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Abstract 
 
 

 

This thesis explores ways of increasing the efficiency of an industrial process by resorting 

to automated machine vision technologies. The research focuses on the quality inspection 

process in the tire industry. 

The general trend found in the literature to improve the efficiency of quality inspection 

processes is to introduce machine vision systems to replace humans in the visual search and 

conformity decision tasks. The original contribution of this study is showing that operators 

should be integrated in the development process and perform continuous validation of each 

technological sub-component. In such an ambiguous and complex task as quality inspection 

process of tires, operators’ expertise and knowledge needs to be acquired to assure that the 

technological solutions being proposed sustain the same quality standards. Thus, the machine 

vision solutions developed during this research project do not aim at replacing the operators, 

but rather at maximizing the advantages they bring to the inspection system through a 

Computer Assisted Inspection (CAI). This will continue up to a moment in which technology 

reliability is demonstrated as adequate and the automated solutions can be deployed as a 

stand-alone inspection method.  

The thesis is based on qualitative and quantitative research undertaken over three years 

in collaboration with Continental Mabor SA. Initial chapters explore the current inspection 

methods used by specialized operators. Later chapters describe the underlying concepts and 

the re-design process of the inspection system. This proposed process follows a framework 

that considers scenarios of different levels of automation. A prototype suitable for industrial 

environment was developed and made possible proving the validity of the proposed solution. 

Each sub-component of the system was tested and validated through systematic 

experimentation. Special focus was given to the image-acquisition station, as the 

appropriateness of the images influences both human-based and automatic subsequent 

quality assessments.  

In the chapters focused on the results it is shown that combining operators’ knowledge, 

machine vision technologies and automatic detection algorithms contribute to an increase in 

process efficiency (higher throughput) and effectiveness (increase the number of correct 

decisions). The baseline strategy for automatic imperfection detection based on a self-

adaptive and deformable template match (SAD-TM) technique is proposed in this dissertation 

and validated for a number of cases. Future work should focus on the continuous 

development of automatic detection algorithms, enlarging number of imperfections tested 

and refining its detection capabilities.     
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The main outcome of this thesis is the development on the understanding of the potential 

benefits of introducing machine vision technologies in the quality inspection process of tires. 

The proposed strategy of complementing human and automation towards the development of 

more efficient processes is expected to be applicable in other environments besides the tire 

industry.  

Regarding the outcomes that are relevant to the industrial partner, the performed 

research suggests that the industrial implementation of the proposed system is viable and 

should occur iteratively, attempting to a continuous increase of level of automation. 
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Resumo 
 
 

A tese apresentada explora formas de aumentar a eficiência de um processo industrial 

recorrendo a visão por computador. A investigação centra-se no processo de controlo de 

qualidade na indústria de pneus. 

A tendência dominante encontrada na literatura, no que toca à melhoria da eficiência do 

controlo da qualidade, consiste na introdução de sistemas de visão por computador em 

substituição de operadores. A contribuição mais inovadora deste estudo é demonstrar que os 

operadores devem ser integrados no processo de desenvolvimento e que os subcomponentes 

tecnológicos devem ser sempre validados juntos destes. No caso de uma tarefa tão ambígua e 

complexa como a inspecção de qualidade de pneus, as suas competências e conhecimentos 

devem ser captados de forma a assegurar que a solução tecnológica apresentada é capaz de 

garantir os mesmos níveis de qualidade. Desta forma, as soluções que envolvem visão por 

computador e que foram desenvolvidas durante este projecto de investigação não tencionam 

substituir os operadores, mas antes maximizar as vantagens que estes trazem às tarefas de 

inspecção num meio assistido informaticamente. Esta situação deverá manter-se até que a 

tecnologia demonstre uma fiabilidade adequada e as soluções automatizadas possam ser 

implementadas com um método de inspecção autónomo. 

A tese baseia-se em investigação qualitativa e quantitativa que decorreu ao longo de três 

anos em colaboração com a Continental Mabor SA. Os capítulos iniciais exploram os métodos 

de inspecção actuais utilizados por operadores especializados. Os capítulos conseguintes 

descrevem os conceitos subjacentes a um sistema de inspecção e o seu processo de 

desenvolvimento. Ao longo deste processo são ponderados cenários com diferentes níveis de 

automação. Cada subcomponente do sistema foi testado e validado através de 

experimentação sistemática. Especial destaque foi dado ao sistema de aquisição de imagens, 

dado que a adequação das imagens influencia tanto a inspecção feita pelos operadores, como 

as avaliações automáticas subsequentes.  

Nos capítulos focados em resultados mostra-se que a combinação de conhecimentos 

detidos pelos operadores, visão por computador e algoritmos de detecção contribuem para 

uma maior eficiência do processo (throughput mais elevado) e efectividade (maior número de 

decisões correctas). A estratégia para a automação da detecção automática de imperfeições 

baseada numa técnica de template match auto-adaptativa e deformável é proposta nesta 

dissertação e validada para um conjunto de casos. O trabalho futuro deverá incidir 

principalmente no desenvolvimento continuado de algoritmos de detecção automática, 

aumentando o número de imperfeições testadas e refinando as suas capacidades de 

detecção. 
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O principal resultado desta tese é o desenvolvimento no sentido de compreender os 

potenciais benefícios da introdução de tecnologias de visão por computador na inspecção de 

qualidade de pneus. A estratégia proposta de complementar reciprocamente os contributos 

trazidos pela automação e pelos operadores com vista a um processo mais eficiente tem 

perspectivas de aplicabilidade em outras indústrias para além da indústria de pneus. 

Ao parceiro industrial, esta investigação sugere que a implementação do sistema proposto 

à escala industrial é viável e deve ocorrer iterativamente, com vista a um aumento contínuo 

do nível de automação. 
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Chapter 1  

Introduction 
 

Visual inspection in a manufacturing system is described as the process to separate 

defective products from defect-free products (Drury 2001). The criteria to distinguish 

between both situations may be from two origins: functional or aesthetics. When done 

manually, visual quality inspection can be a very monotonous and exhausting task, which can 

cause fatigue, stress and lead to subjective decision processes. The objective of this 

dissertation is to re-design an inspection process and understand if the introduction of 

automated aids can contribute to an increase in its efficiency (higher throughput) and 

effectiveness (increase the number of correct decisions). The process of manual tires 

inspection was the industrial case in the basis of this research for which this hypothesis was 

tested and validated.      

 The nature of manual visual inspection  1.1

In the literature, the effectiveness of human visual quality inspection is estimated to lay 

around 80% (Sannen and Van Brussel 2009). This means that there is a significant probability 

that the quality assessment of one operator is not in agreement with the assessment of 

another operator. This fact contributed to the general belief that humans are less reliable 

and less consistent compared to automatic systems (Laofor and Peansupap 2012; Malamasa et 

al. 2003). On the other hand, there might be essential components in the inspection 

processes that greatly benefit from human intelligence and how they act accordingly to the 

know-how acquired through different levels of experience and trainings. Tire inspection is 

nowadays a human-based industrial process and an example of a process in which the 

subjectivity of the quality criteria demand highly trained and qualified operators. In fact, 

inspecting a tire is a complex manual process in which one single inspector collects and 

analyzes multiple characteristics of a tire. The perception and action-related processes 

during manual inspection are overlapping in space and time and the operators are confronted 

with multiple sources of information. The output of the operators’ analysis leads to a decision 

of whether the tire is OK or NOK.  When the operator detects an imperfection, he has to 

decide if it is critical or not and, in this last scenario, separate the product from the 

production flow (Baudet, Maire and Pillet 2013). The variables that influence the operator 

decision include aspects such as: tire visual appearance, intensity of the imperfection, tire 

article and its costumer, the historical quality data of that tire, operators’ fatigue and 

situation awareness, operators’ level of experience, etc. Moreover the ambiguity and 
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variability of imperfections that can occur in tires demands that highly skilled operators are 

trained to perform quality inspection. On the other hand, the fact that it is a human-based 

process, adds to the inspecting process some natural variability in terms of methods of 

detection, quality criteria and productivity. Standardization of the procedure is difficult to 

achieve and so is the calibration of criteria between different operators and even regarding 

one operator when exposed to different conditions.   

This thesis was motivated by the need to increase the efficiency of the quality inspection 

process of tires. Automotive tire manufacturing is a highly competitive industry, in which 70% 

of revenue was generated by top ten manufactures in 2010 (ETRMA 2011). To maintain or 

increase its competiveness, every manufacturer is looking for strategies to reduce costs and 

gain productivity. The manufacturing plants are being upgraded with cutting-edge 

technologies and automated systems with the objective of continuously improve the 

production efficiency while maintaining quality standards.  

In the tire industry, manual quality inspection of tires is part of the Quality Control. 

Besides the implementation of practices to prevent imperfections from happening along the 

process, the final quality control exists and is the last process step before the tire is stored 

and shipped to the costumer. Although the main direction of Quality Control is to define 

strategies to produce defect-free tires, the fact that the manufacturing process involves 

many different steps and several different and unstable raw materials, raises the need for a 

final quality inspection. There are many variables in the manufacturing process that can 

originate an imperfection in a tire, some of them known and possibly controlled (operator 

that misplaced a part in the assembly process) and others which effect is unpredictable 

(room temperature, humidity, etc.). The unavoidable inaccuracy of the manufacturing 

process, together with the fact that the tire is a critical safety item in a car, leads to the 

existence of a final quality inspection at the final stage of the production process. Although 

typically described as a non-added value process, final inspection is critical to guarantee that 

the tire is delivered to the customer within the quality criteria. Especially for the tire 

manufacturers’ leaders, delivering products with high quality is essential to sustain sales and 

market share. In this market, the cost to deliver a product extends beyond the production 

cost and aspects such as customer support and claims need to be taken into account. 

Moreover, for being a safety item, customers have low tolerance for tires that are delivered 

outside the specifications. For this reason, and to enhance competitiveness, the inspection 

process of tires, at least in the main manufacturers, is done manually to all parts produced.  

Questioning the need of final inspection is not the target of this dissertation. Rather the 

objective is, by assuming the existence of a final inspection process, re-design it and 

evaluate the gain in efficiency achieved by introducing some automatic components. 

Furthermore, improving the final inspection process is totally compatible with the trend of 

building quality into the process upstream (Tan, Handfield and Krause 1998). Although 

important emphasis is being given to defect prevention, these efforts in the tire industry still 

do not preclude the need of final inspection and so it will be in the foreseen future. For this 

reason, tire manufactures are continuously looking forward to possible improvements in the 

final inspection process that can lead to cost reduction.  

In the last two decades, machine vision technologies have been increasingly used in the 

development of automatic systems in many different industrial applications. The continuous 

advances in high-speed and high-resolution vision technologies simultaneously with 
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improvements in robotics enlarge the possible applications. That also happens in the tire 

industry, where vision technologies are being deployed for inspection and traceability tasks 

over the entire production cycle (for example tire-tread dimensional check after extrusion). 

Despite all the efforts and technological advances, a vision system able to automatically 

perform the aesthetic and functional final inspection done by the operators was not yet 

developed. The variety of imperfections that can occur and the complexity of determining its 

severity still demand human intervention to take the pass/fail decision. This complexity does 

not eliminate per se the possible improvements of introducing vision and automated 

technologies, rather it raises the challenge on how should the process be re-designed so that 

automatic components and human intervention are placed together with the target of 

maximizing the efficiency of the final inspection process. The continuous development of a 

collaborative system that evolves with time, has the potential to, one day, originate a fully 

automated inspection process.       

 The approach followed in this research is to first perform a detailed analysis of the 

current final inspection process of tires and later analyze if some technological aids, namely 

machine vision technologies, can improve the throughput and move it towards a more 

efficient process. The objective is to re-design the inspection process and determine which 

steps of the inspection process could be automated and define if some (and which) should 

remain allocated to the operators. 

 Automated and hybrid manufacturing systems  1.2

Automatic manufacturing systems are undergoing a rapid growth in a broad range of 

applications. Automation can offer many advantages, such as an increased productivity and 

elimination of some human errors. Even though, some studies suggest that while automation 

has eliminated some types of operators’ errors, it has also created the potential for new 

types of problems (Leveson and Palmer 1997). By late 1980s and early 1990s, it was generally 

accepted that the demand for manufactured goods would be met by a small workforce 

operating a highly modern organization employing productive and automated technologies 

(Bargelis, Hoehne and Cesbulevicius 2004). It was frequently argued at this stage that humans 

were error prone and thus it was necessary to limit their influence in manufacturing by using 

automated technologies (Mital 1997). There are some functions in which automation can 

indeed provide potential advantages when the human functions are transferred to automatic 

systems. But the reality is that fully automated processes are only viable in limited 

circumstances, either due to technical or economic reasons. When feasible, fully automated 

systems frequently allow minimization of lead-time but also limited flexibility and for this 

reason they are typically dedicated to single products (Dencker et al. 2009).  

The conscious that rarely ful automation allows companies to meet necessary market 

requirements of flexibility and cost efficiency, forced the development of other possibilities. 

More recently some research groups identified hybrid systems (semi-automated systems) as 

benefic for industrial environments in scenarios in which the market demands vary 

significantly or in cases there is a high variety of products which requires production 

flexibility. In a hybrid system, there is a close linkage of human and automation in 

cooperative tasks that when properly designed use the strengths of both sides. Sheridan 

(1995) elaborates about this type of hybrid automation as the process of “allocate to the 
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human the tasks best suited to the human, allocate to the automation tasks best suited to it” 

and in that way “achieve the best combination of human and automatic control, where best 

is defined by explicit system objectives”. 

In the literature there are a significant number of studies analyzing the performance and 

benefits of hybrid assembly lines over manual or fully automated ones (Krüger, Lien and Verl 

2009; Takata and Hirano 2011; Consiglio, Seliger and Weinert 2007). The concept of hybrid 

systems has also gained acceptance in the research and industrial communities when some 

studies reported that many conventional automated lines had recently been replaced by 

hybrid lines or cells, with improved outcomes (Takata and Hirano 2011). Typically the 

automatic component of these systems is a robot that is associated to load tasks aiming at 

reducing heavy handling tasks from operators. Handling and positioning of heavy parts in 

welding and assembly processes have been described as examples of tasks transferable to 

machinery (Busch et al. 2012). In these cases, the human-robot cooperation combines the 

sensory skill, the knowledge and the skillfulness of the worker with the strength and speed 

abilities of the robot (Schraft et al. 2005). Besides the usage of robotics to automate some 

physical intensive tasks, other automation technologies are being used to support human 

tasks. As a matter of fact, automation will be assumed along this document as a broad range 

of technological systems designed to support human operators during task performance 

(Cuevas et al. 2007). As an example, there is a strong research and development area 

towards intelligent decision-support aids to help aviation pilots. Today pilots control the 

aircraft indirectly through instructions to the automation in a more passive and supervisor 

manner. Also in the medical field, physicians are improving their perceptual-motor 

capabilities by using computer vision and robotic assisted instruments (Lee et al. 2010).   

In brief, as robotic systems have become more complex and major advances have been 

done in other technological areas such as sensor integration, complex and intelligent machine 

vision systems and sophisticated mathematical algorithms, the cooperation between human 

and automation has moved from simple physical work load reduction to more “joint cognitive 

systems” (Hoc 2000). Models to define tasks, dynamically decomposed it into subtasks, and 

distribute them among human and automation agents are extensively discussed in the 

literature.  

 The role of the operators in these hybrid systems also changed with the introduction of 

new system principles and technologies. Operators are now expected to behave agile and 

proactively, rather than just executing simple and repetitive tasks (Dencker et al. 2009). As 

stated by Parasurman and Riley (1997) “automation does not supplant human activity; rather, 

it changes the nature of the work that humans do”.  Without the right operator task 

association and knowledge level, automation cannot be utilized to its full extent. Many 

studies underline the importance of correctly define and structure the human involvement in 

the hybrid systems. In addition to extreme situations, where the human operator takes full 

manual control of the system (no automation) and in the ones where there is no human 

intervention (full automation), many intermediate levels of automation (LOA) can be 

considered (Kaber, Onal and Endsley 2000; Kaber 2004).  

Many models and studies have been published aiming at determining the level of 

automation that best suits the needs and requirements of the environment in which the 

automated equipment will be used. The interaction between human operators and advanced 

automation technology can sometimes became highly complex and psychological, cognitive, 
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social, and technological aspects need to be accounted for (Cuevas et al. 2007). The use of 

intermediate LOA as a way of improving human-automation performance has been proposed 

in many studies (Kaber, Onal and Endsley 2000; Kaber 2004; Fasth and Stahre 2008). Säfsten, 

Winroth and Stahre (2007) went even further in categorizing intermediate LOA and suggested 

the existence of ‘under automation’, ‘over automation’ and ‘rightomation’. The first two can 

have negative effects on manufacturing performance while ‘rightomation’ contributes 

positively in several respects (Figure 1.1).  

Despite these studies and evidences, some technology experts continue to favor a 

technology-centered design of automation. In fact, the advocates of automation continuously 

report approaches towards higher levels of automation (Miller and Parasuraman 2007). The 

decision of whether or not ful automation is preferable depends significantly on the task 

complexity and available technological solutions. Even when achievable, the system designer 

has to consider that inevitably, situations in which automation cannot handle will arise. In 

these circumstances, operators are expected to step in and resolve the situation. In case the 

operators have been “out of the loop” and replaced by automation, their ability to do so may 

be impaired (Harrison, Johnson and Wright 2003). The view of human-centered automation is 

to keep operators “in the loop” and to view automation as assisting tools even if human 

interference is minimal or tends to decrease with time and continuous technological 

advances. Not considering human intervention while re-designing systems may induce losses 

in situation awareness and human knowledge degradation which may disable their ability to 

take appropriate corrective actions when needed (Parasuraman and Manzey 2010).  

 

Figure 1.1 - Appropriate level of automation, ‘rigthomation’, and positive and negative 

effects of ‘under automation’ and ‘over automation’ (Säfsten, Winroth and Stahre 2007). 
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This dissertation suggests that the design of collaborative systems between operators and 

automation can also be positive in other manufacturing processes rather than assembly and 

material handling, such as inspection process. There are many studies suggesting the use of 

fully automated systems for quality inspection by means of computer vision technologies. 

Industries such as PCB manufacturing, welding, food products, amongst others, are currently 

using fully automated computer vision solutions (Brosnan and Sun 2002; Moganti et al. 1996). 

In these examples, automated vision systems are routinely being used for the purpose of 

performing measurements, integrity checking, and quality aesthetics control. On the other 

hand, humans are currently known for being very good at inspection tasks for short periods of 

time. The human vision system can adapt to varying lighting conditions and easily ignore 

irrelevant information (Killing 2006). This means that in cases the decision process is very 

complex, coupling strategies may become attractive. Tire inspection may be one of these 

examples. A human process that encompasses significant individual differences in perception, 

knowledge, and judgment cannot trivially be transferred to technological solutions and 

mathematical rules. 

 Research gap and research questions 1.3

Tire quality inspection is a complex manual manufacturing process step. As every 

manufacturing process, perfect inspection is not possible to be obtained at all levels and for 

all participants. Nevertheless the extensive knowledge and training given to the specialized 

operators allows for impressive performances either in visual search of the nonconformities 

(NCs) and in the subsequent decision making process (rejecting or accepting the product). In 

the context of tire manufacturing process, final inspectors play a significant role in the 

reputation of the company (by avoiding defective products to be delivered to customers) but 

also in the throughput of the manufacturing process (by avoiding rejecting acceptable 

products). Besides the inherent complexity of localizing NCs in a rotating black object with 

black indents, framing the visual detection in the quality criteria is sometimes even more 

difficult. The acceptable quality level of a product is, as mentioned by the inspectors, a 

“grey area and many different interpretations are possible”.  

Improving the efficiency of the quality inspection of tires is the main objective of this 

dissertation and to do so many different approaches could have been followed. An attempt to 

fully automate the quality inspection process was the initial strategy suggested by the top 

management of the industrial partner. Without putting that possibility aside, the first step 

taken was rather to obtain a deep understanding of the industrial and scientific context of 

this problem.  

There is a significant number of NCs that can occur in a tire, each of them can impact the 

aesthetics and/or functional conditions of the product. Vision is the main sensorial source of 

information although haptic capabilities are sometimes used by the operators for a better 

evaluation. For being mainly a visual inspection problem, many machine vision companies 

have attempted to address the problem through the combination of high-quality cameras (for 

image acquisition) and image processing techniques (for automatic detection of NCs) towards 

the development of an automatic inspection system (Mueller 2013). Due to the fact that the 

variety of NCs is very high (in shape, appearance and size) and the decision process very 

complex, there is, to the best of my knowledge, no commercial automatic machine vision 



 

Introduction  7 

 

 

 

solution able to mimic the inspection done by the operators and to assure the quality 

standards. In these attempts, the question was if full automation was possible or not and the 

appropriateness of different levels of automation seems not to have been treated. Regardless 

of these limitations, tire industry is already taking advantage of the most recent advances in 

vision and automation technologies mainly for automatic geometrical measurements for both 

in-process monitoring and final product verifications. Laser-based vision sensors are the most 

common vision technology in tire manufacturing operations and the recent developments in 

sensor speed and resolution allowed for successful industrial implementations in replacement 

of capacitance sensors (Pastorius and Snow 2006). For geometry and profile measurements, 

non-contact laser scan seems to be the most adequate technology for not being significantly 

affected by changes in surface appearance, such as color, finishing, or lubricants (Frosio et 

al. 2011).       

In the scientific context, a literature search for ‘‘automatic + tire + inspection’’ within 

peer-reviewed literature did not retrieve a significant number of results. The very few 

publications found were focused in evaluating the performance of machine vision 

technologies when applied to tires. Incipient studies in laboratorial conditions suggesting 

laser scanners, thermal cameras, shearography and non-destructive x-ray were found (Gee et 

al. 2000; Frosio et al. 2011; Kim et al. 2004; Gray, Dumont and Abidi 1999). The scarcity of 

scientific literature in the field suggests that major advances are more related with 

incremental improvements in vision sensors specifications. These typically occur among 

machine vision manufacturers.  

Tire manufacturing process is far from being a 100% defect–free production and this is 

mainly due to the nature of the material in use. Unlike metal parts for example, rubber 

materials, even when within tolerances, are influenced by temperature, moisture, etc. 

Machine vision systems’ manufacturers consider this as an opportunity to go upstream in the 

production process and implement automatic vision quality system in each production step 

(Wordsworth 2011, 2008). The fact that there are machine vision manufacturers whose main 

industrial applications are dedicated to tire industry gives a notion of the importance of the 

market and the acceptance of the industry which does not want to lag behind other 

automotive industries when it comes to increase efficiency and quality in the processes.  

Final inspection of tires is not unattended by the machine vision manufacturers but the 

complexity of the problem reduces the chances that a single manufacture develops the 

needed technology together with the adequate systems’ design.  

The literature described in the previous section in the scientific domain of cooperation 

between humans and automation, suggests that there are advantages in integrating humans 

and automation when re-designing manual processes. Although not directly applied to the 

tire industry, some studies highlight some drawbacks of implementing automatic solutions 

without considering the role of the human operator or simply assigning to the operator the 

tasks that for some reason cannot be automated. Taking this research trend into 

consideration, the concept of a Computer Assisted Inspection (CAI) was created. The novel 

contribution of this dissertation lies on the development of a concept of a self-sustainable 

inspection process that merges the information acquired from automatic vision sensors with 

human and automatic decision capabilities. Self-sustainable in this context means the 

capability of adjusting throughout time and, based on statistical and historical data analysis, 

the level of automatic and human-based decisions according to advances in image processing 
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techniques, changes in product specifications or costumer requirements. Unlike many studies 

in which the LOA is decided in the designing phases of a process and remains steady from that 

point on, this research suggests that there should be a continuous re-evaluation of the system 

performance, based on which the level of trust in automation could increase or decrease. The 

objective of this dissertation is to demonstrate that the re-designing of the inspection 

systems allows for a significant improvement in its throughput and leads to a more flexible 

and reactive process able to provide a better traceability of the quality in the production 

process.  

In this concept the inspection process will be subdivided in sub-systems. What was before 

a hands-on one-to-one relation between one inspector and one tire will now be a process 

decomposed in acquisition station, image processing algorithms and CAI. These technological 

sub-systems will be mentioned as assistive technology. In brief, the acquisition station is a 

mechanical system that combines vision sensors and lighting used to scan all surfaces of the 

tire with high-resolution digital cameras. By means of image processing techniques, potential 

defective areas in the tire are detected. Finally, the operators analyze the potential 

defective areas in the images and assign a final decision according to the defined quality 

standards.  

The human-based CAI of tires will play different roles in each of the phases of this work. 

These phases are: development, validation phases and plan for industrialization. In the 

development phase the CAI allows, in one hand, the validation of the image quality by the 

most knowledgeable agents (human inspectors) and, on the other hand, the storage of 

human-based decisions. These decisions can then be used to develop automatic detection 

algorithms. In the validation process the decisions made by the operators using the CAI can 

be compared to the ones obtained by the automatic detection algorithms. Finally, when 

implemented, this strategy is hypothesized to allow a continuous optimization of the overall 

inspection time of a tire. In the early-stage of implementation the algorithms may not be 

able to distinguish the non-conformities from many other irrelevant artifacts but can already 

detect defect-free tire regions. In this scenario, CAI is performed by operators that digitally 

analyze only the regions in which the algorithms could not take a conclusive decision. Step by 

step the classification capabilities of the algorithms may increase and the regions shown to 

operators are successively lower. The overall concept of a CAI is not to avoid and replace the 

human operators in the inspection process but rather to develop a tool to assist them in 

taking more assertive and fast decisions. Progressively concentrate the operators in the 

ambiguous pass-fail choices and provide them adequate tools to do so is believed to have a 

significant positive impact in the process efficiency. A collaborative decision between 

operators and automation may contribute to an improved performance level of the process. If 

in the future the algorithms become reliable enough to perform inspection without the need 

of operators validation. The inspection process might one day become 100% automatic. 

Although this stage of full automation was not achieved along this dissertation, a suggestion 

for a continuous implementation is presented and the work here described is an essential 

step to allow this.   

This system will considerably change the methods and procedures of quality inspection of 

tires. The operators will assess tires’ quality level digitally instead of looking at the physical 

object. The development of this CAI aims at reducing inspection time and operator physical 

workload while promoting an improvement in quality performance level. From the inspection 
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point of view, the minimum requirement is that the same (if not better) detection rate is 

achieved. From the process point of view, the new process aims at improving throughput 

while reducing operators’ stress and fatigue. However, a methodology for development and 

implementation phases needs to be carefully designed. The expected benefits of the CAI may 

be compromised if aspects such as adequate training of operators for the new environment 

and accounting for the learning period are not considered.  

In sum, the topics covered along this dissertation enclose multidisciplinary technical and 

systems thinking research. The same level of importance is given to the technological aspects 

implied in the development of the new system, as well as to the process of integrating the 

developed technology and human operators towards the development of more effective 

manufacturing process. The relevance of this research is intended to go beyond the 

application to the tire industry and provide new hints to the design of self-sustainable hybrid 

manufacturing systems. Even though, inevitably there will be research specifically oriented to 

a successful development for the case study of tire inspection.  

The defined research approach will hopefully help answering the research question 

described in Figure 1.2. To precisely answer this question, several aspects of the new system 

need to be investigated and each step of the new system needs to be properly validated. For 

this reason, multiple sub-questions were formulated to help further structuring the research 

done.  

 

 

 

Figure 1.2 – Main research question and subsequent division in sub-questions. 
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The first two research-questions are characteristically technical and the appropriateness 

of off the shelf vision sensors in the acquisition of tires’ image is one of the topics to be 

studied. Special attention will also be given to the placement of the cameras and lighting 

system, which can determine the effectiveness of the subsequent quality detection. 

Highlighting the defects and fading the standard tire lettering and embossments would be 

advantageous for both automatic and human-based inspections. An iterative validation 

process in collaboration with the human operators was defined to identify the most suitable 

camera-lighting set-up which may differ among different products (RQ 1.1 in Figure 1.3). 

A set of experiments was performed with the participation of the operators to evaluate 

the effectiveness of CAI. A posttest-only controlled trial was designed to compare the 

performance of operators using CAI tools with the current process (RQ 1.2 in Figure 1.3). The 

participation of the operators in this validation process was essential to conclude about 

possible benefits of the CAI. Also, the fact that the operators felt involved in the process of 

re-designing the inspection system favored the development of improvements based on their 

experiences and suggestions.  

The research done in attempt to answer RQ 1.3 is probably the one more oriented to the 

tire application. The fact that the tire is a black object with low contrast, forces the 

development and the use of image processing techniques that are able to discretize small 

differences in intensity. Furthermore, the approach followed to automatically detect 

defective regions is based on an adaptive matching procedure in which the images of the tire 

that need to be assessed are compared with defective-free images of the same product. A 

straightforward image processing technique as template matching turns out to be complex 

when applied to tires because of the low contrast but also because of the flexibility of the 

object, which originates differences that need to be neglected among products.  

Finally, the results obtained along the development steps allows for the definition of a 

methodology for a continuous implementation of this system (RQ 1.4 in Figure 1.3). 

  

 

Figure 1.3 – Methods used to answer each sub-research question. 
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 Research institutions and industrial partner 1.4

 The present investigation was possible due to the interaction between different research 

institutions together with a strong industrial collaboration. Each organization dedicated time 

and human resources to this project which enabled the creation of a multidisciplinary team. 

The research described along this document is mostly an individual contribution extracted 

from a project that covered many other topics than are not mentioned in this document for 

being responsibility of other colleagues. The institutions involved in this research were: 

 

Faculty of Engineering of University of Porto (FEUP) and INESC TEC  

Where the project was based and a significant part of the investigation was done. 

Through the Robotics and Intelligent Systems Unit, access to advanced know-how in 

automation, vision systems and image processing techniques was possible.   

 

University of Minho   

To complement the expertise from FEUP, members from the Department of Industrial 

Electronics participated and provided guidance to this research.   

 

Massachusetts Institute of Technology (MIT) 

Sharing experiences and exchanging ideas with researchers from the Engineering Systems 

Division at MIT reinforced the importance of analyzing the engineering and technological 

challenge considering the surrounding social and organizational context.  

 

Continental Mabor and Continental AG  

Continental Mabor is the only manufacturing plant of tires in Portugal and is part of the 

German leader Continental AG. With an annual production volume surpassing 16.3 million 

tires, Continental Mabor is known for being one of the most innovative and productive plants 

in the group. For being constantly looking for innovative ways to improve their processes, 

Continental Mabor decided to launch this project and invest in a joint collaboration with the 

research institutions. More than a partner, Continental Mabor assumed a participative role in 

all development phases in the project. The fact that I had the opportunity to experience the 

shop floor reality, create my perspective and ideas from within the company, and access 

whatever data was needed, had a tremendous impact on the achievements of this research. 
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 Dissertation Synopsis 1.5

The research done along this project covered aspects related different knowledge fields. 

All need to be integrated in the design and validation of a novel inspection system. 

Nevertheless, before defining the architecture of the novel system, this research suggests 

that first, a deep understanding of the current process should be obtained (Comprehension 

phase in Figure 1.4). Mapping and characterizing the current inspection process, together 

with its main limitations and constrains will provide inputs to the design phase of the novel 

solution (Development and Validation phase in Figure 1.4).  

With the new system architecture established, an industrial prototype will be presented 

and special attention will be given to image acquisition, CAI, and automatic detection. Design 

of experiment methods will be used to validate the proposed system and conclude about its 

reliability. Finally the results obtained in the industrial prototype will be used to define a 

continuous development plan.  

This dissertation is organized in seven chapters, including the introduction and 

conclusion. The first chapter aims at clarifying the research problem, research questions and 

research approach. Chapter 2 will be dedicated to the description of the current inspection 

process. An extensive field study was performed to capture the essential components and 

methods used by the visual inspectors. In chapter 3, a discussion about possible systems’ 

design and levels of automation will be presented following the framework of well-

established methods available in the literature. Chapter 4, 5 and 6, all of them related to the 

development and validation, will focus on: image acquisition station, CAI and automatic 

detection of imperfections, respectively. Finally, in chapter 7, the main outcomes will be 

address together with a suggestion of a methodology for continuous system development.   

     

 
Figure 1.4 – Research topics and their correlation with research questions for a novel 

inspection system development. 
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  Chapter 2

Methods for manual inspection processes 
 

The definition of strategies aiming at enhancing the tire inspection process performance 

and, implicitly enhance human inspectors’ performance, requires further clarification of the 

current inspection process and the circumstances in which some its sub-components can fail. 

This would help in a later definition of possible improvement strategies. 

The objective of this chapter is to first describe the mechanisms proposed in the 

literature associated to human inspection processes. Afterwards, a detailed description of the 

inspection process of tires is given.      

 

2.1 The nature of manual visual inspection  

Inspecting a product or system can be subdivided in three main tasks that the operator 

needs to fulfill: visual search, recognition and decision (Holmgren 1968). The study by Drury 

(2001) goes into further detail and divides inspection in five logical functions: set-up, 

present, search, decision, and respond. Both subdivisions suggest a linear sequence of 

functions but the authors also point out that in practice there can be some branches and 

reentries in the sequence.  

Considering the five logical steps: 

Set-up refers to the functionality check of the equipment needed by the operator. The 

equipment can be measurement devices, machinery, automation aids, decision aids, and 

recording mechanisms, among others. Verifying whether or not the equipment is operating 

properly is typically done by the human operator before initiating the inspection process.  

Present is associated to the availability of the part or system to be inspected. The 

selected product or test must be presented to, and interfaced with the inspector (Drury 2001; 

Drury, Ghylin and Holness 2006). 

Search is an active process in any inspection context, in which the operator looks for a 

target item among a set of distractor items. According to the application domain, this can 

include or not a phase of a rapid and global assessment, during which general spatial layout is 

determined, familiar structures or features are identified, and evident potential targets are 

noticed. This is typically called preattentive or distributed attentional (McCarley et al. 2004). 

The subsequent search requires detailed vision fixations. When the human operator fixates a 
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point, visual acuity is highest along the line of sight and decreases into the periphery, falling 

off more rapidly in the far periphery. The useful field of view (also known as visual lobe) 

defines the limit of peripheral sensitivity for a particular target, commonly defined as the 

area visible in a single fixation (Chan and Chiu 2010; Melloy et al. 2006). The process of visual 

search is then described as a sequence of eye fixations in which the visual lobe is actively 

moved across the field of view (during which visual quality flaws may be detected). Generally 

speaking, information is absorbed during a fixation while peripheral vision plays a role in 

guiding and triggering subsequent eye movements (Scott 1993). Many authors studied the 

importance of co-operation between central vision and peripheral vision in the total 

performance of human vision (Chan and Courtney 1996). An example of this is an operator in 

supervisory tasks in a control room. The human operator needs to observe continuously and 

accurately several displays at the center of his visual field. Simultaneously the operator has 

to detect and make response to unpredictable signals that can occur in the periphery of the 

visual field. In some circumstances it becomes very time consuming and impractical to move 

the central vision to scan the entire field in a search task and so peripheral vision must be 

used in detection of a target in a search field (Chan and Chiu 2010).   

The visual lobe area is affected by many factors such as the adaptation level of the eye, 

target size, background characteristics, individual differences in peripheral vision and 

individual experience (Gramopadhye and Madhani 2001). In fact, many studies suggest that 

experienced operators do not need as many fixations because they are able to extract more 

information from peripheral vision in a fixation than novices. In medical image reading, this 

effect was also reported since experienced radiologists were more likely than interns to 

fixate abnormal regions in a mammogram. Such increased effectiveness of visual scanning 

could reflect strategic expertise in planning scan paths or perceptual expertise in noticing 

and guiding the eyes toward peripherally viewed targets (McCarley et al. 2004).    

Most industrial inspections are done to large visual fields and thus the human operators 

use eye movements between multiple fixations. In the literature the visual search 

performance appears to be highly influenced by the operator search behavior that can be 

either systematic or random. When random, the operator does not have memory of previous 

visual lobe locations while in systematic mode there is perfect memory and thus 0% overlap 

and unsearched regions. In practice, actual search behavior appears between these extremes 

(Melloy et al. 2006). Wang, Lin and Drury (1997) demonstrated that any memory of previous 

fixation locations improves search performance and suggested methods to train human 

inspectors to be more systematic. Baveja et al. (1996) studied the influence of partial 

overlapping between fixations in human search performance, concluding about suitable 

degree of overlap and its impact in the overall outcomes. 

Decision in visual search refers to the output from the search function and can either be 

zero or non-zero (one or many) targets found (Drury 2001). In this step the operators perform 

what Rasmussen (1986) described as topographic diagnostic search, in which the operator 

compares the whole of what is currently being observed to a recollection or impression of a 

normal version (Woodcock 2014).  

In a visual search task, decision rules should be objectively defined and described prior to 

the assignment of the task to the inspector. The definition of the decision rules is typically 

based on operational requirements such as quality standards in inspection or completion 
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criteria for a maintenance job. The rules can be passed on by senior inspectors, or by means 

of complex and written decision procedures. 

Typically, the rules are of one of three types: 

Rule 1: IF the magnitude Mi of an indication of type (i) exceeds a severity Si, THEN item is 

not fit. 

Rule 2: IF the magnitude Mi of an indication of type (i) under circumstances (j) exceeds a 

severity Si,j, THEN item is not fit. 

Rule 3: IF the number of indications of type (i) with magnitude Mi exceeding severity Si 

exceeds Ni, THEN item is not fit (Drury 2001). 

There are circumstances in which a comprehensive definition and specification of all 

possible hazards is not possible or was not correctly formulated by the organization. In this 

situation, the quality inspection relies in the broad responsibility and experience of the 

human operators and their ability to recognize indicators of possible adverse outcomes 

(Woodcock 2014).  

Respond involves actions taken according to a decision. Defective items being removed 

from a production system or a process being stopped are examples of possible responses. The 

inspector may also need to capture data and organize it in a form usable by the 

manufacturing system for subsequent corrective actions.  

Understanding the sequence and interrelation of these five logical functions becomes 

clearer in the light of the cognitive model of human performance proposed by Rasmussen 

(1983). Other models of human performance, besides the one proposed by Rasmussen (1983), 

could have been use to characterize and frame the cognitive process of inspection. For not 

being the main research focus of this dissertation only Rasmussen’s model is described in this 

document. This was selected for being the one more widely accepted in the literature for the 

description of inspection processes.    

 Known as skill-, rule-, and knowledge model (SRK), it considers that humans are not 

simply deterministic input-output devices but goal-oriented creatures that actively seek 

relevant information to take correct decisions. When confronted with a decision, humans 

recollect experiences from previous attempts, orient towards rules that were previously 

successful and develop mental representations for later use. According to Rasmussen (1983) 

and Rasmussen (1985), the knowledge representation for a decision maker can be structured 

in a hierarchically organized control system with three levels: skill-based; rule-based; and 

knowledge-based (Figure 2.1). At the lowest level (skill-based behavior) human performance 

is governed by patterns of preprogrammed behaviors and routine situations. Actions take 

place without conscious control. Typically, in skilled sensory tasks, the body of the human 

moves in synchronization with some sort of behavior of the environment. At the middle level, 

human performance is governed by conditional rules. These rules may have been derived 

empirically during previous occasions or communicated from other persons' know-how. Rule-

based behavior is slower and more cognitively demanding than skill-based behavior since it is 

generally based on explicit know-how. However, the boundary between skill-based and rule-

based performance is not quite distinct, and much depends on the level of training and on 

the attention of the person.  
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During unfamiliar situations, faced with an environment for which no know-how or rules 

for control are available from previous encounters, the control of performance must move to 

a higher conceptual level, in which performance is goal-controlled and knowledge-based. In 

this case, alternatives are considered and tested either physically, by trial and error, or 

conceptually. 

 

 

Figure 2.1 - The Skill, Rule, and Knowledge-Based Model (Rasmussen 1983; Marmaras and 
Kontogiannis 2001). 

 

In inspection, the first two logical functions (Set-up and Present) and the last (Respond) 

typically do not recall higher-level behaviors. Entering the rule-based level is only necessary 

in cases in which, for example, changes in the setup to accommodate different customers, 

different products, or different process conditions are needed (Drury 2001).  

Also search is mostly a skill-based activity (Baveja et al. 1996). With training, practice 

and experience, human inspectors tend to perform search almost automatically with minor 

cognitive effort (Chiu and Chan 2007). Individual differences can significant affect the search 

activity. Besides visual acuity, the visual lobe area and shape have been found to be 

important and to be related to visual search performance (Chan and Chiu 2010; Chiu and 

Chan 2007). For this reason, there are some studies suggesting some standard measurements 

to help in selecting inspectors with better visual capabilities and, therefore, possibly better 

search performance potential. Instead of a random selection of inspectors which could result 

in training persons with poor capability and possibly poor potential, the selection tests may 

help in improving overall inspectors’ performance (Chan and Chiu 2010).  
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Authors also reported that, within search, there is some rule and knowledge-based 

components, especially when it comes to defining a search plan and path and in determining 

a stopping policy. These higher-level behaviors allow, for example, an experienced medical 

image reader to immediately check regions most likely to contain an abnormal feature 

(McCarley et al. 2004). In fact, an important aspect of the human behavior is the ability of 

performing a guided search based on prior information. If this knowledge exists, locations 

more likely to contain items of interest are searched in first place (Wolfe 1994). Choice of 

how long to search before deciding that no target exists is another aspect of the search 

process that requires knowledge or rule based components. Although the probability of 

detection increases with time spent searching, there are often throughput targets that the 

inspector needs to fulfil (Drury 2001). The difficulty is that speed and accuracy are known to 

co-vary negatively for some tasks. Thus, models to define and optimize a stopping policy have 

been suggested (Hong 2005). Aspect such as costs, payoffs and probabilities should be 

considered.   

In practical situations, visual search takes longer than the decision-making process. 

Typically, decisions are rule-based which may suggest that rule-based behavior controls this 

logical step. Yet, the three hierarchical levels can contribute likewise in the search step. At 

the lowest level (skill-based) are extreme situations in which there is a total absence or an 

obvious indication of flaw. In these cases the decision will be trivial and essentially skill 

based. Most decisions, however, are nontrivial and require higher-level behaviors. In the most 

cognitive demanding situation, the operator has to decide consciously and based on the 

potential consequence of an incorrect decision. Usually, false positive and miss errors do not 

have equal weights, because falsely accepted components may result in system failure. Thus 

ambiguous detection situations can become highly complex and subject to errors (Drury 

2001). 

The scientific interest is mostly related with the visual search and decision steps. The 

compelling observation that while some targets are found immediately, others require careful 

and serial strategies to be found, motivated many studies and the development of various 

models (Nothdurft 2006). Effortless detection can take place almost instantaneously in 

preattentive search by the “pop-out” effect, a term frequently used in visual search 

literature. The idea that, in some circumstances, the odd element will effortlessly “pop out” 

from the background and call attention to its location is generally accepted (Luck and 

Hillyard 1994). The “pop-out” effect is sensible to basic features like orientation, color and 

size (Figure 2.2). “Pop-out” in the context of visual search can also be defined as conspicuous 

“pop-out” or salience (Nothdurft 2006). Relating the effect of “pop-out” with the reaction 

time and with background characteristics is also of interest. If the target is the only salient 

item in a pattern, it should be found immediately, almost independent of the number of 

other items available. An example of this is to find a red item among green (Wolfe 2003). If, 

on the other hand, there is no salient item, the target cannot be easily selected, and several 

other aspects must be checked (Figure 2.3). In this case, search time will increase as the 

number of distractors or size of the field of view increases (Nothdurft 2006). An example 

described in the literature is to search for a randomly oriented “T” among “L”s. In this case 

the search would need to proceed in a serial manner, from item to item until the target was 

found or the search was abandoned (Wolfe 2003).    
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Figure 2.2 – Examples of the homogeneous, orientation pop-out, color pop-out and size pop-
out stimulus array (Luck and Hillyard 1994). 

 

 
 

Figure 2.3 – Example to illustrate why some search tasks are easier than others. Finding the 
target blue–yellow–red ‘molecule’ is trivial in (a) because of the unique red element. Search 

is much less efficient in (b) because no unique feature defines the target (Wolfe 2003). 
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2.2 Human errors 

Inspectors play a significant role in any safety or quality inspection system. Multiple social 

and organizational factors can affect operator’s performance, and it is unreasonable to 

expect consistent performance across all conditions and time periods (Ballou and Pazer 

1982).  

Ergonomists and human factors engineers have attempted to justify human errors with 

poorly designed man-machine interfaces. Thus the increase in the system reliability was 

thought to be mostly related with strategies to redesign this interface. This is understandable 

and desirable, but it tends to obscure a crucial aspect: “that even with the best-designed 

man-machine interface, the probability of human error cannot in practice be reduced to zero 

except, of course, by decreasing the output rate to zero also” (Sylla and Drury 1995).  

The performance of an inspection process is measured by the accuracy achieved which is 

the probability of discovering a target in a certain time range. In practice, measuring the 

performance of an inspection system aims to find out how well the decisions made by one 

operator match the decisions that should have been made. Typically each decision is a binary 

one and the outcome can either be: conforming (OK)/nonconforming (NOK) or good/faulty. 

Thus, inspection performance can be defined by a set of probabilities according to the 

agreement between decisions and true state of conforming: 

 p1 probability of deciding that a conforming item or process is conforming  

 p2 probability of deciding that a nonconforming item or process is nonconforming 

 (1-p1) probability of deciding that a conforming item or process is nonconforming 

 (1-p2) probability of deciding that a nonconforming item or process is conforming 

Signal detection theory can be used to classify inspection performance. Decisions can 

be classified as hits (correct rejection of defects), misses (acceptance of defect), false 

positives (rejection of acceptable condition) and correct acceptance of non-defective 

products by comparing actual decisions to correct decisions (Woodcock 2009). The 

possible outcomes are summarized in Table 2.1.  

 

Table 2.1 – Possible outcomes of inspection (adapted from Drury (2001)). 

Decision taken Item conforming Item nonconforming 

Accept Correct Accept Miss 

Reject False positive Hit 

 

Considering the framework proposed by Drury (2001), search and decision are 

traditionally the two areas with the highest occurrence of errors as they mostly rely on the 

inspectors’ individual abilities (Ghylin, Drury and Schwaninger 2006). Even though, errors can 

occur in every step and the circumstances associated to each are dependent on the 

environment under analysis. A typical search error is missing a target and a typical decision 

error is misclassifying a target (Ghylin, Drury and Schwaninger 2006). Table 2.2 defines the 

possible generic errors that can occur in the two main functions of inspection (Search and 
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Decision). For each level of the SRK model, there are different error causations. While in the 

skill-based, mistakes occur in some routine tasks associated with some form of distraction or 

preoccupation, in the rule and knowledge-based levels, mistakes are due to misapplication of 

the adequate rule or application of a wrong rule. Although humans are “furious pattern 

matchers”, in some circumstances the application of rules of thumb or heuristics may go 

wrong (Reason 2005).  

 

Table 2.2 – Analysis of generic errors associated to Search and Decision in the scope of SRK 
model. 

 Possible errors 

 Search Decision 

Skill-based behavior 
1. Failure to detect/locate a target 

2. Detect a nontarget 

For immediate decisions: 

1. Deciding that a conforming item is 

nonconforming 

2. Deciding that a nonconforming 

item is conforming 

3. Failing to invoke the decision 

process 

Rule and knowledge-

based behavior 

1. Choose a search path that leads 

to areas being entirely neglected 

2. Search terminated too quickly 

For complex decision: 

1. Incorrect decision due to the 

invocation  of  the wrong rule 

2. Incorrect decision due to the 

misapplication of the correct rule  

 

The basic premise when analyzing a process dependent of human decisions is that humans 

are fallible and errors are to be expected, even in the best organizations. Because the human 

errors are not constant and can occur in the various steps of the process as described in Table 

2.2, tracking procedures and definition of root cause can become extremely difficult. Two 

approaches to the problem of human fallibility exist (Reason 2000). Dekker (2006) suggested 

the dichotomy “Bad Apple” and “New View” to distinguish between them. In “Bad Apple” 

theory, the assumption is that people can simply choose between making errors or not and 

whenever errors occur the most probable causes are aberrant mental processes such as 

forgetfulness, inattention, poor motivation, carelessness, negligence, and recklessness 

(Reason 2000). Investigations following Bad Apple theory often end up concluding “They did 

not try hard enough. They should have looked a bit better, or concentrate a bit more”. The 

“Bad Apple” theory remains the dominant tradition in medicine and aviation (Reason 2000). 

On the other hand, the “New View” assumes that people do reasonable things given the 

complexity, dilemmas, trade-offs and uncertainty that surrounding them. In an industrial 

process, for example, besides keeping quality standards, the operators have to usually cope 

with multiple other objectives such as pressures to produce, to not cost unnecessary money 

to the organization, to be on time, to get results, etc. People’s different sensitivity to these 
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objectives and the process of juggling them in parallel can create some vulnerabilities in the 

decision process. The ambiguous evidences and uncertain outcomes may lead to the 

occurrence of mishaps or errors. Following the “New View” the idea is to avoid judging and 

blaming but rather asking the reason why a certain decision made sense in that context. 

Errors in this sense are a symptom of trouble deeper inside a system that deserves further 

investigation (Dekker 2006).  

In inspection processes, the occurrence of errors has been reported to be affected by 

many factors such as time allowed for inspection, work environment, inspector’s fatigue, and 

other work and inspection related aspects (Duffuaa and Khan 2005). This lead to the 

distinction between two sets of factors: active and latent failures. Active failures are unsafe 

acts (errors) committed by those at the “sharp end” of the system (e.g. inspectors, 

anesthetics, surgeons, pilots, crew members). They are the people whose actions have 

immediate consequences. Latent failures are created as the result of decisions taken at the 

organizational and management spheres (Reason 2000; Reason 2005). Fully understanding 

human errors and the organizational and human factors that surround them, benefit from a 

system approach instead of isolating errors from their context. The direction of causality is 

illustrated Figure 2.4. From left to right, bad decisions begin with negative consequences of 

organizational processes (i.e. decisions concerning planning, scheduling, designing, 

specifying, etc). The latent failures are transmitted along various organizational and 

departmental pathways to the workplace and worker (e.g. undermanning, fatigue, 

inexperience, etc) that ultimately potentiate errors. Many incorrect actions can be 

committed but only few of them transpose the defenses created by the operators to avert 

errors or mitigate their effects (Reason 2005).   

 
 

Figure 2.4 - Stages in the development of an organisational error (Reason 2005). 

These concepts of human performance and human error will be used in the following 

sections of this document, first in the analysis of the current inspection process of tires and 

later as considerations for the system re-design process. In the current inspection of tires, 

deviations of the standard procedures occur and so do human errors. Following the “New 

View” approach, we propose that a good understanding of these aspects, including human 

and organizational dimensions, can contribute to a more adequate re-design of the process. 

Instead of following the approach of reducing the unwanted variability in human behavior by 

moving them away from the process, the objective is to re-design the inspection system 

accounting for aspects such as workers, team, inspection task to be done, workplace, and the 

organization as a whole. 
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2.3 Manual inspection in the tire industry context  

The following two sub-sections provide brief background information regarding the 

structure of a tire and its manufacturing process. This knowledge will then be useful for a 

better understanding of the inspection process and its manufacturing context. Subsequently, 

the inspection process will be described in detail, followed by a discussion of process 

deviations and human variability.   

2.3.1 Tire fundamentals 

The primary function of tires is to provide the interface between the vehicle and the 

road. The contact area with the road is made by the tread, while the sidewalls are the lateral 

areas that, with the corresponding inner liner, form the compartment for the compressed air. 

The tire carcass also includes the bead and shoulder. The bead is in direct contact with the 

rim on the wheel and because it is typically reinforced with steel, increases the sidewall 

stiffness. The shoulder is the transition area between the tread and the sidewall (Figure 2.5). 

 
 

 
 

Figure 2.5 – Illustration of the tire carcass composed by several parts: tread (1), shoulder (2), 
sidewall (3), bead (4), and inner liner (5). 

1. Tread 

1. Tread 

3. Sidewall  

2. Shoulder  

4. Bead  

5. Inner liner  

3. Sidewall  

5. Inner liner 
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Tires are highly engineered structural composites whose specifications should be selected 

according to the requirements of the vehicle and customer driving conditions. Aspects such as 

load carrying requirements, typical weather conditions and road surface irregularities should 

be considered when selecting a tire (Lindemuth 2006). To meet the various requirements, the 

dimensions and the components of the tires can be adjusted. A combination of 60 different 

raw materials including rubbers, fabrics, steel wire and cords, is needed to produce a tire. 

The pneumatic tire manufacturing industry follows many safety requirements and 

government regulations, stressing the importance of the quality of tires. The complexity of 

the legislation is increasing and the main focuses are in testing procedures to check 

compliance and safety and environmental concerns. The industry is continuously adapting 

products and production processes and making technological adjustments to attempt to meet 

international and EU level regulations. Limits on rolling noise, rolling resistance (that 

influences fuel consumption), wet grip on the product-level and waste restrictions, chemical 

usage declarations and reduction of CO2 emissions on the manufacturing facilities are just 

some examples (ETRMA 2010).  

The legislation also requires tire manufacturers to place standardized information on the 

sidewall of all tires. This information identifies and describes the fundamental characteristics 

of the tire and also provides codes for tire identification such as DOT (Department of 

Transportation) (NHTSA 2001) (Figure 2.6). 

  

 
            

  
 
 
 

 
 

 

 

Figure 2.6 – Description of tire codes embossed on tire sidewall (a) Dimensional information, 
(b) Mold number and DOT.  
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In Figure 2.6 a) the first set of 3 digits represents the width of the tire, measured from 

sidewall to sidewall, in millimeters. The second indication, known as the aspect ratio, gives 

the tire’s ratio of height to width which results in the height of the sidewall (as an example, 

in the case of the tire in Figure 2.6, the height of the sidewall is 60% of 205 mm). After the 

rim diameter in inches, the tire’s load index is embedded. It is a measure of how much 

weight each tire can support. The set of dimensional information finishes with the maximum 

speed rating which denotes the maximum speed at which a tire is designed to be driven for 

extended periods of time.  

Besides dimensional information, the sidewall also includes the mold number and DOT. 

Mold number is useful for tracking back to the original mold where the tire was 

manufactured. DOT is mandatory by the U. S. Department of Transportation and is an 

alphanumeric set of characters that contains the manufacturing plant code, date of 

production and other numbers that are marketing codes useful to process contacts with 

customers (Figure 2.6).   

2.3.2 Tire manufacturing process 

As mentioned before, many different raw materials are needed to manufacture a tire. 

Many industries are involved and, in order to guarantee quality within the manufacturing 

process, the tire manufacturer needs to seek suppliers that provide detailed certification of 

the properties and composition of the raw materials (Figure 2.7). After mixing, the rubber 

components are shaped by extrusion to form treads, sidewalls and beads (preparation hot). 

By a process of calendaring, the cords of textile and steel are aligned in pre-defined manners 

(preparation cold).  Building refers to the process of components assembly which takes place 

in a machine operated manually that held together the components mechanically. The output 

of the building machine is a “green tire” which is a fully assemble uncured tire. An uncured 

tire presents a low Young Modulus, does not maintain its shape when deformed and can be 

very sticky. After being built, the “green” tire is stored on a rack that will then be 

transferred to vulcanization (curing).  

Vulcanization is the actual process of linking rubber molecules. The network of rubber 

molecules increases elasticity while decreasing plasticity. Thus, vulcanization reduces the 

amount of permanent deformation after removal of the deforming force (Coran 2013). In 

vulcanization the “green” tire is placed in the mold over an inflatable bladder. The bladder 

forces the tire against the mold, forming the sidewall and tread patterns and letterings. After 

vulcanization, the tires are sent to the final finishing area by means of a conveyor system. 

Although the general principle of this step is simply to filter and forward only defective-free 

tires to the subsequent step, there are multiple criteria and methods to do so (Figure 2.7). 

For an OK tire the Final Finishing process includes: visual inspection and uniformity tests 

(Figure 2.8). Visual inspection, as previously referred in this document, is a manual-based 

process. Inspectors’ main functions are to trim off vents, to identify the tire, to observe its 

surfaces and identify potential visual imperfections. If no visual imperfections are found, the 

operator places the tire in a conveyor to be transported to the Uniformity machines where 

structural parameters are measured by means of laser sensors. Parameters such as radial 

force variation, harmonic waveform and conicity are measured. 
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Figure 2.7 – Generic tire manufacturing process. 

 

 

 

 

 
 

Figure 2.8 – Diagram illustrating the process flow in the Final Finishing area.  
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Figure 2.9 - Diagram with the layout of the Visual Inspection process within the industrial 

partner.  
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In case the inspector identifies an imperfection in a tire, the subsequent step is to 

forward it to the Grading area. Graders are operators belonging to the Quality Department 

that make a deeper analysis of rejected tires. Their level of expertise and experience, suits 

them for a decision process no longer binary but involving the determination and 

classification of the severity of the imperfection. Depending on the extent of the 

imperfection, the grader decision can be scrap, rework or false positive and thus immediately 

upgraded to OK. A tire that is sent to rework can then be fully recovered and re-classified as 

OK by the Graders. If that is the case, the tire continues the process as a regular OK tire 

converging towards the Uniformity area (Figure 2.8). 

In the Continental Mabor facilities, the layout of the Visual Inspection process follows the 

illustration in Figure 2.9. The diagram does not intent to reproduce the layout in rigor and 

with detail. Especially the conveyor system is dramatically more complicated that the one 

illustrated. The daily production volume (≈50 000 pieces) flows through two channels and 

converge to a circular loop. From this loop the tires are randomly distributed to the visual 

inspectors (VI). 28 stations are available although typically only 24 operators are working 

simultaneously. Each station is fed by an individual buffer that can contain a maximum of 6 

tires. The operators are positioned side by side with each other in two lines of machines, a 

larger one containing 24 stations and second with 4 stations. In the larger line, the operators 

can only leave the workplace near the extremities either close to VI1 or VI24. A global picture 

of the real layout is shown in Figure 2.10.    

 

 
 

Figure 2.10 – Overview of the visual Inspection process at Continental Mabor. 
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2.3.3 Visual Inspection procedure and criteria 

Visual inspection is a manual process done by specialized operators. Before being 

certified as inspectors, the operators have to undergo a period of learning and supervised 

training. At first, the inspectors are taught the methods and standard procedures to perform 

inspection as well as the rejection criteria. When a minimum knowledge is established, the 

operator is then allocated to a station. The tires inspected by the novice are not 

automatically forward to the subsequent step but rather re-inspected by an experienced 

inspector.  

The workplace is composed by a set of equipment (Figure 2.11). The individual buffer, 

mentioned before, is positioned above the eye-level of the operator. When a tire is requested 

by the operator, it slides due to the slope of the conveyor exit and enters the inspection 

machine. The inspection machine contains two motorized rotation axes that automatically 

start rolling when the tire reaches the machine. In addition to smaller components, the 

workplace also includes a computer with a touch screen display, a barcode reader, a mirror 

for indirect observation angles and two exit conveyors. The working position of the operator 

is standing, typically aligned with the center of the machine and facing the front view of the 

tire (sidewall). The machine height intends that the operator eye-level is above or at the 

same height of the highest point of the tire so that the operator is always looking downwards 

and not upwards. 

 

 
 

Figure 2.11 – Example of a VI workplace at Continental Mabor. 
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As described in the first section of this chapter, the first step in the process is set-up. In 

the context of tire inspection, this corresponds to the verification of the equipment 

operational conditions and operator’s login. When the first tire is present, the machine is 

activated and starts rotating automatically one entire tire turn. While the tire is rotating, the 

most significant component of visual search occurs. As the tire is a complex and intricate 

object with multiple curved surfaces, the visual search does not occur in a single plane but 

rather on a tridimensional space. When the tire is rotating, the operator is: 

 Observing the sidewall and the bead that are facing his standing plane and so 

directly visible (Figure 2.12); 

 Checking the tread by means of a mirror usually on his right side; 

 Inspecting the inner liner visually and haptically. Operator visual fixation towards 

the opposite side of the inner liner on the lowest part of the tire occurs while his 

hand senses the inner liner on his side and thus visually hidden (Figure 2.12). 

Although called visual inspection, the standard procedure includes other tasks besides 

inspection itself. Inspection gives name to the process for being the main purpose and with 

recognized importance in the organization. Figure 2.13 illustrates the standard inspection 

process. 

In addition to the visual search operation, the inspector also trims excessive material 

from the tire if necessary. Trimming is needed if there are vents or flash on the outer surface 

of the tire. These are created in the curing process when uncured rubber erratically flows 

and cures inside vent holes or in between mold segments. Although crucial in the curing 

process to avoid that air gets trapped in the tread, vents have the downside of eventually 

getting obstructed. There can be thousands of vents in a mold which enlarges the probability 

of clogging. Flash is typically a continuous excess of rubber that can occur in the shoulder or 

sidewall while vents are small protuberances in the tread. Both are cut with a knife. If 

existing, flash is mainly present in a particular location in the tire, right in the transition 

between sidewall and shoulder. In the vulcanization cavity, this location corresponds to a 

transition between segments of the mold. 

        
Figure 2.12 – Visual and Haptic Search in the tire quality inspection process. On the left a 

detail of a simultaneous downward sidewall observation and trimming is shown while on the 
right the operator is inspecting the inner liner both visually and haptically.    
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Figure 2.13 – Standard procedure to perform tire quality inspection at Continental Mabor.   
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The almost predictable location of flash allows operators to cut flash nearly automatically 

in a inattentive mode following a skill-based level behavior as described by Rasmussen 

(1983). For this reason, the operator can simultaneously cut flash and visually search the tire 

for imperfections. An example of the interconnection between these tasks can be seen in 

Figure 2.12 in which the operator is cutting flash while visually searching the sidewall and 

bead.     

The machine automatically rotates the tire one complete turn. After that the rotation 

stops and the operator turns the tire around. Subsequently the machine performs the second 

rotational cycle enabling the inspection of the opposite side of the tire. At the end of each of 

the two automatic cycles (which dictate the minimum cycle time of inspection) the operator 

assumes the control of the machine and, if necessary, can re-activate the rolling of the 

cylinders to conclude inspection and/or trimming. The rotational speed of the cylinders is 

fixed in both automatic and manual control. On average the inspection time of one tire is 30 

seconds. As described before, during the inspection cycle time, all surfaces of the tire need 

to be observed. Imperfections can occur in any tire surface and for this reason all need to be 

visually scanned by the operator. Besides the wide-range of possible locations, imperfections 

also vary significantly in shape, dimension, and visual appearance. The current off-standard 

catalogue approved by Continental contains a total of 76 different non-conformity (NC) 

codes. Imperfections include: stain, blemish (round or elongated), scratches of variable 

extension, blister and foreign material, among others (Figure 2.14). For the inspector to be 

accountable for the detection of a certain imperfection there must be a visual erratic 

manifestation. Imperfections that do not cause a visual artifact (unbalanced position of 

rubber, blisters in between interior layers, etc.) need to be identified by other means. This 

type of non-visual imperfections are classified in other categories and can be detected in 

uniformity tests, for example. Therefor they are out of the scope of the current visual 

inspection and will not be accounted for by the system proposed in this dissertation.  

Although 76 NC codes exist, there is significant concentration of cases in specific codes. 

The analysis of historical data of a six-month period reveals that the ten most frequent codes 

represent 79% of total occurrences (Figure 2.15). Being more frequent in this case does not 

mean being more critical and for this reason, explicit instructions are given to the operators 

highlighting the equal importance of all imperfections’ codes. 

                                   
 

Figure 2.14 – Examples of imperfections in tires. From left to right a blemish in the sidewall, 
a blister in the inner liner and a blemish in the tread are shown. 
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Figure 2.15 – Distribution of imperfection codes for a period of six months. 

 

 

 

 

 
 

Figure 2.16 – Histogram of the distribution of NC occurrence across tire areas. 
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In addition to a high concentration in the occurrence of certain NC codes (Figure 2.15), 

the analysis of historical data also demonstrated that there are tire areas more affected than 

others. Figure 2.16 shows that the bead and sidewall are the two areas where most NCs 

occur. The categories “General” and “Mechanical areas” refer to imperfections that are not 

specific of a certain tire location. Foreign material is an example of a “General” NC since the 

unexpected excess of material can be anywhere in the tire. On the other hand, there are 

imperfections only evident in the inner liner or tread. 

Besides an exhaustive description of defect types, the off-standard catalogue also 

discriminates the rejection criteria. The criteria are typically defined with one or more 

indicators such as number, maximum size, maximum depth and maximum height. Considering 

the example of a blister in the sidewall, the rejection criterion is as follows: 

 A maximum of x blisters, each of them with a maximum diameter of y mm; 

 A blister deeper that z mm; 

 A blister higher that w <mm.  

Blisters in the inner liner have other rejection criteria. The fact that the rejection 

criteria are defined in metric dimensions is sometimes difficult to be applied in the 

production line considering the fact that the operators do not have a tool to perform the 

measurements. For this reason the decision level of this inspection process is mostly based on 

the reasoning, training and experience of the operators. In any case the indications given by 

the organization to the operators suggest rejection of a tire in case of doubt.   

In case an imperfection is visualized and interpreted as resulting in a non-confirming 

product, the operator marks the location of the imperfection in the tire with a coloured wax 

for a posterior analysis by the graders. When the visual search and trimming are finished, the 

operator concludes the inspection cycle by associating in the information system (through the 

interface in the display) the tyre article and the respective quality decision. A set of tires of 

the same “green” tire can be cured in a variety of different vulcanization molds and thus 

resulting in distinguished final products. The visual inspector is the first intervenient in 

process after vulcanization and for this reason, responsible for assigning the final article to 

the product.   

Being visual search and decision phases concluded the remaining step is respond, which in 

this case corresponds to the action of releasing the tire to one of two conveyors according to 

the decision made. Handling the tire to the correct conveyor is a very physical intensive task 

and absenteeism due to back pain and or musculoskeletal disorders is common.   

As one can see the inspection process as design today encloses the accomplishment of 

several tasks by the operator. Some tasks are directly linked to the inspection itself (visual 

search, quality decision, registration of the quality decision in the information system) while 

others seem to have been conveniently added to the process to reduce process steps and take 

advantage of human multitask capabilities to reduce costs (for example, trimming and tire 

identification). Identifying the percentage of time allocated to each of the sub-tasks is 

difficult to be estimated because as mentioned before there is some task parallelization and 

overlap. Even though, several time measurements were registered by observing operators 

performing inspection in the shop floor. These measurements were obtained by observations 

done by multiple researchers in different periods of the shifts. Figure 2.17 highlights the 



 

38  Methods for manual inspection processes 

 

 

 

significant weight of the trimming which, in this particular testing sample exceeded the 

inspection time itself. This outcome cannot be generalized as the results may have been 

influenced by temporary or seasonal external factors such as: higher production of winter 

tires results in more tires that need trimming and high production volumes can also decrease 

the opportunities to perform maintenance in the vulcanization area and thus increasing the 

clogged vents. The 15% of time spent in other activities include: tire identification and tire 

handling. The purpose of these measurements was only to have a rough estimation of the 

relative importance of each component. Values presented in Figure 2.17 result from the 

average of several measurements and should not be assumed as fixed.  

 
Figure 2.17 - Time allocation to the several tasks included in the inspection process.   

2.4 Variability, heuristics and deviations in tire manual 

inspection 

When analysing in detail the inspection process of tires, one evident aspect is the 

significant variability in performance among operators. Two aspects were compared across 

operators, being the first one the inspection time. As mentioned before the average 

inspection time of a tire is approximately 30 seconds. The information systems at the shop 

floor level enabled a more detailed statistical analysis of inspection times. Data from 5 days 

(with 3 shifts each) was extracted from the databases containing the time spent to inspect 

each individual product. The total number of products in this sample was approximately 

250,000 units. Figure 2.18 shows the distribution of inspection times obtained for 72 

operators during 5 days. This closer look in the inspection times reveals that the variance in 

the distribution of inspection times is considerable. The exact average inspection time for 

this data is 33 s with a standard deviation of 16.7 s. 68% of the products were inspected 

between 20 s and 35 s but the boundaries of the distribution go further down to 5 s and a 

maximum of 3 min. There were also products inspected in more than 3 minutes in the original 

data but after verifying with the operators, these intervals (>3 minute) were assumed as 

being small breaks. The overall inspection time data in this sample can be better 

approximated by a lognormal distribution than by a normal distribution because the 

inspection times are slightly skewed to the left, in this case following the direction of quicker 

inspections (Silva et al. 2013).   

Several factors can cause variations in the inspection time. Obvious aspects can be: tires 

of different dimensions, tires with more flash/vents than others, tires to be delivered to 

more demanding customers, etc. Besides this process-related variability, the further data 
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analysis intends to explore if human-related variability also plays a significant role in these 

results. For this purpose data for a period of one month was collected. In this case the 

analysis of the average inspection time was done to each individual contrary to the general 

analysis plotted in Figure 2.18. Considering the process flow illustrated in Figure 2.9, the 

tires allocated to each individual buffer are randomly selected. For this reason, identical 

average inspection times would be expected for each individual, if one considers data from a 

period of time able to absorb the process variability mentioned before (bigger tires, etc.). 

Figure 2.19 shows the average inspection time for 53 operators. Substantial between-subjects 

variability is disclosed by the data. While some operators present an average inspection time 

close to 40 seconds, others do not need on average more than 25 seconds. The significant 

differences in individual inspection time induces also variability in the total number of parts 

inspected per day by each operator that subsequently affect the visual inspection overall 

throughput. The fact that the visual inspection is in between two automatic processes that 

ideally should not be blocked neither starving raises many challenges about the suitable 

number of operators for this process. 

 
Figure 2.18 – Distribution of inspection times of five-day production volume. 

 

The second aspect compared across operators is the rejection rate which is related to 

criteria used to assign a tire a non-conforming quality condition. Once more, the randomly 

distribution of tires would suggest that an equivalent rejection rate between operators would 

be obtained. Even though, the lowest part of Figure 2.19 shows that this is not the case. With 

an overall rejection rate close to 10%, some operators reject on average 15% of products 

while others in the same period of time present a rejection rate of 5% or even less. There is 

not an obvious relation between these two indicators: inspection time and rejection criteria. 

A plausible hypothesis could be that the operators taking longer to inspect would identify 

more NCs and thus present a higher rejection rate. If this may be the case for one operator 

with average inspection time of 37 seconds and rejection rate 15%, other cases contradict 

this hypothesis like the operator that inspects at a 25 seconds average and rejects 15%. 

Digging into this subject is only possible if the analysis goes beyond statistical data to shop 

floor observations and direct interactions with the inspectors.   
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Figure 2.19 – Average inspection time and average rejection rate plotted individually to 53 

operators. Average data calculated for a period of one month. 
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Over 60 days, participant-observations were done in the visual inspection area. 

Introducing the researcher in a peer-to-peer informal manner substantially contributed to 

more naturalistic observations. The researcher was introduced as internal collaborator of the 

organization with the responsibility of studying in detail the visual inspection process for later 

definition of improvement strategies. The initial curiosity demonstrated by the researcher 

together with the availability to undergo the same training as novices helped the operators to 

feel comfortable in the presence of the researcher. Although the researcher participated in 

inspection training, the researcher did not experience formal responsibility for inspection 

decisions. Nevertheless the participation in the training significantly contributed to a higher 

level of immersion in the context.        

As reported by Woodcock (2014) ‘‘hanging out’’ or ‘‘prolonged engagement’’ enables the 

researcher to acquire the vocabulary of the domain, establish reciprocity, demonstrate 

trustworthiness, and build rapport. In fact the participant-observations allowed a deep 

understanding of the inspection process including aspects such as difficulties, pressures, 

errors, process adaptations, etc. All these undocumented aspects can be of extreme 

importance in the subsequent task of redesigning the inspection process.  

From the standard procedures and quality criteria described before, the main questions 

to be answer with these participant-observations included: 

 What are the mechanisms of visual search in a rotating object? 

 How can the operators deal with the metric criteria without measuring tools? 

 How can the operators memorize the rejection criteria of 76 NC codes? 

 How can the operators manage multiple simultaneous tasks? 

 What are the main contributors to the variability in inspection time and rejection 

rate?  

Comparing observations against the standard procedures allowed for a straightforward 

conclusion in agreement with Dekker (2006). Several mismatches between written procedures 

and operational practice exist. Different inspectors use different approaches and adapt 

methods under the same circumstances, depending on each individual experience, 

knowledge, and confidence level.  

Some examples of these individual adaptations are the fact that some operators cut flash 

at first and repeat the rotational cycle for inspecting the tire while other seem to be able to 

perform both actions simultaneously. Another example is related with the use of touch. Some 

operators touch the inner liner of the tire because they found relevant the addition of haptic 

sensorial information. On the other hand other operators trust exclusively in their sight 

capabilities.  

Although the guidelines provided by the organization highlight the importance of finishing 

the inspection of the whole tire even if an imperfection was already detected beforehand, 

some operators reject the tire immediately. This may contribute to a faster inspection of 

non-conforming items.  

Despite the individual adaptation of the methods, all observed inspectors reveal an 

impressive sense of responsibility and astonishing detection capabilities. Some imperfections 

do not have a significant visual manifestation. Sometimes it is only a slight shadow in a 



 

42  Methods for manual inspection processes 

 

 

 

curved region of the tire imperceptible to novices or to the researcher, even when told about 

its location.  

The most visible and coarse imperfections are immediately identified in a preattentive 

moment by the operator. This typically occurs right before the start of the machine 

rotational cycle when the operator performs a rapid global observation. The great majority of 

cases are out of this scenario either for being OK products or for containing minor 

imperfections not visible at first glance. Most operators agree that in these cases the rotation 

of the tire assists in the detection of imperfections. They usually say that inspecting a tire is 

not a matter of finding imperfections. Instead they say that the “imperfections are brought 

to us”. The movement seems to help in the detection process since any unexpected artifact 

will pop up of the usual constant grey color of the tire. This strategy also minimizes the eye 

movement necessary. The operators typical fixate a point and wait for the tire to rotate. An 

imperfection is usually evidenced as a sudden shadow or brightness. This is the reason why 

many operators state that their performance is best when the tires come directly from the 

vulcanization area to the visual inspection because of the vibrant grey color deprived of dust. 

The successive darker color acquired with time increases the difficulty in detection. 

Experienced operators perform inspection with smoothness and speed applying advanced 

know-how and a repertoire of heuristics. Heuristics enable associations such as: a certain tire 

article tends to contain a certain imperfection in a specific location. The visual search is then 

oriented not only but with more care to that particular location. These know-how rules can 

be as detailed as the example of taking into consideration the final customer of a certain tire 

and adjust the criteria according to the requirements and recent complains of each. This 

rule-based behavior evolves through an adaptation process in which slips are inevitable side 

effects of the exploration of the boundaries of acceptable criteria. For the adjustment of 

these boundaries an additional specialized operator called overinspector re-inspects a 

random sample of tires after being validated as conforming by the inspectors. Besides 

avoiding that some non-conforming tires are delivered to the customer, the overinspector 

also plays an important role in alerting the inspectors of misses and in requesting adaptation 

of the rejection criteria.   

These known-how rules are significantly influenced by the level of confidence of the 

operator, culture of the group and strategies defined by the organization and can justify 

some of the variability encountered in rejection rates and inspection times. An example of 

these individual differences was captured in an informal conversation with one operator that 

explained that a particular tire had an imperfection, which made arguable the quality 

acceptance level. He told “the majority of my colleagues would reject this tire but I know 

that this decision will just overload the grader because he will validate the tire as OK”. 

Experience and knowledge may reduce these individual differences but intrinsically there are 

individuals more confident or risk-averse.  

The continuous learning and evolvement of expertise and advanced know-how, together 

with some external factors and stochastic variability can result in errors in the inspection 

process. All errors involve some kind of process deviation. Errors in this case can occur from 

not following the standard procedures or the quality assessment. Table 2.3 lists the most 

frequent errors that can occur in the inspection process organized by task function (search, 

decision, respond) and classified by its consequence. All of these errors occurred during shop 

floor observations. The list also suggests causality although it does not intend to make an 
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exhaustive identification of all possible causes of error. Rather the idea is to develop the 

consciousness of these errors and a perception of the main causes for the future attempt of 

developing improvement or avoidance strategies.   

The fact that the inspection process is very repetitive, in which the only changeable 

element is the tire under analysis, leads to some distractions and boredom that may originate 

an error in the procedure. These are typically called as slips or lapses and are described as 

failures on the execution of some routine task in familiar circumstances (Reason 2005). An 

example of this is error 9, misplacing the tire after inspection is correctly done. Analysing 

this error in the light of the error causality model proposed by Reason (2005) allows the 

identification of latent factors that may contribute to this error.  

 

Table 2.3 – Generic errors in the manual inspection of tires and list of probable causes. 

 

 Errors Causal Factors 

S
e
a
rc

h
 

1. Imperfection missed in tread  The indirect observations through the mirror are 

sometimes mentioned as inefficient   

2. Imperfection missed elsewhere  Non-searched areas, distractions, fatigue, stress, 

production pressures, etc.    

3.  Imperfection seen while tire was rotating 

but lost/forgotten afterwards 

There is not a prompt relation between 

visualizing and deciding  

4.  Damage the tire while cutting flash Distractions, simultaneous visual fixation in other 

tire regions for inspection, etc.  

D
e
c
is

io
n
 

5. Defective product incorrectly classified as 

conforming  Ambiguous criteria, lack of training, lack of 

decision feedback 
6. Conforming products incorrectly rejected 

7. Incorrect identification of the tire in the 

IT system 

If a product is much more common than others, 

operators have the tendency to select that one   

8. Imperfection marked in the tire but 

classified as OK in the IT system 

Repeated routine of pressing OK bottom since 

that is the case for 90% of the cases 

R
e
sp

o
n
d
 

9. Conforming product placed in the non-

conforming conveyor Distractions or blockages affecting one of the two 

conveyors 10. Non-conforming product placed in the 

conforming conveyor 
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In terms of incorrect decisions in the quality assessments, error causality can be very 

complex to be described. Some egregious errors can occur but the majority are misses on the 

“gray” and questionable zone either in the search or decision. For successful performance, 

operators have to navigate between two boundaries: not rejecting conforming items and not 

accepting non-confirming items. In the quality evaluation of tires the most critical error is 

the case of accepting a non-conforming item. This can occur because the operator missed the 

imperfection or because after visualizing it he did not apply the adequate rejection criterion. 

Although the output is the same, a non-conforming item approved to be delivered to the 

customer, the causes are different. When raising questions about what the circumstances 

were that may have induced these errors, several arguments can be placed. In the first case 

one can question if the operators have access to adequate tools to perform the visual search 

accurately while in the second case, the question is more oriented to the access of clear 

rejection rules provided by the organization. 

No data is available in the company about the number of occurrences of each of the listed 

errors. Also, estimates are very difficult to be obtained by the researcher because there are 

not available tools to track these errors down in the production line. A rough guess of the 

errors occurring in the quality assessments can be extracted from the overinspector 

activities. Overinspector only verifies a limited sample of tires previously validated as 

conforming and for this reason the only possible error is finding non-conforming items 

previously ranked as conforming. At the moment there is not a formal and systematic way for 

the graders to inform the operators about inadequate rejections.  

Assisting to the overinspector process over 12 days enabled the researcher to register the 

cases in which non-confirming items were validated as OK by the inspectors. Along this 

analysis, the operators were not questioned about their errors by the researcher. The 

objective was to have an estimation of the most common mistakes registering the location of 

the missed imperfections and cross check with the operators some possible causes. The plot 

shown in Figure 2.20 demonstrates that the areas where the inspectors tend to fail the most 

are the sidewall, bead and tread. Sidewall and bead are as described in Figure 2.16 the areas 

that more often contain imperfections. The higher probability of containing imperfections 

seems to lead to higher probability in missing those, considering that not always heuristic 

rules can be applied by the operators.  

Very often the operators mention that the use of the mirror to inspect the tread is not 

very practical. The fact that the mirror gets easily dirty and is positioned in the lateral side 

of the machine makes its use less frequent. This may be one of the reasons why the 

percentage of errors in the tread is so significant.  

When confronted with an error the inspectors usually agree and re-use the information in 

future assessments but also highlight the difficulties encountered in the inspection process.  

Figure 2.21 shows a cause and effect diagram, also known as Fishbone diagram, 

developed with the inputs of the operators. This simple graphical technique is used to sort 

factors that contribute to a given situation, in this case an error in the inspection process. 

The causes are grouped in categories: human factors, equipment, methods and procedures, 

training, environment, others. Some of the causes were already mentioned before such as: 

the difficulty in using the mirror to verify the tread, the differences in individual confidence 

level, the lack of systematic feedback about the errors in quality decisions, etc. 
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Other causes that should be referred are the fact that the majority of the operators 

dislike the fact that trimming and inspection occur simultaneously. The percentage of tires 

that need to be trimmed is very significant (internal estimations lay around 70-85% of the 

cases) and is frequently mentioned as source of distractions. 

Another important aspect is the lighting conditions to perform the inspection task. As 

mentioned before, the tire is an intricate object difficult to be inspected due to its curvature 

and color. Several studies have been made in order to determine the most suitable light 

conditions but it is inevitable that while some areas are well illuminated others are not due 

to the natural shape of the object. 

The knowledge described along this chapter is expected to provide hints to the 

subsequent chapters about system redesign. Especially when reconsidering the human 

contribution in the process, some strategies can be defined in order to remove or at least 

lighten these causes and thus decreasing the probability of errors to occur.  

 
Figure 2.20 – Percentage of errors in which the operator missed the detection of an 

imperfection across the tire areas.  

 
 
 

 
 

Figure 2.21 – Cause and effect diagram for errors in the visual inspection of tires. 
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Chapter 3  

Redesigning the manual inspection 
process of tires 

 

As mentioned in Chapter 1, the objective of this dissertation is to develop a research 

strategy that leads to a significant increase in the throughput of the quality inspection 

process of tires in order to reduce costs. A cost breakdown analysis done in the context of 

this project showed that manpower is responsible for 70% of total costs in the visual 

inspection area. Thus, pragmatic strategies to significantly reduce costs mandatorily involve 

redesigning the human role so that each operator’s throughput is increased. The 

understanding of the current inspection process, described in the previous chapter, is an 

important element in order to redesign the inspection process. Generally speaking two 

possible approaches to increase efficiency can be followed: determining automatically the 

quality state of a percentage of tires or the implementation of technological tools that 

decrease the manual inspection time per product. In both cases, the practical outcome is 

that the overall number of tires per operator per unit of time is increased. Many different 

strategies can be followed to increase process efficiency. Introducing automation and 

combining technological solutions and operators is the path to be considered.  

Concepts of LOA and models to support decision of task allocation between human and 

machines are presented. Subsequently an advisable strategy is provided and a description of 

the suggested system is given.    

3.1 Models for designing hybrid systems 

The view on automation does not need to be a ‘‘all-or-none’’ decision (Parasuraman, 

Sheridan and Wickens 2000). Many scientific and industrial studies suggest that potential of 

automation is maximized when interrelated with appropriated and well-designed human tasks 

(Tweedale 2013). The challenge of this view is in the definition of the task allocation 

between human and technical systems for the accomplishment of a given task  (Säfsten, 

Winroth and Stahre 2007). Continuous technical developments in hardware and software 

make it possible to automate many tasks that at once could only be performed by humans. 

The advances of technology means that tomorrow's automation can do more and more 

(Parasuraman and Wickens 2008). This does not mean that the strategy to follow should be to 

attempt to automate all activities that are possible to be automated, only considering the 

available technology and capital constraints (Mital 1995). Naively assuming that the tasks can 
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simply be broken into independent sub-tasks and then assigned to either automation or 

humans may result in inefficient processes and instances of insufficient impact of automation 

have been reported (Parasuraman and Riley 1997; Kaber et al. 2005). Thus, the benefits 

anticipated by system designers when implementing automation (increased efficiency, 

improved safety, enhanced flexibility of operations, lower operator workload, and so on) may 

not always be realized (Parasuraman and Manzey 2010). Situations were reported in which 

the human process costs got even higher after the introduction of automated aids because of 

unsuccessful automatic situations where manual re-testing was needed (Rovira, McGarry and 

Parasuraman 2002). This is not to say that high levels of automation should not be 

considered. However, deciding the appropriate level of automation requires additional 

considerations besides cost analysis and technological feasibility, such as involvement of 

operators and detailed task analysis. Thus scenarios besides economic or leftover allocations 

(humans are responsible for whatever is not possible to be automated) should be considered.   

Various design alternatives are possible and several models have been proposed regarding 

to what extent functions should be automated. All analyses involve multiple issues and 

considerations, some of them not even quantifiable. Before defining the level of automation 

and task allocation one has to clarify and distinguish the different possibilities.  

Numerous levels and scales of automation have been proposed but for the purpose of this 

study, the ten-level scale originally proposed by Sheridan and Verplank (1978) will be 

presented, as this is a commonly referenced taxonomy (Cummings et al. 2007).  Sheridan and 

Verplank (1978) suggested a spectrum of different degrees of automation that can be 

appropriately applied to different systems or problems (Sheridan 1995). The ten-level scale 

ranges from no automation to complete automation (Table 3.1). Lower level implies mainly 

manual tasks whereas a high level implies limited or no manual tasks. Indeed, from level 7 

on, human can take no action.     

 

Table 3.1 - Ten-level scale of levels of automation (adapted from Sheridan (1995)). 

  LOW 

 

 

 

 

 

 

 

 

HIGHT 

1 The computer offers no assistance; humans must take all decisions and actions. 

2 The computer offers a complete set of action alternatives, or 

3 Narrows the selection down to a few, or 

4 Suggests one, and 

5 Executes that suggestions of humans approve, or 

6 Allows humans a restricted time to veto before automatic execution, or 

7 Executes automatically, then necessarily informs humans, and 

8 Informs the human only if asked, or 

9 Informs the human after execution if the computer decides to. 

10 The computer decides everything and acts autonomously, ignoring humans. 

 

Having described the possible levels of automation, the discussion should now be at the 

level of task allocation. First an identification of the functions that need to be accomplished 

to achieve a certain goal needs to be extensively done. Subsequently, the process of task 

allocation refers to the design decisions that determine which functions are to be performed 
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by human or automation (Inagaki 2003). The most famous model to do so is called MABA-

MABA (what “men are better at” and what “machines are better at”) and was firstly 

published by Fitts (1951). That is, tasks that are performed better by machines should be 

automated, whereas those that humans do better should not. The author included what 

became known as the Fitts List, where he exposed the tasks more prone to be allocated to 

each contender at the time being (Table 3.2). Unfortunately, many authors identified 

difficulties in the implementation of these procedures to determine which functions should 

be automated in a system (Parasuraman, Sheridan and Wickens 2000).  This is so especially 

because the rapid development of computer and automation revealed some limitations of 

Fitts List as the binary decisions of whether to automate or not became less evident. 

Furthermore, this model simply suggests a direct comparison between human and automation 

capabilities without taking proper account of the context and dependencies between sub-

tasks (Harrison, Johnson and Wright 2003; Zhang, Tang and Zhang 2011). 

 

Table 3.2 – The Fitts list (adapted from Fitts (1951)). 

In 1950s men were better at: 

 Detecting small amounts of visual or acoustic energy. 

 Perceiving patterns of light or sound. 

 Improvising and using flexible procedures. 

 Store very large amounts of information for long periods and to recall relevant facts 

at the appropriate time. 

 Reasoning inductively. 

 Exercise judgment. 

Machines were better at: 

 Responding quickly to control signals.  

 Performing repetitive and routine tasks. 

 Storing information briefly, erasing it completely. 

 Reasoning deductively. 

 Performing many different things at once. 

 

More recently, Parasuraman, Sheridan and Wickens (2000) provided a four-stage 

qualitative model that consider whether each of four functions should be automated and in 

what extent, including: information acquisition (1), information analysis (2), decision 

selection (3)  and  action implementation (4). Based on this model, each of these functions 

can be automated to differing degrees according to the previously mentioned ten-level scale 

proposed by Sheridan and Verplank (1978). Figure 3.1 provides a schematic of the model with 

two examples of systems’ configuration and level of automation. It can be extracted from the 

schematic that System (A) has moderate to high acquisition automation, low analysis 

automation, low decision automation, and low action automation. Another system (B), on the 
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other hand, has high levels of automation across all four dimensions more predominantly in 

the stage of information analysis.  

 
Figure 3.1 – Examples of systems with different levels of automation across the four classes 

of functions: information acquisition, information analysis, decision and action selection, and 
action implementation (adapted from Parasuraman, Sheridan and Wickens (2000)). 

 

The first stage suggested by Parasuraman is information acquisition (1) which refers to 

the sensing and registration of inputs. At this stage, when the LOA is set at the lowest, 

human must collect every piece of information at all instances. When some automation is 

applied to information analysis (2) automation is able to process raw data to facilitate human 

interpretation. The introduction of automation in these two first stages of the model may 

allow that certain types of acquired information is highlighted or filtered to attract human 

attention. For example, some flight-booking websites currently provide a high LOA for 

information acquisition (1) – searching across multiple airlines and other Web sites – and also 

perform some information analysis (2) such as sorting flights by their cost, selecting 

preferable airport and proximity to desired departure times (Miller and Parasuraman 2007).  

The third stage, decision selection (3), involves selection from among alternatives. The 

involvement of automation at this stage can vary from recommending courses of action to 

those that execute those courses. Action implementation (4) is the final step and refers to 

the actual execution of the choice (Parasuraman, Sheridan and Wickens 2000). In the 

example of the flight-book websites, none currently provides specific recommendations, 

much less actually executes (autonomously) the ticket purchase, although these capabilities 

are easily envisioned and technologically feasible. 

Determining the level of automation that should be applied to each of the stages may not 

be straightforward. The authors suggest the four-stage qualitative model as a guiding 

framework that can help in identifying tradeoffs. The recommendable level of automation 
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should not be seen as a static decision but rather an upper reference bound, i.e., the 

maximum level of automation beyond which some drawbacks may be encountered. The 

evaluation of a certain system design is made by examining the consequences in terms of: 

human performance, ease of technological development and integration, automation 

reliability and costs. The authors also refer the importance of evaluating the system following 

an iterative and dynamic procedure in which the level of automation can be adjusted 

according to some context indicators or further developments (Parasuraman, Sheridan and 

Wickens 2000). In fact, avoiding static systems and dynamically changing allocation of 

functions, commonly called Adaptive Automation, is strongly emerging within the automotive 

industry  (Säfsten, Winroth and Stahre 2007). Unlike MABA-MABA model in which the tasks 

were strictly allocated to only one performer (human or automation), Parasuraman’s model 

together with the notion of adaptive allocation enables scenarios in which either human or 

automation could perform a task acceptably. Considering that human performance degrades 

as time passes as a result psychological and physiological conditions, it may be wise to 

reallocate functions from time to time (Inagaki 2003).        

The goal of this section is not to debate all methods available in the literature to 

optimize human-automation function allocation, which would take us far afield from the 

main focus of this dissertation. Rather, a more pragmatic approach that considers 

Parasuraman’s model to structure some automation design options accounting for human 

intervention applied to a field study in tire industry is selected. Parasuraman’s model was 

considered for being widely used and generic enough to be applied across industries 

(Oxstrand et al. 2013). Other studies propose alternative or expanded methods for task 

allocation but they were not explored in this document for having similar concepts and 

frameworks. Furthermore, across these multiple studies, there appears to be a general 

consensus that intermediate levels of automation should be considered (Lin, Yenn and Yang 

2010; Endsley 1999). 

3.2 Tire inspection functions that may be automated 

In critical and risky industrial processes (such as safety or quality control), optimizations 

should take place but more careful and thorough investigations should be done in the 

introduction of automated systems. In these cases, there might be advantages in somehow 

keeping humans “in the loop” (Grote et al. 1995). Given this situation, it is logical to explore 

the potential benefits of pairing humans and automation. It is worthwhile noting that human 

and machine collaboration in inspection is presently being used in the medical field in critical 

diagnostic decisions. Computerized diagnosis inspection devices are being used by physicians. 

Even though, there is very few research published about inspection systems designed to use a 

combination of human and machine in industrial tasks (Sylla 2002; Hou and And Drury 1993). 

The majority of human-automation collaborations in industry occur mostly in the robotics 

area applied to: object handling, object transfer, assembly and welding (Brogårdh 2007; 

Wang, Schmidt and Nee 2013).  

 The inspection process of tires seems to be one case in which the introduction of 

automation could greatly benefit system’s performance. To support this one can consider the 

percentage of time that the operator is doing additional activities besides inspection. Yet, for 

being a safety product, automation can greatly compromise company’s image to the 



 

54 Redesigning the manual inspection process of tires 

 

 

 

customers in case of failure. The significant human cognitive capabilities that the inspection 

process of tires demands from highly specialized operators, raises the challenge of how to 

increase efficiency by the introducing automation. Humans have shown the ability to: visually 

detect minor and extremely variable types of defects; apply rejection criteria in a dynamic 

manner based on historical information and customer specific requirements; optimize visual 

search by recalling information about trends of imperfections. All of these capabilities are 

essential for the organization to keep flexibility and improved performance. 

The starting point to analyze possible improvements is task analysis aiming at splitting the 

overall task in subtasks. Automation may be applied at different level to every subtask 

constituting the parent task. Considering the standard procedure for inspection described in 

Chapter 2, the inspection process of tires can be summarized as listed in Table 3.3. In the 

scope of this research, trimming will not be considered as part of the functions to be 

improved. Unlike many imperfections, the origin of flash and vents is known and the research 

team together with the industrial partner decided to evaluate possibilities of minimizing its 

occurrence in the vulcanization area rather than intensifying the technological level or 

human cost for its cut.   

 

Table 3.3 – Main tasks in the manual inspection process of tires 

1 First cycle of visual search – if non-confirming, mark imperfections in the tire. 

2 Handling the tire to prepare for second cycle. 

3 Second cycle of visual search – if non-confirming, mark imperfections in the tire. 

4 Assign tire identification in the Information System. 

5 Associate quality decision in the Information System. 

6 Releasing the tire to one of the two exit conveyors. 

 

In terms of information acquisition (1), the lowest LOA is as today, in which the operator 

visually searches the entire tire to identify the relevant information for the subsequent 

quality decision. The possible improvement in this level is to use machine vision technologies 

to perform the scanning of the tire surface. The parallelism between human visual search and 

scanning capabilities of machine vision sensors has been extensively explored in the literature 

and is in the basis of the development of fully automated inspection systems in many 

industries. It is now almost rare to find a manufacturing plant that does not employ some 

form of machine vision to inspect, grade or measure.  

The fact that the inspectors expressed difficulties in observing all tire surfaces and some 

errors occur because of inappropriate observing conditions, suggest some possible benefits of 

using machine vision sensors. From the human working position and vision perspective, the 

curved shape of the tire completely inhibits the visual access to some surfaces, and also 

makes it difficult for lighting conditions to be appropriate and uniform everywhere. 

Alternatively, recent advances in vision sensors enable high-resolution and high-speed 

acquisitions to be performed by successively smaller devices. Although the need for 

appropriate illumination persists, the possibilities of placing multiple cameras with several 
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light sources, each of them adequately positioned according to the tire surface, might be 

advantageous. 

Automating the information acquisition (1) stage implies that vision sensors replace the 

human eye as the primary information acquisition instrument but the resulting information 

can still be transferred to the operator for the information analysis step (2). In fact we 

propose that the acquired digital images should later be used by operators to perform 

inspection in a CAI environment instead of the current setting. The potential advantages of a 

CAI go beyond the improvement of the visualization conditions and can also contribute to the 

elimination of the time-consuming and physically demanding manual handling of the heavy 

and large object.  

In the inspection process of tires high levels of information acquisition (1) automation can 

be pursued and implemented by means of machine vision technologies, if the resulting system 

is shown to be reliable. In this context, this means that the operators would need to be able 

to identify all possible imperfections digitally by visually searching the images.  

In terms of information analysis (2), increases in automation level could be made by 

implementing image processing techniques to suggest potential defective regions to 

operators. As mentioned before, in a production day the typical percentage of defective tires 

is 9%. This means that 91% of the tires checked by the operators are OK. Moreover, from the 

9% non-confirming products, the area of the imperfection is typically minimal comparing to 

the total area of the tire. Thus, the great majority of time, the operator is analyzing 

conforming regions of tires. Using image processing techniques to highlight suspicious areas 

may improve operators’ effectiveness (reduce misses due to distractions) and efficiency 

(improve throughput because of quicker assessments). Instead of navigating across the whole 

tire area without any cue, the operator search path could be optimized by firstly check 

probable non-conforming areas and then the remaining area. Some studies made in the 

aviation area, shown that cockpit automatic traffic displays have decreased the pilot 

workload while improving the hazard detection performance. On the other hand, some 

studies mentioned the effect of over-trust or complacency (Leveson and Palmer 1997; Galster 

et al. 2001). It has been reported that operators pay less attention to uncued areas even 

when told that the cue mechanism was not perfectly reliable and for that reason, access to 

the raw data was still given (Parasuraman, Sheridan and Wickens 2000). In case the 

algorithms highlight some information reliably but not perfectly, this may lead to unattended 

areas.  

In a higher level of automation, techniques analogous to highlighting could be used to 

filter information. In this case some regions of the tire would be digitally checked by the 

operators, while others would be solely assessed by image processing algorithms. Higher level 

of optimization might be achieved with this strategy but the demand for reliable automation 

is also much higher. Ensuring high reliability is a critical criterion when deploying these 

techniques as stand-alone quality assessment method. Filtering information in this context 

means that the decision of the quality state of some areas of the tire is entirely done by 

automated techniques. Therefore, not only information analysis (2) is being done 

automatically but also partial decision selection (3). Focusing the operator in the more 

ambiguous and important decisions while undoubted confirming or non-confirming areas are 

verified automatically might lead to maximum efficiency improvement. If the reliability tests 

of automation are systematically and iteratively done with successful results, the quality 
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decision of a certain tire might be done entirely automatically. Even though, depending on 

the context, having a human in charge for the “final authority” might be wise because it 

might increase confidence levels of both organization and customers. Deciding on the quality 

state of a tire is a high risk task and for that reason both automated and human contributions 

are being considered. On the other hand, tire identification is intrinsically a very repetitive 

and low risk decision which makes it a strong candidate for high-level automation. The fact 

that it is so repetitive makes it more prone to human errors and more likely to be successfully 

automated. Furthermore, the dependency between tire identification and quality inspection 

is not significant and for this reason independent allocations may be considered.  

Task number 5 in the list presented in Table 3.3 would implicitly be done automatically 

because of the change to a digital environment. This is advantageous compared to the 

current inspection process, which does not have a prompt relation between visualizing, 

deciding and introducing the decision in the information system, leading to potential 

information losses in between steps. In the CAI, the operator visualizes an imperfection, 

immediately draws a box containing its outside contours and automatically the tire is 

classified as NOK in the information system. The subsequent sub-task (number 6 in Table 3.3) 

would also be done automatically. Independently of being a human or computer-based 

decision, the tire would automatically be sent to the correct conveyor according to the 

decision introduced in the information system without further human intervention.       

Figure 3.2 summarizes the possible scenarios for automation levels across the four-stages: 

information acquisition (1), information analysis (2), decision selection (3), and action 

implementation (4), applied to the inspection process (tire identification is not illustrated for 

being an independent process).In sum, high levels of information acquisition automation can 

be pursued and implemented if machine vision sensors are shown to be reliable in acquiring 

images containing all possible imperfections. The evaluation criteria should include: the 

impact on human detection capabilities, time needed for technological implementation and 

costs. Intermediate LOA and combined scenarios between machine and human vision might 

arise if the machine vision sensors are not successful at acquiring images of parts of the tire, 

such as the inner liner, as an example. In this case humans would still need to manually 

search that area. Higher levels of automation in information analysis (2) and decision 

selection (3) will mostly depend on automation reliability and development time. Action 

implementation (4) is expected to be reach a high LOA because it mainly implies the physical 

placement of tires according to the quality decision. 
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Figure 3.2 – Possible types and levels of automation for future inspection process of tires 
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3.3 Proposed system design 

The detailed study of the current manual inspection process of tires (described in Chapter 

2) complemented with the possible LOA mentioned along this chapter, resulted in inputs into 

the process redesign. The main outcomes of the previous analyses suggest that automation 

can indeed support the inspectors and allow a further level of optimization. For many reasons 

discussed before, the proposed system, at least at its initial phases, retains operators’ 

contribution but their performance may be optimized by means of automated aids. Along this 

section, a brief description of the proposed solution will be given and in the subsequent 

chapters, a detailed analysis of each sub-component will be done together with the validation 

strategy. 

The process flow illustrated in Figure 2.8 is suggested to be changed to the one shown in 

Figure 3.3. The scope of this research is restricted to the visual inspection process and this 

process is subjected to major modifications. Even though, changes in the visual inspection 

process can have consequences in the upstream and downstream process steps. The fact that 

trimming will be done apart from the visual inspection adds a process step immediately 

before visual inspection. The result of the efforts done by the organization to reduce the 

occurrence of flash and vents will dictate the most appropriate way to deal with this aspect. 

Nevertheless, trimming will not be discussed along this research. 

The proposed visual inspection process initiates in a mechanical system equipped with 

machine vision technologies. Similar to the current machine for manual inspection, this new 

station rotates the tire so that a set of cameras can capture images along its surfaces. The 

cameras are placed so that all surfaces are scanned in similar conditions. At this stage, tires 

cannot contain flash or vents, as this may create abnormal artifacts in the images. 

After the acquisition is done, the tires are collected to a buffer pool, while the images 

are analyzed by two image processing applications and visualized by the operators, if needed. 

The image processing sub-processes firstly aim at identifying the tire and then performing an 

automatic quality assessment. In case the automatic quality assessment is not conclusive 

because the software is not capable of determining the conforming level of the tire, the 

images (or parts of them) are sent to the CAI sub-process. One or more inspectors will 

observe the images and take the final decision. The tires will be released from the buffer 

when a final decision is inserted in the information system. Non-conforming tires will be 

directed to the grader, while confirming ones will be sent to the uniformity tests. 

With this process redesign, the graders will receive tires for various reasons: 

 Not successfully identified – a quality decision cannot be assigned to a non-

identifiable item; 

 Non-confirming items based on automatic quality assessment;  

 Non-confirming items based on CAI quality assessment. 

Even if an increase of tires sent to graders might occur, the automatic availability of the 

reason for rejection in the information system might be a significant advantage. In fact, one 

of the major expected contributions of the proposed system is enlarging the access to online 

information and tracking of quality issues. Nowadays the detection of a severe imperfection 

triggers the following procedure: the inspector rejects the tire and sends it to the grader. 
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The grader searches for the colored wax mark done by the inspector and evaluate its 

severity. In situations in which some corrective actions should immediately be applied, the 

grader calls the Quality Department and someone responsible comes and re-evaluate the tire. 

The graders commented that sometimes this process is long and by the time the corrective 

actions take place, many other tires were already produced with the same problem.    

The introduction in the manufacturing process of digital images of tires together with the 

fact that all software applications are reading and writing to a centralized database enables 

that the abovementioned process is modified to: the tire being scanned and then 

automatically inspected. In case the automatic inspection is not conclusive, the image is 

inspected by the specialized operators, who will mark the region of the imperfection in the 

image display application. The tire will be sent to graders that will also have access to an 

application to visualize the marked image by the operator. In case corrective actions are 

needed, the images are immediately sent to the Quality Department that can use them to 

stop the process that needs to be corrected. This intends to be just one example of the many 

possible benefits of digitalizing tires, as a ground based strategy to optimize the visual 

inspection process but also improve the communication and tracking capabilities in the entire 

manufacturing process.   

 

 

 
 

Figure 3.3 – Diagram illustrating the proposed process flow in the Final Finishing area 
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The overall attempt towards this system redesign (Figure 3.3) is to conceive an efficient 

process able to deal with the complexities intrinsic to the inspection task is a sustainable and 

flexible manner. This goal can be attained with the combination between automated 

solutions and human capabilities. Furthermore, the relation between these two cooperating 

agents is suggested to evolve with time according to improvements in automation reliability, 

human-computer interfaces, customer requirements, internal strategies, new products, etc. 

Several internal feedback loops were designed so that the image acquisition conditions can 

be improved by operators’ feedback, while automatic detection algorithms can evolve 

according to operators’ decision, whose performance can also be improved by continuous 

developments in interfaces and suitable automated aids. Describing each of these 

components will be done in the next chapters, aiming at demonstrating that human 

inspectors and machine vision systems have better performance than either humans alone or 

machine vision systems alone.  

An incremental validation and implementation methodology is suggested to help the 

organization to move smoothly in the direction of the proposed process redesign.   
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Chapter 4  

Machine vision system for imaging 
acquisition of tires 

 

Developing a successful machine vision system depends on the complementarity and 

integration of its sub-components, usually recalling many knowledge domains. Aspects such 

as mechanical systems, vision sensors, optics, lighting, electronics, integration software, and 

image processing techniques are typically necessary. Figure 4.1 illustrates a generalized 

sequence of the major aspects to be decided in the development of a machine vision system.  

The application domain, the nature of the task to be accomplished and the environment 

will determine the requirements for each component of the system. Only once the 

requirements of a particular application are specified, then appropriate decisions for the 

design and development of the system can be taken, as well as the selection of the 

appropriate machine vision software and hardware. 

 

 
 

Figure 4.1 – Information chain and knowledge domains in an machine vision system (adapted 
from Hornberg (2006)). 
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The inspection process is proposed to be redesigned following Figure 3.3 which is recalled 

in a simplified version in Figure 4.2. This chapter will focus on the first component of the 

renewed inspection process: Image Acquisition Station (in green in Figure 4.2). In the context 

of this research, the development of the machine vision system begins with the 

understanding of the tire application’s requirements and constraints, most of which were 

already mentioned in this document. Before considering manufacturing requirements such as 

cycle times, space required, costs and maintenance, this chapter will focus on feasibility and 

reliability aspects of the visual system. Evaluating if a machine vision system can have a 

comparable performance to the human eye acquisition, when it comes to accurately capture 

imperfections in tires, is the main research question addressed by this chapter. 

The machine vision system was materialized as an industrial prototype for image 

acquisition. Although not inserted in the production line, the prototype was installed in the 

manufacturing plan as a side cell. Several optimizations were made possible due to the 

proximity to the production line. The image acquisition station encloses a mechanical system 

that rotates one tire at a time, while a set of fixed cameras scan its surfaces in proper 

lighting conditions. The significant variability in tire sizes (rim, tread width, sidewall height) 

leads to the need for mechanical adjustments in the structure and the reposition of the 

lighting systems accordingly to the tire being tested.  

This chapter will briefly describe the mechanical structure and fully characterize the 

vision system. The relative position between the vision sensors and lighting was specially 

studied for the tire application, accounting for its deformable material, color and shape. 

Capturing the enormous variety of imperfections will significantly depend on the lighting 

system and its placement. Configurations are defined attempting to create areas of contrast, 

brightness, shadows and reflexes.  

 
 

Figure 4.2 - Decomposition of the proposed inspection process of tires. 

 

 Overview of industrial machine vision applications  4.1

It is very difficult to provide a completely satisfactory definition of machine vision. 

Generally speaking it is a technology intensive field, in which a diversified range of 

technologies and engineering domains are integrated in order to: “allow a computer to 

understand aspects of its environment using information provided by visual sensors” (Liu and 

MacGregor 2005).  
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Several tasks need to be accomplished by the machine vision system such as: image 

acquisition, image processing, and decision making. The role of the image-acquisition sub-

system in a machine vision system is to acquired images by means of optical noncontact 

sensors and transform the optical image data into an array of numerical data (Golnabi and 

Asadpour 2007). This sub-system will be the focus of this chapter. 

The hardware structure of a typical image-acquisition system typically includes: one or 

more cameras placed at the scene under inspection, illumination and a computer that will 

process the images acquired. In industrial applications, image-acquisition systems typically 

sense the surface of an object on a moving conveyor to determine its quality condition 

(Figure 4.3).   

Over the last 20 years, machine vision has taken a vital role in the control of industrial 

processes. Automated visual inspection in the industrial context is used to segregate non-

conforming items and as means of gathering statistical information to provide feedback to 

the manufacturing process (Thomas et al. 1995). In this area, machine vision has been 

reported to be a rapid, economic, consistent and non-destructive inspection technique and, 

for those reasons, expansion to diverse industries continues to occur. The continuous 

development of machine vision technologies allows that speed and accuracy satisfy ever-

increasing industries requirements, aspect that contributes to the development of several 

totally automated processes (Brosnan and Sun 2002). In fact, most industries are following 

the trend of implementing fully automated inspection systems rather than using machine 

vision systems to assist inspectors. Most common arguments in favor of this strategy include: 

the fact of being tireless, having low operating costs, and being relatively free of random 

errors such as the ones caused by human factors (Thomas et al. 1995). 

Independent of the decision making process (automatic or human-based), the machine 

vision system firstly needs to be effective in the capture of image that will later be analyzed 

and interpreted. The requirements for the design and development of a successful machine 

vision system in industry significantly vary depending on the application domain. Aspects such 

as: industrial environment and context, product characteristics, inspection requirements and 

available technologies, need to be considered because each of them restricts and interacts 

with the other (Malamasa et al. 2003). 

 
 

Figure 4.3 – Components of an industrial machine vision system (adapted from Al-Mallahi et 
al. (2010)). 
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The variability in system requirements led to the development of image-acquisition 

systems with significant differences in hardware selection and operational mode. Table 4.1 

lists some examples of machine vision systems grouped by inspection objective and 

categorized by application field. The inspection objective maybe classified as: superficial 

(whether or not the surface contains an imperfection), geometrical (measurement of size and 

shape) and structural (whether there are any missing items or foreign objects). The main 

contributions of each study regarding innovative image-acquisition strategies are highlighted. 

The number of vision and lighting technologies currently available creates a significant 

diversification in the approaches followed by these studies. This is the reason why comparing 

studies across industrial fields and identify the most relevant contributions is very difficult to 

be done. Typically the system requirements are common to specific application field and for 

this reason transversal rules on how to design an efficient machine vision system cannot be 

established (Davies 2012b). 

As mentioned in Chapter 1, studies describing machine vision systems applied to the tire 

inspection are not common. It would be beneficial to learn from previous studies suitable 

strategies to approach the development of an image-acquisition system for the detection of 

tire imperfections. Instead, an overview of the literature in other machine vision application 

fields was done to attempt to identify interesting concepts, best-practices and main 

difficulties. Strategies described in the literature to define an image acquisition system able 

to deal with circular objects with unpredictable and variable surface properties (brightness 

and roughness), may help in the definition of the visual system for the tire application.        

In the inspection of circular objects the literature suggests that the design of the image-

acquisition station should make use of the rotational symmetry to obtain measurements when 

the object is rotating (Davies 2012a). In order deal with variable surface properties, many 

studies have proposed the use of 3D laser scanners. The fact that the 2D technology is a 

function of the scene geometry, scene reflectance and illumination conditions, leads to 

situations in which a certain object appears completely different under different 

illuminations. Although laser scanners are also scene and position dependent and occlusion 

aspects are a problem, they seem to provide clear benefits over 2D cameras by being more 

stable across different acquisition conditions  (Mian and Pears 2012). Nevertheless, the image 

acquisition station developed in the context of this research will mostly include 2D cameras 

to make images closer to what operators usually experience. For this reason special attention 

will be given to the lighting conditions. Illumination is extensively described in the literature 

as being an important aspect that influences the performance of the machine vision system, 

especially when the surface properties may vary among products. Some authors suggest that 

it is more profitable to spend time developing a quality illumination scheme that it is to 

develop complex algorithms capable of overcoming problems introduced by bad illumination. 

In agreement with its importance, the illumination scheme could be said to be performing 

part of the vision algorithm (Thomas et al. 1995). While camera selection can be done almost 

straightforwardly considering image requirements, designing a suitable illumination is still a 

rather “black art” (Davies 2012b). 
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Table 4.1 - List of industrial vision applications. 

 

Inspection 

objective 

Application 

field 
Main contributions Reference 

Superficial 

Textile industry  
Backlighting illumination and 2D cameras 

are successfully used for fabric inspection.  
Kumar (2008) 

Fruit quality 

inspection 

The lighting system is simplified because 

the acquisition system rotates and 

translates the fruit to reconstruct its shape.  

A semi-transparent conveyor belt is used to 

allow illuminating from the bottom. 

The use of an infrared vision system 

demonstrated to be useful in the automatic 

assessment of olives. 

Blasco, Aleixos and 

Moltó (2003) 

 

Blasco et al. (2009) 

 

Guzmán et al. (2013) 

Ceramic tiles 

inspection 

Color sensors able to differentiate defects, 

color and flawless background. 

Boukouvalas et al. 

(1998) 

Specular 

components 

inspection 

Lighting system composed by light stripes. 

A line laser reflection from a moving surface 

is captured by a CCD camera. 

Infrared thermography techniques 

successfully applied in detecting different 

surface and sub-surface anomalies. 

Aluze et al. (2002) 

Wedowski et al. (2012) 

 

Benmoussat et al. 

(2013) 

 

Geometrical 

Fruit size 

segregation  
Use of multispectral imaging techniques. 

Herrero-Langreo et al. 

(2011) 

Metal parts 
3D imaging vision system successfully 

measures width and flatness. 
Molleda et al. (2013) 

Structural 

PCB inspection 

AN automated X-ray machine vision system 

was developed exclusively for the 

inspection multilayer misalignment. 

2.5D system that combines two line lasers 

to capture 3D depth and 2D texture 

information. 

Chuang et al. (2010) 

 

So et al. (2013) 

Tire industry 
Laser line sensors to detect ply overlap, 

radial runout and profile measurement 
Wordsworth (2008) 
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 Proposed architecture for image acquisition system  4.2

 Mechanical system 4.2.1

To acquire images of the tire surfaces’ with adequate resolution and lighting conditions 

for the meticulous quality inspection task, single shot static captures does not seem feasible, 

considering a set-up of one camera per surface (inner sidewall, outer sidewall, tread, inner 

liner). Some preliminary tests were done in the sidewall but rapidly demonstrated lack of 

detail due to poor lighting effects, even with higher resolution sensors. Its curved shape, 

which constrains the fit of the entire tire surface into the camera's field of view, together 

with the resolution requirements, makes this strategy less viable. In fact, the outer square 

area of a typical sidewall for example, can range between 0.3-1m2 while imperfections are at 

a completely different scale (minimum of 4 mm2). In single shot acquisitions it would be 

extremely difficult to guarantee constant lighting conditions all over the surface. To correctly 

capture features as small as 4 mm2, to guarantee uniform illumination and to distinguish 

lighting variations such as highlights and shadows at the scale of the imperfections, 

sequential acquisitions with successive snapshots demonstrated to be more adequate. Thus, 

the proposed acquisition scheme relies on a mechanical structure that rotates the tire while a 

set of cameras successively capture a small section of its surface.  When a complete tire 

revolution is concluded, the whole area is covered. An alternative mechanical system would 

consist in having the tire fixed and rotating the vision equipment but an analysis done by 

another researcher, in the context of this project, revealed higher levels of complexity. 

In order to guarantee stable image acquisition conditions, the mechanical system 

responsible for rotating the tire needs to fulfill several requirements. This mechanical system 

will serve as industrial prototype and for this reason, at this stage significant level of 

flexibility was desirable so that several configurations of the vision system and various tires 

could be tested. Hereby, the mechanical system described underneath, does not intend to be 

an industrial machine but rather a first materialization of a possible mechanical system.  

The main considerations in designing the mechanical structure were formulated 

considering the tire deformation behavior and its intricate shape. The low stiffness and 

deformability intrinsic to tires makes them more vulnerable to deformations and small 

variations in shape which can result in vibrations while rotating noticeable in the images. In 

addition, its rounded shape makes the placement of the vision system more difficult, 

especially in the inner liner.  

In sum, the requirements given to the mechanical system supplier were: 

 Rotation stability guaranteed by mechanical supports and constraints; 

 Automatic adjust to all tire dimensions; 

 Constant and controllable rotational speed; 

 Stable mechanical supports for optical and lighting systems; 

 Image acquisition of all surfaces free from obstacles caused by mechanical 

components.  
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Figure 4.4 shows the final mechanical structure design. There are three crucial 

components that should be highlighted: walls with rolling spheres, rolling axes and moving 

wall. The tire is introduced in the machine in vertical position (Figure 4.4 (b)). For a better 

understanding, the two abovementioned walls were removed in this image. The yellow and 

red walls in Figure 4.4 (a) contain several insertions of rolling spheres. The two walls will 

slightly compress the sidewalls of the tire and restrain its rotation movement and minimize 

rolling slips when rotating. The spheres will provide sustainability to the rotation of the tire 

without creating significant friction. The motorized rolling axes transmit the rotational 

movement to the tire (Figure 4.4 (c)). The red wall moves horizontally along two linear axes 

and is positioned according to the dimensions of the tire being scanned.   

In this industrial prototype the vision equipment for the inner liner acquisition is placed in 

the interior of the tire by means of an industrial robot (ABB IRB 120) as seen in Figure 4.4 (d).   

 

                    
 

 

                           

 

Figure 4.4 – Drawings of the mechanical system for image acquisition: (a) overall view; (b) tire 
placement; (c) detail of the rolling axes (d) robot in which the vision system for inner liner inspection is 

coupled.   
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The images in Figure 4.4 intend to enhance the comprehension of the reader by using 

simplified representations (minimal number of mechanical and electronic components and 

cabling). Even though, a photographic depiction of the actual prototype is shown in Figure 

4.5. 

   

 
 

Figure 4.5 – Prototype installed at the manufacturing plant 

With this mechanical system, the steps to scan a tire follow the sequence illustrated in 

Figure 4.6. At this prototyping stage, some of these steps still require user intervention. The 

placement of the tire in the machine is an example of a current manual task that would 

greatly benefit from automation in subsequent stages of the project. This can be achieved by 

positioning a conveyor aligned with the machine entry. 

Input tire dimensions in the local 

information system

Place the tire in the machine

Machine automatically positions the 

moving wall according to tire dimensions

Place robot and lights in

Synchronized image acquisition

Unlock machine and tire release
 

 

Figure 4.6 – Block diagram describing setup and acquisition  



 

Machine vision system for imaging acquisition of tires 71 

 

 

 

 Machine vision system  4.2.2

Camera selection 

Essential components of the machine vision system are cameras and light sources. In the 

context of this research, the selection of camera type and lighting was intended to be aligned 

with the strategy of acquiring images to serve both human-based and automatic inspection. 

Aiming at having the specialized operators performing the inspection process digitally is 

facilitated by attempting to recreate the usual appearance of the tire in the images, 

subsequently available through CAI. The current knowledge and expertise of the operators is 

maximized if the human visual perception of the tire is similarly mapped in the display where 

the operators will visualized the images. In case the relation between these two visual 

environments is prevalent, distinguishing between conforming and non-conforming items will 

resemble, until a certain extent, today’s process (Yeh and Wickens 2001). Considering other 

vision technologies at this stage (e.g. 3D laser scanner) would require a significant learning 

process by the operators. The main advantage of mimicking appearance is that current 

human expertise would be applied and in situations where the machine vision system is 

unavailable, humans would still be able to continue performing the manual process as today. 

Furthermore, this strategy enables the continuous development of the automatic inspection 

system based on the participation of the visual inspectors in two activities: validating the 

appropriateness and quality of the images, especially in the accurate detection of 

imperfections, and in feeding the database with inspection decisions that can later be used 

for the development of automatic algorithms. Having this strategy in mind, most sensors in 

use in this machine vision system are 2D sensors that capture images in the visible spectrum 

of light similar to what humans perceive visually. Monochrome cameras were selected 

considering that there is insignificant color information in tires. Also these cameras often 

exhibit higher spatial resolution and sensitivity than their color counterparts. An analysis of 

the variety of imperfections that can occur in tires also sustains the choice of sensor 

technology. The fact that some imperfections do not have a depth component and are 

superficial or tonality variations suggest that 2D technology is adequate. Although, most 

imperfections present depth information, examples of imperfections without significant 

height variation (<0.5 mm) exist: dirt, and grease. The strategy followed is to use the lighting 

system to highlight the height of imperfections. Rather than using illumination with the only 

purpose that the camera captures the diffused reflected light, we aim at positioning the 

lighting system so that brighter or darker regions are created according to height/depth 

variations and result in outstanding regions from the surroundings (Hornberg 2006).  

The proposed vision system operates by rotating the tire in front of a fixed camera while 

several acquisitions with few pixels wide will progressively occur. The complete surface 

should be acquired and this can be achieved if the rotation speed is defined according to the 

frame rate of the camera. Overlap in sequential images (when the rotation speed is too low) 

originates repetition of information and elongated letterings or embossments, while the 

opposite leads to uncaptured regions. For the sidewall acquisition, the adjustment between 

rotation speed and frame rate should be made considering the bottom part of the sidewall. 

The linear speed in the outer circle of the sidewall is higher than in the inner part and 

because a reconstruction of a rectangular planar projection of a circular surface is being 

made, some deformations will always occur (Figure 4.7 (b)). In this case, elongated effects, 

like the one seen in Figure 4.8, are preferable to compressed ones.  
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Figure 4.7 – Representation of the sidewall sequential image acquisition: a) the angular speed of the 
rolling axes is transmitted to the tire. The linear speed is not uniform along the sidewall height or the 
tire radius. b) The image is formed by concatenating successive frames. Repetition of information is 
unavoidable. c) The time diagram shows that each frame is captured at a regular defined external 

trigger rate.  

 

 

 

 

 

 

                       
 

Figure 4.8 - Elongation of the image close to tire inner diameter: (a) in yellow the real circle, (b) in red 
the elongated circle 

 

a) 

b) 

c) 
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Spatial resolution relates to the smallest feature that can be mapped in the sensor and is 

measured in mm/pixel. A suitable spatial resolution in this application allows operators and 

automatic algorithms to detect the smallest imperfection in the images. If the inspected 

object would be flat and uniformly illuminated, a single pixel defect might be considered an 

acceptable representation. However, the curved and non-homogeneous tire surfaces 

motivate higher spatial resolution. Assuming that 2 mm diameter is the smallest imperfection 

to be detected and 4 a reasonable number of pixels to map it in the sensor. The needed 

spatial resolution (Rs) is then given by: 

   
  

  
                                              (4.1) 

where Sf is the size of the smallest feature to be detected and Nf the number of pixels to map 

it. In this case, the needed spatial resolution is 0.5 mm/pixel.  

Considering that the acquisition will follow a scan mode, the horizontal spatial resolution 

following the scan direction will be determined by scan rate and rotational speed. On the 

other hand, the vertical spatial resolution depends on the camera and lens specifications 

(sensor resolution and field of view, respectively) and this will mostly influence camera 

selection.  

In the envisioned system, one camera will acquire images of the sidewall and a second 

one of the tread. To account for: all possible tire sizes, tolerance in tire position and safety 

margins, the field of view (FOV) needed in the sidewall is 300 mm (maximum sidewall height 

is 200 mm) and 350 mm for tread acquisition (maximum tire width is 275 mm). For being a 

particular case with specific requirements, the inner liner will have a significant different 

setup and will be discussed at a later stage of this chapter.  

The needed camera vertical resolution (Rc) can be calculated as follows: 

          
   

  
                                              (4.2) 

By applying equation 4.2 it is possible to calculate that the minimum camera’s width 

resolution is 700 pixels.    

Having defined the camera type, acquisition mode and resolutions requirements, the 

selection of the specific camera and supplier was possible. The camera selected was Allied 

Vision Technologies GC 780 CCD camera with a maximum resolution of 782 (width) x 582 

(height) and a 1/2’’ sensor size. The operational mode (sequential acquisitions) would 

probably be also favorable for linear cameras instead of CCD matrix cameras but the 

desirable flexibility and willing to test different acquisitions modes motivated this selection. 

With this camera the vertical resolution is 0.38 mm/pixel for the sidewall and 0.44 

mm/pixel for the tread.  

Figure 4.9 shows that this camera can also work likewise a linear camera. As the height of 

the acquisition window decreases, the frame rate increases, from 64 frames per second (fps) 

at maximum resolution (582 pixels) up to nearly 800 fps with a one pixel window or region of 

interest. Taking advantage of this technological capability and using shorter regions of 

interest seemed preferable. In this case the images will be formed by a sequential 

concatenation of frame-to-frame (Figure 4.7 (b)). In this application using few pixels window 
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is advantageous to maintain uniform lighting conditions along the window height. Larger 

window area (achieved by increasing window height since width is fixed to 782 pixels) 

decreases the maximum frame rate but especially increases the lighting complexity. For 

successful inspections, especially human-based one, noticeable variations in lighting 

conditions along the image can disturb visual search and disguise imperfections.  

The mechanical system rotates the tire at a constant linear velocity is 612.5 mm/s which 

for a standard 15’’ tire results in a complete rotation each 3.5 seconds. The acquisition 

window height will be set as small as possible and for this reason the acquisition will be done 

almost at the maximum frequency. The frame rate will be the same for both cameras 

(sidewall and tread). Considering a frame rate of 700 fps (avoiding operating at maximum 

frame rate is desirable to assure all frames are successfully transferred), the number of 

frames needed for the standard 15’’ tire is 2450 frames. To guarantee that the 2450 frames 

contain the complete tire revolution and some extra margin area, with the same spatial 

resolution as in the vertical direction, a window of 2 pixels height is needed. This 2 pixels 

window was acquired in the center of the sensor to minimize distortions. The cameras were 

triggered externally by hardware and each pulse will occur at every 1.5 milliseconds. The 

exposure time will be maximized although always below the trigger frequency. In this case 

exposure was set to 1 millisecond (Figure 4.7 (c)).   

 
 

Figure 4.9 - Frame rate vs. height for Prosilica GC780 

 

Lenses 

Determining the suitable lenses was possible because the field of view and sensor size are 

known. Another important aspect for lens selection is defining the distance from the lens to 

the object (standoff distance). In this application large depth of field would be advantageous 

to maximize the tire area that is sharp in the image. This way the effect of the curvature of 

the sidewall, for example, is minimized because the decrease in sharpness is very gradual and 

the image is sharp along all sensor width or at least the unsharpness is imperceptible. Higher 

depth of field can be obtained by reducing lens aperture diameter or by increasing standoff 

distance. Reducing the lens aperture decreases the intensity of light reaching the sensor 

which, after a certain extent, might become impractical for the lighting setup. This is the 

reason why the strategy followed was to: increase the standoff distance, deploy a lighting 

system with high luminous power and reduce the aperture up to the limit in which the 
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acquisitions still have adequate light intensity. The standoff distance from the sidewall and 

tread cameras to the tire is 600 mm.  

The concept of optical magnification (M) needs to be clarified for the calculation of the 

desirable lens focal length. Magnification is the ratio between the image size of an object 

and its true size. Considering that in this camera setup, the FOV is mapped to the sensor 

width, the magnification is evaluated by:  

          
            

   
                                         (4.3) 

The GC780 camera contains 8.3 μm cells size and thus the sensor width is 6.5 mm. 

Because the image recorded by the sensor is usually inverted, magnification is a negative 

number. However, conventionally, magnification is assumed as positive. Therefore, 

magnification is 0.021 for sidewall and 0.019 for the tread. Having this said, the focal length 

(f) for a standoff distance (d) is calculated as:   

   
 

   
                                             (4.4) 

The desirable focal length for tread is 11 mm and 13 mm for sidewall. Commonly 

available focal lengths for lenses in machine vision include 12 mm and 16 mm, which were 

the ones chosen for tread and sidewall, respectively. Slight adjustments in the standoff 

distance were made to compensate the focal length in use.   

 

Lighting 

As mentioned before a suitable lighting system is as important as choosing an appropriate 

optical system. Capturing a certain feature in an image is dependent on a successful 

trajectory of light from the illuminator, followed by reflection off the object, up to being 

collected in the lenses and later mapped in the sensor. All this reflectance process depends 

on the properties of the surface and the chosen illumination (Pernkopf and O'Leary 2003).    

Initially, little or almost nothing about the optical properties of the tire surface were 

known. As mentioned in the literature, a real test object is always an unknown mixture of 

reflection, absorption and transmission (Hornberg 2006). Defining a lighting scheme to 

acquire images of tires is complex for many reasons. Its inherent dark color and low contrast, 

in addition to heterogeneous and curved surfaces result in many challenges in the lighting 

system design. Objects with sharp edges and smooth surfaces usually reflect light in a 

specular or mirror-like manner while rounded edges and rough surfaces result in light being 

mostly reflected in a diffuse range of scattered angles (Figure 4.10) (He et al. 1991). Anyway, 

these two cases are extreme and the effective reflecting behavior of common surfaces, 

likewise tire surfaces, is expected to be somewhere between (Wolff 1994; Rosati et al. 2009).         

To further increase the complexity of the problem at hand, significant variations in 

surface properties among different tires occur. This variability was noticed in: color due to 

different materials or material mixtures in use, surface geometry due to product design, and 

direct reflections caused by the use of coating/painting surface treatments. These aspects 

can influence the vision system performance. In fact surface quality and roughness influence 

how the light is reflected, absorbed and transmitted, leading to only part of the light energy 

being reflected backward to the cameras lens.  
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A rapid test was done to analyze the impact of variable surface properties of tires in the 

acquired images. Two sample tires of the exact same article were acquired using the same 

lighting conditions. One was painted with oil coating and the second not. The two tires 

reflected light differently, and this was evident when the average gray values were 

compared. In some locations, the tire with surface coating retrieved an average intensity of 

70 in a grayscale with 256 levels while the non-painted one got 55 (Figure 4.11).  

 

  
 Figure 4.10 – Light reflection in sharp edge (a), rounded object (b) and rough surface (c) 

(adapted from Hornberg (2006)). 

 

                   
 

Figure 4.11 – Sections of inner liner images of the same tire article presenting: on the left a 
non-painted tire and on the right a painted tire. 

In terms of lighting setup, several possibilities were analyzed. Dark field illumination and 

bright field illumination are two standard methods in surface quality inspection (Tian, Lu and 

Gledhill 2007). While in bright field the sensor captures most of the directly reflected light, 

in the dark field, the camera is located away from the specular direction of the scattered 

light (Figure 4.12). In dark field illumination the angle of incident of light with the surface’s 

normal vector is very large. This results in uniform grey images being grabbed by the camera 

when acquiring flat surfaces. However, if there are some irregular regions (elevation or 

deepening) on the area illuminated, the incident light will be scattered in all directions. Then 

the image taken by the camera is bright or darker where the surface is irregular, which is the 

typical case of imperfections. Thus, in this application, this lighting setup can be 

advantageous to emphasize imperfections and make embossed or engraved letterings more 

viewable (Hornberg 2006). In practice, tire regions that are tilted away from the light will 

appear darker than regions that face the light directly. Even though, extremely shallow 

angles should be avoided because, as mentioned before there are some imperfections without 

significant three-dimensional component that could become undetectable. Oppositely, using 

bright field can originate problems such as saturation caused by direct specular reflections. 

This is the reason why, in this application, the lighting setup will include partial bright-field 

(transition between bright and dark field) mixed with dark-field illumination. In the literature 

there is not a clear dividing line/limiting angles between both (Hornberg 2006).  

b) a) c) 
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Figure 4.12 – Interaction between test object, light and camera: bright field setup on the 

left and dark field setup on the right (adapted from Pernkopf and O'Leary (2003)).   

 

White light-emitting diode (LED) arrays were the light source selected for this 

application. Like in the camera selection, the light color was also selected in attempt to 

design an image acquisition setup resulting in images that are as close as possible to the 

operators experience when observing the tire under white light. Furthermore, selecting a 

different illumination wavelength could possibly highlight artifacts nowadays unperceived or 

reducing the intensity of some imperfections. Changing image features by using different 

light colors might be useful in a subsequent stage of the investigation if, for example, a 

specific imperfection needs to be further highlighted. For now, white LEDs consisting of a full 

range of wavelengths varying from 400-800 nm will be used. This wavelength interval is 

aligned with the spectral response of the sensor (400-1000 nm) and corresponds to the part of 

the spectrum to which the human eye is sensitive, which may be an important aspect to 

assure in the CAI.  

The intensity of the lighting system needs to be extremely high in this application so that 

shorter exposure times can be considered and higher depth of field can be obtained by 

closing the diaphragm aperture without compromising an adequate average light intensity. In 

this case, LED arrays with luminous flux of 4000 lumen were selected (reference Bridgelux 

BXRA-N4000-00LE). Considering equation 4.5 that states that illuminance (E) at the test 

object decreases with the square of the distance (d), the LED arrays will be placed with short 

distances to the tire (few centimeters).   

  
 

  
                                               (4.5) 

In most studies, the choice of the lighting system and its settings is done in an empirical 

way in which several experiments are done before an adequate lighting system and setup is 

identified (Geveaux et al. 1998; Coulot et al. 1997). Besides experimentations, some authors 

suggest mathematical models to foresee how light is reflected and optimized. In most cases, 

these models are applied to planar surfaces (Rosati et al. 2009). As an example, Coulot et al. 

(1997) proposed a method for planar surfaces which allows comparisons between several 

lighting. By applying a theoretical model of light scattering, the authors suggest the position 

of camera and light in comparison with object to obtain the best contrast between the object 

normal surface and defects. For non-planar curved objects, fewer publications exist. A study 

proposed by Tao (1996) in the area of fruit inspection suggested the use of spherical 

transforms to correct the non-uniform object reflectance over spherical shapes. In this study 
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the complexity increases because each camera has to capture more than one object with 

different light gradients. Moreover, defects are supposed to be represented in the image in 

dark gray and lower intensities. Detections could be missed if these defects were located in 

darker regions due to curvature. One limitation of this study is that these mathematical 

transforms can only be applied to spheres and cylinders and not to more complex multiple-

curvature surfaces.  

Compensating for the curvature of objects in the physical setup was suggested by Valle, 

Gallina and Gasparetto (2003) and Rosati et al. (2009). Belonging to the same research group, 

these studies particularly evaluate the suitable lighting system for metallic automotive 

components with more than one curvature. A setup with a non-plane deformable mirror, 

which conveys the light rays onto every point of the surface to be inspected, was proposed at 

first, and later replaced by a series of flat highly reflective surfaces due to difficulties in 

manufacturing the mirror. Each surface of the object would be illuminated by a separate 

plane mirror, whose size and position were mathematically calculated according to the 

curvature radius of the surface. These methods were applied to shiny specular surfaces and 

the use of mirrors attempts to minimize saturations in the image. 

Likewise Valle, Gallina and Gasparetto (2003) and Rosati et al. (2009) application to 

automotive curved components, also tires present a complex shape and multi-curved 

surfaces. Figure 4.13 shows an example of a possible lighting setup and camera positioning 

for the sidewall. The curved sidewall causes the normal to the surface to vary very rapidly, 

thus generating a discontinuity in the reflected light rays. This non-uniform light reflectance 

is even more noticeable when different tire sizes are tested. Having a fixed camera and 

lighting setup may not be adequate to acquire images of different tires with uniform and 

appropriate lighting conditions. Having this said, a system including adjustable light sources is 

proposed. Considering the example of the sidewall, two light sources will illuminate the 

complete sidewall height with some controllable overlap. The position and intensity of the 

light sources can be adjusted according to the tire under analysis. Larger tires will have 

higher distance between light sources, while smaller tires will have closer and lower intensity 

light (Figure 4.14).         

 

 
 

  

Figure 4.13 – Non-uniform reflectance of the tire curved sidewall   

 

Camera 

Lighting 
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Figure 4.14 – Illustration demonstrating the two light sources and the need for its reposition. 
The smaller tire on the left requires a height (h1) while the bigger tire on the right requires h2 

between the two light sources to assure the illumination of the entire sidewall.  

 

Implementing a lighting system, in which the light source position can be adjusted, was 

made possible through the attachment of the LED arrays to articulated arms (Figure 4.15). 

These articulated arms are driven by servo motors and assembled according to the needed 

degrees of freedom. All lighting position adjustments were then configured by changing the 

rotation angle of the servo motors. The servo motors used in this application were Dynamixel 

AX-12+. 

 
Figure 4.15 – Example of an articulated arm for lighting support. 

 

Depending on the tire surface under analysis (sidewall, tread or inner liner) the 

articulated arm was assembled with a different number of servo motors because the needed 

lighting flexible adjustments vary. Table 4.2 discriminates the configuration of the 

articulated arm according to the tire area. Sidewall is the area that requires a more complex 

lighting fixation solution. As illustrated in Figure 4.14, the significant sidewall height 

variation among different tires (minimum 82 mm and maximum 200 mm) requires that the 

point of incidence of light is adjusted. Besides specifying the desirable incidence position, 

the articulated arm should also allow adjustments in the orientation which in this case results 

in controlling the angle of incidence of light. This is the reason why the articulated arm setup 

for the sidewall presents two parallel joint axes that allows rotation in the y direction (these 

servos are in yellow and blue in Figure 4.15). In addition there is a third servo that controls 

the rotation of the articulated arm around x (servo in green in Figure 4.15). Assuming the 

definition of degrees of freedom as the number of joint angles that can be independently 
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controlled, three degrees of freedom are needed for the sidewall lighting system. By 

specifying a desirable angle and point of incidence in the reachable workspace, and knowing 

the inverse kinematics of the system, the angle for each joint can be calculated. Solving the 

inverse kinematics of the system was also performed.   

 

Table 4.2 – Configurations of the articulated arm according to the tire area  

Tire area Degrees of freedom Possible adjustments 

Sidewall 3 Angle and point of incidence 

Tread 2 Angle of incidence 

Inner liner 1 Point of incidence 

 

Another aspect in the lighting system that can be controlled is the LED intensity, done by 

means of adjusting the PWM (pulse-width modulation) duty-cycle. The articulated arms can 

be repositioned according to the curvature of the tire to approximately guarantee a constant 

distance from the object. Nevertheless this has revealed to be hard to attain due to the 

mechanical constrains of the joints and significant object curvature variation. For this reason, 

controlling the light intensity can also be important. Closer objects can be illuminated with 

less light intensity than farther objects.   

A detailed description of the image acquisition setup for each tire area will be done. 

Starting with the sidewall, which was already used as an example along this chapter, the 

proposed setup is illustrated in Figure 4.16. The home position of the two articulated arms is 

vertically aligned and 150 mm apart. The articulated arms and camera that will position the 

lighting for the outer sidewall acquisition will be fixed on the machine structure while the 

articulated arms and camera for the inner sidewall acquisition will be fixed to the moving 

wall. Both will acquire images simultaneously. The center of the cameras (in red on the right 

part of Figure 4.16) are located in vertical radial plane of the tire and vertically positioned so 

that the FOV can capture all sidewall heights. The physical prototype is shown in Figure 4.17. 

Having the possibility to adjust the lighting conditions (intensity, angle of incidence and 

point of incidence) according to the tire under analysis seems to be essential to guarantee 

adequate image quality across tire sizes. To configure each variable according to a certain 

tire, the user operating the image acquisition station should create a recipe in the system 

database. This recipe will store all lighting variables described before so that tires belonging 

to the same article are acquired with the same conditions. The significant flexibility available 

to adjust lighting conditions requires that some guidelines are stated. This way, 

independently of who is operating the system, there is consistency in the criteria to define 

what an adequate lighting setup is. To better define and visualize the effect of different 

lighting conditions, the user is provided a visualization window in which the whole sensor 

matrix is shown and the 2 pixels window is highlighted (Figure 4.18). Several image attributes 

are available so that the user can get some quantitative feedback over lighting adjustments. 

Table 4.3 lists the information available and what the adjustments should aim at for each of 

them. Special attention should be given to the intensity profile that shows the average 

intensity of the two pixels along the image width and how balanced the light across the tire 

is. The effect of turning off or on a LED array in the intensity profile can be seen in Figure 

4.18.   
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Figure 4.16 – Illustration of the sidewall image acquisition setup: two articulated arms for 

light positioning and one camera (in red). 

 

 

 

 
 

Figure 4.17 – Pictures of the prototype: in the top image the articulated arms are in the 
home position, while in the bottom image an acquisition is taking place.  
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Adjust lighting positioning to obtain uniform lighting conditions that minimize the effect 

of tire curvature, differences in tire dimensions, color variation, but that on the other hand 

highlights imperfections, is the overall objective. The lighting configuration is typically done 

using a conforming tire to avoid imperfection-specific illuminations that may not be optimal 

in other cases (Figure 4.19). The default configuration is done following the criteria described 

in Table 4.3 and attempting to create a dark field illumination aiming at highlighting most 

imperfections. 

 

                 

 

Figure 4.18 - Example of user interface environment when defining a lighting configuration. 
The window being captured is shown in red. On top of each image the intensity profile is 

plotted. In the left image only the bottom LED array is emitting light and on the right, only 
the top LED array is on. 

  

Table 4.3 – Image attributes computed to define a lighting configuration  

Image attribute Criteria 

plot intensity profile 
Visualize the spatial location of darker and brighter regions and 

adjust variables to attain more uniform light conditions 

mean Similar mean should be found in all surfaces of a given tire  

median Similar median should be found in all surfaces of a given tire  

standard deviation 
Adjust variables to minimize standard deviation to attain more 

uniform light condition across the tire 

max Avoid 255 intensity values that represent saturated pixels  

min Avoid low intensity values that can lead to obscure imperfections  
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Figure 4.19 – Lighting configuration for a conforming tire. On left the inside sidewall and on 
the right the outside sidewall of the same tire are shown.    

 

The tread is the most planar surface of the tire and for this reason the lighting positioning 

system presents fewer degrees of freedom comparing to the one defined for the sidewall. 

Because the camera is positioned in the vertical radial plane, the surface being acquired is 

approximately parallel to the camera sensor. This is always the optimal location to acquire 

sequential images of the tread and for this reason there is no need to move the lighting 

system to adjust the point of incidence. Only the angle of incidence should vary to 

accommodate for different reflectance that occurs for various tread patterns and color 

variations. The angle of incidence can be adjusted like in the sidewall case, by changing the 

joint angles of two parallel servo motors (Figure 4.20). One articulated arm is fixed in the 

mechanical outer structure, while the other is rigidly attached to the moving wall and 

therefore always positioned at the same distance from the border of the tire tread. Similar to 

the sidewall there is also some light overlap at the center of the tread which can be adjusted 

by means of the articulated arms repositioning and control of light intensity. 

Figure 4.21 shows the joint setup for the sidewall and tread image acquisition. The 

acquisition location is optimal in both cases because of the avoidance of camera tilting and 

correction algorithms to compensate for distortions. Nevertheless the physical concentration 

of several light sources may cause some interference among them because the two 

acquisitions will occur simultaneously. Avoiding, for example, that the light sources of the 

sidewall are directly visible at the tread camera is of major importance. Some physical 

barriers were placed to minimize this interference and avoid glare effects. 
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Figure 4.20 – Illustrations and picture of the tread image acquisition setup. The lighting 
system can be seen in the top images colored in yellow and blue while the camera is 

illustrated in red on the right. The bottom image aims to better show the prototype context. 

 

 

 
Figure 4.21 – Schematic representation of the vision system for the tread and sidewall 

acquisition. 
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The inner liner acquisition system is the only setup that requires vision sensors to be re-

positioned and not remain fixed like previously described for the sidewall and tread 

acquisitions. The vision system is composed by two cameras GC 780, each of them acquiring 

approximately half inner liner with some FOV overlap (Figure 4.22 and Figure 4.23). Each 

camera FOV is illuminated by one LED array, mounted on a servo motor. All these equipment 

needs to be placed equidistantly  to both walls of the tire, otherwise one camera and lighting 

will be closer to the object surface that the other, which could compromise the objective of 

having uniform lighting conditions. An industrial robot ABB IRB 120 is used to centrally 

position the vision equipment. For the purpose of the investigation, it was assumed that this 

setup could be validated by acquiring only half inner liner with one camera. A fish-eye lens 

with 2 mm focal length and 180º FOV was used. The fact that the clearance between the tire 

surface and lens is very small (in some cases less that 100 mm in comparison to the 600 mm 

standoff distance in tread and sidewall) suggests the use of a fish-eye lens to provide a full 

view of the object. The drawback consequence of providing a large FOV (~180º) is that fish-

eye lenses introduce significant distortion. The fact that only a two pixels window is being 

acquired minimizes this effect.  

Two cameras in the inner liner need to acquire approximately the same area that in the 

outside surface is being acquired by three cameras (two sidewalls and one tread). 

Nevertheless the same camera is being used which results in images with lower resolution. 

Even though, the lowering of resolution does not seem significant because it still retrieves an 

acceptable value of 0.58 mm/pixel. 

Lighting adjustment is essential in the inner liner. Desirably articulated arms with two 

servo motors would be used to control angle of incidence. But due to space constrains only 

one servo is used for each LED array. Changing the point of incidence and LED intensity 

enabled acceptable acquisitions conditions across tire dimensions. 

 

          
 

Figure 4.22 - Schematic representation of the vision system for the inner liner acquisition. 
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Figure 4.23 - Illustrations and picture of the inner liner image acquisition setup. 

 

Defining adequate lighting conditions for tire image acquisition is a rather complex task. 

After performing the acquisition of a sample of over 1000 tires, it became evident that most 

difficulties were found in the inner liner and sidewall image acquisitions. The inner liner 

acquisition difficulties were mostly related with space constraints that limits the lighting 

position adjustments. This, together with the highly curved area, inevitably originates non-

uniform light conditions even upon adjusting light intensity. Also specular spike effects in 

tires with oiled coatings are harder to minimize.  

The main challenges presented by the sidewall come from ensuring adequate lighting 

effects across variable letterings and imperfections. For being an area visually accessible to 

costumers and that suffers low wear, most information is embossed in this surface. This 

information leads to the presence of small geometric features, greatly prone to defects. Also, 

because costumers will observe this area more often, finishing standards are rather high.  

Having dark field illumination is expected to highlight imperfections. In fact the normal to 

the area where the defect is located is expected to change very rapidly creating locally 

brighter or darker areas. Figure 4.24, Figure 4.25 and Figure 4.26 show an examples of the 

appearance of imperfections and its local light variation effect in sidewall, tread and inner 

liner, respectively.  

 
 

Figure 4.24 – Example of a sidewall imperfection, manually delimited with an orange elliptic 
shape. Brighter intensities are visible in the imperfection region. 
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Figure 4.25 - Example of a tread imperfection, manually delimited with an orange elliptic 
shape. Darker intensities are visible in the imperfection region. 

 

 

 

 
 

Figure 4.26 - Example of an inner liner imperfection, manually delimited with an orange 
elliptic shape. Variations from brighter to darker intensities are visible in the imperfection 

region. 

 

The methodology defined to validate the quality of the images obtained is to show them 

to inspectors and ask them to perform inspection based on them. This will be the matter 

described in the next section. The main objective is to provide operators with images 

without: ambiguous features, insufficient illumination or excessive glare. This can only be 

achieved if a close interaction with operators is maintained. By incorporating their feedback, 

the aim is to understand the luminance values and lighting features that result in an 

improved quality detection performance. Having the operators performing an intermediate 

validation step of the quality of the images and storing their decisions based on those in a 

database, is believed to considerably benefit the latter development of automatic 

algorithms.    
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Instead of trying to identify the most suitable lighting conditions beforehand by means of 

mathematical models of light, the strategy is to try to incorporate the results of the 

performance of operators at CAI to improve and adequate the lighting conditions.   

Later on in this research some changes in the lighting system may also be motivated by 

the performance of the detection algorithms. In fact, while operators may develop 

mechanisms to distinguish between artifacts created by inappropriate lighting and 

imperfections creating abnormal lighting effects, algorithms may have more difficulties in 

doing so. Nevertheless for both purposes, the clearer the images are, more likely a successful 

inspection is.  

 Validation of image acquisition system  4.3

This section aims at obtaining answers to the first sub-research question posed in Chapter 

1 and recalled here in Figure 4.27. As mentioned in the previous section, a feedback loop is 

proposed to support the validation and the continuous improvement of acquisition conditions 

upon operators’ detection performance. The experienced and specialized operators are a 

fundamental element in validating the image acquisition. In an iterative manner, acquisition 

conditions that were at first defined in a structured but still experimental basis (following the 

criteria defined in Table 4.3) can be improved. Along this research various experiments were 

done in collaboration with operators. The one hereby described is restricted to the evaluation 

of the appropriateness of the images as a vehicle of information about the tire. If this step is 

successful, eventually the operators will have a similar performance in assessing the tire 

physically or digitally and also implementation of algorithms for imperfection detection can 

be considered. Thus, for now, the aim of this experiment is restricted to the validation of the 

image acquisition station (in green in Figure 4.2). The detection rate among operators and 

the comparison with today’s process will be matter of subject of the next chapter.  

During this research, the validation of the feedback loop process was implemented and 

tested over a 3 month period at Continental Mabor facilities. Six inspectors with various 

profiles (age, experience, average performance) were selected to participate in this field 

experiment. CAI tool was made available in a room aside from the production line. The setup 

was equipped with a standard desk, a monitor which was placed in front of the participant 

and mouse for the user to be able to interact with the application (Figure 4.28). Only one 

operator at a time was requested to participate in the study to avoid any line stoppage, thus 

jeopardizing the plant production goals. Further details on the design of experiment (sample 

and subject selection) will be given in the next Chapter.  

  

Research question: How should the image-acquisition station be designed to 
assure acquisition of unambiguous images of the object?

Methods: Experimental testing and iterative validation procedure

 
 

Figure 4.27 – Research question and respective methods used for its test. 
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Figure 4.28 – Photographic depiction of the workplace proposed for CAI. 

 

Training the inspectors on how to use CAI tool is mandatory and should take place prior to 

the start of the experiments and repeated periodically. Instructions on how to use the tool 

were presented verbally and some exemplifying cases were given in the CAI tool. Along two 

weeks the operators could come at any suitable time and practice by themselves CAI 

environment with some random images. A minimum of two practice sessions was advised. A 

researcher would be available to assist operators with any aspect. 

The validation of the machine vision system’s capacity of acquiring adequate images of 

tires was defined to be mostly based on the successful acquisition of non-conforming tires. At 

this stage of the research, it was more critical to evaluate if all imperfections were being 

correctly captured in the images than evaluating is the conforming tires were adequately 

represented. Rejecting more OK tires (false positive) will be a natural effect of changing the 

inspection environment and should be possible to recover upon inspectors’ gain of confidence 

in the automatic acquisition system. However at this stage, missing a nonconforming tire can 

indicate that the imperfection was not clearly featured in the image. In order to conclude 

about the effectiveness of imperfection acquisition, the operators in this experiment were 

given only NOK images. A sample of 300 NOK tires was acquired in the image acquisition 

station, distributed among the maximum variety of NC codes and following its general 

frequency. Cases with variable level of imperfection intensity were considered. In the 

majority of the cases, each NOK tire was acquired according to lighting setup previously 

defined for an equivalent OK tire. When acquiring the NOK tire, the imperfection location 

was registered in the system database. 

The acquisition of 300 NOK tires originates roughly 300 NOK images because normally 

each NC is only (or mostly) visible in a single tire surface (sidewall, tread and inner liner). 

The 300 images were subdivided in smaller sessions that were made available for the 

operators on daily base. A list of imperfection codes of each image was given to the 

operators. The operators’ task consisted in localizing the imperfection and surrounding it 

with a rectangle (Figure 4.29). The coordinates of the rectangle drawn by the operator were 

then compared to the coordinates of the rectangle registered at the image acquisition 

station.   
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Figure 4.29 – CAI user interface and imperfection mark. 

 

The objective of this experiment is to essentially orient the visual search of the operator 

by providing the hint about the imperfection that each image contains. With this approach it 

was intended to restrict the number of human factors influencing the validation of the image 

acquisition station. Furthermore, the fact that the operators were asked to do a guided-

inspection (knowing beforehand that the image was NOK and its code) might positively 

contribute for their training and experience in interpreting image features. 

Figure 4.30 shows the feedback loop used in this experiment. The steps done at the Image 

Acquisition Station include: the configuration of a recipe with the lighting conditions for each 

tire, acquisition of the images of the NOK tire and registration of the NC coordinates in the 

corresponding image (typically the imperfection is only visible in one tire area). The image 

containing the imperfection is shown to 6 operators. If the imperfection location assigned at 

least by one of the operators matches the one previously registered in the database by the 

image acquisition station user (within a certain tolerance), the imperfection acquisition is 

assumed as valid. If this happens, the lighting setup for this tire reference is deemed valid. In 

case none of the operators signs the imperfection correctly, the tire, if available, is resent to 

the image acquisition station for acquisition reconfiguration. Due to shop floor space 

restrictions, there isn’t always the possibility of keeping the tires on hold while CAI is taking 

place. Moreover, situations in which the tire is physically available but during the period on 

hold has been exposed to conditions that make it unsuitable for image acquisition (dirt, dust, 

etc.) also occurred. When this happened, new tires with the same imperfection code were 

collected and tested.       

The feedback loop illustrated in Figure 4.30 was the methodology followed along this 

research. A suggestion to continue to perform this development loop was made to 

Continental. Enlarging the number of tested cases to attempt to acquire a suitable sample of 

each NC code, and the improvement of the reliability level of the acquisition station might 

continue to occur, step by step in an iterative mode.  
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Figure 4.30 - Validation process defined to continuously improve tire images.  

 

The results of the experiment were subdivided by tire area and are shown for the 

sidewall, tread and inner liner in Figure 4.31, Figure 4.32 and Figure 4.33, respectively. The 

300 NOK images selected for this experiment are distributed along 41 NC codes. Although it 

may seem a number distant from the total number of NC codes (76), these 41 codes actually 

represent 92.6% of the total frequency of NCs in a 6-month period. The remaining codes were 

not tested for not having occurred in the 3-month period of the experiment.   

The percentage of successful imperfection detection cases is predominant in the results 

obtained. Besides analyzing the matching results, close interactions were kept with the 

operators to incorporate some of their qualitative feedback. Corrections in the average 

intensity value, light intensity increases in some particular regions and improvements in CAI 

user interface were made along this process.   

Following the real trend of more imperfections’ occurrence in the sidewall, 175 tests 

were done in the sidewall. Two unsuccessful cases occurred (1.1%). One case was not possible 

to be re-configured for tire unavailability. In the second case the lighting adjustments did not 

retrieved a better outcome (imperfection located at the bead edge). Three additional cases 

were missed at first trial but successfully evaluated after lighting adjustments were done 

(cases were also located at the bead edge). These replaced the previous failure cases and 

appear as successful ones in Figure 4.31. Both quantitative (analysis of matches) and 

qualitative (informal interactions with operators) results suggest that operators have some 
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difficulties in detecting imperfections located at the bead edge (Figure 4.34). Depending on 

the tire shape, the bead edge can be almost perpendicular to the camera sensor which makes 

its acquisition barely impossible with the sidewall camera. Other imperfections that occur in 

the bead (example of NC code 42 in Figure 4.31) are successfully acquired for being located 

in the part of the bead that remains approximately parallel to the camera sensor. Although 

the number of failures is not significant, some strategies to minimize this issue should be 

defined in the future. The results for the tread and inner liner also retrieved positive 

outcomes. 97.1% and 94.5% of the images were successfully evaluated for tread and inner 

liner, respectively. As mentioned before, the lighting conditions for the inner liner are 

sometimes difficult to be adequately defined with the current setup and this aspect is 

reflected in the slightly poorer results in this area. More tests in the inner liner should be 

done to conclude about the need of considering alternative lighting or cameras. 

The change of environment from a physical manual inspection to CAI seems not to have 

significantly affected the capabilities of the operators in identifying imperfect regions in 

tires. The fact that the imperfections were appropriately captured together with the strategy 

defined to acquire images with an appearance as close as possible to the real object, 

contributed to this fact. Even though, for the most ambiguous cases, a continuous training 

plan should be defined so that operators can improve their ability to distinguish reflectance 

changes caused by imperfections from other artifacts. The operators evaluated very 

positively CAI as a tool for the detection of imperfections. Some examples of their qualitative 

feedbacks include:     

 “images with good quality; tire appearance very close to reality” 

 “it is much easier to observe the tire, especially for the tread and inner liner” 

 “some imperfections became more evident and detailed” 

 

 
 

Figure 4.31 – For each NC in the sidewall the plot shows: the number of successful and 
unsuccessful validation cases and its frequency of occurrence in the past 6 months.     
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Figure 4.32 - For each NC in the tread the plot shows: the number of successful and 
unsuccessful validation cases and its frequency of occurrence in the past 6 months.     

 
 
 
 
 
 
 
 

 
 

Figure 4.33 - For each NC in the inner liner the plot shows: the number of successful and 
unsuccessful validation cases and its frequency of occurrence in the past 6 months.     
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Figure 4.34 – Schematic of the final setup of cameras. The sidewall cameras also cover the 
acquisition of the bead area (1) but difficulties in adequately acquiring the bead edge (2) 

were noticed.  
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Chapter 5  

Experimental design for computer 
assisted inspection validation 

 

Proposing a scenario in which the final inspection process is digitally performed by 

operators through CAI can only be done when proved that the operators are able to inspect 

tires digitally with a comparable quality level as the one obtained at the as-is manual 

process. Thus, the objective of this chapter is to understand if the visual inspectors are 

capable of inspecting tires by means of computerized images through CAI rather than using 

the physical object. A use of CAI system for the inspection process of tires that accelerates 

and optimizes operators’ performance is being hypothesized.  

As mentioned in the previous chapter, having the operators inspecting tires through CAI is 

an essential development step. In the development phase, CAI is in between two steps that 

require and benefit from operators’ validation. Inspectors through CAI validate the 

appropriateness of the images acquired (upstream process) and assign a quality decision 

based on the images, essential for the development and validation of automatic quality 

inspection (downstream process). These interrelations motivated the implementation of 

AutoClass database that stores the parameters of each step (image acquisition, CAI and 

automatic quality inspection). Besides image acquisition parameters such as lighting 

conditions, mechanical system set-up, etc., at CAI, the decision of the operator, the location 

of imperfections, if existent, and cycle time, are stored for all assessments done by the 

operators. The control and analysis of these parameters permit the definition of improvement 

strategies across the whole system. 

The results obtained along this research, together with the operators’ positive feedback, 

support the hypothesis that CAI may be more than a validation tool. It can (and should) be an 

integral component of the proposed inspection solution. In this scenario, the system will 

include operators’ participation at CAI so that they decide tires’ quality level in cases in 

which the algorithms were not conclusive. The use of the human extensive knowledge and 

flexibility in decision criteria supports this system design.       

Thus, the potential advantages of CAI go beyond its role as validation step. As an integral 

part of the proposed inspection process, CAI presents many advantageous characteristics over 

the current inspection process that potentially can: 

 Reduce physical workload – operators would not need to perform tire handling; 
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 Lower average inspection time – by eliminating tire handling steps and by the use 

of image processing techniques as a decision support system that restricts the 

information that need to be analyzed by the operator; 

 Reduce variability in inspection time – concentrate the operators in the decision 

selection may reduce many factors that today contribute for significant cycle 

time variability; 

 Provide more uniform visualization conditions across tire areas – high resolution 

images of all tire surfaces improve the observation conditions;  

 Facilitate feedback to operators – contrary to today’s process, in which the 

operators receive very limited feedback about their decisions (only limited 

feedback is provided by overinspector), the storage of images and decisions 

enables the recall of past decisions and the associated images. 

 Continuous learning and customized training sessions – The previous point can 

also contribute to the definition of a program of continuous improvement and 

training tailored to each operator, based on their past decisions’ profile.  

CAI can also bring benefits to the organization as a whole. The fact that images of all 

produced tires are being stored, as well as the quality decisions associated to them, makes 

information more accessible in case of complains. Also, inspection can be performed at CAI 

by more than one operator for more demanding customers or more critical tire articles, 

resulting in an increase in the confidence level of the decision. Finally, CAI can also be used 

to generate quality alerts that enable quicker reaction times when corrective actions along 

the manufacturing process are needed.  

Some of the potential advantages described before were tested by means of a set of field 

experiments done with the participation of the operators. The objective is to evaluate the 

effectiveness of CAI as vehicle of information. Images acquired at the image acquisition 

station were organized in sessions and made available to operators. Contrary to the previous 

chapter, in which the operators knew beforehand that the images were non-conforming and 

the code associated to each, in the tests described below random images are shown with no 

hint about quality state. The objective is to evaluate their detection and decision capabilities 

in the proposed digital environment. Guaranteeing at least the same quality level as in 

today’s process is essential to validate CAI as a novel inspection method.  

 Computer assisted inspection: Design and validation  5.1

As mentioned in the previous chapter, operators at CAI interact with an application that 

displays tire images. The user interface was developed aiming at being: intuitive, user 

friendly and reliable. An additional study in the context of this project assessed the 

requirements of the interface and tested different visualization alternatives. The one 

described in this document achieved higher performance results.  

Images are shown statically since moving images can originate some blurring effects 

(Brown, Dismukes and Rinalducci 1982). Only one image is shown at a time, representing a 

certain tire region (sidewall, tread, inner liner). Because the images are acquired in a 

sequential mode they are much longer in width than in height. The images are displayed at 
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the highest resolution and this usually leads to a subdivision of the image in more than one 

section. Each section is shown at a time. With the mouse, the operators, moves the sub-

image forward or backwards to visualize the entire image. Some overlap on the left and right 

of each subdivision is essential to avoid misses in the transitions.   

The step of visual search in CAI is significantly different to the one performed by the 

operators at the current inspection workplace. While today the tire is rotating and the 

operator typically fixates a point and detects artifacts that pop-up during the rotational 

movement, CAI system requires a sequence of eye fixations. Because the images are static in 

the display, the operators need to move the central vision to scan the entire image. This 

suggests that, although tire images are as similar as possible to the real object (assured by 

the machine vision technology selection described in Chapter 4), the mechanism of visual 

search is significantly different in CAI. This motivated the training sessions but an accurate 

estimation of the time needed for the operator to shift the visual search strategy is not easy 

to be done. A miss-adaptation might still affect the results described below.      

The fact that the images are acquired in a linear mode results in flat images representing 

an intricate 3D object. Reducing the complexity of the object displayed and dealing with its 

complex shape at the level of the image-acquisition station was the strategy defined. 

The research method selected to validate CAI system is an experimental field study in 

which a group of operators will assess a sample of tires at the current inspection workplace 

(control group) while a second group will inspect the same sample through CAI (experimental 

group). The objective is to understand the effect of CAI environment (independent variable) 

on the quality detection performance of operators (dependent variable). Later in this chapter 

a comparison between the performances of the two groups is shown. 

 Experimental Design 5.2

A posttest-only control group trial was conducted comparing the detection rates of two 

groups of operators. This experimental design is suggested in the literature for assessing 

cause-effect relationships (Greenberg et al. 2008; Babbie 2010; Campbell and Stanley 1973). 

Campbell and Stanley (1973) suggested the following diagram to describe posttest-only 

control group experimental design: 

          
            

 

  are the groups to which separate treatments will be assigned.   represents the 

exposure of a group to the experimental variable, whose effects will be measured.   refers 

to the process of observation or measurement. In a posttest-only controlled trial, no 

measurement is done before the experiment. Rather, the random selection of participants is 

expected to minimize the effect of unknown individual differences.  

In the context of this research, the first group (experimental group) will perform 

inspection at CAI ( ) while control group will inspect tires by means of the current manual 

process. The independent variable in the experiment is the use of CAI while the dependent 

variable will be the binary quality assessment (OK or NOK). 

As described in Chapter 2 there is a significant variability in the average inspection time 

and rejection rate among inspectors. For this reason, historical data of a one-month period 
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was analyzed so that operators with equivalent rejection rate and productivity could be 

assigned to the two groups. Avoiding, for example, that only risk averse operators (profiles 

with higher rejection rates) are assigned to CAI or manual inspection is desirable. Thus, the 

allocation of operators to the experimental group and control group will be done with the 

objective that both groups individually match in terms of average productivity and rejection 

rate. After grouping the operators in terms of their profile, their selection and allocation to 

each of the two groups was randomly done. This intends to minimize the possibility of 

selecting biased groups. A total number of 12 operators participated in this study. 6 operators 

were assigned to the control group and other 6 to CAI in which they were previously trained. 

This experiment occurred during a 2-month period at Continental Mabor manufacturing 

plant. Images of 1000 tires were acquired. This sample of tires is representative of a random 

sample and, therefore, approximately 90% of them were OK tires. The remaining 10% contain 

imperfections. From the 76 different NC codes, 41 were represented in this sample. The non-

conforming tires selected for this sample also vary in terms of severity. 

Every day, 40 tires were collected and sent to the image acquisition station (4 NOK and 

36 OK to keep usual conditions). Each day, 12 operators assessed the 40 tires. The image 

acquisition step occurred in one shift and the assessments by the operators at the following 

one (Figure 5.1).  

This experimental design originated a significant volume of data that was stored in 

AutoClass database. A total of 6,000 digital assessments were compared to an equal number 

of as-is inspections. Various data was stored during the tests. At CAI, there was an automatic 

storage of the binary assessment (OK or NOK) and imperfection location (in case of a NOK 

assessment). Also the time of inspection was automatically stored. At the as-is process it is 

not possible to store the location of imperfection but the overall decision was recorded. Also 

inspection time was measured.  

 

 
 

Figure 5.1 – Operationalization of the experiment. 
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 Results 5.3

Because the only matching criterion was keeping operators with equivalent average 

inspection and rejection rate in both groups, the random selection led to the participation of 

operators with many different profiles regarding age, years of job experience and education. 

For the benefit of the experiment documentation, these indicators were obtained through a 

questionnaire in the beginning of the study. As an example, one operator selected was 54 

years old at the time of the experiment presenting 15 years of experience, while another was 

29 years old and had been in the job for 1 year. Enrolling operators with such different 

profiles in this study, contributed to its relevance.   

The quality decision made by the two groups is the main dependent variable. As 

mentioned before, the current manual inspection process does not allow for the recording of 

the imperfection location. Thus, the comparison of quality assessments was made considering 

binary decisions. Both groups’ quality decisions were compared to the one registered at the 

image acquisition station. The tires selected for this sample were segregated and classified 

by the graders. Thus, graders assign the reference decision, always assumed as correct.  

Operators were very enthusiastic about participating in this study. They were very 

collaborative and participative along the research. To keep their interest along the 

experiment and to contribute to a faster learning curve for the experimental group, 

individual feedback sessions were organized on a weekly basis. At the feedback session, a 

report would be given to each one demonstrating their quality performance and inspection 

time for the sessions performed in the previous week. For the operators belonging to the 

experimental group, the images in which they failed were shown to them, together with an 

explanation of the correct decision for each case.  

The consolidated results obtained through the abovementioned experimental design are 

plotted in the gray and yellow series in Figure 5.2. The results were obtained across the 25 

testing sessions. The control group presents a higher accurate detection rate over the 

experimental group (the control group’s performance in terms of correct decisions is higher 

than the experimental group’s one by 18%). Experimental group also revealed a higher false 

positive and miss rate. The results are not shown in a discrete manner for each session 

because no time dependent pattern was noticed.  

Many factors may influence these results but the most probable one is the need of a more 

intensive training program and longer adaptation period. The results obtained in Chapter 4 in 

which the operators were able to accurately identify 97% of the NC locations when given its 

code, reveals that the images are appropriately acquired and that the operators are able to 

interface with them. When performing the quality assessment through CAI independently and 

in a random mode, operators lowered their performance, suggesting that their adaptation to 

the method needs further attention. In fact, moving from a shop floor workplace to a 

computerized one, requires many adaptations and development of mechanisms to deal with a 

sedentary job that requires more cognitive processing and mental attention (Brown, Dismukes 

and Rinalducci 1982; Mocci, Serra and Corrias 2001). It is also important to notice that the 

relative importance of each of the three considered classes (correct decision, miss and false 

positive) is the same for both groups which denotes a general underperformance and not a 

specific error type.   
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Figure 5.2 – Performance comparison between control group, experimental group and 
assisted experimental group.   

 

 
 
 

 

 

Figure 5.3 – Relation between area shown to operators and performance indicators (quality 
detection and inspection time).  
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After concluding the research experiment, additional tests involving CAI were performed. 

Although the automatic detection algorithms are not yet integrated with CAI, the analyses of 

their impact as assisting tool is of interest. Thus, for a smaller sample of 100 tires (the 

change in sample size was due to limited operators extra availability), eight additional 

sessions were created in which the operators received only part of the tire image (Assisted-

CAI), as to emulate the process when an online connection between automatic inspection 

algorithms and CAI is in place. The eight new sessions were distributed along 4 scenarios of 

reduced inspection area: 20%, 40%, 60% and 80% of the images’ area were removed. The 

results of these tests are presented in Figure 5.3. In this plot, the correct assessments are 

represented, keeping NOK tires to the left and OK tires on the right. Ideally the circles would 

be on the external edges, showing 100% of correct decisions. The lower they are on the 

vertical axis, the lower the inspection time. Starting from the top, a series in which the 

complete image was made available to inspectors is displayed (Experimental Group). This 

shows a high inspection time compared to the control group (48 seconds vs. 29.6 seconds of 

control group). An improvement in both these variables (correct decision percentage and 

inspection time) is noticeable as the percentage of image conveyed to inspectors is reduced. 

A 40% reduction in image size results in a reduction of inspection time by approximately 12 

seconds (25%) and increases the correct evaluation by 2% in NOK tires and 5% in OK tires. By 

doubling the percentage of reduction in image size (to 80%), the reduction on inspection time 

becomes 52% lower (becoming lower than the current manual inspection time) and the 

improvement in correct decisions is 11% for both OK and NOK tires. A representation of the 

outcome of a process considering 80% reduction in image size is represented in green in 

Figure 5.2. By implementing a step that, using automatic algorithms, manages to reduce the 

area of images displayed to operators to 20% that might contain NCs, CAI manages to 

outperform the control group in all the classes of Figure 5.2 and also in the inspection time. 

Figure 5.4 compares the performance of the three inspection scenarios. The plot of the 

hit rate as a function of the false positive rate is known as the relative operating 

characteristics diagram (Sylla 2002). Each point in the plots is the result of an operator 

session performance. The upper left corner represents perfect results in which all conforming 

tires are assessed as OK and non-conforming ones as NOK. In this case, the closer the 

operators are from the upper left corner, more correct their decisions are. The advantageous 

of this visualization mode is the possibility to understand system evolvements. Having the 

upper plot in Figure 5.4 as the reference control group, the second plot shows the decrease 

in performance and higher scattering, associated to CAI (Experimental group). This may 

suggest that operators were still not adapted to CAI methods. Finally, the last plot shows a 

recover in operators’ performance, obtained by reducing the area to be inspected to 20%. 

Data is much more concentrated on the top-left quadrant and reveals that operators are able 

to perform similarly to the current manual inspection (refer to RQ 1.2 in Figure 1.2). 

According to a parallel work developed in this project, cost projections were established 

as a function of inspection time. The number of human resources required varies linearly with 

the cycle time to inspect each tire. As mentioned in Chapter 3, human resources account for 

70% of inspection costs. By lowering the inspection time, costs can be reduced. As 

abovementioned, results depicted the need of further familiarization of operators with CAI. 

Therefore it is fair to estimate that, by addressing the operators’ training needs more 

carefully, CAI times may be further reduced, thus translating into inspection costs decrease.  
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These results show the need of reliable algorithms capable of automatically assessing the 

conformity of tires, and reduce the area that requires human inspection. This will be the 

subject of the next chapter. 

 

 

 

Figure 5.4 – Performance of the various inspection scenarios: Control group (manual 
inspection), Experimental Group (CAI), and assisted Experimental Group (Assisted CAI).  
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Chapter 6  

Methods for automatic quality 
assessment of tires  

 

The objective of this chapter is to demonstrate that image processing techniques can be 

reliability applied to the detection of imperfections in tires. In the context of this project, 

developing automatic detection algorithms firstly aims at guiding visual attention of 

operators to potential defective areas. The use of automation for attention guidance is 

successfully being used in military, aviation and medical domains (Kirlik 2009; Cummings 

2004).  Fully automatic decisions will be a consequence of a continuous improvement and 

demonstration of algorithms reliability.  

Automatic detection algorithms are suggested as a mechanism to accelerate inspection 

but, while accurate fully automatic decision is not assured for all possible imperfections, they 

can be used to enhance the information displayed in CAI. This intermediate step is 

advantageous for many reasons. First, from the development perspective, it is crucial that, 

before attempting to automatically detect imperfections, the machine vision system is 

validated in terms of accurate acquisition of imperfections. To attempt to automatically 

detect an imperfection, there must be some sort of contrast between its shape and the 

background, thus the shape can be said to exist. As a consequence, if an imperfection is not 

represented in the image, no algorithm will be capable of its detection (evidences on this are 

shown in Chapter 4). No one better that the visual inspectors can assess how accurate the 

representation of imperfections in the images is. Secondly, the CAI step allows the storage of 

assessments performed by operators. These are essential for the subsequent step that 

involves the development of the automatic detection algorithms. As mentioned in Chapter 2, 

not always the rejection criteria are accurately defined and again no one better that the 

inspectors can provide inputs for the development of automatic detection techniques. 

Finally, an analysis from the company perspective, demonstrates that there are significant 

economic benefits in the CAI. This achievement is crucial to guarantee a sustainable 

development of automatic detection algorithms. The system can be implemented at first with 

a lower LOA that should be increased along time.  

 As mentioned in Chapter 2, humans are known for being furious pattern matchers, able 

to perform visual search by recalling how a conforming item should look like and detect 

whatever “pops out” differently. In fact, humans are extremely good at making rapid 

assessments of complex situations based upon matching features of the world to similar 

situations stored in long term memory. Particularly in the inspection of tires, operators use 
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this ability because the vast number and shape variety of imperfection is not compatible with 

a strategy of visual searching for each one individually. The operators frequently mention 

that they do not attempt to discover imperfections; rather they are expecting that 

imperfections will be visible as a sudden variation from the regular background.  

The development of the automatic detection algorithms proposed in this dissertation 

followed a similar strategy by attempting to maintain equivalent abilities and similar criteria. 

For this reason, the process of automatically detecting imperfections is related with a 

general field of image processing called template matching. Template matching has been 

used in robotic applications, video surveillance and industrial inspection (Crispin and Rankov 

2009). In defect inspection applications, the similarity measure between two images, one to 

be inspected and a faultless second, is calculated (Tsai and Yang 2005). The task of surface 

defect detection is generally a qualitative method in which the presence or absence of a 

visually faulty item determines the final quality assessment. The fact that defective regions 

typically imply changes in intensity due to uneven illumination or irregular texture pattern is 

normally the starting point for the development of automatic detection algorithms (Tsai et 

al. 2012). 

Like image acquisition, the determination of the adequate algorithms for tire quality 

inspection is not straightforward, due to its particularities. The adjustment of the mechanical 

system position (to minimize vibrations) and lighting configurations (to highlight 

imperfections) according to the tire allow for image acquisition in a more stable and 

repeatable manner. Despite this fact, intrinsic tire characteristics and imperfections’ 

variability constrains the applicability and performance of some image processing algorithms 

for quality assessment. Specially for being a deformable object, the complexity of the tire 

automatic quality control is significant and led the development of novel algorithms. This 

difficulty seems to be common to other industrial applications. Some studies report that 

improving algorithms robustness should keep up with the continuous development on vision 

sensors, otherwise they will be the limit to the penetration of machine vision for quality 

control into industrial scenarios (Bozma and Yalçın 2002). 

In every engineering design exercise, there are numerous factors specific to the task in 

hand. Tire inspection is an application particularly challenging for automatic quality 

assessment with specific requirements due to: variable surface properties, deformable shape, 

and imperfections varying stochastic in scale, stretch and skew.  

 Image processing techniques for quality assessment 6.1

The mechanisms used by automatic algorithms and humans in image interpretation are 

significantly different. Automatic algorithms are expected to minimize some effects of 

misleading human perceptions of shapes and colors. Despite the fact that the eye is an 

excellent detecting system, the data elaborated by the brain do not always give a correct 

perception of the object (Di Lazzaro, Murra and Schwortz 2013). Patterns and colors may be 

perceived in a subjective way. What humans perceive as a definite color is, in fact, the 

consequence of the comparison between the object and its context. This can lead our eye-

brain system to be fooled as shown in Figure 6.1, which shows the ‘‘checker shadow 

illusion’’. In this image two identical gray squares appear different just because they are 

surrounded by different square colors, and the presence of a shadow enhances the illusory 
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effect. The eye-brain system cannot perceive the absolute lightness of square A and B but 

rather relative lightness (Robinson, Roodt and Nel 2012). The incorrect perception of reality 

is independent of the individual will, and the response of eye-brain system is almost the same 

for all humans. In examples such as this, digital imaging processing techniques should be used 

as assisting tools or as stand-alone methods. 

Surface defect inspection is a typical quality control process in manufacturing for 

materials containing non-textured or textured surfaces. The detection algorithms applied in 

both differ. Defect detection in non-textured materials (such as metals, film, paper, etc.) 

relies upon identification of regions that differ from a uniform background. Morphological 

operations, analysis of local intensity discontinuities and gray-level statistical methods are 

techniques typically used to detect and identify a large variety of surface flaws on metallic 

objects such as: scratches, dents, dirt, and corrosion (Zheng, Kong and Nahavandi 2002; 

Pernkopf and O'Leary 2002).       

Another group of surfaces that can be inspected automatically are textured materials. 

The textured materials can be further divided into uniform patterned or random textures 

(Figure 6.2). In uniform patterned textures such as fabrics, sandpaper, leather; the 

occurrence of a defect means that the regular global structure has been destroyed. In this 

application, the frequency spectrum is typically analyzed by means of Fourier transformation 

for detecting structural defects. Several studies suggest Fourier transform because it reveals 

a well-known shape with peaks whose location depends on the spatial frequencies of yarns 

(Castellini et al. 1996; Chi-Ho and Pang 2000). 

 
 

Figure 6.1 - The Checker Shadow Illusion: On the right, proof that square A and B have 
identical intensities (Adelson 2000). 

 

 
 

Figure 6.2 – Examples of textured materials. The images show: on the left an uniform textile 
pattern and on the right a random pattern in a solar wafer ((Nixon and Aguado 2012a; Tsai, 

Chang and Chao 2010). 
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Applications involving heterogeneous texture patterns require more sophisticated image 

processing techniques. Studies in the field of solar wafers inspection are an example of a 

random texture in which the crystal grains present random shapes, sizes and directions (Li 

and Tsai 2011). The use of anisotropic diffusion-based methods was validated for micro-crack 

detection (Tsai, Chang and Chao 2010). By adjusting the diffusion coefficients, the contours 

of the defects can be enhanced while intra-regions become smooth. Shin-Min et al. (2006) 

also suggested and demonstrated the used of anisotropic diffusion to detect defects in the 

glass substrates surface.       

Tires are definitely not a non-textured object. Nevertheless, framing the tire texture in 

one of the abovementioned categories is not trivial. Although tire texture is known (sidewall 

lettering, tread pattern, etc.) it does not present a periodical, repetitive pattern. Rather 

each surface has its own design and features. For this reason, tire cannot also be classified as 

heterogeneous, although there is some random component about its shape due to its 

deformable properties. 

Regarding the image processing techniques mentioned above, limited applicability in the 

tire application is envisaged. Because methods based on Fourier transform exclusively 

characterize the spatial-frequency distribution, they are mostly tailored to texture patterns 

that are approximately identical everywhere in the inspection image. The periodic and 

repetitive pattern can be removed using the inverse Fourier transform, after which the 

homogeneous region in the original image will have an approximately uniform gray level, and 

yet the defective region will be distinctly preserved. This converts the difficultly in defect 

detection in uniform textured images into a simple threshold problem in non-textured images 

(Tsai and Huang 2003). In the tire application, texture grooves, embossments and letterings 

significantly change the uniform gray-level of the tire. The intensity variation in these 

faultless textured regions can be on the same range as gray-level variations caused by 

defective regions. Distinguishing the causes for intensity variation cannot simply be done as 

in fabric quality inspection application, in which authors simply suggest setting up upper and 

lower control limits for distinguishing defects from the uniform background (Tsai and Huang 

2003). Also, the applications suggesting anisotropic diffusion are based on intensity unique 

features of defects. Authors highlight the need that defects present both dark intensity and 

high contrast in the sensed image, which tailors this method only to specific imperfections 

and applications (Tsai, Chang and Chao 2010). There are many other image processing 

techniques and transforms described in the literature for texture characterization. The 

wavelet transform, for example, is a very popular method (Nixon and Aguado 2012b). 

Although improved detection capabilities were described when comparing to Fourier 

transform, most studies also rely on the elimination of regular and repetitive texture patterns 

by selecting proper smooth or detail sub-images for wavelet synthesis (Tsai and Chiang 2003; 

Ngan, Pang and Yung 2011).   

Differently from many studies mentioned before, the imperfections that can occur in tires 

vary significantly in shape and intensity. While some are highlighted by its brighter intensity 

others do become noticeable for being darker. Furthermore, a spatial-analysis based on 

intensity profiles may not be able to distinguish them from other features that also originate 

intensity variations. For this reason, the development of automatic detection algorithms for 

tire quality inspection was mostly focused on broader techniques not specific for a certain 

imperfection type. Similarly to the manual inspection process, the automatic detection does 
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not intend, at least in this stage, to fully characterize the imperfection type and its 

dimension. Rather the approach would be to reject a tire that contains an abnormal feature. 

In the literature, this strategy is typically addressed by template matching algorithms.  

Template matching is one fundamental technique occurring in countless image analysis 

applications (Sarvaiya, Patnaik and Bombaywala 2009). This technique aims at locating a 

given template into a reference image by means of subtractions methods. This task consists 

on determining the regions of the image under assessment that are similar to the template 

according to a given criterion and discarding those that are dissimilar (Tombari, Mattoccia 

and Di Stefano 2009). The basic template matching algorithm consists in calculating at each 

position of the image under assessment the degree of similarity between the template and 

the image (Sarvaiya, Patnaik and Bombaywala 2009). Different metrics or measures have 

been proposed to define the similarity between the two images. There is not a single 

similarity measure that is known to produce the best result in all situations. Depending on the 

application in hand measures such as sum of absolute differences, sum of squared differences 

or geometric distance can be considered (Ding, Goshtasby and Satter 2001). 

Template matching is the general terminology of a technique that is found in the 

literature applied in many different ways. Categorizing template matching can be done by 

the source of the reference image. Based on that it can either be: referential image or CAD 

(Computer-Aided Design) based comparison (Newman and Jain 1995a). The first approach 

involves matching a template of a defect-free image acquired in the same scene (Nixon and 

Aguado 2012a). In the second case the comparison is based on a CAD model. Authors suggest 

the use of CAD models in inspection because the models contain an exact specification of an 

ideal part. But variances in the production process make it impossible to build a part in exact 

accordance with the specifications, which leads to the establishment of tolerances (Newman 

and Jain 1995b; Moganti et al. 1996). Nevertheless, authors refer that the limitation of this 

technique (independently of the source of the reference) is the number of rejections due to 

normal manufacturing distortions (Moganti et al. 1996; Ngan, Pang and Yung 2011). Avoiding 

this may be done by introducing large and variable tolerance ranges but this can lead to 

imperfection misses (Enzberg and Michaelis 2012). Authors highlight the difficulties in 

applying template matching techniques particularly to images that may contain specular 

reflections and curved surfaces (Newman and Jain 1995a).  

Tires contain curved surfaces and possibly specular reflections, but the most challenging 

aspect in applying template match techniques to tires’ quality assessment seems to be its 

flexible shape. As mentioned by Enzberg and Michaelis (2012), adjusting the template match 

method to account for tolerance ranges and possible deformation is difficult or in many cases 

impossible. Some methods suggest the use of several measurements of typical faultless 

sample surfaces to describe a defect-free part. Lilienblum et al. (2000) described a study 

based on the strategy of using several faultless samples. This study is limited to the detection 

of one specific defect in car bodies that for presenting a significant height variation lead to 

the use of 3-D measurement methods. The high stretchability of knitted fabrics also 

motivated the development of automatic quality control strategies able to deal with 

distortions and deformations. The authors developed a system that involves a line-by-line 

tracking of the live lace image and its match to the perfect prototype. Subsequently 

adjustments to the live image lines to correct any lateral, longitudinal or skew distortions are 

done (Farooq et al. 2004).  



 

114  Methods for automatic quality assessment of tires 

 

 

 

 Proposed algorithms  6.2

Analysing the literature gives the notion that tires present characteristics that put them 

amongst the most complicated objects to be inspected automatically. Normally each study 

attempts to find alternative methods to deal with a particularity derived from a certain 

application. This particularity can be reflective surfaces, deformable materials and intricate 

geometries that require specific methods. As mentioned before, tires present all these 

aspects at once, which denotes how challenging the problem is. This renders the applicability 

of direct comparison methods, such as those employed for the automatic inspection of 

printed circuit boards and metallic parts. They would lead to unacceptable levels of false 

positives. Thus, template matching techniques cannot be applied in a straightforward manner 

and novel contributions were made.  

Before describing the strategies defined for automatic quality inspection, a section about 

automatic tire identification is given. Tire identification is part of the tasks performed by the 

visual inspectors that is hypothesized to benefit of an increased LOA. This step is essential in 

the production flow for tracking purposes. Additionally its methods also provide outputs 

needed for the subsequent task of automatic quality inspection. After this, the methods 

developed and applied for the automatic detection of imperfection in tires are described and 

validated. 

 Tire identification 6.2.1

As mentioned in Chapter 2, tire identification is a task performed by visual inspectors at 

the current quality control process. This task intends to unequivocally identify the tire article 

being inspected considering that in the previous process (vulcanization) a single green tire 

can originate several different cured tires. For being a very repetitive and non-cognitive 

demanding task, in Chapter 3, tire identification was proposed as an optimal candidate to 

have automatic methods applied to. Tire identification involves two sub-tasks: identification 

of DOT and mould (i) and color line (ii). DOT and mould are alphanumeric codes that are 

embossed in the sidewall. Color lines are painted along the tread. Both DOT code and color 

lines correspond to a specific green tire code. They are automatically verified for redundancy 

purposes and to track possible printing inconsistencies. The mould number identifies the 

cavity in which the tire was cured. For this reason, the identification of this element is 

mandatory.  

The strategy to perform a comparison between a reference image and a new sample 

requires that, from all tire articles that will be assessed, at least one acquisition of a 

conforming case must be done. While performing the acquisition of the first tire of a certain 

article, a recipe is created containing lighting conditions and machine configurations 

(described in Chapter 4). Together with the storing of the original reference image, two 

separated sub-images are stored independently, one containing the DOT and the second the 

mould code. The template matching algorithm available through the OpenCV library (Bradski 

and Kaehler 2008) is then used to match and locate DOT and mould codes in the new tire 

under assessment. In this document this algorithm will be referred as direct-TM. If a match 

occurs the tire is identified and, subsequently, the coordinates of the match identify the 

special relation between the two images (image registration). In fact, this step fulfils two 

required tasks: tire identification and image registration. Figure 6.3 shows an example of the 
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offset needed for two images acquired of two different tires belonging to the same article. 

Figure 6.4 shows the complete images already aligned. To guarantee the quality assessment 

of the complete image, an extra 5% of the image is repeated at the end. 

 The direct-TM is versatile to image sizes and the results obtained so far demonstrated 

some robustness to lighting variation and shading, especially when using the normalized 

version of the matching function. The function systematically compares the template with 

every possible portion of the reference and returns a matrix of the values resulting from the 

matching. By defining a similarity criterion, the presence or absence of match is retrieved. If 

existent its coordinates are also stored.   

Using direct-TM to perform tire identification and image registration was not yet 

validated at an industrial environment and scale but its applicability to the automatic 

alignment of the images was successful in all cases along this research.         

    

 
 

Figure 6.3 – Result obtained by using direct-TM. 

 

 

 

 
 

Figure 6.4 – Overall view of the two images to be compared. 

 

Although not described in Chapter 4, the proposed system also comprises a color camera 

(AVT GC 780C). Because this camera is not directly applied to the quality inspection purpose, 

this was not mentioned as an integral part of the image acquisition station. The color camera 

function consists in capturing images of the tread that are then used for color line 

identification. Color line identification aims at providing redundant tire identification. There 

are eight different color lines. Each tire article presents a set of these color lines painted in a 

pre-defined order. The colors are: red, white, blue, orange, yellow, magenta, brown and 
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green. The paints used in this process are standardized and with specific color references. 

Because of these specifications, the images acquired in RGB color model were converted to 

the cylindrical-coordinate system: HSL (hue, saturation and lightness). This step intends to 

facilitate the distinction between color lines (hue will vary significantly) and background 

removal. The tread pattern can be disregarded because of its low lightness and color clusters 

can be formed. By calibrating the hue, saturation and lighting intervals for each color line, 

the color identification of each cluster can be performed (Figure 6.5 and Figure 6.6). The 

color sequence identified is then compared with the expected one also included in the tire 

recipe. In a future industrial implementation of the proposed system, whenever the match is 

not successful the tire is rejected and sent to the grader. 

           

 

 

Figure 6.5 - Steps followed for color line calibration and subsequent identification. 

 

 

               
 

Figure 6.6 –Two images exemplifying the color lines being accurately identified. Color 
identification output on top and acquired images on bottom. 
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Validation tests were done at the Continental facilities. Because of task independency 

this process was not integrated in the image acquisition system. Rather this system was 

validated at an installation in a conveyor belt chassis. A sample of approximately 1000 tires 

was used to validate the color line identification. Each color was tested at least 300 times. 

Results show an average correct color detection of 95.7%. The color detection with lower 

detection rate was brown (84.6% correct detection). The specific brown in use presents a hue 

value close to orange and a lightness and saturation mistakable with the background. In the 

meanwhile Continental changed the brown color and new tests need to be done to evaluate 

the impact of this change in the results. Nevertheless, the detection rate is high enough to 

consider an implementation in which a disagreement between the colors visually identified 

and recipe would lead to a rejection. Tires with inverted color lines, cured in the wrong 

position and vulcanized in the wrong cavity can be detected by this method.              

Integration and optimization of the image processing techniques and applications for tire 

identification is not addressed by this research. So far, the abovementioned steps towards 

tire identification are done off-line and by different applications. But, because they address 

independent tasks, the validation of each individual one is not affected by others’ 

performance.  

The techniques described for tire identification are not typically classified as pre-

processing methods. Pre-processing often include filter operations which intensify or reduce 

certain image details. Nevertheless, in the context of this process, these steps were classified 

as pre-processing firstly because the image registration is essential for the subsequent steps 

and secondly because in the future system integration, if a certain tire is not identifiable, the 

quality assessment should not be performed. 

 

 Strategies for automatic quality inspection 6.2.2

Applying template matching techniques intends to simplify the information in the tire 

images and facilitate the latter classification as faulty or not. Tires contain faultless 

embossments, letterings and patterns that, if properly removed, would allow simpler 

strategies of classification. For this reason, comparing the tire under inspection to a 

reference model is unavoidable. 

A typical template match algorithm follows the steps listed in Figure 6.7. After the image 

acquisition is done, the initialization of the process involves loading the image model 

(reference) and an image of the part to be inspected (sample). In the tire application, the 

fact that the acquisition step is performed separately (sidewalls, tread and inner liner) 

implies that an individual comparison is performed to each image area. Thus, with the 

current image-acquisition setup, a tire is totally assessed when four comparisons are done.  

A second step before subtraction is needed. This is called image registration and takes 

part of pre-processing techniques. Image registration intends to find the spatial relationship 

between the reference and the sample to be inspected. Correctly overlaying the two images 

is essential in all image analysis tasks that result from a combination of images (Zitová and 

Flusser 2003). This can be achieved by locating and aligning special target markings (Crispin 

and Rankov 2009). Matching the DOT location between the two images is the mechanism used 
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in this context. This step needs to be performed since tires are placed in the image 

acquisition system in a random position. This means that a certain initial feature in one 

image can be the last on the other.  

Finally, by applying image subtraction approaches, features potentially corresponding to 

faults can be extracted. Usually if the difference image is a blank image it suggests that the 

test image is error free. 

The subtraction step may be followed by morphological operations to remove any residual 

noise from the subtracted image and detect actual imperfections. 

 

 
 

Figure 6.7 – Conventional sequence of steps in automated inspection through template 
matching (adapted from Crispin and Rankov (2009)). 

 

The steps described in Figure 6.7 were implemented and tested for the tire application. 

The details of each step implementation will be given below. Some preliminary tests 

indicated that this simple and direct comparison method would not be adequate for the tire 

inspection application.  

Figure 6.8 shows a comparison result obtained by means of the conventional TM methods. 

To restrict the variables and simplify the problem, this first test was done by acquiring the 

same tire twice. Obviously the expected outcome would be to obtain a subtraction without 

resulting differences. Nevertheless, Figure 6.8 shows that this is not the case. The most 

determinant factor contributing to this effect seems to be the low stiffness of the tire that 

results in surface flexibility. When physically constrained inside the image acquisition station, 

the tire deforms slightly and, despite the fact that same mechanical constrains are applied to 

a certain article, the overall image subtraction can originate artifacts depending on the tire 

initial input position, small speed variations, etc. This asynchronous effect is mostly visible in 

highly curved regions (tire shoulder displayed in Figure 6.8) where the conjugation between 

distortions caused by tire deformability and distortions caused by the image acquisition is 

highest. 

The results obtained in Figure 6.8 prevent any imperfection detection to be attempted. 

This fact motivated the research and development of other methods that would compensate 

these distortions. A self-adaptive and deformable template match (SAD-TM) algorithm that 

dynamically adjusts the sample image according to the template is proposed (Figure 6.9). 

This additional step will attempt to minimize variability effects in tire’s images by applying 
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dynamic and adaptive alignment corrections with parameters that change along image width 

and height. This approach was not found in the literature even when looking at other 

applications. For this reason, custom-designed algorithms were developed. The programming 

language used to implement those was Pascal.  

Besides the proposed step of dynamically adjusting the two images which was specifically 

developed in this research, some previous and subsequent steps in the process illustrated in 

Figure 6.9 were performed by means of available libraries. OpenGL and OpenCV were used. 

OpenGL was used for image texture mapping, while OpenCV was used to access to various 

image processing techniques.  

 

 

 

 
 

Figure 6.8 – Sample image shown on top and the resulting differences and their classification 
are shown on the bottom. 

 

 

 
 

Figure 6.9 – Proposed sequence of steps for automatic imperfection detection in tires.  
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6.2.2.1 Comparison run setup 

An application developed in the Lazarus visual programming environment will accomplish 

the remaining steps listed in Figure 6.9 as part of feature extraction and classification. At this 

stage, the program runs at an offline basis and demands user interventions. The process here 

described reflects the current stage of the program. Automating and optimizing various steps 

is possible and desirable in the future. 

As stated before, the template matching technique implies that a reference image is 

compared to a new sample to be assessed. For this reason the first step is to configure which 

images to compare. The acquisitions mentioned in Chapter 4 and Chapter 5 are accessible 

through AutoClass database. In this database each image has an associated article, DOT, 

mould, etc. When configuring a template match run, the selection of images should follows 

the listed criteria: 

 

 Images belonging to the same tire article; 

 Images of tires cured in the same mould; 

 Images of the same tire area; 

 Images acquired with the same lighting conditions. 

 

Independently of the size of the image under assessment, the comparison will be based 

on the dimensions of the template which is assumed to contain the whole area that needs to 

be analysed. 

The global offset between the two images is given by the method described in previous 

section (direct-TM). This method provides a good approximation of the initial offset between 

the two images. The difficulty is that because the tire deforms, detailed image features are 

slightly misaligned all over the image even if the initial offset guess is perfectly accurate. 

This suggests that there should be another level of alignment between the two images. An 

alignment performed locally to smaller portions of the image is suggested. This will be called 

shift adjustment to distinguish from the global offset. This way the overlay between the two 

images is not only done globally but also accounting for a dynamic correction to each of its 

sub-images. This is done by permitting smaller orientations adjustments to each sub-image.  

In order to implement this, three additional parameters need to be provided when setting 

up a comparison run: window search width (WSW), window search height (WSH), and window 

search radius (WSR). WSW and WSH correspond to the width and height of the sub-image, 

respectively. WSR refers to the number of pixels that the sub-image is allowed to navigate 

over the other to find the best match possible (Figure 6.10).  
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Figure 6.10 – Parameters needed to define a comparison run. 

 

6.2.2.2 Self-adaptive and deformable template matching 
algorithm (SAD-TM) 

The various parameters defined before will be used as inputs to the SAD-TM. The WSW 

and WSH define the dimensions of the sub-image. Thus the number of iterations corresponds 

to the number of sub-images (         ) that fit in the template global dimensions. The 

image should be partitioned along the two directions (width and height). Compensation along 

the width will mostly correct differences originated by small speed variations and tire 

deformations along rotation cycle. Along the height of the image, correction will be mostly 

needed because of image distortion along curved surfaces. In fact, the placement of the tire 

in the machine can create small distance variations and different physical deformations that 

appear as image distortions. 

For each sub-image comparison, the sum of the absolute intensity ( ) difference is 

calculated across all shifts given by the WSR. A WSR of five pixels, for example, permit that 

the sub-image is positioned up to a maximum of five pixels to the left, right, top or bottom. 

The best shift is then calculated when the sum of the absolute differences is minimum. This 

minimum is stored in an array that when all sub-images are analysed will contain all needed 

corrections. The formula used to perform these calculations is given by: 

   
         

∑ ∑ |                 |                                
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Figure 6.11 shows a block diagram describing the steps of the proposed algorithm. Given a 

template image with a certain width (Image1.Width), height (Image1.Height) and WSW and 

WSH assigned by the user (see section 6.2.2.1), the first step is to decompose the template 

image and the sample into sub-images. After that, the calculations following Equation 6.1 

evolve on successive cycles as the algorithm progresses. The outcome is the shift that best 

aligns each of the sub-images with the reference image. 

Before attempting to test this algorithm with tire images, an initial validation was done 

using a synthetic image in which blurred black squares were intentionally misaligned to 

replicate tire distortions (Figure 6.12). The template image is shown on the left part of Figure 

6.12. The image on the right illustrates the shifts applied. 

The top image in Figure 6.13 shows the difference between the two images when no 

dynamic correction is performed. After calculating the shift for each of the nine sub-images 

(image on the bottom left part of Figure 6.13), the sample image is reconstructed according 

to these values. When these corrections are applied the resulting difference is zero.  

  

 
      

Figure 6.11 – Block diagram of the proposed algorithm. 
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Figure 6.12 – Misalignment of blurred squares between template and sample image. 

 

 

 

 

 

 

                          

 

                                
 

 

 

Figure 6.13 – Comparison between differences obtained before and after corrections. 
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Further algorithms’ development occurred after the tests started to be performed with 

tire images. An unnoticeable effect in the synthetic images became evident by then. This 

refers to some discontinuities found in the reconstructed sample image in between sub-image 

(Figure 6.14). This was unnoticeable in the example with the synthetic image because the 

background was uniform.  

 

 
 

Figure 6.14 – Discontinuities visible between sub-images in the reconstructed sample image.  

 

The effect shown in Figure 6.14 is originated when a certain sub-image is displaced in a 

direction that differs from the direction applied to the subsequent sub-image. Because the 

tire surface contains many features and patterns, these discontinuities become highly visible 

and can disturb the later calculation of differences. These discontinuities suggest that the 

optimal shift for the pixels in between the center of two consecutive sub-images should be 

somewhere in between the shift values, initially suggested to each sub-image. By means of a 

bilinear interpolation it is possible to determine the needed sub-pixel adjustment for each 

pixel accounting for the shifts of the neighborhood (Figure 6.15). A second bilinear 

interpolation will return the adequate intensity value. The interpolated value (f) is given by:         

 (   )   (   )(   )(   )   (   ) (   )   (   )(   )   (   )          (6.2) 

where  (   )  (   )  (   )  (   ) are the values of the four-neighbors. The steps to perform 

these calculations are shown in Figure 6.15. 

 

 
 

Figure 6.15 – Bilinear interpolation method used to minimize discontinuities. 
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Figure 6.16 shows the improved results obtained by applying corrections at the sub-pixel 

level by using bilinear interpolations. The discontinuities became imperceptible. This 

mechanism was applied with improved outcomes to all surfaces’ comparisons independently 

of the tire area. 

 

 
 

Figure 6.16 – Reconstruction of the case in Figure 6.14 after the implementation of the 
bilinear interpolations. 

 

6.2.2.3 Comparison and classification 

The SAD-TM is the central contribution in this automatic tire inspection program. Having 

the two images as accurately overlaid as possible is essential to reduce the information that 

is maintained when subtracting the two images. Thus after having compensated for image 

distortions, the subsequent step is to create an image with the same size as the template, 

whose intensities will be the result of subtracting the intensities between the two images 

following the equation:  

              
|                 |

           
                                                  

The resultant intensity of a certain pixel (          ) is calculated by the absolute variation 

of intensity of that pixel in the template and in the new sample. A gain (G) value can be 

assigned for visualization purposes. A constant k is introduced so that more relevance is given 

to absolute variations that occur in sample image then when there are higher intensities in 

the template. The template corresponds to a conforming item but due to tire variability its 

image representation can contain brighter pixels. Differences originated because of brighter 

pixels in the template should be less valued than the occurrence of brighter pixels in the 

sample image.    

The results obtained directly from this subtraction still need to be filtered to reduce 

noise artifacts (Figure 6.17). After that blobs with potential imperfections will be drawn and 

their size and location stored. OpenCV was the library used to perform these post-processing 

techniques.   
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Figure 6.17 – Post-processing block diagram. 

 

Because the output of SAD-TM is a much cleaner image than the preceding input images, 

the techniques required at this stage are common image processing techniques (Gonzalez and 

Woods 2001). The combination of techniques includes: 

 Blur: intends to reduce noise by replacing each pixel by the median value in a 

square neighborhood.  

 Dilate and Erosion are morphological operations. Dilation adds pixels to the 

boundaries of objects in an image, while erosion removes. When applied in 

sequence, dilation aims at connecting sub-components while erode operation is 

used to eliminate the remaining “speckle” noise. 

 Adaptive threshold: used to create a binary image. Instead of applying a 

conventional thresholding operator that uses a global threshold for all pixels, 

adaptive thresholding changes the threshold dynamically over the image. This 

technique performed better than the conventional threshold because of the 

considerable lighting variations in tire application. 

 Blob detection: will extract components from the binary image by their contours 

and calculate their centers. Close centers form one blob, which is controlled by a 

parameter that defines the minimum distance between blobs. This function 

estimates final centers of blobs and returns locations and sizes (Bradski and 

Kaehler 2008). 
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 Results 6.3

The algorithms and methods described in the previous sections were applied to a set of 

comparison runs defined with images acquired at Continental Mabor and successfully 

validated by the visual inspectors at the CAI tool. Comparison runs were defined for images 

representing the various tires areas (sidewall, tread, inner liner). The appearance, curvature, 

lighting conditions and embossed patterns significantly change according to the area under 

analysis. This way the validation of the proposed detection methods can only be validated 

when tested for the three areas. While tread and inner liner typically present repetitive 

patterns, sidewalls are not uniformly textured. Many embossed letterings are part of the 

sidewalls. 

Imperfections’ detection was tested at the three regions. A list of 6 different NC codes (2 

NC codes per region) was tested and its detection validated. Figure 6.18 shows the partial 

inputs and outcomes of a comparison between a conforming (template) and a non-conforming 

(sample) inner liner images. The sample only contains one imperfection, approximately 

located in the lower right corner of these images. The intermediate output shown on the 

bottom left represents the differences calculated by equation 6.3 after SAD-TM has been 

applied. On the bottom right, the blob detection results are shown. The imperfection tested 

in this case was a blister and its automatic detection was possible through the proposed 

methods. By looking at the template and sample sections, overall lighting differences are 

evident despite being acquired with consistent lighting conditions. Also it is important to 

notice that the lighting angle of incidence highlights the imperfection by creating a brighter 

region very favourable to the automatic detection.   

 

                                 

 

                                 
 

 

Figure 6.18 – Detection of a blister in the inner liner. 
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Figure 6.19 shows a zoomed out view of the comparison run demonstrated in Figure 6.18 

in three different testing scenarios. The first image contains the blobs detected without the 

dynamic adjustment performed by SAD-TM. Many false-alarm blobs are detected specially at 

the high-curved region (bottom of the image), where inter tire variability is more prone to 

happen. In the second image the SAD-TM was applied without the bilinear interpolation. The 

image in the bottom is the final outcome in which SAD-TM was applied with all its capacities. 

A significant improvement (reduced number of false positives) was noticed by the application 

of adaptive shifts (second image) but only when the bilinear interpolation was performed, the 

results were free of false positives. The successive improvements along the three scenarios 

reveal the potential of the proposed SAD-TM method.  

 

 
 

 
 

 
 

Figure 6.19 – Blobs detected for the comparison run illustrated in Figure 6.18 for three 
different testing scenarios and methods applied. 
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Figure 6.20 and Figure 6.21 show the results of comparison runs performed to the tread 

and sidewall regions, respectively. Likewise the previous inner liner case, the detection of 

imperfection was successfully done. Additionally, these three cases (Figure 6.18, Figure 6.20 

and Figure 6.21) show that the detection capabilities are not restricted to imperfections with 

a certain shape or size. While the imperfection shown in the inner liner case presents a more 

rounded shape, the one for the tread is elongated and the sidewall case presents a 

fragmented imperfection.  

The fact that the detection methods applied were able to detect the sidewall 

imperfection while small letterings (also create local light variations) were neglected, 

evidences the importance of performing accurate image subtraction.  

The parameters defined for the post-processing techniques (Figure 6.17) were kept the 

same along comparison runs. The parameters that were adequately chosen for each case 

were the sub-image dimensions. They have a significant impact over the result of total 

differences. Understanding the relationship between sub-image size and total differences is 

desirable and Figure 6.22 shows a sensitivity analysis for one of the cases. The plot shows 

that there is an optimal zone of sub-image dimensions around 200 pixels wide. The difference 

tends to increase as the sub-image dimensions significantly increase or decrease. Sub-images 

too small may result in lack of features for a successful shift calculation while big sub-images 

can lead to some rigidity in the adaptation. The variation between minimum and maximum 

total difference reaches 20% which reveals the importance of this parameter. 

 

                  

                                   

 

                                   
 

 

 

Figure 6.20 – Detection of a cut in the tread. 
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Figure 6.21 – Detection of a blemish in the sidewall. 

 

 
 

 
Figure 6.22 – Relation between Window Search dimensions (WSW and WSH) and the total 

differences obtained for each case. 
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The fact that the area with better results (in blue in Figure 6.22) occupies such a 

significantly large percentage of the area displayed shows that the algorithm is quite robust 

considering these parameters. 

The results obtained for the comparison runs are shown in Table 6.1. Each of the 6 NC 

codes was tested with 3 cases. The three cases selected for each NC code varied in terms of 

imperfection intensity. Data from a 6-month period reveals that the 6 NC codes tested 

represent 29% of imperfection occurrences. All imperfections tested were correctly detected, 

being the smallest one 5 mm wide. The output of the automatic detection of imperfections 

was cross-checked and shown agreement with operators’ assessments. Besides non-

conforming images, also conforming images were tested (3 images per tire area). 

Table 6.1 shows the percentage of the area in which blobs were detected. On average an 

imperfection represents an area of 2%. Thus, the reaming percentage is due to false positive 

blobs. At an implementation stage in which a link between automatic algorithms and CAI 

exists, this would be the area subjected to operators’ inspection. The obtained outcomes are 

very promising both in the light of the CAI as well as to the targeted automatic inspection 

process. More tests need to be performed to better access its overall performance and 

robustness. 

In a scenario in which the CAI exists to scrutinize the blob areas that the algorithms 

detect as suspicious, the present outcomes suggest that:   

 the automatic detection methods could aim at filtering information rather than 

only highlighting - all imperfections were accurately detected and the remaining 

area was accurately automatically assigned as OK; 

 the percentage of the area that needs to be evaluated by the operators at the 

CAI environment is significantly lower that the total image area (approximately 

10%) – significant cost reduction can be achieved;  

 while the algorithms are under development, the operators may be able to 

conclude that some blobs do not represent an imperfection and avoid some false 

positives – thus contributing to cost savings. As an example, Figure 6.23 shows a 

flash being automatically detected. Although it is an imperfection, this blob 

would be immediately ignored by the operators because they are aware of its 

irrelevance to customers. Nevertheless, at this stage of the development of the 

automatic detection techniques, the detection of flash reveals precision and is 

actually correct.  

The results are also positive when analysing the path to achieve a fully automatic 

inspection. The fact that some images were assigned as conforming in agreement with 

operators’ decisions suggests that the defined strategy is valid.  

Results also reveal that future development of the algorithms should focus on reducing 

the percentage of false positives. 

The aim of this chapter was to present the design and implement a strategy for the 

development of methods for the automatic tire quality inspection. The tire raises many 

challenges in terms of the applicability of available image processing techniques and thus 

motivated the development of a novel approach. For this reason the main work done was to 

implement and carefully analyse each step of the process.  
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Table 6.1 – Results obtained in the quality assessment of images from the inner liner, tread, 
sidewall. 

 

Area 
NC 

code 
Blob area sent 

to CAI 

Inner liner 

50A 

11.9% 

14.0% 

3.2% 

50C 

10.8% 

27.0% 

2.0% 

None 

0.0% 

10.0% 

4.0% 

 

Area 
NC 

code 
Blob area sent 

to CAI 

Sidewall 

32B 

20.5% 

24.2% 

17.0% 

33 

5.8% 

12.0% 

8.4% 

None 

4.4% 

3.1% 

4.5% 

 
 
 
 

                          
 

Figure 6.23 – Detection of flash in the sidewall. 

Area 
NC 

code 
Blob area sent 

to CAI 

Tread 

11 

2.2% 

30.8% 

1.4% 

12A 

11.3% 

7.6% 

14.8% 

None 

0.0% 

0.0% 

7.0% 
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Chapter 7  

Conclusions 
 

The tires’ inspection process re-design is proposed in this dissertation, with the aim of 

improving its efficiency. The proposed process can be decomposed in the following three 

steps: image-acquisition, computer assisted inspection (CAI) and automatic quality 

assessment. Each of these processes was carefully conceived accounting for tire inspection 

particularities. The validation of each step was proposed aiming to answer the sub-research 

questions drawn in Chapter 1. The first research question raised was:  

RQ 1.1: How should the image-acquisition station be designed to assure 
acquisition of unambiguous images of the object?

 

The image-acquisition station includes a combination of machine vision technologies and 

lighting systems, especially assembled to allow for an acquisition of appropriate tire images. 

One of the novel contributions of this research is to suggest that experienced visual 

inspectors are per-se the image acquisition validation method. A CAI system in which the 

operators access tire images and perform the quality assessment was implemented. Chapter 2 

reveals the extensive and complex knowledge used by these visual inspectors while inspecting 

a tire, which is structured across the three SRK model knowledge levels. Having the operators 

validating the acquired images is an essential step to conclude about the suitability of the 

machine vision technologies and lighting conditions. The results shown in Chapter 4 revealed 

that the images provide an appropriate representation of the tire and its imperfections. This 

was concluded by testing a sample of 300 non-conforming tires which were correctly assessed 

by the visual inspectors in 97% of the cases. The change of environment from a physical 

manual inspection to CAI does not seem to have significantly affected the capabilities of the 

operators in identifying imperfect regions.   

Not only validation purposes motivated the development of the CAI system. Providing 

operators better and uniform conditions to visualize the entire tire was also made possible 

with this approach. Furthermore, the elimination of physical and repetitive tasks (that make 

the inspection process more error prone), can create an inspection environment that favors 

higher efficiency and effectiveness levels. Considering a scenario in which the operators 

perform inspection digitally motivated the second research question:  

       

RQ 1.2: Can the human operators perform the task with a comparable level of 
quality by means of the computer assisted inspection tool?  
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The process to obtain an answer to this question involved comparing results from an 

experimental design study in which a sample of tires was assessed by two groups of 

operators. One performed the manual inspection (control group) while the second assessed 

the same tire digitally (experimental group). Some differences between the two groups were 

noticeable, indicating that the manual process leads to slightly better outcomes. 

Nevertheless the difference does not seem to reflect permanent lower detection capabilities 

through CAI system but rather the need to account for a longer learning period, in which 

some of the methods used by operators need to be adjusted. More interesting results were 

obtained when simulating the impact of automatic quality assessment methods. The 

hypothesis raised was that the operators’ performance would improve (in quality and 

quantity) if there was the possibility of reducing the information that is subjected to human 

assessment. In fact, when the information passed to the operators in the CAI system is 

restricted to automatically identified potentially defective areas, the operators’ performance 

surpassed the current manual process, thus leading to cost savings. This suggests that 

automatic detection algorithms are an essential mechanism to potentiate the benefits of CAI 

while CAI itself is an essential source of operators’ decision criteria. These criteria are not 

always standardizable and CAI has the potential of harvesting information that will later be 

used in the continuous development of automatic algorithms. 

Intrinsic tire characteristics create many challenges in both the development of the 

image acquisition system and in the definition of image processing techniques for 

imperfection detection. Its rounded shape, curved surfaces, variable surface appearance and 

deformable material, places tire application as one of the most challenging products to be 

inspected automatically. As a result, the third research question is: 

RQ 1.3: Which image processing techniques are adequate to assist in the 
detection of non-conformities?   

 

Innovative algorithms were proposed in this dissertation and proved to be successful in 

the imperfection detection. Compensating tire deformability by applying dynamic shift 

corrections by means of the SAD-TM method generated promising outcomes, not achievable 

with simplistic image processing techniques. The algorithms demonstrated capabilities to 

accurately reduce the amount of information shown to operators in CAI (up to 90%). 

Nevertheless, false positive cases motivate the existence of a subsequent step of human 

validation of the automatic decision. These dependencies and collaboration between the two 

processes (CAI and automatic inspection) favors the overall inspection result. A continuous 

development of automatic methods by learning from human based decision can, in the 

future, lead to a fully automatic inspection process. Nevertheless, more developments and 

tests need to be performed. A fully automatic solution can only be guaranteed once all 

imperfection codes are tested and passible of being identified.  

The strategy of making operators and their know-how part of an improved quality 

inspection process poses as one of the main contributions of this dissertation. In a context in 

which most literature suggests automated solutions only restrained by technological or 

budget constraints, this methodology presents very distinctive characteristics. But these 

characteristics should, in no way, be considered as less advantageous. They make this process 

capable of answering to requirements posed by a very specific industry. Tires are critical 

safety components; the manufacturing plants produce simultaneously a large number of 

different articles; the production process is long and composed of many steps; the main raw 
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material is quite prone to surface defects, leads to a deformable part, and provides poor 

surface contrast and; the large amount of geometrical features leads to the existence of a 

high variety of distinct NCs that can be present in any place of the tire. This makes the 

application studied in this dissertation a very demanding one. The fact that the proposed 

inspection solution managed to get very positive and promising results, shows that it can be 

applied to other industries that might be currently facing difficulties in sustaining manual 

inspection process (due to costs) and in implementing fully automated quality inspection 

processes. The difficulties most frequently mentioned in transferring the quality control to a 

fully automated system arise from limitations in incorporating the equivalent human-based 

quality standards. If this step is not carefully accounted for, the resulting quality assessment 

may reveal lower flexibility and/or performance. The strategy proposed in this dissertation 

provides new thoughts and perspectives over this problem. 

7.1 Recommendations for continuous development  

The results described along this dissertation, aiming at addressing the main research 

question, suggest that the benefits initially envisaged with the proposed quality system re-

design can be achievable. Even though, entering a stage of industrial implementation imposes 

new requirements not yet tested. For this reason, the next stage of this project should still 

be mostly focused on further development implementation and in enlarging the scale of the 

tests.  

The solutions developed so far were more tailored to the concept validation phase with 

low attention given to integration and more focus in testing flexibility. Thus, each of the 

main sub-components of the system (image acquisition, CAI and automatic quality 

assessment) was tested offline and individually. This disconnected prototype enabled a higher 

control and analyses over each sub-component but limited the number of cases tested and 

the applicability of feedback loops. As an example, offline mode created difficulties in the 

definition of adjustments in image acquisition conditions upon CAI and automatic decisions 

failures. Sometimes days or even weeks separated the acquisition moment from the 

subsequent steps which compromised the possibilities of redefining image acquisition 

conditions for the same tire. Also, the impact of algorithms in filtering information to 

operators was only simulated and not tested with real automatic outputs. If this prototyping 

scenario was satisfactory so far, the leverage of testing cases and continuous system 

development requires an online and integrated testing platform. The last research question is 

related with this aspect: 

RQ 1.4: How should the design and the implementation methodology be so that a 
continuous increase in the system Level of Automation is possible?    

 

The interdependencies defined between image acquisition, operators’ CAI and automatic 

detection methods and, the collaborative quality assessment provided by the last two, are 

the aspects of this system that will mostly contribute to higher process efficiencies. But fully 

understanding these benefits is only possible with a first online implementation. Figure 7.1 

contains a suggestion for the next prototyping scenario. In this scenario, the image 

acquisition station would be immediately followed by two quality decision processes. Two 

operators (or one performing both steps) would need to be assigned to this prototyping cell. 

One would be allocated to CAI and receives the images, while the second would perform the 
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current manual process and thus receives the tire. The automatic algorithms would be 

applied to the acquired images and only potential defective regions would be shown to the 

operator. After concluding the inspection, each decision would be stored in the local 

information system. The control loop would start if the two decisions do not match. In this 

case, the operators would be informed and inconsistency cause would be investigated. The 

outcomes of this can motivate improvements in the previous sub-systems. One scenario could 

be when the operator at the CAI system misses one imperfection. In this case, the failure 

could be associated to individual distractions, or system-related aspects. In the last scenario, 

the error would be caused by the automatic detection methods if the image contains the 

imperfection or by the image acquisition setup if the imperfection is not visible at all. The 

tracking of these failures and its storage will contribute to a continuous and iterative system 

development essential to create foundations to an industrial implementation.       

7.2 Future work 

From the concept generation phase until the moment a prototype was installed at 

Continental Mabor facilities, many aspects and technological solutions implicitly required in 

this system were specified and implemented. The complexity and diversity of systems and 

sub-systems required the understanding of many knowledge domains. To assess the overall 

impact of this novel inspection concept, each individual system needed to be implemented 

and validated. Now that the first results positively validated the proposed inspection system, 

a stage of optimization and improvements can be proposed. Each sub-component of the 

system should be carefully analyzed and its improvements prioritized.  

Regarding the image acquisition system, future work should concentrate on:  

 Finding an alternative to the current lighting adjustment system (articulated arms 

composed by servos). This can be done by considering linear actuators or a more 

radical change, by organizing tires in batches and have machines with different 

lighting configurations . 

 Improvements in the acquisition of the bead edge region by possibly considering 3d 

laser scans. This region is always supposed to be as flat and smooth as possible and, 

thus, any height variation is caused by non-conformities. The unambiguous rejection 

criterion makes it appropriate to be automatically detected.    

 Analyze alternative lighting systems for the inner liner. 

The future work related with automatic quality assessment methods should include: 

 Testing other classification methods such as neural network or support vector 

machine to distinguish between false positive blobs and defective blobs.  

 Enlarging the number of NC codes tested. 

 Integrate the various applications and automate some steps in order to make the 

process of comparison runs quicker. 

 Design a training program to fully acquaint operators with CAI. This might allow the 

reduction of inspection time, incorrect decisions and, as a consequence of these 

factors, cost. 
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Figure 7.1 – Proposed methodology for continuous system development. 



 

 

 

 

 

 
  



 

 

 

 


