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muito do seu tempo em prol desta amizade.

A todas as pessoas aqui mencionadas e ainda a todas as outras que interagiram

comigo durante esta aventura, agradeço por terem partilhado um pouco delas e de

alguma forma me terem proporcionado o equilı́brio necessário para que este caminho

pudesse ser percorrido com alegria e felicidade.



ii FCUP

EXTREME VALUES. HIGH ORDER QUANTILES AND APPLICATIONS.

Gostaria ainda de agradecer:
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Bessa por me ter feito sentir a Matemática. A confiança por ela transmitida foi sem
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Resumo

Neste trabalho debruçamo-nos em torno de problemas que se destacam em Teoria

de Valores Extremos pela sua relevância em aplicações reais, como é o caso da

estimação de parâmetros relacionados com a cauda das distribuições. Neste contexto,

estamos particularmente interessados na estimação adequada do ı́ndice de cauda e

de quantis de ordem elevada.

Numa primeira etapa abordamos o problema da estimação do ı́ndice de cauda e de

quantis de ordem elevada. Consideramos o estimador geométrico introduzido por Brito

e Freitas (2003) e apresentamos uma prova alternativa para a normalidade assintótica

deste estimador de modo a facilitar a aplicação à estimação de quantis de ordem

elevada e a redução do seu viés. Propomos também um estimador de quantis de

ordem elevada resultante da aplicação do estimador do tipo geométrico para o ı́ndice

de cauda e, sob condições apropriadas, provamos que este é assintoticamente normal.

No seguimento, investigamos cuidadosamente a questão da redução do viés dos es-

timadores propostos e, tendo em conta as propriedades especı́ficas do estimador

geométrico, introduzimos duas novas versões deste estimador com viés reduzido, e

a respetiva normalidade assintótica é estabelecida. Uma vez que nestas versões o de-

sempenho do estimador geométrico melhorou notoriamente, procedemos à aplicação

destas na estimação de quantis e a normalidade assintótica dos estimadores resul-

tantes é estabelecida.

Apresentamos vários estudos de simulação, através dos quais ilustramos o comporta-

mento amostral finito de todos os estimadores propostos e efetuamos a comparação



iv FCUP

EXTREME VALUES. HIGH ORDER QUANTILES AND APPLICATIONS.

destes com os estimadores clássicos. O estudo relativo aos intervalos de confiança

assintóticos também é aqui considerado.

A aplicação na área da sismologia suscitou o nosso interesse por se ter mostrado

promissora tanto a nı́vel de facilidade de aquisição de dados como de forte impacto

humanitário. Assim, motivados pela aplicação do trabalho cientı́fico realizado a casos

práticos reais e a fim de realizar uma análise ao comportamento dos estimadores

propostos, concentramo-nos no estudo das caudas das distribuições dos momentos

sı́smicos. Nesta sequência combinamos diferentes abordagens, tendo sido fornecida

especial atenção à questão da independência e ao estudo inferencial.

Palavras-chave: Caudas pesadas, distribuição generalizada de Pareto, redução do

viés, estimação de quantis elevados, estimação do ı́ndice de cauda, momentos sı́smicos

dos terramotos, teoria de valores extremos.



Abstract

In this work we are concerned with problems that stand out in Extreme Value Theory as

having high relevance in real applications, such as the estimation of parameters related

to the tail of the distributions. In this context, we are particularly interested in the proper

estimation of the tail index and high order quantiles.

As a first step we address the problem of estimating the tail index and high order

quantiles. We consider the geometric-type estimator introduced by Brito and Freitas

(2003) and present an alternative proof of the asymptotic normality of this estimator

in order to facilitate the application to the estimation of high order quantiles and the

reduction of its bias. We also propose an estimator of high order quantiles resulting from

the application of the geometric-type estimator for the tail index and, under appropriate

conditions, we prove its asymptotically normal.

We then carefully investigate the issue of reducing the bias of the proposed estimators

and, taking into account the specific properties of the geometric-type estimator, we

introduce two new versions of this estimator with reduced bias, and the corresponding

asymptotic normality is established. Since in these versions the performance of the

geometric-type estimator was improved markedly, we apply it on the quantiles estima-

tion and the asymptotic normality of the resulting estimators is established.

Several simulation studies are presented by which we illustrate the finite sample be-

haviour of all the proposed estimators and compare them with the classical estimators.

The relative study on the asymptotic confidence intervals is also considered here.
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The application in the field of seismology provoked our interest since it has shown

promise both in the ease of data acquisition and as a strong humanitarian impact.

Motivated by the use of the scientific work that has been accomplished in real practical

cases and in order to perform an analysis on the behaviour of the proposed estimators,

we therefore concentrate on the study of the tails of the seismic moment distributions.

In this sequence we combine different approaches, special attention having been paid

to the question of independence and to the inferential study.

Keywords: Bias reduction, earthquake seismic moments, extreme value theory, gen-

eralised Pareto distribution, heavy tails, high quantiles estimation, tail index estimation.
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Chapter 1

Introduction

The extreme events are present in our daily lives. Most of the time they are associated

with catastrophic events and naturally its study is very important. There is a general

consensus that a probabilistic approach to define most of the events gives appropriate

and useful results. However, when we are dealing with extreme events, the classical

statistical models are inappropriate for an adequate statistical modelling. In classical

data analysis, extreme values are often called outliers and ignored for the construction

of a statistical model. This happens because extreme events may not be well described

by the same distribution as the central events and, due to this, they should be studied

separately. Thus, in this kind of study we seek to analyse the tail of the distributions

rather than the whole of the distributions.

The Extreme Value Theory (EVT) is a probabilistic theory that deals with extreme events

in order to quantify and model them. Since extreme events are also rare, the EVT offers

a skill to remove statistical information from the limited amount of data that characterise

such phenomena. The interest in the extreme values study is shared by several areas

of knowledge, since from its application result possible answers to some important

problems with which they deal daily.

These areas regard the EVT as a valuable tool in solving problems of prediction of rare

situations, more specifically in the prediction of the quantities related to rare events that
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occur with a very low probability, such as floods, payment of high claim by insurers,

materials corrosion or earthquakes. Due to the important applications in a variety of

fields of scientific knowledge, the EVT is considered one of the most important study

areas and has received strong attention in the recent decades. Several applications of

this theory can be found in literature (see, for example, Coles (2001), Embrechts et al.

(1997) and Reiss and Thomas (2007)).

When we are facing a problem related to extreme events, our main focus lies in the

characterisation of the tail of the distribution that models the sample in which these

events are based. Among the several problems with which the EVT deals (cf. e.g.

Beirlant et al. (2012)), the adequate estimation of the tail parameters can be considered

the most relevant topic given its great importance.

In this thesis, we concentrate on the particular problem of the appropriate estimation

of parameters related to the tail of the distributions, more specifically the tail index and

high quantiles, as well as applying it to earthquake data. We use, as a starting point, the

geometric-type estimator proposed by Brito and Freitas (2003). We give our contribution

presenting alternatives in the parameters estimation that have a good performance in

the description and characterisation of rare phenomena occurrence. In this context we

deal mainly with questions related with high quantiles, bias correction and asymptotic

properties of the proposed estimators. Part of our study is devoted to describe some

peculiarities of seismic phenomenon that, despite its occurrence is considered rare,

often has catastrophic consequences.

The thesis is partitioned into six chapters. The Chapter 2 briefly reviews the funda-

mentals of EVT. An overview of the literature is presented and some basic concepts

are introduced in order to reach the main limiting results of the EVT. We also consider

the choice of the most appropriate modelling approach to follow and discuss some

important points that one should take into account when dealing with the parameter

estimation.

In Chapter 3 we introduce the geometric-type estimator and the context under which

the work is developed. We study some properties of the geometric-type estimator and
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use them to estimate high order quantiles. The asymptotic normality of the geometric-

type estimator is shown using a method that proves to be very useful for statistical

inference. The asymptotic normality of the resulting high order quantiles estimator is

also established.

In order to improve the performance of the geometric-type estimator, in Chapter 4 we

propose two asymptotic equivalent bias corrected estimators and study their asymptotic

behaviour. Then, these two corrected estimators are used for high quantiles estimation

yielding the corresponding high quantiles estimators and an asymptotic study is per-

formed.

Chapter 5 is dedicated to the evaluation of the finite sample behaviour of the proposed

estimators through some simulation studies. The suggested estimators are used to

construct asymptotic confidence intervals. The results are compared with the corre-

sponding Hill version estimators.

Chapter 6 is fully devoted to the modelling of extremal earthquakes and includes a

detailed study of the used data. To approach this statistical problem we apply the Peaks

Over Thresholds methodology to some real earthquake data sets in the Harvard Seis-

mic Catalog in order to estimate the parameters quantifying the tails of the distribution of

the large earthquakes considered. Then we consider the observed seismic moments

of Philippines and Vanuatu Islands during 35 years. The validity of the assumptions

required to use the results are investigated and both suggested geometric-type and Hill

estimators are used for the estimation of the tail index and are employed on Peaks Over

Threshold estimator for the quantiles estimation. A comparison between the suggested

estimators is carried out and their performance is carefully discussed.

We resort to the use of R software to perform all the analysis, which are supported by

graphical tools that show in a clear way the features of the data that are regarded as

relevant to the study that is addressed here.





Chapter 2

Overview of Extreme Value Theory

2.1 Brief historical review

The expression “distribution of rare events” dates back to the beginning of the twentieth

century. According to Falk et al. (2010), in 1922, Von Bortkiewicz introduced the concept

of a maximum values distribution and also concluded that the Poisson distribution fits

well to rare events. Among certain bit macabre examples, his most popular one is on

the number of Prussian cavalrymen killed by friendly horse-kick over a period of 20

years, in which the annual number of fatalities are described by a Poisson distribution.

Tiago de Oliveira (1990) refer that also a great contribution was given by the work of

Dodd, in 1923, where the exact extreme distributions (maximums and minimums) are

obtained.

After that, the most important publication was given in 1927 by Fréchet, who introduced

the asymptotic distribution of the sample maximum. One year later, Fisher and Tippett

(1928) showed that the distribution of the maximum (or minimum), if non-degenerate,

could only belong to one of the three types: Gumbel, Fréchet or Weibull. The sufficient

conditions for the weak convergence to each of this three limiting distributions was

presented by von Mises in 1936. Gumbel (1941) stands out as a pioneer in calling

attention to the possible application of EVT and proposing a methodology for statistical
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analysis involving the EVT.

Gnedenko (1943) established the first complete result including the three types of

distributions, ie, based on the type convergence theorem of Khintchine, completed the

Fisher and Tippett result, yielding to one of the main limiting results in EVT, the extremal

types theorem. He also showed the necessary and sufficient conditions for the weak

convergence in distribution of the extreme order statistics, and with this work finalised

the basic theory of the asymptotic extremal behaviour for independent and identically

distributed observations.

The above mentioned results were explored and gave rise to several studies oriented

to practical applications, more related to natural phenomena, in which the statistic of

extreme values can assume an important role. This initial development of EVT was

enhanced by the parameterisation due to von Mises (1936) and Jenkinson (1955),

from which is derived that the limiting distributions Gumbel, Fréchet and Weibull, are

particular cases of the Generalised Extreme Value distribution.

At the same time a new methodology, called Peaks-Over-Thresholds, was being de-

veloped. In 1970, Todorovic and Zelenhasic provided one of the reference works. An

important result in this context is that the asymptotic distribution of the excesses above

a threshold value can be approximated by the Generalised Pareto Distribution, a family

whose special cases are the exponential, Weibull and Pareto distributions (Balkema

and de Haan (1974) and Pickands (1975)). In this context, among several studies that

have been carried, we may refer Hosking and Wallis (1987), Martins and Stedinger

(2000), Davison and Smith (1990) and Coles (2001).

The study of EVT has received an increasingly interest in a quite diverse domains of

application and important work has been developed (see e.g. Leadbetter et al. (1983),

Embrechts et al. (1997), Kotz and Nadarajah (2000) and McNeil et al. (2005)).
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2.2 Main theoretical results

The main purpose of the extreme value theory is to model the real extreme data set to

which we have access. Since we are interested only in extreme data, our aim lies in

modelling the tail of the distribution by which the data are governed.

Here we will concentrate our attention in models with heavy tails, ie, the underlying

distribution being in the Fréchet domain of attraction having a positive shape parameter

γ. This kind of models plays an important role in the extreme value theory and has

received considerable attention in the most researches in EVT (see e.g. Csörgő and

Viharos (1998)).

The results presented in this section show that if we only consider the values of the

most extreme observations, then their distribution behaviour can be approximated in

an asymptotic way by its limiting distribution function. Putting in another way, in EVT

one tries to make an inference about the limiting behaviour of the extreme values in a

dataset.

To go toward the theoretical results, we shall assume that we have a sample

X1, X2, . . . , Xn of n independent and identically distributed (i.i.d.) random variables

(r.v.) from a distribution function (d.f.) F given by

F (x) = P (Xi ≤ x) .

Let X(1,n) ≤ X(2,n) ≤ · · · ≤ X(n,n) be the corresponding ascending order statistics (o.s.)

where X(i,n), i = 1, . . . , n, denotes the i-th order statistic.

Using the regular variation theory it is possible to characterise the tail function of the

d.f. F , F = 1− F , and some related functions such as the reciprocal quantile function,

U (x) = F−1 (1− 1/x), x ∈ [1,∞] in which F−1 denotes the left continuous inverse of

F , F−1 (s) = inf {y : F (y) ≥ s}.

The function f : R+ → R+ is called a regularly varying function at infinity with index
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α, and we write f ∈ RVα, if for some α ∈ R the following limit holds:

lim
t→∞

f (tx)

f (t)
= xα, for all x > 0.

In particular, a function f ∈ RVα is called a slowly varying function at infinity if α = 0

in the above expression. If f ∈ RVα then we can rewrite it in the following representation

form

f (x) = xαl (x) , for x > 0,

where l (x) is a slowly varying function at infinity. For a more detailed discussion about

the theory of regular variation we refer to Bingham (1987).

Since we are interested in estimating the parameters of heavy-tailed distributions, we

consider here that a model F is heavy-tailed if the tail function F ∈ RV−1/γ , that is,

lim
t→∞

F (tx)

F (t)
= x−1/γ , for all x > 0,

or equivalently,

1− F (x) = x−1/γl (x) , for x > 0.

Once the observations that interest are the extreme ones, we will concentrate in the

maximum or in the minimum of the sample. We represent the maximum of a sample

with size n by Mn = X(n,n) = max (X1, X2, . . . , Xn) and the minimum by

mn = X(1,n) = min (X1, X2, . . . , Xn).

From the relation min (X1, . . . , Xn) = −max (−X1, . . . ,−Xn) between maxima and

minima, the results for maxima (or minima) can be immediately derived for minima

(or maxima). For this reason, we only consider the results for the maxima.

The exact distribution of the maximum Mn can be obtained by F to the power n,

P (Mn ≤ x) = P (X1 ≤ x,X2 ≤ x, · · · , Xn ≤ x)

= Fn (x) ,

for all x ∈ R and n ∈ N.

However, since the d.f. F is unknown, this result is not useful and we have to search for

a distribution that serves as an approximation of Fn.
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To achieve this, as we seek the limiting behaviour of the maximum, we suppose that the

sample is embedded in a sequence of n r.v., with n increasing toward infinity. Since the

maximum values are located near of the right endpoint of the distribution of X, this last

one is related with the asymptotic behaviour of Mn. Then, if we define the left endpoint

xF = inf {x ∈ R : F (x) > 1} and the right endpoint xF = sup {x ∈ R : F (x) < 1} of the

underlying d.f. F , as a consequence of the above expression we have that mn
P−→ xF

and Mn
P−→ xF as n→∞, as it was expected.

Consequently, whatever the value x take, the limiting d.f. of the maximum threshold will

be degenerate, ie,

Fn (x) −−−→
n→∞





0, if x < xF ,

1, if x ≥ xF .

In order to find the possible non-degenerate limiting distributions of the maximum Mn,

and in a similar way to what is done in the Central Limit Theorem for sums of r.v.,

we look for appropriate normalising sequences an > 0 and bn real, n ≥ 1, such that

(Mn − bn)/an converges in distribution to a non-degenerate law G, ie,

lim
n→∞

Fn (anx+ bn) = G (x) , (2.1)

for each continuity point x of G.

The following result is the so-called Extremal Types Theorem, stated by Fisher and

Tippett (1928) and established by Gnedenko (1943), which provides the three possible

limiting forms for the distribution of Mn under linear normalisations.

Theorem 2.2.1 (Fisher-Tippett-Gnedenko theorem). Let X1, X2, . . . , Xn be i.i.d. r.v.

with d.f. F and Mn = max(X1, X2, . . . , Xn) denote the maximum of the n observations.

If a sequence of real numbers an > 0 and bn exists such that

lim
n→∞

P

(
Mn − bn

an
≤ x

)
= lim

n→∞
Fn (anx+ bn) = G (x) ,
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then if G is a non degenerate d.f., it belongs to one of the following types

Type I : Λ (x) = exp{−exp (−x)}, x ∈ R;

Type II : Φα (x) =





0, x ≤ 0,

exp (−x−α) , x > 0;

Type III : Ψα (x) =





exp{− (−x)α}, x > 0,

1, x ≥ 0;

for all continuity points of G, where α > 0 is the shape parameter of the distribution

describing the tail’s behaviour of the underlying d.f. F.

The extreme value distributions of Types I, II and III are often known as Gumbel, Fréchet

and Weibull families, respectively.

This theorem is the cornerstone of EVT since it derived all possible limiting

non-degenerate distributions G that can appear as a limit in (2.1), solving the extremal

limiting problem. Nevertheless, it remains to characterise the distributions F for which

there exist sequences an > 0 and bn, n ≥ 1, such that (2.1) holds for any such specific

limiting distribution, called the domain of attraction problem. More precisely, the problem

lies in determine the necessary and sufficient conditions that must hold on the d.f. of X

in order to get each one of the possible limiting forms that G can take. These conditions

were established by Gnedenko (1943).

By definition, if Fn(anx+bn) tends to G(x), it is said that F is attracted, to maxima, by G

and that an > 0 and bn are the coefficients of attraction. The domain of attraction of G,

denoted by DA(G) is then the set of d.f. that are attracted to the limiting distribution G.

In this way, there are three distinct domains of attraction, one for each different limiting

distribution.

The characterisation of domains of attraction using the theory of functions of regular

variation allows to represent the necessary and sufficient conditions for
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F ∈ DA (Gγ). In particular, for heavy tailed models, ie, models in the Fréchet domain

of attraction, we may write

F ∈ DA(Φα)⇐⇒ F ∈ RV−α.

The three models presented in the above theorem are distinct but related. It is possi-

ble to unify the three corresponding d.f., considering a unique shape parameter, in a

global family known as von Mises-Jenkinson form or Generalised Extreme Value (GEV)

distribution

Gγ (x) =





exp
(
− (1 + γx)−1/γ

)
, for 1 + γx > 0, γ 6= 0,

exp (−exp (−x)) , for x ∈ R, γ = 0,

where γ is the shape parameter, known as tail index, determining the weight of the right

tail of the underlying d.f. F .

The Gumbel, Fréchet and Weibull families are particular cases and the only members

of the GEV distribution: for γ > 0, Gγ is the Fréchet d.f. with α = 1/γ; for γ < 0, Gγ is

the Weibull d.f. with α = −1/γ; and, for γ = 0, taken as a continuity limit for γ → 0, Gγ

is the Gumbel d.f..

Using the concept of domain of attraction, if the Theorem 2.2.1 holds, it is said that F

belongs to the domain of attraction of the d.f. GEV, denoted by F ∈ D(Gγ), γ ∈ R.

The tail behaviour of the distributions influences the shape of the distribution: the light

right tailed distributions are contained in Weibull domain of attraction; the heavy right

tailed distributions belong to the Fréchet domain of attraction; and the Gumbel domain

of attraction contains the exponential right tailed distributions.

The three types of extremal distributions are max-stable distributions, ie, each one

belongs to its own domain of attraction. However, there are distributions that do not

belong to any domain of attraction, ie, it is not possible to found normalising sequences

an > 0 and bn in order to obtain a non degenerate d.f. G.

A great contribution to the introduction of GEV distribution is that it becomes possible

to make the inference directly on the shape parameter γ, instead of having to assume

the validity of one of the models (Weibull, Fréchet or Gumbel) initially.



12 FCUP

EXTREME VALUES. HIGH ORDER QUANTILES AND APPLICATIONS.

The GEV distribution is a general limiting distribution that can be used as an approxi-

mation of Fn, as well as the normal distribution can be used as an approximation of the

distribution of the sum of r.v.. In this sense, Extreme Value Theory is analogous to the

Central Limit Theory, the study of partial maxima replacing that of partial sums.

Apart from this result that describes the asymptotic distribution of an o.s., such as max-

imum and minimum, of a sequence of r.v. that arise from an unknown distribution, it is

also possible to specify the asymptotic distribution of the excesses over high thresholds.

The interest of this approach is to work with the probability that an observation exceeds

the threshold u by no more than an amount x, given that this threshold is exceeded,

represented by FX−u|X>u (x).

Given a random sample X1, . . . , Xn, we define the excesses over a threshold u as

{Ri}Nui=1 = {Yi : Yi = Xi − u, i = 1, . . . , Nu} ,

whereNu = ] {i : Xi > u, i = 1, . . . , Nu} is the number ofXi which exceed the threshold

u. Then, the conditional d.f. of excesses Xi − u over a threshold u given that u is

exceeded is defined by

FX−u|X>u (x) = P (X − u ≤ x|X > u) =
F (x+ u)− F (u)

1− F (u)
,

for 0 ≤ x < xF − u.

In this context, another very important result in EVT is the following theorem, due to

Balkema and de Haan (1974) and Pickands (1975), which specifies the form of the

limiting distribution of the excesses over a high threshold, as the threshold tends to the

right endpoint.

Theorem 2.2.2 (Pickands-Balkema-de Haan theorem). LetX1, X2, . . . , Xn be a sample

of n i.i.d. r.v. with d.f. F , xF the right endpoint of F and

FX−u|X>u(x) = P (X − u ≤ x | X > u) the excess d.f. over a (high) threshold u. Then,

F ∈ DA(Gγ) iff lim
u→xF

sup
0≤x<xF−u

∣∣FX−u|X>u(x)−Hγ,σu(x)
∣∣ = 0,
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where Hγ,σu(x) represents the Generalised Pareto Distribution (GPD), given by:

Hγ,σu(x) =





1−
(
1 + γ x−uσu

)−1/γ
, for 1 + γ x−uσu > 0, γ 6= 0,

1− exp(−x−u
σu

), for x ≥ u, γ = 0,

where γ, u, σu > 0 are the shape, location, and scale parameter depending on threshold

u, respectively.

This theorem shows that the approximation of the excesses over a threshold by a GPD

holds if and only if the d.f. F belongs to the domain of attraction of some extreme value

d.f., showing a relation between the distributions GEV and GPD

Hγ (x) = 1 + log Gγ (x) ,

for all x ∈ R such that 1 + log Gγ (x) > 0.

The GEV and GPD d.f. have equivalent asymptotic tails and, in particular, the tail

index γ is the same for both of them and independent of the selected threshold u.

As suggested by this relation, the GPD also incorporates three types of distributions

depending on the value of γ. For γ < 0, γ = 0 and γ > 0, the GPD, Hγ , is reduced to

Beta, Exponential and (type II) Pareto d.f., respectively, corresponding to the Weibull,

Gumbel and Fréchet domains of attraction to maxima.

Summarising, it turns out that if the maxima have the GEV distribution as a limiting

distribution then the excesses over a high threshold are asymptotically distributed ac-

cording to the GPD.

2.3 Modelling approaches

From the practical point of view, when confronted with a problem related to extreme

events, whose distribution is unknown, the ultimate objective of the study will be the

characterisation of the tail of the distribution that models the sample in which these

events are based since it is a starting point for statistical inference. Consequently, the

adequate estimation of the distribution parameters is considered very important. The
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first issue one is faced with is the choice of what approach to follow in order to estimate

the quantities of interest. The EVT provides several different techniques upon which

one can rely on, which can be basically divided into two approaches, a parametric

approach and a semi-parametric approach.

The parametric approach assumes that the sample data comes from the exact limiting

distribution (GEV or GPD) of the sample extremes, ie, assumes this distribution as the

exact distribution while it is only an approximation. The use of this assumption has

generated some doubts among the researchers. Thus, this approach is concerned with

the parameter estimation of that limit model by point estimation methods.

The semi-parametric approach makes only partly assumptions about the underlying d.f.

F since only supposes that it belongs to the domain of attraction of an extreme value

distribution. As described in the previous section, the domain of attraction is governed

by the right tail of the underlying d.f. F and as such, is in this part of the distribution that

we should focus our attention only taking into account the behaviour of the high o.s..

Thus, this approach focuses primarily on the direct estimation of the shape parameter

that characterises the behaviour of the tail of the distribution in order to describe the

behaviour of extreme values. Currently, the estimation of parameters of extreme events

is often developed under this framework.

In order to perform a correct inference about extreme events from the accessible data,

it is necessary to properly select the extreme observations, following some criterion, to

which the distributions should be fitted. Within EVT framework, there are two primary

methods to define such extreme observations which arise from the two main theorems

of the EVT in the previous section: the Block Maxima method, also known as Gumbel’s

approach, and the Peaks Over Threshold method.

The Block Maxima (BM) method consists in dividing the data in equal size blocks

with a previous determined amplitude and the maximum observation of each block

is collected; the interest lies in the asymptotic study of maxima, to which the GEV

distribution is fitted. In the Peaks Over Threshold (POT) method one select the

observations that exceed a certain high threshold; the interest lies in the asymptotic
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behaviour of the excesses over a high threshold, to which the GPD is fitted.

Accordingly with the data set under study, one must choose which is the most appro-

priate approach to adopt being aware that both methods have disadvantages. One

major drawback of the BM method is that only one observation in a block is used to

make an inference about the limiting distribution of the maximum, resulting in a small

final sample size. That is why, in most of the cases, and whenever a sufficient large

number of observations from a given sample is available, the POT approach presents

more advantages. However, the POT approach also has a drawback, since one of the

assumptions made in the theory is the fact that the observations need to be independent

and in many natural processes there is a time dependence. This encompasses a

problem, since probably the excesses are clustered, that is usually countered by using

methods to identify these clusters and taking the largest value in each cluster as one

observation. On other hand, the selection of an appropriate level to be considered to a

given sample is another important issue to take into account. An inadequate choice of

this level may seriously compromise the tail estimation.

The modelling involves the determination of the extreme value distribution that best suits

each case, ie, the only issue that remains to be resolved is the parameter estimation.

2.4 Tail parameter estimation

The adequate estimation of the tail parameters is one of the most relevant topics in the

EVT. Although we concentrate our investigation under a semi-parametric framework,

in this section we first present some considerations about the behaviour of the most

popular parametric estimators in a EVT context, and after we introduce some important

estimators used in a semi-parametric approach.



16 FCUP

EXTREME VALUES. HIGH ORDER QUANTILES AND APPLICATIONS.

2.4.1 Parametric approach

In order to estimate the unknown parameters of the extreme values models, different

parametric methodologies have been proposed and all of them have advantages and

disadvantages. Since the estimators are functions of the sample, their effectiveness

varies depending on the sample used. In this way it is useful to know some techniques

that give reasonable estimators to consider in each case.

The classical and most popular methods of estimation are the method of moments

(MM) (see e.g. Hosking et al. (1985)), introduced by Karl Pearson at the end of the

19th century, and the maximum likelihood (ML) method (see e.g. Coles and Dixon

(1999) and Katz et al. (2002)) developed by Fisher in 1922. However, the least squares

method, which is a special case of the estimation techniques based on MM, had already

been described by Gauss around 1794 and is believed to be the oldest method of

estimation.

The MM consists in considering the moments of the sample equal to the corresponding

moments of the population and solving the resulting system of equations in order to get

the parameters to be estimated. The ML method, which maximises the probability, is

the most common technique for finding estimators. An estimate obtained by this method

is the most likely value for the parameter given the observed sample and is therefore,

intuitively, a good choice for an estimator. For more details see e.g. Casella and Berger

(1990).

Trying to culminate some problems of these methods, other methods have emerged.

The Probability Weighted Moments (PWM) method was introduced by Landwehr et al.

(1979) and Greenwood et al. (1979) and its application has generated quite a discus-

sion to present a good alternative to ML method. The PWM method is a generalisation

of the MM and was developed by Hosking et al. (1985) with the purpose of enabling

the application of the MM for distributions with moments missing, assigning a greater

weight to values of the tail of the distribution and thus solving a problem identified for

ML method which weight each value of the distribution equally. The effect egalitarian
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weighting of the ML method can also be solved through the Penalised Maximum Likeli-

hood method (see e.g. Coles and Dixon (1999)). Other methods used in the parameters

estimation include the Elemental Percentil Method introduced by Castillo and Hadi

(1997), which is not restricted on the tail index, as well as Bayesian approaches (see

e.g. Coles and Powell (1996)), which have gained more importance with the increasing

of computational capacity.

When estimating the parameters of the extreme values models, one should take into

consideration some important results about the behaviour of the estimators. For in-

stance, it is known that the asymptotic normality of the ML estimate was established for

γ > −1/2, the asymptotic normality of the MM estimate was showed for γ < 1/2, and

that the Penalized Maximum Likelihood method will never be able to provide a shape

estimate greater than one, while the PWM estimators can be calculated even when

γ > 1 (cf. e.g. Diebolt et al. (2008)).

In a general way, the methods based on moments are pointed out as having better

performance than the ML estimators for small samples. However, once is necessary

to impose certain restrictions to its use, is considered by some authors that imposing

the same restrictions to the ML estimators, they have equal or better performance.

Furthermore, the extension to models including covariables is more direct in the ML

method. We recall that several extensions of these methods have been proposed.

Through the use of methods such as those presented, can be inferred parametric

estimators for the parameters of interest.

2.4.2 Semi-parametric approach

The semi-parametric estimators are motivated from the conditions imposed by the

domains of attraction, which are naturally related to the tails of the distributions. The

semi-parametric estimators of the extreme events parameters, such as the tail index

and high quantiles, are then based in the upper o.s. of the associated sample. For

more details see e.g. Beirlant et al. (2004) and de Haan and Ferreira (2006).
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Several estimators have been developed in this context. The estimators presented in

this section were chosen for historical reasons or because they are relevant for this

study.

Tail index estimation

As mentioned before, the tail index γ is one of the most important parameters in

EVT. This real valued parameter determinates the tail behaviour of a distribution and

is directly related with the heaviness of the tail of the underlying model. Deciding

the right tail weight for the distribution underlying the sample data, through a proper

estimation of γ, constitutes a very important starting task in statistical inference for

extreme values allowing to understand and describe the behaviour of the extreme

values of a population.

Therefore, the accurate estimation of the tail index is very important not only by itself

but also because of its great influence on the estimation of other relevant parameters of

rare events, such as the right endpoint of the underlying d.f. F , or high quantiles. Since

we can obtain estimates of the tail parameters of interest based on the estimation of the

tail index, the main question lies in how to estimate γ from a finite sample X1, . . . , Xn.

For a general γ ∈ R, Pickands (1975) proposed the following estimator

P̂ (k) =
1

log 2
· log

X(n−bk/4c+1,n) −X(n−bk/2c+1,n)

X(n−bk/2c+1,n) −X(n−k+1,n)
,

where bxc denotes the integer part of x.

The asymptotic properties of this estimator are discussed in Dekkers and de Haan

(1989). This estimator depends heavily on the number of o.s. used. Therefore the

estimators are rather unworkable in practice for small and moderate sample sizes.

Drees (1996) introduces refined Pickands estimators that suffers less from instability.

Another popular estimator for a general tail index is the moment estimator proposed by
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Dekkers et al. (1989) and is given by

M̂ (k) = M (1)
n + 1− 1

2


1−

(
M

(1)
n

)2

M
(2)
n




−1

,

where

M (j)
n =

1

k

k∑

i=1

(
logX(n−i+1,n) − logX(n−k,n)

)j
, j > 0.

Its consistency and asymptotic normality was proved by Dekkers et al. (1989). This

estimator generalises the classical Hill estimator, proposed for the case γ > 0 by Hill

(1975), defined by

Ĥ (k) =
1

k

k∑

i=1

logX(n−i+1,n) − logX(n−k,n).

The asymptotic properties of Hill estimator have been much studied. Its weak con-

sistency was proved by Mason (1982) and Deheuvels et al. (1988) showed the strong

consistency. The asymptotic normality was investigated by several authors, for instance

Haeusler and Teugels (1985), Csörgő and Mason (1985) and Csörgő and Viharos

(1995), and proved under certain extra conditions.

The Hill estimator is also included as a particular case in the so-called kernel class of

estimators for γ > 0 derived by Csörgő et al. (1985). Many other estimators have been

proposed.

In this study we concentrate our attention on the geometric-type estimator for γ pro-

posed in Brito and Freitas (2003), given by

ĜT (k) =

√√√√M
(2)
n −

[
M

(1)
n

]2

in(k)
,

where

in(k) =
1

k

k∑

i=1

log2(n/i)−
(

1

k

k∑

i=1

log(n/i)

)2

.

This estimator is related to the estimators proposed by Schultze and Steinebach (1996)

and arises in a natural way from a geometrical adaptation of the procedure used by

these authors.
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The asymptotic properties of ĜT were investigated in Brito and Freitas (2003). In

particular, these authors established the consistency of the estimator and proved, under

general regular conditions, its asymptotic normality.

High quantiles estimation

As it is well known, the adequate estimation of extreme quantiles is a complex problem

and several questions are still open. The quantiles are used in several inferential

settings. In more recent years quantiles have received increased attention as a useful

tool in data modelling and they have been used in a wide variety of problems in many

different scientific areas. Through a quantiles study we are interested in quantifying

the size of some extreme event that will only occur with a given small probability, or in

the expected time until it happens. Their role is also important in the exploratory data

analysis since it allows a robust statistical inference.

High quantiles, as functions of the tail index, are possibly the most important parameters

of extreme events, as well as location and scale parameters. We denote by χ1−p the

(1 − p)-order quantile, that is, a value such that the probability of the occurrence of an

exceedance is equal to p, small.

The classical quantiles estimator for the case of heavy tails was proposed by Weissman

(1978),

χ̂W
1−p = X(n−k,n)

(
k

np

)γ̂
,

where γ̂ is a consistent estimator of γ.

Using general quantile techniques and the POT methodology, the POT estimator for

high quantiles above the threshold X(n−k,n) arises naturally and is given by

χ̂P
1−p =

(
k
np

)γ̂
− 1

γ̂
· â
(n
k

)
+ b̂

(n
k

)
, p <

k

n
, (2.2)

where γ̂, â
(
n
k

)
and b̂

(
n
k

)
are, respectively, suitable estimators of the shape, scale and

location parameters of the Generalised Pareto Distribution.
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Details about the high order quantiles estimation can be found, for example, in de Haan

and Rootzén (1993), Matthys and Beirlant (2003) and McNeil and Saladin (1997).





Chapter 3

Geometric-type tail estimation

3.1 Introduction and geometric-type estimator context

We consider the problem of estimating the Pareto-tail index of a distribution function F ,

with tail function F = 1− F ∈ RV−1/γ , γ > 0, that is,

lim
t→∞

F (tx)

F (t)
= x−1/γ , for all x > 0.

Equivalently,

1− F (x) = x−1/γl (x) for x > 0, (3.1)

where l is a slowly varying function at infinity, that is, l satisfies the condition

l (tx) /l (x) → 1 as x → ∞ for all t > 0. The condition (3.1) is equivalent to the regular

variation of the quantile function U (x) = F−1 (1− 1/x), ie,

U (x) = xγL (x) , (3.2)

where L is a slowly varying function at infinity. In this way, the question addressed is

the estimation of γ from a finite sample X1, . . . , Xn.

Let us consider X1, X2, . . . i.i.d. r.v. with d.f. F and let

X(1,n) ≤ X(2,n) ≤ · · · ≤ X(n,n) denote the corresponding o.s. based on the n first

observations. We also consider intermediate sequences k = kn of positive integers
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(1 ≤ k < n), that is

k →∞, k

n
→ 0 as n→∞. (3.3)

We recall that the above problem of tail index estimation of a Pareto-type distribution

is equivalent to the estimation of the exponential tail coefficient. Setting Zi = logXi,

i = 1, 2, . . . , with Xi as above, we have

1−G (z) = P (Z1 > z) = r (z) e−Rz, z > 0, (3.4)

where r (z) = l (ez) is a regularly varying function at infinity and R = 1/γ is a positive

constant, called exponential tail coefficient. Equivalently we have

G−1 (1− s) = − 1

R
log s+ log L̃ (s) , 0 < s < 1,

where L̃ (s) = L (1/s) is a slowly varying function at 0.

The problem of the estimation of the exponential tail coefficient has applications in a

variety of domains and an overview of the existing literature is given in Schultze and

Steinebach (1996).

We focus this work in the problem of estimating the tail index using a geometric-type

estimator of the exponential tail coefficient R, proposed by Brito and Freitas (2003),

given by

R̂ (k) =

√√√√√√

∑k
i=1 log2(n/i)− 1

k

(∑k
i=1 log(n/i)

)2

∑k
i=1 Z

2
(n−i+1,n) − 1

k

(∑k
i=1 Z(n−i+1,n)

)2 . (3.5)

This estimator arises from the study of two estimators based on the least squares

method introduced by Schultze and Steinebach (1996). One of these estimators was

also introduced by Kratz and Resnick (1996) in an independent but equivalent way, and

generalised by Beirlant et al. (2005) to the case where γ is real-valued. In general, when

compared with other tail index estimators, it is reported that the estimators proposed

by Schultze and Steinebach have a very good behaviour, performing better in several

circumstances.

One of the interesting characteristics of the least squares estimators is the smoothness

of the realisations as a function of k. It should be noted that the high variability that
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some tail estimators present is not a welcome feature, since it makes more difficult the

proper selection of the number of upper order statistics involved in the estimation. In

this sense, the stability presented in almost all examples can be considered a prominent

advantage of the least squares estimators over the classical Hill estimator, which plots

often exhibit strong trends and a considerable lack of smoothness resulting in different

estimates for neighbouring values of k and an extreme sensibility to the choice of the

ideal k-value (see e.g. Csörgő and Viharos (1998)). On the other hand, it can be shown

that the asymptotic variance of the geometric-type estimator is twice the asymptotic

variance of the Hill estimator. However, given the bias presented by the Hill estimator,

the asymptotic variance should not be the only criterion to be considered.

The estimators provided by Schultze and Steinebach were motivated by the fact that

− log(1 − G(z)), from (3.4), is approximately linear with slope R, for large z, since

z−1 log r(z) → 0 as z → ∞. It is then expected that − log(1 − Gn(z)) is also approxi-

mately linear for high values of n and z, where Gn denotes the empirical d.f. associated

to the random sample Z1, . . . , Zn. It was also assumed that r(z) ≡ c, ∀z > 0, and thus

y := − log(1−G(z)) = Rz − log c = Rz − d,

or equivalentely,

z = R−1(y + d) = ay + b,

where a = R−1, b = R−1d and d = log c.

Denoting by zi := z(n−i+1,n), i = 1, . . . , k ≤ n, the k upper o.s. of the sample Z1, . . . , Zn,

Schultze and Steinebach approximate − log(1 − G(zi)) by

yi := − log(1 − Gn(z−i )) = − log(1 − (n − i)/n) = log(n/i), obtaining that yi is “close”

to Rzi − d, or equivalently, zi is “close” to ayi + b. Following this approach, one of

the estimators was obtained by minimising the function f1(a, b) =
∑k

i=1(zi − ayi − b)2

and the other one by minimising the function f2(R, d) =
∑k

i=1(yi − Rzi + d)2, which

corresponds to determining the inverse of the slope of the line by minimising the sum

of the distances between the points {(zi, yi), i = 1, . . . , k} and the line, measured in

horizontal or vertical, respectively.
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The R̂ estimator is obtained through a geometrical adaptation of these two perspectives,

minimising the sum of the areas of the rectangles whose sides are the horizontal and

vertical segments between the points {(zi, yi), i = 1, . . . , k} and the line, in Figure 3.1,

which is equivalent to minimise the function

f(R, d) =
∑k

i=1
(yi −Rzi + d)(R−1yi +R−1d− zi).

In this way both horizontal and vertical distances between the points {(zi, yi), i = 1, . . . , k}
and the line are minimised.

estacionárias, com uma estrutura de dependência semelhante à considerada por Hsing, e
faremos uma aplicação ao caso de sucessões estacionárias m-dependentes.

Na secção 1.2, introduziremos o já referido estimador de tipo geométrico, �R(kn), para

o coeficiente de cauda exponencial, relacionado com os estimadores �R1(kn) e �R3(kn) de
Schultze e Steinebach, e provaremos um resultado acerca da sua consistência. Na secção
1.3 mostraremos que, para sucessões kn que verifiquem (1.1.5) e tais que kn/ log4 n → ∞
quando n → ∞, �R(kn) é assimptoticamente normal sobre toda a classe de funções de
distribuição que satisfazem (1.1.1), quando centrado numa certa sucessão determińıstica
que converge para R. Na secção 1.4 estabeleceremos um resultado acerca da normalidade
assimptótica de �R(kn), quando centrado em R. Na secção 1.5 iremos considerar o proced-
imento bootstrap de cauda introduzido por Bacro e Brito (1998) e mostrar que é posśıvel,
usando esse método, construir intervalos de confiança para R, com base no estimador
�R(kn). Por fim, na secção 1.6 estudaremos a consistência do novo estimador no caso de
v.a. dependentes, seguindo o estudo de Hsing (1991) para o estimador de Hill.

1.2 Um estimador geométrico para coeficiente de cauda

exponencial, �R
No seguimento do estudo dos estimadores �R1(kn) e �R3(kn) correspondentes às Figuras 1 e
2, consideramos os dois pontos de vista simultaneamente, minimizando a soma das áreas
dos rectângulos indicados na figura seguinte.

z

(z  , y )

(ay + b , Rz  - d)

y 

 

 i

 i

 i
 i  i

 i

y

z

Figura 3.

Assim, um novo estimador para R de tipo geométrico, �R(kn), resulta da minimização
da função

f(R, d) =
kn�

i=1

(yi − Rzi + d)(R−1yi + R−1d − zi).

O estimador deduzido é o seguinte:

15

Figure 3.1: Geometric representation of the rectangles whose areas will be minimised to obtain the

estimator of R.

The asymptotic properties of R̂ were investigated in Brito and Freitas (2003). In par-

ticular, these authors established the consistency of the estimator and proved that,

under general regularity conditions, the distribution of k1/2
(
R̂ (k)−R

)
is asymptotically

normal. This estimator also enjoys of certain properties that makes its use specially

attractive for the case where R is expected to be small (see e.g. Csörgő and Viharos

(1998) and Brito and Freitas (2006)).

In the context of estimating the tail index, we will consider the following geometric-type

(GT) estimator for γ:

ĜT (k) =
1

R̂ (k)
=

√√√√M
(2)
n −

[
M

(1)
n

]2

in(k)
. (3.6)
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where

in(k) =
1

k

k∑

i=1

log2(n/i)−
(

1

k

k∑

i=1

log(n/i)

)2

(3.7)

and

M (j)
n (k) =

1

k

k∑

i=1

(
logX(n−i+1,n) − logX(n−k,n)

)j
. (3.8)

The asymptotic properties of ĜT arise naturally from the corresponding properties of R̂

studied in Brito and Freitas (2003).

To deal with the suggested problems, the procedures are formulated under second

order conditions. We begin by assuming there exists a positive function a such that, for

all x > 0,

lim
t→∞

U (tx)− U (t)

a (t)
=
xγ − 1

γ
. (3.9)

From (3.2), we can choose a (t) = γU (t). We also suppose that there exists a function

A (t), tending to zero as t→∞, such that

lim
t→∞

U(tx)
U(t) − xγ

A (t)
= xγ

xρ − 1

ρ
, (3.10)

for all x > 0, where ρ < 0 is the shape parameter governing the rate of convergence of

U (tx) /U (t) to xγ and the function |A (t) | ∈ RVρ (see e.g. Geluk and de Haan (1987)).

3.2 Asymptotic properties of the geometric-type estimator

Here the asymptotic normality of the geometric-type estimator is shown using a method

that proves to be very useful for statistical inference, in particular for bias treatment. We

first derive the asymptotic distributional representation of the geometric-type estimator.

Since in(k) → 1 as n → ∞, we begin by considering the asymptotic normality of the

following tail index estimator of γ

γ̃ (k) =

√
M

(2)
n −

[
M

(1)
n

]2
.
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Theorem 3.2.1. Assume (3.10) holds. For sequences k such that (3.3) holds, we have

the following asymptotic distributional representation

γ̃ (k)
D
= γ +

γ

2
√
k
Qn −

γ√
k
Pn +

A
(
n
k

)

(1− ρ)2
+ op

(
A
(n
k

))
+Op

(
1

k

)
,

where Pn =
√
k
(∑k

i=1 Zi/k − 1
)

and Qn =
√
k
(∑k

i=1 Z
2
i /k − 2

)
, (Pn, Qn) is asymp-

totically normal with mean equal to ( 0
0 ) and covariance matrix ( 1 4

4 20 ), and {Zi} denote

i.i.d. standard exponential r.v..

For the proof of Theorem 3.2.1 we need the following Lemma.

Lemma 3.2.2 (Dekkers and de Haan (1993), Lemma 3.1). Let

Y(1,n) ≤ Y(2,n) ≤ · · · ≤ Y(n,n) denote the o.s. based on the n first observations of

the sequence Y1, . . . , Yn of i.i.d. r.v. with common d.f. 1 − 1/x (x > 1). Let k be such

that (3.3) holds. For γ > 0, define

Tn =
√
k

{
1

k

k∑

i=1

log Y(n−i+1,n) − log Y(n−k,n) − 1

}
,

Vn =
√
k

{
1

k

k∑

i=1

(
log Y(n−i+1,n) − log Y(n−k,n)

)2 − 2

}
.

Then (Tn, Vn) is asymptotically normal with mean equal to ( 0
0 ) and covariance matrix

( 1 4
4 20 ).

Proof of Theorem 3.2.1. Note that the condition (3.10) is equivalent to

lim
t→∞

logU (tx)− logU (t)− γ log x

A (t)
=
xρ − 1

ρ
.

Consequently we have

logU (tx)− logU (t) = γ log x+A (t)
xρ − 1

ρ
(1 + o (1))

and

(logU (tx)− logU (t))2 = (γ log x)2 + 2γ
xρ − 1

ρ
(log x)A (t) + o (A (t)) ,



FCUP 29

CHAPTER 3. GEOMETRIC-TYPE TAIL ESTIMATION

as t→∞.

Let us consider the variables presented in Lemma 3.2.2.

Since
(
X(1,n), X(2,n), · · · , X(n,n)

) D
=
(
U
(
Y(1,n)

)
, U
(
Y(2,n)

)
, · · · , U

(
Y(n,n)

))
, without loss

of generality we can write X(i,n) = U
(
Y(i,n)

)
.

Then,

M (1)
n =

1

k

k∑

i=1

logX(n−i+1,n) − logX(n−k,n)

=
1

k

k∑

i=1

logU

(
Y(n−i+1,n)

Y(n−k,n)
Y(n−k,n)

)
− logU

(
Y(n−k,n)

)

= γ +
γ√
k
Tn +

A
(
Y(n−k,n)

)

1− ρ + op
(
A
(
Y(n−k,n)

))
.

The last equality follows from regular variation properties and Potter bounds (cf. the

proof of Theorem 3.2.5 of de Haan and Ferreira (2006)), using in particular that

1

k

k∑

i=1




(
Y(n−i+1,n)

Y(n−k,n)

)ρ
− 1

ρ


 D

=
1

k

k∑

i=1

(
Y ρ
i − 1

ρ

)
,

which tends to E
(
Y ρ1 −1
ρ

)
= 1

1−ρ .

We have also

M (2)
n =

1

k

k∑

i=1

[
logX(n−i+1,n) − logX(n−k,n)

]2

= 2γ2 +
γ2√
k
Vn +A

(
Y(n−k,n)

) 2γ (2− ρ)

(1− ρ)2
+ op

(
A
(
Y(n−k,n)

))
,

using in particular that

1

k

k∑

i=1




(
Y(n−i+1,n)

Y(n−k,n)

)ρ
− 1

ρ
log

Y(n−i+1,n)

Y(n−k,n)


 D

=
1

k

k∑

i=1

(
Y ρ
i − 1

ρ
log Yi

)
,

which tends to E
(
Y ρ1 −1
ρ log Y1

)
= 2−ρ

(1−ρ)2 .

Considering h(x) = x2 and the Taylor expansion of h
(
M

(1)
n

)
around γ we obtain

[
M (1)
n

]2
= γ2 +

2γ2√
k
Tn +

2γ

1− ρA
(
Y(n−k,n)

)
+ op

(
A
(
Y(n−k,n)

))
+Op

(
1

k

)
.
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Using the above representations we obtain

γ̃2 (k) = M (2)
n −

[
M (1)
n

]2

= γ2 +
γ2√
k

(Vn − 2Tn) + d A
(
Y(n−k,n)

)
+ op

(
A
(
Y(n−k,n)

))
+Op

(
1

k

)
,

where d = 2γ/ (1− ρ)2.

Since A (t) ∈ RVρ, then A (tx) = xρA (t) (1 + o (1)).

Noting that (k/n)Y(n−k,n) = 1 + op (1), we have

A
(
Y(n−k,n)

)
= A

(n
k

(1 + op (1))
)

= A
(n
k

)
+ op

(
A
(n
k

))
.

Therefore, we may write

γ̃2 (k) = γ2 +
γ2√
k

(Vn − 2Tn) + d A
(n
k

)
+ op

(
A
(n
k

))
+Op

(
1

k

)
.

Considering g(x) =
√
x and the Taylor expansion of g

(
γ̃2 (k)

)
around γ2 we obtain

γ̃ (k) = γ +
1

2γ

[
γ2√
k

(Vn − 2Tn) + d A
(n
k

)
+ op

(
A
(n
k

))
+Op

(
1

k

)]

= γ +
γ

2
√
k
Vn −

γ√
k
Tn +

A
(
n
k

)

(1− ρ)2
+ op

(
A
(n
k

))
+Op

(
1

k

)
.

(3.11)

Recall that log
(
Y(n−i+1,n)/Y(n−k,n)

)
are exponential standard r.v., Exp (1). Using Lemma

3.2.2, from (3.11) we can write

γ̃ (k)
D
= γ +

γ

2
√
k
Qn −

γ√
k
Pn +

A
(
n
k

)

(1− ρ)2
+ op

(
A
(n
k

))
+Op

(
1

k

)
,

where Pn =
√
k
(∑k

i=1 Zi/k − 1
)

, Qn =
√
k
(∑k

i=1 Z
2
i /k − 2

)
, with {Zi} i.i.d. exponen-

tial standard r.v., are jointly asymptotic normal.

This completes the proof.

Corollary 3.2.3. Assume the conditions of Theorem 3.2.1 hold. If k is such that
√
kA(n/k)→ λ finite, then

√
k (γ̃ (k)− γ)
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is asymptotically normal distributed as n → ∞ with variance 2γ2 and a non-null mean

value given by λ/(1− ρ)2.

Proof of Corollary 3.2.3. As (Pn, Qn)
D−→ N




 0

0


 ,


 1 4

4 20




,

V
(√

k (γ̃ (k)− γ)
)
≈ V

(γ
2
Qn

)
+ V (γPn)− 2Cov

(γ
2
Qn, γPn

)
−−−→
n→∞

2γ2.

The result follows from the proof of Theorem 3.2.1.

Theorem 3.2.4. Assume (3.10) holds. For sequences k such that (3.3) holds, we have

the following asymptotic distributional representation

ĜT (k)
D
= γ +

γ

2
√
k
Qn −

γ√
k
Pn +

A
(
n
k

)

(1− ρ)2
+ op

(
A
(n
k

))
+Op

(
log2 k

k

)
,

where Pn =
√
k
(∑k

i=1 Zi/k − 1
)

and Qn =
√
k
(∑k

i=1 Z
2
i /k − 2

)
, (Pn, Qn) is asymp-

totically normal with mean equal to ( 0
0 ) and covariance matrix ( 1 4

4 20 ), and {Zi} denote

i.i.d. standard exponential r.v..

For proving Theorem 3.2.4 we use the following auxiliary Lemma.

Lemma 3.2.5 (Brito and Freitas (2003), Lemma 2). Let k be a sequence of positive

integers such that 1 ≤ k ≤ n. For the sequence in (k) defined in (3.7) we have

in (k) = 1 +O

(
log2 k

k

)
.

Proof of Theorem 3.2.4. We recall that

ĜT (k) =
γ̃ (k)√
in (k)

.

Note now that we can write

√
k
(
ĜT (k)− γ

)
=
√
k (γ̃ (k)− γ) +

√
kγ̃ (k)

(
1√
in (k)

− 1

)
.

As γ̃ (k)
P−−−→

n→∞
γ, from Lemma 3.2.5 we get

√
kγ̃ (k)

(
1√
in (k)

− 1

)
= Op

(
log2 k√

k

)
.
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So, from the proof of Theorem 3.2.1 and Lemma 3.2.5, we have

ĜT (k) = γ +
γ

2
√
k
Vn −

γ√
k
Tn +

A
(
n
k

)

(1− ρ)2
+ op

(
A
(n
k

))
+Op

(
log2 k

k

)
,

where Tn and Vn are the same as in proof of Theorem 3.2.1 and the result follows.

Corollary 3.2.6. Assume the conditions of Theorem 3.2.4 hold. If k is such that
√
kA(n/k)→ λ finite, then

√
k
(
ĜT (k)− γ

)

is asymptotically normal distributed as n → ∞ with variance 2γ2 and a non-null mean

value given by λ/(1− ρ)2.

Proof of Corollary 3.2.6. By Theorem 3.2.4, the result is established in a similar way to

the proof of Corollary 3.2.3.

3.3 High order quantiles estimation using the geometric-type

estimator

The information given by a proper study of quantiles is very important and useful for

the many different areas of knowledge. Such a study enables to use a probabilistic

approach to characterise events with an extremely rare occurrence. Then, the adequate

estimation of high order quantiles is one of the most important problems in statistics. In

this way, we are interested in the estimation of a high quantile χ1−p = U(1/p), a value

exceeded with a small probability, ie, such that F (χ1−p) = 1 − p. The estimation of

high quantiles has been considered by several authors (see e.g. de Haan and Rootzén

(1993)). Here, we use (2.2) applying the geometric-type estimator as an estimator of γ,

X(n−k,n)M
(1)
n and X(n−k,n) as suitable estimators of the scale and location parameters,

and the asymptotic normality of the resulting estimator is established.

We consider the following estimator for high quantiles

χ̂ĜT
1−p =

(
k
np

)ĜT (k)
− 1

ĜT (k)
·X(n−k,n)M

(1)
n +X(n−k,n), (3.12)
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for some p = pn → 0 as n → ∞, with np small. We begin by showing the following

theorem.

Note that a(n/k), γ and U(n/k), in (3.9), are the scale, shape and location parameters

of the Generalised Pareto Distribution.

Theorem 3.3.1. Suppose that for some function A with A(t) → 0 as t → ∞, the

condition (3.10) holds and
√
kA(n/k) → λ finite, as n → ∞. Let k be such that (3.3)

holds. Then

√
k

(
X(n−k,n)M

(1)
n

a
(
n
k

) − 1, ĜT (k)− γ,
X(n−k,n) − U

(
n
k

)

a
(
n
k

)
)

D−−−→
n→∞

(Λ,Γ, B) ,

where (Λ,Γ, B) are jointly normal r.v. with mean vector
(
λ/ (γ − γρ) , λ/ (1− ρ)2 , 0

)>

and covariance matrix 


1 + γ2 γ γ

γ 2γ2 0

γ 0 1


 . (3.13)

Proof of Theorem 3.3.1. The result follows by using the classic methodology of Central

Limit Theory. By Cramér-Wold Device, it is enough to prove that every linear combina-

tion of its three components is asymptotically normal, ie,

t1
√
k

(
X(n−k,n)M

(1)
n

a
(
n
k

) − 1

)
+ t2
√
k
(
ĜT (k)− γ

)
+ t3
√
k

(
X(n−k,n) − U

(
n
k

)

a
(
n
k

)
)

(3.14)

has an asymptotically normal distribution with t1, t2, t3 ∈ R.

Let us consider the r.v. Y(i,n), Vn and Tn as in Lemma 3.2.2.

Setting a
(
n
k

)
= γU

(
n
k

)
without loss of generality, then we have that (3.14) is equal to

t1
√
k

(
X(n−k,n)M

(1)
n

γU
(
n
k

) − 1

)
+ t2
√
k
(
ĜT (k)− γ

)
+ t3
√
k

(
X(n−k,n) − U

(
n
k

)

a
(
n
k

)
)
.

Considering now the condition (3.10), we have

U(tx)
U(t) − xγ

A (t)
= xγ

xρ − 1

ρ
(1 + o (1)) ,
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that we rewrite as

U(Y(n−k,n))
U(nk )

−
(
k
nY(n−k,n)

)γ

A
(
n
k

) =

(
k

n
Y(n−k,n)

)γ ( k
nY(n−k,n)

)ρ − 1

ρ
(1 + op (1)) .

We write again without loss of generality X(i,n) = U
(
Y(i,n)

)
. Then

X(n−k,n)
U
(
n
k

) =

(
k

n
Y(n−k,n)

)γ [
1 +

(
k
nY(n−k,n)

)ρ − 1

ρ
A
(n
k

)
(1 + op (1))

]
.

Once xα = 1 +α (x− 1) + o (x− 1) as x→ 1 and
√
kA(n/k) converges to λ as n→∞,

we have
X(n−k,n)
U
(
n
k

) = 1 + γ

(
k

n
Y(n−k,n) − 1

)
+ op

(
A
(n
k

))
.

Thus, we have the following property

X(n−k,n)
U
(
n
k

) = 1 +
γ√
k
Bn + op

(
A
(n
k

))
,

where Bn =
√
k
(
k
nY(n−k,n) − 1

)
is an asymptotically standard normal r.v. (cf. e.g.

Smirnov (1967)).

Moreover, by the proof of Theorem 3.2.1, and since
√
kA(n/k)→ λ as n→∞,

M (1)
n = γ +

γ√
k
Tn +

A
(
Y(n−k,n)

)

1− ρ + op
(
A
(
Y(n−k,n)

))

and
√
k (γ̃ (k)− γ) =

γ

2
Vn − γTn +

λ

(1− ρ)2
+ op (1) .

Then we can write

√
k

(
X(n−k,n)M

(1)
n

a
(
n
k

) − 1

)
=
√
k

(
X(n−k,n)
U
(
n
k

) · M
(1)
n

γ
− 1

)

=
√
k

(
M

(1)
n

γ
− 1

)
+
√
k

(
M

(1)
n

γ

γ√
k
Bn +

M
(1)
n

γ
op

(
A
(n
k

)))

= Tn + γBn +
λ

γ (1− ρ)
+ op (1) ,

(3.15)
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since
√
kA
(
n
k

)
→ λ as n→∞ and M (1)

n = γ + op (1).

From the proof of Theorem 3.2.4 we can write

√
k
(
ĜT (k)− γ

)
=
γ

2
Vn − γTn +

λ

(1− ρ)2
+ op (1) . (3.16)

Consider now the third component. We have

√
k

(
X(n−k,n) − U

(
n
k

)

a
(
n
k

)
)

=

√
k

γ

(
X(n−k,n)
U
(
n
k

) − 1

)

=

√
k

γ

[
γ√
k
Bn + op

(
A
(n
k

))]

= Bn + op (1) .

(3.17)

By (3.15), (3.16) and (3.17), we may now rewrite (3.14) as

t1
√
k

(
X(n−k,n)M

(1)
n

a
(
n
k

) − 1

)
+ t2
√
k
(
ĜT (k)− γ

)
+ t3
√
k

(
X(n−k,n) − U

(
n
k

)

a
(
n
k

)
)

= (t1 − t2γ)Tn + t2
γ

2
Vn + (t1γ + t3)Bn + t1

λ

γ (1− ρ)
+ t2

λ

(1− ρ)2
+ op (1) .

Since Tn and Vn are as in Lemma 3.2.2, Zi := log Y(n−i+1,n) − log Y(n−k,n) are i.i.d

exponential standard r.v. and Bn =
√
k
(
k
nY(n−k,n) − 1

)
is asymptotically normal and

independent of Tn and Vn, we have that (3.14) is asymptotically normal.

Now we are going to compute the asymptotic mean and variance of

√
k

(
X(n−k,n)M

(1)
n

a
(
n
k

) − 1, ĜT (k)− γ,
X(n−k,n) − U

(
n
k

)

a
(
n
k

)
)
.

By (3.15) we have

E (Tn) + γE (Bn) + E

(
λ

γ (1− ρ)

)
−−−→
n→∞

λ

γ (1− ρ)

and

V (Tn) + γ2V (Bn)− 2Cov (Tn, γBn) −−−→
n→∞

1 + γ2.

By (3.16) we have

γ

2
E (Vn)− γE (Tn) + E

(
λ

(1− ρ)2

)
−−−→
n→∞

λ

(1− ρ)2
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and
γ2

4
V (Vn) + γ2V (Tn)− 2Cov

(γ
2
Vn, γTn

)
−−−→
n→∞

2γ2.

By (3.17) we have

E (Bn) −−−→
n→∞

0

and

V (Bn) −−−→
n→∞

1.

By (3.15) and (3.16) and using the fact that Bn is independent of Tn and Vn, we have

E

[(
Tn + γBn +

λ

γ (1− ρ)

)
·
(
γ

2
Vn − γTn +

λ

(1− ρ)2

)]
=

= E

(
γ

2
TnVn − γT 2

n +
γ2

2
BnVn − γ2BnTn

)

=
γ

2
Cov (Tn, Vn)− γV (Tn) −−−→

n→∞
2γ − γ = γ.

By (3.15) and (3.17) and using the fact that Bn is independent of Tn, we obtain

E

[(
Tn + γBn +

λ

γ (1− ρ)

)
· (Bn)

]
= E

(
TnBn + γB2

n

)
−−−→
n→∞

γ.

By (3.16) and (3.17) and using the fact that Bn is independent of Tn and Vn, we have

E

[(
γ

2
Vn − γTn +

λ

(1− ρ)2

)
· (Bn)

]
= E

(γ
2
VnBn − γTnBn

)
−−−→
n→∞

0.

Using the previous result, the asymptotic normality of the quantiles estimator can be

established.

Theorem 3.3.2. Suppose that for some function A with A(t) → 0 as t → ∞ such that
√
kA(n/k) → λ finite, the conditions (3.10) and (3.3) holds, np = o(k) and log(np) =

o(
√
k) as n→∞. Then,

√
k

χ̂ĜT
1−p − χ1−p

a
(
n
k

) ∫ k
np

1 sγ−1 log s ds

D−−−→
n→∞

N

(
λ

(1− ρ)2
, 2γ2

)
, (3.18)

where χ̂ĜT
1−p is the quantiles estimator based on the geometric-type estimator defined in

(3.12).
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Proof of Theorem 3.3.2. First we begin to write

χ̂ĜT
1−p − χ1−p =

(
k
np

)ĜT
− 1

ĜT
·X(n−k,n)M

(1)
n +X(n−k,n) − χ1−p

=

(
k
np

)ĜT
− 1

ĜT
·X(n−k,n)M

(1)
n +X(n−k,n) − U

(
1

p

)
− U

(n
k

)
+ U

(n
k

)

= X(n−k,n) − U
(n
k

)
+

(
k
np

)ĜT
− 1

ĜT
·X(n−k,n)M

(1)
n +

(
k
np

)γ
− 1

γ
·X(n−k,n)M

(1)
n

−

(
k
np

)γ
− 1

γ
·X(n−k,n)M

(1)
n +

(
k
np

)γ
− 1

γ
· a
(n
k

)
−

(
k
np

)γ
− 1

γ
· a
(n
k

)
−
[
U

(
1

p

)
− U

(n
k

)]

= X(n−k,n) − U
(n
k

)
+X(n−k,n)M

(1)
n


(
k
np

)ĜT
− 1

ĜT
−

(
k
np

)γ
− 1

γ



+

(
k
np

)γ
− 1

γ

[
X(n−k,n)M

(1)
n − a

(n
k

)]
−

U (1

p

)
− U

(n
k

)
−

(
k
np

)γ
− 1

γ
· a
(n
k

) .

Hence we obtain

√
k

χ̂ĜT
1−p − χ1−p

a
(
n
k

) ∫ k
np

1 sγ−1 log s ds

=

=
√
k

X(n−k,n) − U
(
n
k

)
a
(
n
k

) ∫ k
np

1 sγ−1 log s ds

+
√
k

X(n−k,n)M
(1)
n

( k
np

)ĜT
−1

ĜT
−
(
k
np

)γ
−1

γ


a
(
n
k

) ∫ k
np

1 sγ−1 log s ds

+
√
k

(
k
np

)γ
−1

γ

[
X(n−k,n)M

(1)
n − a

(
n
k

)]
a
(
n
k

) ∫ k
np

1 sγ−1 log s ds

−
√
k
U
(

1
p

)
− U

(
n
k

)
−
(
k
np

)γ
−1

γ
a
(
n
k

)
a
(
n
k

) ∫ k
np

1 sγ−1 log s ds

=
√
k
X(n−k,n) − U

(
n
k

)
a
(
n
k

) · 1∫ k
np

1 sγ−1 log s ds︸ ︷︷ ︸
PART I

+
X(n−k,n)M

(1)
n

a
(
n
k

)


√
k∫ k

np

1 sγ−1 log s ds

·


(
k
np

)ĜT
− 1

ĜT
−

(
k
np

)γ
− 1

γ




︸ ︷︷ ︸
PART II

+
√
k

(
X(n−k,n)M

(1)
n

a
(
n
k

) − 1

) (
k
np

)γ
− 1

γ
∫ k
np

1 sγ−1 log s ds︸ ︷︷ ︸
PART III

−
√
k∫ k

np

1 sγ−1 log s ds

U
(

1
p

)
− U

(
n
k

)
a
(
n
k

) −

(
k
np

)γ
− 1

γ


︸ ︷︷ ︸

PART IV

.

Now we are going to show that PART I
P−→ 0, PART II

D−→ Γ (where Γ is from Theorem
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3.3.1), PART III
P−→ 0 and PART IV

P−→ 0. First we consider the first part

PART I =
√
k
X(n−k,n) − U

(
n
k

)

a
(
n
k

) · 1
∫ k
np

1 sγ−1 log s ds

.

We have that

∫ k
np

1
sγ−1 log s ds =

[
sγ

γ
log s

] k
np

1

− 1

γ

∫ k
np

1
sγ

1

s
ds

=

(
k
np

)γ
log k

np

γ
−
[

1

γ2
sγ
] k
np

1

=
1

γ

[(
k

np

)γ
log

k

np
− 1

γ

(
k

np

)γ
+

1

γ

]
,

and, from Theorem 3.3.1, we obtain

√
k
X(n−k,n) − U

(
n
k

)

a
(
n
k

) D−→ B.

It remains to prove that

1

1
γ

[(
k
np

)γ
log k

np − 1
γ

(
k
np

)γ
+ 1

γ

] −→ 0.

Since, from initial conditions, np = o (k) as n → ∞, then
(
k
np

)γ
→ ∞ (with γ > 0).

Thus, log
(
k
np

)
→∞ and

1

1
γ

[(
k
np

)γ
log k

np − 1
γ

(
k
np

)γ
+ 1

γ

] =
γ
(
k
np

)−γ

log k
np − 1

γ + 1
γ

(
k
np

)−γ → 0.

Hence,

PART I =
√
k
X(n−k,n) − U

(
n
k

)

a
(
n
k

) · 1

1
γ

[(
k
np

)γ
log k

np − 1
γ

(
k
np

)γ
+ 1

γ

] → 0.

Consider now the second part

PART II =
X(n−k,n)M

(1)
n

a
(
n
k

)




√
k

∫ k
np

1 sγ−1 log s ds

·




(
k
np

)ĜT
− 1

ĜT
−

(
k
np

)γ
− 1

γ





 .
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Since from Theorem 3.3.1

√
k

(
X(n−k,n)M

(1)
n

a
(
n
k

) − 1

)
D−→ Λ,

then,
X(n−k,n)M

(1)
n

a
(
n
k

) − 1
P−→ 0,

ie,
X(n−k,n)M

(1)
n

a
(
n
k

) = 1 + op (1) .

We also know that

∫ k
np

1
sγ−1 ds =

[
sγ

γ

] k
np

1

=

(
k
np

)γ

γ
− 1

γ
=

(
k
np

)γ
− 1

γ
.

Then,
(
k
np

)ĜT
− 1

ĜT
−

(
k
np

)γ
− 1

γ
=

∫ k
np

1
sĜT−1 ds−

∫ k
np

1
sγ−1 ds

=

∫ k
np

1

(
sĜT−1 − sγ−1

)
ds

=

∫ k
np

1
sγ−1

(
sĜT−γ − 1

)
ds.

Thus, we may write

√
k

∫ k
np

1 sγ−1 log s ds

·




(
k
np

)ĜT
− 1

ĜT
−

(
k
np

)γ
− 1

γ


 =

√
k
∫ k
np

1 sγ−1
(
sĜT−γ − 1

)
ds

∫ k
np

1 sγ−1 log s ds

=

√
k

∫ k
np

1 sγ−1 log s ds

∫ k
np

1
sγ−1

e(ĜT−γ) log s − 1

(ĜT − γ) log s
(ĜT − γ) log s ds

=

√
k(ĜT − γ)

∫ k
np

1 sγ−1 log s ds

∫ k
np

1
sγ−1 log s

e(ĜT−γ) log s − 1

(ĜT − γ) log s
ds.

From Theorem 3.3.1,
√
k(ĜT − γ)

D−→ Γ.



40 FCUP

EXTREME VALUES. HIGH ORDER QUANTILES AND APPLICATIONS.

Then, in order to obtain the pretended result, we may write

√
k(ĜT − γ)

∫ k
np

1 sγ−1 log s ds

∫ k
np

1
sγ−1 log s

e(ĜT−γ) log s − 1

(ĜT − γ) log s
ds−

√
k(ĜT − γ)

=

√
k(ĜT − γ)

∫ k
np

1 sγ−1 log s ds

[∫ k
np

1
sγ−1 log s

e(ĜT−γ) log s − 1

(ĜT − γ) log s
ds−

∫ k
np

1
sγ−1 log s ds

]

=

√
k(ĜT − γ)

∫ k
np

1 sγ−1 log s ds

∫ k
np

1
sγ−1 log s

(
e(ĜT−γ) log s − 1

(ĜT − γ) log s
− 1

)
ds.

Moreover, by initial conditions, log (np) = o
(√

k
)

, then we have that, for any 1 ≤ s ≤ k
np ,

∣∣∣(ĜT − γ) log s
∣∣∣ ≤

∣∣∣
√
k(ĜT − γ)

∣∣∣
log
(
k
np

)

√
k

P−→ 0.

From the above result and taking into account the fact that, by Taylor expansion,
∣∣ ex−1

x − 1
∣∣ ≤ |x| as x→ 0, we obtain that

∣∣∣∣∣∣

√
k(ĜT − γ)

∫ k
np

1 sγ−1 log s ds

∫ k
np

1
sγ−1 log s

(
e(ĜT−γ) log s − 1

(ĜT − γ) log s
− 1

)
ds

∣∣∣∣∣∣
≤

≤
√
k
∣∣∣ĜT − γ

∣∣∣
∫ k
np

1 sγ−1 log s ds

∫ k
np

1
sγ−1 log s

∣∣∣(ĜT − γ) log s
∣∣∣ ds

≤
√
k
∣∣∣ĜT − γ

∣∣∣
∫ k
np

1 sγ−1 log s ds

∫ k
np

1
sγ−1 log s

∣∣∣∣(ĜT − γ) log
k

np

∣∣∣∣ ds

=
[√

k
(
ĜT − γ

)]2 log k
np√
k

= Op(1)
log k

np√
k

P−→ 0.

Consequently we have,

PART II =
X(n−k,n)M

(1)
n

a
(
n
k

)




√
k

∫ k
np

1 sγ−1 log s ds

·




(
k
np

)ĜT
− 1

ĜT
−

(
k
np

)γ
− 1

γ







D−→ Γ.

Next we write the third part as
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PART III =
√
k

(
X(n−k,n)M

(1)
n

a
(
n
k

) − 1

) (
k
np

)γ
− 1

γ
∫ k
np

1 sγ−1 log s ds

=

=
√
k

(
X(n−k,n)M

(1)
n

a
(
n
k

) − 1

) (
k
np

)γ
− 1

γ 1
γ

[(
k
np

)γ
log k

np − 1
γ

(
k
np

)γ
+ 1

γ

]

=
√
k

(
X(n−k,n)M

(1)
n

a
(
n
k

) − 1

)
1−

(
k
np

)−γ

log k
np − 1

γ + 1
γ

(
k
np

)−γ

P−→ 0,

since
√
k

(
X(n−k,n)M

(1)
n

a(nk )
− 1

)
D−→ Λ by Theorem 3.3.1.

Finally we focus on the fourth part. Since γ > 0, we have a(n/k) = γU(n/k), and then

PART IV = −
√
k

∫ k
np

1 sγ−1 log s ds



U
(
1
p

)
− U

(
n
k

)

a
(
n
k

) −

(
k
np

)γ
− 1

γ




= −
√
k

∫ k
np

1 sγ−1 log s ds

1

γ



U
(
1
p

)

U
(
n
k

) − 1−
(
k

np

)γ
+ 1




= −
√
kA
(
n
k

)

γ
∫ k
np

1 sγ−1 log s ds




U
(
n
k
k
np

)
U(nk )

−
(
k
np

)γ

A
(
n
k

)


 .

Recall that by the condition (3.10) we have that
U(tx)
U(t) − xγ

A (t)
= xγ

xρ − 1

ρ
(1 + o (1)) .

Thus,

PART IV = −
√
kA
(
n
k

)

γ 1
γ

[(
k
np

)γ
log
(
k
np

)
− 1

γ

(
k
np

)γ
+ 1

γ

]
(
k

np

)γ
(
k
np

)ρ
− 1

ρ
(1 + o (1))

= −
√
kA
(
n
k

) (
k
np

)γ [(
k
np

)ρ
− 1
]

(1 + o (1))

ρ
(
k
np

)γ [
log
(
k
np

)
− 1

γ + 1
γ

(np
k

)γ]

−→ 0,
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since ρ < 0 and
√
kA(n/k)→ λ.



Chapter 4

Bias corrected geometric-type

estimation for tail parameters

In order to obtain information about the upper tail of F , most of the estimators are con-

structed as functions of the upper k o.s. of a sample of size n (see e.g. Pickands (1975)

and Dekkers et al. (1989)). When the number of upper o.s. used in the estimation

of γ increases, the bias in the estimation becomes larger. This considerable bias that

appears in several estimators reveals a difficult problem to go beyond the applications

and there are several papers trying to deal with. Once this is such an important research

theme, the bias reduction has become popular and received considerable attention in

extreme value statistics. Some estimators were built in order to deal with the bias term

in an appropriate way (see e.g. Peng (1998), Beirlant et al. (1999), Feuerverger and

Hall (1999), Gomes et al. (2000), Gomes and Pestana (2007) and Beirlant et al. (2008)).

One of the procedures commonly used to approach with this problem was formulated

under second order properties of the d.f. and gave rise to the second order reduced-

bias estimators.

In this chapter we improve the geometric-type estimator in the sense of reducing its

bias. For this we propose two asymptotic equivalent bias corrected estimators for both

tail index and high quantiles, and study the corresponding asymptotic behaviour.
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It is convenient to assume that the underlying models belong to Hall’s class (Hall

(1982)), given by

U (t) = Ctγ
(

1 +
A (t)

ρ
(1 + o (1))

)
, as t→∞,

where

A (t) = γβtρ, (4.1)

with γ > 0, and C > 0, ρ < 0 and β 6= 0 are, respectively, the shape and scale

parameters. This is a very important family with several applications.

4.1 Bias corrected geometric-type estimators

In order to achieve the improvement of the geometric-type estimator behaviour pre-

sented in (3.6), and following some suggestions in the literature (see e.g. Caeiro et al.

(2005)), we derive corrected geometric-type estimators by removing its bias dominant

component.

For this we use the asymptotic representation of the geometric-type estimator

presented in Theorem 3.2.4,

ĜT (k)
D
= γ +

γ

2
√
k
Qn −

γ√
k
Pn +

A
(
n
k

)

(1− ρ)2
+ op

(
A
(n
k

))
+Op

(
log2 k

k

)
,

where the bias dominant component can be written as

A
(
n
k

)

(1− ρ)2
=
γβ
(
n
k

)ρ

(1− ρ)2
.

Thus, removing the bias dominant component directly, we obtain a bias corrected

estimator of ĜT given by

ĜT (k) = ĜT (k)

(
1− β

(
n
k

)ρ

(1− ρ)2

)
. (4.2)

Considering now the exponential expansion e−x = 1 − x + o (x) as x → 0, we may get

the asymptotically equivalent bias corrected estimator

ĜT (k) = ĜT (k) exp

{
− β

(1− ρ)2

(n
k

)ρ}
. (4.3)
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We can easily note that the bias dominant component is dependent of the shape ρ

and scale β second order parameters. Thus, another challenge of utmost importance

to consider is the proper and adequate estimation of the second order parameters,

ρ and β, in order to remove the bias dominant component and obtain bias corrected

estimators.

We remark that the geometric-type estimator has a lower bias dominant component

than the Hill estimator when evaluated at the same threshold, ie, for the same k.

Estimation of the second order parameters

Here, we consider the class of estimators of the parameter ρ (depending on τ ) proposed

by Fraga Alves et al. (2003)

ρ̂(τ)n (k) = −

∣∣∣∣∣∣

3
(
T
(τ)
n (k)− 1

)

T
(τ)
n (k)− 3

∣∣∣∣∣∣
, (4.4)

where

T (τ)
n (k) =





(
M

(1)
n (k)

)τ
−
(
M

(2)
n (k)/2

)τ/2
(
M

(2)
n (k)/2

)τ/2
−
(
M

(3)
n (k)/6

)τ/3 , if τ > 0

log
(
M

(1)
n (k)

)
− 1

2
log
(
M

(2)
n (k)/2

)
1
2
log
(
M

(2)
n (k)/2

)
− 1

3
log
(
M

(3)
n (k)/6

) , if τ = 0,

with M j
n as in (3.8), and the β estimator obtained in Gomes and Martins (2002)

β̂ρ̂ (k) =

(
k

n

)ρ̂
(

1
k

k∑
i=1

(
i
k

)−ρ̂
)

1
k

k∑
i=1

Ui − 1
k

k∑
i=1

(
i
k

)−ρ̂
Ui

(
1
k

k∑
i=1

(
i
k

)−ρ̂
)

1
k

k∑
i=1

(
i
k

)−ρ̂
Ui − 1

k

k∑
i=1

(
i
k

)−2ρ̂
Ui

, (4.5)

where

Ui = i

(
log

X(n−i+1,n)

X(n−i,n)

)
,

with 1 ≤ i ≤ k < n.

We remark that the class of estimators of ρ presented above, and consequently also

the β estimators, is dependent on a tuning parameter τ ≥ 0. In the literature it has



46 FCUP

EXTREME VALUES. HIGH ORDER QUANTILES AND APPLICATIONS.

been suggested the use of the tuning parameter τ = 0 when ρ ∈ [−1, 0) and τ = 1

when ρ ∈ (−∞,−1). This parameter must be chosen appropriately in order to provide

a higher stability for the estimator of ρ and as such, a graphical study supporting this

choice must always be seen as a relevant tool.

Choice of the kh level to be used in the second order parameters estimation

It is known that the external estimation of ρ and β at a larger k value than the one used

for γ-estimation has clear advantages, allowing the bias reduction without increasing

the asymptotic variance (see e.g. Caeiro et al. (2005)).

Through some simulation studies presented in the next chapter we can notice that the

estimator of ρ only stabilises at high levels of k, which justifies the suggestion given

in some works that ρ must be estimated at a high level kh (see e.g. Caeiro and

Gomes (2008) and Gomes et al. (2004)). Moreover, the number kh of the top observa-

tions to be considered for the estimation of ρ and β should be such as to ensure that

ρ̂− ρ = op(1/ log n).

In the lines of other studies, and among some suggestions (see e.g. Gomes et al.

(2007)), the level that seemed to be the most appropriate to consider in illustrations is

kh =
⌊
n1−ε

⌋
, for some ε > 0 small, (4.6)

where bxc denotes the integer part of x.

4.2 Asymptotic properties of the geometric-type bias cor-

rected estimators

We begin by assuming that only the tail index parameter γ is unknown and that ĜT
∗

is

one of the estimators ĜT or ĜT .

Theorem 4.2.1. Assume (3.10) holds. For sequences k such that (3.3) holds, and A(t)
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as in (4.1), we have the following asymptotic distributional representation

ĜT
∗

(k)
D
= γ +

γ

2
√
k
Qn −

γ√
k
Pn + op

(
A
(n
k

))
+Op

(
log2 k

k

)
,

where Pn =
√
k
(∑k

i=1 Zi/k − 1
)

and Qn =
√
k
(∑k

i=1 Z
2
i /k − 2

)
, (Pn, Qn) is asymp-

totically normal with mean equal to ( 0
0 ) and covariance matrix ( 1 4

4 20 ), and {Zi} denote

i.i.d. standard exponential r.v..

Proof of Theorem 4.2.1. Recall that ĜT (k)
P−→ γ as n → ∞. If all parameters are

known, except the tail index γ, we get

ĜT (k) = ĜT (k)

(
1− β

(
n
k

)ρ

(1− ρ)2

)

= ĜT (k)− A
(
n
k

)

(1− ρ)2
(1 + op (1))

= γ +
γ

2
√
k
Vn −

γ√
k
Tn + op

(
A
(n
k

))
+Op

(
log2 k

k

)
.

With an easy calculation, we also have

ĜT (k) = ĜT (k) exp

(
− β

(
n
k

)ρ

(1− ρ)2

)

= ĜT (k)

[
1− A

(
n
k

)

γ (1− ρ)2
+ op

(
A
(
n
k

)

γ (1− ρ)2

)]

= γ +
γ

2
√
k
Vn −

γ√
k
Tn + op

(
A
(n
k

))
+Op

(
log2 k

k

)
.

Corollary 4.2.2. Assume the conditions of Theorem 4.2.1 hold. If we choose k such

that
√
kA(n/k)→ λ finite, then

√
k
(
ĜT
∗

(k)− γ
)

is asymptotically normal distributed as n→∞, with variance 2γ2 and a null mean value.

Proof of Corollary 4.2.2. From the proof of Theorem 4.2.1 we have

√
k
(
ĜT
∗

(k)− γ
)

=
γ

2
Vn − γTn +

√
kop

(
A
(n
k

))
+Op

(
log2 k√

k

)
.
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Since
√
kA(n/k)→ λ as n→∞,

√
k
(
ĜT
∗

(k)− γ
)

=
γ

2
Vn − γTn + op (1) .

It remains to compute the values of the asymptotic variance and mean:

E
[√

k
(
ĜT
∗

(k)− γ
)]

=
γ

2
E (Vn)− γE (Tn) −−−→

n→∞
0,

V
[√

k
(
ĜT
∗

(k)− γ
)]

=
γ2

4
V (Vn) + γ2V (Tn)− 2Cov

(γ
2
Vn, γTn

)
−−−→
n→∞

2γ2.

Assuming now that ĜT
∗∗

denotes the version of ĜT
∗

where the parameters ρ and β are

estimated externally, we have the following result

Theorem 4.2.3. Under the conditions of Theorem 4.2.1 and assuming consistent esti-

mators for ρ and β computed at a level that implies ρ̂ − ρ = op(1/ log n), we have the

following asymptotic distributional representation

ĜT
∗∗

(k)
D
= γ +

γ

2
√
k
Qn −

γ√
k
Pn + op

(
A
(n
k

))
+Op

(
log2 k

k

)
,

where Pn =
√
k
(∑k

i=1 Zi/k − 1
)

and Qn =
√
k
(∑k

i=1 Z
2
i /k − 2

)
, (Pn, Qn) is asymp-

totically normal with mean equal to ( 0
0 ) and covariance matrix ( 1 4

4 20 ), and {Zi} denote

i.i.d. standard exponential r.v..

Proof of Theorem 4.2.3. If ρ and β are estimated consistently, we can use the Taylor’s

expansion for bivariate functions and get

β̂

(1− ρ̂)2

(n
k

)ρ̂
=

β

(1− ρ)2

(n
k

)ρ
+
(
β̂ − β

) 1

(1− ρ)2

(n
k

)ρ
(1 + op (1))

+
β

(1− ρ)2
(ρ̂− ρ)

(n
k

)ρ( 2

1− ρ + log
(n
k

))
(1 + op (1))

=
A(n/k)

γ (1− ρ)2

(
β̂

β
+

2 (ρ̂− ρ)

1− ρ + (ρ̂− ρ) log
(n
k

))
(1 + op (1)) ,

where β̂ and ρ̂ are the estimators of β and ρ, respectively.
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Therefore we have

ĜT (k)

(
1− β̂

(
n
k

)ρ̂

(1− ρ̂)2

)
= ĜT (k)− A

(
n
k

)

(1− ρ)2
+ op

(
A
(n
k

))

= γ +
γ√
k

(
Vn
2
− Tn

)
+ op

(
A
(n
k

))
+Op

(
log2k

k

)

and

ĜT (k) exp

(
− β̂

(
n
k

)ρ̂

(1− ρ̂)2

)
= γ +

γ√
k

(
Vn
2
− Tn

)
+ op

(
A
(n
k

))
+Op

(
log2 k

k

)
,

since ρ̂ and β̂ are consistent estimators of ρ and β computed at a level such that

ρ̂− ρ = op (1/ log n). The result follows.

Corollary 4.2.4. Assume the conditions of Theorem 4.2.3 hold. If we choose k such

that
√
kA(n/k)→ λ finite, then

√
k
(
ĜT
∗∗

(k)− γ
)

is asymptotically normal distributed as n→∞ with variance 2γ2 and a null mean value.

Proof of Corollary 4.2.4. The result follows using the same approach as in the proof of

Corollary 4.2.2.

4.3 High order quantiles estimation using geometric-type bias

corrected estimators

Here, in order to improve the performance of the suggested geometric-type high quan-

tiles estimator, we also consider the form (2.2) based on the geometric-type bias cor-

rected estimators, and its asymptotic normality is established.

More concretely, we apply the bias corrected tail index estimators introduced in this

chapter, (4.2) and (4.3), on the POT high quantiles estimator in (2.2), obtaining the

following two geometric-type bias corrected high quantiles estimators



50 FCUP

EXTREME VALUES. HIGH ORDER QUANTILES AND APPLICATIONS.

χ̂ĜT
1−p =

(
k
np

)ĜT (k)
− 1

ĜT (k)
·X(n−k,n)M

(1)
n +X(n−k,n)

and

χ̂ĜT
1−p =

(
k
np

)ĜT (k)
− 1

ĜT (k)

·X(n−k,n)M
(1)
n +X(n−k,n).

The following result will be used to deduce the asymptotic normality of the quantiles

estimator using geometric-type bias corrected estimators.

Theorem 4.3.1. Assume the conditions of Theorem 3.3.1 hold. For sequences k such

that (3.3) holds and
√
kA(n/k)→ λ finite, then

√
k

(
X(n−k,n)M

(1)
n

a
(
n
k

) − 1, ĜT
∗

(k)− γ,
X(n−k,n) − U

(
n
k

)

a
(
n
k

)
)

D−−−→
n→∞

(Λ,Γ∗, B) ,

where (Λ,Γ∗, B) are jointly normal r.v. with mean vector (λ/ (γ − γρ) , 0, 0)> and covari-

ance matrix 


1 + γ2 γ γ

γ 2γ2 0

γ 0 1


 . (4.7)

Proof of Theorem 4.3.1. The result follows combining the proof of Theorem 3.3.1 and

Theorem 4.2.1.

Now, the asymptotic normality of the quantiles estimator may be easily deduced from

the previous result jointly with Theorem 3.3.2.

Theorem 4.3.2. Under the conditions of Theorem 3.3.2,

√
k
χ̂ĜT

∗

1−p − χ1−p

a
(
n
k

)
qγ (dn)

D−−−→
n→∞

N
(
0, 2γ2

)
.

where dn = k/ (np), qγ (t) =
∫ t
1 s

γ−1 log s ds for t > 1 and
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χ̂ĜT
∗

1−p =

(
k
np

)ĜT ∗(k)
− 1

ĜT
∗

(k)
·X(n−k,n)M

(1)
n +X(n−k,n),

for some p ∈ (0, 1/n].

Proof of Theorem 4.3.2. The result follows using Theorem 4.3.1 and the same approach

as in the proof of Theorem 3.3.2.

The two results above still hold for the corresponding ĜT
∗∗

based quantile estimators.





Chapter 5

Simulation study results and

comparisons

In this chapter we present some simulations in order to examine the finite sample

behaviour of the proposed tail index and high quantiles estimators. We have gener-

ated s=2000 independent replicates of sample size 1000 from the Generalised Pareto

Distribution with d.f.

F (x) = 1− (1 + γx)−1/γ , x ≥ 0, γ = 1,

and from the Burr distribution with d.f.

F (x) = 1−
(

1 + x−ρ/γ
)1/ρ

, x ≥ 0, γ = 1 and ρ = −2.

Remark that β = 1 for both families, and for GPD ρ = −γ.

The results are compared using mean values of the estimates and through relative root

mean square error (RRMSE), with the expression

̂RRMSE
(
θ̂
)

=

√
1
s

∑s
i=1

(
θ̂i − θ

)2

θ
,

where θ is the value we want to estimate.
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5.1 Tail index estimation

The main purpose of the simulations performed in this section is to provide a general

insight into the distributional behaviour of the new geometric-type bias corrected tail

index estimators proposed, (4.2) and (4.3). Once the evaluation of their behaviour

encompasses the comparison with similar corrections of Hill estimator, we start by

presenting in Figures 5.1 and 5.2 the behaviour of both original estimators for the

chosen distributions.

To illustrate the behaviour of the corrected estimators we consider the suitable esti-

mators of the parameter ρ proposed by Fraga Alves et al. (2003), in (4.4), and the β

estimator obtained in Gomes and Martins (2002), in (4.5). Firstly we need to choose

the tuning parameter τ , in which we will support the estimation of the second order

parameters ρ and β. To achieve this, we draw in Figure 5.3 the behaviour of ρ̂τ for

the values of the tuning parameter τ ∈ {0, 0.5, 1} for both distributions and analyse the

variations that it causes in their behaviour.
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Figure 5.1: Mean estimates (left) and RRMSE (right) of ĜT and Ĥ, for a sample size n=1000 (and 2000

replicates), as a function of k, from a GPD given by F (x) = 1− (1 + γx)−1/γ , x ≥ 0 with γ = 1.
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Figure 5.2: Mean estimates (left) and RRMSE (right) of ĜT and Ĥ, for a sample size n=1000 (and 2000

replicates), as a function of k, from a Burr distribution given by F (x) = 1 −
(

1 + x−ρ/γ
)1/ρ

, x ≥ 0, with

γ = 1 and ρ = −2.
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Figure 5.3: Mean estimates of ρ̂τ , τ = {0, 0.5, 1}, for GPD (left) and Burr (right) distributions. GPD given

by F (x) = 1− (1 + γx)−1/γ , x ≥ 0 (ρ = −1), and Burr distribution given by F (x) = 1−
(

1 + x−ρ/γ
)1/ρ

,

x ≥ 0 and ρ = −2, both with γ = 1 (β = 1).
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It is suggested in some works the use of τ = 0 when ρ ∈ [−1, 0) and τ = 1 when

ρ ∈ (−∞,−1) (see e.g. Fraga Alves et al. (2003)). This leads to the choice of

τ = 0 for the GPD (ρ = −1) and τ = 1 for Burr distribution (ρ = −2). The Figure 5.3

confirms the prevalent choice of τ = 0 for GPD but suggests that perhaps the choice of

τ = 0.5 instead of τ = 1 seems to be more suitable for Burr distribution, leading to

better estimates of β and ρ.

We also remark that the estimator of ρ presents a high variation in the majority of k

values, stabilising only at very high levels of k, for which the estimates gets closer to

the true value of the parameter. This fact reaffirm that estimation of ρ at a high level is

favourable and highly recommended.

For exploring the results we consider in (4.6) ε = 0.005 and ε = 0.001, ie, we use the

following kh levels:

kh1 =
⌊
n0.995

⌋
and kh2 =

⌊
n0.999

⌋
. (5.1)
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Figure 5.4: Mean estimates of β̂ρ̂τ (kh1) and β̂ρ̂τ (kh2), τ = {0, 0.5, 1}, for GPD (left) and Burr (right)

distributions. GPD given by F (x) = 1 − (1 + γx)−1/γ , x ≥ 0 (ρ = −1), and Burr distribution given by

F (x) = 1−
(

1 + x−ρ/γ
)1/ρ

, x ≥ 0 and ρ = −2, both with γ = 1 (β = 1).
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To give an idea about the behaviour of β̂ according to the choice of τ and the level

kh, we present in Figure 5.4 the estimates of β computed with ρ̂τ (kh1) and ρ̂τ (kh2),

τ ∈ {0, 0.5, 1}, for both distributions. One aspect that stands out in this figure is that

estimates of β are more favourable the higher the k-value used for its calculation.

Following what seems to be graphically more propitious, we chose to estimate ρ and β

using τ = 0 for GPD and τ = 0.5 for Burr distribution, both computed at the same level

kh1 or kh2. The correct estimation of these parameters is crucial in order to get better

estimates of the tail index using corrected estimators.

Now we have the necessary tools to estimate the tail index using the bias corrected tail

index estimators. In this way, the illustrations that follow contain a graphical represen-

tation of the behaviour of the corrected estimators according to the choices on τ made

for each distribution.

From the asymptotic normality we construct confidence intervals for the tail index, with

(1− α)-level, in the usual way:

I
ĜT

(k, α) =

{
γ :

1√
2γ

k1/2|ĜT − γ| ≤ Φ−1
(

1− α

2

)}
.

The confidence bounds for the corresponding geometric-type bias corrected estimators

are similar to the previous ones.

From the Figures 5.5 and 5.6, in which the geometric-type estimator is confronted with

its new corrected versions, we observe that using both GPD and Burr distribution, the

performance of the geometric-type estimator was improved by bias correction and the

resulting geometric-type bias corrected estimators shows a very good behaviour.

We also note that the performance of the corrected estimators are slightly better when

we calculate the second order parameters using the level kh2 instead of using the kh1

level. The corresponding 95% confidence bounds of the geometric-type estimator and

of the corresponding bias corrected estimators are reported in Tables 5.1 and 5.2. We

present three values of k for the illustration of the influence of the choice of k.
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Figure 5.5: Mean estimates (left) and RRMSE (right) of ĜT , ĜT and ĜT , with ρ̂ and β̂ computed at the

levels kh1 =
⌊
n0.995

⌋
and kh2 =

⌊
n0.999

⌋
, for a sample size n=1000 (and 2000 replicates), as a function of

k, from a GPD given by F (x) = 1− (1 + γx)−1/γ , x ≥ 0 with γ = 1, (ρ = −1, β = 1; τ = 0).
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Figure 5.6: Mean estimates (left) and RRMSE (right) of ĜT , ĜT and ĜT , with ρ̂ and β̂ computed at the

levels kh1 =
⌊
n0.995

⌋
and kh2 =

⌊
n0.999

⌋
, for a sample size n=1000 (and 2000 replicates), as a function

of k, from a Burr distribution given by F (x) = 1 −
(

1 + x−ρ/γ
)1/ρ

, x ≥ 0, with γ = 1, ρ = −2 (β = 1;

τ = 0.5).
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Table 5.1: Confidence bounds (α = 0.05) using the geometric-type estimator and the corresponding

bias corrected estimators, with ρ̂ and β̂ computed at the levels kh1 =
⌊
n0.995

⌋
and kh2 =

⌊
n0.999

⌋
, for a

sample size n=1000 (and 2000 replicates), as a function of k. GPD F (x) = 1− (1 + γx)−1/γ , x ≥ 0 with

γ = 1 (ρ = −1, β = 1; τ = 0).

k ĜT ĜT ρ̂(kh1),β̂(kh1) ĜT ρ̂(kh2),β̂(kh2) ĜT ρ̂(kh1),β̂(kh1) ĜT ρ̂(kh2),β̂(kh2)

300 1.125 ± 0.180 1.013 ± 0.162 1.002 ± 0.160 1.018 ± 0.163 1.008 ± 0.161

500 1.198 ± 0.149 1.011 ± 0.125 0.997 ± 0.124 1.025 ± 0.127 1.013 ± 0.126

700 1.310 ± 0.137 1.037 ± 0.109 1.020 ± 0.107 1.063 ± 0.111 1.050 ± 0.110

Table 5.2: Confidence bounds (α = 0.05) using the geometric-type estimator and the corresponding bias

corrected estimators, with ρ̂ and β̂ computed at the levels kh1 =
⌊
n0.995

⌋
and kh2 =

⌊
n0.999

⌋
, for a sample

size n=1000 (and 2000 replicates), as a function of k. Burr distribution F (x) = 1−
(

1 + x−ρ/γ
)1/ρ

, x ≥ 0,

with γ = 1 and ρ = −2 (β = 1; τ = 0.5).

k ĜT ĜT ρ̂(kh1),β̂(kh1) ĜT ρ̂(kh2),β̂(kh2) ĜT ρ̂(kh1),β̂(kh1) ĜT ρ̂(kh2),β̂(kh2)

300 1.044 ± 0.167 1.026 ± 0.164 1.022 ± 0.164 1.026 ± 0.164 1.022 ± 0.164

500 1.055 ± 0.131 1.012 ± 0.125 1.005 ± 0.125 1.013 ± 0.126 1.006 ± 0.125

700 1.089 ± 0.114 1.011 ± 0.106 1.000 ± 0.105 1.014 ± 0.106 1.004 ± 0.105

We note that when using corrected estimators, the amplitude of the asymptotic confi-

dence intervals is smaller.

In order to have an idea of the good behaviour of the geometric-type bias corrected

estimators, we compare them with the corresponding Hill bias corrected estimators

(see e.g. Caeiro et al. (2005)), given by

Ĥ (k) = Ĥ (k)

(
1− β̂

(
n
k

)ρ̂

1− ρ̂

)

and

Ĥ (k) = Ĥ (k) exp

{
− β̂

1− ρ̂
(n
k

)ρ̂
}
,

where ρ̂ and β̂ are the estimators of the shape and scale parameters, respectively.
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Figure 5.7: Mean estimates (left) and RRMSE (right) of ĜT , ĜT , Ĥ and Ĥ, with ρ̂ and β̂ computed at

the levels kh1 =
⌊
n0.995

⌋
and kh2 =

⌊
n0.999

⌋
, for a sample size n=1000 (and 2000 replicates), as a function

of k, from a GPD given by F (x) = 1− (1 + γx)−1/γ , x ≥ 0 with γ = 1 (ρ = −1, β = 1; τ = 0).
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Figure 5.8: Mean estimates (left) and RRMSE (right) of ĜT , ĜT , Ĥ and Ĥ, with ρ̂ and β̂ computed at

the levels kh1 =
⌊
n0.995

⌋
and kh2 =

⌊
n0.999

⌋
, for a sample size n=1000 (and 2000 replicates), as a function

of k, from a Burr distribution given by F (x) = 1−
(

1 + x−ρ/γ
)1/ρ

, x ≥ 0, with γ = 1 and ρ = −2 (β = 1;

τ = 0.5).
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From Figures 5.7 and 5.8, we observe that using GPD and Burr distribution, both the

geometric-type and the Hill bias corrected estimators present a good performance.

Particularly, we note that for GPD the geometric-type estimator has a better posture

for intermediate k-values, while the best behaviour of Hill estimator takes place at

low values of k. In the case of Burr distribution, a greater distance from the target

value is notable at low k-values for the geometric-type estimators, whereas for the Hill

estimators the same it is visible for high k-values.

The Hill estimator exhibits in general a lower RRMSE than the geometric-type estimator,

which can be understood considering that the asymptotic variance of the Hill estimator

is half of the one of the geometric-type estimator.

In addition, for GPD and for large k, the estimates based on Ĥ clearly show far better re-

sults than those conducted with Ĥ. Unlike what happens with the corrected geometric-

type estimators, the corrected Hill ones have the best estimates when the second order

parameters are computed using the level kh1 instead of using the kh2 level, except for

very high k-values in which prevails the use of kh2.

We may conclude that the behaviour of the geometric-type estimator is improved by

bias correction. The corrected versions show a good performance and for some cases

it is even highlighted.

5.2 High quantiles estimation

In this section we perform a simulation study in order to examine and compare the finite

sample behaviour of the different quantiles estimators arising from the use of both the

geometric-type and Hill estimators. In a similar way to the previous section, first we

analyse the effects caused by using only the GT and Hill estimators in their original

forms and after we compare the result of the application of their corrected versions.

The quantiles estimators presented here were computed for p = 0.001.
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Figure 5.9: Mean estimates (left) and RRMSE (right) of χ̂ĜT
0.999

and χ̂Ĥ
0.999

, for a sample size n=1000 (and

2000 replicates), as a function of k, from a GPD given by F (x) = 1 − (1 + γx)−1/γ , x ≥ 0 with γ = 1

(empirical quantile χ0.999 = 999).
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Figure 5.10: Mean estimates (left) and RRMSE (right) of χ̂ĜT
0.999

and χ̂Ĥ
0.999

, for a sample size n=1000

(and 2000 replicates), as a function of k, from a Burr distribution given by F (x) = 1 −
(

1 + x−ρ/γ
)1/ρ

,

x ≥ 0, with γ = 1 and ρ = −2 (empirical quantile χ0.999 = 1000).
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In Figures 5.9 and 5.10 we illustrate the behaviour of the proposed quantiles estimator

using the GT estimator, in (3.12), and the quantiles estimator using the classical Hill

estimator, given by

χ̂Ĥ
1−p = X(n−k,n)

(
k

np

)Ĥ(k)

.

We observe that, for GPD and Burr distribution, the quantiles estimator using the

geometric-type estimator shows more stability than using the Hill estimator. This last

estimator presents a better behaviour only for very small values of k.

In order to get stochastic bounds we consider the results of Theorem 3.3.2, that lead to

the following (1− α)-level confidence intervals for χ1−p :

I
χ̂ĜT
1−p

(k, α) =

{
χ1−p :

k1/2√
2γ2U (n/k) qγ (dn)

|χ̂1−p − χ1−p | ≤ Φ−1
(

1− α

2

)}
, (5.2)

where dn and qγ(t) are defined in Theorem 4.3.2. For the construction of confidence

intervals, the parameters are replaced by their consistent estimators.
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Figure 5.11: Empirical coverage rates of the 95 % confidence bounds for the high quantiles estimator

based on the geometric-type (in green) and Hill (in red) estimators for a sample size n=1000 (and 2000

replicates), as a function of k. GPD (left) F (x) = 1− (1 + γx)−1/γ , x ≥ 0 with γ = 1, and Burr distribution

(right) F (x) = 1−
(

1 + x−ρ/γ
)1/ρ

, x ≥ 0, with γ = 1 and ρ = −2.
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The confidence bounds for the corresponding quantiles estimators using geometric-

type bias corrected estimators are similar to the previous ones.

The empirical coverage rates of the 95% confidence bounds for both GPD and Burr

distribution are illustrated in Figure 5.11. The coverage rates obtained for the geometric-

type based estimator are very satisfactory.
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Figure 5.12: Mean estimates (left) and RRMSE (right) of χ̂ĜT
0.999

, χ̂ĜT
0.999

and χ̂ĜT
0.999

, with ρ̂ and β̂ computed

at the levels kh1 =
⌊
n0.995

⌋
and kh2 =

⌊
n0.999

⌋
, for a sample size n=1000 (and 2000 replicates), as a

function of k, from a GPD with γ = 1 (ρ = −1, β = 1; τ = 0 and empirical quantile χ0.999 = 999).

For comparing the bias corrected estimators we consider again the parameter ρ (de-

pending on τ ) proposed by Fraga Alves et al. (2003) and the β estimator obtained in

Gomes and Martins (2002). As a consequence of the results in last section, we chose

the tuning parameter τ = 0 for GPD and τ = 0.5 for Burr distribution since the estimates

using these values show more stability.

In Figures 5.12 and 5.13 we compare the finite sample behaviour of the quantiles esti-

mator using the geometric-type estimator, in (3.12), and the corresponding geometric-

type bias corrected estimators, χ̂ĜT
0.999

and χ̂ĜT
0.999

.
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Figure 5.13: Mean estimates (left) and RRMSE (right) of χ̂ĜT
0.999

, χ̂ĜT
0.999

and χ̂ĜT
0.999

, with ρ̂ and β̂ computed

at the levels kh1 =
⌊
n0.995

⌋
and kh2 =

⌊
n0.999

⌋
, for a sample size n=1000 (and 2000 replicates), as a

function of k, from a Burr distribution with γ = 1 and ρ = −2 (β = 1; τ = 0.5 and empirical quantile

χ0.999 = 1000).

We observe that the quantiles estimator using the geometric-type bias corrected tail

index estimators presents a better performance than using the standard one. It should

be mentioned that as the value of k increases, the corrected estimators have a more

stable behaviour and, from a certain value of k, the performance of the estimator is

better when the level kh1 is used for compute ρ̂ and β̂; we note however that the

behaviour seems to improve a bit more if the kh level is lower.

For comparing the performance of high quantiles, we also compare the quantiles es-

timator using the geometric-type bias corrected estimators, for the same two distribu-

tions, with the corresponding quantiles estimator based on the Hill bias corrected tail

index estimators.

From Figures 5.14 and 5.15, we may observe that all of the estimators present a good

behaviour, more protruding for Burr distribution.
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Figure 5.14: Mean estimates (left) and RRMSE (right) of χ̂ĜT
0.999

, χ̂ĜT
0.999

, χ̂Ĥ
0.999

and χ̂Ĥ
0.999

, with ρ̂ and β̂

computed at the levels kh1 =
⌊
n0.995

⌋
and kh2 =

⌊
n0.999

⌋
, for a sample size n=1000 (and 2000 replicates),

as a function of k, from a GPD with γ = 1 (ρ = −1, β = 1; τ = 0 and empirical quantile χ0.999 = 999).
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Figure 5.15: Mean estimates (left) and RRMSE (right) of χ̂ĜT
0.999

, χ̂ĜT
0.999

, χ̂Ĥ
0.999

and χ̂Ĥ
0.999

, with ρ̂ and β̂

computed at the levels kh1 =
⌊
n0.995

⌋
and kh2 =

⌊
n0.999

⌋
, for a sample size n=1000 (and 2000 replicates),

as a function of k, from a Burr distribution with γ = 1 and ρ = −2 (β = 1; τ = 0.5 and empirical quantile

χ0.999 = 1000).
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We note however that the quantiles estimator using the geometric-type bias corrected

estimators is better for certain range of values of k. The last comments about the impact

of the level kh on the performance of the geometric-type corrected estimators, are also

valid in the performance of the Hill corrected estimators. It is also clearly visible that for

high values of k and mainly in the GPD case, the quantiles estimators when using the

Hill corrected estimators χ̂Ĥ show a much more stable behaviour than using the χ̂Ĥ

estimators.

The comments in Section 5.1 about the lower RRMSE that the Hill estimator generally

presents, are also valid for this case.

For smaller sample sizes the estimators show a more irregular behaviour, as expected,

but, in general, the relative performance is similar and thus the results are not reported

here.





Chapter 6

Modelling extremal earthquakes

6.1 Motivation

The earthquakes are present in everyday life of humanity worldwide. A severe earth-

quake is one of the most frightening and destructive phenomena of nature. Experi-

encing an earthquake is certainly the worst experiences anyone can have. The lived

moments are reported as full of panic, terror and death. For survivors, the terrible

images remain in memory and become part of their daily lives, as well as the constant

fear within each based on the possibility of a next big earthquake that can take lives and

separate families forever. It is estimated that there are about one million earthquakes

per year, however, the vast majority occur in the mid of oceans or in sparsely populated

regions and they pass relatively unnoticed by the population. There are annually about

20 earthquakes that cause significant damage and some deaths. On average, only one

catastrophic earthquake occurs per year and a highly catastrophic every 5 years.

Since the phenomena that trigger it is still a topic of study and that there are uncontrol-

lable forces of nature that dominate them, they are actually considered unpredictable

and mankind will have to learn to live with them. Thus, it is important that their study is

oriented to the reduction of the number of deaths and economic losses. It constitutes

an important challenge which should be considered a priority among the scientific
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community and that can not be successfully tackled without a large multidisciplinary

effort.

The EVT may have a relevant role because through it is possible to obtain important

information, such as estimating the probability of occurrence of a large earthquake

over a long period of time or the time interval until the eventual realisation of such a

catastrophe. Hence, the accurate estimation of such quantities turns out to be very

relevant to allow the implementation of some adequate prevention measures. Since

the POT method has led to satisfactory approximations of the tails, here we use it

to appropriately modelling the distribution of extremes, characterising these extremal

events through the GPD.

6.2 Earthquake background: basic concepts and definitions

This section provides a basic understanding of earthquakes starting with a brief history

of seismology followed by a discussion on the earthquake’s causes while defining some

commonly used terms, then explaining on how earthquakes can be measured, and

finally ends with a discussion about the earthquake’s forecast.

6.2.1 A brief history of seismology

The term seismology started to be used around the middle of the nineteenth century,

and it is derived from the greek words seismos, shaking, and logos, science, meaning

the science that studies earthquakes.

The early thinking about earthquakes was, as one might expect, superstitious and not

very scientific. An earthquake was viewed as an act of God or other supernatural power

imposed on mankind as punishment for misbehaviour. According to Ben-Menahem

(1995), Aristotle (340 B.C.E.) believed that winds in subterranean caves not only caused

earthquakes but produced the large sea waves that sometimes accompanied them.

In 1678 A. Kircher related earthquakes and volcanoes to a system of channels of
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fire inside the Earth and, in 1703, M. Lister and N. Lesmery proposed explosions of

concentrated material that compose the internal fire as the cause of earthquakes. This

explanations was widely accepted.

The great Lisbon earthquake of 1 November 1755, which caused widespread destruc-

tion in that city and produced a large tsunami, may be considered the starting point

of modern seismology. This event changed dramatically man’s outlook on the phe-

nomenon of earthquakes. In 1761, John Mitchell, that still held to the explosive theory of

earthquakes, established that earthquakes are due to the propagation of elastic waves

inside the Earth. In the early 1800s the theory of elastic wave propagation began to be

developed by Cauchy, Poisson, Stokes, Rayleigh, among others.

The first catalog for the whole world appeared in 1840 and was published by Von Hoff.

Mallet’s detailed study of the Napolitan earthquake of 1857 constitutes one of the first

basic works of modern seismology. Mallet, who funded the instrumental seismology,

described the idea that earthquakes radiate seismic waves away from focus point and

connected the occurrence of earthquakes with changes in the earth’s crust that are

often attended by dislocations and fractures. J. Forbes designed the first seismometer

in 1841 while the first seismograph was built by L. Palmieri in 1855. The first useful

seismograph was developed by J. Milne in 1880. In 1889 the first teleseismic record,

an earthquake from Japan, was identified by E. Paschwitz. This event is considered

as the birth of the science of seismology. Since this date several improvements were

made in the measure instruments.

A rapid progress was achieved during the following years. In 1895 F. Omori established

a law for aftershock time series. After, R. Oldham, A. Mohorovičić, B. Gutenberg and I.

Lehmann, among others, had found some evidences about the earth’s interior.

In 1928, Kiyoo Wadati reported the first convincing evidence for deep focus earth-

quakes. In 1935 C. Richter introduced an instrumental magnitude scale. From 1942

to 1956, B. Gutenberg and F. Richter establish the first empirical relations between

earthquake magnitude, intensity, energy, acceleration and frequency of occurrence.

The results provided by J. Steketee in 1958 leads to the definition of a source moment
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equal to µAD, where µ is the rigidity over the fault of area A and dislocation D. In

the 1960s, seismologists were able to show that the focal mechanisms of most global

earthquakes are consistent with that expected from plate tectonic theory, validating the

relation between earthquakes and plate boundaries.

The advent of computers in the 1960s changed the nature of terrestrial seismology, by

enabling analyses of large data sets and more complicated problems, and led to the

routine calculation of earthquake locations. All these advances and the development

of computers put seismology in a position where it could exploit the rich information

inherent in seismic signals, on both global and local scales. The knowledge of the

infrastructure of the Earth’s interior and the nature of seismic sources has significantly

grown.

However, the progresses that have been made in order to achieve the ultimate goal

of seismology, the prediction of earthquakes, is not yet satisfactory. As seismology

has always been an interdisciplinary science, the prediction must be first and foremost

recognized as a problem at the junction of sciences and it success is highly dependent

of a concentrated interdisciplinary research effort. Meanwhile, the prediction of earth-

quakes would require the unlikely capability of knowing all of its so many factors with

great accuracy. Thus, there are a consensus that earthquakes could well be inherently

unpredictable in a practical sense. But many scientists are still hopeful about general

earthquake forecasting, ie, instead of predicting specific events over short time scales,

they hope to forecast the probability of earthquakes over longer periods. The term

forecast is more adequate to describe this type of prediction. The probability forecasts

associated to earthquakes is the most important target of contemporary seismology

and the use of proper mathematical tools still being a need.

For more details, see e.g. Howell (1990), Shearer (2009) and Chen and Scawthorn

(2003).
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6.2.2 Causes of earthquakes

In general, everything in nature tends to the equilibrium. Due to the thermodynamic

equilibrium, the constituents of the Earth’s interior are in constant motion. Boosted

by this movement that causes friction with its bottom, the tectonic plates move and

interchange slowly, thereby contributing to the constant evolution of the terrestrial relief.

The earthquakes mainly arise due to forces within the earth’s crust tending to displace

one mass of rock relative to another. Each time the plates interact with each other, a

large amount of energy is accumulated in its rocks. When its elasticity limit is reached,

they will fracture and instantly release all the energy that had been accumulated during

the elastic deformation causing vibrations, called seismic waves, which travel outwards

in all directions from the fault and give rise to violent motions at the earth’s surface,

unleashing an earthquake.

Figure 6.1: Global distribution of earthquakes for 2004 (colors indicate the earthquake depths). (From

The Good Earth: Introduction to Earth Science. McConnell et al. (2007). Courtesy of David McConnell,

David Steer, Catherine Knight, Katharine Owens and Lisa Park, with permission of McGraw-Hill Education

LLC, Copyright 2008, McGraw-Hill).

So, the earthquakes are natural shocks, in which the ground quake strongly in the
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matter of seconds to minutes, that occur as a result of this sudden release of a huge

amount of that energy slowly-accumulated over many years. If the earthquake is large

enough, the seismic waves are recorded on seismographs around the world and can

cause the ground to quake strongly.

Earthquakes do not occur at random but are distributed according to a well-defined

pattern. About 90% of earthquake activity is associated with plate-boundary processes,

so the global seismicity patterns reveals a strong correlation between plate boundaries

and the presence of intercontinental fault zones, indicating that earthquakes often occur

at tectonic plate boundaries. We can say, without committing a gross error, that the

alignments of earthquakes indicate the boundaries of tectonic plates (see Figure 6.1).

After the initial fracture, a number of secondary ruptures corresponding to the pro-

gressive adjustment of fractured rocks may occur, causing successive lower intensity

earthquakes called aftershocks. If these vibrations occur at the sea floor they can

produce a long and smooth waving that in shallow water becomes authentic water

columns known as tidal waves or tsunamis.

Figure 6.2: Earthquake features. (From The Good Earth: Introduction to Earth Science. McConnell et

al. (2007). Courtesy of David McConnell, David Steer, Catherine Knight, Katharine Owens and Lisa Park,

with permission of McGraw-Hill Education LLC, Copyright 2008, McGraw-Hill).
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The point on the fault where the radiation of seismic waves begins is termed the hypocen-

ter or focus. The epicenter is the projection on the surface of the Earth directly above

the hypocenter. The movement begins at the focus and travels outward along the fault

surface (see Figure 6.2).

The earthquakes initiate a number of phenomena, termed seismic hazards, such as

shaking, tsunami or liquefaction, which can cause significant damage to the built envi-

ronment and a great loss of life. They not only destroy villages, towns and cities but the

aftermath leads to destabilise the economic and social structure of the nation.

Therefore, earthquakes, such as volcanoes, represent the more energetic and rapid

manifestations of the planet’s internal dynamics.

The fault rupture generates a wave phenomenon similar to the effect of a stone dropped

into a pool of water, since the seismic waves radiate out in all directions from the

earthquake’s hypocenter. There are two basic types of elastic waves that make up the

shaking felt and causes damage in an earthquake: the body waves, that travel through

the interior of the Earth, and surface waves, travelling only along the Earth’s surface.

Direction of Rayleigh
wave propagation

a. Rayleigh wave

Direction of Love
wave propagation

Side-by-side
motion

b. Love wave

Particle motion

Wave propagation 

b.  Secondary wave

Particle motion

Wave propagation 
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www.mhhe.com/thegoodearth 125

distance, and possible source of the sound. Just as your ear detects 
sound and your brain interprets those sounds, seismographs detect 
and record seismic waves. The printed record of the waves is a 
seismogram, and scientists interpret the data on seismograms to 
learn more about earthquakes.

Types of Seismic Waves
Like concentric ripples caused by dropping a pebble in a pond, seismic 
waves move outward from the earthquake’s focus. But unlike the pond, 
seismic waves more away from the focus in essentially all directions, 

Figure 5.15 Two types of surface waves. Highways and electric transmission lines are examples of man-made structures that can be 
destroyed by an earthquake. (a) Rayleigh waves produce vertical motions of the land surface. (b) Love waves move sideways, but not vertically.

Figure 5.16 P-wave and S-wave motions. (a) P waves are similar to the passage of a vibration through a slinky. The vibration occurs 
in the same direction that the wave travels. (b) S-wave motion is analogous to a vibration moving along a rope. The vibration occurs 
perpendicular to the direction in which the wave travels.

not just along Earth’s surface. These vibrations cause much of the dam-
age associated with earthquakes. Observations at many stations all over 
Earth record data from earthquakes. These data show that there are two 
forms of seismic waves: surface waves travel along Earth’s sur-
face, while body waves pass through Earth’s interior and move 
more quickly than surface waves (Figure 5.14).

Surface Waves.  Surface waves can be further classifi ed on the ba-
sis of their motion. Some of these waves, known as Rayleigh waves, 
cause the surface to move vertically in a wavelike motion and cause 
much of the destruction associated with earthquakes (Figure 5.15). 
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(b) Secondary wave

Figure 6.3: P-wave and S-wave motions. (a) P waves are similar to the passage of a vibration through

a slinky. The vibration occurs in the same direction that the wave travels. (b) S-wave motion is analogous

to a vibration moving along a rope. The vibration occurs perpendicular to the direction in which the wave

travels. (From The Good Earth: Introduction to Earth Science. McConnell et al. (2007). Courtesy of David

McConnell, David Steer, Catherine Knight, Katharine Owens and Lisa Park, with permission of McGraw-

Hill Education LLC, Copyright 2008, McGraw-Hill).
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The body waves, primary waves (P) and secondary waves (S), transmit foreshocks that

have little destructive power whereas surface waves, Love waves and Rayleigh waves,

produce tremors in all directions causing the most destruction (see Figures 6.3 and

6.4). Surface waves result from the interaction between body waves and the superficial

earth materials and usually have the strongest vibrations probably causing most of the

damage done by earthquakes.

The faster of the body waves are appropriately called the primary waves (P). They

travel in straight lines, alternately compressing and dilating solids and liquids they pass

through, so its energy is transmitted via push–pull motion. Similar to sound waves,

they are able to travel through all types of material. The slower waves are called the

secondary waves (S). As they propagate, they shear the rocks sideways at right angles

to the direction of travel so, at the ground surface, S waves can produce both vertical

and horizontal motions. Because liquids have no shear resistance, the S waves cannot

propagate in the liquid parts of the Earth, travelling only through solids.

(a) Rayleigh wave (b) Love wave

Figure 6.4: Two types of surface waves. Highways and electric transmission lines are examples of man-

made structures that can be destroyed by an earthquake. (a) Rayleigh waves produce vertical motions of

the land surface. (b) Love waves move sideways, but not vertically. (From The Good Earth: Introduction

to Earth Science. McConnell et al. (2007). Courtesy of David McConnell, David Steer, Catherine Knight,

Katharine Owens and Lisa Park, with permission of McGraw-Hill Education LLC, Copyright 2008, McGraw-

Hill).

The Love waves, horizontally oscillating, moves like S waves that have no vertical

displacement, ie, it moves the ground side to side in a horizontal plane parallel to
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the Earth’s surface, but at right angles to the direction of propagation. The Rayleigh

waves, vertically oscillating, spread like rolling ocean waves, ie, move both vertically and

horizontally in a vertical plane pointed in the direction in which the waves are travelling,

causing fractures perpendicular to their travel by stretching the ground.

The surface waves, appear on the surface after the P and S waves reach the epicenter

and travel more slowly than body waves. Having a lower frequency, surface waves

have a greater effect on solids, which makes them more destructive. Love waves

generally travel faster than Rayleigh waves and the last ones are not recorded by

vertical instruments. More details can be found, for example, in McConnell et al. (2007).

6.2.3 Quantification of earthquakes

The scientific analysis of earthquakes requires measurement. The size of an earth-

quake can be measured in several ways. The early methods used a kind of numerical

scale based on a synthesis of observed effects, called the intensity scales. Some

attempts to relate intensity to the amplitude of ground motion led to a quantity called

magnitude, based on the records of ground amplitudes normalised for their variation

with distance from the earthquake epicenter. However, the known magnitudes present

a saturation point which does not allow a correct estimation of the true earthquake

size of larger earthquakes, underestimating it. Moreover, it turns out that larger earth-

quakes, which have larger rupture surfaces, systematically radiate more long-period

energy. Then, nowadays, modern seismologists are increasingly turning to describe

the physical effects of earthquakes by the estimation of the radiated energy or the

seismic moment of the displaced ground. For more details see e.g. Howell (1990) and

Day (2002).

This section defines and discusses each of these measures.
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Intensity

Prior to the invention of modern scientific instruments, earthquakes were qualitatively

measured by their observed effects, ie, the effects on humans and their structures,

in a kind of numerical scale, which differed from place to place. Such measures are

called intensity scales and are the oldest useful way to express the “strength” of an

earthquake.

The first intensity scale was developed by de Rossi and Forel in the 1880s. It originally

had values from I to X and were based on the observation of the effects of seismic

activity. A more refined scale was devised in 1902 by the italian volcanologist and

seismologist Mercalli expressing the intensity of an earthquake’s effects in a given

locality in values ranging from I to XII. The first few levels consist of barely perceptible

sensations and the highest levels apply to the destruction of buildings. This scale is

widely used to compare levels of damage among different regions and socioeconomic

conditions. Mercalli’s scale was modified by Sieberg in 1912 and by H. Wood and F.

Neumann in 1931. The Wood-Neumann version is still in use. Earthquake intensity

scales, specially the Rossi-Forel and various versions of the Mercalli scale, were used

almost universally to measure earthquake size for about 50 years.

Although the intensity scale is relatively easy to use and is helpful in gauging the human

impact of an earthquake, it is not widely applied in the scientific analysis of modern

earthquakes for several reasons. The scale is based on damage, but the amount

of damage depends on how many people live in a particular area and the number

of buildings there. A minimal damage in sparsely populated areas with few buildings

are usually underestimated while highly populated areas with many buildings might be

overestimated. Also, there are significant differences in individual interpretations, one

person may define “considerable damage” differently from another person, and different

types of buildings constructions lead to a great difference in live losses. Moreover,

it depends upon the observer’s location relative to the earthquake’s epicenter, since

damage generally decreases moving away from the epicenter, but the decreasing is not

the same in every direction. Thus, the amount of damage depends on several factors
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that may be unrelated to the earthquake itself.

Since intensity scales are extremely subjective, they are ineffective for the scientific

comparison of earthquakes. However, the scale does provide useful local data that

can be used to identify which areas are most susceptible to shaking in regions of rare

earthquake activity. The Modified Mercalli scale is also useful in evaluating damage

from regions having insufficient seismographs and in historical earthquakes that oc-

curred before the widespread use of seismographs.

Magnitude

One of the weaknesses that earthquake intensity scales had is that they could be

applied only where there were observers to note the effects or structures to be affected.

If sizes of earthquakes are to be compared world-wide, a measure is needed that does

not depend on the density of population or type of construction, which can be used to

compare the strength of earthquakes apart from their effects.

Although similar seismographs have existed since the 1890s, it was only in the 1930s

that Charles F. Richter and Kiyoo Wadati introduced the concept of earthquake magni-

tude, a strictly quantitative scale that can be applied to earthquakes in both inhabited

and uninhabited regions. Such a measure define the magnitude of a local earth-

quake as the logarithm of base 10 of the maximum seismic wave amplitude recorded

on a Wood-Anderson seismograph located at a distance of 100 kilometers from the

earthquake epicenter. An important feature of this scale is that the levels increase

exponentially, ie, the rise of one level on the scale represents 10 times of increase on

the ground motion and an approximate 32 times of increase in energy released. The

smallest quakes normally felt by people have magnitude 2, from a magnitude of 6 they

are commonly considered major and great earthquakes have magnitude of 8 or more.

This procedure allows that all stations were able to determine the same earthquake

magnitude for a given quake.

The original Richter magnitude is called local magnitude, ml, because it varies from
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place to place depending on variations in the local geology. As instruments became

more sophisticated, it became clear that it could not accurately measure the largest

earthquakes and a variety of magnitude scales have emerged. “Richter scale” has

actually fallen out of use by the scientists who study earthquakes.

Once earthquakes excite both body waves and surface waves, two magnitude scales

evolved: the body-wave magnitude, mb, and the surface-wave magnitude, ms. These

magnitudes measure the size of ground motions at very different periods of vibration:

the ms magnitude scale measures the amplitude of Rayleigh waves in the period range

from 18 to 22 seconds while the mb scale is based in the compressional body P wave

amplitudes at a period of about 1 second.

Another commonly used magnitude scale is the moment magnitude, mw, but since it

has a different concept behind and it is strongly related with the seismic moment, we

only present this magnitude in the next topic.

Seismic Moment

Although theoretically there is no upper bound to the magnitude, it was found that it

underestimates the true size of larger earthquakes, since the mb scale saturates about

6.5 - 6.8, and the saturation point of ms is about 8.3 - 8.7. However, scientists have

found a correlation between fault length and earthquake magnitude: the longer the fault

rupture, the bigger the earthquake. It turns out that larger earthquakes, which have

larger rupture surfaces, systematically radiate more long-period energy.

The saturation problem can be avoided if seismic moment is used as a measure of

earthquake size rather than magnitude. The seismic moment, M , provides more ac-

curate measures of the energy released from an earthquake taking into account the

rock properties, such as its rigidity, µ, the area of the fault plane that actually moves, A,

and the amount of movement on the fault, D, and combining these three factors in the

following form

M = µAD.
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Takuo Maruyama, in 1963, appears to have been the first person to give special atten-

tion to this property of ground displacement. After that, the seismic moment received

increasing attention as a measure of earthquake size and, nowadays, it is preferably

adopted for scientific studies. This measure not only avoids the saturation problem,

since it does not have an intrinsic upper bound, but also describes the size of an

earthquake as a essential combination of physical quantities that really matters at the

earthquake source and that determines how strong the seismic motions will be.

Because many people do not really know what means a number with the “size” of

seismic moment and since the magnitude scale has been used for a very long time,

the need to convert it into some kind of magnitude scale emerged. These factors have

led to the definition of a new magnitude scale, the moment magnitude, mw, based on

seismic moment, given by

mw =
2

3
(logM − 16.1) , (6.1)

where M is in units of dyne-cm.

The moment magnitude scale is the only magnitude scale which does not suffer from

the above mentioned saturation problem for great earthquakes. The reason is that it

is directly based on the forces that work at the fault rupture to produce the earthquake

and not the recorded amplitude of specific types of seismic waves.

Energy

The energy of an earthquake is the fundamental measure of its size. The total amount

of energy released is hard to estimate since to determine it one would have to integrate

the energy flux over time and space and include the broadest possible spectrum of

frequencies generated by an earthquake as it ruptures a fault. During an earthquake,

the stored energy is transformed and results in rock deformations, heat and radiated

seismic energy. For those who are concerned with the effects of earthquake shaking,

what matters is to estimate the amount of energy released as seismic waves during

earthquakes. In 1956, Gutenberg and Richter obtained a relation between the radiated
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energy E (in ergs) and the surface-wave magnitude ms given by

logE = 1.5ms + 11.8. (6.2)

Kanamori (1977) proposed the estimation of the radiated energy with the relation

E =
M

2× 104
. (6.3)

He also found that mw is approximately equal to ms below the saturation level of about

ms ≤ 8, which led, jointly with the combination between (6.2) and (6.3), to the moment

magnitude mw defined in (6.1), that do not saturate and provide a scale that quantifies

earthquakes on the basis of the radiated energy.

It is relevant to note that, since 101.5 ≈ 31.6, an increase of one magnitude unit is

equivalent to approximately 31.6 times more energy release.

6.2.4 Earthquake forecast

Earthquakes are generally considered harmful because of their potential for causing

death and destruction. Although the scepticism that accompanied the rise of the sci-

entific study, the earthquake prediction was always seen as a prime goal because

is the most useful thing one could do. When the phrase “earthquake prediction” is

used, people usually have in mind the accurate forecasting in means of simultaneous

prediction of the time of occurrence, location, and approximate size of a specific earth-

quake to within a matter of days to months, which has long been an unrealised goal of

seismology. There are many who maintain that the nature of the earthquake instability

makes prediction impossible on such short timescales.

Much of the risk that earthquakes pose, particularly to property, could not be mitigated

by short-term prediction, which is an area of seismological research that is afforded

a lot more attention by the general public. Even if short term earthquake prediction

should someday prove possible and reliable, it would not be possible, for example, to

retrofit large engineered structures on a timescale of days to weeks. Then, some devel-

opments have been conducted in the field of engineering in an attempt to predict strong
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ground motion through data sets relative, for example, to peak ground acceleration

(PGA), peak ground velocity (PGV ), spectral acceleration (Sa), spectral velocity (Sv),

and spectral displacement (Sd).

After many ideas for earthquake prediction have been explored, the sad truth is that

reliable prediction of damaging earthquakes is not currently possible on any time scale.

Nevertheless, as referred by Kanamori (1974), earthquake prediction is only possible

with some statistical uncertainly and, in this sense, methods are being developed to

make this uncertainly small enough for practical purposes. Many advances have been

made in the probabilistic characterisation, namely the ability to evaluate the probability

of an earthquake occurring at some uncertain time during an extensive time period.

Other relevant estimations to be done are the damage and loss estimation. In the

damage estimation one usually estimates the shaking in terms of PGA or response

spectral acceleration at the site, which provides an estimate of the degree of damage

for each individual asset.

An important result in the forecast of earthquakes is, for example, the probability in

any given year that ground motions of a given intensity will be exceeded. Often, the

probability of exceedance during a period of some years is of most interest, for instance

when this period represents the lifetime of a building.

The prediction, in a probability sence, of strong ground motion is arguably one of the

most important issues that researchers can address and the most important social

benefit from earthquake research is the use of that knowledge to reduce the hazard

earthquakes pose to mankind.

6.3 Extreme value modelling of earthquake data

In the present section, the EVT using the POT approach is applied to some earthquake

data sets in the Harvard Seismic Catalog in order to estimate the parameters quantify-

ing the tails of the distribution of the large earthquakes considered.
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We concentrate on the entire route one need to travel from the raising of the data

to our ultimate goal of modelling the tail of the distribution of earthquakes seismic

moment. In order to do this we begin by explaining the entire procedure which was

necessary to make it possible to apply the POT approach to the data chosen for the

study. The reliable estimation of the parameters of the earthquake size distribution is

only possible if some usual assumptions required by the general results are satisfied.

For this purpose, a first analysis in order to verify the validity of these assumptions is

performed. Also in this section, an application of the core extreme value analysis to

these real earthquake data sets is provided with the estimation of the tail parameters

of the seismic moment distribution. The geometric-type and the Hill estimators are

considered for the estimation of the tail index and are employed on POT estimator for

the quantiles estimation. A comparison between the suggested estimators is carried out

and their performance is carefully discussed. All the analysis is supported by graphical

tools that show in a clear way the properties of the data that are regarded as relevant

to the study that is addressed here.

6.3.1 Description of the earthquake data

We consider the earthquake data obtained from the Harvard Seismic Catalog, available

at Global Centroid-Moment-Tensor (CMT) web page (cf. e.g. Dziewonski et al. (1981)

and Ekström et al. (2012)). Here, we restrict the territory of our study to earthquakes

occurring within the Philippines and Vanuatu Islands, and the analysis was performed in

a similar way for the both regions. In particular, we extract and analyse the information

about their seismic moments covering the period 01.01.1976 - 31.12.2010. The original

data-sets contain 1255 events for Philippines Islands and 1012 events for Vanuatu

Islands. However, in order to apply the POT method we selected an adequate and

large enough threshold u = 1024 dyne-cm, that corresponds to a moment magnitude

mw ≈ 5.27, the same value considered in related works such as in Pisarenko and

Sornette (2003). The observations under this threshold were removed. Since we detect

a failure in data acquisition of the Vanuatu Islands until 01-01-1980, we just consider
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the Vanuatu Islands data subsequent to this date. So the final data sets, on which

the analysis that follows has been based, consider 821 cases for Philippines Islands

and 647 cases for Vanuatu Islands. We did not exclude the aftershocks because apart

from owning a greatly reduced fraction on the range of seismic moments considered,

its removal may introduce a bias in the parameters estimation (cf. e.g. Pisarenko and

Sornette (2003)). As the considered region has a lot of deep earthquakes, they also

were not excluded. Thus, after the space, time and seismic moment has been selected,

no further elimination of events is performed.

6.3.2 Heavy tails detection

Before proceeding it would be useful to discuss if the Pareto-type model provide a

plausible fit to the seismic moment distributions of the data under study. We analyse it

through quantile-quantile (QQ) plots and hypotheses tests.

The QQ plots constitute a very informative and powerful tool to graphically evaluate

how close two distributions are from each other, using for it their quantiles. In most

of the time, as in this case, the most convenient comparison is between the empirical

quantiles of the sample and the quantiles of the theoretical distribution intended. If the

sample data and the reference distribution are derived from populations with a common

distribution, the QQ plot should show a strong linear trend.

Since we believe that our data are heavy tailed, we present the Pareto QQ plots of our

data sets in Figure 6.5.

Given that Y D
= logX, where X and Y are Pareto and Exponential distributed r.v.,

respectively, then the usual Pareto QQ plots are Exponential QQ plots of the log-

transformed data.

In the resultant scatterplot a linear pattern is evident, which is indicative of the good

agreement between observed values and the values predicted by the model. We

carefully analyse the behaviour of the QQ plot on its upper right part, which represents
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Figure 6.5: Pareto QQ plot for Philippines (left) and Vanuatu (right) Islands seismic moment data.

the most extreme values and, although slightly less than in the remaining part of the

plot, a linear tail behaviour is made apparent. The visual impressions based on the

Pareto QQ plots suggests that the Vanuatu and Philippines Islands earthquake data

sets do seem to follow a Pareto distribution, ie, that we are dealing with a possible

heavy-tailed underlying distribution (γ > 0).

The QQ plots are very useful tool since they provide an indication of the sign of the

tail index, thus providing a useful orientation to the choice of the most appropriate

estimators.

For the estimation of the quantities of interest we assume that the underlying d.f. F

belongs to the domain of attraction of an extreme value distribution, ie, that the extreme

value condition (2.1) is satisfied. In order to check the validity of this condition, Dietrich

et al. (2002) developed the test statistic

Ek,n =

∫ 1

0

(
logX(n−kt,n) − logX(n−k,n)

γ̂+

− t−γ̂− − 1

γ̂−

(
1− γ̂−

)
)2

t2 dt, (6.4)

for k � n, where γ̂+ is an estimator for γ+ = max(0, γ) and γ̂− is an estimator for

γ− = min(0, γ).



FCUP 87

CHAPTER 6. MODELLING EXTREMAL EARTHQUAKES

They also refer that in case where only nonnegative values of γ play a role, a simplified

version is available

Tk,n =

∫ 1

0

(
logX(n−kt,n) − logX(n−k,n)

γ̂+

− log t

)2

t2 dt. (6.5)

A table of critical points for various values of γ is available in Hüsler and Li (2006).

In order to test the null hypothesis H0 : F ∈ DA(Gγ)γ>0, we consider the E-Test

and the T-Test given in (6.4) and (6.5), respectively. In Figures 6.6 and 6.7, we show

the behaviour of the E-Test and T-Test statistics, respectively, as a function of k, and

considering significance levels α = 0.01 and α = 0.05.
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Figure 6.6: Plot of the sample paths for E-Test statistics (Dietrich et al. (2002)), for seismicity of

Philippines (left) and Vanuatu (right) Islands, as function of k. The dashed lines represent the asymptotic

0.95-quantile (≈ 0.15) and 0.99-quantile (≈ 0.25).
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Figure 6.7: Plot of the sample paths for T-Test statistics (Dietrich et al. (2002)), for seismicity of

Philippines (left) and Vanuatu (right) Islands, as function of k. The dashed lines represent the asymptotic

0.95-quantile (≈ 0.22) and 0.99-quantile (≈ 0.34).

For Philippines and Vanuatu Islands data sets, we observe that the values for both test

statistics are smaller than the corresponding asymptotic quantiles for a large range of

k-values. So, since the sample paths of both test statistics are almost always outside

the rejection region (i.e. below the critical test value), except for a small range of k, we

find no evidence to reject the null hypothesis.

6.3.3 Data stationarity

For the purpose of analysis, the stationarity is a desirable property to have in the data

under study, since, in this case, the statistical parameters properties do not change over

time. However, strong stationary is never observed in practice but whenever adequate,

data is considered approximately stationary. To identify the stationarity we plot the

normalised cumulative number of earthquakes versus time.
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Figure 6.8: Cumulative number of earthquakes normalised by the total number in the period considered

as a function of time, for seismicity of Philippines (left) and Vanuatu (right) Islands with M ≥ 1024.

The linear behaviour that we can observe in Figure 6.8 is an indication of the stationary

behaviour of the two data sets over the selected time window, thus the data is approxi-

mately homogeneous in time and assumed as stationary.

6.3.4 Investigation of independence

Another relevant property that we are interested to verify before proceeding with the

extreme value analysis of the data is the independence, since most of the results in

EVT require it as assumption.

In our case, the goal is to analyse the existence of correlations between consecutive

seismic moments, ie, verify how the seismic moment of one event, Mi−1, influences the

seismic moment of the next, Mi.

Here we investigate this statistical dependence through the conditional probability den-

sity determined by
P (η ≤Mi < η + ∆η |Mi−1 ≥M ′c)

∆η
,

where M ′c is the threshold considered on the previous seismic moment when this con-
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dition is imposed. Here we denote the initial threshold, u, as Mc, and the condition

M ≥Mc is always satisfied (see e.g. Corral (2006)).
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Figure 6.9: Conditional probability densities of earthquake seismic moments, for seismicity of Philippines

(left) and Vanuatu (right) Islands, evaluated using different thresholds M ′c and with a constant Mc = 1024

(∆η = 1025).

The conditional probability density of a seismic moment is then defined as the probabil-

ity of the seismic moments are within a small interval of values, divided by the length of

the small interval, ∆η, tending to zero, considering only the cases in which the seismic

moment of the immediately previous event is bigger than a threshold M ′c.

The dependences will be given by the distribution described above. If the conditional

distribution of Mi given that Mi−1 ≥ M ′c is identical to the unconditional distribution,

then the seismic moment Mi is statistically independent of an event Mi−1 ≥ M ′c. Note

that the case Mc = M ′c gives the unconditioned distribution.

We observe in Figure 6.9 that, in general, the different densities using different thresh-

olds M ′c share the same properties, which suggest the independence of seismic mo-

mentsMi with their history. The small oscillations between the densities may be caused
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by the errors associated to the finite sample and the dependence that arises from this

is apparently weak enough to lead to major differences in the distributions.

6.3.5 Estimation of tail parameters

In this section we formalise our main objective of investigating the extremal behaviour

of the large earthquakes and how the proposed estimators behave with this type of real

data.

Then, we discuss the estimation of the tail parameters through the POT approach. The

GT and the Hill estimators are considered for the estimation of the tail index and are

employed on POT estimator for the quantiles estimation.

Some graphical plots illustrate the tail parameters of large earthquake data, as a func-

tion of k.

The bias corrected estimation requires a previous choice of the τ -value more appropri-

ate to be used in the estimation of the second order parameters. As usual, the means

whereby we do this choice passes by portraying the sample paths of ρ̂τ (k) in (4.4) for

the values τ ∈ {0, 0.5, 1}, as functions of k, and use the following algorithm as a stability

criterion for large values of k:

1. Consider ρ̂τ (k), τ ∈ {0, 0.5, 1}, for the integer values k ∈ (
⌊
n0.995

⌋
,
⌊
n0.999

⌋
) and

compute their median, denoted by χτ ;

2. Choose the tuning parameter τ∗ = arg minτ
∑

k(ρ̂τ (k)− χτ )2;

3. Compute the ρ estimates ρ̂τ∗(kh1) and ρ̂τ∗(kh2), and the β estimates β̂ρτ∗ (kh1)(kh1)

and β̂ρτ∗ (kh2)(kh2), with kh1 and kh2 given by (5.1).
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Figure 6.10: Estimates of the second order parameters ρ (left) and β (right) for seismicity of Philippines

Islands.
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Figure 6.11: Estimates of the second order parameters ρ (left) and β (right) for seismicity of Vanuatu

Islands.

The Figures 6.10 and 6.11 show the sample paths of the second order parameter esti-
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mators, ρ̂ and β̂, based on the Philippines and Vanuatu seismic moment observations,

respectively. We might see that the sample paths of ρ̂ for the three different values of τ

have a very similar behaviour. It is however apparent that the behaviour of ρ̂ is slightly

better when considering τ = 0, specially for data concerning the Vanuatu Islands. As

the above described algorithm also points to the choice of τ = 0 in both cases, we

chose this value of τ to estimate ρ.

Thus, for Philippines Islands, we have kh1 =
⌊
8210.995

⌋
= 793 and kh2 =

⌊
8210.999

⌋
=

815, that is, the corresponding estimates of ρ are ρ̂0(793) ≈ −0.25 and ρ̂0(815) ≈ −0.32

and the corresponding estimates of β are β̂ρ̂0(793)(793) ≈ 0.19 and β̂ρ̂0(815)(815) ≈ 0.15,

being both represented graphically through straight lines. Doing the same procedure

to Vanuatu Islands, we have kh1 =
⌊
6470.995

⌋
= 626 and kh2 =

⌊
6470.999

⌋
= 642, that

is, the corresponding estimates of ρ are ρ̂0(626) ≈ −0.20 and ρ̂0(642) ≈ −0.25 and the

corresponding estimates of β are β̂ρ̂0(626)(626) ≈ 0.51 and β̂ρ̂0(642)(642) ≈ 0.44.

Since from the β̂ sample paths it is not readily apparent significant differences between

the use of kh1 or kh2 and due to the fact that the tail index estimation is more affected

by the ρ fluctuations than the β ones, we use the both levels in the remaining study.

Moreover, here we also present a possible optimal level k0 of top observations to

consider when the geometric-type estimator is used to estimate γ, through the minimi-

sation of the asymptotic mean square error (AMSE) of the geometric-type estimator.

Considering again the representation of the geometric-type estimator in Theorem 3.2.4,

we get what we need to calculate the AMSE(ĜT ) and provide for their minimisation

∂

∂k

[
AMSE

(
ĜT
)]

= 0⇐⇒ ∂

∂k

[
V
(
ĜT
)

+
(
Bias

(
ĜT
))2]

= 0

⇐⇒ ∂

∂k

[
2γ2

k
+

(
γβ

(1− ρ)2

)2 (n
k

)2ρ
]

= 0.

Solving the equation in order to k and denoting the result as kĜT0 , we obtain

kĜT0 =

[
2(1− ρ)4

−2ρβ2

]1/(1−2ρ)
n−2ρ/(1−2ρ).
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Although this is not the optimal value for the bias corrected estimators, the value of the

tail index and quantiles calculated with the geometric-type estimator at the kĜT0 level is

represented in some illustrations for comparison.

As a first step we estimate the tail index, γ, using GT estimator and Hill’s estimator.
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Figure 6.12: Plot for the GT estimator, ĜT , and for the Hill estimator, Ĥ, of γ, for seismicity of Philippines

(left) and Vanuatu (right) Islands.

Concerning the shape parameter γ, the Figure 6.12 displays the estimated values of GT

and Hill estimators, as a function of k, for Philippines and Vanuatu Islands data. As one

can observe, for Philippines Islands data both estimators give similar results stabilising

around the same value of γ, which is 1.6, with basically the same scatter for moderate

and high values of k, although it is worth to give emphasis to the smoothness that the

geometric-type estimator shows.

For the Vanuatu Islands data, though not so explicit as to the Philippines data, the

behaviour of GT tends to stabilise around the value of 1.64 as k increases. The same

is true for the Hill estimator around the value of 1.78, although in a slightly more erratic

way.
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The GT estimator presents the best performance specially for Philippines Islands data,

displaying almost a straight line around 1.58 for k-values larger than 300.
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Figure 6.13: Plot for the GT estimator, ĜT , and for the corresponding GT bias corrected estimators,

ĜT and ĜT , of γ, for seismicity of Philippines (left) and Vanuatu (right) Islands.

In Figure 6.13 it is possible to compare the behaviour of the GT estimator with its

corrected versions, ĜT and ĜT . We note that the corrected estimators maintain the

good behaviour, having less variation in the initial values of k, and stabilising at slightly

lower values than the uncorrected estimator. Depending on the unknown value of the

tail index parameter, that we seek, this type of behaviour seems to be indicative of a

better performance of the corrected estimators. Particularly for Vanuatu Islands data,

this improvement seems to be evident since the corrected estimators begin to stabilise

sooner than the non corrected ones, showing a very satisfactory behaviour, right from

the initial values of k.

In order to make the comparison between the bias corrected GT estimators and the Hill

ones, we draw the sample paths of one against the other.
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Figure 6.14: Plot for the GT bias corrected estimators, ĜT and ĜT , and for the Hill ones, Ĥ and Ĥ, of

γ, for seismicity of Philippines (left) and Vanuatu (right) Islands.

We might see from Figure 6.14 that the estimates provided by the corrected Hill estima-

tors are around the same values of the estimates given by the corrected GT estimators.

However, it is quite clear that the Hill estimators hold a rather irregular behaviour com-

pared to the GT estimators, specially for smaller values of k.

It is suggestive that the value of γ that best describes the seismic moment of the

Philippines Islands is a little below 1.5 and of the Vanuatu Islands is slightly above

1.

As in most of the applications, the main interest lays not on the tail index but in the

quantiles of the extreme distributions, which are more stable and robust. Now we

analyse the sample paths of the quantiles estimators. We estimate the values of POT

high quantiles estimator, in (2.2), based on the GT and Hill estimators, as a function

of k, for Philippines and Vanuatu Islands data, considering the percentile 99%. Each

tail index estimator leads to a different estimation of large quantiles, which is, also,

dependent on k. The straight dashed line represents the estimate of the empirical
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99% quantile. When more than one straight line are present, the empirical quantile is

represented by the inferior one.
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Figure 6.15: Plot for the 99-quantiles estimators based on the GT estimator, χ̂ĜT , and on the Hill

estimator, χ̂Ĥ , of χ0.99, for seismicity of Philippines (left) and Vanuatu (right) Islands (empirical quantiles

χ0.99 = 9.29× 1026 and χ0.99 = 7.37× 1026, for Philippines and Vanuatu Islands, respectively).

We might see from Figure 6.15 that, for the Philippines Islands, both estimates do not

present values close to the empirical quantile. For values of k larger than 300, the

estimates tend to stabilise, being apparent that this stabilisation process is significantly

more regular for the GT based quantiles estimator. The uneven performance that the

Hill quantile plot shows, make it extremely hard to decide upon a specific value for k.

For the Vanuatu Islands the behaviour of both estimators is not the best, but the Hill

based quantiles estimator presents a much more irregular behaviour.

Now comparing the GT based quantiles estimator with its corrected versions, we can

observe in Figure 6.16 that the improvement caused by the correction is quite remark-

able. It is also to be noted that considering the kh2 level to estimate the second order

parameters, the performance seems to be a little better. Also in Figure 6.16, and for

Philippines Islands data, it can be seen that the quantile value calculated using the



98 FCUP

EXTREME VALUES. HIGH ORDER QUANTILES AND APPLICATIONS.

geometric-type estimator at its optimal levels kĜT0 , represented by the superior straight

lines, almost coincides with the value of the quantiles estimator based on the geometric-

type estimation for k-values larger than 200, which highlights the fairly stable behaviour

of this quantiles estimator in this range of values.
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Figure 6.16: Plot for the 99-quantiles estimators based on the GT estimator, χ̂ĜT , and on the

corresponding geometric-type bias corrected estimators, χ̂ĜT and χ̂ĜT , of χ0.99, for seismicity of

Philippines (left) and Vanuatu (right) Islands (empirical quantiles χ0.99 = 9.29 × 1026 and χ0.99 =

7.37× 1026, for Philippines and Vanuatu Islands, respectively).

In Figure 6.17 we can observe that the bias corrected Hill quantiles estimators present

estimate values very similar to the ones presented by the bias corrected GT quantiles

estimators. Although the corrected Hill quantiles estimators using the kh2 level to

compute the second order parameters seem to have values more close to the em-

pirical quantile than the corresponding corrected GT quantiles estimators, in case of

Philippines Islands only for k-values greater that 300, their erratic and much less stable

behaviour may be a factor of considerable disadvantage.
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Figure 6.17: Plot for the 99-quantiles estimators based on the geometric-type bias corrected estimators,

χ̂ĜT and χ̂ĜT , and on the Hill bias corrected estimators, χ̂Ĥ and χ̂Ĥ , of χ0.99, for seismicity of Philippines

(left) and Vanuatu (right) Islands (empirical quantiles χ0.99 = 9.29 × 1026 and χ0.99 = 7.37 × 1026, for

Philippines and Vanuatu Islands, respectively).

In this real case study the quantiles estimator using the geometric-type estimator shows

a better performance. These results are improved when we apply the geometric-type

bias corrected estimators to the quantiles estimator.

In general it is possible to conclude that the smoother behaviour is a common qual-

ity both for the estimates obtained for the GT tail index estimators as for GT based

quantiles estimators, which show a very small variability, reflecting the more regular

behaviour of the GT estimators. Although the Hill estimator is generally more unstable,

it also displays an adequate behaviour.

As one knows, the performance of the estimators depends on the distribution of the

data and there is not a uniformly best estimator. Nevertheless, from the results of the

practical example conducted in this section, one could deduce that for this type of data

the GT estimator turns out to be the best choice for tail index estimator and when used

in the POT estimator for high quantiles.
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Dietrich, D., de Haan, L. and Hüsler, J. (2002). Testing extreme value conditions.

Extremes 5, 71–85.

Drees, H. (1996). Refined Pickands estimators with bias correction. Comm. Statist.

Theory and Meth. 25, 837–851.



104 FCUP

EXTREME VALUES. HIGH ORDER QUANTILES AND APPLICATIONS.

Dziewonski, A.M., Chou, T.-A. and Woodhouse, J.H. (1981). Determination of earth-

quake source parameters from waveform data for studies of global and regional

seismicity. J. Geophys. Res. 86, 2825–2852.

Ekström, G., Nettles, M. and Dziewonski, A.M. (2012). The global CMT project 2004-

2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter.

200–201, 1-9.
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