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Resumo 

O álcool é uma das substâncias de abuso mais consumidas a nível mundial. Doenças 

associadas ao uso do álcool afetam milhões de pessoas em todo o mundo causando enormes 

danos sociais e económicos na sociedade moderna. O consumo excessivo de álcool ou 

intoxicação pode provocar danos no organismo induzindo imunossupressão, danos no fígado 

e doenças neurológicas. No sistema nervoso central (SNC), a exposição ao álcool pode 

resultar em perda neuronal, défice cognitivo, disfunção motora, inflamação e disfunção das 

respostas neuroimunes. A microglia, células imunes residentes do SNC, têm um importante 

papel no dano neuronal causado pela inflamação. Apesar de algumas evidências indicarem 

que o consumo de álcool promove a inflamação no cérebro levando à ativação da microglia, 

a verdadeira contribuição destas células na disfunção neuronal e danos comportamentais 

causados pelo álcool é ainda pouco conhecida. Após um estímulo inflamatório, a microglia 

torna-se ativada libertando mediadores citotóxicos, como o glutamato, que causam 

neurodegeneração. Experiências preliminares realizando ensaios com células vivas baseados 

no mecanismo de Förster Resonance Energy Transfer (FRET) foram efetuadas de forma a 

compreender os eventos de sinalização associados à libertação de glutamato por parte da 

microglia induzida por etanol no córtex cerebral. Os resultados permitiram concluir que essa 

libertação requer a ativação contínua da tirosina cinase c-Src visto que a sua ativação forçada 

mimetizou o efeito do etanol levando à libertação de glutamato, sendo esta prevenida na 

ausência de c-Src. Além disto, a libertação de glutamato mediada pela associação etanol/c-

Src não se verificou em microglia isolada de murganhos deficientes de Tumor Necrosis Factor 

(TNF). Isto indica que o etanol desencadeia a libertação de glutamato através da produção de 

TNF induzida pela c-Src. Os inibidores de hemicanais de gap junctions GAP-27 e 18α-

Glycyrrhetinic acid (GA) foram utilizados de forma a prevenir a libertação de glutamato pela 

microglia induzida pelo etanol, uma vez que a microglia ativada liberta grandes quantidades 

de glutamato através de hemicanais. Os nossos resultados exibem uma ligeira diminuição da 

libertação de glutamato induzida por etanol na presença do GAP-27, mas não do inibidor 18α-
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GA. Estudos in vivo envolvendo murganhos wild-type (WT) ou deficientes em TNF (TNF-/-) 

expostos a dose semi-crónica de etanol foram desenvolvidos com o objetivo de explorar os 

aspetos moleculares e comportamentais relativos ao efeito do álcool no cérebro. Testes 

comportamentais, incluindo paradigmas como elevated plus maze e open field, mostraram um 

aumento de ansiedade em murganhos WT expostos a etanol, enquanto que este efeito não 

se verificou em murganhos TNF-/-. Análises de RT-qPCR revelaram que o etanol é capaz de 

induzir alterações em alguns genes relacionados com a imunidade e com a identidade da 

microglia em cérebros de murganhos WT, mas não em deficientes em TNF. Por outro lado, 

utilizando as técnicas Western Blot e Imunohistoquímica não foi possível observar quaisquer 

diferenças significativas no número de células da microglia e de astrócitos entre o controlo e 

cérebros tratados com etanol. Globalmente, os nossos resultados revelam existir um potencial 

papel desempenhado pelo TNF na modulação da função da microglia e danos 

comportamentais. 
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Abstract 

Alcohol is one of the most consumed substances of abuse in the world. Alcohol use 

disorders affect millions of people worldwide causing huge social and economic burden on 

modern society. Excessive alcohol consumption or intoxication can provoke severe damage 

to the body inducing immune suppression, liver damage and neurological disorder. In the 

central nervous system (CNS), alcohol exposure can lead to neuronal loss, cognitive decline, 

motor dysfunction, inflammation and impairment of neuroimmune responses. Microglia, the 

immune resident cells of the CNS, are major players in inflammation-induced neuronal 

damage. Although several lines of evidence indicate that alcohol intake will promote brain 

inflammation driving microglia activation, the bona fide contribution of microglia in alcohol-

mediated neuronal dysfunction and/or behavioural impairment is still poorly understood. After 

inflammatory stimuli, microglia become activated releasing cytotoxic mediators like glutamate, 

which might cause neurodegeneration. Preliminary experiments using Förster Resonance 

Energy Transfer (FRET)-based live cell were performed to dissect the signaling events 

associated with ethanol-induced glutamate release from cortical microglia. We report that such 

release requires sustained activation of the tyrosine kinase c-Src because forced c-Src 

activation mimicked the ethanol effect triggering glutamate release and the knockdown of c-

Src abrogated it. In addition, the ethanol/c-Src-mediated glutamate release was prevented in 

microglia isolated from Tumor Necrosis Factor (TNF) deficient mice, indicating that ethanol 

triggers glutamate release via c-Src-induced TNF production. GAP-27 and 18α-Glycyrrhetinic 

acid (GA) gap-junction hemichannels inhibitors were used to prevent the ethanol-induced 

microglial glutamate release, because it was found that activated microglia release large 

amounts of glutamate through hemichannels. Our results demonstrate a slight decrease in 

ethanol-triggered glutamate release with GAP-27 but not with 18α-GA. In vivo studies 

comprising semi-chronic ethanol-exposure in wild-type and TNF deficient mice were also 

performed aiming at explore molecular and behavioural aspects of the alcohol effects on the 

brain. Behavioural tests including elevated plus maze and open field paradigms showed an 
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increase in anxiety-like behaviour in wild-type mice exposed to ethanol, whereas this ethanol 

effect was not found in TNF deficient animals. RT-qPCR analysis revealed that ethanol 

induced changes in some immune- and microglial signature transcripts in the brains of wild-

type but not on those of TNF deficient mice. Besides, western blot and immunohistochemistry 

showed no significant differences in the levels of microglial and astrocytic cells between control 

and ethanol-treated brains. Overall, our results reveal a potential role for TNF in alcohol 

modulation of microglial function and behavioural impairment. 
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CHAPTER 1 | Introduction 

Alcohol 

Alcohol abuse and addiction 

Alcohol is a psychoactive substance that potentially causes dependence upon harmful 

and abusive consumption (Koob and Volkow, 2010; Marshall et al., 2013; Ofori-Adjei D et al., 

2007). In 2012, alcohol contributed to 5.9% of all global deaths (roughly accounting for 3.3 

million deaths). Presently, alcohol is considered a causal factor in more than 200 diseases and 

injury conditions worldwide (WHO, 2014). Consumption of alcohol is part of many cultural 

contexts for thousands of years, already existing in aboriginal and rural communities prior to 

the modern era (McGovern, 2009). Outside of well-established cultural contexts, alcohol use 

usually becomes a health and social problem. In addition, alcohol consumption is an upward 

trend and socially well-accepted to attenuate negative events and enhance positive mood 

states. The most recent World Health Organization (WHO) data shows a high rate of alcohol 

consumption per capita with a huge variation around the world (Fig. 1). Despite the benefits of 

mild-to-moderate alcohol consumption (Yang et al., 2014a), recurrent drunkenness with 

Figure 1. Total alcohol per capita (15+ years) consumption, in liters of pure alcohol, 2010. 

Individuals above 15 years of age consume on average 6.2 litres of pure alcohol per year (about 15.3 grams of 

pure alcohol per day). The highest consumption levels of alcohol are found in the developed world, essentially in 

European and American regions (WHO, 2014).  



 
2 FEUP | ICBAS 

Mechanisms of alcohol modulation of microglial function 

 

abnormal high levels of binge drinking affects the physiology, structure and function of several 

organs including the liver, stomach, kidney, lungs and brain (Yang et al., 2014a). Therefore, 

alcohol use and abuse affects several aspects of modern society and is related, but not limited, 

to public health, to public safety and to the economy in general (Spanagel, 2009). 

Due to its preventable nature, for many years alcoholism was not conventionally 

categorized as a neurodegenerative disorder, but chronic or excessive alcohol consumption 

causes damage to the temporal lobe similarly to neurodegenerative disorders such as 

Alzheimer’s disease (Marshall et al., 2016). The societal debate whether alcoholism is a 

curable disease or simply an intrinsic character flaw continues today even with the 

unquestionable existence of evidence showing alterations in brain structure and function in 

alcoholics (Schomerus et al., 2011). It was proposed that typical drunkenness or alcoholism 

deeply changes the neurobiology of individuals (Gunzerath et al., 2011). Fortunately, the 

perception that alcoholism is not a disease is gradually changing. The understanding of 

alcoholism as a mental disorder facilitates treatment for individuals who suffer from this 

condition and encourages clinicians to counsel the use of pharmacotherapies. 

 

Alcohol-associated disorders 

Chronic alcohol abuse is intrinsically associated with several primary and secondary 

disease states, usually starting as an experience and leading to gradual progression of 

addiction over years of high consumption (Spanagel, 2009). High alcohol consumption 

produces: i) toxic effects to organs and tissues; ii) intoxication, with physical, behavioural and 

cognitive impairments; and iii) dependence without drinking self-control (Babor et al., 2003). 

The main feature of alcohol dependence is the withdrawal symptomatology (occurring from 

few hours to several days after reducing or interrupting the intake of alcohol), which can lead 

to hyperactivity, tremor and anxiety, sporadically accompanied by hallucinations and delirium 

(Cami and Farre, 2003; De Witte et al., 2003; Sullivan and Pfefferbaum, 2005). Under 

withdrawal, alcoholics often develop coping behaviours to avoid related disturbances, which 
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eventually leads to restarting the intake of alcohol. Heavy alcohol ingestion and the effective 

risk of development of alcohol addiction is strongly increased by factors associated with 

numerous psychiatric manifestations and personality traits such as anxiety-related disorders 

and depression (Kelley and Dantzer, 2011). In such conditions, patients gradually present 

different responses to global environmental challenges and display great propensity to seek 

reward in alcohol, becoming addicted upon excessive exposure (Cloninger, 1987). In fact, 

according to WHO, harmful use of alcohol or dependence is present in 6% of patients in 

primary health care offices suffering from mental illness (Blanco and Guerri, 2007). Importantly, 

mental disorders may promote or aggravate the development of alcoholism and vice versa, 

due to an existing mutual interaction. In addition to the mental condition interaction, alcohol is 

thought to be a major cause of gastrointestinal, cardiovascular and infectious diseases, 

because it impacts directly on hepatic function and weakens the overall “health” of the 

individual (WHO, 2014). 

Problems related to alcohol misuse have been combined giving rise to alcohol use 

disorders (AUDs). Based on the DSM-5 criteria, eleven symptoms are used for diagnosing 

AUDs and their severity levels are classified as mild, moderate, or severe depending on the 

number of criteria met (Hasin et al., 2013). Similar to other addictive contexts, AUDs’ features 

include strong desire toward alcohol consumption, impaired drinking control, development of 

tolerance, development of signs of physiological withdrawal and worry about drug of choice, 

with possibility of relapse even after several years of abstinence (Grant et al., 2007). In another 

context, Fetal Alcohol Spectrum Disorders (FASD) are a group of heterogeneous conditions 

characterized by the development of serious and long-lasting physical, behavioural and 

learning impairments in the offspring due to maternal alcohol use during pregnancy (Guizzetti 

et al., 2014). Less severe variations of FASD include birth defects and behavioural disorders 

related with alcohol (Riley and McGee, 2005). More extreme manifestations are characterized 

by pre- and post-natal growth retardation, developmental delay, craniofacial anomalies and 
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intellectual deficiencies (Jones, 2011). Searching for a preventive treatment for these disorders 

is therefore urgent and of paramount significance. 

Alcohol-induced neurodegeneration and cognitive deficits  

Alcohol is one of the most well-known neurotoxic agents whose abusive consumption 

causes neuroinflammation, myelin damage and oxidative stress, contributing for brain damage 

and neurodegeneration in humans (Alfonso-Loeches et al., 2016; Marshall et al., 2016). 

Neurotoxicity to the hippocampus and in the cerebral cortex, two main brain regions suffering 

from the harmful effects of alcohol (Harper and Matsumoto, 2005), is linked to a variety of 

cognitive and motor deficits in alcoholics, including learning and memory impairment, attention 

deficits, reduction of motor coordination and impulse-control problems (Alfonso-Loeches and 

Guerri, 2011; Sullivan et al., 2000; Yang et al., 2014a). The brain is a key target of alcohol 

effects and even alcoholics with no apparent neurological or hepatic problems reveal signs of 

regional brain damage and cognitive dysfunction with clear alcohol-dependent effects on nerve 

cells (Harper and Matsumoto, 2005).  

Oxidative stress is proposed as an important mechanism in alcohol-induced brain damage 

(Qin and Crews, 2012). The formation of reactive oxygen species (ROS) occurs intracellularly 

in various tissues following ethanol (EtOH) exposure and free radicals can react chemically 

with key cellular macromolecules, which may lead to cell dysfunction and loss (Reynolds et 

al., 2007; Sorce and Krause, 2009; Wu and Cederbaum, 2003). Mitochondrial injury, which will 

further disturb components of the antioxidant pathway such as glutathione (GSH), also 

increases the susceptibility of the brain to oxidative damage upon alcohol exposure 

(Boyadjieva and Sarkar, 2013). 

 Several studies describe the manifestations of alcoholism on brain structure and function, 

which include loss of dendrites, atrophy and degeneration of cortical neurons (Alfonso-

Loeches and Guerri, 2011). These events lead to the enlargement of the lateral ventricles, 

cortical thinning in the temporal lobes, and decrease of glial cell numbers in both the temporal 
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and frontal cortices (Blanco and Guerri, 2007; Crews, 1999). In fact, heavy alcohol 

consumption results in loss of brain mass and function apparently due to a reduction of white 

matter, primarily in the frontal lobe, being the degree of brain atrophy highly correlated with the 

amount of alcohol consumed over the lifetime (de la Monte, 1988; Kril and Halliday, 1999). 

Neuroinflammation is an important mechanism in the response to pathogenic events, 

traumatic brain injury and environmental toxins, but it is also known as a major contributor in 

various neurological and neurodegenerative disorders (Glass et al., 2010; Lucas et al., 2006; 

Ransohoff et al., 2015). Alcohol increases the host vulnerability to infections by drastically 

altering the immune response (Crews et al., 2015; Kelley and Dantzer, 2011).  

Neuroinflammation emerges from the imbalance in the expression of a variety of inflammation-

associated genes and cytokines involved in innate immune responses (Crews et al., 2011). 

For example, chronic EtOH exposure increases innate immune signaling through the activation 

of the pro-inflammatory transcription factor nuclear factor-kappa B (NF-κB) (Crews et al., 2015; 

Crews et al., 2011). Whereas a variety of pro-inflammatory signals are associated with 

increased EtOH drinking and preference (Blednov et al., 2012), peripheral inflammation 

increases voluntary ethanol intake and administration of anti-inflammatory agents reduces 

EtOH consumption (Blednov et al., 2012; Marshall et al., 2013). In this context, close 

interactions occur between different CNS cell types – neurons, astrocytes, microglia and 

oligodendrocytes – and microglia and astrocytes appear to be pivotal in CNS immunity 

because they are the primary mediators of neuroinflammatory responses in the brain (Hughes, 

2012; Lucas et al., 2006; Salter and Beggs, 2014; Yang et al., 2014a). Although 

neuroinflammation is thought to be a key factor in alcohol-induced neurodegeneration, 

remarkably little is known about the direct effects of EtOH on these immune cells, particularly 

in microglia. Understanding how excessive alcohol consumption results in microglial 

dysfunction and/or microglia overactivation, and consequent immune cell dysregulation and 

chronic degeneration, is crucial for the development of strategies aiming at preventing or 

attenuating neuronal loss and brain damage.  
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Microglia 

Microglia in the central nervous system 

Microglia are a type of non-neuronal cell within the CNS, being the brain’s myeloid resident 

cells and representing approximately 10-15% of the total cell population in the adult CNS 

(Benarroch, 2013). These immune-like cells participate in the maintenance of neuronal 

homeostasis, monitoring their microenvironment for potential hazards and protecting the brain 

from trauma and diseases (Azevedo et al., 2013; Kim and de Vellis, 2005; Salter and Beggs, 

2014). Microglia are also considered to be an important cellular component involved in the 

inflammatory response, and may also contribute to the development of chronic inflammation 

associated with various neurodegenerative disorders, including Alzheimer's disease, 

Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, among others (Neumann 

et al., 2009; Salter and Beggs, 2014). By becoming phagocytic and contributing to the 

elimination of toxic cellular debris, microglia also play major roles in resolving brain infections 

and in the progression of brain diseases (Hong and Stevens, 2016). During CNS development, 

these cells are involved in refining brain wiring and synaptic circuits (Paolicelli et al., 2011; 

Schafer and Stevens, 2015; Wu et al., 2015). In the immature brain, microglia are intensively 

involved in the phagocytosis of apoptotic neurons, stimulation of programmed cell death and 

synaptic pruning (Guizzetti et al., 2014).  

To carry out such diverse functions, microglia respond to almost all types of CNS injury by 

switching from a surveilling to an activated state, which leads to the acquisition of macrophage-

like markers and effector properties varying according to the type of insult and the inflammatory 

or immune context (Hughes, 2012; Salter and Beggs, 2014). Sustained, uncontrolled and/or 

chronically activated microglia may initiate inflammatory processes that lead to excessive 

secretion of various molecules (Graeber, 2010). Excess of these mediators contributes to 

neuronal damage by triggering oxidative damage and potentiating the activation of cell-death 

pathways (Azevedo et al., 2013; Thomas et al., 2004). Because microglia activation is a graded 
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process, there are morphological differences displayed by these cells accompanied by 

changes in cell surface proteins that result in corresponding alterations in cytokine and growth 

factor secretion (Benarroch, 2013). Altogether, variations in these features can be used to 

categorize microglia in an effort to understand their function in the CNS under pathological 

conditions. Thus, close monitoring of microglial activation in the CNS is essential to maintain 

the balance between homeostasis and pathophysiology. 

 

Microglia morphology 

In normal conditions (at the steady state), microglia are in a resting, quiescent state 

(Nimmerjahn et al., 2005). In this non-active mode, they have thin, highly ramified processes 

that extend from a compact cell body and are highly motile, allowing them to constantly survey 

their environment and modulate neuronal activity (Boche et al., 2013). Microglia activation by 

exogenous stimulus alters their resting morphology into a bushy-like shape characterized by 

the thickening and shortening of their processes with concomitant enlargement of the cell body 

(Ábrahám and Lázár, 2000; Nimmerjahn et al., 2005). Upon more intense activation, microglia 

might lose their thickened processes, becoming rounded, which is usually called amoeboid 

microglia (Fig. 2). However, morphology alone is not synonym for functional microglia 

activation because alterations in microglial gene expression profile can occur in the absence 

of obvious morphological transitions (Marshall et al., 2013). Mere observation of the ramified 

or amoeboid morphology therefore does not to tell everything about the real nature of microglia 

activation phenotype (Kettenmann et al., 2011). 

 

Microglia activation 

Microglia become activated in response to various stimuli including neuronal damage, 

noxious agents, astrocytic reactivity, and even slight changes in environmental signals like 

fluctuations on ionic concentrations (Lai and Todd, 2008). However, microglia activation varies 

with the extent, type and duration of an insult, ultimately rendering microglia in a completely 
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different phenotype, which will be consistent with their state of activation (Boche et al., 2013; 

Kettenmann et al., 2011; Salter and Beggs, 2014).  

The terms used to describe distinct microglia activation phenotypes are different within 

each classification system, including M1 versus M2, classical versus alternative and pro-

inflammatory versus anti-inflammatory (Marshall et al., 2013). Classical activation (M1 state) 

consists of phagocytic phenotype in response to pathogens, damaged neurons or 

lymphocytes, and corresponds to amoeboid microglia that secretes pro-inflammatory cytokines 

(such as interleukins (IL)-1β, IL-6, IL-23, and Tumor necrosis factor (TNF)) in addition to 

cytotoxic substances (such as ROS and nitric oxide (NO)) (Raivich et al., 1999). Alternative 

activation (M2 polarization) are used to describe bushier ramified microglia responding to 

apoptotic cells or to lymphocytes, triggering an anti-inflammatory response via the release of 

IL-10 and Transforming growth factor (TGF)-β or, otherwise, promoting tissue repair by 

producing, for example, extracellular matrix proteins (Fig. 2) (Benarroch, 2013; Boche et al., 

2013; Kettenmann et al., 2011). 

Pro-inflammatory microglia are generally thought to be associated with 

neuroinflammation-induced neurodegeneration but such phenotype does not always result in 

excessive damage and can also be associated with recovery (Hanisch and Kettenmann, 

2007). However, chronic activation of microglia is associated with neuronal loss and has been 

proposed to contribute for the progression of neurodegenerative diseases (Guizzetti et al., 

2014). Because microglia advance stepwise through their various phenotypes, it is necessary 

to carefully analyze phenotypic hallmarks within a given disease state before attaining their 

specific role either in repair processes or neurodegeneration (Marshall et al., 2013).  

 

Regulators and effectors of microglial functions 

Surveillance and effector function of microglia are regulated by a multitude of receptors, 

ion channels, adhesion molecules, transporters and intracellular enzymes present in these 
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cells (Salter and Beggs, 2014). Besides, microglia also secrete various effector molecules that 

will further modulate their function.  

Different types of channels and transporters, including potassium, calcium and chloride 

channels, control microglia activation, migration and function through events such as calcium 

release from the endoplasmic reticulum in response to, for instance, G protein–coupled 

receptors activation, or external influx through Ca2+ channels (Skaper, 2011). 

 

 

Figure 2. Distinct roles of microglia in the CNS. 

In the healthy CNS, microglia in a “resting state” survey the surrounding environment and express little-to-none 

inflammatory mediators. After exposure to a number of extracellular signals (damaged neurons for instance), 

microglia rapidly migrate to the injury site. Activated microglia may assume a pro-inflammatory state (shown in red), 

releasing molecules such as pro-inflammatory cytokines and ROS aimed at protecting the milieu against pathogens. 

Alternatively, microglia may also exhibit an anti-inflammatory behaviour (shown in green), secreting molecules that 

promote tissue repair and internalizing cellular debris through phagocytosis. Adapted from (Garden and La Spada, 

2012). 
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Microglial receptors for factors including neurotransmitters, cytokines, chemokines and 

danger-associated molecular patterns (DAMP), directly or indirectly control the different 

activation states of microglia (Saijo and Glass, 2011; Salter and Beggs, 2014). DAMPs are 

typical signals recognized by microglia through innate immune response receptors such as 

toll-like receptors (TLR), receptors for advanced glycosylated end-products (RAGE) and 

scavenger receptors (Takeuchi, 2010). Some of these signals activate downstream signaling 

cascades in microglia, including NF-κB and mitogen-activated protein kinase (MAPK) 

pathways, which can induce the transcription of various pro-inflammatory mediators like 

cytokines, chemokines and adhesion molecules (Saijo and Glass, 2011). Moreover, neuron- 

or astrocyte-derived adenosine triphosphate (ATP) activates microglia through P2X and P2Y 

receptors, which further contributes for these cells to exert their surveillance function 

(Benarroch, 2013). 

Activation of microglia leads to the production of numerous effector molecules that include 

pro-inflammatory cytokines (e.g. IL-1β, IL-6, IL-23 and TNF); anti-inflammatory cytokines (e.g. 

IL-10 and TGF-β); chemokines (e.g.: monocyte chemoattractant protein-1 (MCP-1)); growth 

factors; cytotoxic substances (e.g. oxygen free radicals, NO); enzymes (e.g. matrix 

metalloproteinases), among others (Fig. 2) (Kettenmann et al., 2011). 

 

Alcohol, Microglia and Neuroimmune System 

Ethanol-induced activation of microglia 

A role for microglia in alcohol-induced brain damage has been proposed since the 1990s 

but direct evidence of the relationship between alcohol consumption and microglia activation 

and the mechanisms involved are poorly established (He and Crews, 2008; Marshall et al., 

2013; Streit, 1994). Initially, some investigators suggested that the alcoholism-induced 

damage is “too chronic” or “too low level” to affect microglia due to the lack of activation 

evidences (Marshall et al., 2013). However, a significant decrease of glial cells in alcoholic 
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hippocampus demonstrates that pathological glia-mediated alterations might be associated 

with alcohol exposure (Korbo, 1999). Other authors claimed that some degree of microglia 

activation occurs both in animal models of alcohol exposure and in the brains of alcoholics 

(Ahlers et al., 2015; Fernandez-Lizarbe et al., 2009; Marshall et al., 2016). Although glial cells 

are critical brain elements, interest in their function only gained relevance recently. In 

accordance, the effects of EtOH over glial cells were also neglected (Aronne et al., 2011; Yang 

et al., 2014b; Zhao et al., 2013). 

Several studies focused on the morphological alterations and abnormal activation of 

microglia induced by binge EtOH exposure (McClain et al., 2011; Nixon et al., 2008; Qin and 

Crews, 2012; Ward et al., 2009). Few days after a binge event, morphological changes in 

microglia are observed (Nixon et al., 2008). In response to low EtOH exposure, newly formed 

microglia can preserve their changed morphological features into young adulthood (McClain 

et al., 2011). Adult rats exposed to high alcohol concentrations following a period of abstinence 

display strong increase in activated microglia (Ward et al., 2009), while binge alcohol exposure 

in adolescent rats induces morphological changes in microglia but does not trigger their full 

activation in the hippocampus (McClain et al., 2011). All these different results indicate that 

how alcohol affects microglia is not well understood and appears to vary depending on the 

EtOH-exposure model used.  

An earlier study showed that microglial-derived NO provokes delayed neuronal death 

following acute EtOH injury in the striatum, with neurons gradually disappearing and microglial 

cells increasing (Takeuchi et al., 1998). In vitro, conditioned medium from EtOH-treated 

microglia cultures induced neuronal apoptosis depending on the EtOH concentration, which 

suggests that microglial activation can cause neural impairment (Boyadjieva & Sarkar, 2013b). 

Taken together, these studies suggest that there is a tight connection between microglia-

induced neuronal apoptosis and EtOH-induced neurodegeneration (Yang et al., 2014a). 
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Neuroinflammation 

Neuroinflammation is assumed as one of the mechanisms of alcoholism-induced 

neuropathology because ethanol-induced neurodegeneration appears to be associated with 

glial activation and neuroinflammation (Crews et al., 2015). The high possibility of infection 

occurrence in alcoholics has been proved clinically and experimentally, despite the difficulty in 

understanding the connection between alcohol consumption, brain infections and 

dysregulation of immune-resident cells within the brain. In this context, TLRs appear as 

important host molecules in innate and adaptive immune responses during infections and CNS 

damage (Alfonso-Loeches et al., 2010; Montesinos et al., 2016). When TLRs activation occurs, 

there is the release of inflammation-related molecules and cytokines induced by complex 

intracellular signaling cascades classically associated with inflammation such as the NF-κB 

pathway (Akira and Takeda, 2004). In addition to the functions in the response to pathogens 

and clearance of damaged tissues by TLRs, there is evidence for a role for these molecules in 

neuroinflammation and neurodegeneration (Jin et al., 2008; Okun et al., 2009). In fact, 

microglial cells can sense invading organisms through various receptors, including TLRs, 

which seem to be related with microglial activation and neurotoxicity (Block et al., 2007). 

Among the twelve members of the TLR family, microglia are described to express TLRs 1-9, 

being reported that TLR4 is critical for microglial response in LPS-induced neurodegeneration 

(Lehnardt et al., 2003). Moreover, EtOH increases the host vulnerability to infections through 

disturbance of TLRs signaling responses (Szabo et al., 2005).  

In context of EtOH-induced microglial activation, microglial TLR4 appears as a necessary 

factor in alcohol-induced activation of these cells (Montesinos et al., 2016). EtOH can activate 

microglia directly, acting as a ligand of TLRs, or by an indirect way, following neuronal damage, 

with the activation of TLR4 receptors by DAMPs (Alfonso-Loeches and Guerri, 2011; Alfonso-

Loeches et al., 2010). The latter event triggers a cyclic EtOH-induced microglial inflammatory 

response leading to amplification of brain injury (Alfonso-Loeches and Guerri, 2011). There is 

also evidence suggesting that the TLR4 response could be an important mechanism in EtOH-
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induced neuroinflammation (Alfonso-Loeches and Guerri, 2011; Montesinos et al., 2016). In 

fact, a study aiming at clarifying the role of TLR4 in chronic ethanol-induced brain damage 

reported that TLR4 depletion, using small interfering RNA or cells obtained from TLR4-deficient 

mice, abolished the microglial and astrocytic activation and consequent overproduction of 

inflammatory mediators (Alfonso-Loeches et al., 2010). Therefore, TLR4 seems to be critical 

for EtOH-induced inflammatory signaling in glial cells. In a previous in vitro study, alcohol 

activates microglia with the stimulation of TLR4 signaling through MyD88-dependent and 

independent pathways, subsequently producing inflammatory mediators and leading to 

neuronal loss (Fernandez-Lizarbe et al., 2009). The importance of these receptors was 

confirmed in the same study when inflammatory response was obliterated in microglial cells 

from TLR4-deficient mice, which protected neurons from the damage caused by EtOH-

activated microglia (Fernandez-Lizarbe et al., 2009). Other studies clarify that the response of 

TLRs depends on EtOH concentrations (low, moderate or high), treatment duration (acute or 

chronic) and type of cells and pathogens (Blanco et al., 2005; Fernandez-Lizarbe et al., 2008; 

Fernandez-Lizarbe et al., 2009).  

As already said, after microglial activation induced by EtOH, these cells release a range 

of factors related to inflammation, such as TNF and other cytokines, that exacerbate 

neuroinflammation (Crews et al., 2015). Although astrocytes and neurons can also produce 

TNF, microglia are recognized as the major source of this cytokine during neuroinflammation 

(Olmos et al., 2014). Excessive amounts of TNF are associated with demyelination and 

neurodegeneration (Sriram et al., 2006). In fact, in an in vitro study, the apoptotic effect of 

EtOH in cultured hypothalamic neurons is enhanced in the presence of microglia-conditioned 

media (Boyadjieva and Sarkar, 2010). However, this effect is obliterated with TNF 

immunoneutralization, indicating the potential involvement of glial NF-κB expression 

associated with release of TNF, which could lead to neuronal apoptosis. Another report 

revealed that LPS-activated microglia produce enough amounts of TNF to cause apoptosis of 
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mouse neural precursor cells involving a mitochondrial pathway regulated by the Bcl-2 family 

protein Bax (Guadagno et al., 2013). 

 

Neurotoxicity 

CNS inflammation, including microglial activation, likely contributes to the neurotoxicity 

observed in neurodegenerative diseases and excitotoxicity may play an important role in this 

context (Block et al., 2007; Takeuchi, 2010). Several studies shown that microglia not only are 

markers of potential neuroinflammation but also might have roles in the other suggested 

mechanisms of ethanol-induced brain damage such as reduction in neurogenesis, and 

induction of oxidative damage and glutamate excitotoxicity (Marshall et al., 2013). 

The effects of alcohol consumption on the function of the immune system through 

secretion of multiple pro-inflammatory cytokines have been described (Boyadjieva and Sarkar, 

2013). Particularly, the type of cytokines produced by microglia affects neurogenesis and upon 

microglial pro-inflammatory activation these cells are generally associated with reduced 

neurogenesis (Monje et al., 2003). For example, when the pro-inflammatory cytokine IL-6 is 

produced, it results in decreased proliferation (Vallieres et al., 2002) while other pro-

inflammatory cytokines, such as interferon (IFN)-γ can dysregulate differentiation, changing 

the fate of newborn neuronal precursor cells (Walter et al., 2011). On the other hand, it is also 

known that microglial activation is essential for reactive neurogenesis in response to neuronal 

damage (DeBoy et al., 2006; Wainwright et al., 2009).  

Under chronic or binge alcohol, oxidative stress appears as an important mechanism 

associated with brain damage (Crews and Nixon, 2009; Thakur et al., 2006). Chronic EtOH 

intake not only induces the increase of cytokines and inflammatory mediators, but also leads 

to excessive production of toxic compounds, such as ROS and nitric oxide (Wu and 

Cederbaum, 2003). The loss of natural counter-balance on ROS production and elimination by 

cellular antioxidants mechanisms results in mitochondrial dysfunction and increased oxidative 

and nitrosative stress (Song et al., 2014). Therefore, alcohol-induced neurotoxicity appears to 
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be associated with a mechanism involving ROS generation after alcohol exposure (Alfonso-

Loeches and Guerri, 2011). The so-called by-products of alcohol metabolism lead to a further 

increase in oxidative stress and neuronal cell death, potentiated by the alcohol-induced 

decrease of endogenous antioxidant levels (Fig. 3) (Alfonso-Loeches and Guerri, 2011). 

Activated microglia generates ROS extracellulary and intracellulary (Block et al., 2007). 

Extracellular neurotoxic molecules directly induce neuronal damage while intracellular ones 

exert their influence in pro-inflammatory processes and cellular homeostasis as second 

messengers (Reynolds et al., 2007; Terada, 2006). In fact, intracellular ROS have a great 

influence on survival and pro-inflammatory responses of microglia, being able to affect kinase 

cascades and activation of transcription factors, consequently influencing the inflammatory 

response through alteration of gene expression (Rojo et al., 2014). In this context, activated 

microglia can be a source of ROS by releasing superoxide, hydrogen peroxide and hydroxyl 

free radicals and such ROS production, like so many other facets of microglia activation, is 

also directed by pro-inflammatory cytokines such as TNF (Fig. 3) (Boyadjieva and Sarkar, 

2013). The view that microglia are relevant players in oxidative stress further implicates 

Figure 3. Mechanisms of alcohol-induced neurodegeneration facilitated by microglia. 

Alcohol has direct negative effect in developing neurons which leads to the increase of ROS levels and decrease of 

levels of antioxidants. On the other hand, alcohol activates microglia, in a direct way or via neuronal-released 

DAMPs, worsening neuroinflammation and oxidative stress due to the increased TNF-α and ROS microglial release. 

All these events culminate in amplified TGF-β1 apoptotic signaling leading to increase in pro-apoptotic protein levels, 

augmented phagocytosis of dead neurons by microglia and increased neuronal cell death (Chastain and Sarkar, 

2014). 
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microglia activation as a potential source for neurodegeneration. These glial cells, although 

equipped with efficient antioxidant defence mechanisms, are highly responsive to changes in 

the redox balance, producing and releasing a broad spectrum of inflammatory mediators 

leading to additional neuronal damage (Song et al., 2014; von Bernhardi et al., 2015).  

 Glutamate is recognized as a crucial excitatory neurotransmitter in CNS, being strongly 

related with several neurological diseases (Barger and Basile, 2001; Takeuchi et al., 2008; 

Takeuchi et al., 2006). In higher concentrations, glutamate leads to severe excitotoxicity, which 

may result in another mechanism of neurotoxicity due to excessive or prolonged stimulation of 

glutamate receptors (Olmos et al., 2014). Two pathways for glutamate production have been 

described: (1) dehydrogenase pathway – α-ketoglutarate conversion to glutamate mediated 

by dehydrogenase – which is used to maintain physiological glutamate levels; and (2) 

glutaminase pathway with glutaminase-mediated conversion of extracellular glutamine into 

glutamate (Fig. 4) (Takeuchi and Suzumura, 2014). Glutamate release might occur through 

ion channels, reverse efflux through excitatory amino acid transporters (EAATs), astrocytic 

vesicular glutamate release, by the xC- exchanger and through hemichannels (Haroon et al., 

2017). Microglia maintain intracellular glutamate levels via the glutamate dehydrogenase 

pathway (Fig. 4) (Takeuchi, 2010). Once activated, these cells secrete inflammatory cytokines, 

which are thought to be responsible for neuronal damage. However, even deleterious 

inflammatory cytokines, such as TNF and IFN-γ, have a relatively weak direct neurotoxic effect 

due to their concomitant neuroprotective role, eliciting indirect neurotoxicity through microglial 

glutamate release (Ghezzi and Mennini, 2001; Kamata et al., 2005). Some authors suggest 

that these cytokines induce glutaminase upregulation – and subsequent glutamate production 

– and also enhance hemichannels expression on the microglial cell surface, increasing 

glutamate release (Eugenin et al., 2001; Takeuchi et al., 2006). In fact, Takeuchi et al. 

described that TNF stimulates extensive microglial glutamate release in an autocrine manner, 

promoting further microglial TNF production and perpetuating microglial neurotoxicity through 

TNFR1 signaling (Fig. 4) (Takeuchi et al., 2006). Moreover, it was demonstrated that such 
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glutamate release occurs preferentially through the microglial connexin (Cx) 32 hemichannel 

and not glutamate transporters because this response was substantially repressed by a 

mimetic peptide directed against Cx32 (Takeuchi et al., 2006).  

The excessive glutamate levels that mediate glutamate excitotoxicity occur because of 

both increased release as well as decreased uptake and microglia have the capacity to affect 

both processes that control glutamate excitotoxicity (Takeuchi, 2010). Although microglial 

release of glutamate could contribute to glutamate excitotoxicity in alcohol-induced 

neurodegeneration, activated microglial cells also upregulate the expression of the glutamate 

transporter 1 (GLT-1), which is responsible for taking up glutamate into microglia where it can

 

be recycled (Persson et al., 2005). In this context, glutamate uptake and metabolism by glia 

would be neuroprotective by reducing the levels of glutamate in the neuronal parenchyma. 

Therefore, inhibition of microglial activation appears not to be a promising therapeutic strategy 

because microglia also exert neuroprotective roles, which should not be affected during 

Figure 4. Mechanisms associated with glutamate production and release by activated microglia. 

In a “resting” state, microglia produce glutamate by glutamate dehydrogenase pathway to the physiological normal 

levels maintenance of this neurotransmitter. Upon activation, microglial up-regulated glutaminase synthesizes large 

amounts of glutamate which are released through up-regulated gap-junction hemichannels of microglia, leading to 

eventual neuronal damage (Takeuchi and Suzumura, 2014). 
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inhibition of microglial neurotoxic effects (Takeuchi, 2010). On the other hand, blockade of 

glutamate receptors has been proven unsuccessfully in therapeutic terms because perturbing 

physiological glutamate signals leads to severe collateral damage on other CNS cells (Parsons 

et al., 2007). Experimental evidence demonstrated that glutaminase inhibitors or hemichannel 

blockers might be used as new therapeutic approaches in order to reduce the microglial 

glutamate release, possibly rescuing some of toxic effects on neuronal cells (Takeuchi et al., 

2006). Inhibitors directed against glutaminase and/or gap junctions, therefore, would likely be 

more specific and effective in suppressing microglial glutamate release with minimum adverse 

side effects. 

 

Preliminary results 

Ethanol activates c-Src to promote glutamate release from microglia  

The cytotoxic role of glutamate released by overactivated microglia, which promotes 

neuronal cell death, has been demonstrated previously (Barger and Basile, 2001; Chen et al., 

2012; Socodato et al., 2015a; Takeuchi et al., 2008; Takeuchi et al., 2006). There are several 

reported modulators of microglial glutamate release, such as lipopolysaccharide (LPS), 

hypoxia, hydrogen peroxide (H2O2) and TNF (Barger et al., 2007; Socodato et al., 2015a; 

Socodato et al., 2015b; Takeuchi et al., 2006). Therefore, preliminary studies performed by 

Socodato et al. from the Glial Cell Biology research group (i3S) focused on understanding 

whether ethanol can also regulate glutamate release from microglia and the pathways 

associated with this event.  

Glutamate release was studied using an intramolecular FRET biosensor (Okumoto et al., 

2005) by measuring the changes in CFP to FRET emission ratios (Annex 1A) in living rat 

primary cortical microglia. Ethanol exposure resulted in glutamate release from microglia 

(Annex 1B) with fast and sustained kinetics (Annex 1B.1, black line). Knocking down c-Src 
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in rat primary cortical microglia abrogated the ethanol-triggered glutamate release (Annex 

1B.1, red line and 1B.2).  

 Src plays a major role in regulating cortical microglial function (Socodato et al., 2014; 

Socodato et al., 2015b) and we tested whether ethanol exposure would affect c-Src activation 

in microglia. We evaluated c-Src activity in living rat primary cortical microglia by FRET 

(Ouyang et al., 2008) (Annex 1C). Ethanol activated c-Src consistently (Annex 1D) with fast, 

sustained (Annex 1D.1) and robust (Annex 1D.2) activation signal.  

To further support the role of c-Src in ethanol-induced glutamate release in microglia we 

acutely inhibited c-Src with a pharmacological inhibitor (SKI) during the sustained phase of 

glutamate release (after 28 minutes of ethanol exposure; Annex 1E and 1E.1). FRET 

measurements in rat primary cortical microglia showed that inhibition of c-Src with SKI led to 

a blockade of glutamate release (Annex 1E), which was upheld at baseline values even in the 

continuous presence of ethanol (Annex 1E.1). In addition, time-controlled c-Src activation 

using a rapamycin-inducible c-Src allosteric construct (RapR-Src (Karginov et al., 2010)) was 

sufficient to induce a large increase in glutamate release in rat primary cortical microglia 

(Annex 1F-F.2). From these data, we concluded that ethanol induces glutamate release from 

microglia in a c-Src-dependent manner.  

 

Ethanol-induced c-Src activation in microglia triggers glutamate release through TNF  

TNF has been shown to promote the release of glutamate through hemichannels from 

activated microglia (Takeuchi et al., 2006). N9 microglia overexpressing a constitutively active 

c-Src mutant (SrcY527F) released more TNF than control N9 cells (Annex 2A), corroborating 

that c-Src induces TNF production in microglia. Accordingly, microglia exposed to TNF 

released glutamate similarly when treated with ethanol (Annex 2B-B.2). TNF production is 

necessary for ethanol-induced glutamate release (Annex 2C-C.2, black line and whisker) 

because such release was prevented in microglia isolated from TNF deficient mice (TNF-/- 

mice; Annex 2C-C.2, red line and whisker). Using the RapR-Src construct, to force c-Src 
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activation in a time-controlled manner, we found that rapamycin-mediated c-Src activation led 

to glutamate release from wild-type (Annex 2D-D.2, blue line and whisker) but not from TNF-

/- microglia (Annex 2D-D.2, blue line and whisker). We concluded that in microglia TNF is a 

downstream target of the ethanol/c-Src pathway to trigger glutamate release. 
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CHAPTER 2 | Aims 

Microglia might be involved in several mechanisms of alcohol-induced neurodegeneration 

and behavioural deficits. The main goal of this study is to investigate both functional and 

morphological characteristics of microglia after semi-chronic exposure to ethanol. Gaining 

mechanistic insight into these processes will be relevant to better analyze the effects of alcohol 

that lead to neurodegeneration, and find new therapeutic targets. 

 

The main goals of this work are:  

In vitro: 

1) Quantification of glutamate release after ethanol exposure in the different 

experimental conditions by FRET experiments. 

In vivo: 

1) Evaluation of the effect of alcohol in microglial and astrocytic cells in the brain: 

o Determination of microglial and astrocytic cell numbers after semi-chronic 

ethanol exposure by immunohistochemistry; 

o Protein expression analyses of microglial and astrocytic markers by 

Western blotting. 

2) Measurement of mRNA transcripts of: a) the antioxidant-related neuroimmune 

response; and b) microglia signature and homeostasis-related genes, by 

Quantitative Real-Time PCR (RT-qPCR), that might be involved in alcohol-induced 

dysfunction and behavioural deficits.  

3) Evaluation of alcohol influence in mice behaviour by comparing the performance of 

control mice and mice subjected to ethanol exposure in different behavioural 

paradigms. 
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CHAPTER 3 | Methods 

IN VITRO STUDIES 

Drugs 

Ethanol absolute was from Millipore; 18α-Glycyrrhetinic acid (GA) (G8503) and GAP-27 

(G1794) were from Sigma-Aldrich. 

 

Plasmids 

pDisplay FLIPE-600n (Plasmid 13545) was from Addgene. Transfection of human 

microglial cells was performed using 1 μg of plasmid with jetPRIME® (Polyplus Transfection) 

according to the manufacturer’s protocol.  

 

Cells 

Human microglial cell line 

CHME3 microglial cells (Janabi et al., 1995) were cultured in DMEM GlutaMAXTM-I (Life 

Technologies) supplemented with 10% (v/v) FBS and 1% penicillin/streptomycin (Life 

Technologies), and were maintained at 37 °C, 95% air and 5% CO2 in a humidified incubator. 

CHME3 cells were used in experiments for determining the nuclear accumulation of p65 NF-

κB subunit or glutamate release.  

 

FRET-based live cell imaging and quantification of FRET 

images 

Human microglial cells (CHME3) were plated on plastic-bottom culture dishes (μ-Dish 35 

mm, iBidi). Imaging was performed using the Leica DMI6000B inverted microscope as 
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previously described (Socodato et al., 2015a; Socodato et al., 2015b). The excitation light 

source was a mercury metal halide bulb integrated with an EL6000 light attenuator. High-speed 

low vibration external excitation/emission filter wheels (equipped with CFP/YFP excitation and 

emission filters) were mounted on the microscope (Fast Filter Wheels, Leica Microsystems). 

A 440-520 nm dichroic mirror (CG1, Leica Microsystems) and a PlanApo 63X 1.3NA glycerol 

immersion objective were used for CFP and FRET images which were acquired with 4x4 

binning using a digital CMOS camera (ORCA-Flash4.0 V2, Hamamatsu Photonics). Shading 

illumination was online corrected for CFP and FRET channels using a shading correction 

routine implemented by Leica for the LAS X software. At each time-point, CFP and FRET 

images were sequentially acquired using different filter combinations (CFP excitation plus CFP 

emission, and CFP excitation plus YFP emission, respectively).  

Images were processed in FIJI software as 16-bit tiff files. Background was dynamically 

subtracted from all slices. Segmentation was achieved on a pixel-by-pixel basis using a 

modification of the Phansalkar algorithm. After background subtraction and thresholding, 

binary masks were generated for the CFP and FRET channels. Original CFP and FRET 

images were masked and ratiometric images (CFP/FRET for glutamate release probe) were 

generated as 32-bit float tiff images. Photobleaching was corrected using bi-exponential decay 

curve fitting based on the histogram distribution for the whole time-series. Mean gray intensity 

values were generated using the multi calculation function in FIJI and exported for statistical 

evaluation in the GraphPad software. 

 

IN VIVO STUDIES 

Animals 

TNF knockout mice (referred herein as TNF-/-) were originally supplied by Prof. Rui 

Applelberg (University of Porto) and were kept on a C57BL/6 background. TNF-/- mice were 

genotyped by PCR using ATC CGC GAC GTG GAA CTG GCA GAA (forward) and CTG CCC 
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GGA CTC CGC AAA GTC TAA (reverse) primer pair. TNF-/- mice display a single band of 2000 

bp in the PCR gel. Such mice were bred at i3S animal facility and maintained at heterozygosity. 

150 days old male WT and TNF-/- littermates were used in this study. Animals were kept under 

stable conditions (20-22ºC, 60% humidity in 12-hour light/dark cycle), with water and 

appropriate food supplied ad libitum. Cylindrical tubes and soft paper for nest construction 

were made available. All procedures used were approved by local ethical committee and by 

the Portuguese Agency for Animal Welfare, general board of Veterinary Medicine (ref. 

11769/2014-05-15), in compliance with the 2010 European Community Council Directive 

(2010/63/UE). All procedures involving animals were conducted by FELASA C or B graded 

researchers and all efforts were made to ensure minimal animal stress and discomfort.  

 

Ethanol exposure to mice 

Mice were subjected to a ten-day model of alcohol binge (semi-chronic exposure). Divided 

into two experimental groups (WT and TNF-/- mice) of similar weights, animals received either 

200 μL of 25% ethanol diluted in dH2O or 200 μL of dH2O (control) through intragastric 

administration performed via oral gavage undertaken using a flexible catheter 22G. After ten 

successive days of administration and 3-5 days of ethanol withdrawal period, males were 

subjected to behavioural analysis. Then, perfusion was performed with PBS and some animals 

also had the brains fixed by perfusion with 4% paraformaldehyde (PFA). Extracted brains were 

sliced and used for histological analysis, mRNA was harvested for PCR or tissue was 

homogenized to obtain protein lysates. At the end, it was obtained four experimental distinct 

groups for data analysis: WT Saline, WT EtOH, TNF-/- Saline, and TNF-/- EtOH. 
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Behavioural tests 

All testing procedures were conducted in the dark phase of the light/dark cycle. Before 

each session, mice were removed from their home cage in the colony room and brought into 

adjacent testing rooms (illuminated with 100 lux and attenuated noise). All behavioural tests 

were recorded with a camera placed above the apparatus. In the elevated plus-maze and 

open-field tests, movement and location of mice were analyzed by an automated tracking 

system equipped with an infrared-sensitive camera (Smart Video Tracking Software v 2.5, 

Panlab, Harvard Apparatus). Data from the object recognition test were analyzed using the 

software Observer 5 (Noldus Information Technology, Wageningen, The Netherlands). All 

apparatus were thoroughly cleaned with neutral soap after each test session. Only male mice 

were used in the behavioural tests.  

Behavioural analysis were performed during this project by Ana Magalhães from the 

Addiction Biology group. 

 

Elevated plus-maze (EPM) 

The maze is made of opaque grey PVC and consists of four arms arranged in a plus-

shaped format; two arms have surrounding walls (closed arms, 37x6 cm x18 cm-high), the 

other two opposing arms have no walls (open arms, 37x6 cm). The apparatus was elevated at 

a height of 50 cm above the ground. Mice were placed on the central platform facing an open 

arm and were allowed to explore the maze for 5 minutes. Open arms entries and time spent in 

open arms were measured automatically (video tracking) to assess anxiety-like behaviour. 

Protected head dipping (the mouse points its head to the floor but its body is still in the centre 

or in a closed arm of the maze), head dipping (the mouse points its head to the floor with its 

body in open arm) and stretched attended postures (animal stretching forward into an open 

arm and retracting to its original position without moving its hind paws) were scored manually 

to assess risk-taking behaviour.  
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Open field (OF) 

Mice were placed in the centre of an OF apparatus (40 x 40 x 40 cm) and then allowed to 

move freely for 10 min. The distance travelled, peripheral activity and center activity 

(locomotion in the central section of the OF) were counted automatically (video tracking). 

 

Novel object recognition (NOR) 

The NOR test was performed as previously described (Leger et al., 2013). Briefly, the test 

apparatus consists of an open box and the objects used were made of plastic, glass or metal 

in three different shapes: cubes, pyramids and cylinders. The test consisted of three phases. 

During habituation phase, mice were allowed to explore the apparatus for 10 min (time used 

to perform OF test). In the following day, the acquisition/sample phase started by placing each 

mouse in the apparatus with two identical objects (familiar) for 10 min and then the mouse was 

removed back to its home cage. After 4 hours (inter-trial interval, ITI), the retention/choice 

session was performed. In this phase, the apparatus contained a novel object and a copy of 

the previously seen familiar object, and animals were allowed to explore the objects for 3 min. 

The time spent exploring the novel object served as the measure of recognition memory for 

the familiar object. Exploration was defined as follows: mouse touched the object with its nose 

or the mouse’s nose was directed toward the object at a distance shorter than 2 cm (Ennaceur 

et al., 2005). Circling or sitting on the object was not considered exploratory behaviour. The 

product of the difference (subtraction) between exploration time for novel and familiar objects 

was measure as indicator of object recognition translated into a condition score: a) =+1, 

preference for spend more time with new object; b) =0, null preference; c) =-1, preference to 

spend time with familiar object (Ennaceur et al., 2005). The index of discrimination (DI) was 

calculated as index of memory function, DI = time exploring the novel object / (total time spent 

exploring both objects). 
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Immunohistochemistry 

Tissue preparation 

After perfusion with 4% PFA in 0.16 M phosphate buffer (PB), the brains were removed 

from the skull and post-fixed for 4 h in the same medium. Then, the tissue was rinsed with PB 

and cryoprotected using two sucrose solution gradient in a row (15 and 30%). After at least 

24h, each brain was mounted in OCT (ThermoScientific) medium, frozen and cryosectioned in 

the CM3050S Cryostat (Leica Biosystems) at a thickness of 30µm. Coronal and non-sequential 

tissue sections were collected on Superfrost glass slides. The slides were stored at -20ºC until 

processed for immunolabeling using. 

 

Immunohistochemistry and analysis 

Slides with sections including hippocampus and cortex were washed 3 x 10 min with PBS 

and incubated for 60 min with blocking solution (3% bovine serum albumin, 3% FBS and 1% 

Triton X-100 in PBS). Then, incubation with primary antibodies (anti-Iba-1 1:500, 016-20001, 

WAKO; anti-GFAP 1:500, ab7260, Abcam) was performed and the slides were maintained in 

a humidified chamber during two overnights. Afterwards, sections were washed 3 x 10 min 

with PBS and incubated with secondary antibodies (Alexa488 1:500, Life Technologies) for 90 

min. To stain the nuclei, cells were incubated with Hoechst 33342 0,5µg/mL (B2261, Sigma-

Aldrich) or NucRed® Dead 647 (R37113, Life Technologies) for 10 min at room temperature. 

After 3 x 10 min in PBS, slides were cover slipped using glycergel or Immumount and 

visualized using a Leica TCS SP5 II confocal microscope. Images were processed and 

quantified using the LAS AF software (Leica Microsystems). 

 

Cortical protein extraction and Western Blot analysis 

Total protein of cerebral cortex samples was extracted with RIPA buffer (150mM NaCl, 

50mM Tris–HCl, pH 7.4, 5mM EGTA, 1% Triton, 0.5% DOC and 0.1% SDS at a final pH 7.5), 
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supplemented with 50mM sodium fluoride (NaF), 1.5mM sodium ortovanadate (Na3VO4), 1mM 

dithiothreitol (DTT) and a cocktail of protease inhibitors (0.1mM phenylmethylsulfonyl fluoride 

(PMSF), CLAP (1μg/ml chymostatin, 1μg/ml leupeptin, 1μg/ml antipain, 1μg/ml pepstatin; 

Sigma). Protein concentration was determined using the Bicinchoninic Acid (BCA) method, 

and denaturant solution 5X (buffer (625mM Tris, pH 6.8, 10% SDS, 500mM DTT, 50% glycerol 

and 0.01% bromophenol blue) was added to a final concentration of 1X. Samples were heated 

to 60ºC for 10 minutes, and stored at -20ºC for further use. 

SDS-page electrophoresis was performed, where 120μg of sample protein was loaded in 

a 12% SDS-page gel and let run at 80V for 2 hours, using PageRuler™ Plus Prestained Protein 

(Thermo Fisher Scientific) as a molecular weight marker. PVDF membrane was activated by 

submerging it in methanol for 15 seconds (until transparent), washed in distilled water with 

agitation, and incubated for 30 minutes in transfer buffer.  Proteins were transferred from gel 

to the PDVF membrane using a Trans-Blot® Turbo™ Transfer System (Bio-Rad). The 

transference was performed for 15 minutes in diluted Trans-Blot® Turbo™ 5X Transfer Buffer 

(20% buffer, 20% ethanol and 60% ultrapure H2O). Membranes were blocked for 60 min in 

blocking solution composed of 5% skimmed milk diluted in tris based saline with 0.1% Tween 

(TBS-T) and incubated with primary antibody (anti-GFAP 1:100, ab7260, Abcam; anti-Iba-1 

1:1000, 016-20001, WAKO; anti-GAPDH 1:10000, G7121, Promega) diluted in blocking 

solution overnight at 4ºC. Membranes were then washed 5 times, for 5 minutes each, with 

TBS-T and incubated with the secondary antibody (HRC conjugated anti-rabbit 1:10000, 

A0545, Sigma-Aldrich; HRC conjugated anti-mouse 1:3000, 31432, Thermo Fisher Scientific). 

Membranes were incubated with Clarity™ Western ECL Substrate (Bio-Rad) for 5 min, and 

revealed using ChemiDoc (ChemiDoc™ MP System, Bio-Rad). Results were quantified and 

processed with ImageLab software (Image Lab™ Software, Bio-Rad). 

Membranes were reprobed using other primary antibodies according to the following 

steps: washed for 5 min in distilled water, incubated for 20-30 min in NaOH 0,2M, and finally 
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washed for 5 min in distilled water. The procedure was repeated from the blocking step 

forward. 

 

Quantitative Real-Time PCR (RT-qPCR) 

RNA extraction using modified RNA Kit 

Total RNA was extracted from the cortical tissue of WT and TNF -/- brains using TRIzolTM 

(Ambion by Life Technologies) reagent combined with PureLink RNA Mini Kit (Ambion by Life 

Technologies), according to the manufacturers’ instructions. To obtain single cell suspensions, 

tissue samples were mechanical disaggregated in TRIzolTM, homogenized and centrifuged 

with chloroform. Ethanol 70% in RNase-Free water was added to RNA fraction in a 1:1 

proportion and mixed vigorously avoiding precipitate formation. The lysate was subjected to a 

silica-membrane column RNA purification and concentrated RNA was eluted in 30 µL RNase 

free water (Fig. 5). The total amount of RNA was assessed with NanoDrop® 1000 

Spectrophotometer (Thermo Scientific), and RNA quality and integrity with Experion 

Automated Electrophoresis System (BioRad).  

 

cDNA synthesis  

To proceed to the RT-qPCR analysis, cDNA synthesis was conducted using SuperScript® 

III First-Strand Synthesis System (Invitrogen) following manufacturer’s instructions. Briefly, to 

Figure 5. Scheme of silica-based purification protocol using Purelink® RNA Mini Kit in conjunction with 
TRIzol® Reagent.  

Adapted from (https://www.thermofisher.com/pt/en/home/life-science/dna-rna-purification-analysis/rna-
extraction/rna-types/total-rna-extraction/purelink-rna-mini-kit.html).  
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1µg of total RNA of samples, it was added 10µL RT Reaction Mix, 2µL RT Enzyme Mix and 

RNA/Nuclease free water, reaching a final volume of 20 µL. Samples were then incubated in 

a thermocycler (Bio-Rad) at 25ºC for 10 min, heated until 50ºC for 30 min and then heated 

until 85ºC for 5 min. Afterwards, 1µL of E. Coli RNase was added to each sample and 

incubated in thermocycler at 37ºC for 20 min. cDNA was stored at -20ºC until further use. 

 

RT-qPCR analysis  

In order to evaluate mRNA expression, RT-qPCR analysis was performed. Primers were 

designed using OligoPerfect™ Designer (ThermoFisher Scientific), specifically to the selected 

genes, accordingly with the specified requirements (75-200 base pairs long, GC content 

between 50-60%, minimized single-bases repetition, minimal to inexistent secondary structure 

formation and melting point between 57-63ºC). 

 

Table 1. Specific primers used on RT-qPCR. 

 Sequences (5’ - 3’) 

 Forward Reverse 

IL-1Β GCCCATCCTCTGTGACTCAT AGGCCACAGGTATTTTGTCG 

TNF GCCACCACGCTCTTCCTGTCT TGAGGGTCTGGGCCATAGAAC 

IL-6 CACAAGTCCGGAGAGGAGAC CAGAATTGCCATTGCACAAC 

IFNΒ CCCTATGGAGATGACGGAGA CTGTCTGCTGGTGGAGTTCA 

C1QA GTGTGCTGACCATGACCCTA ATTCCCCTGGGTCTCCTTTA 

C1QB AGACACAGTGGGGTGAGGTC GGTCCCCTTTCTCTCCAAAC 

C1QC GAGGACCCAAGGGTCAGAAG TGTATCGGCCCTCCACAC 

COX-2 GCTGTACAAGCAGTGGCAAA CCCCAAAGATAGCATCTGGA 

TREM2 AACTTCAGATCCTCACTGGACC CCTGGCTGGACTTAAGCTGT 

TSPO TGGGAGGTTTCACAGAGGAC GCCAGGTAAGGGTACAGCAA 

MHC-II (CD74) ATGACCCAGGACCATGTGAT ATCTTCCAGTTCACGCCATC 

GCLC CACAGACCCAACCCAGAG TGGCACATTGATGACAACCT 

GSR CACGACCATGATTCCAGATG CAGCATAGACGCCTTTGACA 
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TXNRD1 CAGGGTGACTGCTCAATCCACAAAC CTCTTCCTACCGCCAGCAACACTG 

HMOX1 GAAGGGTCAGGTGTCCAGAGAAGG CGCTCTATCTCCTCTTCCAGGGC 

CXCL1 GCTGGGATTCACCTCAAGAA TGGGGACACCTTTTAGCATC 

ICAM-1 CGAAGGTGGTTCTTCTGAGC GTCTGCTGAGACCCCTCTTG 

CCL2 ATCCCAATGAGTAGGCTGGA TCTGGACCCATTCCTTCTTG 

CCL5 GTGCCCACGTCAAGGAGTA CCCACTTCTTCTCTGGGTTG 

P2RY12 CACCTCAGCCAATACCACCT CAGGACGGTGTACAGCAATG 

MERTK GCCCACAATGACAAAGGACT GGGAGTAGCCATCAAAACCA 

PROS1 GATTCTCGCTCTGGAACGTC GGTGTGGCACTGAAGGAAAT 

CSF1R CCCTAGGACAAAGCAAGCAG GATGTCCCTAGCCAGTCCAA 

GPR34 GGTTGCTCTTGCTGGATTTC CCGGGCTGTTGTAGCATATT 

PU.1 CAGTTCTCGTCCAAGCACAA TTTCTTCACCTCGCCTGTCT 

TGFΒR1 AAATTGCTCGACGCTGTTCT TTCCTGTTGGCTGAGTTGTG 

ARG-1 GTGAAGAACCCACGGTCTGT CTGGTTGTCAGGGGAGTGTT 

MRP14 TCATCGACACCTTCCATCAA TCAACTTTGCCATCAGCATC 

MRP8 GGAAATCACCATGCCCTCTA TGCCACACCCACTTTTATCA 

SOCS3 AGCTCCAAAAGCGAGTACCA AGCTGTCGCGGATAAGAAAG 

NLRP3 ATGCTGCTTCGACATCTCCT AACCAATGCGAGATCCTGAC 

IL-18 CAGACAACTTTGGCCGACTT GGGTTCACTGGCACTTTGAT 

IRAK3 GGACCTCCTCATGGAACTGA CCAGAGAGGACAGGACTTCG 

SVCT2 CACTGATAGAAGTGGTCAT AACACTAGGAAAATCGTCAG 

TLR2 TTGCTCCTGCGAACTCCTAT GCTTTCTTGGGCTTCCTCTT 

TLR4 GCTTTCACCTCTGCCTTCAC GCGATACAATTCCACCTGCT 

TLR7 TGGAAATTTTGGACCTCAGC TTGCAAAGAAAGCGATTGTG 

CX3CL1 TTCAACCCCAGAGGAAAATG TCGGGGACAGGAGTGATAAG 

CD163 TGGTGTGCAGGGAATTACAA AGCTCCACTCTTCCCTCACA 

CD14 GCTCAACTTTTCCTGCGAAC CCCGCAGTGAATTGTGACTA 

YWHAZ GATGAAGCCATTGCTGAACTTG GTCTCCTTGGGTATCCGATGTC 
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PCR was performed using iTaq™ Universal SYBR® Green Supermix. Template PCR 

reactions were performed and run in duplicate (see table 2 for reaction setup) and the PCR 

cycling profile was 3 min at 94ºC for polymerase activation, followed by 40 cycles of 15 sec at 

94ºC (denaturation), 20 sec at 60ºC (annealing) and 81 cycles of 30 sec between 55ºC and 

95ºC (final extension period). 

 

Table 2. qPCR Reaction Setup (adapted from iTaqTM Universal SYBR® Green Supermix). 

Component Volume per 20µL reaction Final Concentration 

iTaqTM Universal SYBR® Green Supermix (2x) 10µL 1x 

Forward and Reverse Primers Variable 300nM 

DNA Template 1µL 1µg 

H2O Variable - 

Total reaction mix volume 20µL - 

 

Gene expression was extrapolated from standard curves generated concurrently for each 

gene using a control cDNA dilution series. qPCR was carried out in iQ5 Multicolor Real-Time 

PCR Detection System (BioRad) and the results were analyzed using iQ™5 Optical System 

software version 2.1 (BioRad). All values were normalized to levels of the reference gene 

(Ywhaz) and expressed compared to control samples. Gene expression was calculated using 

the 2^(-delta CT) (Schmittgen and Livak, 2008). 

 

Statistical Analysis 

The results obtained in each experiment were normalized by the control mean. Data was 

presented as mean ± SEM of at least three different experiments, performed in independent 

preparations. Statistical analysis of the results was performed using GraphPad Prism7 and 

data were evaluated by unpaired Student t test, One-Way Analysis of Variance (ANOVA) 

followed by the Fisher’s LSD post-hoc test or two-way ANOVA followed by the Fisher’s LSD 
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post-hoc test. In cases where homogeneity of the variances in the One-Way ANOVA was not 

met (evaluated by the Brown-Forsythe test), multiple t tests were used instead. 95% 

confidence interval was used for statistical evaluation and P<0.05 was considered statistically 

significant difference in all sampled groups. 
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Chapter 4 | Results 

Ethanol promotes glutamate release from microglia through 

gap-junction hemichannels 

Take into account the preliminary results, we studied whether glutamate release by 

CHME3 human microglial cells was affected by ethanol. In fact, measuring the changes in CFP 

to FRET emission ratios we observed a considerable increase in glutamate release from 

ethanol-stimulated CHME3 microglia (Fig. 6, black circles). This result further validated the 

hypothesis that ethanol can induce the release of glutamate from human microglia. 

In order to prevent or block the ethanol effect, two gap-junction inhibitors were used 

because it was found that activated microglia release large amounts of glutamate through gap 

junction hemichannels (Takeuchi et al., 2006). GAP-27 peptide and 18α-Glycyrrhetinic acid 

(GA) inhibit intercellular communication through gap junctions and have been used primarily 

Figure 6. FRET quantification of glutamate release by CHME3. 

Human microglial cell line (CHME3) was transfected with the FLIPE 600nSURFACE probe. Cells were treated with 

EtOH (70mM) or pre-treated with GAP-27 [100µM] or 18α-GA [100µM]. CFP/FRET emission ratios of the chimera 

were normalized at 0 min. Bars represent the means ± SEM of ten to sixteen cells from one experiment. ***P < 

0.001, Two-way ANOVA (Fisher’s LSD post-hoc test). 
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to block gap junctions composed of Cx43 (Boengler et al., 2012; Ilvesaro et al., 2001), which 

is described to be present in microglia (Eugenin et al., 2001; Garg et al., 2005; Kielian, 2008). 

Our results demonstrated a significant but delayed decrease of the ethanol-triggered glutamate 

release in the presence of GAP-27 peptide (Fig. 6, red squares), but not in microglia treated 

with 18α-GA gap junction blocker (Fig. 6, grey triangles). 

 

Ethanol exposure to adult mice induces no overt changes 

on the number of brain microglia and astrocytes  

The expansion of the brain resident glial populations is a hallmark of several 

neuropathologies (Perry and Holmes, 2014) and accumulating evidence suggest that acute 

and chronic alcohol exposure might impact on microglial and astrocytic viability, activation and 

proliferation (Alfonso-Loeches et al., 2010; Franke, 1995; Guerri et al., 1990; He and Crews, 

2008; Miguel-Hidalgo et al., 2002). Therefore, we analysed by Western blotting the amounts 

of Iba-1 (a microglial marker) and glial fibrillary acidic protein (GFAP; astrocytes) in protein 

lysates obtained from the brains of ethanol-exposed and control mice. Our results showed no 

significant differences in the total amounts of Iba-1 (Fig. 7A) or GFAP (Fig. 7B) between 

ethanol-treated and control brains. 

In addition, immunohistochemistry for Iba-1 and GFAP on tissue sections obtained from 

the cerebral cortices revealed that the numbers of Iba1-positive microglia (Fig. 8A) and GFAP-

positive astrocytes (Fig. 8B) were comparable between mice exposed to ethanol and the 

controls. Here we show that in adult mice, our semi-chronic protocol of ethanol exposure 

seems do not induce microgliosis or astrocytosis. 
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Figure 7. Iba-1 and GFAP protein expression levels on lysates from the cortical tissue of ethanol-treated 

and untreated wild-type mice. 

Iba-1 (A) and GFAP (B) protein levels were determined by Western Blot. GAPDH was the loading control. A 

representative immunoblot of each protein is shown. Histograms are the mean ± SEM. N=4-5 CT and EtOH WT 

mice. Mann-Whitney test. Values displayed were normalized to the control group. 
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Figure 8. Numbers of Iba-1- and GFAP-positive cells in the brains of ethanol-treated and untreated wild-

type mice. 

Histological confocal analysis was also performed. Iba-1 (A) and GFAP (B) immunolabeling in the cerebral cortex 

from WT mice. Graphs represent (mean ± SEM) positive cell counts per mm2. Values displayed were normalized 

to the control group. N=6 CT and 6 EtOH WT mice. Unpaired t test. Scale bar, 10 µm. 
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Role of TNF in ethanol-induced alteration of mRNA 

transcripts of immune response genes in the brain  

 

Ethanol alters the mRNA transcripts of immune response genes in the brain of wild-type 

mice 

Data based on studies in brains of human alcoholics and animal models demonstrate that 

neuroimmune and microglial gene expression are increased by alcohol abuse, emphasizing 

that ethanol effect on the CNS might be influenced by the innate immune system (Crews et 

al., 2015; Kelley and Dantzer, 2011; Mayfield et al., 2013; Robinson et al., 2014). We 

investigated by RT-qPCR the transcripts of several genes related with neuroimmune 

activation, immune cell recruitment, microglia homeostasis and antioxidant response. Our 

results show a significant increase in TNF and TLR2 mRNA transcripts (Table 3; Annex 3A 

and 3B) and reduced abundance of IL-6, TLR4, TLR7, CCL2, CCL5, TREM2 and COX-2 

mRNA transcripts (Table 3; Annex 3C-I) in ethanol-exposed mice compared to the controls. 

No significant changes in the mRNA transcripts for ICAM-1, C1qA, C1qB, C1qC, MHC-II, Arg-

1, CXCL1, CX3CL1, MRP14, MRP8, SOCS3, NLRP3, IL-18, IL-1β, IRAK3, IFN-β, CD14, 

CD163 and TSPO (Table 3; Annex 4A-S) were found between ethanol-exposed and control 

animals. Concerning gene expression related with microglia signature and homeostasis, we 

found higher abundance of the mRNA transcripts for P2RY12 (Table 3; Annex 5A), reduced 

abundance of MERTK and GPR34 (Table 3; Annex 5B and 5C), and no changes in PROS1, 

CSF1R, PU.1 and TGFβR1 (Table 3; Annex 5D-G) in the brains of ethanol-exposed animals 

when compared to control littermates. 
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Table 3. mRNA expression levels of immune response genes in the brain of wild-type mice. 

Data compilation of the mRNA transcripts of several genes related with neuroimmune activation, immune cell 

recruitment, microglia homeostasis and antioxidant response between ethanol-treated and untreated brains of wild-

type mice. Gene expression was calculated using the 2^(-ΔCT) (Schmittgen and Livak, 2008). *P < 0.05, **P < 0.01, 

Unpaired t test. 

 Gene 
H2O 

Mean(2-ΔCT) ± SEM 

EtOH 

Mean(2-ΔCT) ± SEM 
P value Ethanol effect 

IN
F

L
A

M
M

A
T

IO
N

-R
E

L
A

T
E

D
 

TNF 0.00008 ± 0.00002 0.00013 ± 0.00001 0.0490*   Increase 

IL-1β 0.0046 ± 0.0007 0.0046 ± 0.0005 0.4881 - 

IL-6 0.00026 ± 0.00002 0.00017 ± 0.00004 0.0397* Decrease 

IL-18 0.26 ± 0.02 0.25 ± 0.04 0.4352 - 

IFN-β 0.0026 ± 0.0004 0.0024 ± 0.0003 0.3398 - 

C1qA 0.052 ± 0.007 0.046 ± 0.003 0.1821 - 

C1qB 0.15 ± 0.02 0.13 ± 0.02 0.1623 - 

C1qC 0.027 ± 0.003 0.024 ± 0.002 0.2784 - 

TLR2 0.0015 ± 0.0001 0.0020 ± 0.0002 0.0377* Increase 

TLR4 0.022 ± 0.003 0.016 ± 0.001 0.0231* Decrease 

TLR7 0.0014 ± 0.0001 0.0011 ± 0.0009 0.0112* Decrease 

ICAM-1 0.0021 ± 0.0002 0.0022 ± 0.0001 0.3250 - 

MHC-II 0.0032 ± 0.0004 0.0027 ± 0.0002 0.1577 - 

CD163 0.0033 ± 0.0006 0.0028 ± 0.0005 0.2520 - 

CD14 0.006 ± 0.001 0.006 ± 0.001 0.4961 - 

COX-2 0.14 ± 0.01 0.110 ± 0.004 0.0050** Decrease 

TREM2 0.11 ± 0.01 0.083 ± 0.007 0.0246* Decrease 

TSPO 0.11 ± 0.01 0.130 ± 0.005 0.0636 - 

SOCS3 0.010 ± 0.001 0.011 ± 0.001 0.1853 - 

IRAK3 0.0021 ± 0.0002 0.0016 ± 0.0003 0.0628 - 

NLRP3 0.0009 ± 0.0001 0.0008 ± 0.0001 0.3306 - 

MRP8 0.055 ± 0.007 0.07 ± 0.02 0.2816 - 

MRP14 0.0052 ± 0.0007 0.007 ± 0.003 0.2625 - 

Arg-1 0.0007 ± 0.0002 0.0007 ± 0.0002 0.4208 - 

IM
M

U
N

E
-C

E
L

L
 

R
E

C
R

U
IT

M
E

N
T
 

CCL2 0.0034 ± 0.0006 0.0016 ± 0.0002 0.0158* Decrease 

CCL5 0.00042 ± 0.00007 0.00024 ± 0.00003 0.0165* Decrease 

CXCL1 0.00053 ± 0.00009 0.00061 ± 0.00012 0.2906 - 

CX3CL1 0.18 ± 0.02 0.22 ± 0.03 0.1373 - 
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 Gene 
H2O 

Mean(2-ΔCT) ± SEM 

EtOH 

Mean(2-ΔCT) ± SEM 
P value EtOH effect 

A
N

T
IO

X
ID

A
N

T
-

R
E

L
A

T
E

D
 

GCLC 0.49 ± 0.02 0.41 ± 0.01 0.0057** Decrease 

TXNRD1 0.023 ± 0.002 0.022 ± 0.002 0.4318 - 

GSR 0.026 ± 0.003 0.022 ± 0.002 0.1869 - 

HMOX1 0.013 ± 0.001 0.009 ± 0.001 0.0383* Decrease 

SVCT-2 0.0007 ± 0.0001 0.0009 ± 0.0002 0.2473 - 

M
IC

R
O

G
L

IA
 S

IG
N

A
T

U
R

E
 

A
N

D
 H

O
M

E
O

S
T

A
S

IS
 

P2RY12 0.48 ± 0.03 0.60 ± 0.04 0.0273* Increase 

MERTK 0.22 ± 0.02 0.15 ± 0.03 0.0340* Decrease 

PROS1 0.024 ± 0.003 0.025 ± 0.002 0.3270 - 

GPR34 0.25 ± 0.01 0.20 ± 0.01 0.0131* Decrease 

PU.1 0.037 ± 0.004 0.048 ± 0.007 0.1099 - 

CSF1R 0.0012 ± 0.0002 0.0011 ± 0.0002 0.4215 - 

TGFβR1 0.0075 ± 0.0005 0.0072 ± 0.0007 0.3597 - 

 

As previously mentioned, the increase of oxidative stress has harmful effects to the 

surrounding brain tissue, contributing to neuronal damage in neurodegenerative diseases 

(Block et al., 2007). Apart from the ethanol-induced oxidative stress through ROS generation 

(Wu and Cederbaum, 2003), ethanol can also interfere with intrinsic brain defence 

mechanisms against these compounds by decreasing, for instance, the endogenous 

antioxidant balance (Henderson et al., 1995; Wu and Cederbaum, 2003). Therefore, we 

compared the abundance of mRNA transcripts of antioxidant-related genes between ethanol-

treated and control brains. We found significantly lower mRNA transcripts for GCLC and 

HMOX1 (Table 3; Annex 6A and 6B) in the ethanol-treated group, whereas the abundance 

of the transcripts for GSR, SVCT2 and TXNRD1 were similar (Table 3; Annex 6C-E) between 

the two experimental groups.  
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Ethanol-induced alterations in the transcripts of neuroimmune response genes is 

abrogated in TNF deficient mice 

Because ethanol altered the mRNA transcripts of several genes evaluated in wild-type 

mice we asked at which extent those changes would occur in TNF deficient animals. Our 

results showed that the ethanol effect in altering the mRNA transcripts for TLR2, TLR4, TLR7, 

CCL2, IL-6, P2RY12, MERTK, GPR34, TREM2, COX-2, GCLC and HMOX1 (Figs. 9A-L) was 

prevented in the brains of TNF-/- animals. On the other hand, the decrease in the transcripts 

for CCL5 induced by ethanol in wild-type mice was not prevented in TNF deficient animals 

(Fig. 9M). From these data, we concluded that TNF may modulate the ethanol-induced 

modifications of genes involved in the neuroimmune response, showing a potential role for 

TNF in shaping the ethanol effects in the adult brain. 

 

TNF may influence anxiety-like behaviour in mice exposed 

to ethanol 

Ethanol-induced microglia activation might modify neuronal function adversely influencing 

cognition and anxiety-related behaviour (Pascual et al., 2011; Sullivan and Pfefferbaum, 2005; 

Zhao et al., 2013). In order to assess whether ethanol exposure to mice is capable of inducing 

behavioural impairments, and whether these behavioural alterations could be associated with 

TNF production, we exposed adult wild-type and TNF deficient mice to ethanol and then tested 

these animals in different behavioural paradigms. The battery of tests included open field (OF) 

and elevated plus maze (EPM) to evaluate general locomotor function as well as exploratory 

and anxiety-like behaviours and novel object recognition (NOR) to test recognition memory. 

Classical parameters for evaluating anxiety-like behaviour in the EPM showed significant 

differences between ethanol-exposed and control mice inasmuch as animals treated with 

ethanol took more time to enter the open arms and displayed decreased frequency of open 

arms entries (Figs. 10A and 10B), which was also associated with a higher percentage of time 
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spent in the closed arms (Fig. 10C). The increase of this anxiety-like phenotype induced in 

wild-type mice by exposure to ethanol did not occur in TNF deficient animals (Figs. 10A-C). In 

addition to this ethanol-induced increase in anxiety-like behaviour observed in the EPM, OF 

test indicated reduced exploratory behaviour and higher anxiety levels in wild-type mice 

exposed to ethanol because they spent lesser time in the central square of the OF arena (Fig. 

10D) and displayed lower frequency of rearing (Fig. 10E) when compared with control 

littermates. Differently from wild-type mice, these same parameters of the OF test were 

comparable between TNF-/- animals exposed to water and ethanol (Figs. 10D and 10E). The 

NOR test did not reveal in wild-type mice any significant differences between the ethanol-

exposed and the control group (Fig. 10F), indicating that our ethanol administration protocol 

caused no overt alterations in recognition memory in wild-type mice. 
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Figure 9. mRNA expression levels of immune-related genes in the cerebral cortex of wild-type and TNF-/- 

mice. 

mRNA was harvested from the cerebral cortex of ethanol-treated and untreated WT and TNF-/- mice and the mRNA 

expression levels of the immune-related genes were determined by RT-qPCR. RT-qPCR was executed using 

YWHAZ reference gene. Results are expressed as mean ± SEM; N = 4-6 CT and EtOH WT and TNF-/- mice. *P < 

0.05, **P < 0.01, One-way ANOVA and multiple t test. # means a P value nearby from 0.05 (P = 0.0766). Values 

displayed were normalized to the control group.  
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Figure 10. Behavioural tests in WT and TNF-/- mice upon ethanol exposure. 

(A-C), Control and EtOH-treated WT and TNF-/- mice were evaluated in the EPM. Some alterations in anxiety-related 

behaviour were observed between CT and EtOH-treated WT mice, displaying significant difference in the time spent to 

enter open arms (A), in the number of open arms entries (B) and in the time spent in the closed arms (C). (D-E), Control 

and EtOH-treated WT and TNF-/- mice were evaluated in the OF and show significant decrease in time spent in the centre 

(D) and in the frequency of rearing (E). Animals were also evaluated in the NOR displaying no significant differences in 

the descrimination index between WT CT and EtOH (F). Data are shown as mean ± SEM. N = 8 CT and 7 EtOH-treated 

mice. *P < 0.05, **P < 0.01, Two-way ANOVA (Fisher’s LSD post-hoc test). 
 

W
T

 C
T

W
T

 E
tO

H

T
N

F
- /

-  C
T

T
N

F
- /

-  E
tO

H

0

5 0

1 0 0

1 5 0

L
a

te
n

c
y

 t
o

 e
n

te
r
 o

p
e

n
 a

r
m

s

(s
e

c
o

n
d

s
)

* *

W
T

 C
T

W
T

 E
tO

H

T
N

F
- /

-  C
T

T
N

F
- /

-  E
tO

H

0

1 0

2 0

3 0

4 0

#
 o

p
e

n
 a

r
m

s
 e

n
tr

ie
s

* *

W
T

 C
T

W
T

 E
tO

H

T
N

F
- /

-  C
T

T
N

F
- /

-  E
tO

H

0

1 0

2 0

3 0

%
 C

e
n

tr
e

 t
im

e

 (
s

e
c

o
n

d
s

)

*

W
T

 C
T

W
T

 E
tO

H

T
N

F
- /

-  C
T

T
N

F
- /

-  E
tO

H

0

2 0

4 0

6 0

R
e

a
r

(f
r
e

q
u

e
n

c
y

)

*

A B 

D E 

C 

F 

W
T

 C
T

W
T

 E
tO

H

T
N

F
- /

-  C
T

T
N

F
- /

-  E
tO

H

0

2 0

4 0

6 0

8 0

1 0 0

%
 t

im
e

 i
n

 c
lo

s
e

d
 a

r
m

s

(s
e

c
o

n
d

s
)

* *



FEUP | ICBAS 
Mechanisms of alcohol modulation of microglial function 

47 

 

 
 

Chapter 5 | Discussion 

Alcohol induces brain damage (Harper and Matsumoto, 2005; Pfefferbaum, 2004) and 

can lead to neuroinflammation and neurodegeneration (Alfonso-Loeches et al., 2010; Crews, 

1999; Crews et al., 2004; Kreutzberg, 1996). Nevertheless, the mechanisms underlying these 

ethanol effects are uncertain. Previous studies found that ethanol exposure induces microglial 

activation (Fernandez-Lizarbe et al., 2009), which is typically defined as proinflammatory and 

cytotoxic (Kreutzberg, 1996). In fact, activated microglia reveals a proinflammatory signature 

in a TLR4-dependent manner upon ethanol exposure (Fernandez-Lizarbe et al., 2013). 

Moreover, ethanol induces the production of ROS in microglia (Boyadjieva and Sarkar, 2013; 

Qin and Crews, 2012) promoting apoptosis in developing hypothalamic neurons (Boyadjieva 

and Sarkar, 2010). Altogether, these evidences suggest that ethanol might induce microglia to 

acquire a neurotoxic role. Another identified mediator of microglial neurotoxicity is glutamate 

(Takeuchi, 2010). In this context, this excitatory neurotransmitter appears as an important 

factor to take in account because excessive amounts of glutamate can cause excitotoxic 

neuronal damage (Barger and Basile, 2001; Piani et al., 1992; Takeuchi et al., 2008). Although 

microglia has been established as a major source of this excitotoxic glutamate (Barger and 

Basile, 2001; Chen et al., 2012; Maezawa and Jin, 2010; Takeuchi et al., 2008; Takeuchi et 

al., 2006), the regulation of glutamate release by ethanol in microglia was not explored. In 

order to understand the mechanisms involved in ethanol-induced microglial glutamate release, 

we first performed in vitro experiments using primary microglial cultures from rats. We 

demonstrated that ethanol increased c-Src tyrosine kinase activity inducing the production and 

release of TNF, similar to what has been previously described for LPS and hypoxia (Socodato 

et al., 2015b). Furthermore, the autocrine activation of TNF receptors, engaged by TNF, leads 

to the release of microglial glutamate and consequent excitotoxic damage in neurons (Fig. 11). 

In fact, our in vitro data showed that the robust c-Src activation in microglia induced by ethanol 

was necessary and sufficient for TNF release and that the glutamate release induced by c-Src 
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was abrogated in microglia from TNF deficient mice. These data suggest that targeting the c-

Src/TNF pathway in microglia could be used as a potential strategy to alleviate ethanol-induced 

neurotoxicity. 

 

 

As previously mentioned, microglia have been proved to act as effector cells that can 

damage the CNS parenchyma (Kempermann and Neumann, 2003). Inhibition of microglial 

activation has been faced as a therapeutic approach in the context of several 

neurodegenerative disorders. However, microglia also play neuroprotective roles by mediating 

the release of neurotrophic factors, clearance of neurotoxic substances and also glutamate 

uptake (Kempermann and Neumann, 2003; Kipnis et al., 2004; Schwab and Schluesener, 

2004; Zietlow et al., 1999). Thus, therapeutic strategies targeting microglia could be feasible if 

on could inhibit sole the detrimental effects of activated microglia without lessening their 

beneficial roles (Takeuchi, 2010). On the other hand, inflammatory cytokines produced by 

activated microglia, such as TNF, can directly induce neuronal damage (Greig et al., 2004; 

Taylor et al., 2005; Venters et al., 2000). However, direct neurotoxic effects of these cytokines 

are relatively weak since they also activate neuroprotective factors such as MAPK and 

Figure 11. Signaling pathway activated by ethanol in cortical microglia to promote the release of 

glutamate. 
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expression of NF-κB (Ghezzi and Mennini, 2001; Kamata et al., 2005). Actually, inflammatory 

cytokines promote neurotoxicity through an indirect route by stimulating microglia in an 

autocrine/paracrine manner (Takeuchi and Suzumura, 2014).  

TNF signaling plays a crucial role in inducing glutamate release from cultured microglia in 

an autocrine manner via Cx32 hemichannel (Takeuchi et al., 2006). This microglial glutamate 

release through gap-junction is more pronounced than by glutamate transporters and by the 

Xc
- system (Takeuchi and Suzumura, 2014). For this reason, hemichannel blockers appear as 

a potential therapeutic intervention to diminish microglial glutamate release without disturbing 

physiological levels of this neurotransmitter. We used two gap-junction inhibitors, GAP-27 and 

18α-GA, to prevent the ethanol-induced glutamate release in cultured microglia. These 

compounds inhibit intercellular communication through gap-junctions involving Cx32 and Cx43 

(Boengler et al., 2012; Ilvesaro et al., 2001), which are expressed by microglia (Eugenin et al., 

2001; Garg et al., 2005; Kielian, 2008; Takeuchi et al., 2006). Connexin-mimetic peptide GAP-

27 decreased the amount of glutamate released by activated microglia upon ethanol exposure. 

These results are in consistent with previous studies showing that blockade of Cx32 with 

32gap27 reduces microglial glutamate release and subsequent neurotoxicity (Takeuchi et al., 

2008). 18α-GA gap-junction blocker did not induce significant changes in microglial glutamate 

release upon ethanol exposure, contradicting reported data showing that 18α-GA reduces 

TNF-induced microglial glutamate release and subsequent neurotoxicity (Takeuchi et al., 

2006). We are planning to investigate more deeply this issue, using for instance different 

concentrations of 18α-GA gap-junction inhibitor seeking to attenuate or decrease the amount 

of glutamate released by microglia exposed to ethanol. 

In general, in pathological conditions microglia release large amounts of TNF and this 

inflammatory cytokine is an essential element of the brain neuroinflammatory response 

(Kathryn et al., 2011; Montgomery and Bowers, 2012; Wyss-Coray and Mucke, 2002). 

Besides, and as previously discussed, TNF can potentiate glutamate-mediated cytotoxicity 

(Pickering et al., 2005; Takeuchi et al., 2006). TNF has also been associated with several 
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neurological disorders since neuroinflammation and excitotoxicity are hallmarks of 

neurodegenerative processes (Feuerstein et al., 1994; Olmos et al., 2014; Wyss-Coray and 

Mucke, 2002). Therefore, in vivo experiments involving TNF deficient mice seem to be an 

interesting approach to understand whether this cytokine modulates the ethanol effects in the 

brain.  

Alcohol-mediated neurodegeneration is associated with relevant cognitive deficits, and 

increased impulsivity, impaired learning, memory and decision-making are some of the 

symptoms associated with alcohol consumption (Spanagel, 2009; Zahr et al., 2014). The 

hippocampus and the brain cortex are particularly vulnerable to the alcohol effects, and 

damage to these regions is deeply implicated in impaired frontal functioning and motor control 

(Marshall et al., 2016). Upon chronic ethanol-exposure in mice or rats several studies point 

toward diminished associative and spatial memory, decreased exploratory and locomotor 

activity and somewhat induction of anxiety-like behaviour (Pascual et al., 2011; Pascual et al., 

2015; Zhao et al., 2013). Those evidences corroborate the changes in behaviour seen in 

ethanol-exposed mice in the EPM and OF tests. The changes found in the locomotor and 

anxiety-like behaviour, induced by ethanol, were largely attenuated in TNF deficient mice, 

suggesting the potential involvement of this cytokine in behavioural impairments induced by 

ethanol.  

A key hallmark of the alteration of the brain neuroimmune response is the activation of 

glial cells, including microglia and astrocytes, which, upon activation, can produce and secrete 

a plethora of pro-inflammatory mediators and neurotoxic factors, such as cytokines, 

chemokines, ROS and glutamate (Block et al., 2007). Alcohol-dependent neuroimmune 

responses emerge from the alteration of inflammation-related and immunoregulatory 

genes/molecules involved in the innate immune system of the brain (Crews et al., 2015; 

Mayfield et al., 2013). We demonstrated that the mRNA transcripts of classical inflammatory 

genes were either unaltered or downregulated upon ethanol exposure, contradicting the 

literature describing that ethanol increases the expression of inflammatory cytokines, 
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chemokines, TLRs and COX-2 (Ahlers et al., 2015; Alfonso-Loeches et al., 2010; Drew et al., 

2015; Fernandez-Lizarbe et al., 2013; Marshall et al., 2013; Pascual et al., 2015). Our data 

suggest that ethanol triggers only a mild inflammatory response in our semi-chronic exposure 

model. On the other hand, ethanol reduced the mRNA transcripts of some antioxidant-related 

genes, demonstrating its contribution for oxidative stress by interfering with the intrinsic brain 

defence mechanisms against ROS, as previously reported (Henderson et al., 1995; Wu and 

Cederbaum, 2003).  

As previously mentioned, microglia have an important role both in CNS homeostasis and 

in disease progression and recovery. Distinguish microglia from peripheral myeloid cells that 

infiltrate the nervous system has piqued the interest of researchers recently. In fact, the 

identification of an exclusive genetic signature for microglial cells enables the better 

understanding and modulation of unique biological features of these cells in the context of CNS 

diseases (Butovsky et al., 2014). Our findings suggested that ethanol impacts on microglial 

homeostasis because the mRNA transcripts of different microglia signature genes were altered 

by ethanol exposure. These results, together with a previously reported ethanol-dependent 

effect on microglia viability, activation and proliferation (Alfonso-Loeches et al., 2010; Franke, 

1995; Guerri et al., 1990; He and Crews, 2008; Miguel-Hidalgo et al., 2002) encouraged us to 

evaluate whether microglial numbers in the brain were also influenced by ethanol. Chronic 

alcohol exposure induces microglial activation in the cerebral cortex denounced by the 

upregulation in CD11b immunoreactivity (Alfonso-Loeches et al., 2010). Likewise, microglial 

Iba-1 show increased immunoreactivity in the cingulate cortex of alcohol-dependent humans 

abusers (He and Crews, 2008). We however observed that semi-chronic ethanol treatment did 

not exert any effect in increasing microglial Iba-1 protein content or in the cell density of 

microglia in cortical tissues.  

In addition to microglia, astrocytes have also been implicated in neurodegeneration and 

inflammation and their activation (astrogliosis) can be triggered by different brain insults (Jha 

et al., 2016). A previous study using astrocytic progenitor cells from the fetal brains of rats 
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show that acute alcohol reduces GFAP expression and diminishes astrocyte cell proliferation 

(Guerri et al., 1990; Renau-Piqueras et al., 1989). On the other hand, post-mortem human 

tissue analysis shows reduced GFAP immunoreactivity in dorsolateral prefrontal cortex 

(Miguel-Hidalgo et al., 2002) and a great reduction of astrocytes in the hippocampus of 

alcoholics (Korbo, 1999). Similarly to microglia, semi-chronic ethanol exposure did not affect 

GFAP protein content and numbers of GFAP immunoreactive astrocytes in cortical tissues. 

  



FEUP | ICBAS 
Mechanisms of alcohol modulation of microglial function 

53 

 

 
 

Chapter 6 | Conclusions and Future 

Perspectives 

Our work not only reveals that TNF is essential for ethanol-induced microglial glutamate 

release, which is dependent on the activation of the tyrosine kinase c-Src, but also shows that 

TNF might to be involved in alcohol-induced behavioural changes and alterations of 

immunoregulatory genes/molecules involved in the neuroimmune responses of the brain.  

Although ethanol did not induce effects in glial cell numbers, more specific studies are 

needed to dissect the relevance of microglial activation and inflammatory function upon alcohol 

exposure. Thus, assessment of microglial immunoreactivity upon semi-chronic ethanol 

exposure will give us another insight about the effect of this substance in microglia. Moreover, 

beyond the cerebral cortex, other brain regions, such as hypothalamus, hippocampus, 

striatum, cerebellum and amygdala, should be investigated to obtain an overall picture of 

different ethanol actions in CNS in this model system. Because semi-chronic ethanol treatment 

is capable of inducing changes in some neuroimmune- and antioxidant-related genes, it would 

be interesting to analyze both co-localization with neuronal and glial cell markers and protein 

expression levels of important molecules that could be implicated in alcohol-induced 

neurotoxicity and dysregulation of brain innate immunity. In another context, the inhibition of 

ethanol-induced microglial glutamate release through gap-junction inhibitors should be faced 

as a promising therapeutic approach to diminish glutamate excitotoxicity and behavioural 

deficits induced by ethanol exposure. We predict that a better comprehension of the 

mechanisms underlying microglial dysfunction upon ethanol exposure would be of paramount 

importance for understanding neuronal cell damage and the associated behavioural 

impairments caused by alcohol abuse. 
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Annexes 

  

Annex 1. Ethanol triggers microglial glutamate release via c-Src. 

(A) Diagram displaying the functioning of glutamate release FRET probe (FLIPE 600nSURFACE). (B) Cortical 

microglia were infected with the empty vector pLKO or c-Src shRNA and then transfected with the FLIPE 

600nSURFACE probe. Cells were treated with vehicle (MiliQ-water 10 μl; black) and EtOH (70 mM; red). The 

CFP/FRET emission ratios of the chimera were normalized at 0 min. Lines in B.1 represent the mean of 4 cells 

(pLKO) or 5 cells (c-Src shRNA). Box whiskers in B.2 display the median and min to max amplitude variation in 

pLKO + EtOH vs. c-Src shRNA + EtOH. ***P < 0.001, N=4, Mann-Whitney test. The panels in B show time-lapse 

CFP/FRET images color-coded according to the pseudocolor ramp. Calibration bar = 10 μm. (C) Diagram displaying 

the functioning of c-Src FRET probe. (D) Primary cortical microglia cells expressing a c-Src FRET probe (KRas Src 

YPet) were challenged with 70 mM ethanol (EtOH). CFP/FRET emission ratios of the chimera were normalized at 

0 min. Line in D.1 represents the mean of 4 cells. Box whiskers in D.2 display the median and min to max amplitude 

variation in vehicle (HBSS) vs. EtOH. ***P < 0.001, N=4, Mann-Whitney test. The panels show time-lapse 

CFP/FRET images, coded according to the indicated pseudocolor scale, of representative cells transfected with the 

c-Src probe. Calibration bar = 10 μm. (E) Cortical microglia expressing the FLIPE probe were treated with EtOH 

(70 mM) and then, after 28 min, co-treated with EtOH + SKI (70 mM and 200 nM, respectively). CFP/FRET emission 

ratios of the chimera were normalized at 0 min, plotted and color-coded as in B. Line represents the mean of 5 cells. 

Calibration bar = 10 μm. (F) Cells were co-transfected with the FLIPE probe and a rapamycin-inducible c-Src 

construct (RapR-Src; E). Rapamycin (50 nM) was used to activate the c-Src construct. Line in F.1 represents the 

mean of 6 cells. Box whiskers in F.2 display the median and min to max amplitude variation in vehicle (DMSO) vs. 

Rapamycin. ***P < 0.001, N=6, t test. Calibration bar = 10 μm. 
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Annex 2. Ethanol and downstream c-Src activation regulate TNF production to induce glutamate release 

from microglia. 

(A) Supernatant of N9 microglia expressing c-Src Y527F or the empty vector (pMSCV) was collected and ELISA 

determined TNF content. ***P < 0.001, Mann-Whitney test, N=3. (B) Primary cortical microglial cells expressing 

FLIPE probe were challenged with 25 ng/ml TNF. CFP/FRET emission ratios of the chimera were normalized at 0 

min. Line in B.1 represents the mean of 5 cells. Box whiskers in B.2 display the median and min to max amplitude 

variation in vehicle (HBSS) vs. TNF. ***P < 0.001, N=5, t test. The panels show time-lapse CFP/FRET images 

coded according to the indicated pseudocolor scale. Calibration bar = 10 μm. (C) Cortical microglia from wild type 

(WT; black) or TNF knockout (TNF-/-; red) mice were transfected with the FLIPE probe. Cells were treated with 

vehicle (MiliQwater 10 μl; black) and EtOH (70 mM). The CFP/FRET emission ratios of the chimera were normalized 

at 0 min as in B. Lines in C.1 represent the mean of 4 cells (WT) or 5 cells (TNF-/-). Box whiskers in C.2 display the 

median and min to max amplitude variation in EtOH in WT vs. EtOH in TNF-/-. ***P < 0.001, N=4, Mann-Whitney 

test. The panels in C show time-lapse CFP/FRET images color-coded according to the pseudocolor ramp. 

Calibration bars = 10 μm. (D) WT or TNF-/- microglia were co-transfected with the FLIPE probe and the RapRSrc 

construct. CFP/FRET emission ratios were recorded in the presence of rapamycin (50 nM). Lines in D.1 represent 

the mean of 4 (WT) or 5 (TNF-/-) cells. Box whiskers in D.2 display the median and min to max amplitude variation 

in vehicle RapRSrc: WT + rapamycin vs. RapR-Src:TNF-/- + rapamycin. ***P < 0.001, N=5, t test. Calibration bar = 

10 μm. 
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Annex 3. mRNA expression levels of inflammation-related genes in the cerebral cortex of wild-type mice. 

mRNA was harvested from the cerebral cortex of ethanol-treated and untreated WT mice and the mRNA expression 

levels of the inflammation-related genes were determined by RT-qPCR. RT-qPCR was executed using YWHAZ 

reference gene. Results are expressed as mean ± SEM; N = 4-6 CT and EtOH WT mice. *P < 0.05. **P < 0.01. 

Unpaired t-test. Values displayed were normalized to the control group. 
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Annex 4. mRNA expression levels of inflammation-related genes in the cerebral cortex of wild-type mice. 

mRNA was harvested from the cerebral cortex of ethanol-treated and untreated WT mice and the mRNA expression 

levels of the inflammation-related genes were determined by RT-qPCR. RT-qPCR was executed using YWHAZ 

reference gene. Results are expressed as mean ± SEM; N = 4-6 CT and EtOH WT mice. *P < 0.05. Unpaired t test. 

Values displayed were normalized to the control group. 
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Annex 5. mRNA expression levels of microglia signature and homeostasis-related genes in the cerebral 

cortex of wild-type mice. 

mRNA was harvested from the cerebral cortex of ethanol-treated and untreated WT mice and the mRNA expression 

levels of the microglia signature and homeostasis-related genes were determined by RT-qPCR. RT-qPCR was 

executed using YWHAZ reference gene. Results are expressed as mean ± SEM; N = 4-6 CT and EtOH WT mice. 

*P < 0.05. Unpaired t test. Values displayed were normalized to the control group. 
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Annex 6. mRNA expression levels of antioxidant-related genes in the cerebral cortex of wild-type mice. 

mRNA was harvested from the cerebral cortex of ethanol-treated and untreated WT mice and the mRNA expression 

levels of the antioxidant-related genes were determined by RT-qPCR. RT-qPCR was executed using YWHAZ 

reference gene. Results are expressed as mean ± SEM; N = 4-6 CT and EtOH WT mice. *P < 0.05. **P < 0.01. 

Unpaired t test. Values displayed were normalized to the control group. 

 

 

 

 

 

 


