
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Optimization Algorithms for the Shelf
Space Allocation Problem

Ana Carolina Reis Janeiro

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: José Fernando da Costa Oliveira

Second Supervisor: Maria Teresa Peixoto Braga Bianchi de Aguiar

July 31, 2014

c© Ana Carolina Reis Janeiro, 2014

ii

Abstract

In retail stores, shelves have a limited capacity to place products. Due to this reason, it is extremely
important to manage them carefully.

According to experimental studies, there are many in-store factors that can influence costumer
purchases. Among these are the number of facings of a product (ie. visible items), its position on
shelves (horizontal and vertical), the price and product adjacencies. To improve sales it is relevant
for retailers to capitalize on these factors by optimizing the allocation of products on shelves.

Although there are software applications available to help in shelf space planning, these still
have a number of limitations and require significant human interaction. On the other hand, this
problem has also been tackled in the literature under the name Shelf Space Allocation Problem.
However, models and solution approaches can hardly be adapted to reality as they usually lack key
practical constraints and require parameters hard to estimate.

Inspired by the case of a Portuguese Supermarket Chain, two novel Biased Random-key Ge-
netic Algorithms are proposed to tackle the Shelf Space Allocation Problem. The algorithms aim
to allocate the products on shelves bearing in mind the best location and number of facings to
boost their sales. Additionally, products are allocated within families that should form rectangular
shapes on the shelves. The main difference between both algorithms lies in the way these families
of products are placed on the shelves.

The algorithms are tested with real case study instances. Among the key benefits of both
approaches is their applicability in practice, both in terms of constraints and execution times.

iii

iv

Resumo

Nas lojas a retalho, as prateleiras têm uma capacidade limitada para alocar produtos. Por essa
razão, é necessário geri-las de uma forma cuidada.

De acordo com estudos experimentais, há vários fatores, dentro da loja, que influenciam as
compras de clientes. Entre estes consta o número de frentes de um produto (ou seja, os itens
visíveis), a sua posição nas prateleiras (horizontal e vertical), o preço e as adjacências de produtos.
Para melhorar as vendas, é importante para os retalhistas lucrar com estes fatores, optimizando a
alocação de produtos nas prateleiras.

Apesar de existirem aplicações de software disponíveis para ajudar no planeamento do espaço
das prateleiras, estas ainda têm algumas limitações e requerem uma interação humana significativa.
Por outro lado, este problema já foi tratado na literatura, com o nome Problema de Alocação de
Espaço em Prateleiras. Apesar disso, os modelos e estratégias de solução são pouco adaptáveis
à realidade, uma vez que, normalmente, não consideram restrições práticas chave e requerem
parâmetros difíceis de estimar.

Inspirados pelo caso de uma cadeia portuguesa de supermercados, dois novos Algoritmos
Genéticos de Chaves Viciadas são propostos para resolver o Problema de Alocação de Espaço em
Prateleiras. Os algoritmos têm como objetivo alocar os produtos nas prateleiras, tendo em conta a
melhor localização e o número de frentes, de forma a aumentar as vendas. Além disso, os produtos
são alocados em famílias que apresentam formas retangulares nas prateleiras. A maior diferença
entre os dois algoritmos reside na forma como as famílias de produtos são alocadas nas prateleiras.

Os algoritmos são testados com instâncias de um caso de estudo real. Entre os benefícios
chave das duas estratégias está a sua aplicação na realidade, tanto em termos de restrições como
tempo de execução.

v

vi

Acknowledgments

I would like to thank my supervisor, Professor José Fernando Oliveira, for giving me the oppor-
tunity to work in such an interesting project and for integrating me in the Operations Research
world. Above all, I would like to thank my co-supervisor, Teresa Bianchi de Aguiar, who always
helped me in the development of this dissertation and pushed me to do my best. She also gave
up a lot of her time so that the final result would meet the objectives. To her, my sincere thank
you. I also owe my thanks to Elsa Silva and Luís Guimarães who helped improve the ideas for the
project and were there whenever it was necessary. I would also like to thank my friends for always
giving me their help and support, even through hard times. Finally, my special thanks goes to my
family, particularly my parents and my sister, who have always believed in me and have always
done everything they could to see me happy.

Ana Carolina Reis Janeiro

vii

viii

“Knowledge isn’t power until it is applied.”

Dale Carnegie

ix

x

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
1.3 Structure . 2

2 Shelf Space Management 3
2.1 Introduction . 3
2.2 Current Practices . 4

2.2.1 Problems in Retail . 4
2.2.2 Software Applications for Shelf Space Management 5

2.3 The Shelf Space Allocation Problem . 6
2.3.1 Decisions . 7
2.3.2 Objectives . 7
2.3.3 Constraints . 7

2.4 Other Related Problems . 8

3 Literature Review 11
3.1 Experimental Studies . 11
3.2 Optimization methods . 13

3.2.1 Mathematical Models . 13
3.2.2 Solution Approaches . 20

3.3 Genetic Algorithms . 21
3.3.1 Introduction . 21
3.3.2 Genetic Algorithms for the Shelf Space Allocation Problem 22
3.3.3 Biased Random-key Genetic Algorithm 24
3.3.4 Biased Random-key Genetic Algorithms for Cutting and Packing Problems 27

4 Biased Random-key Genetic Algorithm for the Shelf Space Allocation Problem 31
4.1 Problem Definition . 31
4.2 Biased Random-key Genetic Algorithms . 32

4.2.1 First BRKGA for the SSAP . 33
4.2.2 Second BRKGA for the SSAP . 39

5 Tests and Results 43
5.1 Case Study Instances . 43
5.2 Parameter Sensitivity Analysis . 43
5.3 Influence of the Planogram Complexity on the Execution Time 49
5.4 Decoders Comparison . 50

xi

xii CONTENTS

6 Conclusion and Future Work 53
6.1 Shelf Space Considerations . 53
6.2 Algorithms proposed . 53
6.3 Future Work . 54

A Examples of Application of Algorithms Developed 57
A.1 Example of Application of the First BRKGA for the SSAP 57

A.1.1 Determine number of facings . 58
A.1.2 Sequencing . 59
A.1.3 Allocate Blocks . 59
A.1.4 Fitness Function . 61

A.2 Example of Application of the Second BRKGA for the SSAP 62
A.2.1 Determine number of facings . 62
A.2.2 Sequencing . 63
A.2.3 Allocate Blocks . 63
A.2.4 Fitness Function . 65

References 67

List of Figures

2.1 Example of a planogram. 4
2.2 Interdependencies in master category planning.[1] 5
2.3 Information concerning IT usage to manage shelf space by retailers [1]. 6
2.4 Facings of products on a shelf . 7
2.5 Example of Three-dimensional Bin Packing Problem 9

3.1 Variation of sales rate with shelf space for a single products [2]. 12
3.2 An illustration of the space and cross elasticity components of the demand function

of a product for β = 0.2, δ = 0.2 or −0.2. 14
3.3 A generation in a genetic algorithm . 21
3.4 Template of an evolutionary algorithm [3] . 22
3.5 Flowchart of the BRKGA algorithm [4] . 25
3.6 Transition from generation g to generation g+1 [4] 26
3.7 Parameterized uniform crossover [4] . 26
3.8 Architecture of the heuristic [5] . 28
3.9 Difference process in interval generation. [6] 28
3.10 Pseudo-code of the placement procedure. [5] 29

4.1 Impact of vertical location on sales (the vertical axis presents the height of the
shelf and the horizontal axis the impact). 32

4.2 Block diagram for the example. 33
4.3 Allocation of capacities, brands and products. 33
4.4 Architecture of the algorithm. 34
4.5 Decoding of the facings removal. 36
4.6 Decoding of the block sequence. 36
4.7 Example of blocks sequencing across levels . 37
4.8 Architecture of the algorithm. 40

5.1 Evolution of the percentage of instances solved in function of the deviation from
the best objective function of each instance, for different p/n values (logarithmic
horizontal scale). 45

5.2 Evolution of the percentage of instances solved in function of the deviation from
the best objective function of each instance, for different p/n values (normal scale). 45

5.3 Evolution of the percentage of instances solved in function of the deviation from
the best objective function of each instance, for different pe values (logarithmic
horizontal scale). 46

5.4 Evolution of the percentage of instances solved in function of the deviation from
the best objective function of each instance, for different pe values (normal scale). 46

xiii

xiv LIST OF FIGURES

5.5 Evolution of the percentage of instances solved in function of the deviation from
the best objective function of each instance, for different pm values (logarithmic
horizontal scale) . 47

5.6 Evolution of the percentage of instances solved in function of the deviation from
the best objective function of each instance, for different pm values (normal scale). 47

5.7 Evolution of the percentage of instances solved in function of the deviation from
the best objective function of each instance, for different ρe values (logarithmic
horizontal scale). 48

5.8 Evolution of the percentage of instances solved in function of the deviation from
the best objective function of each instance, for different ρe values (normal scale). 48

5.9 Influence of the number of products on the time needed to solve instances 49
5.10 Evolution of the percentage of instances solved with the deviation from the best

objective function of each instance, for decoders 1 and 2 (logarithmic horizontal
scale). 50

A.1 Shelves considered in the example. 57
A.2 Block diagram considered in the example. 58
A.3 Component (2) of the chromosome, used for sequencing. 59
A.4 Example of maximum and mininum heights for block 1. 61
A.5 Allocation of block 1. 61
A.6 Allocation of all blocks. 61
A.7 Block diagram for the example. 62
A.8 Chromosome keys for sequencing . 63
A.9 Chromosome keys for block orientation . 64
A.10 Placement of block 1 on shelves. 64
A.11 Placement of blocks 2,3 and 4 on shelves. 65
A.12 Placement of blocks 5,6 and 7 on shelves. 66
A.13 Placement of products on shelves. 66

List of Tables

3.1 Recommended parameter value settings. 26

5.1 Details of the Case Study Instances . 44
5.2 Values tested for BRKGA parameters . 44
5.3 Average fitness and time for each decoder in the test instances 51

A.1 Product data considered in the example . 57
A.2 Facings of products after removal. 58
A.3 Facings of products after additions. 59
A.4 Areas of products. 60
A.5 Areas of product families. 60
A.6 Product data . 62
A.7 New facings obtained for products . 62
A.8 Areas of blocks and products within block 2 . 63
A.9 Areas of blocks and products within block 3 . 63
A.10 Areas of blocks and products within block 4 . 63

xv

xvi LIST OF TABLES

Abbreviations and Symbols

SSAP Shelf Space Allocation Problem
BRKGA Biased Random-key Genetic Algorithm
APED Portuguese Association of Distribution Companies
2D-BPP Two-dimensional Bin Packing Problem
3D-BPP Three-dimensional Bin Packing Problem
GA Genetic Algorithm
EA Evolutionary Algorithm
BL Bottom-Left
LB Left-Bottom
ERS Empty Rectangular Space
DP Difference Process

xvii

Chapter 1

Introduction

In this chapter the motivation and aims of this dissertation are explained. Furthermore, the orga-

nization of chapters is described.

1.1 Motivation

Shelf space is a very important and limited resource of every retail store. In-store factors including

number of facings (i.e. visible items), horizontal and vertical shelf position and price can affect

costumers attention and evaluation of products when making a purchase [7]. This attractiveness of

the layout is particularly relevant in "out-of-stock" situations or in cases of unplanned purchases

[8]. Based on these reasons, it is possible to conclude that retail stores with optimized shelf space

management may see improvements in their financial performance. In the extremely competitive

retail market, retailers strive to display products on the shelves in such a way that will translate in

a boost in sales, by finding the right number of facings for each product and placing it in the best

location.

Retailers have software applications available that provide tools to help manage shelf space

more efficiently. In spite of this, there are still limitations in these applications, which require

significant human interaction [8].

The problem of allocating products on shelves is tackled in the literature under the name Shelf

Space Allocation Problem. However, the existing mathematical models and solution methods lack

key practical constraints and have parameters hard to estimate. Therefore, there still exists a strong

margin for improvement until these approaches can have a real application.

1.2 Objectives

This dissertation aims to study the possibility of using metaheuristics to tackle the shelf space

allocation problem and bridge the gap between theory and practice. In particular, the goal is to

apply a Biased Random-key Genetic Algorithm. Although many different approaches have been

used to tackle the Shelf Space Allocation Problem, these algorithms have not yet been tested. In

1

2 Introduction

spite of this, there is evidence in literature that they are successful in solving similar problems,

particularly Cutting and Packing Problems [4].

Inspired by the case study of a major Portuguese Retail company, the problem is defined

according to the reality faced by the company, giving to this dissertation the necessary proximity

to the practice of shelf space allocation. To check its applicability, the algorithm is tested with

real-world instances provided by the case study.

1.3 Structure

This dissertation is organized in six chapters. The first of these chapters corresponds to the in-

troduction, in which the motivation and objectives of the work developed are explained. The

remaining chapters are organized as follows:

In chapter 2, Shelf Space Management, the problem under analyzes is presented and current

practices in retail are described. Furthermore, other related problems are also reviewed and a short

description of the case study is made.

In chapter 3, Literature Review, experimental studies that have been conducted to analyze the

impact of shelf space on sales are reviewed. Afterwards, the mathematical models and optimiza-

tion methods present in the literature to help retailers in their decisions concerning shelf space

allocation are also studied. Finally, Genetic Algorithms and, particularly, Biased Random-key

Genetic Algorithms and their application in Shelf Space management and related problems are

analyzed.

In chapter 4, Biased Random-key Genetic Algorithm for the Shelf Space Allocation Problem,

two original solution decoders are presented for applying Biased Random Key Genetic Algorithms

to the Shelf Space Allocation Problem.

In chapter 5, Tests and Results, real case study instances are tested and the results obtained are

described.

In chapter 6, Conclusion and Future Work, the knowledge obtained throughout the develop-

ment of the dissertation is presented and suggestions for future work are made.

Chapter 2

Shelf Space Management

In this chapter the importance of shelf space management is described. For that purpose, current

practices concerning processes and software applications are reviewed. Afterwards, the Shelf

Space Allocation Problem is analyzed in detail and other related problems are briefly explained.

Finally, a description of the case study under analysis is presented.

2.1 Introduction

Retail is an extremely competitive industry in which retailers look for every possible advantage

they can get. An example of this can be found in the two biggest Portuguese food retailers that

detained the biggest volume of business in 2011, according to the Portuguese Association of Dis-

tribution Companies (APED) ranking (Continente and Pingo Doce) [9]. In recent years, both

companies have resorted to aggressive marketing campaigns to compete for costumers purchases.

In order to face the fierce competition, retailers strive to boost their sales by every means

possible. Although out-of-store media advertising and loyalty to a product can influence costumers

purchases, there are situations in which in-store factors are crucial in leading a consumer to buy

a product. In particular, when the store does not have the product preferred by the costumer in

stock or in cases of unplanned purchases, the store’s layout and space planning can boost the

attractiveness of the products and improve their sales [8].

According to [7], the number of facings of a product, its price and shelf position (horizontal

and vertical) are examples of in-store factors that may influence attention and evaluation of cos-

tumers at the point of purchase. Studies show that increasing the total shelf space has a strong

effect on sales, but the available shelf space is limited and increasing it requires a high investment

both in terms of construction and maintenance, which the retailer might not be willing to make.

Furthermore, the location of a product has an important impact on sales as well as maintaining a

minimum number of facings on shelves, in order to avoid stockouts [10]. Particularly, top and eye-

levels positions of products on shelves are considered to have a stronger influence in consumers

attention.

3

4 Shelf Space Management

Retailers use diagrams to represent the location and number of facings of the products. These

diagrams are called planograms [7]. An example of a planogram is presented in Figure 2.1.

Figure 2.1: Example of a planogram.

New products are constantly being introduced and competing for shelf space in retail stores,

requiring shelf displays to be frequently changed. According to [1], the average number of items,

between 2000 and 2009, increased by 30% in overall store assortments. In particular, in the food

retail industry the number of products to be displayed in supermarket shelves is, in general, very

large and demands a careful management. To do this, large amounts of time have to be spent,

particularly if planograms are developed with very significant human interaction. As a result, most

retailers suffer from decreasing space productivity [1]. If the shelf layout is well planned, stores

can see an improvement in their financial performance and reduce the probability of products

being out of stock [11].

In this context, efficient methods for allocating products in shelves can bring an important

advantage to companies, giving them the upper hand in today’s extremely competitive market.

2.2 Current Practices

2.2.1 Problems in Retail

When planning the layout of a store there are different factors to take into account, including which

products to offer, how many facings should be allocated, where to place them and their restocking

frequencies. These factors are interrelated since a large number of products will implicate that less

space will be allocated to each. As a consequence, items will be less visible on shelves and the risk

of stockouts will increase. According to [1], these questions correspond to different problems of

master category planning, whose interdependencies and planning horizons are presented in figure

2.2.

• Category sales planning defines the major categories in which products should be organized

in the stores and their corresponding role and depth. This type of planning is strategic and

is usually done for a longer horizon.

2.2 Current Practices 5

• Assortment planning consists in deciding which products should be present in each category,

based on the consumer choices and the substitution effects that happen when a product is

not present or becomes unavailable.

• Shelf Space Planning determines products allocation on shelves, based on the limited capac-

ity, space effects on demand and operational restocking constraints. This kind of planning

is generally done for a shorter horizon, together with assortment planning.

• In-store logistics planning is the most operational problem and defines the replenishment

planning for each store.

Figure 2.2: Interdependencies in master category planning.[1]

Since retailers deal with a large number of products, they started to group the ones with similar

characteristics into categories in the late 1980s [12]. To better manage these categories, many

retailers and suppliers started to name leading manufacturers as category captains. Their function

is to give insight into the best way of organizing a particular category. In spite of the helpful

information, there are concerns that a category captain might be biased. The reason for this lies

in the fact that category captains have to make recommendations concerning not only their own

brands, but rival brands as well.

2.2.2 Software Applications for Shelf Space Management

Category planning can potentially involve large amounts of products. As such it can be an ex-

tremely complex problem. To help retailers in their tasks there are commercial software solutions

available. Despite this, according to [1], in 2009, 30% still did not use any kind of IT support to

manage shelf space, and only 13%, planned to invest on it (Figure 2.3).

6 Shelf Space Management

Figure 2.3: Information concerning IT usage to manage shelf space by retailers [1].

The existing software for assortment and shelf space management is poorly interrelated al-

though in reality both problems are connected. Concerning shelf planning software, the applica-

tions available present several advantages, providing realistic views of the shelves, data analysis

tools and the ability to quickly handle products on shelves. In spite of this, these applications have

limitations. This happens because software developers focus more on processing large quantities

of data than on obtaining efficient algorithms to help the process of decision making. In these

applications, the automatic allocation of products in shelves is based on simple rules related to

the product’s market share, sales, profit or a combination of these factors [8]. This leads to the

necessity of manual adjustments done by the user which can be considerably time consuming. As

a result, planograms are most of the time generated manually.

Examples of software applications for space management include solutions from top software

vendors such as AC Nielson (Spaceman), JDA (Space Planning), MEMRB/IRI (Apollo profes-

sional) and SAS Institute (SAS Space Planning).

2.3 The Shelf Space Allocation Problem

The Shelf Space Allocation Problem consists of allocating the right amount of items to each prod-

uct (also known as stock keeping unit - SKU) in the best position, taken into consideration the

limited shelf space available on a retail store. It is a very complex problem that bears a similarity

to Cutting and Packing problems, which, in general, are NP-hard.

The variety of products to be placed on shelves is usually very large, particularly in supermar-

kets, which are the aim of this dissertation. Solving the problem for all products would require very

high computational requirements. Due to this reason, products are usually grouped into categories,

depending on their functional characteristics. The problem is then solved for each category.

The Shelf Space Allocation Problem may vary widely depending on the company under con-

sideration. This happens because many factors can change from one company to another, including

the dimension of stores, the preferred strategy, the agreements with vendors, the criteria used for

the store’s layout, among others. Therefore, it is difficult to develop a definition of the Shelf Space

2.3 The Shelf Space Allocation Problem 7

Allocation Problem that would apply to all cases. This section will be focused on the definition

that applies to the case study, although always having in mind other realities.

2.3.1 Decisions

The Shelf Space Allocation Problem aims to determine the number of facings and their corre-

sponding location for all the products of a category. The number of facings corresponds to the

quantity of a product that can be seen on a shelf (Figure 2.4). Behind it are more units of the

product, representing the depth of the facings. Since the depth of each facing is not directly seen,

it does not influence the demand function [8] and can usually be ignored. In most cases, the

height of the facings does not have to be considered as well, because the height of the shelves

is adjustable. This leads to a problem in which it is necessary to find the number of facings, the

horizontal position and the shelf where each product will be placed.

Figure 2.4: Facings of products on a shelf

2.3.2 Objectives

According to [10], the objective of the Shelf Space Allocation Problem depends on whether the

point of view of the retailer or the manufacturer is considered. On the one hand retailers aim to

maximize category sales and profits without regarding any brand in particular. On the other hand,

manufacturers’ goal is to improve sales of their own brands and, therefore, want to allocate as

much space as possible to their own products. In both points of view, sales are maximized based

on the effect of space, namely space and location elasticities.

Another goal that might be considered is the reduction of costs. However, as pointed by [8],

if a product’s demand depends on the decision variables, by minimizing the cost the model might

reduce the number of facings. As a result, a reduction in sales and profit would be experienced.

This dissertation focuses on the retailers point of view and considers the objective of allocating

shelf space in such a way that will maximize profit or sales for the retailer.

2.3.3 Constraints

The goal of the Shelf Space Allocation Problem is subject to many possible constraints. These can

vary widely depending on the retailer under consideration, although some of them are commonly

considered by most. Since this dissertation takes into account the point of view of a particular case

study, their specific constraints will be referred:

8 Shelf Space Management

• Integrality constraints: Product facings are integers and cannot be divided to fit available

shelf space;

• Physical constraints: products allocated to a shelf cannot exceed its physical capacity. An-

other aspect to take into consideration arises when consecutive segments of shelves are not

aligned and therefore products cannot transpose to the adjacent segment;

• Control constraints: when allocating products, a minimum and maximum number of facings

is usually established. This is done in order to guarantee the necessary exposure and, at

the same time, control inventory and replenishment costs and avoid stockouts, by keeping

facings within reasonable limits. According to [10], "an improper location or an under-

allocation of space might kill a product before it achieves full sales potential. And retailers

work hard to maximize return on their investment: allocating too many facings is a waste,

while allocating too few will result in lost sales due to out of stocks.";

• Family Block constraints: retailers group products in families according to a variety of

characteristics [13] . These characteristics include, for example, brand, subcategory, color,

size, among other criteria. Retailers believe that these families should form rectangular

shapes on shelves in order to increase the shelf layout’s attractiveness. In the case study,

it is also believed that family blocks belonging to the same criteria should be placed either

in uniform and complete columns (see Figure 2.1) or in complete lines within the criteria

that contains them. There is also a preference for facings of the same product to be placed

horizontally on the shelves. Small deviations can be allowed.

There is the necessity to distinguish between hard constraints which have to be respected or

the solution will be infeasible and soft constraints which preferably would be respected, but can

have small deviations. The constraints referred above are organized from the hardest to the softest

[2].

The incorporation of all these constraints results in a very complex problem, although some

assumptions can be made. In typical shelf space management problems it is assumed that the

product assortment within a category has already been made [14]. Due to this, the problem consists

of finding the number of facings and location of products already assorted within a category,

respecting, as much as possible, the constraints presented and maximizing the profit or sales for

the retailer.

2.4 Other Related Problems

The Shelf Space Allocation Problem bares resemblances to other problems in literature, namely

Cutting and Packing Problems. According to [15], given a set of large objects (input, supply) and a

set of small items (output, demand), the objective is to place some or all small items entirely within

one or more large object, without overlapping. Similarly, in the Shelf Space Allocation Problem

there are small items (products) that need to be placed on large objects (shelves). The resemblance

2.4 Other Related Problems 9

to Cutting and Packing Problems is particularly noticeable if the only restrictions considered are

the integrality of products and the capacity of shelves. In general, Cutting and Packing Problems

are considered NP-hard.

Examples of similar packing problems are the Bin Packing Problem and the Knapsack Problem

[8] [16].

In the Bin Packing Problem, there is a number of items, each with a corresponding size or

weight and a number of bins with a certain capacity. The goal is to use the smallest number

of bins possible to pack all the items, while respecting the capacity of the bins. This problem

can be extended to two-dimensional (2D-BPP) and three-dimensional bin packing (3D-BPP). In

the 3D-BPP, a set of three-dimensional rectangular shaped boxes is packed with no overlap into

the minimum number of three-dimensional rectangular shaped bins. All the bins have identical

dimensions and each box has a particular dimension. An example of the 3D-BPP can be found in

Figure 2.5. The 2D-BPP can be treated as a special case of 3D-BPP in which the depth of the bin

is considered equal to the depth of each box [17].

Figure 2.5: Example of Three-dimensional Bin Packing Problem
[17]

On the other hand, there are different types of Knapsack Problems. The most commonly

studied Knapsack Problem is the 0-1 [8]. In this problem, there is a number of items, similarly

to the Bin Packing Problem, with a corresponding weight and profit. The objective is to choose

the items to be placed in the knapsack, such that the total profit is maximized. Other types of

Knapsack Problems include the Bounded Knapsack Problem that differs from the 0-1 version in

the fact that the number of items of the same kind can vary within a specific range whereas in the

0-1 type the variable representing each item can only take the values 0 or 1. The 0-1 Multiple

Knapsack Problem is another problem that is similar to the 0-1, but in which instead of only one

knapsack there is a set.

Concerning Cutting Problems, there are also examples that bare a resemblance to the Shelf

Space Allocation Problem, such as the Two-dimensional Non-guillotine Orthogonal Cutting Prob-

lem. This problem consists of cutting rectangular pieces from a large rectangular material, so that

10 Shelf Space Management

the value of the rectangles cut is maximized [5]. In this special case, it is considered that items

cannot be rotated and when cut, their edges must be parallel to the edges of the larger rectangular

material.

There are examples in the literature where the formulation of the Shelf Space Allocation Prob-

lem was based on the Knapsack Problem formulation [8]. In spite of this, in reality, there are

significant differences between the problems, since the Shelf Space Allocation Problem takes into

consideration additional aspects such as the product’s family blocks and impacts such as space

elasticity.

Chapter 3

Literature Review

In this chapter, the work previously developed concerning the Shelf Space Allocation Problem is

analyzed. Research has been focused on two major streams: experimental studies and optimiza-

tion methods. Experimental studies have been conducted with the aim to understand and measure

the effect of a store’s display on costumers purchases whereas optimization methods seek to help

retailers in the process of allocating products on shelves. The Biased Random-key Genetic Algo-

rithm is further reviewed in this chapter as this dissertation focuses on its use to tackle the Shelf

Space Allocation Problem.

3.1 Experimental Studies

In a retail store, there are many visual stimuli competing for a costumer’s attention. Experimental

studies try to explain how these stimuli, more specifically those related with space, may affect cos-

tumer purchases (e.g. [10] [7] [18]). In general, results show that space variables have a positive

effect on demand [2]. In spite of this, due to the high costs of implementing controlled exper-

iments, the knowledge concerning the impact of shelf space allocation on sales is limited [10].

Three main space related factors have been consistently reported: product location (vertical and

horizontal), number of facings of a product and products adjacency.

Product Location

Retailers believe that products placed at eye-level shelves have a stronger effect on sales [18].

An eye tracking experiment conducted in [10] validated this belief as results showed that the ver-

tical location of a product had a large impact on sales, with an increase of 39% from the worst to

the best vertical location on shelves. Concerning horizontal location, the impact on sales was not

as strong as vertical location with a 15% increase from the worst to the best horizontal location.

The best horizontal location depends on the retailers perspective, but is generally considered to be

around the horizontal center of a shelf.

11

12 Literature Review

Number of facings (defined as space elasticity)

A measurement used to analyze the impact of space variation on sales is space elasticity. Space

elasticity is defined as the "ratio of relative change in unit sales to relative change in shelf space"

[19]. Experiments have concluded that as space allocated to a product increases, the marginal

returns will increase at first and then decrease in a S-shaped curve (Figure 3.1) [20]. Space elas-

ticity varies depending on the products category and store layout [20] [2]. However, in [18] the

space elasticity of all products is on average 0.212, while in [10] is considered to be 0.086. More

contradictory conclusions can be found in literature, for instance, in [10] results show that chang-

ing the number of facings of a product has little impact on sales as long as a minimum threshold

is maintained. On the other hand, in [7], experimental results show that the size of the display

(number of facings) has a strong reliability in driving attention.

Figure 3.1: Variation of sales rate with shelf space for a single products [2].

Products adjacency (defined as cross-elasticity)

Another effect taken into account in experimental studies is the interdependency between adja-

cent products, defined as cross-elasticity. When two adjacent products are complementary, the

sales of one of those products may lead to the sales of the other along with it (e.g. camera and

batteries). On the other hand, if two adjacent products are substitute the sales of one product may

cannibalize the sales of the other. Cross-elasticities are assumed to vary between -1 and 0 for sub-

stitute products and between 0 and 1 for complementary products. Drèze et al., in [10], reported

increased sales in complementary merchandising above 5%. However, cross-elasticities are ex-

tremely difficult to estimate and therefore are disregarded in most of the studies [8]. Moreover, the

cross elasticity from product i to product j is not the same as the cross elasticity from product j to

product i [20]. As an example, if a camera is bought batteries may frequently be bought as well,

but if batteries are bought a camera will not be bought as frequently.

Interestingly, these effects depend on the costumer’s willingness to make impulse purchases

3.2 Optimization methods 13

or replace their preferred products. In situations where the costumer is loyal to a product (more

frequently in cases of premium products), shelf space management will have a lower influence on

the purchase.

3.2 Optimization methods

Most of the complexity in the Shelf Space Allocation Problem comes from the demand function,

which is hard to estimate and non-linear by nature. The literature presents a great variety of mod-

els, mostly differing on their demand functions, which incorporate different estimates of (some of)

the factors that may influence costumers purchases. Additionally, these models also differ in the

level of detail of the decisions, ranging from facings calculation to complete planogram descrip-

tions. Models that can be adapted to reality are particularly difficult to find as they usually lack

key practical constraints, such as product grouping. In general, space elasticity is the most com-

monly used effect with the demand rate of a product defined as a function of the space allocated

to it and location decisions are usually disregarded. Finally, the Shelf Space Allocation Problem

is usually addressed together with other related retail problems, further increasing the complexity

of the demand functions. Assortment and inventory problems are the most frequent ones due to

their intrinsic relation. The most relevant models will be revised in chronological order in section

3.2.1, with great focus on the demand function. The original notation of each paper is used, for

simplification purposes.

As far as solution approaches are concerned, they are usually applied to simplistic versions of

the problem and focus mainly on (meta)heuristics. In particular, Genetic Algorithms are one of

the metaheuristics successfully applied to the problem. The work related to solution approaches

will be revised in section 3.2.2.

3.2.1 Mathematical Models

Corstjens and Doyle (1981)

The model developed by Corstjens and Doyle in [21] was one of the first models for shelf space

allocation and influenced most of the future literature. The authors were the first to incorporate

both space and cross-space elasticities between products using multiplicative polynomial forces.

The demand function for an individual product was defined in the following way:

qi = αiS
βi
i

K

∏
j=1
j 6=1

Sδi j
j (3.1)

In this equation, αi represents a scale factor, βi corresponds to the space elasticity of product i

with respect to a unit in shelf space Si, δi j represents the cross space elasticity between products i

and j while K stands for the number of products. δi j can be positive or negative depending upon

whether i and j are complementary or substitute products, and δi j is not necessarily equal to δ ji.

14 Literature Review

For modeling space elasticity, Corstjens and Doyle used a diminishing return polynomial func-

tion. With this function, the demand of a product is continuously increasing with the number of

facings, but the increasing rate slows down until the demand reaches a steady point ("s" shape)

(see Figure 3.2). 3.2For the cross elasticity, the authors also used a polynomial function to model

the increasing sales with the complementarity level or the decreasing sales with the substitution

level between two products (see Figure 3.2 that shows on the left the demand in case of comple-

mentarity and on the right in case of substitution).

Figure 3.2: An illustration of the space and cross elasticity components of the demand function of
a product for β = 0.2, δ = 0.2 or −0.2.

The model is following:

Maximize
K

∑
i=1

(wiqi−Ci(Si)) (3.2)

Subject to:
K

∑
i=1

Si ≤ S∗ (3.3)

αiS
βi
i

K

∏
j=1
j 6=1

Sδi j
j ≤ Q∗i , i = 1, ...,K (3.4)

SL
i 6= Si 6= SU

i , i = 1, ...,K (3.5)

Si ≥ 0 , i = 1, ...,K (3.6)

where wi is the margin rate for product i, Ci corresponds to the aggregate product costs for the

store and K is the number of products. The constraints presented are the following:

• Store Capacity Constraint: space allocated to all products cannot exceed total available shelf

space, S∗;

• Availability Constraint: for any product i, sales are limited by production or availability, Q∗i ;

• Control Constraint: SL
i and SU

i are, respectively, the lower and upper bounds for space allo-

cated to product i;

3.2 Optimization methods 15

• Non-negativity Constraint: Si must not be negative, in order to obtain reasonable solution

values.

Two related approaches are worth referring. Irion et al., in [22], changed the cost structure of

the objective function and approximated the non-convex function by piecewise linear functions. In

this way, the authors relaxed the model into an approximating linear Mixed Integer Programming

Model (MIP).

Bai in [8], on the other hand, refers that the high number of parameters is difficult to estimate

and drops the cross-space elasticity component of the demand plus the cross structure. He then

proposes the following objective function:

P =
n

∑
i=1

piαix
β

i i (3.7)

In which αi represents the scale factor, βi corresponds to the space elasticity of item i, xi is the

number of facings of item i, pi is the profit of item i and n is the total number of items.

Yang and Chen (1999)

Yang and Chen, in [16], point out some drawbacks of the Corstjens and Doyle model. Among

them is the fact that the geometric model does not consider the number of products to be integer

and neglects to consider location effects found in [10]. Due to these reasons, authors propose two

new approaches - a comprehensive model and an alternate form. The comprehensive model has a

demand function similar to Cortsjens and Doyle’s, but considering the amount of facings of each

product i by shelf k (xik), instead of the total space assigned to the product (Si). They also change

the elasticity parameter βi to βik, to vary with the location of the shelves. However, their most

important contribution was the simplistic alternate model, where they assumed linear profit within

a constrained number of facings [1]. The simplified reformulated demand function is presented

below.

Maximize P =
n

∑
i=1

m

∑
k=1

pikxik (3.8)

Subject to:
n

∑
i=1

αixik ≤ Tk , k = 1, ...,m (3.9)

Li ≤
m

∑
k=1

xik ≤Ui , i = 1, ...,n (3.10)

xik ∈ N∪{0} , i = 1, ...,n,k = 1, ...,m (3.11)

In which n corresponds to the number of products, m is the number of shelves, pik refers to

the per facing profit of product i in shelf k and xik corresponds to the number of facings of product

i in shelf k. The three sets of constraints correspond to:

• Capacity constraint Tk of shelf k;

16 Literature Review

• Lower and Upper bounds of facings of product i (Li and Ui, respectively);

• Decision variables xik are non-negative integers.

Both [2] and [8], pointed limitations of this demand function including its contradiction with

the studies that report demand as a S-shaped function and low values for space elasticities of

products. In spite of this, considering that retailers might want to operate in the (close to) linear

part of the curve by setting boundaries to the number of facings such a demand function can be

regarded as valid.

Yang and Chen also identified their alternate model as an extension to the multi-knapsack

problem, proving that even the simplistic version of the problem is NP-hard.

Hwang et al. (2005)

In [23], Hwang et al. present an approach that differs from Yang and Chen’s by integrating loca-

tion effects into the Corstjens and Doyle model. To do this authors incorporated a location effect

multiplier αi ≥ 1 in the demand function which became the following:

Di = (main space e f f ect)× (cross space)× (location e f f ect) = diX
βi
i

[
N

∏
k 6=i

Xβik
k

]
αi (3.12)

With : Xi =
M

∑
j=1

Xi j (3.13)

and: αi =
∑

M
j=1 Xi jα j

Xi
(3.14)

where, Xi corresponds to the total number of item i displayed on shelves, Xi j is the number

of item i displayed on shelf j, di represents the scale parameter of demand function for item i

(di>0), βi is the space elasticity for item i, βik is the cross-space elasticity between item i and k,

α j corresponds to the scale parameter that reflects the increase of demand rate with respect to the

level of shelf when items are displayed on shelf j, αi is the weighted average of α j when item i is

displayed on more than one shelf, M is the number of shelves in a particular categorized area of

the store and N is the number of brands of items.

The above demand function is integrated in an inventory control problem with the objective of

maximizing the retailers profit. In this approach authors additionally determine the ordering quan-

tities for the products. Constraints considered in this model are similar to the previous models,

including capacity, control and non-negativity constraints.

Russell and Urban (2010)

In [13], Russel and Urban were two of the first authors to explicitly consider the products as

part of a family, that can be based on a variety of characteristics, such as brand, flavour, price set,

3.2 Optimization methods 17

among others. Products of these families should be kept together and, for aesthetic reasons, in

uniform and rectangular shapes.

Authors developed a formulation to determine the optimal shelf location for the products con-

sidering both space and location elasticities. They based their demand function on a previous work

by Drèze et al. who noted that sales tend to be quadratic in the horizontal dimension and cubic in

the vertical one. As for space elasticity, authors chose to use a quadratic formulation, not only for

consistency and tractability, but also because it reflected diminishing returns.

The expected demand for each product i, ξi, is then expressed as:

xii = β0i +β1iXi +β2iX2
i +∑

k

[
(β3i(hkYik)+β4i(hkYik)

2 +β5i(hkYik)
3)+β6iZik +β7iZ2

ik
]

(3.15)

where, Xi is a continuous variable representing the horizontal location of item i on a shelf, Yik

is a binary variable equal to one if item i is located on shelf k, Zik is an integer variable representing

the number of facing of item i placed on shelf k and β•i are appropriate coefficients for the specific

implementation. Since Yik is a binary variable, the demand formulation can be expressed as the

following quadratic function:

xii = β0i +β1iXi +β2iX2
i +∑

k

[
(β3ihk +β4ih2

k +β5ih3
k)Yik +β6iZik +β7iZ2

ik
]

(3.16)

To formulate the model, it is considered that there are a number of families (f=1,2,...,F) each

of which comprises one or more items/products/SKUs (i,j = 1,2,...,N). Each item as a contribu-

tion margin, φi, a facing length .i, and a maximum and minimum number of facings, z+i and z−i ,

respectively. There is also a number of shelves (k=1,2,...,M) with shelf length, lk, and height, hk.

In case a product family occupies more than one shelf, items of the family must form an uniform

column, allowing for a deviation no larger than υ from one shelf to the next, where υ is measured

as a distance. The objective function aims to maximize profit and is the following:

Maximize π = ∑
i

φiξi (3.17)

Subject to: Xi ≥
di

2
Zik, ∀i,k (3.18)

Xi ≤ lk−
di

2
Zik, ∀i,k (3.19)

∑
k

Yik = 1, ∀i (3.20)

∑
k

Zik ≥ z−i , ∀i (3.21)

∑
k

Zik ≤ z+i Yik, ∀i,k (3.22)

Constraints 3.18 and 3.19 guarantee that the product facing will not extend beyond the end of

shelves. Constraint 3.20 ensures that each item is located on only one shelf. Constraints 3.21 and

3.22 limit the number of facings to a minimum and a maximum value.

18 Literature Review

Constraints 3.23 and 3.24 are included in the model, so that physical overlap of the items does

not occur. Pi j is defined as a binary variable equal to one if item i is located to the left of item j.

Xi−
di

2
Zik ≥ X j +

d j

2
Z jk− lkPi j− lk(2−Yik−Yjk), ∀i, j(i),k (3.23)

Pi j +Pji = 1, ∀i, j(i < j) (3.24)

In order to maintain product integrity, the following variables are defined:

• i(f) - subset of items that compose family f;

• Wf k - binary variable equal to one if family f is located on shelf k;

• A f k(B f k) - continuous variables representing the left (right) coordinate of family f on shelf

k;

• R f (S f) - integer variables representing the top (bottom) shelf on which family f is located.

A f k ≤ Xi(f)−
di(f)

2
Zi(f),k + lk(1−Yik), ∀i(f),k (3.25)

B f k ≥ Xi(f)+
di(f)

2
Zi(f),k− lk(1−Yik), ∀i(f),k (3.26)

B f k−A f k = ∑
i(f)

di(f)Zi(f),k, ∀ f ,k (3.27)

Wjk ≤∑
i(f)

Yi(f),k, ∀ f ,k (3.28)

Wjk ≥ Yi(f),k, ∀i(f),k (3.29)

R f ≥ kWf k, ∀ f ,k (3.30)

S f ≤M− (M− k)Wf k, ∀ f ,k (3.31)

R f −S f = ∑
k

Wf k−1, ∀ f (3.32)

R f ≥ S f , ∀ f (3.33)

Constraints 3.25 and 3.26 establish the left and right coordinates of family f on each shelf.

Constraint 3.27 guarantees that items of the same family are adjacent. Constraints 3.28 and 3.29

define Wf k variables. Top and bottom shelves on which family f is located are established by

constraints 3.30 and 3.31. Constraint 3.32 keeps the family on adjacent shelves and constraint

3.33 ensures that the top shelf of family f is not below the bottom shelf of the family.

A f k−A f ,k+1 ≤ υ + lk(2−Wf k−Wf ,k+1, ∀ f ,k(k ≤M−1)) (3.34)

A f ,k+1−A f k ≤ υ + lk(2−Wf k−Wf ,k+1, ∀ f ,k(k ≤M−1)) (3.35)

B f k−B f ,k+1 ≤ υ + lk(2−Wf k−Wf ,k+1, ∀ f ,k(k ≤M−1)) (3.36)

B f ,k+1−B f k ≤ υ + lk(2−Wf k−Wf ,k+1, ∀ f ,k(k ≤M−1)) (3.37)

3.2 Optimization methods 19

Constraints 3.34 and 3.35 guarantee that left coordinates of a family are kept within υ units

from one shelf to the next. The same is done to the right coordinates by constraints 3.36 and 3.37.

Hansen et al. (2010)

Hansen et al., in [24], propose that retailers can use a linear integer programming formulation

of the non-linear profit function by extending the Yang and Chen’s simplified alternate objective

function. They discretized the number of facings, turning the variable into binary. This way, the

space elasticity values could be determined beforehand for each product i, in shelf k and number

of facings h. Following the same approach, they extended the model to consider horizontal impact

and the cross-elasticity effect. The resulting model is the following:

Maximize Z =
N

∑
j=1

S

∑
k=1

Tk

∑
h=1

Tk

∑
f=1

Pjkh f × x jkh f +
N

∑
i=1

N

∑
j=1

Vi j

2
× ei j (3.38)

Subject to:
Tk

∑
j=1

Tk

∑
f=1

x jkh f ≤ 1 ∀ j = 1, ...,N;k = 1, ...,S (3.39)

N

∑
j=1

h

∑
f=1

h

∑
q=h− f∗a j

x jkq f ≤ 1 ∀h = 1,2, ...,Tk;k = 1, ...,S (3.40)

L j ≤
S

∑
k=1

Tk

∑
h=1

Tk

∑
f=1

f ∗ x jkh f ≤U j ∀ j = 1,2, ...,N (3.41)

b j ≤
S

∑
k=1

Tk

∑
h=1

Tk

∑
f=1

f ∗a j ∗ x jkh f ∀ j = 1, ...,N (3.42)

Vi j ≤ bi,Vi j ≤ b j,Vi j ≥ 0,b j ≥ 0 ∀ j = 1,2, ...,N (3.43)

x jkh f = 0 ∀ j = 1, ...,N;k = 1, ...,S;h = 1, ...,Tk; f > (Tk−h)/a j (3.44)

x jkh f ∈ 0,1 ∀ j = 1, ...,N;k = 1, ...,S;h = 1, ...,Tk; f = 1, ...,Tk (3.45)

Where, Pjkh f is the profit of product j on shelf k of length T at horizontal level h for face-length

f and x jkh j represents the allocation decision for product j on shelf k starting at horizontal level

h for face-length f (=1 if true). N corresponds to the total number of products and S is the total

number of shelves. The lower and upper bounds of x jk are L j and U j, respectively. Constraint 3.39

guarantees that product j is not allocated more than once for its f number of facings on a shelf.

Constraint 3.40 avoids physical overlap of products. Constraints 3.41 and ensure that product j is

allocated between its limits. Constraints 3.42 and 3.43 and the second part of the objective func-

tion correspond to cross-elasticity effects. Cross-elasticity is defined as an N x N matrix, E, where

each value of ei j ∈ E represents the incremental profit or loss due to the cross-product effects.

Cross-product elasticity is represented as min(bi,b j)× ei j where bi and b j are the total length of

products i and j, respectively on the shelf. Vi j and constraint 3.43 are used to avoid a nonlinear

objective function, and is defined as Vi j = min(bi,b j).

20 Literature Review

Models presented in literature have a number of drawbacks that include the difficulty to estimate

parameters, such as space and cross-space elasticities of products and the fact that most of them

present non-linear demand functions. Another limitation found in most models is that they do

not incorporate all of retailers preferences regarding shelf space. One of these preferences is the

need to consider family products, preferably forming regular shapes for aesthetic purposes. Lim

et al. [11] and Russell and Urban[13] already began to address this problem, although practical

applicability of their models is still limited.

3.2.2 Solution Approaches

In order to tackle the Shelf Space Allocation Problem, different approaches can be found in litera-

ture. Reviewed approaches include models that incorporate space and cross-space elastic demand,

of which Corstjens and Doyle’s model [21] is an example. This geometric programming model

was solved using a branch and bound algorithm. Another approach found in literature considers

space allocation models with space elastic demand. One of the most important models included

in this approach is Yang and Chen’s [16] alternate model. Following this stream other modeling

approaches have been developed, such as Yang’s [25], Lim et al.’s [11], Hansen et al.’s [24], Gaijar

and Adil’s [26] and Castelli and Vanneschi’s [27].

In [25], Yang proposed an algorithm to solve the problem, based on the algorithm used for

solving a knapsack problem. In the heuristic developed, shelf space is allocated item by item

according to the descending order of sales profit for each item per display area or length. The

steps followed in the heuristic include: (1) A preparatory phase, where it is verified whether the

shelf space available is enough to satisfy the minimum requirement of facings. The weight given

to the profit of each product is also sorted in this phase; (2) an allocation phase, where an initial

solution for the shelf space allocation of products is calculated;(3) an adjustment phase and finally

(3) a termination phase, where the total profit of the final solution is calculated.

Finding limitations in the heuristic proposed by Yang [25], Lim et al. [11] optimized it by

resorting to metaheuristics, proposing an hybrid solution strategy, five-phase Squeaky Wheel Op-

timization with Local (SWOL) search. Bai simplified the comprehensive model by Yang and Chen

[16] and proposed greedy heuristics, simulated annealing heuristics and hyper-heuristics for the

problem. Gajar and Adil [26], based on the alternate model by Yang and Chen [16], developed

heuristics based on a new initial construct and a neighborhood search strategy to solve the prob-

lem. Hansen et al. [24] and Castelli and Vanneschi [27] also based on the alternate model by

Yang and Chen [16], use genetic algorithms to tackle the problem. Hwang et al. [23] solve the

problem of shelf space allocation and inventory control by using a gradient search heuristic and a

genetic algorithm, integrating location effects in the Cortjens and Doyle model. These last three

approaches, which resort to genetic algorithms will be further reviewed in section 3.3.2.

Knapsack-like models used to tackle the Shelf Space Allocation Problem present drawbacks,

as they only include non-negativity, integer and capacity constraints, but ignore other policy con-

straints.

3.3 Genetic Algorithms 21

3.3 Genetic Algorithms

3.3.1 Introduction

Characteristics of optimization problems can vary widely. Depending on the complexity of a

problem, the size of input instances or the required search time to solve a given problem, an exact

approach might not be the most adequate method to tackle the problem. Metaheuristics are an

alternative that allows to solve large-size problem instances in a reasonable time, obtaining satis-

factory solutions. As a downside, finding global optimal solutions or even bounded solutions is

not guaranteed [3]. Genetic Algorithms (GAs) are a well known and widely used metaheuristic

which was first introduced by John Holland in 1975 [28]. They belong to the very popular class of

Evolutionary Algorithms (EAs) and may be classified as a nature inspired, population based meta-

heuristic. GAs apply the concept of survival of the fittest and evolve a population of individuals to

find the optimal or near optimal solution to combinatorial problems.

In Figure 3.3, a representation of the process followed by GAs is presented. The encoded solu-

tion is known as a chromosome, whereas the decision variables within a chromosome are referred

to as genes. A set of chromosomes constitutes a population which is evolved for a number of iter-

ations (known as generations), simulating the evolution of species. Usually, the initial population

is generated randomly. Every individual (chromosome in GAs) is evaluated through an objective

function. This objective function corresponds to a fitness value that indicates the individual’s suit-

ability to the problem. In each generation, the individuals with the better fitness are selected with a

higher probability. Afterward, the selected individuals are reproduced through variation operators,

such as mutation and crossover to generate new offspring. The process is repeated until a chosen

stopping criteria is met [3]. In Figure 3.4, a template of an evolutionary algorithm is represented.

Figure 3.3: A generation in a genetic algorithm

This dissertation focuses on the use of a Biased Random-key Genetic Algorithm to tackle the

Shelf Space Allocation Problem. A BRKGA corresponds to a particular type of genetic algorithms

that will be explained in the following chapter.

22 Literature Review

Figure 3.4: Template of an evolutionary algorithm [3]

3.3.2 Genetic Algorithms for the Shelf Space Allocation Problem

Different heuristics and metaheuristics have been used, throughout literature, to tackle the Shelf

Space Allocation Problem. Due to its relevance for this dissertation, the use of genetic algorithms

for this problem will be revised. The most relevant papers will be presented in chronological order.

Hwang et al. (2004)

In [23], Hwang et al. propose a gradient search heuristic and a genetic algorithm to solve a

Shelf Space Allocation and Inventory Control problem. For the purpose of this dissertation, only

the genetic algorithm developed will be studied. The problem faced by the authors, consists of

having a retailer who displays various brands of items within a category to multi-level shelves that

have limited space. The demand function considered is an extension of Corstjen and Doyle’s, in

which location effects are incorporated. Constraints include capacity, control and non-negativity

constraints.
Solution Encoding Chromosome keys are represented as a number in the interval]0,1[.

Each chromosome key corresponds to the total number of item i dis-

played on shelves.

initialization Genes from the initial populations are randomly generated in the interval

[Xmin
i , Xmax

i].

Crossover and mutation The "one-cut-point" method is used, in which one "cut-point" is chosen

and exchanges the right part of two parents. Probability of crossover is

considered to be 0.25. On the other hand, mutation is used to alter one

or more genes with probability 0.01.

Constraints To incorporate constraints in the algorithm, penalties are imposed ac-

cording to the degree of violation of constraints.

Fitness Function The fitness function considered to evaluate chromosomes is the total

profit of each solution. The aim is to maximize the fitness function.

This function is scaled to avoid premature convergence and to diversify

the population.

3.3 Genetic Algorithms 23

Population update New populations are selected among the off-spring obtained through

crossover and mutation. The probability of selection of a certain off-

spring chromosome is proportional to its scaled fitness value and is ob-

tained through a roulette wheel technique.

This algorithm was tested for a maximum of 4 items and 6 shelves.

Hansen et al. (2010)

Hansen et al. [24] propose a metaheuristic approach to solve the Shelf Space Allocation Problem

over a heuristic approach, claiming that the proposed metaheuristic requires less computational

effort and managers can directly apply the solution to the retail shelf-space.

Solution Encoding A two-dimensional array is defined, consisting of five rows and S× N

columns, to represent a chromosome, where S is the number of shelves

and N is the number of products. The first two bottom rows represent the

products and shelves, respectively. The third and fourth rows from the

bottom represent the face-length of a product in each shelf. The number

in these rows are random integers, generated so that the total face-length

of a product j in row three is equal to the lower bound (L j) and the fourth

row values are between 0 and (U j−L j). Finally, the fifth row from the

bottom represents the relative horizontal position of a product on a shelf

using random keys or a uniform random number in the range of (0,1).

Crossover and mutation A single point crossover with mating probability pc is used. The single

point crossover chooses a random point in each of two strings to form

two sub strings one to the left of the point and one to the right. The

left part of the string of one parent and the right part of the string of the

other parent are spliced together. Concerning mutation, two different

types are considered: uniform and swapping. Mutation is used to avoid

being stuck on local optimal solutions.

Constraints To allocate products on shelves, the algorithm starts by using the mini-

mum display requirement in row three. Afterward, it is repeated using

row four. The results are evaluated with the fitness function.The order

by which products are placed on shelves is given by the increasing order

of random keys or uniform random keys.

Fitness Function The fitness function evaluates the total profit generated for the allocation

of products on different shelves.

Population update Binary tournament selection is used to randomly generate chromo-

somes. Binary tournament selection consists of randomly choose two

chromosomes from the population and the most profitable is selected

for the next generation.

24 Literature Review

This algorithm is applied for a maximum of 100 products and 10 shelves.

Castelli and Vanneschi (2014)

In [27], Castelli and Vanneschi propose a hybrid algorithm that combines a Genetic Algorithm

and a Variable Neighborhood Search (VNS) algorithm for the Shelf Space Allocation Problem.

The model followed by Castelli and Vanneschi is based on Yang and Chen’s alternate model.

Solution Encoding A possible solution is represented as a string s of length equal to n.m.

Where n is the number of products and m is the number of shelves. Each

position si,k of the chromosome corresponds to the number of facings of

product i on shelf k.

Initialization Initialization is performed randomly, in which chromosomes keys have

values in the range [[Li
m];Ui]. The procedure ends when all chromosomes

from the population satisfy the hard constraints.

Crossover and mutation To perform crossover, two individuals p1 and p2 are chosen as parents,

based on the mating selection policy. Then, a crossover point is chosen

then the resulting parts of the chromosome are exchanged, as long as

hard constraints are not violated. Regarding mutation, a locus p1[l] is

selected with probability p ≤pm, where pm is the mutation probability.

With uniform probability, it is considered that p1[l] = p1[l]±1. If hard

constraints are not violated, the new solution is accepted. Otherwise,

the performed mutation is discarded.

Fitness Function The fitness function under consideration aims to maximize profit.

VNS A Variable Neighborhood Search is used to explore the possibility of

improving the exploration/exploitation ratio compared to only using a

Genetic Algorithm.
This algorithm is applied for a maximum of 100 products and 10 shelves.

3.3.3 Biased Random-key Genetic Algorithm

Biased Random-key Genetic Algorithms (BRKGAs) are a particular type of Random-key Genetic

Algorithms (RKGA) that were first introduced by José Fernando Gonçalves and Mauricio Resende

in 2009 [4]. They have successfully been used to solve different optimization problems (e.g. [29]

[4] [30] [17] [5]).

Genetic Algorithms with random-keys were first introduced by Bean, in 1994 [31] for solving

sequencing problems. In RKGAs chromosomes are represented as randomly generated keys in the

interval [0,1]. Unlike traditional Genetic Algorithms, RKGAs move all the feasibility issues into

the objective evaluation procedure and guarantees that all offspring formed during the reproduction

phase are feasible. Moreover, they use a single parametrized uniform crossover and keep the best

fitness value solutions from one generation to the other (elite), resulting in a monotonically evolved

3.3 Genetic Algorithms 25

heuristic. As for mutation, RKGA generates a set of random individuals that add to the population.

A decoder, that corresponds to a deterministic algorithm, associates a chromosome with a solution

of the optimization problem. This decoder is the only problem dependent part of the algorithm.

BRKGAs differ from RKGAs in the way parents are selected for mating. On one hand, in

RKGA both parents are randomly chosen among the individuals of the population. On the other

hand, in BRKGA a random parent is chosen from the elite group of the current population and the

other is chosen from the rest of the population. Moreover, in BRKGA, the offspring inherits more

characteristics from the elite parent.

The flowchart of the BRKGA algorithm is presented in Figure 3.5. The algorithm starts with

an initial population of p vectors and r random-keys. After the population is evaluated, individuals

are divided into pe elite individuals (best fitness values) and p-pe non-elite individuals. The elite

individuals of generation g are copied to the population of generation g+1. A small number of

mutants (pm) is also introduced in the next generation’s population. To complete the population

of generation g+1, p-pe-pm individuals still need to be generated. These individuals are obtained

through mating or crossover, in which a random parent is chosen from the elite group and the other

from the rest of the population (Figure 3.6). Repetition is allowed in the selection of parents. As

such, each individual can generate more than one offspring in the same generation.

Figure 3.5: Flowchart of the BRKGA algorithm [4]

Mating is implemented through a parametrized uniform crossover. As seen in Figure 3.7,

a crossover parameter (ρe) defines the probability that the offspring inherits a component from

the elite parent. If the chromosome key value is higher than ρe, then the parent chromosome

2 key (elite) is chosen. Otherwise, the parent chromosome 1 key (non elite) is selected. In the

BRKGA, the crossover parameters should be higher than 0.5. In case all vectors of random-keys

correspond to feasible solutions, the offspring that results from mating will also correspond to

feasible solutions.

26 Literature Review

Figure 3.6: Transition from generation g to generation g+1 [4]

Figure 3.7: Parameterized uniform crossover [4]

After the population is complete, the new fitness values are calculated. The population is once

again divided into elite and non-elite to start a new generation.

The problem dependent elements of the algorithm that must be specified include the way

solutions are coded and decoded and the way their fitness values are calculated.

A BRKGA API has been developed [32]. In this API, only the problem dependent part of the

algorithm has to be implemented by the user. Other parameters have to be adjusted. Although

these parameters do not follow a specific criteria, in [4], the suggestions presented in Table 3.1 are

made.

Table 3.1: Recommended parameter value settings.

parameter description recommended value
p size of population p=an, where 1≤ a ∈ ℜ is a constant

and n is the length of the chromosome
pe size of elite population 0.10p ≤ pe ≤ 0.25p
pm size of mutant population 0.10p ≤ pm ≤ 0.30p
ρe elite alele inheritance probability 0.5 ≤ ρe ≤ 0.8

3.3 Genetic Algorithms 27

3.3.4 Biased Random-key Genetic Algorithms for Cutting and Packing Problems

As discussed in chapter 2, Cutting and Packing Problems bare a resemblance to the Shelf Space

Allocation Problem. Although Biased Random-key Genetic Algorithms have not been used to

tackle the Shelf Space Allocation Problem, they have been used to successfully solve Cutting and

Packing Problems [17] [5].

Among the examples found in literature, the Two-dimensional Packing Problem and the Two-

dimensional Non-guillotine Orthogonal Cutting Problem share a greater similarity with the Shelf

Space Allocation Problem. Both these problems use two dimensions and have small rectangles

that have to be either packed into or cut from a larger rectangle. The same happens in the Shelf

Space Allocation Problem where retailers want to place smaller rectangles (products) into larger

rectangles (shelves). In spite of this, the objective function differs between the problems. Due

to this reason, the review of Biased Random-key Genetic Algorithms for Cutting and Packing

Problems will focus only on the encoding and decoding of solutions and not on their evaluation

through the fitness function.

In [5], considering M to represent the number of smaller rectangles, each chromosome is

divided as follows:

Chromosome = (gene1...geneM︸ ︷︷ ︸
Rectangle Packing Sequence

, geneM+1...gene2M︸ ︷︷ ︸
Vector o f Placement Procedures

)

Figure 3.8 illustrates the sequence of steps applied to each chromosome for its decoding into

a packing or cutting solution and corresponding fitness value.

Firstly, the component of the chromosome that corresponds to the Rectangle Packing Sequence

is decoded to provide the sequence according to which smaller rectangles will be packed into or

cut from the larger rectangle. To do this, the chromosome keys are sorted in ascending order.

Secondly, the second component of the chromosome is used to choose the placement proce-

dure that will be used to pack or cut smaller rectangles. The placement procedure can be either

Left-Bottom (LB) or Bottom-Left (BL) according to the following expression:{
BL, i f gene(M+1)≤ 1

2 ;

LB, i f gene(M+1)> 1
2 .

In the Left-Bottom procedure, if the small rectangle fits an empty space, it is placed as far to

the left of the larger rectangle as possible and than as close to the bottom as possible. Similarly, in

the Bottom-Left procedure, if the small rectangle fits an empty space, it will be placed as close to

the bottom as possible and than as far to the left as possible. Using only a Bottom-Left placement

procedure would not allow to obtain all possible optimal solutions [33].

To determine the spaces where small rectangles can be placed the Difference Process (DP)

developed in [6] is used. For a Three-dimensional problem, the Difference Process is obtained as

follows:

28 Literature Review

Figure 3.8: Architecture of the heuristic [5]

Consider a small hypothetical box whose bottom left and upper right coordinates are (x3,y3)

and (x4,y4), respectively. This box will be placed on a larger box with bottom left coordinates

(x1,y1) and upper right coordinates (x2, y2). It is assumed that x1≤x3≤x4≤x2 and y1≤y3≤y4≤y2.

After the small box is placed on the larger box, the empty rectangles generated are calculated

in the following manner:

[(x1,y1),(x2,y2)]− [(x3,y3),(x4,y4)] =

[(x1,y1),(x3,y2)]

[(x4,y1),(x2,y2)]

[(x1,y1),(x2,y3)]

[(x1,y4),(x2,y2)]

The problem is illustrated in Figure 3.9.

Figure 3.9: Difference process in interval generation. [6]

3.3 Genetic Algorithms 29

After the Difference Process, an elimination has to take place to remove space intervals that

are inscribed in others and space intervals that have infinite thinness. The process is repeated after

each rectangle is placed.

The placement procedure is represented in Figure 3.10, in which ERS corresponds to the empty

rectangular space.

Figure 3.10: Pseudo-code of the placement procedure. [5]

Afterward, the solution is evaluated through the objective function which differs according to

the problem.

30 Literature Review

Chapter 4

Biased Random-key Genetic Algorithm
for the Shelf Space Allocation Problem

The Biased Random-key Genetic Algorithm has been used to successfully solve Cutting and Pack-

ing Problems, which bare a resemblance to the Shelf Space Allocation Problem (see section 2.4

and 3.3.3). Aiming to prove its suitability to tackle the Shelf Space Allocation Problem, two novel

approaches were developed which will be described in this chapter. In Appendix A, an example

for each of the approaches developed can be found.

4.1 Problem Definition

As explained in previous chapters, there is not a single definition or model for the Shelf Space

Allocation Problem. In fact, although some of the constraints are hard, others vary according to

retailers preferences. The Shelf Space Allocation Problem tackled in this work is defined accord-

ing to the reality of the case study. Bearing in mind the different types of models present in the

literature, this problem is most related with the one tackled by Russel and Urban in [13].

Decision Variables

The aim is to obtain fully defined planograms and, therefore, the problem considers the overall

spectrum of decisions, namely the number of facings, allocation (which shelf) and location (which

horizontal position in the shelf). This level of detail is rare in the literature as most approaches

focus only on facings and allocation decisions.

Objective Function

For determining the number of facings, the case study gives more importance to the inventory level

of the products than their space elasticities. This way they can manage stock more efficiently, in-

tegrating downstream decisions in the problem. Therefore, instead of using a demand function to

31

32 Biased Random-key Genetic Algorithm for the Shelf Space Allocation Problem

evaluate the number of facings for the products, we consider the need to balance products rotation

days (i.e. the number of days until the products become out-of-stock).

The target number of facings for each product is determined beforehand and given as an input

to the algorithms, whose goal is trying to accomplish those values while taking into consideration

space constraints. One advantage of this approach is the possibility of changing at any time the

way facings are calculated without further changes in the algorithm. It also allows to consider

more theoretic approaches for facings calculation.

We additionally aim to maximize sales bearing in mind the vertical location of the products.

For that purpose, the curve from Figure 4.1 is considered. This curve gives more emphasis to the

shelves at eye and hand-levels. This curve combines experimental findings of marketing literature

with the company’s knowledge concerning the importance of vertical location.

Figure 4.1: Impact of vertical location on sales (the vertical axis presents the height of the shelf
and the horizontal axis the impact).

Constraints

The case study constraints were described in chapter 2.3.3. Concerning the family block con-

straints, the retailer works with more than one level of family blocks (i.e. products might be

grouped, for instance, into brand and then further divided into size and flavor). Furthermore, the

second level might be different for each brand, given rise to a network of blocks never seen in the

literature.

To better understand this network of blocks, a block diagram is exemplified in Figure 4.2. In

this example, products 7-13 are beverages that should be allocated to 4 shelves, following a given

merchandising guideline. This guideline first divides the products into two brands, corresponding

to blocks 1 and 2. Afterwards, the products from each brand are further divided into flavors. Block

1 contains flavors 3 and 4 whereas Block 2 contains flavors 5 and 6. Figure 4.3 shows a possible

solution for this problem.

4.2 Biased Random-key Genetic Algorithms

Two different Biased Random-key Genetic Algorithms were developed to tackle the Shelf Space

Allocation Problem. The main difference between these algorithms concerns the way products are

4.2 Biased Random-key Genetic Algorithms 33

Figure 4.2: Block diagram for the example.

Figure 4.3: Allocation of capacities, brands and products.

allocated on shelves. The second algorithm developed goes further into the case study and in-

cludes an additional practical constraint. This constraint states that family blocks should be placed

either vertically or horizontally. If they are placed vertically, they will occupy the entire height

of the corresponding upstream block. On the other hand, if family blocks are placed horizontally,

they will occupy the upstream block in width. Moreover, all the blocks belonging to the same

upstream block should have the same direction. Looking again into Figure 4.3, one can say that

blocks 1 and 2 are vertically placed and blocks 3-6 horizontally.

4.2.1 First BRKGA for the SSAP

The approach developed is inspired by the BRKGA for the Constrained Two-Dimensional Non-

Guillotine Orthogonal Cutting Problem [5]. A description of the algorithm will be presented in

this chapter. Furthermore, an example of its application can be found in Appendix A.

4.2.1.1 Algorithm Architecture

In the Biased Random-key Algorithm, chromosome keys are evolved and decoded, until the best

solution is found. The algorithm is stopped if all products are allocated and the fitness function

34 Biased Random-key Genetic Algorithm for the Shelf Space Allocation Problem

does not improve after a given number of generations or a time limit is reached. The different

phases of the decoder are presented in Figure 4.4 and described in detail in the following sections.

Figure 4.4: Architecture of the algorithm.

(1) Determine number of facings: The first phase decodes part of the chromosome into the

number of facings that should be allocated to each product. Although a target number is given

beforehand, the family block constraints turn unlikely that the targets will be reached for all the

products. Facings calculation is carried out in three stages, each one having a component of the

chromosome: remove facings, determine the amount of space that will be left empty on the shelves

after products are placed and add facings to products until the amount of space that will be left

empty is fulfilled or no more facings can be added.

(2) Sequencing: The second phase uses a fourth component of the chromosome to determine

the sequence in which the blocks (family and products) are placed on the shelves.

(3) Allocate Blocks: The third phase allocates the blocks on the shelves. For that purpose,

it starts by determining the dimensions of the family blocks (height and width), by using a fifth

component of the chromosome. Afterwards, a sixth and last component of the chromosome is

used to choose between two placement strategies: Left-Bottom and Bottom-Left.

(4) Fitness Function: An original fitness function is used to evaluate the quality of the solution.

4.2 Biased Random-key Genetic Algorithms 35

4.2.1.2 Chromosome Representation

For this algorithm, the following chromosome was considered:

Chromosome = (gene1...genei︸ ︷︷ ︸
(1)Remove Facings

, genei+1︸ ︷︷ ︸
(2)Empty Space

,genei+2...gene2i+1︸ ︷︷ ︸
(3)Add Facings

,

gene2i+2...gene2i+n+1︸ ︷︷ ︸
(4)Sequencing

,gene2i+n+2...gene2i+n+u+1︸ ︷︷ ︸
(5)Product Families Dimensions

,gene2i+n+u+2...gene2i+2n+u+1︸ ︷︷ ︸
(6)Placement

)

In which, i corresponds to the number of products, u represents the number of product families

and n is the total number of blocks (the amount of products and product families combined).

4.2.1.3 Chromosome Decoding

Determine number of facings

Although the target number of facings is obtained taking into consideration the overall capac-

ity of the planogram, there is the need to consider changes in those values. This phase determines

the number of facings for each product based on three chromosome components:

• Remove Facings: An integer number between 1 and the number of target facings of a product

is chosen, based on the component (1) from the chromosome. This number is then removed

from the target number of facings. In order to give a higher probability to smaller deviations

from the target number of facings, a negative exponential distribution is used as shown in

Figure 4.5.

• Empty Space - Provides information concerning the amount of space that will be left empty

on shelves. This amount of empty space is chosen, based on a gene (component (2)), be-

tween 0 and 15% of all the shelf space available. The value chosen for the highest percentage

of empty space was based on the tests conducted. The decoding process is straighforward;

• Add Facings - Product facings are added to the products. To do this, chromosome genes

from component (3) are sorted in increasing order as shown in Figure 4.6. The amount

of empty space up until this point is then multiplied by the sorted chromosome keys and

divided by the product’s width. This results in adding more facings to products. The process

is repeated until either the amount of sorted empty space to be left on shelves is fulfilled or

until it is not possible to add more facings to products. The chromosome keys are sorted

in increasing order so that all products have an equal chance to receive extra facings. This

would not happen if new facings where always added to products in the same order, as the

last products might not receive any new facings.

36 Biased Random-key Genetic Algorithm for the Shelf Space Allocation Problem

Figure 4.5: Decoding of the facings removal.

Figure 4.6: Decoding of the block sequence.

Sequencing

This phase consists of finding the sequence in which the blocks (family and products) are placed

on the shelves. For that, component (4) from the chromosome is sorted in increasing order, as

shown in Figure 4.6.

Note that the blocks sequence is determined separately for each level of the blocks diagram.

The blocks are then placed following a top-down approach: the sequence starts with the top block

and proceeds until the end of the diagram before placing the next block of the same level. For the

example of Figure 4.7, the placement of blocks would follow the sequence: 1-4-9-8-5-10-2-6-11-

3-7-12.

Allocate blocks

This last phase consists of allocating products on the shelves. Before that, additional informa-

tion is necessary: the dimensions of the blocks and the placement strategy.

4.2 Biased Random-key Genetic Algorithms 37

Figure 4.7: Example of blocks sequencing across levels

1st step: Determine family blocks dimensions

Starting from the first family block until the corresponding products, the following calculations

are made:

• Knowing the number of products within each family blocks, the areas of all the family

blocks are calculated.

• The lowest possible height of the product family (hmin) is obtained by dividing its area for

the largest width allowed (given by the largest empty space within the product family that

contains it);

• The highest possible height of the product family (hmax) is calculated through the division

of its area and the width of the largest product belonging to the product family. In case

this height exceeds the maximum height (corresponding to the height of the highest empty

rectangle), then the maximum height of the product family will be equal to the maximum

height allowed.

The height (h) of each family block is obtained by sorting a value between the lowest and the

highest heights, based on component (5) from the cromosome, by using the formula:

h = (−1+((hmax−hmin)+1)∗ chromosome key);

The value for the height is then rounded up until the next shelf. The corresponding width (w) is

calculated by dividing the family block area by the randomly chosen height.

2nd step: Decide the strategy for placement

The next step consists in using component (6) from the chromosome to give information about

the way family blocks are allocated. In case the chromosome key is lower or equal to 0.5, the

38 Biased Random-key Genetic Algorithm for the Shelf Space Allocation Problem

method used is Bottom-Left, otherwise, the method used is Left-Bottom. These methods have

been explained in the previous chapter.

The allocation process starts by searching for an empty space to allocate the first family block,

using a bottom-left or left-bottom approach, depending on the solution from the chromosome. If

an empty space where the family block fits is found, it will be allocated in that space. Afterwards,

using the Difference Process developed by Lai and Chan and explained in the previous chapter,

empty rectangular spaces are updated. If it is not possible to allocate the block (no empty space

where it fitted was found), it will be placed in an impossible position, so that the blocks it contains

will not fit as well. All product families are allocated in the same manner, following the estab-

lished sequence until products level.

Similarly to what happens with family blocks, the height of the products is calculated. In or-

der to do that, the valid shape that has the lowest possible height is chosen for products. Valid

shapes are based on the factors that can divide the number of facings (which must be integer).

When this process is finished, the height and width of products’ facings is defined.

The steps to allocate products are similar the ones followed for product families and include:

• Search for empty space to allocate products (Bottom-Left and Left-Bottom);

• If products fit any empty space:

Allocate products;

Update rectangular empty spaces through difference process.

• If products do not fit any empty space:

Allocate products in invalid position, indicating that they were not allocated.

4.2.1.4 Fitness function

The objective function considered consists of 4 components, each having a weight higher than the

next. The two first components correspond to soft constraints whose violation is penalized in the

objective function. Therefore, their weight is higher than the two last components, that correspond

to the real objectives of the problem.

1. Minimization of the number of products that are not allocated;

2. Minimization of the number of facings below the minimum;

3. Minimization of the deviation from the target number of facings;

4. Maximization of the impact on sales of vertical location, based on the previously described

impact curve.

minFitness = β
4

N

∑
i=1

Ai︸ ︷︷ ︸
Products not allocated

+ β
3

N

∑
i=1

salesi×Mi︸ ︷︷ ︸
Minimum number o f f acings

+

4.2 Biased Random-key Genetic Algorithms 39

+ β
2

N

∑
i=1

salesi×|targetsi−newFacingsi|︸ ︷︷ ︸
Deviation f romtargets

−
N

∑
i=1

K

∑
k=1

salesi× ImpactShel fk×Yik︸ ︷︷ ︸
Impact o f vertical location

(4.1)

Where:

- β corresponds to the sum of target facings of all products;

- salesi represents sales of each product i on stores;

- Mi = 1 if the new facings calculated for product i are below the minimum number of facings;

- Ai = 1 if product i has not been allocated;

- ImpactShel fk corresponds to the impact on shelves of vertical and horizontal location;

- Yik =1 if product i is placed on shelf k.

4.2.2 Second BRKGA for the SSAP

This approach differs from the previous one in the phase of blocks allocation. In this algorithm,

product families can only be placed either vertically or horizontally. Another difference results

from the fact that after the dimensions of product families are defined, the number of facings is

recalculated based on the rotation days of products, in order to fit its container family. An example

of the application of this algorithm is presented in Appendix A.

4.2.2.1 Algorithm Architecture

The different phases of the decoder are presented in Figure 4.8. In the Biased Random-key Algo-

rithm, chromosome keys are evolved and decoded, until the best solution is found. The algorithm

is stopped if all products are allocated and the fitness function does not improve after a given

number of generations or a time limit is reached.

The steps applied to the chromosome are the following:

(1) Determine number of facings

(2) Sequencing

(3) Allocate Blocks: This phase aims to allocate the blocks on the shelves, either horizontally

or vertically. For that purpose, it starts by establishing whether family blocks will be placed

horizontally or vertically, by using the fifth component of the chromosome. Afterwards, a sixth

part of the chromosome is used to choose between Left-Bottom and Bottom-Left methodologies

to place products on shelves.

(4) Fitness Function.

4.2.2.2 Chromosome Representation

The chromosome considered is the following:

Chromosome = (gene1...genei︸ ︷︷ ︸
(1)Remove Facings

, genei+1︸ ︷︷ ︸
(2)Empty Space

,genei+2...gene2i+1︸ ︷︷ ︸
(3)Add Facings

,

40 Biased Random-key Genetic Algorithm for the Shelf Space Allocation Problem

Figure 4.8: Architecture of the algorithm.

Chromosome = (gene2i+2...gene2i+n+1︸ ︷︷ ︸
(4)Sequencing

,gene2i+n+2...gene2i+u+n+1︸ ︷︷ ︸
(5)Orientation

,gene2i+u+n+2...gene3i+u+n+1︸ ︷︷ ︸
(6)Placement

Where, i corresponds to number of products, n corresponds to the total number of products

and u corresponds to the number of product families, with the exception of the level of product

families immediately before products.

4.2.2.3 Chromosome Decoding

Since all other steps are similar to the first BRKGA decoder, only the allocation of blocks will be

described.

Allocate blocks

To allocate product families on shelves, components (5) and (6) from the chromosome are used.

The steps followed are the following:

• Similarly to the previous decoder, the area of product families is calculated based on the

already defined product facings;

• Each product family will then be placed either vertically or horizontally within the product

family that contains it. To establish the product family orientation, component (5) from

4.2 Biased Random-key Genetic Algorithms 41

the chromosome is used. Each chromosome key corresponds to a product family (with the

exception of the level of product families immediately before products).

If chromosome key < 0.5: product families will be placed vertically, and therefore, the

width of the family that contains them is proportionally distributed by their areas;

If chromosome key > 0.5: product families will be placed horizontally. If the product

family occupies more than one shelf, it will occupy the entire width of the family in which

it is contained. On the other hand, if the family only needs one shelf, more than one family

can be placed on the same shelf.

A problem that might arise results from the fact that heights are integer numbers. Due to this

reason, when distributed by families, the sum of heights might exceed its maximum value. In this

circumstance, if the height distributed to the last product family (according to sequencing) exceeds

the maximum, it will be limited to the permitted value.

Product allocation is done in the same manner as explained in the previous decoder. This is

done, because although products should preferably be placed horizontally, there are circumstances

in which they can only fit by occupying more than one shelf. The strategy previously explained

that uses the Bottom-Left and Left-Bottom methods, as well as the Difference Process, manages

to cover all possible situations.

42 Biased Random-key Genetic Algorithm for the Shelf Space Allocation Problem

Chapter 5

Tests and Results

In this section, computational tests were performed in order to validate the algorithms developed.

Both algorithms were implemented in C++, using the BRKGA API developed by Toso and Re-

sende [32]. All the computational experiments were conducted on Intel @ 2.40 gigahertz process-

ing units limited to 4 gigabytes of random access memory and using the Linux operating system.

Only one thread was used for testing. The algorithms stopped if after 100 generations the fit-

ness function had not improved and all products were allocated or a time limit of 600 seconds

was reached. Instances tested are based on data from the case study whose key information was

hidden for confidential purposes. The algorithms developed are tailored to the case study prefer-

ences, containing a different problem definition from those in the literature. This fact prevented

their comparison with former solution alternatives. Additionally, this chapter includes a sensitivity

analysis to the BRKGA parameters.

5.1 Case Study Instances

A set of real world instances was used for testing the Shelf Space Allocation Problem algorithms.

These instances belong to 18 different categories and vary in size. In most cases, within each

category, more than one planogram was solved, summing up to 51. In Table 5.1 the four major

characteristics of the test instances are presented, namely: number of products, number of family

blocks, number of hierarchical levels and number of shelves. Instances are significantly bigger

than those found in literature, with up to 160 products, 216 families, 8 shelves and 5 family levels.

5.2 Parameter Sensitivity Analysis

In order to evaluate the influence of BRKGA parameters in the final results, different values for the

parameters were tested. Those values were chosen within the ranges proposed by Gonçalves and

Resende [4] based on their past experience with genetic algorithms using the same evolutionary

strategy. The ranges and the values tested in this dissertation are presented in Table 5.2. The

instances were tested with all the combinations of those values.

43

44 Tests and Results

Table 5.1: Details of the Case Study Instances

Planogram Products Families Family Shelves Planogram Products Families Family Shelves
Levels Levels

YW1 103 11 2 5 MOV21 53 60 4 5
YW2 73 4 2 5 MOV22 78 30 4 6
S1 49 20 4 8 MOV23 21 17 4 5
Sh1 24 69 5 6 BP1 96 19 3 7
Sh2 55 142 5 6 BP2 92 23 3 5
Sh3 98 216 5 6 C1 32 16 3 7
V1 60 50 4 8 C2 25 12 3 5
V2 19 25 4 6 C3 22 15 3 5
V3 7 14 4 6 C4 19 11 3 5
V4 28 40 4 6 C5 16 16 3 5
V5 42 57 4 7 DV1 26 34 4 7
TP1 38 31 5 6 CHF1 37 44 4 6
AF1 28 25 4 7 CHF2 41 33 4 8
AF2 160 59 4 7 CHF3 40 34 4 8
OO1 32 28 3 5 CHF4 47 31 4 7
OO2 25 13 3 5 J1 31 22 4 6
OO3 10 13 3 5 J2 46 22 4 6
MO1 14 21 3 5 J3 32 20 4 6
MO2 19 24 3 5 J4 38 23 4 6
MO3 20 20 3 5 J5 19 14 4 6
CF1 36 14 4 6 CP1 12 31 4 5
CF2 19 33 4 6 CP2 8 16 4 6
CF3 113 25 4 7 CP3 9 14 4 6
CF4 83 32 4 4 CP4 39 25 4 6
VN1 45 33 3 7 CP5 47 52 4 8
F1 16 20 4 6

Table 5.2: Values tested for BRKGA parameters

Parameters Suggested Interval Tested Values
Population size - p/n ≥ 1 ; ∈ ℜ 1; 1.25; 1.5; 1.75; 2
Size of elite partition (pe) [0.10;0.25] 0.1; 0.15; 0.2
Size of mutant set (pm) [0.10;0.30] 0.1; 0.15; 0.2; 0.25
Child inheritance probability (ρe) [0.5;0.8] 0.5; 0.6; 0.7; 0.8

Gonçalves and Resende [4] suggest and obtained good results when indexing the size of the

population to the size of the problem. By doing this, small populations are obtained for small

instances and larger populations for larger instances. Therefore, the parameter tested was the ratio

between the population (p) and chromosome (n) size.

To analyze the sensitivity of the algorithms to these parameters, the deviation from the best

objective function was calculated for each instance. This way, it became possible to compare all

instances tested. Since the objective function is formed by 4 different components with different

weights, the deviations in the objective function can vary widely. In particular, when the algorithm

is not able to allocate all products, the value of the objective function is much higher, as this is the

component with the highest weight.

The results obtained for the four main parameters are presented in Figure 5.1 - 5.8.

5.2 Parameter Sensitivity Analysis 45

Population Size

Regarding the population size, by analyzing Figure 5.1 it can be seen that the variation of the

population size does not have a great influence on the algorithms performance in terms of devia-

tion from the best objective function. On the other hand, Figure 5.2 shows more detail, allowing to

conclude that, although the differences are not very significant, a value of p/n=2 is the one that pro-

vides the best results. Moreover, as the value of p/n decreases, results obtained are progressively

worse, until p/n=1.

Figure 5.1: Evolution of the percentage of instances solved in function of the deviation from the
best objective function of each instance, for different p/n values (logarithmic horizontal scale).

Figure 5.2: Evolution of the percentage of instances solved in function of the deviation from the
best objective function of each instance, for different p/n values (normal scale).

46 Tests and Results

Size of elite partition

The observation of Figure 5.3 and Figure 5.4 shows that the size of the elite partition does not

influence results significantly as well. In spite of this, it is also noticeable that, as the value of pe

increases from 0.1 to 0.2, results become better.

Figure 5.3: Evolution of the percentage of instances solved in function of the deviation from the
best objective function of each instance, for different pe values (logarithmic horizontal scale).

Figure 5.4: Evolution of the percentage of instances solved in function of the deviation from the
best objective function of each instance, for different pe values (normal scale).

5.2 Parameter Sensitivity Analysis 47

Size of mutant set

In Figure 5.5 and Figure 5.6, the values tested for the size of the mutant set present very simi-

lar results, although a pm value of 0.1 achieves slightly worse results. It is not possible to claim

which is the best value for pm since for smaller deviations from the best objective function pm=0.25

seems to perform better, whereas for higher deviations pm = 0.2 outperforms the previous value.

Figure 5.5: Evolution of the percentage of instances solved in function of the deviation from the
best objective function of each instance, for different pm values (logarithmic horizontal scale)

Figure 5.6: Evolution of the percentage of instances solved in function of the deviation from the
best objective function of each instance, for different pm values (normal scale).

48 Tests and Results

Child inheritance probability

Analyzing Figure 5.7 and Figure 5.8, similarly to other parameters, it can be observed that the

differences in results are not significant. Nevertheless, setting ρe to the value of 0.8 shows the

worst results and results improve as the value for ρe decreases.

Figure 5.7: Evolution of the percentage of instances solved in function of the deviation from the
best objective function of each instance, for different ρe values (logarithmic horizontal scale).

Figure 5.8: Evolution of the percentage of instances solved in function of the deviation from the
best objective function of each instance, for different ρe values (normal scale).

Overall from the sensitivity analysis of the BRKGA parameters we can conclude that the

algorithms developed are robust. The values tested for the parameters did not have a significant

impact on final results, although some of the values provided slightly better results. The tests

5.3 Influence of the Planogram Complexity on the Execution Time 49

also indicate that the child inheritance probability shows the higher impact on the algorithms

performance. In the future, parameters outside the range considered could be tried, as there is a

possibility of improvement.

5.3 Influence of the Planogram Complexity on the Execution Time

In the extremely competitive retail market, minimizing the time spent generating planograms may

bring an important advantage to retailers.The average time the algorithms developed needed to

solve each instance tested was around 90 seconds. This shows that instances were solved within

a short amount of time that meets the needs of retailers in reality. To analyze the influence of

the planogram complexity on the time needed to solve the problem, different analysis were made.

Particularly:

• Influence of the number of families of each instance on the execution time;

• Influence of the number of products of each instance on the execution time;

• Influence of the total number of blocks of each instance on the execution time;

• Influence of shelf space available per product on the execution time;

• Influence of shelf space on the execution time.

The parameters analyzed were separated in classes, each within a certain range. Results

showed that the number of products was the factor, among the parameters tested, that most in-

fluenced the time needed to solve each instance, with R2 = 0.98. In Figure 5.9, products were

divided in classes with a step of 25 products.

Figure 5.9: Influence of the number of products on the time needed to solve instances

50 Tests and Results

5.4 Decoders Comparison

In Figure 5.10, a comparison of both algorithms (decoder 1 and 2), can be found with the results

from all the instances tested. The average fitness function and the average execution time for each

instance can be found in Table 5.3.

Figure 5.10: Evolution of the percentage of instances solved with the deviation from the best
objective function of each instance, for decoders 1 and 2 (logarithmic horizontal scale).

The observation of Figure 5.10, shows that for smaller deviations of objective function (less

than 10%), decoder 1 is able to solve a larger percentage of instances than decoder 2. This re-

sults from the fact that decoder 2 includes additional practical constraints compared to decoder 1.

Surprisingly, the decoder 2 outperforms for higher deviations of the best objective function.

From Table 5.3 it can be observed that for some instances decoder 1 provides better results,

whereas for others decoder 2 has better average values of fitness in shorter execution time. These

differences result from the characteristics of the planograms (number of products, number of prod-

uct families, shelf dimensions, among others), which may favor either decoder 1 or decoder 2.

There are circumstances where the difference in the average of the fitness function is very sig-

nificant between both decoders. This can be explained by the fact that the fitness function has

4 components with different weights. Therefore, cases where not all products are allocated on

shelves and/or the minimum number of facings are not respected are heavily penalized resulting

in significant differences in the fitness function.

5.4 Decoders Comparison 51

Table 5.3: Average fitness and time for each decoder in the test instances

Decoder 1 Decoder 2 Decoder 1 Decoder 2
Planogram Avg Avg Avg Avg Planogram Avg Avg Avg Avg

Fitness Time(s) Fitness Time(s) Fitness Time(s) Fitness Time(s)
YW1 -339.52 76.17 -302.64 608.17 MOV21 0.04 10.75 0.88 7.71
YW2 0.01 22.46 2.92 598.26 MOV22 712.69 463.54 0.32 23.89
S1 402.67 332.26 5.84 14.97 MOV23 2.94 7.92 6.15 1.01
Sh1 0.16 8.80 0.40 4.41 BP1 -106.48 68.25 -90.38 218.89
Sh2 200.19 173.80 0.24 24.69 BP2 -2718.71 88.70 -1915.76 549.17
Sh3 65.32 244.91 -1.56 120.75 C1 837.79 544.02 6.35 2.16
V1 5.90 27.11 6.64 61.78 C2 6.38 2.24 12.30 0.83
V2 128.74 75.94 183.06 2.16 C3 3.17 1.29 6.63 0.73
V3 63.36 13.08 513.24 361.81 C4 13.98 40.26 15.30 0.49
V4 328.19 305.20 76.58 3.14 C5 7.73 1.39 1012.52 600.01
V5 3.16 10.34 8.90 7.55 DV1 164.57 120.80 4.83 3.05
TP1 574.37 409.13 43.54 8.38 CHF1 26.45 23.02 2.51 10.79
AF1 21.04 18.35 0.78 2.27 CHF2 25.66 28.77 3.81 10.61
AF2 -185.28 232.45 -160.12 436.16 CHF3 6.08 16.13 7.21 5.49
OO1 0.18 4.49 1.52 3.63 CHF4 317.52 261.06 12.17 13.49
OO2 -176.76 6.21 -134.09 43.13 J1 350.54 236.92 22.32 6.09
OO3 11.12 2.09 19.53 0.67 J2 4.11 9.96 74.33 43.20
MO1 1.58 9.29 1.99 0.56 J3 5.69 5.07 26.85 6.30
MO2 0.51 1.33 1.07 0.90 J4 10.48 7.67 36.96 6.09
MO3 1.07 23.82 0.67 0.86 J5 5.69 1.02 65.57 2.33
CF1 249.23 236.69 12.73 6.84 CP1 0.06 20.38 0.31 1.10
CF2 365.92 269.44 12.80 1.84 CP2 14.53 18.42 32.89 0.74
CF3 -181.00 106.00 -177.95 178.26 CP3 1.03 0.84 1.20 0.41
CF4 0.87 51.00 -8.87 41.80 CP4 -55.14 15.52 -44.74 28.83
VN1 529.13 354.73 51.02 6.48 CP5 -65.16 34.61 -59.35 26.64
F1 2.12 0.65 10.63 0.63

52 Tests and Results

Chapter 6

Conclusion and Future Work

In this chapter, the outcome of the work developed is analyzed. Suggestions of further research

are also presented.

6.1 Shelf Space Considerations

Competition in retail industry is fierce and every advantage even if small can make a difference

for retailers. One of the most important managerial challenges in a retail store is shelf space

management. The reason for this lies in the fact that shelf space has a limited capacity and,

therefore, product allocation has to be carefully managed. Moreover, experimental studies show

that there are space related factors that can influence sales, particularly in circumstances of impulse

purchases. Among these factors is the number of facings, the location of products on shelves

(vertical or horizontal) and product adjacencies. Models from the literature, generally, do not

include all constraints preferred by retailers and include parameters that are hard to estimate.

Therefore, they still require improvements to become adequate for real life application. On the

other hand, the software applications available for shelf space management require significant

human interaction.

This dissertation is a contribution to bridge this gap between theory and practice of shelf space

allocation. Inspired by the case of a major Portuguese supermarket chain, two algorithms for the

Shelf Space Allocation Problem are presented.

6.2 Algorithms proposed

Two original Biased Random-key Genetic Algorithms have been developed and tested with real

case study instances. Biased Random-key Genetic Algorithms have previously been successfully

used to solve problems (Cutting and Packing Problems) that share similarities with the problem

studied. In spite of this, BRKGAs had not yet been used to tackle the Shelf Space Allocation

Problem.

The algorithms developed take into consideration preferences from a real case study, namely:

53

54 Conclusion and Future Work

• The number of facings of a product should balance its rotation days (number of days until

the product becomes out-of-stock);

• Products are grouped into multi-level families;

• Facings of the same product should be preferably placed horizontally on shelves;

• Families should be kept together in vertical or horizontal rectangular shapes on shelves;

• The minimum number of facings should be respected;

• The impact of vertical positioning on sales is considered.

The first original algorithm developed was based on the algorithm developed in [5], for the

Constrained Two-Dimensional Non-Guillotine Orthogonal Cutting Problem. The decoder of the

algorithm has 4 main steps: (1) Determine number of facings, (2) Sequencing, (3) Allocate Blocks

and (4) Fitness Function.

The second algorithm developed is similar to the previous one, but with changes made con-

cerning the allocation of family blocks on shelves (phase 3). In this case, product families can

only be placed either vertically or horizontally.

Both algorithms were tested with real case study instances. First and foremost, results prove

the applicability of the algorithms on practice. Instances were solved within an average time of

90 seconds meeting the needs of retailers in reality. In addition, novel practical constraints never

considered before were included in the algorithms, such as the multi-level family grouping and

the direction of implementation.

Furthermore, from the sensitivity analysis of the BRKGA parameters, we concluded that the

algorithms developed are robust as the values tested for the parameters did not have a significant

impact on final results. In spite of this, when observed in detail, there are parameters that perform

slightly better.

We were also able to understand how the execution times are influenced by the complexity

of the instances. Results show that, among the parameters tested, the execution time presents a

stronger correlation with the number of products in the instance.

By analyzing the results for the decoders, we concluded that decoder 2, although with addi-

tional practical constraints, was still able to outperform decoder 1 for some of the instances.

Overall, we can argue that, concerning real applications, these algorithms are state of the art

approaches that bring closer together the possibility of using analytical methods in practice.

6.3 Future Work

In spite of the algorithms developed there is still margin for improvement in the future. Two

possible directions can be chosen: extending the problem definition to include additional features

or improving the performance of the algorithms.

6.3 Future Work 55

In the first direction, one possible improvement would be to consider products heights, al-

though it is usually not necessary, since shelves are generally adjustable. The depth of facings is

also not included in the algorithms due to the fact that it is not directly seen. By including it in the

algorithms, the problem would become three-dimensional.

Furthermore, other additional features in the algorithms might include discontinuities in shelves

and stacking of products.

To improve the algorithm’s applicability in reality, changes can be made to allow retailers to

choose whether they prefer product families to be placed vertically or horizontally. Other retailer

preferences can also be included. Furthermore, the algorithms developed were only tested for food

retail instances placed in regular shelves. The algorithm could potentially be improved in order to

be able to allocate other types of products and to place products on different types of shelves.

Finally, it is considered that the choice of products to be displayed (assortment problem) has

already been made. It would be interesting to incorporate the assortment problem in the algorithm

as this problem is interrelated with shelf space planning.

Considering the second direction of future work, one possible approach would be to integrate

the target facings calculation in the algorithm, eventually incorporating space and cross-space

elasticities. Additionally, more extensive sensitivity analysis could be conducted and results could

be compared to manually generated planograms.

56 Conclusion and Future Work

Appendix A

Examples of Application of Algorithms
Developed

In this appendix, for clarification purposes, one example of application for each of the two BRKGA

decoders described in chapter 4 is presented.

A.1 Example of Application of the First BRKGA for the SSAP

To better explain the first algorithm presented in section 4.2.1, a fictional example will be de-

scribed. For this example, 5 shelves are considered, each measuring 50 centimeters as presented

in Figure A.1. The block diagram for this case is presented in Figure A.2 and the information

related to the products can be found on Table A.1.

Figure A.1: Shelves considered in the example.

Table A.1: Product data considered in the example

Product 8 9 10 11 12
Width (cm) 10 10 12 12 10
Target Facings 7 2 5 9 4
Minimum Facings 1 1 1 1 1

57

58 Examples of Application of Algorithms Developed

Figure A.2: Block diagram considered in the example.

For this example, an hypothetical chromosome will be considered and decoded, following the

previously explained steps.

A.1.1 Determine number of facings

Facing Removal

The number of integer facings to remove from targets will be calculated according to the formula

presented below.

Facings removedi =−0.5+(target f acingsi−1)× e−1×(target f acingsi−1)×chromosome keyi

The number of facings removed is then rounded up. Chromosome keys considered belong to

component (1). Resulting facings after removal are presented in Table A.2.

Table A.2: Facings of products after removal.

Product 8 9 10 11 12
Facings 7 1 4 9 4

Calculate Empty Space

The amount of space that will be left empty is randomly chosen between 0% and 15%, based

on component (2) from the chromosome. It will be assumed that in this example the percentage

of space that will be left empty on shelves is 1.6%.

Facing Addition

Facings are added to products, based on component (3) from the chromosome, until the percentage

of space left empty is met or until it is not possible to add more facings. This component is then

sorted in increasing order. This order establishes the order by which products will receive new

A.1 Example of Application of the First BRKGA for the SSAP 59

Table A.3: Facings of products after additions.

Product 8 9 10 11 12
Facings 8 2 4 4 5

facings. For this example, in particular, calculations are the following:

Space occupied by f acings =
N

∑
i=1

TargetiWidthi = 216 cm2

Where N corresponds to the number of products, Targeti represents the number of target fac-

ings of product i and Widthi is the width of the product facing.

Shel f space = 250 cm2

Space di f f erence = shel f space− space occupied by f acings = 34 cm2

So for each product, following the order established by component (3), the following formula

is applied:

Facings addedi =Chromosome keyi×Space di f f erence/Widthi

After this process, the number of facings obtained for each product is presented in Table A.3.

A.1.2 Sequencing

After this process, products will be sequenced and allocated on shelves. Component (4) from the

chromosome is used for sequencing and, for this example, it is represented in Figure A.3.

Figure A.3: Component (2) of the chromosome, used for sequencing.

According to it, the sequence that will be followed for allocation is 1-4-9-8-5-10-2-6-11-3-7-

12.

A.1.3 Allocate Blocks

Calculate Areas

60 Examples of Application of Algorithms Developed

Table A.4: Areas of products.

Product 8 9 10 11 12
Area (cm2) 20 80 48 48 50

The first step is to calculate the area for each block, knowing the number of facings of prod-

ucts that will be placed within it. For that, the height of each shelf and product is considered to be

equal to 1 centimeter.

The results obtained for the areas of blocks are presented in Table A.5 and Table A.4.

Determine Block Dimensions and Allocate Blocks

Allocation begins for block 1. Next, the minimum and maximum values for the height are calcu-

lated. These values are given by the following formulas:

hmax = (Block Area)/(Largest Width o f Empty SpacesWithin Previous Block)

hmin = (Block Area)/(Largest Width o f Facing Belonging to the Block)

If the maximum height is higher than the limit, then it will be restricted to the highest value

permitted. For block 1:

• hmin=148/50=3 shelves

• hmax=148/10=14.8=5 shelves, since 15 shelves is higher than the number of shelves in the

example.

To calculate the corresponding widths, the area of the block is divided by the height. Both

cases of highest and lowest height are represented in Figure A.4.

In the situation of minimum height, represented on the right of Figure A.4, since the space

between the block and the end of the shelf is not enough to fit any product and it is inferior to the

space left empty on shelves after all block are allocated, it is considered that block 1 occupies the

entire width of the shelf.

Afterwards, using component (5) from the chromosome, suppose height=3.

The resulting allocation on shelves is represented in Figure A.5.

The first block to be placed (following sequencing) is placed at the left-bottom corner of

shelves. Other blocks are placed according to Bottom-Left and Left-Bottom methodologies, which

are chosen based on component (6) from the chromosome. To update empty rectangular spaces,

Table A.5: Areas of product families.

Product 1 2 3 4 5 6 7
Area (cm2) 148 48 50 100 48 48 50

A.1 Example of Application of the First BRKGA for the SSAP 61

Figure A.4: Example of maximum and mininum heights for block 1.

the Difference Process by Lai and Chan is used. The process is similar for all product families.

To allocate products, on the other hand, it is given a preference for horizontal allocations. Due

to this reason the minimum height that can fit an empty space within a block is chosen for the

product. It is also taken into consideration the fact that facings are integer and cannot be divided

to fit shelves. Left-Bottom, Bottom-Left and the Difference Process methodology are also used in

product allocation. The result after allocating all blocks is represented in Figure A.6.

Figure A.5: Allocation of block 1.

Figure A.6: Allocation of all blocks.

A.1.4 Fitness Function

The solution is then evaluated according to the fitness function previously presented.

62 Examples of Application of Algorithms Developed

This algorithm resembles the algorithm used in [5]. Among the most significant differences,

is the fact that in the Shelf Space Allocation Problem the dimensions of rectangles (blocks) are

unknown and depend on the number of facings of each product and on their arrangement on

shelves. Due to this, the first thing done in the algorithm is to establish blocks dimensions which

originates multiple problems of packing rectangles within other rectangles.

A.2 Example of Application of the Second BRKGA for the SSAP

To better illustrate the algorithm a simple example will be presented. This example is not based

on reality and its only purpose is to provide further clarity.

For this example, there are 5 shelves with a width of 50 centimeters, as presented in Figure A.1.

The block diagram under consideration is presented in Figure A.7. Furthermore, information

concerning products is present in Table A.6.

Figure A.7: Block diagram for the example.

Table A.6: Product data

Product 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Width (cm) 17.5 17.5 2.5 20 2.5 2.5 15 10 10 10 10 10 10 5 5
Target Facings 1 1 2 2 1 1 1 1 1 1 1 3 1 4 5
Minimum facings 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

A.2.1 Determine number of facings

The first step is to determine the number of facings. Since this process is the same as in the first

decoder, only the results will be presented, on Table A.7.

Table A.7: New facings obtained for products

Products 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Facings 1 1 2 1 2 2 2 1 1 1 1 2 1 5 5

A.2 Example of Application of the Second BRKGA for the SSAP 63

A.2.2 Sequencing

For this example, chromosome keys for sequencing (component (4)) are represented in Figure A.8.

Figure A.8: Chromosome keys for sequencing

A.2.3 Allocate Blocks

Calculate Areas
First, the area of blocks is calculated. For this, it is considered that each shelf and product

has an height of 1 centimeter. The areas of blocks are presented in Table A.8, Table A.9 and

Table A.10

Table A.8: Areas of blocks and products within block 2

Blocks 12 13 14 5 15 6 16 17 18 7 2
Area (cm2) 17.5 17.5 5 40 20 20 5 5 30 40 100

Table A.9: Areas of blocks and products within block 3

Blocks 19 20 21 22 8 23 24 9 3
Area (cm2) 10 10 10 10 40 40 20 60 100

Table A.10: Areas of blocks and products within block 4

Blocks 25 10 26 11 4
Area (cm2) 25 25 25 25 50

The area of block 1 corresponds to the areas of blocks 2, 3 and 4 combined and therefore is

equal to 250 cm2.

Orientation and Allocation of Blocks
Chromosome keys for orientation (component (5)) are represented in Figure A.9.

Block 0: chromosome key (component (5)) = 0.3 < 0.5 => block 1 will be placed vertically

on shelves.

64 Examples of Application of Algorithms Developed

Figure A.9: Chromosome keys for block orientation

Total area of block 1 is 250 cm2, which means it will occupy the entirety of the shelf’s width

(50 cm) and height (5 cm). Representation of the placement of block 1 on shelves if presented in

Figure A.10.

Figure A.10: Placement of block 1 on shelves.

Block 1: chromosome key (component (5)) = 0.1 <0.5 => blocks 2,3 and 4 will be placed

vertically on shelves.

Total area of blocks 2,3 and 4 combined is also 250 cm2 (100+100+50). For each block, the

proportion of space it will occupy is the following:

Block 2: 100/250=0.4

Block 3: 100/250=0.4

Block 4: 50/250=0.2

Since these blocks will be placed vertically, their measurements will be:

Width block 2=0.4*(width previous block)=0.4*50=20 cm

Height block 2= height previous block=5

Width block 3=0.4*(width previous block)=0.4*50=20 cm

Height block 3= height previous block=5

Width block 4=0.2*(width previous block)=0.2*50=10 cm

Height block 4= height previous block=5

Blocks will be placed according to the order given by component (4) from the chromosome. In

this case, it will be 3,2,4. The placement of these blocks on shelves is represented in Figure A.11.

A.2 Example of Application of the Second BRKGA for the SSAP 65

Figure A.11: Placement of blocks 2,3 and 4 on shelves.

Block 2: chromosome key (component (5)) = 0.6 ≥ 0.5 => blocks 2,3 and 4 will be placed

horizontally on shelves.

The total area of blocks 5, 6 and 7 is 100 cm2 (40+20+40). Accordingly, the proportions of

space they occupy are the following:

Block 5: 40/100=0.4

Block 6: 20/100=0.2

Block 7: 40/100=0.4

Considering they will be placed horizontally their measurements are the following:

Height block 5=0.4*(height previous block)=0.4*5=2

Width block 5= width previous block=20 cm

Height block 6=0.2*(height previous block)=0.2*5=1

Width block 6= width previous block=20 cm

Height block 7=0.4*(height previous block)=0.4*5=2

Width block 7= width previous block=20 cm

It is necessary to verify whether the sum of heights does not exceed the maximum height

value. In case this happens, the last blocks to be placed will have reductions in their height to meet

requirements. Also, in this case, due to the dimensions of product families, only one can be placed

per shelf.

The sequencing of the placement of blocks, according to component (4) of the chromosome

is: 7,6,5, as represented in Figure A.12.

The process is repeated for all product families, until the level of products. To place products,

the methods followed are similar to the ones presented in the previous decoder. One difference

is that after determining the dimensions of product families, facings of products are recalculated

based on the rotation days, to fit the available space. Doing this, helps minimize the deviation

from target facings. Product placement, for this example is represented in Figure A.13.

A.2.4 Fitness Function

Afterwards, the solution is evaluated by the fitness function previously explained.

66 Examples of Application of Algorithms Developed

Figure A.12: Placement of blocks 5,6 and 7 on shelves.

Figure A.13: Placement of products on shelves.

References

[1] Alexander H Hübner and Heinrich Kuhn. Retail category management: State-of-the-art
review of quantitative research and software applications in assortment and shelf space man-
agement. Omega, 40(2):199–209, 2012.

[2] Teresa Bianchi de Aguiar. The retail shelf space allocation problem: New optimization
methods applied to a supermarket chain (PhD proposal). Faculty of Engineering, University
of Porto, 2012.

[3] El-Ghazali Talbi. Metaheuristics: from design to implementation, volume 74. John Wiley &
Sons, 2009.

[4] José Fernando Gonçalves and Mauricio GC Resende. Biased random-key genetic algorithms
for combinatorial optimization. Journal of Heuristics, 17(5):487–525, 2011.

[5] JF Gonçalves and MGC Resende. A hybrid heuristic for the constrained two-dimensional
non-guillotine orthogonal cutting problem. AT&T Labs Research Technical report TD-
&UNQN6, 2006.

[6] KK Lai and Jimmy WM Chan. Developing a simulated annealing algorithm for the cutting
stock problem. Computers & industrial engineering, 32(1):115–127, 1997.

[7] Pierre Chandon, J Wesley Hutchinson, Eric T Bradlow, and Scott H Young. Does in-store
marketing work? Effects of the number and position of shelf facings on brand attention and
evaluation at the point of purchase. Journal of Marketing, 73(6):1–17, 2009.

[8] Ruibin Bai. An investigation of novel approaches for optimising retail shelf space allocation.
PhD thesis, University of Nottingham, 2005.

[9] Associação Portuguesa de Empresas de Distribuição. Ranking APED 2011, 2012. Avail-
able in http://www.aped.pt/Media/content/348_1_G.pdf, last access May 10th,
2014.

[10] Xavier Dreze, Stephen J Hoch, and Mary E Purk. Shelf management and space elasticity.
Journal of Retailing, 70(4):301–326, 1995.

[11] Andrew Lim, Brian Rodrigues, and Xingwen Zhang. Metaheuristics with local search tech-
niques for retail shelf-space optimization. Management Science, 50(1):117–131, 2004.

[12] Mümin Kurtulus and Alper Nakkas. Retail assortment planning under category captainship.
Manufacturing & Service Operations Management, 13(1):124–142, 2011.

[13] Robert A Russell and Timothy L Urban. The location and allocation of products and product
families on retail shelves. Annals of Operations Research, 179(1):131–147, 2010.

67

http://www.aped.pt/Media/content/348_1_G.pdf

68 REFERENCES

[14] Chase C Murray, Debabrata Talukdar, and Abhijit Gosavi. Joint optimization of product
price, display orientation and shelf-space allocation in retail category management. Journal
of Retailing, 86(2):125–136, 2010.

[15] Gerhard Wäscher, Heike Haußner, and Holger Schumann. An improved typology of cut-
ting and packing problems. European Journal of Operational Research, 183(3):1109–1130,
2007.

[16] Ming-Hsien Yang and Wen-Cher Chen. A study on shelf space allocation and management.
International journal of production economics, 60:309–317, 1999.

[17] José Fernando Gonçalves and Mauricio GC Resende. A biased random key genetic algo-
rithm for 2d and 3d bin packing problems. International Journal of Production Economics,
145(2):500–510, 2013.

[18] Ronald C Curhan. The relationship between shelf space and unit sales in supermarkets.
Journal of Marketing Research, pages 406–412, 1972.

[19] Ronald C Curhan. Shelf space allocation and profit maximization in mass retailing. Journal
of Marketing, 37(3), 1973.

[20] Mehmet E Coskun. Shelf space allocation: A critical review and a model with price changes
and adjustable shelf heights. 2012.

[21] Marcel Corstjens and Peter Doyle. A model for optimizing retail space allocations. Manage-
ment Science, 27(7):822–833, 1981.

[22] Jens Irion, Faiz Al-Khayyal, and Jye-Chyi Lu. A piecewise linearization framework for retail
shelf space management models. Retrieved May, 6:2006, 2004.

[23] Hark Hwang, Bum Choi, and Min-Jin Lee. A model for shelf space allocation and inventory
control considering location and inventory level effects on demand. International Journal of
Production Economics, 97(2):185–195, 2005.

[24] Jared M Hansen, Sumit Raut, and Sanjeev Swami. Retail shelf allocation: A comparative
analysis of heuristic and meta-heuristic approaches. Journal of Retailing, 86(1):94–105,
2010.

[25] Ming-Hsien Yang. An efficient algorithm to allocate shelf space. European journal of oper-
ational research, 131(1):107–118, 2001.

[26] Hasmukh K Gajjar and Gajendra K Adil. Heuristics for retail shelf space allocation problem
with linear profit function. International Journal of Retail & Distribution Management,
39(2):144–155, 2011.

[27] Mauro Castelli and Leonardo Vanneschi. Genetic algorithm with variable neighborhood
search for the optimal allocation of goods in shop shelves. Operations Research Letters,
2014.

[28] John H Holland. Adaptation in natural and artificial systems: An introductory analysis with
applications to biology, control, and artificial intelligence. U Michigan Press, 1975.

[29] José Fernando Gonçalves, Mauricio GC Resende, and Miguel Dias Costa. A biased random-
key genetic algorithm for the minimization of open stacks problem. 2013.

REFERENCES 69

[30] José Fernando Gonçalves, Mauricio GC Resende, and Jorge JM Mendes. A biased random-
key genetic algorithm with forward-backward improvement for the resource constrained
project scheduling problem. Journal of Heuristics, 17(5):467–486, 2011.

[31] James C Bean. Genetic algorithms and random keys for sequencing and optimization. ORSA
journal on computing, 6(2):154–160, 1994.

[32] Rodrigo F. Toso and Mauricio GC Resende. A c++ application programming interface for
biased random-key genetic algorithms. Technical report, Technical report, AT&T Labs Re-
search, Florham Park, NJ, 2012.

[33] Dequan Liu and Hongfei Teng. An improved BL-algorithm for genetic algorithm of the
orthogonal packing of rectangles. European Journal of Operational Research, 112(2):413–
420, 1999.

70 REFERENCES

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure

	2 Shelf Space Management
	2.1 Introduction
	2.2 Current Practices
	2.2.1 Problems in Retail
	2.2.2 Software Applications for Shelf Space Management

	2.3 The Shelf Space Allocation Problem
	2.3.1 Decisions
	2.3.2 Objectives
	2.3.3 Constraints

	2.4 Other Related Problems

	3 Literature Review
	3.1 Experimental Studies
	3.2 Optimization methods
	3.2.1 Mathematical Models
	3.2.2 Solution Approaches

	3.3 Genetic Algorithms
	3.3.1 Introduction
	3.3.2 Genetic Algorithms for the Shelf Space Allocation Problem
	3.3.3 Biased Random-key Genetic Algorithm
	3.3.4 Biased Random-key Genetic Algorithms for Cutting and Packing Problems

	4 Biased Random-key Genetic Algorithm for the Shelf Space Allocation Problem
	4.1 Problem Definition
	4.2 Biased Random-key Genetic Algorithms
	4.2.1 First BRKGA for the SSAP
	4.2.2 Second BRKGA for the SSAP

	5 Tests and Results
	5.1 Case Study Instances
	5.2 Parameter Sensitivity Analysis
	5.3 Influence of the Planogram Complexity on the Execution Time
	5.4 Decoders Comparison

	6 Conclusion and Future Work
	6.1 Shelf Space Considerations
	6.2 Algorithms proposed
	6.3 Future Work

	A Examples of Application of Algorithms Developed
	A.1 Example of Application of the First BRKGA for the SSAP
	A.1.1 Determine number of facings
	A.1.2 Sequencing
	A.1.3 Allocate Blocks
	A.1.4 Fitness Function

	A.2 Example of Application of the Second BRKGA for the SSAP
	A.2.1 Determine number of facings
	A.2.2 Sequencing
	A.2.3 Allocate Blocks
	A.2.4 Fitness Function

	References

