to

use the system either as composer or participant to learn it, making previous experience and

knowledge something to be ported instead of immediately applied.

State of the Art

 19

The listed libPD based applications aim at addressing that issue: allowing users with

previous knowledge and experience with a free, user-friendly, powerful and easily accessible

development environment to make use of when creating mobile based interactive musical assets.

In the end of this reviewing and analysis process the choice befell onto Pure Data. Using

Pure Data allows the system to take advantage of its implantation into the field of multimedia

arts, and in particular into sound processing and electronic and electro acoustic music composing,

and the corresponding knowledge base that comes associated to it. With the objectives of

universality and exportability in mind surrounding the idealization and conception of this present

system, the best choice would be, logically, a well-known and documented, free and multi-

platform base software. The existence of the libPD mobile port, and the open-source nature of

both PD and libPD make this an almost immediate choice, by allowing a greater degree of

abstraction while developing the multi-platform mobile applications as well as the customized

functionalities to be handled via custom external objects. By making use of the already multi-

platform implemented PD engine, a tested and documented framework is available immediately,

and leaves the door open for more extensive and low-level customizations or adaptions to the

system, if need be, without having to code a framework from scratch.

Chapter 3

The Abel project

3.1 Overview

This system is intended to serve at least two distinctive groups of people: artist/composer

and user/audience. For composers it needs to facilitate an easy integration, and inflict as few

disruptions as possible unto their existing workflow, providing straightforward tools which will

allow them to develop their content and distribute it to the audience’s devices with simplicity. For

the user/audience, it should serve as a transparent and immediate way to participate in a given

live performance, with minimum required actions apart from his interaction with the device.

There are four major development premises for such a system:

 Develop a way of connecting hundreds or thousands of mobile devices to a network in

a concert environment with guaranteed stability, trustworthy data communication and

ease of implementation and deployment

 Develop a solution for localization and synchronization of mobile devices, providing a

way of specific targeting, and ensuring audio and visual feedback on the mobile devices

maintains the desired timing and sequencing

 Develop a mobile application which serve as host to distribute performance specific

content and provide a way for the user to participate

 Develop tools, templates and content examples which will allow to easily integrate the

creation of assets for this system into a pre-existing workflow

In the aim of developing a prototype which could cover these 4 premises, work was divided

between 3 people, each assigned to a specific area of development. Network infrastructure and

The Abel project

 21

implementation to be handled by Carlos Leocádio, mobile application development by Rafael

Henriques and content creation framework development to be handled by myself.

3.1.1 Overall system description

The system can be divided in three major blocks, establishing a chain of communication and

dataflow which results in the desired system: main application/client, network infrastructure, and

mobile application/client.

The main application will consist of the developed performance material (musical piece) and

the networking management application, which will use the implemented network infrastructure

to send data to the mobile application. This mobile application comprises both the native

application and the distributed performance specific assets.

Figure 5 – Global system structure and data-flow

There is the need to create adapted content to be used as main musical performance (musical

piece), and as audience distributable assets.

When creating these assets, composers should not have to worry about network

communication, device sensor access, or otherwise deal with any of the inner workings of the

system. These assets, corresponding to the “Main Pure Data application” and “Embedded libPD

wrapper” sections of figure 2, must allow the composer to make use of the listed functionalities.

Musical piece creation and sound processing and reproduction tasks are natively handled by Pure

Data, but message creation and parsing, targeting, sensor access and all other system-specific

functionalities are not. The work presented in this dissertation is linked to the creation of a toolset

Main Pure Data application

Musical Piece creation
Sound processing and reproduction

Data message creation
Selectable targeting

Main Application

Native application

Data message filtering
Redundancy checks
Asset management

User interface and feedback
Device sensor processing

Mobile Application

Embedded libPD wrapper

Data message parsing
Musical piece complement

Sound processing and
reproduction

N
et

w
o

rk
 In

fr
as

tr
u

ct
u

re

Network application

Zone management
Message targeting mapping
Communication protocols

The Abel project

 22

to allow easy and straightforward creation of said assets, and its integration onto both the main

and mobile applications from within the scope of regular Pure Data development.

3.1.2 Localization

The system is designed to allow specific targeting for data messages through the

implementation of a virtual sub-division of the physical audience area into targeting zones. These

zones are predefined when creating the musical performance in itself, and attributed according to

physical location of the device in the audience area. This zone assignment is connected to the

venue’s ticket system, which will allow for easy placement of the device in the venue’s audience,

and automatic inclusion in one of the mapped targeting zones.

Figure 6 – Zone targeting sub-division example

As the zoning sub-division is known beforehand, each seat number is associated to a given

base zone (1 to 25 in Figure 6). Each zone is attributed a given BSSID, corresponding to a specific

access point of the system’s network, and connects only to that AP. The network application,

which takes care of message sending, maps each zone to 2 additional super groups, corresponding

to lines and columns of the audience area where that zone falls into. In conclusion, each zone can

be targeted via 4 different ways: direct zone identifier, line super group, column super group or

global “all zone” message.

Furthering the technical details of this mapping and hardware infrastructure specificities is

beyond the scope of the particular work presented herein.

The Abel project

 23

3.1.3 Synchronization and synchronicity

Due to the nature of musical performances, one of the main concerns with such a system lies

with synchronicity, timing and sequence of events. Both immediate and pre-timed instructions

are desirable in such a system, although in the context of the prototype developed in this work,

only immediate messages are implemented. Considering this approach, system latency (from

message triggering to device response) becomes paramount in ensuring musical usability of said

system.

With any kind of network communication there is the risk of data corruption, transmission

delay and even information loss. To minimize the probability of any of these happening, the

system should adopt both redundant message transmission and message numbering. Each

message would be transmitted three times in immediate sequence following a data structure which

allows the mobile system to check for data integrity as well as minimize the chances of data loss.

Message numbering aims at allowing to filter information, by checking if any subsequent

instructions has been received and processed beforehand and discarding any delayed data. In the

context of this prototype, only message numbering and filtering has been implemented.

3.1.4 Tool development for content creation

Pure Data has two main versions:

 Pd-vanilla: this is the base and original version of Pure Data, developed and

maintained by Miller Puckette. It focuses on audio and MIDI processing and

features a limited array of objects.

 Pd-extended: this is (like the name implies) an extensions of the base pd-vanilla

distribution, bundled with a great number of external objects, opening PD to

graphics processing, OSC communication, binary file processing, microcontroller

connection, and many more functionalities.

In the context of this particular project, the main limitation befell on the embeddable mobile

assets. LibPD is based off of Pd-Vanilla, which meant it only featured a handful of core-bundled

objects. Furthermore, certain specific functionalities were needed, not covered by any of Pure

Data’s features. Things like network data communication or device sensor access might be

available via third-party objects, but particularities of the system made it important to be able to

customize all parameters and interaction with said objects. At the same time, message targeting,

message parsing and target sequencing are specificities of this particular system. Considering both

situations, it became clear that it would be necessary to create a suite of objects for use by artists

in order to make use of them. The development of such tools, and general evaluation of the

system’s performance constituted the core of my contribution to this project.

The Abel project

 24

3.2 Tools

Developed code was found to be completely cross-platform compatible, with adjustments

having to be made in terms of IDE and system setup so as to correctly compiling the objects on

the particular system.

3.2.1 Windows

Windows development was initially setup with Visual Studio Express 2013, which worked

without problems. For the sake of ease of portability, the projects were migrated to Eclipse Luna

and compiled with the Mingw32 toolkit.

3.2.2 OSX

Similarly to Windows development, OSX was initially setup with XCode 5.1, but was then

migrated to Eclipse Luna and compiled with the GCC toolkit.

3.2.3 Linux

Linux development was also conducted under Eclipse Luna with the GCC toolkit.

3.2.4 Android

Android porting of the objects consisted of recompiling the source code using the Android

NDK, which allows to compile C/C++ code to be run in regular Android applications. Externals

were compiled as shared libraries for the armeabi, armeabi-v7a and x86 CPU architectures.

Source code for the mobile versions of the objects is mostly the same as for the

corresponding desktop versions, although all the “post” and “error” output messages have been

removed, as they serve only as feedback mechanisms for object operation at the moment of

content creation.

Source code for the Android test application is included in Appendix B – “Test applications

source code”

3.2.5 IOS

IOS porting is an immediate thing, consisting of just including the mac OSX developed

source code into the native application code and letting it be compiled at the same time.

The Abel project

 25

3.3 Developed objects

Like previously stated, Pure Data external development isn’t a widely documented process,

with the most immediate source dating back to 2001 (Zmölnig, 2001). At least one book has been

published in recent years covering the process (Lyon, 2012). Therefore, the main sources of

material in the learning and debugging process remained the aforementioned 2001 publication, as

well as the Pure Data developer forums and the Pd-dev mailing list.

In the case of the main patch (server), with the possibility of using Pure Data Extended, it is

possible to use any available object without limitations. In the case of the embedded patches for

the application, however, the creation of this suite is paramount, so as to make it available both

in desktop versions (Windows, Mac OSX and Linux) for use at the time of creating the patches,

and in mobile versions (Android and iOS), for internal operation in the application.

Developed objects can be divided into two sub-sets, depending on their function:

 System objects: This sub-set of objects implements functionalities inherent and specific

to the system’s operation (e.g. data communication, device sensor access).

 Auxiliary objects: This sub-set of auxiliary objects implement functionalities which

could be achieved via other Pure Data processes (abstractions, objects or other) but are

provided so as to standardize and simplify their usage between the desktop and mobile

systems (e.g. scale remapping, target cycling)

The developed objects are to be used under two distinct contexts: main patch and embedded

patch.

Figure 7 – Pure Data patch contexts

Data is sent and received through a series of “data slots”. These “data slots” correspond to a

series of user-definable variables, which are responsible for storing the data values to be sent via

network to the mobile devices. A maximum of 40 data slots has been decided to be made

available, with the used number to be freely decided by the composer according to his needs.

Main Patch

(Musical piece)

Runs on server computer

and is controlled by

performer

Embedded Patch

(Specific musical

processes)

Runs on mobile devices

and is controlled by

device input

Data sent via network

The Abel project

 26

They accept a MIDI-like scale of 0-127 integer values, which are grouped and converted to byte

values and sent over network in the form of a string block, and read back by the application upon

reception. This string is composed of 2 different characters for each data slot value, the first

corresponding to the data slot index (for correct parsing and output in the embedded patch) and

the second corresponding to that slot’s sent value.

Communication was decided to only be unidirectional, implementing no device-to-server

communication but, instead, relying solely on device sensor input as form of interaction and

manipulation of the pre-designed processes included in the embedded patches.

In this section certain system object particularities and specificities are explained. Although

in most cases the source code is heavily commented and that alone is enough to explain the

object’s functionality, some options and approaches need further explaining or detailing.

Auxiliary objects have no particular specificities and their functionality is explained in code

comments 2 and in the include helper patches screenshots.

It is important to note that only 3 sensor-access objects were developed for the

implementation test, making use of the accelerometer and proximity sensor, as well as the

touchscreen. These were chosen since they are the most commonly available sensors on most

devices.

3.3.1 Abel_dataIn

3.3.1.1 Definition

This object is responsible for receiving, parsing and outputting data sent from the main patch.

It has no inlets, receiving the data directly from the application, and has outlets corresponding to

the number of data slots.

Arguments:

1. Number of data slots (optional: default = 1 slot): This argument determines the

number of outlets for the object, and should correspond to the same number of slots

defined on the main patch for the Abel_dataOut object.

Multiple copies: No

Context: Main patch

3.3.1.2 Implementation

This object’s main functionality in the implemented prototype simply consists of receiving

a sequence of 2 number lists from the application (generated through the parsing of the received

2 Please refer to Appendix A – “External object commented source code” on page 58

The Abel project

 27

data message), checking if the list obeys the expected format, and outputting corresponding data.

The two numbers correspond, in order, to a slot identifier index and its corresponding value.

The Abel_dataIn has a hidden functionality, which is used at asset creation time. In addition

to the regular list-receiving behavior, this object also accepts the complete data block/string, with

all encoded slot and value, sent directly by the Abel_dataOut object. Upon reception of the

message, it attempts to verify format and parse all data pairs, outputting the corresponding values

upon completion.

Figure 8 – Abel_dataIn helper patch

3.3.2 Abel_dataOut

3.3.2.1 Definition

This object is responsible for grouping data values and targets, and building the message to

be sent to the network application for processing. It has the same number of inlets as the desired

data slots, and has one outlet from which the final message is output.

Arguments:

1. Number of data slots (optional: default = 1 slot): This argument determines the

number of created inlets and should match the total number of data slots to send

from the main patch.

Multiple copies: No

Context: Main patch

The Abel project

 28

3.3.2.2 Implementation

Object functionality is pretty well detailed in the source code’s comments, although some

details should be further explained.

The object is responsible for receiving the values to be sent via network. It receives them

passively, meaning if a new value is received on the same slot before the message is sent the

previous value is replaced. On message triggering each value is encoded into a string along with

an identifier corresponding to its slot number, both converted to char variables. Values follow the

same scale as MIDI (0-127), while slots are limited to a maximum of 40. Considering this, a char

variable is the ideal type, since it’s the simplest one available in C and allows for a range of 0-

255 (unsigned char). Due to specific behavior of the netsend object when encoding certain ascii

characters (namely the “/” character, which gets escaped and sent as “//”), and given the reduced

range of values needed, the decision was made to shift the encoded values by 127, in order to

avoid those escaped characters, thus using a scale of 127-254 to encode received values. This

scale modifier is then removed in the native application while parsing the received data block

string.

If it detects an Abel_dataIn is currently active (meaning an embedded patch is open) it will

send the data block directly to it, allowing simulated network connectivity.

This object’s helper patch is the same as Abel_dataIn

3.3.3 Abel_accIn

3.3.3.1 Definition

This object is responsible for receiving the client device’s accelerometer values. It has no

inlets, receiving the raw acceleration values in x, y and z axes directly from the application.

It is an object with 7 outlets, calculating tilt and roll values from the received raw accelerator

coordinates and outputting the values through its first 2 outlets. It also calculates the overall

acceleration magnitude, outputting it through outlet 3. The next 3 outlets output the raw

accelerator values in each of the axes (x, y, z), remapped to the target scale. The last outlet will

output a bang whenever the device is shaken.

Arguments:

1. Lower limit of the re-mapping scale (optional – defaults to 0)

2. Upper limit of the re-mapping scale (optional – defaults to 127)

In the case of only one parameter being defined, it will be ignored.

Multiple copies: Yes

Context: Embedded patch

The Abel project

 29

3.3.3.2 Implementation

This object implements 3 distinct calculations, in order to provide higher-level

interpretations of the device’s accelerometer. Instead of only outputting the raw acceleration

values for each axis, the object uses them to calculate acceleration magnitude (global force applied

to device), pitch (rotation on the x axis) and roll (rotation on the y axis). Yaw (rotation on the z

axis) depends on geomagnetic readings, which aren’t provided by the accelerator sensor. Pitch

and roll are expressed as an angle, going from 0º to 90º.

Figure 9 – Rotation types in 3D space

These values are calculated making use of the measured acceleration values on each of the

3 axes, through the following equations:

𝐴𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = √𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2 (1)

𝑃𝑖𝑡𝑐ℎ 𝛼 = arctan (
𝐴𝑥

√(𝐴𝑦)
2

+(𝐴𝑧)2

) ×
360

𝜋
 (2)

𝑅𝑜𝑙𝑙 𝛽 = arctan (
𝐴𝑦

√(𝐴𝑥)2+(𝐴𝑧)2
) ×

360

𝜋
 (3)

This object receives a “setdefault” message from the application upon application

initialization, alongside with 1 float value, corresponding to the maximum value the device’s

accelerometer is able to measure. From this value the object is able to determine the original scale

for the acceleration values (0-max) and remap the readings to the target scale.

One thing to consider for this object’s operation and concerning the particular values it

outputs: Pitch and Roll values assume that little force is being applied to the device, similar to

holding it in the hand and simply rolling it around, with gravity being the main source of

Pitch

Yaw

Roll

Z

X Y

The Abel project

 30

acceleration. Shake or acceleration force related processes should make use of the acceleration

magnitude and/or the raw acceleration values.

Figure 10 – Abel_accIn helper patch

3.3.4 Abel_proximityIn

3.3.4.1 Definition

This object is responsible for receiving the values of the proximity sensor from the client

device. It has no inlets, receiving the raw sensor value directly from the application. It has one

single outlet, outputting 1 if the device is “far” and 0 if the device is “near”.

 Arguments: none

Multiple copies: Yes

Context: Embedded patch

3.3.4.2 Implementation

Functionality is pretty straightforward, operating on a simple Boolean logic of “near” VS

“far”, and outputting a value for each corresponding state. Despite the fact that some proximity

sensors measure and provide a distance value most only provide a Boolean value corresponding

to those two aforementioned states. Taking this into account, the choice was made to adopt the

most common situation. The object state verification (near/far) is therefore a simple check (0 or

different than 0) to determine the device’s proximity state.

The Abel project

 31

Figure 11 – Abel_proximityIn helper patch

3.3.5 Abel_touchIn

3.3.5.1 Definition

This object receives data from the device's touchscreen sensor. Its 2 last outlets are fixed and

output touch/tap coordinates, in percentages of screen size (e.g. 50 / 50 would correspond to a tap

at the device’s screen center point). It has a variable number of outlets before those, depending

on implemented gestures. It currently implements 4 different gestures, and outputs a bang through

a correspondent outlet whenever either is detected.

Arguments: none

Multiple copies: Yes

Context: Embedded patch

3.3.5.2 Implementation

This object’s behavior is simple, receiving an integer gesture code from the app and

outputting a bang through a correspondent outlet. It also features a list receiver for x and y

coordinates of the touch event.

Figure 12 – Abel_touchIn helper patch

The Abel project

 32

3.3.6 Abel_colorOut

3.3.6.1 Definition

This object is responsible for sending background color change instructions to the

application. It has one inlet per color component (R, G, B), where each takes an integer from 0 to

255. It outputs the code directly to the app, and has no outlets.

Arguments: none

Multiple copies: Yes

Context: Embedded patch

3.3.6.2 Implementation

Upon reception of the 3 value list, the object converts them to a hexadecimal code (truncating

to the 0-255 range if needed) and outputs the generated hex code to the application.

It also features a “hidden” functionality, sending a specifically calculated color code to the

AbelSim_deviceOut abstraction, if it exists.

Figure 13 – Abel_colorOut helper patch

3.3.7 Abel_msgOut

3.3.7.1 Definition

This objects sends the application the text message to be displayed on-screen. It has 1 inlet,

corresponding to the message to be sent, and has no outlets, sending the message directly to the

application.

The Abel project

 33

Arguments: none

Multiple copies: Yes

Context: Embedded patch

3.3.7.2 Implementation

This object has no particular specificities and its functionality is explained in code

comments.

Figure 14 – Abel_msgOut helper patch

3.3.8 Abel_scale

3.3.8.1 Definition

This object is responsible for remapping values from one scale to another. It has 1 inlet and

1 outlet, corresponding respectively to the value in the original scale and value remapped to the

new scale. (Similar functionality to the zmap/scale objects in max / msp).

Arguments:

1. Lower limit of the original scale (required)

2. Upper limit of the original scale (required)

3. Lower limit of the target scale (optional: default = 0)

4. Upper limit of the target scale (optional: default = 127)

In case no arguments are provided on creation, the object will do nothing and will output the

original value. I accepts either 2 or 4 arguments (2 pairs).

The Abel project

 34

Multiple copies: Yes

Context: Main patch, embedded patch

3.3.8.2 Implementation

This object is simple in its operation, receiving a value, calculating its correspondent value

in the new scale, and outputting the result.

Figure 15 – Abel_scale helper patch

3.3.9 Abel_seqTarget

3.3.9.1 Definition

This object is responsible for automatically generating a progression of target zones for use

by the Abel_dataOut object. It has 4 inlets and 1 outlet. In the first inlet it receives either a bang

message to increase the target zone count, or a "reset" message which will reset the starting zone

value to the one provided on object creation. On its other inlets it can receive float values to

immediately set the number of zones, start zone and current zone, respectively. The outlet outputs

the zone targeting code (should be connected to the first inlet of Abel_dataOut object).

Arguments:

1. Number of areas to cycle through (required)

2. Starting zone (optional: default = 0)

Multiple copies: Yes

Context: Main patch

The Abel project

 35

3.3.9.2 Implementation

The target zone sequence progresses in a “round robin” pattern, cycling back to the starting

zone when the maximum value for the target is reached. If current zone is defined (through the

corresponding inlet) to a value lower than the start zone value, it gets changed to the start zone

value.

Figure 16 – Abel_seqTarget helper patch

3.3.10 Abel_movTarget

3.3.10.1 Definition

This object has similar operation to the Abel_seqTarget object, but allows the creation of a

custom list of zones to go through sequentially. It has 2 inlets, corresponding to the target

sequence increment bang message and a “reset” message on the first inlets, and a list of floats on

the second one to redefine the target zones list. Like in Abel_seqTarget the outlet outputs the zone

targeting code and should be connected to the first inlet of the Abel_dataOut object.

Arguments:

n. N floats corresponding to the list of areas to go through (requires at least 1)

Multiple copies: Yes

Context: Main patch

The Abel project

 36

3.3.10.2 Implementation

Just like Abel_seqTarget, the target sequence progresses in a “round robin” pattern.

3.4 Developed abstractions

As the system is not a self-contained portable solution, it is mostly unusable at time of

content creation, as network communication is unavailable without the system’s network

hardware infrastructure. Composers need, therefore, a way to simulate the system’s behavior and

the device’s sensors. As such, there is the need to provide functionality simulators/emulators to

account for these needs. This is achieved through a number of PD abstractions (self-contained

patches usable as objects).

3.4.1 AbelSim_accel

3.4.1.1 Definition

This abstraction provides a simulation of the device’s accelerometer. It receives an osc

formatted message in the form of “/accel/x VAL / accel/y VAL /accel/z VAL” and parses and

sends it to the Abel_accIn object.

It can receive this message from any source, but is aimed at receiving OSC output from a

mobile app sending sensor data via osc (something like Sensors2OSC3).

3 http://sensors2.org/osc/

The Abel project

 37

3.4.1.2 Implementation

The abstraction receives a message and attempts to parse it following the described format.

Upon parsing success (meaning the message follows the exact same format), a spigot object is

opened, allowing for the built list to be sent to the Abel_accIn object. Upon failure, the spigot

object is closed, preventing any data from being sent out. List output is only triggered if the z

coordinate is reached and correct. If on either “route” check there is no match found for the

required block, the spigot is closed.

Figure 17 – Structure of the AbelSim_accel abstraction

3.4.2 AbelSim_proxim

3.4.2.1 Definition

This abstraction provides a simulation of the device’s proximity sensor. It receives an OSC

formatted message in the form of “/proximity VAL”, parses and send it to the Abel_proximityIn

object.

It is built with the same idea behind AbelSim_accel regarding data source.

The Abel project

 38

3.4.2.2 Implementation

This abstraction’s structure is almost like a simplified version of the AbelSim_accel

abstraction.

Figure 18 – Structure of the AbelSim_proxim abstraction

3.4.3 AbelSim_touchIn

3.4.3.1 Definition

This abstraction simulates a number of touchscreen interactions. Namely 4 types of gestures

and individual touch event coordinates. Upon creation it features a simple graphical interface for

selection4.

3.4.3.2 Implementation

Its operation is simple, sending values to the Abel_touchIn object in the same way the mobile

application would.

Figure 19 – Structure of the AbelSim_touchIn abstraction

4 Please refer to Abel_touchIn helper patch (p.31) for a visual representation of this

The Abel project

 39

3.4.4 AbelSim_deviceOut

3.4.4.1 Definition

This abstraction provides a preview of what the device should be showing on-screen at any

given time. It receives output from the Abel_colorOut and Abel_msgOut objects and shows

current status.

3.4.4.2 Implementation

This abstraction receives the regular output from the Abel_msgOut object, and the “hidden”

message from the Abel_colorOut object with a color code suited for the canvas object, to set its

background color.

Figure 20 – Structure of the AbelSim_deviceOut abstraction

3.4.5 AbelSim_deviceSimulator

3.4.5.1 Definition

This abstraction groups all the above simulators into one single patch, adding some extra

functionalities, in order to serve as a simulation for the mobile device, showing its current GUI

state and providing easy access to the sensor simulators.

The Abel project

 40

3.4.5.2 Implementation

Figure 21 – Structure of the AbelSim_deviceSimulator abstraction

3.5 Test application

The ultimate goal of this implementation was to include the developed objects in the final

mobile libPD embedded applications. But this final application would carry a lot of unnecessary

functions and sections, such as all the network connection, message filtering, QR code reading,

and more. Hence, there was the need to develop a simple application to serve as test bed for the

testing of objects’ functionalities. The test applications should allow to assess both the correct

compilation and correct functioning of the objects.

Development of the application, embedding of libPD and overall testing followed processes

described in (Brinkmann, 2012) and (Hillerson, 2014) as base for creating the final result 5.

The patch shown in Figure 22 was embedded into to the test applications in order to assess

all functionalities of the objects meant to be used in embedded context. Abel_dataIn is the only

object not included, whose functionality was validated through the working prototype developed

in conjunction with Rafael Henriques.

5 Time constraints surrounding the implementation of the working prototype dictated that only the Android test

application was developed, leaving the iOS version in an unfinished state, with its implementation pushed back to

after the submission of this dissertation

The Abel project

 41

Figure 22 – Test patch embedded into application

3.6 Final considerations

While some of these functionalities could be achieved with relative ease through available

Pure Data objects or through abstractions, and left to be coped with by composers/content

creators, it isn’t an ideal solution. Not only would that open the door to potential unforeseen

problems, but it would also become counter-productive to the “make it as straightforward and

easy as possible” ideal, which is one of the cornerstones of this project.

At the same time, in order to implement the detailed emulation functions, custom

development was needed.

Chapter 4

Tests

4.1 Overview

Developed objects were tested through extensive debugging and simulated use case testing

to ensure stability and the absence of crashes or unhandled possibilities that might result in the

incorrect behavior. Use case testing would require continued use by the end-user of the toolset (in

this case the composers), which will only come after the timeframe of this thesis. Nonetheless, an

extensive array of crash-testing possibilities were tested to ensure a minimum of potential

uses/situations could result in any object’s instability or non-usability:

 Creation with wrong parameters

 Sending of unsupported messages or message formats

 Managing number of copies of the objects (prevent or allow more than one)

 Changing object parameters in real time

 Changing inlet and outlet number (where applicable)

In order to test the correct behavior of each of the objects to be used in the context of the

embedded patches, and considering most objects would not be included in the working prototype

being developed, a particular test applications was developed, making use of all the sensors and

implemented functionalities. Its source code, as well as an image of the embedded testing patch

are included in Appendix B – “Test applications source code”

Tests

 44

The one aspect that could be assessed was performance, so as to provide a benchmark of the

system’s performance on a variety of devices, and allow conclusions to be reached on expected

average and minimum system behavior. Audio tests were conducted in two different ways – single

device independent testing and multi-device simultaneous testing – while visual tests were

conducted just in multi-device simultaneous testing.

4.1.1 Audio testing

In terms of audio testing, two vital variables impact the performance of the system: device

reproduction latency (the total time it takes for any given device to react to a message sent from

the server), synchronicity over time (whether the measured latency is steady or fluctuates over

time) and synchronicity/reliability related to message sending frequency and device processing

power (the faster the messages are sent, the more it is expected for the device to be unable to cope

with all the messages or to ignore/lose some). This would allow to get a better understanding of

the average possibilities of the system and determine more concrete limits to be implemented into

the objects and ensure ideal response from the system. For example: determining average final

sounding latency over a number of devices (taking into account network latency, native app

processing time, libPD/PD processing time and audio reproduction) coupled with global

performance VS message sending frequency would allow to hardcode a limit for message sending

frequency into the Abel_dataOut object, thus guaranteeing an optimal behavior in a greater

number of target devices.

4.1.2 UI/Visual feedback testing

In terms of visual feedback, and given that only two forms of visual feedback are to be

implemented in this system (background color change and text message prompting), the main

issue to verify would be synchronicity between devices and overall latency from message sending

to visual effect performance.

4.2 Single device testing

Single device testing aimed at getting more extensive latency data over a more reduced

number of devices. It focused mainly on the low and mid-end range of smartphones and tablets,

as these would most likely constitute the major part the available devices in a potential audience,

while at the same time posing the most potential problems to the system’s performance.

Tests

 45

Since the objective of these tests was to get a global overview of end-latency of the system,

from sending a message from the main patch to the corresponding reaction from the device’s

embedded patch, the easiest way to achieve this objective would be by ways of audio comparing.

The audio output from both the server computer and devices were recorded at the same time

with an Edirol UA1-EX sound card on a different computer, into Cubase 5. Latency was then

measured by hand using the selection tool with the “snap to zero crossings” option active. The

output of the server computer was recorded into the soundcard instead of recording it directly in

the same computer so the audio signal chain was exactly the same for both inputs, taking that

extra latency (albeit small) out of the final latency of the system.

Important variables to get from these tests were minimum and average latency values, both

in different device ranges and in global terms. Determining standard deviation was also important,

so as to get a general idea of the expected latency fluctuation throughout a performance, as well

as determining how the system performed at a number of message sending intervals.

Tests were run to assess system latency with different message triggering intervals (1500ms,

1000ms, 750ms, 500ms, 250ms, 200ms, 150ms, 100ms and 50ms).

4.2.1 Devices

Table 1 – Single device testing device specifications

Device Brand/model
Android

Version
CPU Ram

1 HTM 4.2 Dual Core 1.3GHz 512 MB

2 Galaxy Tab 10.1 LTE 4.4.2 Quad-core 2.3 GHz 3 GB

3 Samsung Galaxy S3 LTE 4.4.4 Quad-core 1.4 GHz 2 GB

4 Samsung Galaxy S4 Mini LTE 4.2.2 Dual-core 1.7 GHz 1.5 GB

5 Ainol Novo 7 Venus 4.1.1 Quad-core 1.2 GHz 1 GB

6 Jiayu G3s 4.2.1 Quad-core 1.5 GHz 1 GB

7 One Plus One

5.0.1

(cyanogen

12s)

Quad-core 2.5 GHz 3 GB

8 Lazer Capacitive 10 4.0.3 Single-core 1 GHz 1 GB

9 Motorola Moto G (2nd gen) 5.0.2 Quad-core 1.2 GHz 1 GB

10 Asus Google Nexus 7 (2013) 5.1.1 Quad-core 1.5 GHz 2 GB

11 Samsung i9300 Galaxy S3
5.1.1.

(Cyanogen)
Quad-core 1.4 GHz 1 GB

Tests

 46

4.2.2 Results

All devices exhibited chaotic response at 50ms frequency, and some even at 100ms and

150ms. In such cases the device’s presented response made it impossible to operate under the

system’s assumptions. As such, these situations were considered inadmissible for the test

calculations, but admissible in the usability analysis of the system.

These were shown to fall under one or two situations, and were classified as follows:

 Erratic: over 50% of the messages were lost/ignored

 Unstable: synchronization was chaotic, and some messages were processed at the

same time, making it impossible to determine precise latency

 Chaotic: both situations were observed

4.3 Multiple device testing

Multi-device testing aimed at assessing visual performance, overall synchronicity between

devices in a “group” use case, as well as evaluating the use of certain objects (mainly the targeting

objects). Since audio testing already had more in-depth testing done in the single device tests, this

aspect was in a way secondary on this test, in the sense that it didn’t need as much detail.

This test took place at INESC-TEC during a group meeting. Its aim was to assess global

prototype behavior, validate some aspects of the mobile prototype application (area of

development outside of this particular thesis’ work) and get a better understanding of the visual

behavior of the devices. The participants of the meeting were kind enough to facilitate their

personal smartphones in order to go through the whole install, setup and operation of the

prototype. In total, 8 devices (mid to high range) were made available for testing: 1 One plus One

smartphone, 1 Huawei smartphone, 1 Nexus tablet and 3 Samsung smartphones and 2 unbranded

smartphones. They were divided in 3 distinct targeting zones and the same testing process/patches

from the single-device tests was run.

What could be verified was that, contrary to expected, message reception was considerably

worse than that observed on the single-device tests. The One plus One smartphone and Nexus 7

showed (as in the single device tests) the most consistent behavior with occasional message loss

but overall stability in terms of message reception and stability over time. A number of other

devices exhibited erratic behavior (over 50% messages lost and severe desynchronicity), with

some going as far as reacting less than once per test cycle. On devices which presented acceptable

message reception some visual artefacts were observed, derived from the implementation of the

message parsing and color processing. The current message parsing cycle is run on the native

Android application code, sending each value block to libPD one at a time. Individual color

components (Red, Green and Blue) each correspond to one of these value blocks. On devices with

faster CPUs, the final color was presented correctly, with the processing happening fast enough

Tests

 47

to consider and use the three components at once. On slower, less capable devices, nonetheless,

colors were processed taking into account only one or two of these, resulting in differences in

visual result. This is most likely a side-effect from the data parsing cycle, which isn’t sending all

values at a fast enough speed for them to be processed by the Abel_colorOut object at the same

time.

In the end, these tests showed that the prototype’s functionalities worked, as all expected

behavior from either of the developed PD externals happened as expected, but some of their usage

approaches have to be re-designed and re-implemented.

4.4 Conclusions

As a benchmark for the system, these tests allowed to determine expected behavior

boundaries for target devices. Individual tables for each device’s test results are shown in

Appendix C - “Testing result charts”, on page 89.

4.4.1 Device response times

Table 2 – Averages per sending interval

In Table 2 we can see that average response time is pretty much similar across all message

sending intervals, except for 150ms and 100ms, which apparently show lower response times.

If we take into account

Table 3, listing device behavior at each sending interval, we see that at 150ms half of the

devices presented unusable response (and were thus excluded from calculations), while at 100ms

Average Minimum Maximum Std. Deviation

1500 276 194 366 59

1000 290 190 389 59

750 286 187 386 63

500 289 191 381 61

250 279 180 381 64

200 274 225 322 29

150 270 198 343 44

100 174 155 195 13

0
50

100
150
200
250
300
350
400
450

La
te

n
cy

 a
ve

ra
ge

s
(m

s)

Tests

 48

all but one device presented unusable response. Considering this fact, both sending intervals can

be deemed irregular and considered unusable in terms of overall system response calculations and

evaluation. In consequence, the best response time would be the ones measured with the 200ms

message sending interval.

Table 3 – Device behavior over sending intervals

Device HTM
Galaxy

Tab

S3

LTE
S4

Novo

7

Jiayu

G3s

One

Plus
Lazer

Moto

G

Nexus

7

S3

i9300

1500 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

750 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

500 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

250 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

200 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

150 ✓ ✓ ✓ ✓ Err ✓ Err Err Err ✓ Err

100 Cha Cha ✓ Cha Cha Cha Err Err Err Err Err

50 Chaotic

✓ - Usable/admissible device behavior

Table 4 shows overall device measurements over all sending intervals, as well as a calculated

global values. We can see the global values are far from the best ones extrapolated in the

paragraph above (200ms message sending interval). With the global average standard deviation

of 54ms, one could say that expected response time from devices would fall between around

226ms and 334ms, which is considerably higher than ideal real-time audio latencies.

Table 4 – Single device averaged global latency test results

Tests

 49

Table 5 – Device message reception/loss overview

Device HTM
Galaxy

Tab

S3

LTE
S4

Novo

7

Jiayu

G3s

One

Plus
Lazer

Moto

G

Nexus

7

S3

i9300

Messages

received
98 98 112 98 84 98 84 84 84 98 84

Messages

lost
2 16 5 8 0 1 5 1 2 5 9

Loss (%) 2 16 4 8 0 1 6 1 2 5 11

Overall, only two devices were able to consistently present low enough latencies to have an

average response time of under 200ms, while 5 devices (almost half) go above the 300ms average

latency mark. Surprisingly enough, only one of them is a low- end device, with most being

common medium/high range devices.

Taking these results into consideration, it is expected that the bulk of available devices for

use by the public will fall on the most common 270-320ms response times. These results are far

from ideal and hint at a need to review the implementation and the various stages of the system

(network communication, data parsing, app/libPD communication), in order to optimize and

lower the response times. Android latencies were expected to be higher than ideal, due to its audio

layer implementation, and to the extra latency that could come from the libPD processing and

CPU usage. Nonetheless, measured results were considerably higher than expected, and severe

Min Max Average Std. Dev.

HTM 160 415 285 57

Galaxy Tab 210 440 316 49

S3 LTE 155 415 279 48

S4 210 460 324 53

Novo 7 275 485 378 53

Jiayu G3s 150 430 276 61

One Plus 45 290 158 52

Lazer 230 480 325 34

Moto G 100 355 214 71

Nexus 7 40 310 165 61

S3 i9300 225 480 361 58

Global 40 485 280 54

0

100

200

300

400

500

600

Tests

 50

optimization is mandatory. Failing to do so, or in the event the best expected results after

optimization are in line with the ones measured in these tests, the real-time aspect of the system

(in terms of immediate audio responses from the devices in music performances) would have to

be reconsidered or rethought.

4.4.2 Stability over different message sending intervals

Considering the results in Table 2, the most stable message sending interval (lowest standard

deviation) is 200ms which can be, thus, considered the most stable frequency for sending

messages. It would be interesting to hard-code a sending interval limit into the Abel_dataOut

object, to ensure messages will never be sent at any of the instability-inducing intervals. In

practical terms, a maximum of 200ms (corresponding to 5 messages per second) would be benefic

in terms of trying to maximize stability in device response.

4.4.3 Video VS audio

The multi device video tests showed a number of potential problems, namely tied to the

message structure and communication. The disparity between background colors, for example, is

tied to the way the data message is handled, and the impact of each individual device’s processing

power (and corresponding speed of operation) on that process. Nonetheless, visual behavior and

audio behavior appeared consistent enough to expect optimizations made to affect audio latencies

will also reflect on visual latencies. Since both processes originate from within libPD, the message

parsing/processing will have the same impact on both. The extra libPD to Android communication

(for screen color change) shows little impact in terms of extra latency.

Conclusions

 52

Chapter 5

Conclusions

The development process of Pure Data externals has a logarithmic learning curve. That

would be the first appreciation to be taken from this work. First contact and experiences before

starting to grasp the organization, structure and general setup for PD development is quite

daunting and, at times, confusing. But once that first phase is overcome, the process becomes a

lot easier, and opens up a wide array of new possibilities for use of Pure Data. One primary

concern before starting this work surrounded the adequacy of assigning certain processing tasks

(value scaling, parsing, and calculations) to Pure Data objects instead of them being handled by

the native application layer. What I have come to believe, from experience and observation, is

that for the sake of data processing synchronicity the less intra-layer data communication, the

better. In practical terms, in the context of this particular work, it would mean: if data needs to be

processed, it’s better to send a data block at once from the native Android app to libPD, and

handle its processing from within the Pure Data wrapper. Having the data processing happening

from within PD itself, from reception, to parsing, to addressing and finally to responding to it also

guarantees a much more controllable and predictable data flow and data integrity/usage than

dividing the parsing tasks and addressing between one layer and the other.

In terms of the overall system design and implementation, the main center of problems was,

from the beginning, the structuring, building and communication of the data message. The initial

approach, which seemed from the start as the most straightforward and easy way to implement

the transmission of values, ended up bringing a lot of rebuilding and rethinking both in building

and parsing the values. The adopted solution of parsing the data block in the application and

sending value pairs to libPD one by one is all but ideal. Although the simple for cycle should take

few CPU cycles to run, the massive differences in technical specs of the devices end up resulting

in a desynchronization of the expected results. I.e.: color components (R, G, B), which were

Conclusions

 53

supposed to be received (and processed) at the same time by the Abel_colorOut object were

received with slight time differences between them. This resulted in the processing and generation

of hexadecimal color codes different than expected, due to receiving the individual components

one at a time.

In what concerns audio testing and device performance, a number of corrections and changes

in direction/approach are in order if the system is to be considered as usable in audio context.

Expected latencies in the vicinity of ≈280ms are unbearable in the context of traditional real-time

audio/musical performance. If we take into account that the human hear is able to differentiate

sounds roughly 30ms apart, we could (arguably) allow for 50-60ms in big, dense groups of (well

over 10) devices as passable; but even if we consider the possibility of well performing devices

masking the performance of poorly performing devices, the results measured make the possibility

of having real-time response something unusable if the aim is simultaneity, as even higher-end

Android devices had unexpectedly low performance in terms of audio latency. For it to be usable,

as it stands now, the system requires a creative approach from the composers, making use of these

latencies and jitter as musical features.

IOS performance is expected to be considerable better, taking into account the superior

implementation of its audio layer when compared to the Android OS, but only proper

implementation and testing of the objects and system could allow for concrete conclusions on this

matter.

5.1 Future work

Given that the final product of this work was integrated into a small scale working prototype,

it could be argued that its implementation is more of a stepping stone than an actual finished or

usable asset. As such its objective was to, to some extent, break ground and provide results and

error analysis surrounding the initial ideas in the development of the global networked system.

In terms of direct derivation from this particular work, some additional task should prove of

great value, considering the conclusions that came from the whole process:

 Creating some sort of how-to guide for Pure Data external development, free and easily

accessible, covering not only the architecture and library functions pertaining to the

development, but also the initial setup of all resources on the 3 main operative systems

(Windows, Linux and Mac OSX). As this would have proven to be a great resource in

the initial stages of this herein work, I believe this would allow the simplification of the

same process for other people, and eventually speeding up this initial stage for other

academic projects or otherwise, becoming an extra contribution of great value derived

from this work

Conclusions

 54

 Implementing the external objects to be used in the embedded PD patches in simple iOS

apps with embedded libPD as a way to, at least, asses the porting process and eventual

recoding needs. This would serve as a step further in the global project, allowing for

further comprehension of specific code porting needs, and would also become a valuable

addition to the aforementioned how-to guide

 Implementing additional objects to handle a wider variety of sensors, given the great

number available in most devices nowadays

 Developing an application which would further the device simulation without having to

rely on PD patches. Possibly giving visual feedback and interactivity. One possibility

would be developing an application in Processing with an interactable 3D model of a

mobile device, allowing to manipulate its rotation, simulate its sensors, etc. At the same

time, the application would allow communication via OSC from one of the several

sensor mobile applications to use a real device as sensor data interface

In terms of the overall system, not just in the scope of this particular project concerning PD

external development, one very important aspect that might allow to in some way circumvent the

real-time approach shortcomings that arise from the deficient response times, would be to

implement pre-timed messaging. Along with this, a zero-time synchronization system is needed,

to ensure stability over time and device synchronization. One possible approach to this would be

to have a pre-performance message which would carry a timecode from the server, and have the

devices calculate the time difference between its own internal clock and the server time.

Subsequent messages would have a “target time” field, with a timecode identifier of the kind.

Since the device would now have an individual and specific time-shift value, it would in theory

be able to reproduce the given instruction at the desired time.

The immediate goal, however, should be to reconsider all the shortcomings and limitations

that arose from this development and testing process, and reassess the implemented solutions.

The most critical part would be the redesign of the message structure and communication, which

would significantly change the architecture of the objects, and even the possibilities in terms of

data communication, and to find room for optimization in the code implementation.

As previously stated, one of the core problems with the prototype lied in the data block

communication, with the current char buffer solution proving somewhat shortcoming. This

approach was initially thought to be the most straightforward, making use of the netsend PD

object, which works with string-like messages (PD symbols). Character encoding problems, as

well as variable size buffers resulted in multiple iterations through the whole message in order to

analyze and parse all values and send them to libPD for use in the deployed patches showed this

string/char buffer approach to bring more problems than ease of use. One of the possible solutions

would be to implement a custom data structure (a C struct data type) comprised of any and all

Conclusions

 55

variables which should be sent via network to the mobile applications (e.g. timecode, target time

for app response, data slot number, data slot identifier and values). This data structure would

allow to access variable content directly without need for iteration, which would speed up data

processing. It would, nonetheless, have to bypass the netsend object and, as such, all network

communication protocols and functions would have to be created from scratch and integrated into

the dedicated Abel_dataOut data parsing object. Implementing this new data structure would be

an urgent step before further developing the system, following by iOS porting and testing of the

prototype, so as to assess the same parameters on said system as done for the Android OS.

References

 57

References

Bluff, A. (n.d.). Mobile Phone Orchestra. Retrieved June 26, 2015, from

http://www.rollerchimp.com/project/mobile-phone-orchestra/

Bongers, B. (2000). Physical Interfaces in the Electronic Arts Interaction Theory and Interfacing

Techniques for Real-time Performance. Trends in Gestural Control of Music,

2000(January), 41–70.

Brinkmann, P. (2012). Making Musical Apps. (S. Wallace, Ed.) (First.). “O’Reilly Media, Inc.”

Brinkmann, P., Mccormick, C., Kirn, P., Roth, M., & Lawler, R. (2011). Embedding Pure Data

with libpd. In Proceeding of the Fourth International Pure Data Convention (pp. 291–

301). Retrieved from http://www.uni-

weimar.de/medien/wiki/images/Embedding_Pure_Data_with_libpd.pdf

Bukvic, I., & Martin, T. (2010). Introducing l2ork: Linux laptop orchestra. Proceedings of the

2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney,

Australia, (Nime), 170–173. Retrieved from

http://www.educ.dab.uts.edu.au/nime/PROCEEDINGS/papers/Paper H1-

H4/P170_Bukvic.pdf

Burns, C., & Surges, G. (2008). NRCI: Software tools for laptop ensemble. Proceedings of the

International Computer …. Retrieved from

http://classes.berklee.edu/mbierylo/ICMC08/defevent/papers/cr1357.pdf

Carvalho, M. de A. (2009). Casa da Música: fazer música com o iPhone. Retrieved June 24,

2015, from http://jpn.up.pt/2009/05/10/casa-da-musica-fazer-musica-com-o-iphone/

Cycling 74 Website. (n.d.). Max/MSP History (archived copy). Retrieved January 12, 2015,

from

http://web.archive.org/web/20090609205550/http://www.cycling74.com/twiki/bin/view/F

AQs/MaxMSPHistory

Dannenberg, R., Cavaco, S., & Ang, E. (2007). The Carnegie Mellon Laptop Orchestra.

Retrieved from

http://repository.cmu.edu/compsci/513/?utm_source=repository.cmu.edu%2Fcompsci%2F

513&utm_medium=PDF&utm_campaign=PDFCoverPages

Emarketer. (2014). Worldwide Smartphone Usage to Grow 25% in 2014. Retrieved October 22,

2014, from http://www.emarketer.com/Article/Worldwide-Smartphone-Usage-Grow-25-

2014/1010920

Fabiani, M., Dubus, G., & Bresin, R. (2011). MoodifierLive: Interactive and collaborative

expressive music performance on mobile devices. Proceedings of the NIME, (June), 116–

119. Retrieved from http://www.nime2011.org/proceedings/papers/B23-Fabiani.pdf

References

 58

Fiebrink, R., Wang, G., & Trueman, D. (n.d.). S.M.E.L.T. Retrieved January 21, 2015, from

http://smelt.cs.princeton.edu/

h e x l e r . n e t | TouchOSC. (n.d.). Retrieved June 24, 2015, from

http://hexler.net/software/touchosc

Harker, a, Atmadjaja, A., & Bagust, J. (2008). The Worldscape Laptop Orchestra: Creating live,

interactive digital music for an ensemble of fifty performers. In Proceedings of the 2008

ICMC. Retrieved from

http://classes.berklee.edu/mbierylo/ICMC08/defevent/papers/cr1354.pdf\npapers2://public

ation/uuid/4F9DE64A-F1F4-48E1-9AA0-3899B4F31525

Hillerson, T. (2014). Programming sound with pure data. Retrieved from

http://cds.cern.ch/record/1970205

Iglesia, D. (2013). MobMuPlat. Retrieved May 21, 2015, from http://www.mobmuplat.com/

IRCAM Website. (n.d.). A brief history of MAX (archived copy). Retrieved January 12, 2015,

from

http://web.archive.org/web/20090603230029/http://freesoftware.ircam.fr/article.php3?id_a

rticle=5

Kincaid, J. (n.d.). RjDj Generates An Awesome, Trippy Soundtrack For Your Life. Retrieved

May 24, 2015, from http://techcrunch.com/2008/10/13/rjdj-generates-an-awesome-trippy-

soundtrack-for-your-life/

Lemur – Liine. (n.d.). Retrieved June 27, 2015, from https://liine.net/en/products/lemur/

Levin, G. (2001). DIALTONES (A TELESYMPHONY). Retrieved February 11, 2014, from

http://www.flong.com/storage/experience/telesymphony/index.html

Lyon, E. (2012). Designing Audio Objects for Max/MSP and Pd. Ar. Editions, Inc. Retrieved

from http://books.google.it/books?id=9yHCvrfxPwUC

McCartney, J. (2002). Rethinking the Computer Music Language: SuperCollider. Computer

Music Journal, 26, 61–68. doi:10.1162/014892602320991383

Mccormick, C. (n.d.). PdDroidParty GitHub. Retrieved May 24, 2015, from

https://github.com/chr15m/PdDroidParty

Mccormick, C. (2011). PdDroidParty - Pure Data patches on Android devices. Retrieved June

21, 2015, from http://droidparty.net/

Oh, J., Herrera, J., & Bryan, N. (2010). Evolving the mobile phone orchestra. Proceedings of

the NIME. Retrieved from http://mopho.stanford.edu/publish/mopho-evo_nime2010.pdf

PDforAndroid GitHub. (n.d.). Retrieved May 24, 2015, from https://github.com/libpd/pd-for-

android

Pixmob. (n.d.). Pixmob Wristbands. Retrieved June 24, 2015, from http://pixmob.com/project/

References

 59

Puckette, M. (1997a). Pure Data : another integrated computer music environment. Proceedings,

Second Intercollege Computer Music Concerts, (FEBRUARY 1970), 37–41.

Puckette, M. (1997b). Pure data: recent progress. In Proceedings, Third Intercollege Computer

Music Festival (pp. 1–4).

Roberts, C. (n.d.). Control. Retrieved June 24, 2015, from http://charlie-

roberts.com/Control/?page_id=19

Trueman, D., & Cook, P. (2006). PLOrk: the Princeton laptop orchestra, year 1. Proceedings of

the NIME. Retrieved from http://www.scott-smallwood.com/pdf/plork_icmc2006.pdf

Viejo, C. (n.d.). mPD – Android Apps on Google Play. Retrieved June 21, 2015, from

https://play.google.com/store/apps/details?id=org.mpd

Wang, G., Bryan, N., Oh, J., & Hamilton, R. (2009). Stanford laptop orchestra (slork).

International Computer Music Conference (ICMC 2009), (Icmc). Retrieved from

https://ccrma.stanford.edu/~ge/publish/slork-icmc2009.pdf

Wang, G., & Cook, P. R. (2003). ChucK : A Concurrent , On-the-fly , Audio Programming

Language 2 . The ChucK Operator 1 . Ideas in ChucK. International Computer Music

Conference, 1–8.

Wang, G., & Cook, P. R. (2004). On-the-fly programming: using code as an expressive musical

instrument. In Proceedings of the 2004 International Conference on New interfaces for

musical expression (pp. 138–143). National University of Singapore. Retrieved from

http://portal.acm.org/citation.cfm?id=1085915

Wang, G., Essl, G., & Penttinen, H. (2008). Do mobile phones dream of electric orchestras.

Proceedings of the ICMC, 16(10), 1252–61. Retrieved from

https://ccrma.stanford.edu/groups/mopho/publish/mopho_icmc2008.pdf

Wilcox, D. (n.d.). PdParty GitHub. Retrieved May 24, 2015, from

https://github.com/danomatika/PdParty

Xylobands. (n.d.). LED wristbands and wearable technology products | Xylobands. Retrieved

June 24, 2015, from http://www.xylobands.com/

Zmölnig, J. (2001). How to write an external for pure-data. Institute for Electronic Music and

Acoustics. Retrieved from

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:How+to+write+an+Exte

rnal+for+Pure+Data#0\nhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle

:How+to+write+an+external+for+pure-data#0

External object commented source code

 60

Appendix A

External object commented source

code

7.1 Abel_dataIn

#include "m_pd.h"
#include <string.h>

// global variable to check if another Abel_dataOut exists
int abel_datain;

static t_class *Abel_dataIn_class;

typedef struct _Abel_dataIn {
 t_object x_obj;

 t_float numSlots;
 t_outlet ** slots;

}t_Abel_dataIn;

// method for 2 number list processing (data block parsing in native application)
void Abel_dataIn_list(t_Abel_dataIn *x, t_symbol *s, int argc, t_atom *argv)
{
 int targetSlot, targetValue;

 // verify if the received list conforms to the expected "slot value" format:
 // 2 float arguments and return from function (do nothing) if it doesn't
 if(argc != 2 ||
 argv[0].a_type != A_FLOAT ||
 argv[1].a_type != A_FLOAT)
 return;

 // convert float arguments to int
 targetSlot = (int) atom_getfloat(&argv[0]);
 targetValue = (int) atom_getfloat(&argv[1]);

 // if slot exists (0 < targetSlot < number of slots) output value
 if(targetSlot >= 0 && targetSlot < (int)x->numSlots)
 outlet_float(x->slots[targetSlot], targetValue);
}

// method for full message processing (data block parsing inside)
void Abel_dataIn_message(t_Abel_dataIn *x, t_symbol *s)

External object commented source code

 61

{
 char *msg = s->s_name;
 int i, targetSlot, val;
 unsigned char tempChar;

 // iterate through the message by pairs of characters
 for (i = 0; i < strlen(msg); i+=2) {
 // this is needed because by default char assumes the leftmost byte
 // represents sign. since we're using values that go from 127 to 254 (to avoid
escaped chars)
 // the number will need the leftmost byte (anything over 127 = 01111111
 // will be considered as a negative value. 10000001 is considered to be -1
instead of 129.
 // Assigning the value char to an unsigned char variable forces the leftmost
 // byte to be considered for the calculated value instead of defining its sign
 tempChar = msg[i];
 targetSlot = (int)tempChar - 127;

 // do the same for the value
 tempChar = msg[i+1];
 val = (int)tempChar - 127;

 // if end of string is not reached and the target slot exists, output the value
 if ((msg[i] != '\0') && (targetSlot < (int)x->numSlots)) {
 outlet_float(x->slots[targetSlot], val);
 }
 }
}

void *Abel_dataIn_new(t_floatarg count_arg) {
 t_Abel_dataIn *x = (t_Abel_dataIn *)pd_new(Abel_dataIn_class);

 int i;

 // since C initializes global variables to 0, if it is equal to 1
 // it means another Abel_dataIn has already set it to 1
 if (abel_datain == 1) {
 return 0;
 }

 abel_datain = 1;

 // if no argument or value is 0 or 1, default to 1
 // else assign argument value
 x->numSlots = count_arg <= 1 ? 1 : count_arg;
 // if argument is over 40, truncate to 40
 x->numSlots = x->numSlots > 40 ? 40 : x->numSlots;

 // allocate space for needed outlets
 x->slots = getbytes(x->numSlots * sizeof(t_outlet*));

 // create outlets
 for (i=0; i< (int) x->numSlots; i++) {
 x->slots[i] = outlet_new(&x->x_obj, gensym("float"));
 }

 // bind object to "ab_dataMsg" send identifier (received from app)
 pd_bind(&x->x_obj.ob_pd, gensym("ab_dataMsg"));

 return (void *) x;
}

// object destructor
void Abel_dataIn_die(t_Abel_dataIn *x){
 int i;
 // free memory allocated to outlets
 for (i=0; i< (int) x->numSlots; i++) {
 outlet_free(x->slots[i]);
 }
 // reset global variable to allow the creation of a new object
 abel_datain = 0;

External object commented source code

 62

}

void Abel_dataIn_setup(void) {
 Abel_dataIn_class = class_new(gensym("Abel_dataIn"),
 (t_newmethod)Abel_dataIn_new,
 (t_method)Abel_dataIn_die,
 sizeof(t_Abel_dataIn),
 CLASS_NOINLET,
 A_DEFFLOAT,
 0);

 class_sethelpsymbol(Abel_dataIn_class, gensym("Abel_data-help"));

 // method for message parsing
 class_addsymbol(Abel_dataIn_class, Abel_dataIn_message);
 // method for list input (message parsing in application)
 class_addlist(Abel_dataIn_class, Abel_dataIn_list);
}

External object commented source code

 63

7.2 Abel_dataOut

#include "m_pd.h"
#include <string.h>
#include <stdlib.h>

// placeholder for boolean type (non-C9 C has no bool type)
typedef enum { false, true } bool;

// global variable to check if another Abel_dataOut exists
int abel_dataout;

static t_class *Abel_dataOut_class;

typedef struct _Abel_dataOut {
 t_object x_obj;

 // total zones (for message variables size allocation)
 t_float totalZones;
 // targetting section of message
 char *targets;

 // data variables
 t_float numSlots;
 t_float * slotValues;

 // message outlet
 t_outlet * message_out;
}t_Abel_dataOut;

// method for assignment of message targets
void Abel_dataOut_targetting(t_Abel_dataOut *x, t_symbol *s, int argc, t_atom *argv) {
 int i;

 // max size is 2 times the number of arguments (targer number + trailing space)
 // + 1 for last index '\0' string formating
 char *mess = getbytes((2 * argc + 1)* sizeof(char));

 // current index
 int num_t = 0;

 for (i=0; i < argc; i++) {
 if(argv[i].a_type == A_FLOAT){
 // if there is a 0 (all targets) in the list, it should take
 // precedence over all other targets
 if(atom_getfloat(&argv[i]) == 0) {
 // define message: "/target" + " " + "0" (1)
 x->targets = "/target 0";
 // free memory allocated to mess char array
 freebytes(mess,sizeof(mess));
 // break out of function
 return;
 }

 // add space
 mess[num_t++] = ' ';
 // convert integer to corresponding character
 mess[num_t++] = (int)atom_getfloat(&argv[i]) + '0';
 }
 }

 // turn mess into a string
 mess[num_t] = '\0';

 // start targets with /target
 strcpy(x->targets, "/target");
 strcat(x->targets, mess);

 // unallocate space for mess variable
 freebytes(mess,sizeof(mess));

External object commented source code

 64

}

// method for building final message and outputing
void Abel_dataOut_trigger(t_Abel_dataOut *x) {
 int i, num_v = 0;
 bool changed = false;

 t_atom *temp;

 char *message = getbytes(((int)x->numSlots * 2 + 1) * sizeof(char));
 char *msg;

 for (i=0; i < (int) x->numSlots; i++) {
 int newVal = (int)x->slotValues[i];

 newVal = newVal > 127 ? 127 : newVal;

 // By default values in array are -1, to signal an unchanged
 // slot and avoid re-sending it. This value gets overwritten
 // if the corresponding inlet receives any input.
 if (newVal > -1) {
 // add data pair (slot number + slot value) to end message
 message[num_v++] = 127 + i;
 message[num_v++] = (char) 127 + newVal;

 // reset value to -1 (unchanged)
 x->slotValues[i] = -1;

 // set flag saying at least one slot has a new value
 // to trigger message output
 changed = true;
 }
 }

 // if any inlet has received a new value
 if(changed == true) {
 // turn mess into a string
 message[num_v] = '\0';

 // message needs to have size = targeting section length + 6 chars (" /msg ")
 // + data block length
 msg = getbytes((strlen(x->targets) + strlen(message) + 6) * sizeof(char));

 // build message with the 3 parts
 strcpy(msg, x->targets);
 strcat(msg, " /msg ");
 strcat(msg, message);

 // we want to output the message with a "send" command in first place,
 // hence no PD type should appear before it (list, float, symbol, etc.).
 // The message needs to be output with type "anything" and the command
 // needs to be defined as the "send" symbol. However, since the outlet_anything
 // method expects the content to output to be a t_atom, we can't use gensym
 // to turn the message string into a symbol, and have to create a new atom
 // and assign a symbol type to it by hand.
 temp = getbytes(sizeof(t_atom));
 SETSYMBOL(temp, gensym(msg));

 outlet_anything(x->message_out, gensym("send"), 1, temp);

 // if this receiver is set, it means an Abel_dataIn is currently open/created.
 // sending the message directly will trigger its data parsing method
 // and allow simulation of network communication between server
 // and embedded patches
 if (gensym("ab_dataMsg")->s_thing)
 pd_symbol(gensym("ab_dataMsg")->s_thing, gensym(message));

 // unallocate final message variable
 freebytes(msg,sizeof(msg));
 }

External object commented source code

 65

 // unallocate data block variable
 freebytes(message,sizeof(message));
}

void *Abel_dataOut_new(t_floatarg count_arg) {

 t_Abel_dataOut *x = (t_Abel_dataOut *)pd_new(Abel_dataOut_class);

 int i;

 // since C initializes global variables to 0, if it is equal to 1
 // it means another Abel_dataOut has already set it to 1
 if (abel_dataout == 1) {
 return 0;
 }

 abel_dataout = 1;

 // if slot number is 0 or 1, default to 1
 x->numSlots = (int)count_arg <= 1 ? 1 : (int)count_arg;
 // if slot number is over 40, truncate to 40
 x->numSlots = (int)count_arg > 40 ? 40 : (int)count_arg;

 // allocate space for needed slot values
 x->slotValues = getbytes(x->numSlots * sizeof(t_float));

 // create slot inlets and bind them to values array
 for (i=0; i< (int) x->numSlots; i++) {
 floatinlet_new(&x->x_obj, &x->slotValues[i]);
 x->slotValues[i] = -1;
 }

 x->totalZones = 36;

 // allocate max char array size
 x->targets = getbytes((2*x->totalZones) * sizeof(char));

 strcpy(x->targets, "/target 0");

 // assign message outlet
 x->message_out = outlet_new(&x->x_obj, gensym("anything"));

 return (void *) x;
}

// object destructor
void Abel_dataOut_die(t_Abel_dataOut *x){
 // free memory allocated to outlet and targets message
 outlet_free (x-> message_out);
 // reset global variable to allow the creation of a new object
 abel_dataout = 0;
}

void Abel_dataOut_setup(void) {
 Abel_dataOut_class = class_new(gensym("Abel_dataOut"),
 (t_newmethod)Abel_dataOut_new,
 (t_method)Abel_dataOut_die,
 sizeof(t_Abel_dataOut),
 CLASS_DEFAULT,
 A_DEFFLOAT,
 0);

 class_sethelpsymbol(Abel_dataOut_class, gensym("Abel_data-help"));

 // method to run on target selection
 class_addmethod(Abel_dataOut_class, (t_method) Abel_dataOut_targetting, gensym("target"),
A_GIMME, 0);
 // method to run on message triggering
 class_addbang(Abel_dataOut_class, (t_method) Abel_dataOut_trigger);

}

External object commented source code

 66

7.3 Abel_accIn

#include "m_pd.h"
#include <math.h>
#include <time.h>
#include <string.h>

#define PI 3.14159265
typedef long int __time_t;

// placeholder for boolean type (non-C9 C has no bool type)
typedef enum { false, true } bool;

static t_class *Abel_accIn_class;

typedef struct Abel_accIn {
 t_object x_ob;

 // acceleration variables
 t_float old_x, old_y, old_z;
 // sensor specific variables
 t_float gravity, maxRange;
 // remapping scale variables
 t_float ratio;
 t_float target_min, target_max;
 // shake time variable
 time_t last_shake;
 // outlets
 t_outlet *pitch_out, *roll_out, *accel_out, *shake_out;
 t_outlet *raw_x, *raw_y, *raw_z;

} t_Abel_accIn;

// this is called when Abel_accIn gets the dump message
void Abel_accIn_dump (t_Abel_accIn *x){
 post("Gravity: %f", x->gravity);
 post("Max sensor reading: %f", x->maxRange);
 post("Last shake time: %d", x->last_shake);
 post("Current time: %d", time(NULL));
}

// this just sets the device's max accelerometer value to allow scale remapping
void Abel_accIn_defaults (t_Abel_accIn *x, t_floatarg max){
 // set max sensor range
 x->maxRange = max;
 // recalculate ratio
 x->ratio = (x->target_max - x->target_min) / (x->maxRange);
}

/* this is called when Abel_accIn gets the list. */
void Abel_accIn_values(t_Abel_accIn *x, t_symbol *s, int argc, t_atom *argv) {

 float pitch, roll, acceleration;

 int shake, i;
 float coord_x, coord_y, coord_z;

 // check if arguments are 3 (x y z) and if all are floats
 // do nothing if arguments are of different number or type
 if (argc != 3) {
 return;
 }
 for (i = 0; i < argc; i++) {
 if (argv[i].a_type != A_FLOAT) {
 return;
 }
 }

 // set received acceleration values
 coord_x = atom_getfloat(&argv[0]);

External object commented source code

 67

 coord_y = atom_getfloat(&argv[1]);
 coord_z = atom_getfloat(&argv[2]);

 // atan (x / sqrt(y^2 + z^2))
 pitch = fabs(atan(coord_x / sqrt(coord_y * coord_y + coord_z * coord_z)));
 pitch *= 360 / PI;

 // atan (y / sqrt(x^2 + z^2))
 roll = fabs(atan(coord_y / sqrt(coord_x * coord_x + coord_z * coord_z)));
 roll *= 360 / PI;

 // sqrt (x^2 + y^2 + z^2) - earth_gravity_acceleration (aprox 9.8m/s)
 acceleration = sqrt(coord_x*coord_x + coord_y*coord_y + coord_z*coord_z);
 acceleration -= x->gravity;

 shake = 0;
 // if more than 1s has gone by since last shake
 if((time(NULL)-x->last_shake) > 1){
 shake = (coord_x != x->old_x) || (coord_y != x->old_y) || (coord_z != x->old_z);

 if(shake) {
 x->old_x = coord_x;
 x->old_y = coord_y;
 x->old_z = coord_z;
 x->last_shake = time(NULL);
 outlet_bang(x->shake_out);
 }
 }

 outlet_float(x->pitch_out, pitch);
 outlet_float(x->roll_out, roll);
 outlet_float(x->accel_out, acceleration);

 // output the remapped acceleration values
 outlet_float(x->raw_x, coord_x*x->ratio);
 outlet_float(x->raw_y, coord_y*x->ratio);
 outlet_float(x->raw_z, coord_z*x->ratio);
}

/* this is called when a new "Abel_accIn" object is created. */
void *Abel_accIn_new(t_symbol *s, int argc, t_atom *argv) {
 t_Abel_accIn *x = (t_Abel_accIn *) pd_new(Abel_accIn_class);

 x->gravity = 9.8;
 x->maxRange = 9.8*2;
 x->old_x = x->old_y = x->old_z = 0;
 x->last_shake = time(NULL);

 // target scale is not defined or wrongly defined, set ratio to
 // default 0-127 scale
 if ((argc < 2) ||
 (argv[0].a_type != A_FLOAT) ||
 (argv[1].a_type != A_FLOAT))
 {
 // assign default remapping scale
 x->target_min = 0;
 x->target_max = 127;
 }
 else {
 x->target_min = atom_getfloat(&argv[0]);
 x->target_max = atom_getfloat(&argv[1]);
 }

 // target scale range / original scale range (0 - default max)
 x->ratio = (x->target_max - x->target_min) / x->maxRange;

 // calculated value outlets
 x->pitch_out = outlet_new(&x->x_ob, gensym("float"));

External object commented source code

 68

 x->roll_out = outlet_new(&x->x_ob, gensym("float"));
 x->accel_out = outlet_new(&x->x_ob, gensym("float"));

 // remapped value outlets
 x->raw_x = outlet_new(&x->x_ob, gensym("float"));
 x->raw_y = outlet_new(&x->x_ob, gensym("float"));
 x->raw_z = outlet_new(&x->x_ob, gensym("float"));

 // bang on shake outlet
 x->shake_out = outlet_new(&x->x_ob, gensym("bang"));

 // bind to receiver
 pd_bind(&x->x_ob.ob_pd, gensym("ab_accel"));

 return (void *) x;
}

/* this is called once at setup time, when this code is loaded into Pd. */
void Abel_accIn_setup(void) {
 Abel_accIn_class = class_new(gensym("Abel_accIn"),
 (t_newmethod) Abel_accIn_new,
 0,
 sizeof(t_Abel_accIn),
 CLASS_NOINLET,
 A_GIMME,
 0);

 class_sethelpsymbol(Abel_accIn_class, gensym("Abel_accIn-help"));

 // method to run when a list is received (acceleration values from app)
 class_addlist(Abel_accIn_class, Abel_accIn_values);
 // method to run on debug message "dump" reception
 class_addmethod(Abel_accIn_class, (t_method) Abel_accIn_dump, gensym("dump"), 0);
 // method to run on "setdefaults" message reception (from app)
 class_addmethod(Abel_accIn_class, (t_method) Abel_accIn_defaults, gensym("setdefault"),
A_FLOAT);
}

External object commented source code

 69

7.4 Abel_proximityIn

#include "m_pd.h"

static t_class *Abel_proximityIn_class;

typedef struct _Abel_proximityIn {
 t_object x_obj;

 t_outlet *value_out;
}t_Abel_proximityIn;

// method for proximity sensor value reception from app
void Abel_proximityIn_float(t_Abel_proximityIn *x, t_floatarg value) {

 // some sensors output an actual distance from the proximity sensor
 // but most only do 0=near 1=far. For simplicity we assume that
 // Boolean logic and say that anything received that isn't 0
 // will correspond to the "far" state
 value = value > 0 ? 1 : 0;

 // output the proximity value
 outlet_float(x->value_out, (int)value);
}

void *Abel_proximityIn_new(void) {

 t_Abel_proximityIn *x = (t_Abel_proximityIn *)pd_new(Abel_proximityIn_class);

 // bind object to "ab_proxIn" send identifier (received from app)
 pd_bind(&x->x_obj.ob_pd, gensym("ab_proxIn"));

 // create outlet for proximity value output
 x->value_out = outlet_new(&x->x_obj, gensym("float"));

 return (void *) x;
}

// object destructor
void Abel_proximityIn_die(t_Abel_proximityIn *x){
 // free memory allocated to outlet
 outlet_free (x-> value_out);
}

void Abel_proximityIn_setup(void) {
 Abel_proximityIn_class = class_new(gensym("Abel_proximityIn"),
 (t_newmethod)Abel_proximityIn_new,
 (t_method)Abel_proximityIn_die,
 sizeof(t_Abel_proximityIn),
 CLASS_NOINLET,
 0,
 0);

 class_sethelpsymbol(Abel_proximityIn_class, gensym("Abel_proximityIn-help"));

 // method to run on proximity sensor value received
 class_addfloat(Abel_proximityIn_class, Abel_proximityIn_float);
}

External object commented source code

 70

7.5 Abel_touchIn

#include "m_pd.h"

static t_class *Abel_touchIn_class;

typedef struct _Abel_touchIn {
 t_object x_obj;

 // number of implemented gestures
 t_float implemented_gestures;

 // gesture bang outlets
 t_outlet ** gesture_slots;
 // touch/tap event coordinates outlets
 t_outlet * x_out, *y_out;

} t_Abel_touchIn;

// method for individual touch/tap event coordinate reception from app
void Abel_touchIn_list(t_Abel_touchIn *x, t_symbol *s, int argc, t_atom *argv) {
 t_float coord_x, coord_y;

 // if the received list isn't of expected type (2 number list)
 if ((argc != 2) || argv[0].a_type != A_FLOAT || argv[1].a_type != A_FLOAT)
 return;

 // get coordinate values
 coord_x = atom_getfloat(&argv[0]);
 coord_y = atom_getfloat(&argv[1]);

 // output position values
 outlet_float(x->x_out, coord_x);
 outlet_float(x->y_out, coord_y);
}

// method for gesture identifier code reception from app
void Abel_touchIn_float(t_Abel_touchIn *x, t_floatarg gesture) {
 switch ((int) gesture) {
 case 0:
 // swipe up
 outlet_bang(x->gesture_slots[0]);
 break;
 case 1:
 // swipe down
 outlet_bang(x->gesture_slots[1]);
 break;
 case 2:
 // swipe left
 outlet_bang(x->gesture_slots[2]);
 break;
 case 3:
 // swipe right
 outlet_bang(x->gesture_slots[3]);
 break;
 default:
 break;
 }
}

void *Abel_touchIn_new(void) {

 t_Abel_touchIn *x = (t_Abel_touchIn *) pd_new(Abel_touchIn_class);

 int i;

 // bind object to "ab_touchIn" send identifier (received from app)
 pd_bind(&x->x_obj.ob_pd, gensym("ab_touchIn"));

 // number of implemented gestures

External object commented source code

 71

 x->implemented_gestures = 4;

 // allocate space for gesture bang outputs
 x->gesture_slots = getbytes(x->implemented_gestures * sizeof(t_outlet*));

 // create outlets for implemented gestures
 for (i = 0; i < x->implemented_gestures; i++) {
 x->gesture_slots[i] = outlet_new(&x->x_obj, gensym("bang"));
 }

 // create outlets for event coordinates
 x->x_out = outlet_new(&x->x_obj, gensym("float"));
 x->y_out = outlet_new(&x->x_obj, gensym("float"));

 return (void *) x;
}

// object destructor
void Abel_touchIn_die(t_Abel_touchIn *x) {
 int i;
 // free memory allocated to outlets
 for (i = 0; i < x->implemented_gestures; i++) {
 outlet_free(x->gesture_slots[i]);
 }
 outlet_free(x->x_out);
 outlet_free(x->y_out);
}

void Abel_touchIn_setup(void) {
 Abel_touchIn_class = class_new(gensym("Abel_touchIn"),
 (t_newmethod) Abel_touchIn_new, (t_method) Abel_touchIn_die,
 sizeof(t_Abel_touchIn),
 CLASS_NOINLET, 0, 0);

 class_sethelpsymbol(Abel_touchIn_class, gensym("Abel_touchIn-help"));

 // method to run on gesture value received
 class_addfloat(Abel_touchIn_class, Abel_touchIn_float);
 // method to run on touch/tap coordinates received
 class_addlist(Abel_touchIn_class, Abel_touchIn_list);
}

External object commented source code

 72

7.6 Abel_colorOut

#include "m_pd.h"

static t_class *Abel_colorOut_class;

typedef struct _Abel_colorOut {
 t_object x_obj;

 t_symbol *identifier;
}t_Abel_colorOut;

// this function converts the r, g, b components to an hexadecimal code
void setHex(char * buffer, int r, int g, int b) {
 // hex characters. index corresponds to decimal value
 char hex[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e',
'f'};

 // truncate values if under or over limits (0-255)
 r = r < 0 ? 0 : r;
 g = g < 0 ? 0 : g;
 b = b < 0 ? 0 : b;
 r = r > 255 ? 255 : r;
 g = g > 255 ? 255 : g;
 b = b > 255 ? 255 : b;

 // change "red" second digit to corresponding hex character
 buffer[1] = hex[r % 16];
 // if number is greater than 16, first "red" digit also changes
 if(r>15)
 buffer[0] = hex[(r / 16) % 16];

 // "green"
 buffer[3] = hex[g % 16];
 if(g > 15)
 buffer[2] = hex[(g / 16) % 16];

 // "blue"
 buffer[5] = hex[b % 16];
 if(b>15)
 buffer[4] = hex[(b / 16) % 16];

}

void Abel_colorOut_rgb(t_Abel_colorOut *x, t_symbol *s, int argc, t_atom *argv) {
 // initialize char array with 0 char in all indexes
 // and /0 on last one to make it a string
 char rgb[7] = {'0', '0', '0', '0', '0', '0', '\0'};

 // verify if received data is the expected (3 floats)
 if(argc != 3 ||
 (argv[0].a_type != A_FLOAT) ||
 (argv[1].a_type != A_FLOAT) ||
 (argv[2].a_type != A_FLOAT)){
 post("Non-rgb numeric values.");
 return;
 }

 // convert received values and store into rgb string
 setHex(rgb,
 (int) atom_getfloat(&argv[0]),
 (int) atom_getfloat(&argv[1]),
 (int) atom_getfloat(&argv[2]));

 // If any object has been bound to this s_thing
 // it means there is a receiver for this message type.
 // Without this verification, PD would crash attempting to send the message
 if (x->identifier->s_thing)
 pd_symbol(x->identifier->s_thing, gensym(rgb));

External object commented source code

 73

 // if this receiver exists, then this means the AbelSim_deviceOut
 // abstractions is open. So the object should send a special
 // color code to change the canvas object's background color
 if (gensym("ab_devRgb")->s_thing) {
 float colcode = (((((int) atom_getfloat(&argv[0]) * 256) + (int)
atom_getfloat(&argv[1])) * 256) + (int) atom_getfloat(&argv[2]))*(-1) -1;
 pd_float(gensym("ab_devRgb")->s_thing, colcode);
 }
}

void *Abel_colorOut_new(t_symbol *s, int argc, t_atom *argv) {

 t_Abel_colorOut *x = (t_Abel_colorOut *)pd_new(Abel_colorOut_class);

 // application "send" message identifier code
 x->identifier = gensym("ab_rgb");

 return (void *) x;
}

void Abel_colorOut_setup(void) {
 Abel_colorOut_class = class_new(gensym("Abel_colorOut"),
 (t_newmethod)Abel_colorOut_new,
 0,
 sizeof(t_Abel_colorOut),
 CLASS_DEFAULT,
 0,
 0);

 class_sethelpsymbol(Abel_colorOut_class, gensym("Abel_colorOut-help"));

 // method for any input (gets validated inside)
 class_addanything(Abel_colorOut_class, (t_method) Abel_colorOut_rgb);
}

External object commented source code

 74

7.7 Abel_msgOut

#include "m_pd.h"
#include <stdlib.h>
#include <string.h>

static t_class *Abel_msgOut_class;

typedef struct _Abel_msgOut {
 t_object x_obj;

 t_symbol *identifier;
}t_Abel_msgOut;

void Abel_msgOut_msg(t_Abel_msgOut *x, t_symbol *s, int argc, t_atom *argv) {

 int i;
 int start = 0;

 t_symbol *temp;
 // max length of message is 255 chars
 char totalMessage[256] = "";

 /*
 * When a message starts with a float, PD interprets it as a float if it has
 * only one number, or as a list if it has more elements.
 * If the received message is of any of these PD types, then all elements
 * are correctly inserted in the arguments array and the type word is correctly ignored.
 * Otherwise it interprets it as an "custom type" and ignores first element
 * ex: 2 is a number -> is considered a list with arguments "2", "is", "a", "number"
 * two is a number -> is considered an "instruction" of custom type "two",
 * with arguments "is", "a", "number"
 */
 if(strcmp(s->s_name, "list") != 0 &&
 strcmp(s->s_name, "float") != 0 &&
 strcmp(s->s_name, "symbol") != 0 &&
 strcmp(s->s_name, "array") != 0 &&
 strcmp(s->s_name, "pointer") != 0) {
 // get first element (type) into the final message string
 strcat(totalMessage, s->s_name);
 // add a trailing space
 strcat(totalMessage, " ");
 }

 for(i=start; i < argc; i++) {
 // convert argument atom to symbol (needed to use floats as text)
 temp = atom_gensym(&argv[i]);

 // add current word to total message with trailing space
 strcat(totalMessage, temp->s_name);
 strcat(totalMessage, " ");
 }

 /* If any object has been bound to this s_thing
 * it means there is a receiver for this message type.
 * Without this verification, PD would crash attempting to send the message
 */
 if (x->identifier->s_thing)
 pd_symbol(x->identifier->s_thing, gensym(totalMessage));

 freebytes(totalMessage, sizeof(totalMessage));
}

void *Abel_msgOut_new(t_symbol *s, int argc, t_atom *argv) {

 t_Abel_msgOut *x = (t_Abel_msgOut *)pd_new(Abel_msgOut_class);

 // "send" message identifier code
 x->identifier = gensym("ab_msg");

External object commented source code

 75

 return (void *) x;
}

void Abel_msgOut_setup(void) {
 Abel_msgOut_class = class_new(gensym("Abel_msgOut"),
 (t_newmethod)Abel_msgOut_new,
 0,
 sizeof(t_Abel_msgOut),
 CLASS_DEFAULT,
 0,
 0);

 class_sethelpsymbol(Abel_msgOut_class, gensym("Abel_msgOut-help"));

 class_addanything(Abel_msgOut_class, (t_method) Abel_msgOut_msg);
}

External object commented source code

 76

7.8 Abel_scale

#include "m_pd.h"

// placeholder for boolean type (non-C9 C has no bool type)
typedef enum { false, true } bool;

static t_class *Abel_scale_class;

typedef struct _Abel_scale {
 t_object x_obj;

 bool orig_defined;
 // scale values
 t_float orig_min, orig_max, target_min, target_max;

 t_outlet *value_out;

}t_Abel_scale;

// method for value remapping
void Abel_scale_float(t_Abel_scale *x, t_floatarg value) {
 t_float new_value;
 float ratio;

 // if origin scale was not set correctly ratio should be 1
 // original value will be the same as target value
 ratio = 1;

 // if origin scale was correctly defined, calculate ratio
 // between origin and target scales
 if(x->orig_defined == true) {
 ratio = (x->target_max - x->target_min) / (x->orig_max - x->orig_min);
 }

 // recalculate value on target scale
 new_value = (value - x->orig_min) * ratio;
 new_value += x->target_min;

 // output value
 outlet_float(x->value_out, new_value);
}

void *Abel_scale_new(t_symbol *s, int argc, t_atom *argv) {

 t_Abel_scale *x = (t_Abel_scale *)pd_new(Abel_scale_class);

 // if origin scale is not correctly set
 // 2 float arguments
 if ((argc < 2) ||
 (argv[0].a_type != A_FLOAT) ||
 (argv[1].a_type != A_FLOAT))
 {
 post("Invalid scale parameters provided, object will do nothing.");
 x->orig_defined = false;
 }
 else {
 // origin scale is correctly set
 x->orig_defined = true;

 // define origin scale
 x->orig_min = atom_getfloat(&argv[0]);
 x->orig_max = atom_getfloat(&argv[1]);

 // if target scale is set and arguments are floats
 if((argc == 4) &&
 (argv[2].a_type == A_FLOAT) &&
 (argv[3].a_type == A_FLOAT)) {

External object commented source code

 77

 // set target scale
 x->target_min = atom_getfloat(&argv[2]);
 x->target_max = atom_getfloat(&argv[3]);
 }
 else {
 // target scale not set, default target scale to 0-127
 post("Target scale not set or incorrectly set. Defaulting to 0-127.");
 x->target_min = 0;
 x->target_max = 127;
 }
 }

 // create "cold" inlets to dynamically change scales
 floatinlet_new (&x->x_obj , &x-> orig_min);
 floatinlet_new (&x->x_obj , &x-> orig_max);
 floatinlet_new (&x->x_obj , &x-> target_min);
 floatinlet_new (&x->x_obj , &x-> target_max);

 // create outlet for converted value
 x->value_out = outlet_new(&x->x_obj, gensym("float"));

 return (void *) x;
}

// object destructor
void Abel_scale_die(t_Abel_scale *x){
 // free memory allocated to outlet
 outlet_free (x-> value_out);
}

void Abel_scale_setup(void) {
 Abel_scale_class = class_new(gensym("Abel_scale"),
 (t_newmethod)Abel_scale_new,
 (t_method)Abel_scale_die,
 sizeof(t_Abel_scale),
 CLASS_DEFAULT,
 A_GIMME,
 0);

 class_sethelpsymbol(Abel_scale_class, gensym("Abel_scale-help"));

 // method to run on float input
 class_addfloat(Abel_scale_class, (t_method)Abel_scale_float);
}

External object commented source code

 78

7.9 Abel_seqTarget

#include "m_pd.h"

static t_class *Abel_seqTarget_class;

typedef struct _Abel_seqTarget {
 t_object x_obj;

 // defaults for reset
 t_float defaultStart;
 t_float defaultTargets;

 // current settings
 t_float numTargets;
 t_float startZone;

 t_float currentZone;

 // output
 t_outlet * targetOut;

}t_Abel_seqTarget;

void Abel_seqTarget_dump(t_Abel_seqTarget *x)
{
 post("Default number of zones to cycle: %d", (int)x->defaultTargets);
 post("Current number of zones to cycle: %d", (int)x->numTargets);
 post("Default starting zone: %d", (int)x->defaultStart);
 post("Current starting zone: %d", (int)x->startZone);
 post("Current zone: %d", (int)x->currentZone);
}

void Abel_seqTarget_reset(t_Abel_seqTarget *x)
{
 // reset current values to defaults
 x->startZone = x->defaultStart;
 x->numTargets = x->defaultTargets;
}

void Abel_seqTarget_advance(t_Abel_seqTarget *x)
{
 t_atom *tZone = getbytes(sizeof(t_atom*));

 // check if current zone is higher than max zone in cycle or lower than start zone
 // and change value accordingly (cycle to start or set it to lowest possible)
 x->currentZone = x->currentZone > (x->startZone + x->numTargets - 1) ? (int)x->startZone
: (int)x->currentZone;
 x->currentZone = x->currentZone < x->startZone ? (int)x->startZone : (int)x-
>currentZone;

 // output target message
 SETFLOAT(tZone, x->currentZone);
 outlet_anything(x->targetOut, gensym("target"), 1, tZone);

 // increment current zone
 x->currentZone++;
}

void *Abel_seqTarget_new(t_symbol *s, int argc, t_atom *argv) {
 t_Abel_seqTarget *x = (t_Abel_seqTarget *)pd_new(Abel_seqTarget_class);

 // if first parameter is invalid cancel object creation
 if ((argc < 1) ||
 (argv[0].a_type != A_FLOAT))
 {
 error("Invalid parameters provided.");
 return 0;
 }

External object commented source code

 79

 // if it is, assign its value to the target variables
 x->numTargets = x->defaultTargets = (int)atom_getfloat(&argv[0]);

 // if second argument exists and is a float set start zone to its value
 if(argc >=2 && (argv[1].a_type == A_FLOAT)){
 // on object creation current zone and start zone are equal to the default start
zone
 x->defaultStart = x->startZone = x->currentZone = (int)atom_getfloat(&argv[1]);
 }
 // if it doesn't, default to start at zone 1
 else {
 x->defaultStart = x->startZone = x->currentZone = 1;
 }

 // create passive inlets for current value changing
 floatinlet_new(&x->x_obj, &x->numTargets);
 floatinlet_new(&x->x_obj, &x->startZone);
 floatinlet_new(&x->x_obj, &x->currentZone);

 // create outlet
 x->targetOut = outlet_new(&x->x_obj, gensym("anything"));

 return (void *) x;
}

void Abel_seqTarget_die(t_Abel_seqTarget *x){
 // unallocate outlet
 outlet_free(x->targetOut);
}

void Abel_seqTarget_setup(void) {
 Abel_seqTarget_class = class_new(gensym("Abel_seqTarget"),
 (t_newmethod)Abel_seqTarget_new,
 (t_method)Abel_seqTarget_die,
 sizeof(t_Abel_seqTarget),
 CLASS_DEFAULT,
 A_GIMME,
 0);

 class_sethelpsymbol(Abel_seqTarget_class, gensym("Abel_seqTarget-help"));

 // method for counting forward in targeting sequence
 class_addbang(Abel_seqTarget_class, Abel_seqTarget_advance);
 // method for resetting to initial values on "reset" message reception
 class_addmethod(Abel_seqTarget_class, (t_method) Abel_seqTarget_reset, gensym("reset"),
0);

 // debug method to check current values
 class_addmethod(Abel_seqTarget_class, (t_method) Abel_seqTarget_dump, gensym("dump"),
0);
}

External object commented source code

 80

7.10 Abel_movTarget

#include "m_pd.h"

static t_class *Abel_movTarget_class;

typedef struct _Abel_movTarget {
 t_object x_obj;

 // defaults for reset
 t_float *defaultTargets;
 t_float defaultNum;

 t_float numTargets;
 t_float currentIndex;

 // current settings
 t_float *targetList;

 // output
 t_outlet * targetOut;

}t_Abel_movTarget;

void Abel_movTarget_dump(t_Abel_movTarget *x) {
 int i;

 post("#%d defaults:", (int)x->defaultNum);
 for(i=0; i<x->defaultNum; i++){
 post("#%d = %d", i, (int)x->defaultTargets[i]);
 }

 post("#%d currents:", (int)x->numTargets);
 for(i=0; i<x->numTargets; i++){
 post("#%d = %d", i, (int)x->targetList[i]);
 }
}

void Abel_movTarget_advance(t_Abel_movTarget *x) {
 t_atom *tZone = getbytes(sizeof(t_atom*));

 // check if current zone is higher than max zone in cycle (total number of targets)
 // and change value accordingly (reset to 0 if true)
 x->currentIndex = x->currentIndex > x->numTargets - 1 ? 0 : (int)x->currentIndex;

 // output target message
 SETFLOAT(tZone, x->targetList[(int)x->currentIndex]);
 outlet_anything(x->targetOut, gensym("target"), 1, tZone);

 // increment current zone
 x->currentIndex++;
}

void Abel_movTarget_reset(t_Abel_movTarget *x) {
 int i;

 // reset old targetlist and allocate space for new one
 freebytes(x->targetList, x->numTargets * sizeof(t_float));

 // reallocate space for new list
 x->targetList = getbytes((int)x->defaultNum * sizeof(t_float));

 // set new number of targets
 x->numTargets = x->defaultNum;
 // set current target list to the one provided at object creation
 for(i=0; i<(int)x->numTargets; i++){
 x->targetList [i] = x->defaultTargets[i];
 }

 // reset curret zone to first element in list

External object commented source code

 81

 x->currentIndex = 0;
}

void Abel_movTarget_newTargets(t_Abel_movTarget *x, t_symbol *s, int argc, t_atom *argv) {
 int i;

 // cancel new target list creation
 // if there are no parameters
 if (argc < 1)
 {
 error("Invalid parameters provided.");
 return;
 }
 // or any of them are non-floats
 for(i=0; i<argc; i++){
 if(argv[i].a_type != A_FLOAT) {
 error("Invalid parameters provided.");
 return;
 }
 }

 // reset old targetlist and allocate space for new one
 freebytes(x->targetList, x->numTargets * sizeof(t_float));
 x->targetList = getbytes ((int) argc * sizeof(t_float));

 // set new number of targets
 x->numTargets = argc;
 // assign new list elements to current target list
 for(i=0; i<argc; i++){
 x->targetList [i] = (int) atom_getfloat(&argv[i]);
 }

 // reset curret zone to first element in list
 x->currentIndex = 0;
}

void *Abel_movTarget_new(t_symbol *s, int argc, t_atom *argv) {
 int i;

 t_Abel_movTarget *x = (t_Abel_movTarget *)pd_new(Abel_movTarget_class);

 // cancel object creation
 // if there isn't at least one zone defined
 if (argc < 1)
 {
 error("Invalid parameters provided.");
 return 0;
 }
 // or parameters are non-floats
 for(i=0; i<argc; i++){
 if(argv[i].a_type != A_FLOAT) {
 error("Invalid parameters provided.");
 return 0;
 }
 }

 // allocate bytes for default and current zone lists
 x->defaultTargets = getbytes(argc*sizeof(t_float));
 x->targetList = getbytes(argc*sizeof(t_float));

 // set list elements number
 x->defaultNum = x->numTargets = argc;
 // set zones to cycle through (at creation default and current are the same)
 for(i=0; i<argc; i++){
 x->defaultTargets [i] = x->targetList [i] = (int) atom_getfloat(&argv[i]);
 }

 // set curret zone to first element in list
 x->currentIndex = 0;

External object commented source code

 82

 // this creates a second active inlet associated to the class_addmethod method
 // defined to react to the "zonelist" code created in the setup function
 inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("list"), gensym("zonelist"));

 // create outlet
 x->targetOut = outlet_new(&x->x_obj, gensym("anything"));

 return (void *) x;
}

void Abel_movTarget_die(t_Abel_movTarget *x){
 // unallocate outlet
 outlet_free(x->targetOut);
 // unallocate arrays for lists
 freebytes(x->defaultTargets, sizeof(x->defaultTargets));
 freebytes(x->targetList, sizeof(x->targetList));
}

void Abel_movTarget_setup(void) {
 Abel_movTarget_class = class_new(gensym("Abel_movTarget"),
 (t_newmethod)Abel_movTarget_new,
 (t_method)Abel_movTarget_die,
 sizeof(t_Abel_movTarget),
 CLASS_DEFAULT,
 A_GIMME,
 0);

 class_sethelpsymbol(Abel_movTarget_class, gensym("Abel_movTarget-help"));

 // method for counting forward in targeting sequence
 class_addbang(Abel_movTarget_class, Abel_movTarget_advance);
 // method for defining new target list
 class_addmethod(Abel_movTarget_class, (t_method) Abel_movTarget_newTargets,
gensym("zonelist"), A_GIMME, 0);
 // method for resetting to initial values on "reset" message reception
 class_addmethod(Abel_movTarget_class, (t_method) Abel_movTarget_reset, gensym("reset"),
0);

 // debug method to check current values
 class_addmethod(Abel_movTarget_class, (t_method) Abel_movTarget_dump, gensym("dump"),
0);
}

Test applications source code

 83

Appendix B

Test applications source code

package com.abel.abeltester;

import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.util.List;

import org.puredata.android.io.AudioParameters;
import org.puredata.android.io.PdAudio;
import org.puredata.core.PdBase;
import org.puredata.core.PdListener;
import org.puredata.core.utils.IoUtils;
import org.puredata.core.utils.PdDispatcher;

import android.content.Context;
import android.content.pm.PackageManager;
import android.content.res.Resources;
import android.graphics.Color;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.support.v7.app.ActionBarActivity;
import android.util.DisplayMetrics;
import android.util.Log;
import android.view.MotionEvent;
import android.view.View;
import android.widget.TextView;
import android.widget.Toast;

public class MainActivity extends ActionBarActivity implements
 SensorEventListener {

 // app tag
 private static final String TAG = "LibPDTest";

 // GUI variables
 private TextView raw_x, raw_y, raw_z, acc_max;
 private TextView lbl_pitch, lbl_roll, lbl_accel;
 private DisplayMetrics screen = new DisplayMetrics();

 // for debug purposes
 private SensorManager sMgr;

 // sensor variables
 private SensorManager senSensorManager;
 private Sensor senAccelerometer;
 private Sensor senProximity;
 private boolean hasAccelerometer, hasProximity;

 // accelerometer reading variables
 private long lastUpdate = 0;

 // touchscreen reading variables
 private float initial_x, initial_y;

Test applications source code

 84

 // for debug printouts
 private boolean debug = false;

 // used to communicate with PD
 private final PdDispatcher dispatcher = new PdDispatcher() {
 // prints out PD "post" console messages
 @Override
 public void print(String s) {
 Log.d(TAG, s);
 }
 };

 // print out messages to app GUI
 private Toast toast = null;

 private void toast(final String msg) {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 if (toast == null) {
 toast = Toast.makeText(getApplicationContext(), "",
 Toast.LENGTH_LONG);
 }
 toast.setText(msg);
 toast.show();
 }
 });
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // sensor checks and initialization
 initSensors();

 // find GUI elements and assign related variables
 initGui();

 // initialize PD engine and output errors
 try {
 initPd();
 } catch (IOException e) {
 Log.d(TAG, "Create error:" + e.toString());
 finish();
 }

 }

 @Override
 protected void onResume() {
 super.onResume();

 // re-register sensor listeners
 if (hasAccelerometer) {
 senSensorManager.registerListener(this, senAccelerometer,
 SensorManager.SENSOR_DELAY_NORMAL);
 }
 if (hasProximity) {
 senSensorManager.registerListener(this, senProximity,
 SensorManager.SENSOR_DELAY_NORMAL);
 }

 // restart PD audio
 PdAudio.startAudio(this);
 }

 @Override
 protected void onPause() {
 super.onPause();

Test applications source code

 85

 // unregister sensor listeners
 senSensorManager.unregisterListener(this);

 // stop PD audio
 PdAudio.stopAudio();
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 // disconnect PD engine and release service
 PdAudio.release();
 PdBase.release();
 }

 @Override
 public void onSensorChanged(SensorEvent sensorEvent) {
 Sensor mySensor = sensorEvent.sensor;

 if (debug) {
 Log.d(TAG, "Sensor changed...");
 Log.d(TAG, String.valueOf(mySensor.getType()));
 }

 // specific sensor handlers
 switch (mySensor.getType()) {
 // if the accelerometer has changed
 case (Sensor.TYPE_ACCELEROMETER):
 long curTime = System.currentTimeMillis();

 // get accelerometer values
 float x = (float) sensorEvent.values[0];
 float y = (float) sensorEvent.values[1];
 float z = (float) sensorEvent.values[2];
 z = 9.8f;

 // only send accelerometer values to PD once each 100ms
 if ((curTime - lastUpdate) > 100) {
 lastUpdate = curTime;

 // if accelerometer is working
 if (raw_x != null) {
 raw_x.setText(Float.toString(x));
 raw_y.setText(Float.toString(y));
 raw_z.setText(Float.toString(z));
 }

 // send value list to Abel_accIn object receiver
 PdBase.sendList("ab_accel", Math.abs(x), Math.abs(y),
 Math.abs(z));
 }
 break;
 case (Sensor.TYPE_PROXIMITY):
 // send sensor value to Abel_proximityIn object receiver
 PdBase.sendFloat("ab_proximityIn", sensorEvent.values[0]);
 break;
 }
 }

 // unused but necessary
 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {

 }

 // touchscree event handlers
 @Override
 public boolean onTouchEvent(MotionEvent event) {
 int action = event.getActionMasked();

Test applications source code

 86

 switch (action) {
 case MotionEvent.ACTION_DOWN:
 // get touch press coordinates and convert to screen percentage
 initial_x = event.getX() * 100 / screen.widthPixels;
 initial_y = event.getY() * 100 / screen.heightPixels;
 break;
 case MotionEvent.ACTION_UP:
 // get touch release coordinates and convert to screen percentage
 float finalX = event.getX() * 100 / screen.widthPixels;
 float finalY = event.getY() * 100 / screen.heightPixels;

 // swipe right
 if (initial_x - finalX < -2) {
 PdBase.sendFloat("ab_touchIn", 3);
 }
 // swipe left
 if (initial_x - finalX > 2) {
 PdBase.sendFloat("ab_touchIn", 2);
 }
 // swipe down
 if (initial_y - finalY < -2) {
 PdBase.sendFloat("ab_touchIn", 1);
 }
 // swipe up
 if (initial_y - finalY > 2) {
 PdBase.sendFloat("ab_touchIn", 0);
 }
 // touch/tap
 if (initial_x == finalX && initial_y == finalY) {
 PdBase.sendList("ab_touchIn", initial_x, initial_y);
 }

 break;
 }

 return super.onTouchEvent(event);
 }

 private void initSensors() {

 // build device's sensor list and show in logcat
 if (debug) {
 sMgr = (SensorManager) this.getSystemService(SENSOR_SERVICE);
 List<Sensor> list = sMgr.getSensorList(Sensor.TYPE_ALL);

 String data = new String();

 for (Sensor sensor : list) {
 data += (sensor.getName() + "\n");
 data += (sensor.getVendor() + "\n");
 data += (sensor.getVersion() + "\n");
 }

 Log.d(TAG, data);
 }

 // sensor availability checks
 PackageManager manager = getPackageManager();
 hasAccelerometer = manager
 .hasSystemFeature(PackageManager.FEATURE_SENSOR_ACCELEROMETER);
 hasProximity = manager
 .hasSystemFeature(PackageManager.FEATURE_SENSOR_PROXIMITY);

 senSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);

 if (hasAccelerometer) {
 senAccelerometer = senSensorManager
 .getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 senSensorManager.registerListener(this, senAccelerometer,
 SensorManager.SENSOR_DELAY_NORMAL);

Test applications source code

 87

 if (debug)
 Log.d(TAG, Float.toString(senAccelerometer.getMaximumRange()));
 } else {
 if (debug)
 Log.d(TAG, "No acceleration sensor");
 }

 if (hasProximity) {
 senProximity = senSensorManager
 .getDefaultSensor(Sensor.TYPE_PROXIMITY);
 senSensorManager.registerListener(this, senProximity,
 SensorManager.SENSOR_DELAY_NORMAL);

 if (debug)
 Log.d(TAG,
 "Proximity max:"
 +
Float.toString(senProximity.getMaximumRange()));
 } else {
 if (debug)
 Log.d(TAG, "No proximity sensor");
 }

 }

 private void initGui() {
 setContentView(R.layout.activity_main);

 // set gui variables to corresponding text fields
 raw_x = (TextView) findViewById(R.id.lbl_raw_x);
 raw_y = (TextView) findViewById(R.id.lbl_raw_y);
 raw_z = (TextView) findViewById(R.id.lbl_raw_z);

 acc_max = (TextView) findViewById(R.id.lbl_max);
 if (hasAccelerometer)
 acc_max.setText(Float.toString(senAccelerometer.getMaximumRange()));

 // assign text fields for PD received values
 lbl_pitch = (TextView) findViewById(R.id.lbl_pitch);
 lbl_roll = (TextView) findViewById(R.id.lbl_roll);
 lbl_accel = (TextView) findViewById(R.id.lbl_accel);

 getWindowManager().getDefaultDisplay().getMetrics(screen);
 }

 private final PdListener pdListener = new PdListener.Adapter() {
 @Override
 public void receiveList(String source, Object... args) {
 // received from the ab_accelerate sender in test.pd
 if (source.equals("ab_accelerate")) {
 if (args.length < 3 || !(args[0] instanceof Float)
 || !(args[1] instanceof Float)
 || !(args[2] instanceof Float))
 return;
 float pitch = (Float) args[0];
 float roll = (Float) args[1];
 float accel = (Float) args[2];

 // set text fields to received values
 lbl_pitch.setText(Float.toString(pitch));
 lbl_roll.setText(Float.toString(roll));
 lbl_accel.setText(Float.toString(accel));
 }
 }

 @Override
 public void receiveSymbol(String source, String symbol) {
 // received from Abel_colorOut
 if (source.equals("ab_rgb")) {
 changeColor(symbol);
 }

Test applications source code

 88

 // received from Abel_msgOut
 if (source.equals("ab_msg")) {
 toast(symbol);
 }
 }
 };

 private void initPd() throws IOException {
 int sampleRate = AudioParameters.suggestSampleRate();

 Resources res = getResources();
 File patchFile = null;

 // set path to find compiled externals
 // "/data/data/" + getPackageName() + "/lib"
 PdBase.addToSearchPath(getApplicationInfo().dataDir + "/lib");

 // init engine only AFTER setting externals directory
 PdAudio.initAudio(sampleRate, 0, 2, 8, true);

 // set dispatcher and listeners to receive data from PD
 PdBase.setReceiver(dispatcher);
 dispatcher.addListener("ab_accelerate", pdListener);
 dispatcher.addListener("ab_rgb", pdListener);
 dispatcher.addListener("ab_msg", pdListener);

 // extract and open test.pd patch
 InputStream in = res.openRawResource(R.raw.test);
 patchFile = IoUtils.extractResource(in, "test.pd", getCacheDir());
 PdBase.openPatch(patchFile);

 // if accelerometer sensor is present, set max range of Abel_accIn
 // for scale remapping
 if (hasAccelerometer) {
 PdBase.sendMessage("ab_accel", "setdefault", 9.8f,
 senAccelerometer.getMaximumRange());
 }
 }

 // method to change GUI background color
 private void changeColor(String color) {
 View view = this.getWindow().getDecorView();
 view.setBackgroundColor(Color.parseColor("#" + color));
 }
}

Testing result charts

 89

Appendix C

Testing result charts

Note: a 0 in the following result charts corresponds to a missed message, not to a 0 latency

response.

Testing result charts

 90

9.1 Device #1 – HTM

0

50

100

150

200

250

300

350

400

450

1500 1000 750 500 250 200 150

1 380 230 210 345 310 290 280

2 275 300 250 260 200 325 315

3 170 180 340 365 180 270 305

4 385 340 190 280 350 295 335

5 330 360 280 200 330 235 375

6 220 200 320 305 220 315 365

7 160 180 170 180 250 300 355

8 330 240 255 280 185 280 0

9 270 265 340 200 360 320 380

10 160 290 195 350 245 260 415

11 280 310 280 220 270 335 0

12 230 330 320 370 210 320 350

13 165 350 175 285 375 310 385

14 340 370 265 250 175 340 415

La
te

n
cy

 (
m

s)

2
6

4

1
6

0

3
8

5

7
9

2
8

2

1
8

0

3
7

0

6
4

2
5

6

1
7

0 3
4

0

5
8

2
7

8

1
8

0

3
7

0

6
1

2
6

1

1
7

5

3
7

5

6
9

3
0

0

2
3

5 3
4

0

2
9

3
5

6

2
8

0 4
1

5

4
0

0

200

400

600

A V E R A G E M I N I M U M M A X I M U M S T A N D A R D
D E V I A T I O NLA

TE
N

C
Y

(M
S)

MESSAGE TRIGGER FREQUENCY (MS)

1500 1000 750 500 250 200 150

Testing result charts

 91

9.2 Device #2 – Galaxy Tab

0

50

100

150

200

250

300

350

400

450

500

1500 1000 750 500 250 200 150

1 325 405 325 265 0 0 285

2 0 0 410 400 210 245 0

3 400 0 260 300 360 240 0

4 305 285 355 405 330 245 230

5 245 285 400 305 265 245 280

6 385 325 290 430 0 0 0

7 330 365 0 340 360 240 0

8 265 365 395 245 315 245 265

9 405 400 285 385 300 240 0

10 345 405 330 280 0 280 0

11 280 440 425 390 400 0 220

12 385 245 275 325 350 280 260

13 325 280 365 425 300 280 320

14 260 325 415 320 295 285 365

La
te

n
cy

 (
m

s)

3
2

7

2
4

5 4
0

5

5
3

3
4

4

2
4

5

4
4

0

5
9

3
4

8

2
6

0 4
2

5

5
6

3
4

4

2
4

5

4
3

0

5
9

3
1

7

2
1

0

4
0

0

5
0

2
5

7

2
4

0

2
8

5

1
9

2
7

8

2
2

0 3
6

5

4
4

0

200

400

600

A V E R A G E M I N I M U M M A X I M U M S T A N D A R D
D E V I A T I O NLA

TE
N

C
Y

(M
S)

MESSAGE TRIGGER FREQUENCY (MS)

1500 1000 750 500 250 200 150

Testing result charts

 92

9.3 Device #3 – Galaxy S3 LTE

0

50

100

150

200

250

300

350

400

450

1500 1000 750 500 250 200 150 100

1 340 245 360 355 275 0 0 190

2 285 260 260 225 250 290 190 180

3 225 285 300 330 190 275 220 175

4 340 305 385 250 360 260 305 165

5 285 325 0 350 295 290 340 160

6 225 395 320 270 280 280 325 155

7 355 185 410 190 210 310 320 190

8 290 205 245 290 380 295 305 180

9 230 230 350 210 315 280 345 175

10 360 250 160 310 300 310 335 170

11 295 275 240 225 235 295 315 160

12 235 295 330 335 170 330 315 155

13 360 360 415 250 380 315 345 195

14 300 365 270 370 320 0 0 185

La
te

n
cy

 (
m

s)

2
9

5

2
2

5 3
6

0

4
9

2
8

4

1
8

5

3
9

5

5
9

3
1

1

1
6

0

4
1

5

7
2

2
8

3

1
9

0

3
7

0

5
7

2
8

3

1
7

0

3
8

0

6
4

2
9

4

2
6

0 3
3

0

1
9

3
0

5

1
9

0 3
4

5

4
7

1
7

4

1
5

5

1
9

5

1
3

0

200

400

600

A V E R A G E M I N I M U M M A X I M U M S T A N D A R D
D E V I A T I O NLA

TE
N

C
Y

(M
S)

MESSAGE TRIGGER FREQUENCY (MS)

1500 1000 750 500 250 200 150 100

Testing result charts

 93

9.4 Device #4 – Galaxy S4 Mini

0

50

100

150

200

250

300

350

400

450

500

1500 1000 750 500 250 200 150

1 315 445 375 325 245 230 310

2 255 280 430 425 460 260 0

3 425 0 315 345 390 245 235

4 320 275 355 265 330 275 275

5 260 345 440 370 265 265 310

6 430 365 295 240 250 245 0

7 370 385 335 390 415 280 245

8 265 410 420 265 350 265 280

9 435 0 270 410 330 0 310

10 330 220 360 330 270 280 0

11 270 290 445 430 435 320 245

12 440 310 0 305 375 300 275

13 380 285 385 270 330 290 0

14 270 355 425 370 290 315 210

La
te

n
cy

 (
m

s)

3
4

0

2
5

5

4
4

0

6
9

3
3

0

2
2

0

4
4

5

6
2

3
7

3

2
7

0

4
4

5

5
5

3
3

9

2
4

0

4
3

0

6
1

3
3

8

2
4

5

4
6

0

6
7

2
7

5

2
3

0 3
2

0

2
6

2
7

0

2
1

0 3
1

0

3
3

0

200

400

600

A V E R A G E M I N I M U M M A X I M U M S T A N D A R D
D E V I A T I O NLA

TE
N

C
Y

(M
S)

MESSAGE TRIGGER FREQUENCY (MS)

1500 1000 750 500 250 200 150

Testing result charts

 94

9.5 Device #5 – Ainol Novo 7 Venus

0

100

200

300

400

500

600

1500 1000 750 500 250 200

1 425 320 450 395 360 340

2 340 343 305 310 290 325

3 280 370 390 415 460 355

4 425 400 485 335 445 340

5 345 425 330 435 380 375

6 285 445 415 355 315 360

7 455 465 455 460 295 345

8 350 275 305 375 460 380

9 285 320 390 290 400 365

10 455 345 485 395 355 395

11 375 365 330 315 315 380

12 290 385 415 420 485 390

13 460 405 455 335 420 400

14 400 430 305 440 405 385

La
te

n
cy

 (
m

s)

3
6

9

2
8

0 4
6

0

6
6

3
7

8

2
7

5

4
6

5

5
2

3
9

4

3
0

5 4
8

5

6
5

3
7

7

2
9

0 4
6

0

5
2

3
8

5

2
9

0 4
8

5

6
3

3
6

7

3
2

5 4
0

0

2
2

0

200

400

600

A V E R A G E M I N I M U M M A X I M U M S T A N D A R D
D E V I A T I O NLA

TE
N

C
Y

(M
S)

MESSAGE TRIGGER FREQUENCY (MS)

1500 1000 750 500 250 200 150

Testing result charts

 95

9.6 Device #6 – Jiayu G3

0

50

100

150

200

250

300

350

400

450

500

1500 1000 750 500 250 200 150

1 365 265 430 330 295 190 315

2 295 330 280 245 235 170 210

3 235 305 320 350 200 160 195

4 360 315 405 260 380 280 185

5 310 350 245 185 315 270 175

6 250 370 305 290 260 165 215

7 385 205 200 210 240 150 245

8 315 275 285 310 405 180 285

9 245 235 370 230 340 350 180

10 385 315 225 335 300 290 170

11 310 295 265 250 165 185 160

12 240 315 330 355 165 170 0

13 380 335 185 270 410 340 180

14 320 405 245 375 305 330 260

La
te

n
cy

 (
m

s)

3
1

4

2
3

5 3
8

5

5
4

3
0

8

2
0

5

4
0

5

5
0

2
9

2

1
8

5

4
3

0

7
1

2
8

5

1
8

5

3
7

5

5
7

2
8

7

1
6

5

4
1

0

7
8

2
3

1

1
5

0

3
5

0

7
2

2
1

3

1
6

0 3
1

5

4
7

0

200

400

600

A V E R A G E M I N I M U M M A X I M U M S T A N D A R D
D E V I A T I O NLA

TE
N

C
Y

(M
S)

MESSAGE TRIGGER FREQUENCY (MS)

1500 1000 750 500 250 200 150

Testing result charts

 96

9.7 Device #7 – One plus one

0

50

100

150

200

250

300

350

1500 1000 750 500 250 200

1 114 210 140 80 55 260

2 50 230 0 195 235 230

3 180 0 65 115 150 240

4 120 70 145 225 110 245

5 50 110 205 130 65 245

6 190 135 70 50 250 250

7 125 0 140 160 180 255

8 55 170 220 55 130 260

9 200 210 80 175 85 265

10 130 230 170 85 45 270

11 65 0 210 200 235 275

12 200 60 75 105 155 275

13 0 100 145 230 110 280

14 70 130 220 130 70 290

La
te

n
cy

 (
m

s)

1
1

9

5
0

2
0

0

5
6

1
5

0

6
0

2
3

0

6
0

1
4

5

6
5

2
2

0

5
6

1
3

8

5
0

2
3

0

5
81

3
4

4
5

2
5

0

6
7

2
6

0

2
3

0 2
9

0

1
6

0

100

200

300

400

A V E R A G E M I N I M U M M A X I M U M S T A N D A R D
D E V I A T I O NLA

TE
N

C
Y

(M
S)

MESSAGE TRIGGER FREQUENCY (MS)

1500 1000 750 500 250 200

Testing result charts

 97

9.8 Device #8 – Lazer

0

100

200

300

400

500

600

1500 1000 750 500 250 200

1 365 320 300 360 335 260

2 315 285 315 330 325 230

3 305 335 330 370 315 240

4 340 300 280 310 350 245

5 330 350 320 375 340 245

6 320 390 295 320 330 250

7 315 400 435 380 285 255

8 305 330 0 365 275 260

9 290 340 350 470 345 265

10 325 465 325 375 320 270

11 275 380 340 480 290 275

12 345 315 275 345 325 275

13 340 325 330 370 355 280

14 370 370 345 300 350 290

La
te

n
cy

 (
m

s)

3
2

4

2
7

5 3
7

0

2
6

3
5

0

2
8

5 4
6

5

4
5

3
2

6

2
7

5 4
3

5

3
9

3
6

8

3
0

0 4
8

0

5
0

3
2

4

2
7

5 3
5

5

2
4

2
6

0

2
3

0 2
9

0

1
6

0

200

400

600

A V E R A G E M I N I M U M M A X I M U M S T A N D A R D
D E V I A T I O NLA

TE
N

C
Y

(M
S)

MESSAGE TRIGGER FREQUENCY (MS)

1500 1000 750 500 250 200

Testing result charts

 98

9.9 Device #9 – Moto G

0

50

100

150

200

250

300

350

400

1500 1000 750 500 250 200

1 100 105 325 265 100 230

2 245 120 190 185 210 230

3 185 120 100 280 140 105

4 320 260 135 200 310 285

5 120 280 220 320 150 245

6 180 120 270 0 250 245

7 100 100 120 160 155 240

8 260 100 110 260 355 145

9 180 185 280 160 0 325

10 325 200 150 280 310 265

11 265 240 220 180 190 260

12 200 260 270 305 150 260

13 125 300 145 100 325 180

14 260 320 235 320 250 280

La
te

n
cy

 (
m

s)

2
0

5

1
0

0

3
2

5

7
4

1
9

4

1
0

0

3
2

0

7
9

1
9

8

1
0

0

3
2

5

7
0

2
3

2

1
0

0

3
2

0

6
9

2
2

3

1
0

0

3
5

5

8
0

2
3

5

1
0

5

3
2

5

5
5

0

100

200

300

400

A V E R A G E M I N I M U M M A X I M U M S T A N D A R D
D E V I A T I O NLA

TE
N

C
Y

(M
S)

MESSAGE TRIGGER FREQUENCY (MS)

1500 1000 750 500 250 200

Testing result charts

 99

9.10 Device #10 – Nexus 7

0

50

100

150

200

250

300

350

1500 1000 750 500 250 200 150

1 245 140 60 240 255 160 220

2 180 165 130 185 120 180 0

3 110 230 250 270 80 165 140

4 40 235 80 0 285 170 185

5 185 265 40 0 255 175 0

6 115 50 40 40 160 180 140

7 55 170 125 80 105 185 145

8 40 135 135 245 60 190 195

9 125 145 230 100 245 210 0

10 40 185 95 260 195 200 130

11 185 175 140 150 135 215 195

12 130 210 225 275 85 205 240

13 65 235 40 150 290 205 260

14 40 290 40 80 245 205 310

La
te

n
cy

 (
m

s)

1
1

1

4
0

2
4

5

6
5

1
8

8

5
0

2
9

0

6
01

1
6

4
0

2
5

0

7
2

1
7

3

4
0

2
7

5

8
1

1
8

0

6
0

2
9

0

7
9

1
8

9

1
6

0 2
1

5

1
7

1
9

6

1
3

0

3
1

0

5
5

0

100

200

300

400

A V E R A G E M I N I M U M M A X I M U M S T A N D A R D
D E V I A T I O NLA

TE
N

C
Y

(M
S)

MESSAGE TRIGGER FREQUENCY (MS)

1500 1000 750 500 250 200 150

Testing result charts

 100

9.11 Device #11- Galaxy S3 i9300 (cyanogen)

0

100

200

300

400

500

600

1500 1000 750 500 250 200

1 445 290 430 420 315 340

2 385 355 325 280 280 330

3 280 0 365 425 250 365

4 400 365 480 285 425 305

5 335 445 305 430 395 325

6 270 450 415 360 360 345

7 425 455 455 290 245 360

8 0 315 0 365 435 0

9 295 325 0 295 400 385

10 450 0 430 370 360 345

11 380 0 0 300 330 345

12 325 340 225 440 250 360

13 405 0 480 310 260 380

14 340 425 305 455 360 395

La
te

n
cy

 (
m

s)

3
6

4

2
7

0

4
5

0

5
9

3
7

7

2
9

0 4
5

5

5
9

3
8

3

2
2

5

4
8

0

8
0

3
5

9

2
8

0 4
5

5

6
3

3
3

3

2
4

5

4
3

5

6
5

3
5

2

3
0

5 3
9

5

2
4

0

200

400

600

A V E R A G E M I N I M U M M A X I M U M S T A N D A R D
D E V I A T I O NLA

TE
N

C
Y

(M
S)

MESSAGE TRIGGER FREQUENCY (MS)

1500 1000 750 500 250 200

	Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Tests
	1.4 Structure

	State of the Art
	2.1 Introduction
	2.2 Development Environments, Toolkits & Utilities
	2.2.1 IDEs and Programming Languages
	2.2.1.1 Max/Msp
	2.2.1.2 Pure Data
	2.2.1.3 SuperCollider
	2.2.1.4 ChucK

	2.2.2 Toolkits
	2.2.2.1 Small Musically Expressive Laptop Toolkit
	2.2.2.2 NRCI Pure Data tool suite

	2.3 Cooperative, Collaborative and Networked Music Systems
	2.3.1 Laptop based Ensembles
	2.3.1.1 The *Ork paradigm
	2.3.1.2 The Carnegie Mellon Laptop Orchestra (CMLO)
	2.3.1.3 The World Laptop Orchestra (WLO)

	2.3.2 Mobile phone Orchestras

	2.4 Mobile apps
	2.4.1 Cooperative/collaborative apps
	2.4.2 LibPD based apps
	2.4.3 OSC control apps

	2.5 Summary

	The Abel project
	3.1 Overview
	3.1.1 Overall system description
	3.1.2 Localization
	3.1.3 Synchronization and synchronicity
	3.1.4 Tool development for content creation

	3.2 Tools
	3.2.1 Windows
	3.2.2 OSX
	3.2.3 Linux
	3.2.4 Android
	3.2.5 IOS

	3.3 Developed objects
	3.3.1 Abel_dataIn
	3.3.1.1 Definition
	3.3.1.2 Implementation

	3.3.2 Abel_dataOut
	3.3.2.1 Definition
	3.3.2.2 Implementation

	3.3.3 Abel_accIn
	3.3.3.1 Definition
	3.3.3.2 Implementation

	3.3.4 Abel_proximityIn
	3.3.4.1 Definition
	3.3.4.2 Implementation

	3.3.5 Abel_touchIn
	3.3.5.1 Definition
	3.3.5.2 Implementation

	3.3.6 Abel_colorOut
	3.3.6.1 Definition
	3.3.6.2 Implementation

	3.3.7 Abel_msgOut
	3.3.7.1 Definition
	3.3.7.2 Implementation

	3.3.8 Abel_scale
	3.3.8.1 Definition
	3.3.8.2 Implementation

	3.3.9 Abel_seqTarget
	3.3.9.1 Definition
	3.3.9.2 Implementation

	3.3.10 Abel_movTarget
	3.3.10.1 Definition
	3.3.10.2 Implementation

	3.4 Developed abstractions
	3.4.1 AbelSim_accel
	3.4.1.1 Definition
	3.4.1.2 Implementation

	3.4.2 AbelSim_proxim
	3.4.2.1 Definition
	3.4.2.2 Implementation

	3.4.3 AbelSim_touchIn
	3.4.3.1 Definition
	3.4.3.2 Implementation

	3.4.4 AbelSim_deviceOut
	3.4.4.1 Definition
	3.4.4.2 Implementation

	3.4.5 AbelSim_deviceSimulator
	3.4.5.1 Definition
	3.4.5.2 Implementation

	3.5 Test application
	3.6 Final considerations

	Tests
	4.1 Overview
	4.1.1 Audio testing
	4.1.2 UI/Visual feedback testing

	4.2 Single device testing
	4.2.1 Devices
	4.2.2 Results

	4.3 Multiple device testing
	4.4 Conclusions
	4.4.1 Device response times
	4.4.2 Stability over different message sending intervals
	4.4.3 Video VS audio

	Conclusions
	5.1 Future work

	References
	External object commented source code
	7.1 Abel_dataIn
	7.2 Abel_dataOut
	7.3 Abel_accIn
	7.4 Abel_proximityIn
	7.5 Abel_touchIn
	7.6 Abel_colorOut
	7.7 Abel_msgOut
	7.8 Abel_scale
	7.9 Abel_seqTarget
	7.10 Abel_movTarget

	Test applications source code
	Testing result charts
	9.1 Device #1 – HTM
	9.2 Device #2 – Galaxy Tab
	9.3 Device #3 – Galaxy S3 LTE
	9.4 Device #4 – Galaxy S4 Mini
	9.5 Device #5 – Ainol Novo 7 Venus
	9.6 Device #6 – Jiayu G3
	9.7 Device #7 – One plus one
	9.8 Device #8 – Lazer
	9.9 Device #9 – Moto G
	9.10 Device #10 – Nexus 7
	9.11 Device #11- Galaxy S3 i9300 (cyanogen)

