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Abstract 

Currently, the textile industry is one of the most important economic sectors in many countries. Besides, 

it is known as a major consumer of water and consequently one of the largest groups of industries causing 

intense water pollution. Chemicals, including surfactants, dyes, resins, dispersants agents, inorganic 

salts, etc., play a variety of functions during the textile processing and are present as a by-product in 

large volumes of toxic wastewater. As a consequence, textile industry has been challenged for colour 

removal, salt content reduction and elimination of the non-biodegradable organic fraction from the 

generated wastewaters. Biological processes are the preferred choice for textile wastewater treatment 

because they are less costly, and the by-products resulting from complete degradation are not toxic. 

However, conventional biological processes do not always provide satisfactory results, since many of 

the organic substances used in the textile industry are toxic or recalcitrant. Advanced oxidation processes 

(AOPs) have been considered a promising wastewater treatment technology for the elimination of 

recalcitrant/toxic organic pollutants, as those present in textile wastewaters. The main aim of this thesis 

was the study of alternative processes for the treatment of textile wastewaters, combining AOPs and 

biological oxidation. The treatment strategy was applied to four different textile wastewater, two real 

textile wastewaters and two synthetic ones. 

Firstly, for two textile wastewaters, both with high percentage of recalcitrant organic matter, a treatment 

strategy including AOPs and biological oxidation was proposed. The efficiency of different AOPs 

(UVA-Vis; UVA-Vis/TiO2; UVA-Vis/H2O2; UVA-Vis/TiO2/H2O2 and UVA-Vis/Fe2+/H2O2) was 

compared in the treatment of a real cotton-textile dyeing wastewater using a pilot plant under natural 

sunlight. The obtained results demonstrated that solar-photo-Fenton treatment was the most efficient of 

all solar AOPs studied, enhancing the biodegradability of the wastewater and making possible its 

combination with a downstream biological oxidation process. The photo-Fenton reaction rate was also 

assessed at different iron concentrations, pH, temperature and light intensity, in a lab-scale prototype 

under controlled conditions using artificial solar radiation. Thus, considering the combination of a photo-

Fenton reaction with a biological oxidation process, the energy dose required for the phototreatment was 

0.5 kJUV L-1 (T= 30ºC; pH = 2.8), while consuming 7.5 mM of hydrogen peroxide and leading to 58.4% 

mineralisation (DOCf = 62.9 mg C L-1). 

Afterwards, the enhancement of a solar photo-Fenton reaction by using different ferric-organic ligands 

(oxalic acid, citrate acid and EDDS-Ethylenediamine-N,N'-disuccinic acid), applied to the treatment of 

a simulated acrylic-textile dyeing wastewater to increase its biodegradability, was evaluated. The 

catalytic activity of the organic ligands toward the ferrous-catalysed systems followed this order: Fe(III)-

Oxalate > Fe(III)-Citrate > Fe(III)-EDDS, and all were better than the traditional photo-Fenton reaction. 
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The influence of the main ferrioxalate-solar-photo-Fenton reaction variables, such as iron concentration, 

pH, temperature, UV irradiance and H2O2 concentration and dosage strategy was also investigated. Thus, 

the ferrioxalate induced photo-Fenton process presented the best results, achieving 87% mineralisation 

after 9.3 kJUV L-1 and allowing working until pH 5.0. As expected, the biodegradability of the textile 

wastewater was significantly enhanced during the photo-Fenton treatment, achieving a value of 73%, 

while consuming 32.4 mM of H2O2 and 5.7 kJUV L-1. 

For the other two textile wastewaters, both with high percentage of biodegradable organic matter, a 

biological oxidation treatment followed by AOPs was proposed. A synthetic polyester-cotton dyeing 

wastewater was firstly subjected to biological oxidation, achieving a DOC removal of 76%, resulting in 

a bio-treated wastewater with 84 mg L−1 of DOC. The colour reduction was less than 5% (Pt-Co scale), 

9% (DFZ436nm), 3% (DFZ525nm) and 0% (DFZ620nm). Thus, UVC/H2O2 and photo-Fenton oxidation 

processes were used as a polishing step for the decolourisation of bio-treated textile wastewater. The 

photo-Fenton reaction did not promote the decolourisation. Moreover, the addition of oxalic acid did not 

result in an enhancement of the photo-Fenton reaction. On the other hand, the photolysis of hydrogen 

peroxide using UVC radiation led to decolourisation efficiencies of 71% (Pt-Co scale), 86% (DFZ436 nm) 

and 97% (DFZ525 nm) and more than 40% of mineralisation, consuming 14.1 mM H2O2 and 2.5 kJUV L−1 

of energy (time = 95 min; 6W UVC lamp; natural pH = 8.4; T = 30ºC). The influence of hydrogen 

peroxide dosage, lamp power, solution pH and temperature on the UVC/H2O2 system was evaluated. It 

was shown that the UVC/H2O2 reaction efficiency is mostly affected by the relation between H2O2 

dosage and lamp power. The integrated treatment strategy was able to achieve a wastewater quality in 

agreement with the discharge limits imposed by legislation. 

Finally, UVC/H2O2 and photo-Fenton oxidation processes were used as a polishing step in the 

decolourisation of a bio-treated real textile wastewater. The photolysis of hydrogen peroxide using UVC 

radiation achieved decolourisation efficiencies of 86% (Pt-Co scale) and 96% (DFZ436nm), consuming 

1.6 mM H2O2 after 0.9 kJUV L−1 (time = 35 min; UVC lamp power = 6 W; natural pH = 7.8; T = 30ºC).  

The photo-Fenton reaction was promoted by different radiation sources (UVC, UVA or UVA-Visible), 

showing best results under UVC light. The efficiency of the UVC/Fe2+/H2O2 system was also studied 

for different iron concentrations, H2O2 availability and pH values. Decolourisation efficiencies of 78% 

(Pt-Co scale) and 93% (DFZ436nm) were achieved applying the UVC/Fe2+/H2O2 system at pH = 2.8 and 

T = 30ºC, consuming 3.6 mM H2O2 after 0.6 kJUV L−1 (time = 25 min; UV lamp power = 6 W). To 

further investigate the use of solar energy, additional photo-Fenton assays mediated by ferric-organic 

ligands under UVA-Visible radiation were also performed, considering the effect of the type of ferric-

organic ligand as well as the iron/ferric-organic ligand molar ratio, iron concentration and pH. Maximum 
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values for the decolourisation with UVA-Vis/Fe3+/H2O2/oxalic acid were 84% (Pt-Co scale) and 94% 

(DFZ436nm), consuming 1.9 mM H2O2 after 2.9 kJUV L−1 (pH = 2.8). In addition, the costs associated with 

the processes studied were estimated. For the optimal conditions, aiming at achieving the legal 

wastewater discharge requirements, the total unit costs were: a) 0.25 € m-3 (UVC/H2O2 at pH 2.8); b) 

0.16 € m-3 (UVC/H2O2 at natural pH); c) 0.24 € m-3 (UVC/Fe2+/H2O2 at pH 2.8); d) 0.61 € m-3 (UVA-

Vis/Fe2+/H2O2 at pH 2.8); e) 0.79 € m-3 (UVA-Vis/Fe3+/H2O2/Oxalic acid at pH 2.8) and; f) 0.83 € m-3 

(UVA-Vis/Fe3+/H2O2/oxalic acid at pH 5.0).
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Resumo 

Atualmente, a indústria têxtil representa um dos setores mais importantes para a economia de muitos 

países. Por outro lado, o processamento e tingimento de fibras têxteis são conhecidos pelo elevado 

consumo de água e, consequentemente, a indústria têxtil é um dos setores industriais que causam intensa 

poluição da água. Além disso, muitos produtos auxiliares são adicionados para realizar uma variedade 

de funções durante o processamento das fibras, por exemplo, agentes tensioativos, corantes, resinas, 

agentes dispersantes, sais inorgânicos, etc., os quais aparecem como subproduto num grande volume de 

águas residuais tóxicas. Como consequência, a indústria têxtil tem sido desafiada para promover a 

remoção de cor, redução do teor de sais e eliminação da fração orgânica não-biodegradável das águas 

residuais geradas. Os processos biológicos são a escolha preferida para o tratamento de águas residuais 

das indústrias têxteis, principalmente porque são menos dispendiosos, e os subprodutos da degradação 

biológica não são tóxicos. No entanto, os processos biológicos convencionais nem sempre fornecem 

resultados satisfatórios, uma vez que muitas das substâncias orgânicas utilizadas na indústria têxtil são 

potencialmente resistentes à oxidação biológica. Processos oxidativos avançados (POAs) são atualmente 

considerados uma promissora tecnologia de tratamento de águas residuais, principalmente na eliminação 

de poluentes orgânicos tóxicos/recalcitrantes, como aqueles presentes em águas residuais têxteis. O 

principal objetivo desta tese foi estudar processos alternativos para o tratamento de águas residuais 

têxteis, combinando POAs e oxidação biológica. A estratégia de tratamento foi aplicada a quatro tipos 

de águas residuais, sendo dois efluentes têxteis reais e dois efluentes têxteis sintéticos. 

Inicialmente, para dois dos efluentes têxteis, ambos com elevada percentagem de matéria orgânica 

recalcitrante, foi proposta uma estratégia de tratamento incluindo POAs seguidos de processos 

oxidativos biológicos. A eficiência de diferentes POAs (UVA-Vis; UVA-Vis/TiO2; UVA-Vis/H2O2; 

UVA-Vis/TiO2/H2O2 e UVA-Vis/Fe2+/H2O2) foi comparada no tratamento de um efluente real de 

tingimento de fibras de algodão, usando uma instalação piloto irradiada com luz solar natural. Os 

resultados obtidos demonstraram que a reação foto-Fenton foi o processo mais eficiente, resultando num 

efluente de elevada biodegradabilidade, tornando possível a sua combinação com um processo de 

oxidação biológica a jusante. A velocidade da reação foto-Fenton foi avaliada para diferentes 

concentrações de ferro, pH, temperatura e intensidade da radiação, num protótipo à escala laboratorial 

sob condições controladas utilizando radiação solar artificial. Considerando a estratégia de tratamento 

combinando o POA (reação foto-Fenton) com um sistema de oxidação biológica a jusante, a dose de 

energia necessária para a fotoreação foi de 0,5 kJUV L-1 (T = 30°C; pH = 2,8) consumindo 7,5 mM de 

peróxido de hidrogénio, resultando numa mineralização de 58,4% (CODf = 62,9 mg L-1). 
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Posteriormente, a reação foto-Fenton foi melhorada através da utilização de diferentes ligantes orgânicos 

férricos (ácido oxálico, ácido cítrico e EDDS-etilenodiamina-N, N'-disuccínico), sendo aplicada como 

uma etapa de pré-oxidação para aumentar a biodegradabilidade de um efluente sintético de tingimento 

de fibras acrílicas. A atividade catalítica dos ligantes orgânicos decresceu pela seguinte ordem: Fe(III)-

Oxalato>Fe(III)-Citrato>Fe(III)-EDDS, e todos foram melhores do que a reação tradicional de foto-

Fenton. A influência das principais variáveis reacionais, tais como a concentração de ferro, pH, 

temperatura, intensidade da radiação, e concentração e estratégia de dosagem de H2O2, foi investigada. 

Os resultados obtidos demonstraram que a reação de foto-Fenton com ácido oxálico atingiu 87% de 

mineralização após 9,3 kJUV L-1, demonstrando, além disso, possibilidades de funcionar em valores de 

pH até 5,0. Como já esperado, a biodegradabilidade do efluente têxtil aumentou significativamente 

durante o tratamento foto-Fenton, atingindo um valor de 73% (teste de Zahn-Wellens), após o consumo 

de 32,4 mM de H2O2 e de 5,7 kJUV L-1 de energia. 

Para os outros dois efluentes têxteis, ambos com elevada fração de material orgânico biodegradável, foi 

proposta uma oxidação biológica seguida de POA. Uma mistura de efluentes sintéticos de tingimento de 

fibras de poliéster e de algodão foi oxidada num reactor biológico, obtendo-se uma remoção de COD de 

76% e resultando um efluente bio-tratado com 84 mg L-1 de COD. Por outro lado, a descoloração 

observada no tratamento biológico foi inferior a 5% (Pt-Co), 9% (DFZ436nm), 3% (DFZ525nm) e 0% 

(DFZ620nm). Por conseguinte, foram utilizados processos oxidativos avançados (UVC/H2O2 e foto-

Fenton) como uma etapa de polimento, de forma a promover a redução de cor do efluente já 

biologicamente tratado. Os resultados obtidos demonstraram a incapacidade da reação foto-Fenton de 

descolorir as águas residuais. Além disso, foi observado que a adição de ácido oxálico na reação foto-

Fenton também não resultou numa remoção significativa da cor. Por outro lado, a fotólise do peróxido 

de hidrogénio usando radiação UVC mostrou elevada eficiência na remoção de cor do efluente, atingindo 

71% (Pt-Co), 86% (DFZ436nm) e 97% (DFZ525nm) bem como, mais de 40% de mineralização, consumindo 

14,1 mM H2O2 e 2,5 kJUV L-1 de energia (tempo = 95 min; 6W UVC; pH natural = 8,4; T = 30ºC). Foi 

avaliada a influência da dose de peróxido de hidrogénio, da potência da lâmpada, do pH e da temperatura 

do efluente sobre o sistema UVC/H2O2. Foi observado que a eficiência da reação UVC/H2O2 é 

principalmente afetada pela relação entre a dosagem de H2O2 e a potência da lâmpada. A estratégia de 

tratamento integrado foi capaz de proporcionar uma qualidade nas águas residuais de acordo com os 

limites de descarga impostos pela legislação. 

Por fim, processos de oxidação avançados (UVC/H2O2 e foto-Fenton) foram utilizados como uma etapa 

de polimento na remoção da cor de um efluente real já biologicamente tratado. A fotólise do peróxido 

de hidrogénio utilizando radiação UVC mostrou eficiência de descoloração de 86% (Pt-Co) e 
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96% (DFZ436nm), consumindo 1,6 mM de H2O2 após 0,9 kJUV L-1 (tempo = 35 min; 6W UVC; pH 

natural = 7,8; T = 30ºC). A eficiência da reação foto-Fenton foi avaliada usando diferentes fontes de 

radiação (UVC, UVA ou UVA visível), mostrando melhores resultados sob luz UVC. A eficiência do 

sistema UVC/ Fe2 +/H2O2 foi estudada para diferentes concentrações de ferro, disponibilidade de H2O2 e 

valores de pH. Eficiências de remoção de cor de 78% (Pt-Co) e 93% (DFZ436nm) foram observadas para 

o sistema UVC/Fe2+/H2O2 (pH = 2,8 e T = 30ºC), consumindo 3,6 mM de H2O2 após 0,6 kJUV L-1 

(tempo = 25 min; 6 W UVC). De forma a possibilitar o uso de energia solar, foram realizados ensaios 

adicionais de foto-Fenton mediado por ligantes orgânicos sob radiação UVA-Visível. Foram avaliados 

os efeitos na reação foto-Fenton de diferentes ligantes orgânicos, diferentes rácios molares entre o ferro 

e o ligante orgânico, diferentes concentrações de ferro e diferentes valores de pH da reação. As maiores 

percentagens de remoção de cor obtidas com o sistema UVA-Vis/Fe3+/H2O2/Ácido oxálico foram de 

84% (Pt-Co) e 94% (DFZ436nm), consumindo 1,9 mM de H2O2 após 2,9 kJUV L-1 (pH = 2,8). Finalmente, 

foram estimados os custos associados com os processos estudados. Para as condições ideais, visando 

atingir os requisitos legais de descarga de águas residuais, os custos unitários observados foram: a) 0,25 

€ m-3 (UVC/H2O2; pH 2,8); b) 0,16 € m-3 (UVC/H2O2; pH natural); c) 0,24 € m-3 (UVC/ Fe2+/H2O2; pH 

2,8); d) 0,61 € m-3 (UVA-Vis/Fe2+/H2O2; pH 2,8); e) 0,79 € m-3 (UVA-Vis/Fe3+/H2O2/Ácido oxálico; 

pH 2,8); f) 0,83 € m-3 (UVA-Vis/Fe3+/H2O2/Ácido oxálico; pH 5,0). 
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1 Introduction 

This first chapter presents the background and motivation 

of this thesis. An overview of the problematics of aquatic 

pollution by textile wastewaters is provided, as well as of 

current and potential treatment methods. The operational 

parameters and concepts of the main advanced oxidation 

processes herein proposed are presented, complemented 

with a survey of current literature. 
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1.1 Motivation and thesis outline 

Water is used for very diverse purposes, which include domestic supply, irrigation, transport, industrial 

processes, recreation and other human activities. These activities often generate heavily contaminated 

wastewaters, which if discharged without any treatment can cause strong negative impacts on the 

receiving water bodies. The environmental pressure on water resources resulting from the discharge of 

wastewaters contaminated with non-biodegradable pollutants all over the world is regarded as a major 

challenge to be tackled. Textile dyeing industry is a major consumer of water and consequently one of 

the largest groups of industries causing intense water pollution. According to the European Integrated 

Pollution Prevention and Control Bureau [1] estimation, the textile industry releases more than 

0.2 million of tons of salts in the environment every year and more than 7000 different compounds and 

additives are used for the preparation of textile goods, and up to 1 kg of these substances are used for 

each kilogram of fabric. The extensive use of chemicals and water results in the generation of large 

quantities of highly polluted wastewater with high recalcitrant matter percentage. As a result, textile 

industry has been confronted with the challenge of colour removal, wastewater salt content reduction 

and removal of non-biodegradable matter. The current practice in textile industries is the discharge of 

the wastewater directly into the local environment or into the municipal sewerage systems after 

appropriated treatment in agreement with the current local legislation, which is becoming more and more 

stringent. A varied range of methods has been developed for textile wastewater treatment, which were 

tested at lab, pilot and/or full scale. In many cases, the combination of various basic treatments is needed 

to improve the overall efficiency of the wastewater treatment systems. The most widely used are 

adsorption, membrane filtration (ultrafiltration, nanofiltration or reverse osmosis), coagulation-

flocculation, biological treatments (aerobic activated sludge, UASB – Upflow Anaerobic Sludge 

Blanket), and chemical/electrochemical oxidation processes (AOPs - Advanced Oxidation Processes or 

EAOPs-Electrochemical Advanced Oxidation Processes). 

Nowadays, biological processes are the preferred ones for textile wastewater treatment because they are 

less costly, and the products from complete degradation are not toxic. The biological oxidation shows 

good results in the mineralisation of the non-recalcitrant fraction of textile wastewater, especially when 

mixed with other biodegradable wastewaters, e.g., domestic sewage. However, it is known that the 

biological process cannot fully decolourize textile dyeing wastewater, i.e. very little biodegradation of 

dyes occurs and adsorption onto biomass seems to be the main colour removal mechanism. Besides, 

other synthetic organic chemicals, some categorized as ‘‘xenobiotics’’, are used as additives in different 

stages of textile dyeing, with a wide range of functions (e.g.: sequestering agents, stabilizers, colour 
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fixers, dispersants, etc.), and confer significant recalcitrant character to textile wastewaters. In this 

context, conventional biological processes do not always provide satisfactory results, since many of the 

organic substances produced by the textile industry are toxic or resistant to biological treatment [2]. 

Advanced oxidation processes (AOPs) have been considered a promising wastewater treatment 

technology for the elimination of recalcitrant/toxic organic pollutants, as those present in textile 

wastewaters [3, 4]. In addition, many studies have already demonstrated the great potential of AOPs for 

wastewater decolourisation [5-7]. The endpoint of these processes would be complete pollutant 

transformation, through generation and subsequent reaction with hydroxyl radicals ( OH ), into
2CO , 

water and inorganic ions (mineralisation), or otherwise conversion of pollutants into non-toxic and more 

biodegradable intermediaries. 

However, the application of AOPs is limited, as the costs involved with the energy requirements and 

chemicals, especially when the goal is the complete mineralisation, are high and eventually make these 

technologies non-competitive. Moreover, specifically the photo-Fenton reaction presents some 

drawbacks when used in textile wastewaters treatment, e.g.: (i) the presence of coloured compounds 

might reduce light penetration; (ii) textile wastewaters are usually alkaline in nature and, photo-Fenton 

treatment works efficiently at acid pH, implying additional costs associated with acidification and 

subsequent neutralization reagents; at this pH value iron precipitation is avoided and the most 

photoactive ferric ion-water complex (FeOH2+) is the predominant iron species in solution; (iii) ferric-

dissolved organic matter complexes can be promoted, limiting the photo reduction of Fe3+ and 

decreasing the decomposition of H2O2 in the Fenton reaction;  (iv) the high content of inorganic ions 

(Cl-, SO4
2-, CO3

-) promotes the hydroxyl radicals scavenger reactions and also the formation of inorganic 

ion-ferric complexes, which decreases the rate of generation of hydroxyl radicals [8-10]. 

Research studies in this field have shown that a single, universally applicable end-of-pipe solution is 

unrealistic, and the combination of different techniques is required to devise a technically and 

economically feasible option [2, 11]. For these reasons, the AOPs application for the treatment of textile 

wastewater, combined with biological oxidation, has potential to become a feasible alternative. 

Experimental examples of sequential chemical and biological oxidation treatments have been previously 

reviewed by Sarria et al., [12], Mantzavinos and Psillakis [13], Gaya and Abdullah [14] and Oller et al., 

[2]. Research studies in this field have usually focused on the specific development of the combination 

of AOPs and biological treatments for industrial wastewater decontamination. They highlight not only 

efforts in applying AOPs as a pre-treatment, but also in a combination strategy in the opposite direction, 



Introduction 

5 

first eliminating the highly biodegradable part of the wastewater and then degrading the recalcitrant 

contaminants by a AOP post-treatment [2, 15]. 

The present thesis focuses on the study of the treatment of four different textile wastewaters (two real 

textile wastewaters and two synthetic textile ones), by means of a solar-driven photo-Fenton reaction, 

which is compared with other AOPs, namely, Fenton´s reaction, UV/TiO2, UV/H2O2, UV/TiO2/H2O2 

and UVC/H2O2. The effect of radiation sources, as UVC, UVA and UVA-Visible radiation was assessed. 

It has also been studied the effect of the main variables on AOPs performance, such as pH, temperature, 

radiation source and intensity, iron concentration, hydrogen peroxide concentration and dosage strategy, 

hydrodynamic conditions in the photoreactor and ferric-organic ligands for process enhancement. It is 

worth noting that two strategies of combined treatment were considered. For two wastewaters, both with 

high percentage of recalcitrant organic matter, AOPs prior to a biological oxidation treatment have been 

proposed. For the other two wastewaters, both with high percentage of biodegradable organic matter, a 

biological oxidation treatment followed by AOPs has been proposed. 

This thesis is organized in seven chapters. Chapter 1 includes this introductory section, wherein the 

problematics of textile wastewaters, as well as current and potential treatment technologies, are 

discussed. Chapter 2 describes the experimental methodology, comprising: i) chemicals and reagents, 

ii) analytical methods iii) textile wastewaters under study; iv) experimental units and v) experimental 

procedure. 

The subsequent four chapters report on the experimental results obtained. In Chapters 3 and 4, using real 

and synthetic textile wastewaters, AOP systems were studied as a pre-oxidation step to enhance textile 

wastewater biodegradability. In Chapters 5 and 6, also using both types of textile wastewaters, AOP 

systems were assessed as a polishing step, with the main objective of decolourizing bio-treated textile 

wastewaters. 

Chapter 3 reports on a study where the efficiency of different AOPs has been compared in the treatment 

of a real cotton-textile dyeing wastewater using a pilot plant under natural sunlight. The influence of the 

main photo-Fenton reaction variables, such as iron concentration, pH, temperature and light intensity, 

was evaluated in a lab-scale prototype under controlled conditions using artificial solar radiation. 

Chapter 4 reports on the evaluation of the treatment of a synthetic acrylic-textile dyeing wastewater by 

a photo-Fenton process enhanced by ferric-organic ligands (oxalic acid, citrate acid and EDDS-

Ethylenediamine-N,N'-disuccinic acid), in a lab-scale prototype under controlled conditions, using 

artificial solar radiation, and in a pilot plant under natural sunlight. Besides the study of the influence of 
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the main ferrioxalate-solar-photo-Fenton reaction variables, the effect of hydrodynamics conditions on 

the reactors performance was also assessed both in dark and light conditions. 

In Chapter 5 is assessed an integrated treatment strategy for synthetic polyester-cotton dyeing 

wastewater, combining biological and photochemical oxidation processes. The characterization of 

chemicals used as additives in different stages of cotton and polyester textile manufacturing was carried 

out. The synthetic wastewater was firstly subject to a biological oxidation with objective to remove the 

biodegradable matter. Thus, UVC/H2O2 and photo-Fenton oxidation processes were used as a polishing 

step for the decolourisation of bio-treated textile wastewater. The effect of hydrogen peroxide dosage, 

lamp power, solution pH and temperature on the UVC/H2O2 system was evaluated. 

Chapter 6 reports on the decolourisation of a bio-treated real textile wastewater by UVC/H2O2 and 

photo-Fenton oxidation, as a polishing step. The effect of hydrogen peroxide photolysis under UVC 

radiation on the wastewater decolourisation was evaluated at different pHs values, H2O2 concentrations 

and temperature. The effect of radiation sources (UVC, UVA or UVA-Visible), iron concentration, pH 

value and H2O2 concentration on the photo-Fenton reaction was also assessed. The photo-Fenton 

reaction enhancement by ferric-organic ligands using artificial solar radiation was also evaluated at 

different iron concentrations, pH values and iron/organic ligand molar ratios. In addition, the costs 

associated with the studied processes were evaluated and compared. 

Chapter 7 is dedicated to final remarks where the main conclusions and subsequent suggestions for 

future work are presented. 
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1.2 The textile industry 

The textile industry is one of the most important, traditional and representative sectors of the world 

economy. Presently, the textile industry is featured in the economy of the richest countries and plays a 

fundamental role in the economic development in emerging countries. Nowadays, it is an important part 

of the European manufacturing industry with a crucial role on the economy and social well-being in 

numerous regions of the European Union (EU). According to the latest structural data available, in 2009 

there were 190.000 companies employing 1.8 million people which generated a turnover of 153 billion € 

[16]. Figure 1.1 shows the largest five textile suppliers in the world between 2010 and 2014 [17-21]. 

  

Figure 1.1. Top 5 suppliers in textiles (million Euros) per year (codes NC50 to NC60 and NC63). 

Besides its significant economic importance, the textile manufacturing industry presents other 

characteristics of interest, for example, its complexity, due to the wide variety of used substrates, 

processes, chemicals, machinery and components, as well as of undertaken finishing steps. Different 

types of fibres/yarns, methods of fabric production, dyes and chemical auxiliaries, and finishing 

processes, all interrelate in producing a finished fabric [22]. The inherent complexity in the textile 

industry, its production chain, the big consumption of materials and energy, and as a consequence, the 

waste produced, make the textile industry an activity with high potential environmental impact [23-25]. 

Textile industries are one of the biggest users of water and complex chemicals during textile processing 

at various processing stages (e.g., sizing, desizing, scouring, bleaching and others) [26]. Water use in 

textile processing occurs at all the steps of production although the volume may range according textile 
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fibre and/or finish process; however in most cases, it is an expressive consumption that results in a 

significant volume of wastewater. Representative magnitudes for water consumption are 100–200 L of 

water per kilogram of textile product. Considering an annual production of 40 million tons of textile 

fibres, the release of wasted water can be estimated to exceed 4–8 billion cubic meters per year [27]. 

Figure 1.2 shows different steps of textile production and their contribution to the wastewater generation 

[26, 28, 29]. The production of a textile requires several stages of mechanical processing such as 

spinning, weaving, knitting, and garment production, which seem to be insulated from the wet treatment 

processes like pre-treatment, dyeing, printing, and finishing operations, but there is a strong interrelation 

between treatment processes in the dry state and consecutive wet treatments.  

 
Figure 1.2. General flowchart for textile manufacturing and general characteristics of the wastewater generated 

on each step of production. The line style indicates which fibre the process refers to: (⋯) natural fibre, (---) 

synthetic fibre and (-) both. Adapted from Bisschops and Spanjers [29]. 

The textile industry process is complex and its dynamics can be different depending on the fibres used 

in the process. Basically, for each fibre type, a specific manufacturing process and, as a consequence, 

dye and chemical auxiliaries, are employed. Dyeing processes are developed according to the desired 

results in the fibres and are composed by dye mixtures, salts, acids, bases and chemicals such as wetting, 
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sequestering and lubricant agents. Currently, many different dyes are commercially available and about 

106 tons are produced annually worldwide [30, 31]. Nowadays, there are very few natural dyes in use. 

Almost all are of synthetic origin and are produced using hydrocarbons like benzene, toluene, 

naphthalene, and others and not always with a known chemical structure. According to their application 

in dyeing different fibres, dyes can be classified into: Sulphur, Azoic, Reactive, Ingrain, Direct, Basic, 

Vat, Acid, Mordant, Metal complex, Solvent and Disperse [32, 33]. Table 1.1 shows the suitability for 

each type of fibre. 

Table 1.1. Suitability of substrates for different types of dyes [32, 33]. 

Dye 
Natural fibres Synthetic fibres 

Protein Cellulosic Polyamide Polyester Acrylic 

Basic     V.S. 

Direct S. V.S. S.   

Acid V.S.  V.S.   

Reactive V.S. V.S. S.   

Azoic  V.S. S. S. S. 

Vat S. V.S.    

Sulphur  V.S.    

Disperse   V.S. V.S. V.S. 

Metal 

complex 
V.S.  V.S.   

Mordant V.S.     

V.S. – Very Suitable 

S. – Suitable 

The textile manufacturing process, in addition to dyes and fibres, uses a large quantity of chemical 

auxiliaries at the different process steps with many functions. In the growing or storage of the fibre, it is 

ordinary the use of chemicals based on chlorinated aromatics, in the finishing products (e.g., synthetic 

resins), surfactants (e.g., alkyl phenol ethoxylates), solvents, fats, heavy metals, salts, nutrients (e.g., 

urea), oxidizing agents (e.g., peroxide), reducing agents (e.g., sodium sulphide), and many other 

chemical auxiliaries are employed in different stages of the manufacturing [34]. Table 1.2 presents the 

main auxiliary chemicals used in textile industry, their composition and function. 

Table 1.2. Main textile auxiliary chemicals, their composition and function [29, 35]. 

Auxiliary Products Substances Function 

Acids 

Acetic acid, boric acid, formic acid, 

hydrochloric acid, oxalic acid, sulphuric 

acid 

pH adjustment 

Bases Ammonia, sodium hydroxide pH adjustment 

Bleaching agents Hypochlorite, hydrogen peroxide Remove the natural colour of the fibres 

Carriers 
Perchloroethylene, methyl salicylate, 

chlorinated aromatics 

Increase the absorption of the dye in the 

fibre 

Detergents (surfactants) 
Anionic, non-ionic, cationic (e. g., alkyl 

phenol ethoxylates) 

Decrease the surface tension of the fibres 

when in contact with water 

Finishing agents 
Formaldehyde-based resins, Flame-proof 

finishes 

Give body and stiffness or/and soften the 

fibre 

Sequestering agents polyphosphates 
Form complexes with metallic ions to 

prevent their interference in the process 
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The manufacturing process, due to the wide range of dyes and chemicals involved, together with the 

different seasons and also fashion contributes to the variability found in textile wastewaters. Wastewater 

characteristics vary largely between processes and materials; however, some general characteristics 

(e.g., high temperature, low biodegradability and others) make textile wastewater an exigent waste which 

needs an appropriate treatment before discharge into water bodies. 

1.2.1 Textile wastewater – main characteristics and environmental hazard 

Dyes and other chemicals are added to perform a variety of functions during wet processing; even so, it 

is consensual that these chemicals produce large volumes of toxic wastewater as a by-product. Textile 

process wastewater must be treated before it can be released safely into receiving water bodies [36]. The 

dyeing process generates wastewaters with an intense colour, associated with the mixture of different 

types of dyes and different auxiliary products, such as organic acids, fixing agents, reducing agents, and 

others. However, textile wastewaters are generically characterized by a moderate organic content, low 

biodegradability, variable pH values, usually in the alkaline range, and colour [28]. 

Nearly 40,000 dyes and pigments have been listed, which consist of more than 7,000 different chemical 

structures [37]. Exact data on the quantity of dyes discharged in the environment are not available. 

However, some authors estimate that a loss of 1–2% in production and 1–10% loss in use is a fair 

estimate [38]. Others reported that 10–15 % of the used dyes enter the environment through wastes [11, 

39]. In order to meet economic demands, it has become more frequent to use synthetic dyes, less 

amenable to degradation by aerobic biological processes; these dyes are recalcitrant organic molecules, 

have complex structure and xenobiotic properties [40, 41]. Most of them are toxic, mutagenic, and 

carcinogenic and lethal levels may be reached, affecting aquatic systems and associated flora and fauna 

[42]. 

Although dyes are recognized as one of the most problematic pollutants of textile wastewater, other 

pollutant types that exist in this wastewater show undesirable characteristics, e.g., biological persistence, 

biocide, recalcitrance, toxicity and others, causing them to be characterized as "xenobiotic compounds" 

[43]. These pollutants are derived from the use of synthetic organic chemicals as additives in different 

stages of textile manufacturing, with a wide range of functions (e.g.: sequestering agents, stabilizers, 

colour fixers, dispersants, etc.). Although there is speculation about the types and quantities of chemical 

auxiliaries released to the environment during textile process, there are only few published studies 

related to the biodegradability and toxic impact of these chemicals [44, 45]. 
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Some research demonstrated that potential sources of recalcitrance and toxicity in textile wastewater 

may be attributed to the different types of chemicals applied in the sizing and finishing steps, besides 

surfactants, most of which are still of poorly biodegradable nature [46]. Whereas textile wastewater 

characteristics fluctuate and depend on many factors, their potential impact on the environment may also 

vary. Literature reports that textile wastewaters present toxic compounds [47, 48] with recalcitrant 

characteristics [49, 50], or with high organic matter content that partly, can be easily removed by 

biological oxidation [51, 52]. Generically, the main negative effects in environment due to the discharge 

of textile wastewater without the correct treatment can be seen in Table 1.3. 

Table 1.3. Main effects of textile wastewater in the environment. Adapted from Verma, Dash [26]. 

Indirect Effects Direct Effects 

Killing of aquatic life such as fishes, plants, mammals etc. Aesthetic problems 

Eutrophication 
Poor sunlight penetration in the receiving water, damaged 

flora, fauna of the ecosystem 

Coloured allergen accelerates genotoxicity and 

microtoxicity 

Ground water pollution due to leaching of contaminant 

through soil 

Suppression of immune system of human beings 
Dissolved oxygen depletion in the receiving water. 

Suppression of the streams re-oxygenation capacity 

Oller et al., [2] showed that typical textile industry wastewater characteristics include a COD range from 

150 to 12000 mg L-1, total suspended solids between 2900 and 3100 mg L-1, total Kjeldahl nitrogen from 

70 to 80 mg L-1, and BOD5 range from 80 to 6000 mg L-1 leading to a BOD5/COD ratio of around 0.25, 

which means that it contains large amounts of non-biodegradable organic matter. As commented, textile 

wastewater contains the unfixed dyes on the fibres, auxiliary dyeing chemicals, salts, acids, bases, 

chlorinated compounds and in some cases, heavy metals [30, 53-55]. The composition and, 

consequently, the characteristics of these wastewaters depend on many factors, including the processed 

fabric, the type of process, and used chemicals (Table 1.4).  

Table 1.4. Characteristics of different dyeing textile wastewaters. 

Fibre 

Parameter 

References COD 

(mg O2 L-1) 

BOD5 

(mg O2 L-1) 

TOC 

(mg C L-1) 
pH 

N
a

tu
ra

l 

Wool 800-7920 380-2200 250 5-8 [28, 29] 

Cotton 684-4585 11-1800 460-1290 5-13 [29, 56-58] 

S
y

n
th

et
ic

 Polyester 518-3365 130-2700 143 4-8 [28, 59] 

Polyamide 1318 1125 640 5 [60] 

Rayon 2400 400 150 7 [61] 

Acetate 2500 2000 930 9 [28] 

Acrylic 828 50-200 334 1-7 [28, 49] 
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1.2.2 Guidelines and legislation for textile wastewaters 

Increasing attention has been paid over the years to the environmental problems related to industrial 

activities. Environmental standards and control organisms have been established with a view to applying 

restrictive legislation. Special attention has been given to the textile industry, due to the expressive 

discharge in the environment of large volumes of strongly coloured wastewaters that are heavily loaded 

with pollutants and highly concentrated in salts [62]. A great deal of guidelines, legislation, 

recommendations, and propositions have been developed to try to ensure the protection of receiving 

water bodies. Over the past decades, new and stricter regulations coupled with increased enforcement 

concerning wastewater discharges were established in many countries, especially in the developed 

nations. 

Nevertheless, when it comes to specifically coloured wastewater, we can find lots of divergent opinions 

and different measurement methods [62]. Many countries, as the United States of America (USA), 

France, Germany, Portugal and Brazil, have national environmental legislation, which establishes the 

limit values to comply with. In some countries as India, Pakistan and Malaysia, the emission limits are 

recommended, not mandatory [63]. 

The USA discharge legislation for textile manufactures, applied by EPA-Environmental Protection 

Agency, is composed by national standards for wastewater discharges to surface waters and publicly 

owned treatment works (sometimes called municipal sewage treatment plants). EPA issues wastewater 

guidelines for categories of existing sources and new sources under Title III of the Clean Water Act [64]. 

The standards are technology-based (i.e. they are based on the performance of treatment and control 

technologies); they are not based on risk or impacts upon receiving waters [64, 65]. It is important to 

note that USA standards set load discharges over the amount of textile articles produced and have 

different requirements for each type of textile processing industry. 

Table 1.5 presents an example of discharge limits for textile industry of fibres and yarn processing [66]. 

For colour limit values, the USA legislation uses a specific method proposed by the American Dye 

Manufacturer Institute – ADMI, which uses three special tristimulus light filters, combined with a 

specific light source and photoelectric cell in a filter photometer, to obtain suitable colour data. The 

percentage of tristimulus light transmitted by the solution is determined for each of the three filters. The 

transmittance values are then converted to trichromatic coefficients and colour characteristic values [67]. 

However, the limit value for colour may vary from state to state, i.e. each state legislates independently 

and it has a specific ADMI limit value. 
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Table 1.5. USA discharge limits for textile industry of the fibres and yarn processing [66]. 

Wastewaters characteristics Maximum for any one day (kg ton-1) Maximum for monthly average (kg ton-1) 

BOD5 3.6 1.9 

COD 33.9 21.9 

TSS 9.8 4.4 

pH 6.0 – 9.0 6.0 – 9.0  

Similarly, Brazil has national laws for wastewater discharges to surface waters. The Brazilian National 

Environmental Council (CONAMA, abbreviation in Portuguese) regularizes the classification of 

receiving bodies and establishes the limit values for wastewater discharges. The CONAMA Resolution 

nᵒ357 of 17 March 2005, altered by CONAMA Resolution nᵒ410 of 4 May 2009 and by CONAMA 

Resolution nᵒ430 of 13 May 2011, applies to discharges of all types of wastewater in national territory 

[68-70]. Table 1.6 lists the main applicable limits for wastewater discharge. 

Table 1.6. Brazilian main discharge limits for wastewater [68-70]. 

Wastewaters characteristics Maximum values 

BOD5 Minimum reduction of 60% 

Temperature 40oC 

Mineral Oil 20 mg L-1 

Vegetal Oil 50 mg L-1 

Dissolved Iron 15 mg L-1 

Total ammonia nitrogen 20 mg L-1 

Brazilian norms do not have limits of colour values for wastewater discharges, but it is described on the 

CONAMA nº357 [68] that the wastewater cannot bestow characteristics on the receiving bodies in 

disagreement with the established quality characteristics by resolutions, namely, 75 mg Pt-Co L-1 (real 

colour). 

It is an obligation for the European Union member states to comply with European legislation. It is often 

left to the states to set their own limit values and to decide on how to enforce them. There are different 

kinds of legislative documents. Directives oblige the European Union member states to achieve certain 

results [63]. At a European level only domestic wastewater was regulated through Directive 91/271/EEC 

of 21 May 1991, altered by Directive 98/15/EEC of 27 February 1998 and by Regulation (EC) nᵒ1882 

of 29 September 2003 [71-73]. These directives were transposed by each member country to the national 

legislation. In the case of industrial wastewaters, the limits as well as quality standards and methods are 

established by each member state for its own territory. 

Germany wastewater discharge standards for textile wastewaters, based on the Law on the Regulation 

of water balance [74], stands out for the use of a simple and efficient technique for the colour 

measurement through absorbance at 436, 525 and 620 nm wavelengths and is based on a specific method 
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proposed by DIN ISO:7887 [75]. Table 1.7 shows the main requirements for textile wastewater at the 

point of discharge. 

Table 1.7. German main limits for wastewater whose contaminant load originates primarily from commercial and 

industrial processing and processing of textile fibres and yarns and textile finishing [74]. 

Wastewaters characteristics Qualified random sample or 2 hour composite sample 

BOD5 25 mg L-1 

COD 160 mg L-1 

Total phosphorous 2 mg L-1 

Total ammonia nitrogen  10 mg L-1 

Total nitrogen 20 mg L-1 

Sulphite 1 mg L-1 

Colour (DFZ436nm)* 7 m-1 

Colour (DFZ525nm)* 5 m-1 

Colour (DFZ620nm)* 3 m-1 

(*) DFZ – Visual Colour Number (DurchsichtFarbZahl, abbreviation in German). 

Another member state of the European Union that has specific legislation to regulate discharges of textile 

wastewaters is Portugal. Through the Decree Law 236 of 1 August 1998, which limits the emission 

values of the discharge of all types of  wastewater and through the Ordinance 423 of 25 June 1997, which 

limits specific values of the discharges of textile wastewater, Portugal has established the limits together 

with quality standards and used methods for its own territory [76, 77]. Table 1.8 lists the main applicable 

limits for industrial wastewater in general and textile wastewater. 

Table 1.8. Portuguese main limits for general type of wastewater (Decree Law 236/98) [77] and specific for textile 

wastewater (Ordinance 423/97) [76]. 

Wastewaters characteristics Decree Law 236/98 Ordinance 423/97 

BOD5 40 mg L-1 100 mg L-1 

COD 150 mg L-1 250 mg L-1 

pH 6.0 – 9.0 5.5 – 9.0 

Total iron 2 mg L-1 - 

Total phosphorous 10 mg L-1 - 

Total ammonia nitrogen 10 mg L-1 - 

Total nitrogen 15 mg L-1 - 

Sulphite mg L-1 - 

Colour No visible colour after dilution 1:20 No visible colour after dilution 1:40 

Briefly, it is difficult to draw a simple and global conclusion about the legislation currently applied to 

textile wastewaters. Parameters and norms vary from one country to the other, as does their enforcement. 

In certain countries the textile wastewater has special legislation, as EUA, Germany, Portugal etc., while 

many other countries do not have specific legislation or guidelines to control textile wastewater 

discharges, as Brazil and others. It should be noted that countries have used different units for their limit 

values for textile wastewater colour, which makes comparison almost impossible. However, basically, 
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four methods for colour monitoring have been used, Hazen method (mg Pt-Co L-1) employed by France, 

Brazil etc., ADMI (ADMI colour unit) employed by the EUA etc., DIN ISO:7887 (DFZ at m-1) employed 

by Germany, and monitoring of visible colour after dilution, employed by Portugal, France etc. [63, 64, 

66, 68-70, 75-78]. 

1.2.3 Present practices for textile wastewater treatment 

The application of a certain technology for wastewater treatment is dependent on the type of wastewater, 

thus different technologies have been proposed and are applied at present. Normally a combination of 

procedures and equipment is applied and a big variety of concepts have been realized. To facilitate an 

overview of the different techniques, the most important processes are discussed in this section. During 

the last 10 years, publications regarding textile wastewaters treatment rose continuously, achieving more 

than 230 papers in 2014 (Figure 1.3). Scientific community research interests have been focused in 

biological, membrane and advanced oxidation processes (AOPs) technologies for the treatment of textile 

wastewaters. Although biological processes present competitive costs, they are often ineffective in 

degradation of complex organic dye molecules. 

  
Figure 1.3. Numbers of research articles appearing on textile wastewater treatment technologies per year: search 

results in the period 2004-2014 with the SCOPUS (keyword “Textile Wastewater Treatment”). 

The combination of some factors, like a high presence of recalcitrant compounds [41], high volumes, 

high colour and the spatiotemporal dynamics of textile wastewater between and within industries [79] 

make the textile wastewater treatment a challenge. In literature there are many options for the treatment 
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of textile wastewater, all of them aiming at achieving a significant reduction in colour and concentration 

of organic matter [80-85]. While there are several highly effective treatment options available, some key 

factors must be considered in the selection of a waste treatment process, for example, the financial 

requirement for the initial outlay, maintenance costs, degree of specialization of operators, and the 

efficiency of care legislation, etc. Table 1.9 summarizes some of the main studies on the treatment of 

real textile wastewater. 

Table 1.9. Summary of some main studies on the treatment of real textile wastewater. 

Wastewater type Treatment technology Efficiencies (%) Reference 

Real textile wastewater Sequential Batch Reactor 

BOD5 = 11 

COD = 13 

Colour = 19 

[86] 

Real textile wastewater Sequencing batch biofilter granular reactor COD = 80 [84] 

Printing and dyeing 

processes 

Anoxic filter bed and biological wriggle bed-

ozone biological aerated filter 
COD = 84 [87] 

Dyeing and finishing 

processes 
Sequencing batch biofilter granular reactor 

COD = 80 

Colour = 60 
[88] 

Real textile wastewater 
Combination of aerobic Sequencing Batch 

Reactor and Fenton´s reaction 
TOC = 92 [89] 

Silk and silky fibres 

wastewater 
Sequencing batch biofilter granular reactor COD = 82 [79] 

Real textile wastewater 
Sequencing batch reactor coupled to photo-

Fenton processes 

COD = 97 

TOC = 95 
[52] 

Real textile wastewater Wetland system 
BOD5 = 77 

COD = 79 
[90] 

Real textile wastewater Membranes with physic-chemical treatment COD = 50 [91] 

Dyeing, bleaching and 

washing processes 

Ultrafiltration and adsorption on activated 

carbon 

COD = 80 

Colour = 74 
[92] 

Real textile wastewater 
Membrane fouling in an integrated membrane 

coagulation reactor 
COD = 88 [93] 

Real textile wastewater Electrocoagulation COD = 97 [94] 

Real textile wastewater Fenton´s reaction 
BOD5 = 60 

COD = 45 
[95] 

Real textile wastewater Fenton´s reaction 
BOD5 = 61 

TOC = 64 
[96] 

Dry-spun acrylic fibre 

wastewater 
Fenton´s reaction COD = 47 [97] 

Real textile wastewater Photo-Fenton DOC = 65 [31] 

Bleaching of a cotton 

substrate 
Photo-Fenton TOC = 70 [98] 

Polyester and acetate 

fibre dyeing wastewater 

Advanced Oxidation Processes 

(O3, UV/O3, UV/H2O2, UV/O3/H2O2, 

Fe2+/H2O2) 

COD = 90-99 

Colour = 85-96 
[99] 

Real textile wastewater 
Advanced Oxidation Processes (UV/H2O2, 

UV/Fe2+/H2O2, UV/TiO2, UV/TiO2/H2O2) 

DOC = 89 

Colour = 98 
[100] 

Many biological methods result in incomplete degradation of compounds present in the textile 

wastewater, and a number of laboratories investigate the ability of bacteria, fungi, and algae in removing 

the colour of dyes. Santos et al., [80] covered the biological and non-biological processes for textile 
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wastewater decolourisation. A critical review is showed on the current technologies available for the 

decolourisation of textile wastewaters and effective and economically attractive alternatives are 

suggested. A special attention to the azo dyes was given, because according to the authors, they represent 

the largest class of dyes used in industries, and due to the broad literature available. Sarayu and Sandhya 

[101] presented a review about the current technologies for the biological treatment of textile 

wastewater. This work gave a significant emphasis to the difficulty in completing the treatment of textile 

wastewater by biological treatment systems only, mainly due to the constant presence of biocide and/or 

recalcitrant compounds in textile wastewater. 

Verma et al., [26] put forward a review on chemical coagulation/flocculation technologies for the 

removal of colour from textile wastewaters. It was revealed in this study that coagulation/flocculation 

has been used for many years as a main treatment or pretreatment of dye-containing wastewaters due to 

its low capital cost. However, the major limitation of this process is the generation of sludge and the 

ineffective removal of some soluble dyes. Relative advantages and disadvantages of different 

physicochemical methods have been also briefly summarized, as Fenton´s reagent, their efficiency in 

the decolourisation of both soluble and insoluble dyes and consequent sludge generation and its 

handling. 

Khandegar and Saroha [102] dedicated a review to catalogue some research about the use of 

electrocoagulation for the removal of different kinds of dyes and mixed dyes, and to summarize the most 

important factors affecting the reported varying removal efficiencies of electrocoagulation in the 

treatment of textile industry wastewater. For instance, it was reported that the efficiency of the 

electrocoagulation process depends on many operational parameters such as the conductivity of the 

solution, arrangement of the electrodes, electrode shape, type of power supply, pH of the solution, 

current density, distance between the electrodes, agitation speed, electrolysis time, initial pollutant 

concentration, retention time and passivation of the electrode. 

Research studies in this field have usually focused on the development of the application of Advanced 

Oxidation Processes (AOPs) to treat wastewaters contaminated with components with high chemical 

stability and/or low biodegradability, such as textile wastewater. During recent years many of studies 

dealing with the combination of AOPs and biological treatments for industrial wastewater 

decontamination have been reported [52, 103-105]. For this reason, the following section will deal 

entirely with AOPs. 
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1.2.4 Current applications of AOPs for textile wastewater treatment 

Advanced Oxidation Processes are efficient technologies for the treatment of a large variety of 

contaminated water and wastewater, through the formation of highly reactive chemical species that are 

able to degrade the more recalcitrant chemicals, making them biodegradable compounds [106]. 

Basically, AOPs are characterized by the production of hydroxyl radicals (●OH), non-selective oxidants 

capable to oxidize and to mineralize almost all organic molecules, producing as a result, CO2, H2O and 

inorganic ions [3]. The classification of AOPs can be divided as follows: i) chemical oxidation (O3, 

O3/H2O2, H2O2/Fe2+), ii) photochemical (UV/O3, UV/H2O2, UV/H2O2/O3) and, iii) photocatalytic 

(UV/TiO2, photo-Fenton) processes [107]. 

In order to increase competitiveness and, in consequence, to promote the AOPs industrial applicability, 

many researchers followed two lines of research: i) AOPs combination with other treatment processes, 

such as biological processes [2, 4, 108], or membrane processes [109, 110]; and ii) optimization of the 

use and source of the necessary energy, for example, solar energy or, more recently, a combination of 

solar and UV lamps energy [111]. In consequence, the AOPs relying on solar energy, UV lamps or both, 

such as photo-Fenton and UV/TiO2, are considered the most promising and environmental friendly 

technologies [112]. 

Babuna et al., [113] investigated the effect of ozonation on the toxicity and biodegradability of a 

naphthalene sulphonic acid derivative commonly applied in textile mills. Ozonation experiments were 

conducted under the following conditions: 1200 mg O3 h
-1 and 2400 mg O3 h

-1 both at pH 5 and pH 11; 

5325 mg O3 h
-1 at both pH 12 and at the original pH (pH = 5.5). The optimum operation conditions 

required the application of 5325 mg O3 h
-1 ozone for 30 min at original pH. Since the results related to 

the acute toxicity (in 50% v/v EC values) towards the marine algae Phaeodactylum tricornutum indicate 

that the toxicity was increased considerably, the researchers recommended new tests with other oxidants 

instead of ozone. 

Arslan-Alaton and Alaton [44] studied the degradation of three xenobiotic compounds normally used on 

the fabrics preparation using ozonation and UVC/H2O2. The synthetic textile wastewater was composed 

by a non-ionic surfactant, the polyamide dyeing stage by synthetic tannin and an aqueous biocidal 

finishing. UVC/H2O2 treatment promoted partial oxidation (50% COD) and after both tested treatments, 

the inhibitory effect on activated sludge completely disappeared. 

However, the achievement of detoxification and/or biodegradability improvement was accompanied 

with high electrical energy requirements. In another work of the same research group [45], 
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alkylpolyethylene ether-based surfactant (formulation commonly used in the textile preparation stage) 

in aqueous solution was treated with photochemical oxidation (UVC/H2O2) and/or biochemical 

treatment. Results emphasized that stand-alone photochemical and biological treatment should be 

preferred to a UVC/H2O2 + Activated sludge treatment combination, since a dramatic reduction in 

activated sludge treatment efficiency was obtained after UVC/H2O2 pre-treatment. 

Shu [114] investigated the degradation of C.I. Direct Blue 199 also using processes of ozonation, 

UV/H2O2 and in sequence of ozonation with UV/H2O2. By ozonation alone, the colour removal was 

greater than 80% within 15 min and the reduction of total organic carbon (TOC) was about 60%. On the 

other hand, by UV/H2O2 alone (low pressure mercury arc UVC lamps with 35 W of power), the colour 

removal took longer time for obtaining the same removal efficiencies (30 min). Nevertheless, it was 

more effective than ozonation for TOC removal, about 75% in 30 min. The sequence process was 

designed to begin with ozonation to rapidly remove colour proficiently, following by UV/H2O2 in order 

to promptly and efficiently remove the remaining TOC. The successful sequence of ozonation with 

UV/H2O2 proved the significant improvement for the removal of both colour and TOC. 

Degradation of a commercial textile biocide formulation containing a 2,4,4´-trichloro-2´-

hydroxydiphenyl ether as the active ingredient, by different advanced oxidation processes (Fenton, 

photo-Fenton, UVA/TiO2, UVA/TiO2/H2O2) and ozone was studied by Arslan-Alaton [115]. The 

photocatalytic experiments (i.e. photo-Fenton, UVA/TiO2 and UVA/TiO2/H2O2), which were carried out 

using a 125 W black light lamp, yielded appreciably higher COD and DOC removal efficiencies. During 

ozonation of the textile biocide effluent, complete detoxification was found after continued ozonation 

for at least 30 min (corresponding to 400 mg O3). The Fenton-based treatment experiments and 

particularly the dark Fenton reaction resulted in relatively poor degradation, de-aromatization and acute 

toxicity removals. 

Textile wastewater treatment by solar-driven advanced oxidation processes  was studied by Vilar et al., 

[100]. The authors tested different AOPs namely, UV/H2O2, UV/TiO2, Fenton and photo-Fenton 

reaction, using solar light at pilot plant scale. Solar-photo-Fenton was the most efficient of all solar 

AOPs studied, for an optimum catalyst concentration of 100 mg Fe2+ L−1, enhancing the biodegradability 

of the wastewater and making possible its combination with a biological oxidation process. Moreover, 

the optimum energy dose required to reach a biodegradable wastewater was 12 kJUV L−1, consuming 

52 mM of hydrogen peroxide (added in excess), as calculated from the kinetic studies, and leading to 

55% mineralisation and 96% decolourisation. 
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Table 1.10 summarizes some information on the main AOPs. The characteristics and mechanism of 

these processes will not be discussed here. The photo-Fenton reaction, UV/TiO2 and UVC/H2O2 are 

exceptions, as there are plenty of detailed studies regarding general and particular aspects of each 

technique or combination thereof [3, 4, 106, 107, 116]. 

Table 1.10. Summary of some information of the main AOPs. 

Processes Strengths Drawbacks References 

O3 and 

UV/O3 

i) ozone is effective over a wide pH 

range and rapidly reacts with bacteria, 

viruses, and protozoans; ii) has a very 

strong oxidizing power with a short 

reaction time; iii) the treatment 

process does not add chemicals to the 

water. 

i) equipment and operational cost higher; ii) 

ozonation by-products are still being evaluated 

ii) ozone generation requires a large amount of 

and electrical energy; iii) potential fire hazards 

and toxicity issues associated with ozone 

generation. 

[117-120] 

O3/H2O2 and 

UV/O3/H2O2 

i) the costs involved in the process are 

lower than the costs of a system 

utilizing only UV and ozone, because 

the addition of hydrogen peroxide 

allows the use of a smaller ozone 

generator and less oxidants; ii) the 

residence times needed to decrease the 

concentration of a contaminant to a 

certain level are lower. 

i) each of the constituents in the process has 

dangers: ozone is explosive, toxic, hydrogen 

peroxide is an irritant, can cause chemical burns, 

and is an explosive hazard, and UV can burn 

unprotected skin and the mercury in UV lamps 

can damage the central nervous system; ii) the 

energy required for the process is high resulting 

in high costs. 

[119, 121-

123] 

UV/H2O2 

i) more advantageous compared with 

ozone, providing a cheap and safe 

source of radicals, eliminating this 

way the problem of the handling of 

ozone. 

i) if the solution presents a strong absorbance this 

competes with hydrogen peroxide for this 

radiation, thus cloudy waters or containing 

compounds absorbing UV radiation can present 

problems at being treated by this method. 

[124, 125] 

Fenton 

i) simplicity of its implementation, 

since the reaction occurs at ambient 

temperature and pressure; ii) requires 

no special equipment or reagent and; 

iii) applies to a wide variety of 

compounds. 

i) need for acidification of the wastewater; ii) 

process stopped after total oxidation of Fe2+; iii) 

some organic compounds are not oxidized in this 

process; iv) the resulting sludge requires 

appropriate treatment, which implies an increase 

in the cost of treatment. 

[126-129] 

Photo-

Fenton 

i) all the cited advantages of Fenton 

reaction; ii) alternating dark and 

illumination intervals has shown to 

reduce the necessary illumination time 

and makes the reaction rate faster. 

i) need for acidification of the wastewater; ii) the 

resulting sludge requires appropriate treatment, 

which implies an increase in the cost of 

treatment. 

[3, 15, 52, 

130-133] 

UV/TiO2 

i) TiO2 is biologically and chemically 

inert, it is stable to photo- and 

chemical corrosion and inexpensive. 

i) the catalyst separation from solution, as well as 

the fouling of the catalyst by the organic matter; 

ii) use the small percentage of the ultraviolet 

radiation coming from the sun. 

[134-136] 

1.2.4.1 Treatment by photo-Fenton 

Homogeneous photocatalytic AOPs in aqueous phase are mainly based on the photo-Fenton reaction 

(Eqs. (1.1) and (1.2)) using Fe2+ salts and hydrogen peroxide in mildly acid solutions (pH between 2.5 

and 5.0). These processes utilize the photoreduction of produced ferric ions (Fe3+) and ferric complexes. 

In contrast to the Fenton reaction, without photo-activation, ferrous ion (Fe2+) is recycled continuously 

by irradiation of Fe3+-H2O and therefore it is not depleted during the oxidation reaction [106].  
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2 FeOHHOOHFe  (1.1) 

OHHFeOHFe 2h

2

3    (1.2) 

A lot of works can be found in the literature using photo-Fenton process for dyes removal in aqueous 

solution [38]. Although not so numerous, some researches also have been devoted to treatment of textile 

wastewater using photo-Fenton [52]. Table 1.11 presents the optimal operating conditions and the 

removals achieved in other studies regarding the treatment of dye solutions or textile wastewaters by the 

photo-Fenton process. 

Table 1.11. Studies on the treatability of dye solutions and textile wastewaters by photo-Fenton process. 

Wastewater/ pollutant 
Optimal Operating 

Conditions 
Removal efficiencies (%) Reference 

Reactive Orange 4 dye 

solution 

pH = 3 

t = 40 min 

UVA radiation; P = 32 W 

[dye] = 5x10-4 mol L-1 

[Fe2+] = 2.8 mg L-1 

[H2O2] = 340 mg L-1 

DOC = 65 [137] 

Procion Red H-E7B dye 

solution 

pH = 3 

t = 120 min 

UVA radiation; P = 6 W 

[Fe2+] = 10 mg L-1 

[H2O2] = 100 mg L-1 

TOC = ~100 

Colour = 81 
[138] 

Reactive Blue 19 dye 

solution 

pH = 3 

UVC radiation; P = 65 W 

[Fe2+] = 32 mg L-1 

[H2O2] = 150 mg L-1 

COD = 96 

Colour = 100 
[139] 

Real textile wastewater 

pH = 3.6 

Solar radiation 

t30W = 22.4 min 

QUV = 3.5 kJUV L-1 

 [Fe2+] = 60 mg L-1 

[H2O2] = 18.5 mM 

DOC = 70 [104] 

Synthetic textile wastewater 

pH = 4 

t = 30 min 

UVC radiation; P = 64 W 

[dye] = 5x10-4 mol L-1 

[Fe2+] = 20 mg L-1 

[H2O2] = 100 mg L-1 

COD = 70 

Colour = 93 

 

[140] 

Real textile wastewater 

pH = 2.7 

t = 50 min 

UVA radiation; P = 25 W 

T = 35ºC 

[Fe2+] = 216 mg L-1 

[H2O2] = 4950 mg L-1 

COD = 79 

TOC = 75 

Colour = 98 

[52] 

Synthetic textile wastewater 

pH = 3 

UVA radiation; P = 15W 

QUV = 23 kJUV L-1 

[Fe2+] = 0.12 g L-1 

[H2O2] = 4.54 g L-1 

COD = 79 

TOC = 79 

Colour = 100 

[141] 
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Chacón et al., [142] studied the solar photocatalytic degradation of the azo-dye Acid Orange 24 by a 

photo-Fenton reaction promoted by solar energy. The authors reported decolourisation higher than 85% 

after 50 kJ L-1 of accumulated energy. And, in the case of the best reaction conditions, a decolourisation 

of up to 95%, using concentrations of Fe2+ = 1.43×10−4 M and H2O2 = 5.2 × 10−3 M, which were 

determined as optimal concentrations for the photocatalytic process. 

Modirshahla et al., [143] investigated the degradation of azo-dye Acid Yellow 23 (AY23) by photo-

Fenton processes (UVC lamp with 30W of power). The effect of dye concentration, pH, initial H2O2 

concentration, Fe2+ concentration and the UV light intensity were studied. Optimum conditions for the 

decolourisation of AY23 were achieved at pH = 3.0, with an initial Fe2+ concentration of 0.1 mM and 

an initial H2O2 concentration of  700 mg L−1 with a dye concentration of 40 mg L−1. 

Prato-Garcia and Buitrón [144] evaluated three reagent dosing strategies in a solar photo-Fenton process 

for the decolourisation of a mixture of sulphonated dyes (Acid Blue 113, Acid Orange 7 and Acid Red 

151). In one strategy, the Fenton's reactants were dosed in a punctual mode, while in the other two 

strategies, the reactants were dosed continuously. Continuous addition of the reagents improved the 

aromatic content removal. This strategy substantially improved the effluent quality in two key areas: 

toxicity and biodegradability. 

Hernández-Rodríguez et al., [141], working with simulated wastewaters from wool dyeing, investigated 

the decolourisation and mineralisation using a solar photo-Fenton process. The effect of H2O2 and Fe(II) 

dosage and fractional or initial addition of these reagents on the photo-mineralisation processes were 

studied and the optimal conditions were found. It was reported that, under optimal conditions, 100% of 

colour removal and no toxic effects on marine bacteria Vibrio fischeri were observed. TOC was reduced 

by 79% with 23 kJ L−1, and HPLC analysis confirmed that the remaining organic carbon was due to the 

presence of sodium acetate. 

Punzi et al., [145] compared the efficiencies of homogeneous and heterogeneous photo-Fenton oxidation 

for treatment of azo-dye containing synthetic textile wastewater. Irradiation was provided by an 18 W 

UVA–vis blue-lamp. For both treatments and for all dyes studied, the complete decolourisation was 

achieved. In terms of mineralisation, COD reductions of 96% and 93% in the homogenous and 

heterogeneous reactions were observed, respectively. Similar amounts of iron-containing sludge were 

produced in both processes, while the release of iron ions was reduced by 50% when using the 

heterogeneous photo-Fenton process. 
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Manenti et al., [103] integrated in batch mode the processes of electrocoagulation, photo-Fenton 

oxidation, and activated sludge biological degradation for treatment of real textile wastewater. The 

photo-Fenton step was carried out in a pilot plant with 0.91 m2 of solar collectors. The authors assessed 

the influence of many reaction conditions, as iron concentration, solution pH, temperature and 

irradiance. It was observed a COD reduction of 65% for the optimal conditions of the photo-Fenton 

reaction (100 mg Fe2+ L−1, pH 2.8, 12 mM H2O2, 6.9 kJUV L−1 accumulated energy). Optimum pH for 

the photo-Fenton reaction was 2.8 because not only the predominant iron species in solution is FeOH2+, 

which is the most photoactive ferric ion-water complex, but also because iron precipitation is avoided. 

A recognized limitation of the photo-Fenton process applied to the treatment of textile wastewaters is 

related to their high alkalinity, associated to the presence of carbonates and bicarbonates, being necessary 

high volumes of acid for the acidification and further consumption of base for the neutralization. In 

addition, some works have showed the formation of stable complexes between ferric ions and organic 

constituents present in textile wastewaters, limiting the photoreduction of Fe3+, decreasing the 

decomposition of H2O2 in the Fenton reaction and the overall efficiency of the photo-Fenton process [8, 

9]. 

Formation of complexes between Fe3+ and carboxylate ions has been pointed out as the most viable way 

to overcome these drawbacks (Eq. (1.3)). In this way, the photo-Fenton process is enhanced because 

these ferricarboxylate complexes: i) have much higher quantum yields than ferric iron-water complexes; 

ii) can use a higher fraction of the solar radiation spectrum, up to 580 nm [146, 147]; iii) are 

photodecarboxylated under visible radiation; iv) provide a quicker pathway for Fe3+ regeneration 

accelerating thereby the process [9]; v) are more soluble than ferric iron-water complexes, allowing work 

at neutral pH values, increasing the applicability of this process at industrial scale, since costs and 

drawbacks of acidifying and the subsequent neutralization are eliminated; vi) are stronger and more 

stable complexes than ferric iron-sulphates, iron-chloride or iron-organic ligands complexes. 

  



  LFeLFeLFe IIIIIhIII  (1.3) 

Ferricarboxylate-mediated solar photo-Fenton has already been successfully applied to treat different 

wastewaters and specific pollutants, whereby carboxylate ions such as oxalate, citrate and EDDS 

(ethylenediamine-N, Nʾ-disuccinic acid) were used to form complexes with Fe3+ (Eqs. (1.4), (1.5) and 

(1.6)) [111, 147]. 

OxaFe)Oxa(Fe 2h3    (1.4) 
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CitFe)Cit(Fe 2h3    (1.5) 

EDDSFe)EDDS(Fe 2h3    (1.6) 

Carneiro et al. [148] investigated the oxidation of C.I. Reactive Blue 4 (RB4) by the photo-Fenton 

process mediated by ferrioxalate under artificial (15 W UVA lamp) and solar irradiation. The best results 

were obtained using 1.0 mM ferrioxalate and 10 mM of hydrogen peroxide. Under these experimental 

conditions, 80% of TOC and 100% of colour removal were obtained for a 0.1 mM RB4 dye after 35 min 

of solar irradiation. Durán et al., [149] also applied solar photo-Fenton-ferrioxalate processes to the 

degradation of Reactive Blue 4 (RB4) solutions. These authors showed that, under optimum conditions, 

([H2O2] = 120 mg L-1, [Fe(II)] = 7 mg L-1, [(COOH)2] = 10 mg L-1, pH 2.5), colour and COD were 

completely removed whereas TOC was reduced up to 66%. 

Lucas and Peres [150] assessed the feasibility of employing different photoxidation systems, like 

UVC/Fe2+/H2O2 and UVA-Vis/Fe2+/H2O2/Oxalate in the decolourisation and mineralisation of Reactive 

Black 5 (RB5). The optimal operational conditions of the processes were investigated, as pH, 

H2O2 dosage, iron dosage, RB5 concentration and source of light. The experiments indicate that RB5 

can be effectively decolourized by UVC/Fe2+/H2O2 and UVA-Vis/Fe3+/H2O2/Oxalate processes with a 

small difference between the two processes, 98.1% and 93.2%, respectively, after 30 min. Although 

there is a small difference in dye decolourisation, the authors state that significant increment in TOC 

removal was found with UVC/Fe2+/H2O2 process (46.4% TOC removal) in relation to UVA-

Vis/Fe3+/H2O2/Oxalate process (29.6% TOC removal). 

Manenti et al. [151] published a study regarding the treatment of a real textile wastewater by a 

conventional photo-Fenton reaction and mediated by different ferric–organic ligands complexes, 

performed in lab and pilot scale photoreactors irradiated by simulated and natural solar radiation. The 

conventional solar-photo-Fenton reaction showed limited efficiency in the mineralisation of the textile 

wastewater. The addition of organic ligands, such as oxalic acid, citric acid and EDDS, enhanced 

significantly the reaction, avoiding the formation of iron–organic pollutants complexes, and 

consequently increasing the quantum yield for ferrous ions´ production through the 

photodecarboxylation of ferric–organic ligands complexes. The catalytic activity of the iron–organic 

ligands complexes increased in the following order: Fe(III)–EDDS < Fe(III)–citrate < Fe(III)–oxalate. 

The researchers reported that all the tested processes mediated by ferric–organic ligands complexes 

contributed to an effective decolourisation and mineralisation, but the most efficient system was the 

photo-Fenton-ferrioxalate reaction with an optimum catalyst concentration of 100 mg Fe3+ L−1, pH 2.8, 

temperature of 30ºC, which led to complete decolourisation and 69% mineralisation after less than 
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8.8 kJUV L−1. Aside from textile treatments, the enhancement of the photo-Fenton reaction through the 

use of ferricarboxylate complexes, such as ferrioxalate, ferricitrate and ferrimaleate, can be seen in many 

publications. Table 1.12 shows some publications that have reported the enhancement of the photo-

Fenton process for the treatment of different wastewaters and specific pollutants. 

Table 1.12. Summary of some publications regarding the enhancement of the photo-Fenton process using 

ferricarboxylate complexes. 

Ferric-organic 

ligands 

complexes 

Wastewater/ 

pollutant 
Operational conditions Reference 

Ferrioxalate 

Synthetic 

phenolic 

wastewater 

pH = 5.6; 

Iron/Oxalate mass ratio = 1:15; 

Fe3+ concentration = 20 mg L-1 and 50 mg L-1; 

Using natural solar radiation; 

[147] 

Azo dye 

Reactive Black 

5 

pH = between 1.0 and 8.0; 

Iron/Oxalate molar ratio = 1:60; 

Fe3+ concentration = 1.5x10-4 M; 

Using solar radiation or a low-pressure mercury vapour lamp; 

[150] 

Winery 

wastewater 

pH = 3.5; 

Oxalate concentration = 16.2 mg L-1 to 80.0 mg L-1; 

Fe2+ concentration = 6.1 mg L-1 to 30.0 mg L-1; 

Using natural solar radiation; 

[152] 

Oxytetracycline 

pH = 4.0 to 6.0; 

Iron/Oxalate molar ratio = 1:3; 

Fe3+ concentration = 1.0 mg L-1 to 5.0 mg L-1; 

An air-cooled xenon arc lamp, a daylight filter and quartz filter with 

IR coating as well as natural solar radiation; 

[153] 

indigo-dyed 

wastewaters 

pH = 5.0 to 6.0; 

Iron/Oxalate mass ratio = 1:35; 

Fe2+ concentration = 1.87 mg L-1; 

Using natural solar radiation; 

[154] 

Ferricitrate 

3-Methylphenol 

pH = 2.8 to 6.4; 

Iron/Citrate molar ratio = 1:1 and 1:2; 

Fe(III)-Citrate = 0.2 mM to 0.5 mM; 

With low pressure mercury UV lamp; 

[155] 

Oxytetracycline 

pH = 3.6 and 5.0; 

Iron/Citrate molar ratio = 1:1; 

Fe3+ concentration = 2.0 mg L-1; 

An air-cooled xenon arc lamp, a daylight filter and quartz filter with 

IR coating as well as natural solar radiation; 

[153] 

Herbicide 

tebuthiuron 

pH = 2.5 and 7.5; 

Iron/Citrate molar ratio = 1:1; 

Fe:Cit concentration = 1.0 mM; 

Using natural solar radiation; 

[156] 

Municipal 

wastewater 

treatment plant 

pH = neutral pH; 

Iron/Citrate molar ratio = 1:0.5 to 1:5; 

Iron concentration = 0.1 mM and 0.2 mM; 

Using natural solar radiation; 

[157] 

Ciprofloxacin 

pH = 2.5 to 6.5; 

Iron/Citrate molar ratio = 1:1; 

Iron concentration = 0.16 mM; 

Using natural solar radiation; 

[158] 

ferric-EDDS 17β-estradiol 

pH = between 3.1 and 8.0; 

Iron/EDDS molar ratio = 1:1; 

Fe-EDDS concentration = 5x10-5 M at 1x10-3 M; 

With fluorescent light bulb lamp (spectrum is 300-500 nm); 

[159] 
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Table 1.12. Summary of some publications regarding the enhancement of the photo-Fenton process using 

ferricarboxylate complexes. 

Ferric-organic 

ligands 

complexes 

Wastewater/ 

pollutant 
Operational conditions Reference 

ferric-EDDS 

2,2-bis-(4-

hydroxyphenyl) 

propane 

pH = 3.7, 6.2 and 8.7; 

Iron/EDDS molar ratio = 1:1; 

Fe-EDDS concentration = 0.01 mM at 0.4 mM; 

With fluorescent light bulb lamp (spectrum is 300-500 nm); 

[160] 

Municipal 

wastewater 

treatment plant 

pH = 3.0  and neutral pH; 

EDDS concentration = 0.2 mM; 

Iron concentration = 5 mg L-1; 

Using natural solar radiation; 

[10] 

Municipal 

wastewater 

treatment plant 

pH = neutral pH; 

Iron/EDDS molar ratio = 1:0.5 to 1:3; 

Iron concentration = 0.1 mM and 0.2 mM; 

Using natural solar radiation; 

[157] 

Pharmaceuticals 

pH = 5-6; Iron/EDDS molar ratio = 1:2; 

Iron concentration = 0.1 mM; 

Using natural solar radiation; 

[130] 

1.2.4.2 Treatment by UV/TiO2  

Heterogeneous photocatalysis using suspended TiO2 is of special interest due to the chemical stability 

of the photocatalyst, low cost and ability of using the small percentage of ultraviolet radiation coming 

from the sun. TiO2 is an n-type wide bandgap semiconductor and has three crystalline phases in nature, 

anatase (tetragonal), rutile (tetragonal) and brookite (orthorhombic). Rutile TiO2 is the most stable form, 

whereas anatase and brookite phases are metastable and can be transformed to rutile phase when heated 

at high temperature (~750°C) [161]. 

For the last decades TiO2 has been the most used and most efficient semiconductor in photocatalytic 

applications; other semiconductors commonly used are ZnO, SnO2, etc. However, TiO2 presents three 

main limitations: i) the threshold of absorption band does not allow visible light absorption, using only 

UV radiation which corresponds to 3-5% of the solar spectrum reaching the Earth; ii) the degradation 

process has low quantum yield; iii) the fast recombination of the charge carriers is in the order of 

nanoseconds [162]. In recent years, chemical and physical modification of the TiO2 by doping metal and 

non-metal ions into the TiO2 lattice, deposition of transition metals, dye photosensitization or coupling 

with other semiconductors have been used to overcome those TiO2 limitations [163, 164]. 

The absorption by the TiO2 (semiconductor) of incident photons of energy matching or exceeding the 

semiconductor band-gap energy produces conduction-band electrons 
cbe (TiO2) and valence-band holes 


vbh (TiO2), i.e. electron-hole pairs (Eq. (1.7)) [162]. Once at the surface of the semiconductor, the 
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presence of suitable acceptor (for 

cbe ) and donor (for 
vbh ) will avoid the near instantaneous and 

undesirable generated recombination. Molecular oxygen acts as electron acceptor, leading to the 

formation of hydroxyl ( HO ) and superoxide ( 

2O ) radicals (Eqs. (1.8), (1.9) and (1.10))[165].  

 h

2TiO 
cbe  2TiO + 

vbh  2TiO  (1.7) 


vbh     HOHOHTiO ads22

 (1.8) 


vbh     OHOHTiO ads22

 (1.9) 


cbe    )ads(2)ads(22 OHOTiO  (1.10) 

If an organic molecule (RH) is adsorbed onto the semiconductor surface, the reaction with hydroxyl 

radical will occur, followed by structural breakdown into several intermediates until, eventually, total 

mineralisation (Eq. (1.11)) [166]. The photogenerated holes, due to their high oxidation potential, can 

also participate in the direct oxidation of the organic pollutants (Eq. (1.12)) [167]. 

Peroxide radical ( HOO ) can also be generated from the protonation of 

2O  radical and subsequently 

forms hydrogen peroxide (Eqs. (1.13) and (1.14)) [106]. 

  HOHRHORHHORH  (1.11) 


vbh     HRRHRHTiO2

 (1.12) 

  HOOHO2
 (1.13) 

2222 OOHHHOOO    (1.14) 

Araña et al. [168] reported the use of Degussa P25 as received and doped with Fe (Fe–TiO2) for the 

photocatalytic degradation (with four 15 W UVA lamps) of the commercial dye Lanaset Sun Yellow 
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180. With (Fe–TiO2) catalyst, the formation of a photoactive complex was observed between the dye 

and Fe atoms of the catalyst surface that accelerated degradation. Toxicity analyses indicated that 

intermediates were not toxic. The researchers concluded that the photocatalytic method seem to be 

interesting for the decolourisation of wastewaters containing this dye. 

Eskandarloo et al. [169] applied TiO2/NiO coupled nanoparticles for the photocatalytic degradation of 

C. I. Basic Red 46 (BR46). The effect of operational variables was predicted and optimized using 

response surface methodology (RSM) and the obtained results showed that the predicted data from RSM 

was found to be in good agreement with the experimental results. A maximum degradation efficiency 

(91%) was achieved at the optimum operational conditions: initial dye concentration of 10.2 mg L−1, 

catalyst dosage of 0.46 g L−1, irradiation time of 30 min, and distance of the solution from UVC lamp 

(15W) of 3 cm. Table 1.13 presents the optimal operating conditions and the removals achieved in other 

studies regarding the treatment of dye solutions or textile wastewaters by UV/TiO2. 

Table 1.13. Studies on the treatability of dye solutions and textile wastewaters by UV/TiO2. 

Wastewater/ pollutant 
Optimal Operating 

Conditions 
Removal efficiencies (%) Reference 

Remazol Red RR dye 

solution 

pH = 3.0 

t = 30 min 

UVA radiation; P = 9 W 

 [TiO2] = 1.5 g L-1 

Colour = 96.7% [170] 

Acid Blue 80 dye solution 

pH = 3.0 

UVC radiation 

t = 30 min 

[TiO2] = 0.5 g L-1 

Colour = 40% [171] 

Reactive Yellow 14 dye 

solution 

pH = 5.5 

Solar radiation 

t = 40 min 

[TiO2] = 4 g L-1 

Colour = 82.1% [172] 

Real textile wastewater 

pH = 4.5 

Solar radiation 

QUV = 190 kJUV L-1 

 [TiO2] = 200 mg L-1 

TOC = 36% 

Colour = 68% 
[100] 

Real textile wastewater 

pH = 4.5 

Solar radiation 

QUV = 39.5 kJUV L-1 

 [TiO2] = 200 mg L-1 

TOC = 34.4% [104] 

Synthetic textile wastewater 

pH = 7.0 

t = 60 min 

UVA radiation; P = 60 W 

 [TiO2] = 1 g L-1 

TOC = 23% 

Colour = 86% 
[173] 

Synthetic textile wastewater 

pH = 3.0 

t = 60 min 

UVA radiation; P = 15 W 

 [TiO2] = 1 g L-1 

TOC = 12.5% [174] 
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1.2.4.3 Treatment by UVC/H2O2 

The combination of hydrogen peroxide and UVC radiation produces hydroxyl free radicals OH  to 

enhance the degradation rate of organics in aqueous system. The photolysis of aqueous hydrogen 

peroxide (Eq. (1.15)) in the UVC range of the electromagnetic spectrum represents one of the easiest 

ways to produce sufficient amounts of hydroxyl radicals. However, the fate of OH  radicals in aqueous 

solution is complex due to their high reactivity and short lifetime [106]. 

OH2OH h

22

  (1.15) 

The UVC/H2O2 process is relatively conventional and the most studied AOP, because of its powerful 

oxidation ability, no sludge production and simplicity of operation [175-177]. The use of UVC radiation 

involves the use of high concentrations of H2O2. As in all cases in which H2O2 is used, there must be a 

control of the system pH and temperature to prevent degradation of H2O2 (Eq. (1.16)). 

2222 OOH2OH2   (1.16) 

Several studies have reported about the successful application of the UVC/H2O2 process to many types 

of various organic pollutants, for the remediation of both ground and drinking waters [177-183]. More 

specifically, many authors investigated the decolourisation of various dyes by the UVC/H2O2 process 

and they found it efficient for laboratory prepared pure dye solutions [114, 184, 185], while it was seldom 

reported for industrial textile wastewaters [174]. 

Timchak and Gitis [186] investigated the inactivation of viruses (MS2, phi X 174 and T4), alone and 

jointly with the degradation of two fluorescent dyes, rhodamine B and fluorescein. Complex dye-virus 

experiments were performed in mixed suspensions of free floating and conjugated species. The studies 

were performed in collimated beam and in continuous-flow UVC reactors (UVC lamp of 43W power) 

and showed that the inactivation of viruses is not affected by the presence of dyes but can be improved 

by the addition of hydrogen peroxide. It was observed that the addition of 0.2 M H2O2 at 70 mJ  cm-2 

increased the inactivation of MS2 by two logs and had no effect on phi X 174 and T4. The bleaching of 

fluorescent dyes in the presence of viruses was decreased due to limited availability of hydroxyl radicals 

and their preferential participation in virus inactivation. 

Kasiri and Khataee [187] used Response Surface Methodology (RSM) to study the effects of operational 

parameters on the photooxidative decolourisation of two dyes (C.I. Basic Blue 3 (BB3) and C.I. Acid 

Green 25 (AG25)) with different molecular structure under UVC light illumination (30 W) in the 
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presence of hydrogen peroxide (H2O2). Reaction variables were investigated, as the reaction time, dye 

and H2O2 initial concentrations and distance of UV lamp from the solution. Central Composite Design 

(CCD) was used for the optimization of photooxidative decolourisation process and results demonstrated 

that CCD methodology could efficiently optimize the photooxidative decolourisation of BB3 and AG25 

using the UVC/H2O2 process. Under optimal value of process parameters, high colour removal (>95%) 

was obtained for dye solution containing BB3 or AG25. 

Neamtu et al. [185] reported the use of laboratory-scale batch photoreactor equipped with an immersed 

low-pressure mercury lamp (15W) for the decolourisation and mineralisation of reactive azo dyes. 

Different doses of hydrogen peroxide, at constant initial concentration of the substrate (100 mg L-1) were 

used. The obtained results showed that with a dose of 24.5 mmol L-1 H2O2 and a 60 min irradiation time 

the decolourisation was higher than 99.6% for all the three aqueous dye solutions. To use a hydrogen 

peroxide dosage higher than 24.5 mmol L-1 H2O2 was not cost effective. Researchers argued that the 

UVC/H2O2 process can be a suitable pre-treatment method for the complete decolourisation and 

detoxification of wastewaters from textile dyeing and finishing processes. They believe that the 

investigations should be continued in order to find the influence of other factors like textile auxiliaries, 

salts, surfactants and natural impurities on the mineralisation degree. Table 1.14 presents the optimal 

operating conditions and the removals achieved in other studies regarding the treatment of dye solutions 

or textile wastewaters by UVC/H2O2 system. 

Table 1.14. Studies on the treatability of dye solutions and textile wastewaters by UVC/H2O2 system. 

Wastewater/ pollutant 
Optimal Operating 

Conditions 
Removal efficiencies (%) Reference 

C. I. Acid Blue 113 dye 

solution 

pH = 5.5 

t = 20 min; P = 14 W 

 [H2O2] = 46.53 mM 

Colour = 97.2 [184] 

C. I. Direct Blue 199 dye 

solution 

pH = 6.8 

t = 120 min; P = 35 W 

 [H2O2] = 116.32 mM 

TOC = 80 

Colour = 95 
[114] 

Vat Green 01 dye solution 

pH = 3.0 

t = 120 min; P = 125 W 

 [H2O2] = 1 g L-1 

Colour = 41 [188] 

C. I. Reactive Black 5; C. I. 

Direct Yellow 12; C. I. 

Direct Red 28 

pH = 7.0 

t = 60 min; P = 16 W 

 [H2O2] = 50 mM 

Colour (RB5) = 99 

Colour (DY12) = 98 

Colour (DR28) = 40 

[189] 

Synthetic textile wastewater 

pH = 3.0 

t = 60 min; P = 25 W 

 [H2O2] = 680 mg L-1 

TOC = 30.4 

Colour = 87.0 
[174] 

Real textile wastewater 

pH = 3.0 

t = 120 min; P = 125 W 

 [H2O2] = 1 g L-1 

COD = 69 

Colour = 74 
[188] 
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2 Materials and methods 

This second chapter regards the preparation of synthetic 

textile dyeing wastewaters and the characterization of 

synthetic and real textile dyeing wastewaters. In addition, 

it presents an overview of all the chemicals and reagents 

used in this thesis, a detailed description of the 

experimental units used to perform all the assays. The 

employed analytical methods are also herein described. 
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2.1 Chemical and reagents 

Hydrogen peroxide was purchased from Quimitécnica, S.A. (50% (w/v), 1.10 g cm-3), iron sulphate 

heptahydrated was from Panreac and iron ferric chloride hexahydrated from Merck. Concentrated 

sulphuric acid and sodium hydroxide, both of analytical grade and used for pH adjustment, were supplied 

by Pronalab and Merck, respectively. (S,S)-ethylenediamine-N,N`disuccinic acid (EDDS) (35% w/v) 

was purchased from Aldrich, oxalic acid dihydrate (purity  98%) and citrate acid monohydrate (100%) 

were purchased from VWR Prolabo. Heterogeneous photocatalytic experiments used Degussa P-25 

(80% anatase and 20% rutile) Titanium Dioxide (TiO2). 

Ultrapure and deionized water was produced by a Millipore® system (Direct-Q model) and a reverse 

osmosis system (Panice®), respectively. In the biodegradability tests, catalase 0.1 g L-1 (Sigma-

Aldrich®, 2500 U mg-1 bovine liver) was employed for H2O2 elimination. 

2.2 Analytical methods 

All samples, before analysis, except for the determination of TSS, VSS, BOD5 and COD, were 

filtered with 0.45μm Nylon filters purchased from Whatman. For the cotton-textile dyeing 

wastewater and acrylic-textile dyeing wastewater, before analysis, except for the determination of 

TSS, VSS, BOD5 and COD, all samples were centrifuged in a HIMAC CT 6E centrifuge at 4000 rpm 

for 5 minutes. That procedure was necessary since, for these wastewaters, the filtration procedure 

retained uneven amounts of dyes, which could compromise the results. 

2.2.1 Dissolved organic carbon (DOC) and Total dissolved nitrogen (TN) 

Dissolved organic carbon (DOC) was measured by NDIR spectrometry in a TC-TOC-TN analyzer 

equipped with ASI-V auto sampler (Shimadzu, model TOC-VCSN) and calibrated with standard 

solutions of potassium hydrogen phthalate (total carbon) and a mixture of sodium hydrogen 

carbonate/sodium carbonate (inorganic carbon). 

Total dissolved nitrogen was measured in the same TC-TOC-TN analyzer coupled with a TNM-1 

unit (Shimadzu, model TOC-VCSN) by thermal decomposition and NO detection by 

chemiluminescence method, calibrated with standard solutions of potassium nitrate.  
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2.2.2 Low-molecular-weight carboxylate anions (LMWCA) 

Carboxylic acids were measured by HPLC-DAD (VWR Hitachi ELITE Lachrom com DAD L-2455; 

RezexTM ROA-Organic Acid H+ (8%), LC Column 300 × 7.8 mm, Ea). The programme for carboxylic 

acids determination comprised a 25 min run with a sulfuric acid solution (0.005 N) as mobile phase 

delivered at a flow rate of 0.5 mL min-1. The method allowed the concurrent detection of 17 carboxylic 

acids: oxalic, tartronic, maleic, citric, oxamic, tartaric, malic, malonic, glycolic, succinic, shikimic, 

formic, acetic, glutaric, fumaric, propionic and acrylic. 

2.2.3 Inorganic Ions 

Inorganic ions (choride, nitrate, nitrite, phosphate, sulphate, fluoride, bromide, lithium, sodium, 

ammonium, potassium, magnesium and calcium) were measured by ion chromatography (Dionex 

ICS-2100 and Dionex DX-120 for anions and cations, respectively), using a Dionex Ionpac 

(columns: AS9-HC/CS12A 4 mm × 250 mm; suppressor: ASRS®300/CSRS®300 4 mm, 

respectively for anions and cations). The programme for anions/cations determination comprises a 

12 min run with 30 mM NaOH/20 mM methanesulfonic acid at a flow rate of 1.5/1.0 mL min-1. 

2.2.4 Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) 

COD concentration was measured by Merck Spectroquant kits (ref: 1.14541.0001). Biochemical 

oxygen demand (BOD5) determination was carried out according to Standard Methods using an 

OXITOP# system (Method 5210 B) [1]. 

2.2.5 Alkalinity, pH, temperature and conductivity 

The alkalinity was evaluated by titration with H2SO4 at pH 4.5 (Method 2320 D) [1]. pH, temperature 

and conductivity were measured using a pH meter HANNA HI 4522 or a pH meter VWR symphony 

- SB90M5. 

2.2.6 Total suspended solids (TSS) and Volatile suspended solids (VSS) 

Total suspended solids (TSS) and Volatile suspended solids (VSS) were determinated according to 

Method 2540 B and Method 2540 E [1], respetively. 
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2.2.7 Hydrogen peroxide and dissolved iron concentration 

Evaluation of H2O2 concentration during experiments was performed by metavanadate method, based 

on the reaction of H2O2 with ammonium metavanadate in acid medium, which results in the formation 

of a red-orange colour peroxovanadium cation, with maximum absorbance at 450 nm [2]. Dissolved 

iron concentration was determined by colorimetry with 1,10-phenantroline according to ISO 6332 

[3]. 

2.2.8 Colour 

Two different methods were used for the colour measurement: i) absorbance at three wavelengths were 

observed (436, 525, and 620 nm) and then, DFZy calculation was made according to the Eq. (2.1), 

following the method DIN EN ISO 7887 [4]; and ii) platinum-cobalt (Pt-Co) method, at 400 nm 

wavelength [1]. Besides, in order to evaluate the compliance with the discharge limit as defined in 

Portuguese Ordinance nº 423/97 [5], for textile wastewaters, the samples were diluted 40 times and 

visually checked for the presence or absence of colour. And, for mixed wastewater that has two sources, 

textile wastewater and domestic sewage, the samples were diluted 20 times and visually checked for the 

presence or absence of colour, as defined in Portuguese Decree Law nº236/98 [6]. Such procedure 

(uncoloured at 1:20 dilution or 1:40 dilution) cannot be used for the experimental treatment monitoring 

because it is not a measure and does not have values that may be compared. In order to overcome this 

limitation, German textile wastewater discharge standards [7] were also considered, since it is used 

values of absorbance at three wavelengths, 436, 525, and 620 nm according to DIN EN ISO:7887 [4]. 











d

E
100DFZ

y

y
 (2.1) 

where Ey is absorbance at a y wavelength and d is the cell path length in cm. 

2.2.9 UV spectra and photometric measurements 

The spectrophotometric measurements to obtain the textile wastewaters̕ UV absortion spectra and 

to determine the concentration of dissolved iron and of H2O2 were carried out with a UNICAM 

Helios spectrophotometer or a Spectroquant® Pharo 100 (Merck) spectrophotometer.  
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Due to the textile wastewater´s absorption at the selected wavelengths, a blank/control sample 

(diluted as for the colorimetric analyses) was always prepared, and the absorbance measured at the 

same wavelength was used for correction. 

2.2.10 Biodegradability tests 

A 28 days biodegradability test (Zahn–Wellens test) was performed according to the EC protocol, 

Directive 88/303/EEC [3]. Activated sludge from a municipal WWTP of Porto, Portugal, previously 

centrifuged, and mineral nutrients (KH2PO4, K2HPO4, Na2HPO4, NH4Cl, CaCl2, MgSO4 and FeCl3) 

were added to the samples. The control and blank experiments were prepared using glucose and distilled 

water, respectively. The percentage of biodegradation (Dt) was determined by Eq.(2.2) [8]: 

1001 













BAA

Bt
t

CC

CC
D  (2.2) 

where CA and CBA are the DOC (mg L-1) in the sample and in the blank, measured 3 hours after the 

beginning of the experiment, Ct and CB are the DOC (mg L-1) in the sample and in the blank, measured 

at the sampling time t. The carbon oxidation state (COS) parameter was calculated by Eq. (2.3), which 

is used to evaluate the oxidation degree and effectiveness of the oxidative process [9]. 

0

5.14
DOC

COD
COS   (2.3) 

where DOC0 is the initial dissolved organic carbon on the solution (mg C L-1), and COD is the chemical 

oxygen demand at time t (mg O2 L
-1). 

2.2.11 Photonic flux 

The UVA lamp incident light flux was determined by 2-nitrobenzaldehyde (2-NB) actinometry method. 

The 2-NB actinometry was accomplished adapting the method proposed by Willett and Hites [10]. A 

2.5 mM 2-NB solution was prepared using water/ethanol (10:90) as solvent and stored in the dark. A 

volume of 1250 mL of the above solution was added to the system and recirculated for 10 min in the 

dark. Then, the UVA lamp was switched on and samples were collected every 5 min from time zero 

during a total period of 30 min to follow 2-NB concentration. This concentration was determined by 

HPLC using a VWR Hitachi ELITE LaChrom (Merck-Hitachi, Tokyo, Japan) LC filled with a Merck 
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LiChrosorb® RP-18 (5 µm) LiChroCART® 125-4 column at 25 °C under isocratic operation. The mobile 

phase composed of 40:60 (v/v) acetonitrile/0.014 M oxalic acid was injected at a flow rate of 0.6 mL 

min-1. Samples of 5 µL were injected into the LC and the DAD was set at λ = 258 nm. 

The UVC lamps incident light flux was determined by hydrogen peroxide [11] actinometry method. A 

volume of 1000 mL of water was added to the system and recirculated for 10 min in the dark. A dose of 

hydrogen peroxide was added (50 mM H2O2), the mixture was well homogenized for 10 min and a 

sample was taken for H2O2 concentration control. Then, the UVC lamp was switched on and samples 

were collected every 5 min from time zero during a total period of 90 min to follow hydrogen peroxide 

concentration. This concentration was determined by the metavanadate method [2]. 

The incident flux of the UVA-Visible lamp (xenon arc lamp 1700 Watt air cooled) installed inside the 

solar radiation simulator (ATLAS, model SUNTEST XLS) was determined by potassium ferrioxalate 

actinometry method [12]. A volume of 1600 mL of water was added to the system and recirculated for 

15 min in the dark. Afterwards, oxalic acid (30 mM) and iron chloride (6 mM) were added. After 15 min 

another sample was taken for iron concentration control, determined by colorimetry with 1,10-

phenantroline according to ISO 6332 [3]. Then, the SUNTEST was turned on (the radiation intensity 

was set at 500 W m−2) and samples were collected every 2 min from time zero during a total period of 

30 min to follow iron concentration. For all actinometry tests, the concentrations-time (CT) plot thus 

obtained was fitted to a zero-order kinetics and Eq. (2.4) permitted to calculate F0 (Einstein s-1): 

 
V

dt

d
F0 












1CT
 (2.4) 

where d[CT]/dt is the zero-order kinetics constant (mol L-1 s-1), 𝜙 is the quantum yield of: i) 2-NB at the 

lamp wavelength (0.41 at 280-405 nm [13]); ii) hydrogen peroxide  at the lamp wavelength (1.25 at 

253.7 nm [11]) and; iii) ferrioxalate at the lamp wavelength (1.15  at 300-514 nm [12]), and V is the 

solution volume (L). Afterwards, in all actinometry tests the photonic flux was converted to J s-1 (pf) as: 

ANEFpf  0  (2.5)  

where E is the energy (J) calculated from Plank’s equation for: i) max = 360 nm of the UVA lamp; ii) 

max = 253.7 nm of the UVC lamps, and iii)
x

  = 407 nm of the UVA-Visible lamp, and NA is Avogadro’s 

number (6.022×1023 mol-1). 
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2.2.12 Chemical equilibrium modelling 

The molar fractions of the iron species were calculated by the chemical equilibrium modelling 

system MINEQL+ [14]. Table 2.1 shows oxalic acid ionization reactions, citric acid ionization 

reactions and EDDS ionization reactions, besides the Fe(III)-sulfate complexes, Fe(III)-hydroxy 

complexes, Fe(IIII)-chloride complexes and iron-ligand complexes that were also considered for the 

speciation diagrams. 

Table 2.1. Equilibrium reactions and respective equilibrium constants (log K*) and enthalpies (∆H) used in the 

chemical equilibrium modelling system MINEQL+ [14] for speciation diagrams calculation (T = 25 ºC and ionic 

strength = 0 M*). 

Reaction log K* Reference ∆H (kcal mol-1) Reference 

H2O ↔ OH- + H+ -13.997 [14] 13.339 [14] 

H+ + SO4
2- ↔ HSO4

- 1.990 [14] 5.258 [14] 

Na+ + SO4
2- ↔ NaSO4

- 0.730 [14] 0.239 [14] 

Fe(III)-hydroxy complexes     

Fe3+ + H2O ↔ FeOH2+ + H+ -2.187 [14] 9.993 [14] 

Fe3+ + 2H2O ↔ Fe(OH)2
+ + 2H+ -4.594 [14] -  

2Fe3+ + 2H2O ↔ Fe2(OH)2
4+ + 2H+ -2.854 [14] 13.771 [14] 

Fe3+ + 3H2O ↔ Fe(OH)3 (aq)
 + 3H+ -12.560 [14] 24.809 [14] 

Fe3+ + 4H2O ↔ Fe(OH)4
-
 + 4H+ -21.588 [14] -  

3Fe3+ + 4H2O ↔ Fe3(OH)4
5+

 + 4H+ -6.288 [14] 15.593 [14] 

Fe(III)-sulfate complexes     

Fe3+ + SO4
2- ↔ FeSO4

+ 4.050 [14] 5.975 [14] 

Fe3+ + 2SO4
2- ↔ Fe(SO4)2

- 5.380 [14] 4.589 [14] 

Fe(IIII)-chloride complexes     

Fe3+ + Cl- ↔ FeCl2+ 1.480 [14] 5.497 [14] 

Fe3+ + 2Cl- ↔ FeCl2
+ 2.130 [14] -  

Fe3+ + 3Cl- ↔ FeCl3 (aq) 1.130 [14] -  

Oxalic acid protonation/deprotonation equilibria     

C2O4
2- + H+ ↔ HC2O4

- 4.266 [15] 1.58 [15] 

C2O4
2- + 2H+ ↔ H2C2O4 5.516 [15] 2.38 [15] 

Fe(III)-oxalate complexes     

Fe3+ + H+ + C2O4
2- ↔ FeH(C2O4)2+ 9.53 [16] -  

Fe3+ + C2O4
2- ↔ Fe(C2O4)+ 9.40 [16] 1.30 [15] 

Fe3+ + 2C2O4
2- ↔ Fe(C2O4)2

- 16.20 [16] 0.70 [15] 

Fe3+ + 3C2O4
2- ↔ Fe(C2O4)3

3- 20.78 [16] 0.10 [15] 

Citric acid protonation/deprotonation equilibria     

cit3- + H+ ↔ Hcit2- 6.396 [14] 0.80 [14] 

cit3- + 2H+ ↔ H2cit- 11.157 [14] 0.31 [14] 

cit3- + 3H+ ↔ H3cit 14.285 [14] -0.66 [14] 

Fe(III)-citrate complexes     

Fe3+ + cit3- ↔ Fecit 13.10 [14] -  

Fe3+ + H+ + cit3- ↔ FeHcit+ 14.40 [14] -  

Fe3+ + cit3- ↔ FeOHcit- + H+ 10.33 [17] -  

EDDS protonation/deprotonation equilibria     

EDDS4- + H+ ↔ H(EDDS)3- 10.888 [18] -  

EDDS4- + 2H+ ↔ H2(EDDS)2- 18.389 [18] -  

EDDS4- + 3H+ ↔ H3(EDDS)- 22.690 [18] -  

EDDS4- + 4H+ ↔ H4(EDDS) 25.860 [18] -  

Fe(III)-EDDS complexes   -  

Fe3+ + EDDS4- ↔ Fe(EDDS)- 24.645 [18] -  

*log K values found in the literature at ionic strengths differing from zero were corrected to zero ionic strength using Davies equation 

[19]; 
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2.2.13 Kinetic modelling 

A pseudo-first-order kinetic model was fitted to the experimental data obtained from the kinetic 

studies by non-linear regression (sofware Fig.P for Windows from Fig.P Software Incorporated). 

The model parameters were obtained by minimizing the sum of the square deviations between the 

experimental and predicted values. 

2.3 Textile dyeing Wastewaters 

Textile manufacturing process, due to the wide range of dyes and chemicals involved, in addition to the 

different fabrics and colours according to fashion season, contributes to the high variability found in its 

wastewaters. Many rivers run with colours of the season as unfixed dyes wash off from textile facilities. 

In order to attend this peculiarity, this thesis focuses on the treatment of four different textile 

wastewaters. This part regards the preparation and characterization of two synthetic textile dyeing 

wastewaters as well as the characterization of two real textile dyeing wastewaters. 

2.3.1 Synthetic textile dyeing wastewater 

2.3.1.1 Synthetic acrylic-textile dyeing wastewater 

The synthetic acrylic-textile wastewater was prepared according to the information provided by the dye-

house, Erfoc-Acabamentos Têxteis 110 S.A. (Famalicão, Portugal), concerning the amounts of rejected 

products from dyeing acrylic fibres [20]. Samples of the auxiliary products and dye were kindly supplied 

by the same company and DyStar Anilinas Têxteis, Unip Ltd (Porto, Portugal). An azo dye denominated 

C.I. Basic blue 41 with commercial name Astrazon Blue FGGL 300% (Figure 2.1) was used. 

Table 2.2 presents the characteristics of the dye and dyeing auxiliary products employed in the 

preparation of the synthetic textile wastewater. The auxiliary chemical Sera®Con N-VS, non-ionic, is 

used as acid donor for dyeing acrylic, wool and polyamide fibres. On the other hand, the chemical 

Sera®Tard A-AS, together with sodium sulphate, is used as a retarder for dyeing acrylic fibres and 

blends with cationic dyestuffs. The non-ionic dispersing agent Sera®Sperce M-IW is used in the 

polyacrylic yarn dyeing process with cationic dyestuffs. The auxiliary product Sera®Lube M-CF, non-

ionic amides polymers in aqueous solution, is a crease inhibitor and lubricant for dyeing and scouring 

processes. 
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Figure 2.1. UV-Vis absorption spectra of the wastewater and the chemical structure of Astrazon Blue FGGL 

300%. 

The textile auxiliary products do not fix in the fibres, being 100% discharged with the wastewaters 

generated. The only exception is sodium sulphate, in which 90% of the total amount used is eliminated 

by the wastewater. Auxiliary chemicals Sera® Tard A-AS and Sera® Con N-VS are responsible for 30% 

and 26%, respectively, of the total dissolved organic carbon content in the acrylic-textile dyeing 

wastewater. The dye represents only 3.5% (10.4 mg C L-1) of the total DOC. 

Table 2.2. Characteristics of the dye and dyeing auxiliary products present in the synthetic acrylic-textile dyeing 

wastewater. 

Dyeing Product Chemical Characteristics 
Wastewater Characteristics 

Concentration pH DOC 

Astrazon Blue FGGL 300% Azo dye - Basic blue 41 0.03 g L-1 8.3 10.4 mg C L-1 

Sera® Con N-VS Acid carboxylic ester 0.13 mL L-1 6.0 78.2 mg C L-1 

Sera® Tard A-AS alkyl dimethyl benzyl ammonium chloride 0.33 mL L-1 6.8 89.4 mg C L-1 

Sera® Sperse M-IW alkyl polyglycol ether 0.19 mL L-1 7.3 58.5 mg C L-1 

Sera® Lube M-CF Polymeric amines 0.79 mL L-1 6.2 50.4 mg C L-1 

Sodium Sulphate Na2SO4 0.91 g L-1 8.0 0.0 mg C L-1 

The acrylic-textile dyeing wastewater was prepared taking into account that in each particular case 

different volumes of water and chemicals are employed along the process, and the ratio between the 

amount of fibre to be dyed and the water used in the bath was assumed to be 1:10 (kg:L). Finally, the 

percentage of these products unfixed in the textile fibres (and therefore released into the water) should 
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be also taken into account. Figure 2.2 shows the temperature profiles of the respective dyeing process 

and the moment of addition of each component. 

 

Figure 2.2. Scheme of acrylic fibres dyeing process. 

Table 2.3 shows a brief characterisation of the synthetic acrylic-textile dyeing wastewater. The 

wastewater presents a blue colour, which is mainly related to the dye colour, originating a maximum 

absorbance peak at 610 nm. The wastewater presents a neutral pH value and moderated organic load, 

where more than 96.5% of DOC is related to the dyeing auxiliary products and 3.5% is due to the dye. 

The low BOD5/COD ratio indicates low biodegradability of this textile wastewater, which was 

confirmed by the Zahn-Wellens test. 

Table 2.3. Characteristics of the synthetic acrylic-textile dyeing wastewater. 

Parameters Units Values 

pH Sorënsen scale 6.8 

Conductivity mS cm-1 1.3 

COD – Chemical oxygen demand mg O2 L-1 836 

BOD5 – Biochemical oxygen demand mg O2 L-1 30 

BOD5/COD ratio - 0.03 

DOC - Dissolved organic carbon mg C L-1 295 

Biodegradability - Zahn-Wellens test % 27 

Absorbance at 254 nm - 0.043 

Colour 

DFZ436nm m-1 2.8 

DFZ525nm m-1 10.1 

DFZ620nm m-1 34.2 

Pt-Co Scale mg L-1 24 
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Table 2.3. Characteristics of the synthetic acrylic-textile dyeing wastewater. 

Parameters Units Values 

Visual colour dilution 1:40 - visible 

Formic Acid mg CH2O2 L-1 64 

Chloride mg Cl- L-1 41 

Sulphate mg SO4
2- L-1 593 

Total Dissolved Nitrogen mg N L-1 20 

Nitrate mg N-NO3
- L-1 3.8 

Nitrite mg N-NO2
- L-1 0.8 

Ammonia mg N-NH4
+ L-1 0.1 

Phosphate mg P-PO4
3- L-1 0.8 

Sodium mg Na+ L-1 344 

Magnesium mg Mg2+ L-1 6 

Calcium mg Ca2+ L-1 34 

Total suspended solids mg TSS L-1 55 

Volatile suspended solids mg VSS L-1 45 

2.3.1.2 Synthetic polyester-cotton dyeing textile wastewater 

The synthetic polyester-cotton dyeing wastewater was prepared according to the information provided 

by DyStar Anilinas Têxteis, Unip Ltd (Porto, Portugal), concerning the amounts of rejected products 

from dyeing for both fibres. Samples of the auxiliary products and dye were also kindly supplied by the 

same company. Polyester and cotton wastewaters were singly prepared and after that, mixed based on 

the average Portuguese textile cotton/polyester mixture: 70% cotton dyeing wastewater and 30% 

polyester dyeing wastewater. The polyester-cotton dyeing wastewater was prepared taking into account 

that in each particular case different volumes of water and chemicals are employed along the process, 

and the ratio between the amount of fibre to be dyed and the water used in the bath was assumed to be 

1:10 (kg:L). Finally, the percentage of these products unfixed in the textile fibres (and therefore released 

into the water) should be also taken into account. Two disperse dyes (Dianix Blue K-FBL and Dianix 

Orange K3G) were selected for the preparation of the synthetic polyester dyeing wastewater, as they are 

commonly used for dyeing polyester fibres (Figure 2.3). The selection of these dyes also took into 

account the rising of disperse dyes consumption in the world following the increase in demand for 

polyester fibres. 
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Figure 2.3. Chemical structure of dyes used in the preparation of the polyester dyeing wastewater: Dianix Blue 

KFBL (left) and Dianix Orange K3G (right). 

Figure 2.4 shows the temperature profiles of the polyester dyeing, including the steps of the preparation 

of the dyebaths and the reduction cleaning process, as well as the moment of addition of each component. 

Table 2.4 presents the concentration and characteristics of the dyes and dyeing auxiliary products 

employed in the preparation of the synthetic polyester dyeing textile wastewater. 

 

Figure 2.4. Scheme of polyester fibres dyeing process. 

Two reactive (Procion Yellow H-EXL gran and Procion Deep Red HEXL gran) dyes were selected for 

the preparation of the synthetic cotton dyeing wastewater (its chemical structure is not available). These 

dyes were selected due to several aspects: i) the high consumption for dyeing fibres in Portugal; ii) the 

low degree of fixation on the fibres, and consequently high quantities are rejected and will be present in 
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the wastewater; iii) the majority of reactive dyes are not easily removed by conventional processes, such 

as biological treatment and coagulation/flocculation using inorganic coagulants. 

Table 2.4. Characteristics of the dyes and dyeing auxiliary products present in the synthetic polyester dyeing 

textile wastewater. 

Step Dyeing Product 
Chemical 

Characteristics 

Wastewater Characteristics 

Concentration pH DOC 

Fibre 

preparation 

Sera® Lube Neo Creasing prevent 2.0 g L-1 7.0 53.2 mg C L-1 

Sera® Quest C-PX 

Polymer combination; 

dispersing and sequestering 

agent 

1.0 g L-1 7.4 27.0 mg C L-1 

Dyeing 

Sera® Lube M-CF 
Polymeric amide; 

Lubricant and crease inhibitor 
2.0 g L-1 6.6 38.2 mg C L-1 

Sera® Sperse M-IF 

Sodium naphthalene sulfonate 

condensate; 

dispersing agent 

1.5 g L-1 6.8 187.6 mg C L-1 

Sera® Gal P-LP 
Alkyl polyglycol derivative; 

dispersing agent 
2.0 g L-1 6.6 183.3 mg C L-1 

Sodium hydrosulphite 
Sodium dithionite; 

reducing agent 
3.0 g L-1 3.1 0.0 mg C L-1 

Acetic acid C2H4O2 150.0 mg L-1 4.0 25.6 mg C L-1 

Dianix Orange K3G Disperse Orange 30 22.0 mg L-1 6.4 5.7 mg C L-1 

Dianix Blue KFBL Disperse Blue 56 8.0 mg L-1 6.5 2.3 mg C L-1 

Reduction 

cleaning 

Sera® Wash M-SF Non-foaming detergent 450.0 mg L-1 6.8 66.5 mg C L-1 

Sodium hydroxide NaOH 5.0 g L-1 13.5 0.0 mg C L-1 

Acetic acid C2H4O2 150.0 mg L-1 3.6 69.3 mg C L-1 

Sodium hydrosulphite 
Sodium dithionite; 

reducing agent 
3.0 g L-1 3.1 0.0 mg C L-1 

Figure 2.5 shows the temperature profiles of the cotton dyeing, the preparation of the dyebaths and the 

reduction cleaning process, as well as the moment of addition of each component. Table 2.5 presents the 

concentration and characteristics of the dyes and dyeing auxiliary products employed in the preparation 

of the synthetic cotton dyeing textile wastewater.  

http://en.wikipedia.org/wiki/Sodium_dithionite
http://en.wikipedia.org/wiki/Reducing_agent
http://en.wikipedia.org/wiki/Sodium_dithionite
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Figure 2.5. Scheme of cotton fibres dyeing process. 

Table 2.5. Characteristics of the dyes and dyeing auxiliary products present in the synthetic cotton dyeing textile 

wastewater. 

Step Dyeing Product 
Chemical 

Characteristics 

Wastewater Characteristics 

Concentration pH DOC 

Fibre 

preparation 

Sera® Foam M-HTS Mineral oil; emulsifier 450.0 mg L-1 6.5 56.3 mg C L-1 

Sera® Fil FFB 
Ethoxylate and phosphonated 

alcohol 
450.0 mg L-1 6.2 26.3 mg C L-1 

Sera® Zyme C-SX Aqueous enzyme; 1.8 g L-1 6.4 2.4 mg C L-1 

Acetic acid C2H4O2 250.0 mg L-1 3.7 48.6 mg C L-1 

Hydrogen peroxide H2O2 1.3 g L-1 3.0 0.0 mg C L-1 

Sodium hydroxide NaOH 1.2 g L-1 
13.

5 
0.0 mg C L-1 

Dyeing 

Sera® Lube M-CF 
Polymeric amide; 

Lubricant/crease inhibitor 
2.0 g L-1 6.6 38.2 mg C L-1 

Sera® Quest M-USP organophosphonic acid 1.0 g L-1 6.6 4.4 mg C L-1 

Sodium chloride NaCl 20.0 g L-1 7.0 0.0 mg C L-1 

Sodium carbonate Na2CO3 5.0 g L-1 9.2 0.0 mg C L-1 

Procion Yellow H-EXL 

gran 
Reactive Yellow 138:1 5.0 mg L-1 6.4 3.0 mg C L-1 

Procion Red H-EXL gran Azo dye 15.0 mg L-1 6.4 5.6 mg C L-1 

Sodium hydroxide NaOH 1.2 g L-1 
13.

5 
0.0 mg C L-1 

Washing Sodium dodecyl sulphate NaC12H25SO4 225.0 mg L-1 6.6 51.6 mg C L-1 
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Table 2.6 shows a brief characterisation of the synthetic polyester-cotton dyeing textile wastewater. The 

wastewater presents a red colour (Figure 2.6), and a neutral pH value and high organic load, where more 

than 97% of DOC is related to the dyeing auxiliary products and 3% is due to the dyes. The wastewater 

moderate biodegradability percentage, in large part, is related to the constituents of the cotton dyeing 

wastewater. 

Table 2.6. Characteristics of the synthetic polyester and cotton textile dyeing wastewaters and their mixture. 

Parameters Units Polyester Cotton Polyester-Cotton 

pH Sorënsen scale 7.4 10.1 8.4 

Conductivity mS cm-1 3.7 5.0 4.5 

COD – Chemical oxygen demand mg O2 L-1 2530 1112 1450 

BOD5 – Biochemical oxygen demand mg O2 L-1 700 350 440 

BOD5/COD ratio - 0.28 0.31 0.30 

DOC - Dissolved organic carbon mg C L-1 659 254 354 

Biodegradability - Zahn-Wellens test % 64 89 81 

Absorbance at 254 nm - 4.255 0.954 2.003 

Colour 

DFZ436nm m-1 3.5 21.5 16.7 

DFZ525nm m-1 1.7 20.4 17.5 

DFZ620nm m-1 1.5 1.2 0.2 

Pt-Co Scale mg L-1 75 260 230 

Visible colour dilution 1:40 - not visible visible visible 

Chloride mg Cl- L-1 42 1900 1470 

Sulphate mg SO4
2- L-1 934 292 737 

Total Dissolved Nitrogen mg N L-1 11 9 10 

Nitrate mg N-NO3
- L-1 7 7 7 

Nitrite mg N-NO2
- L-1 4 2 3 

Ammonia mg N-NH4
+ L-1 <0.5 <0.5 <0.5 

Phosphate mg P-PO4
3- L-1 6 <0.5 <0.5 

Sodium mg Na+ L-1 1723 1998 1772 

Magnesium mg Mg2+ L-1 21 16 17 

Calcium mg Ca2+ L-1 150 73 91 

Total suspended solids mg TSS L-1 38 141 98 

Volatile suspended solids mg VSS L-1 36 103 83 
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Figure 2.6. UV-Vis absorption spectra of ( ) polyester-dyeing, ( ) cotton-dyeing and ( ) polyester-cotton 

dyeing textile wastewater. 

2.3.2 Real textile wastewaters 

Two different real textile-dyeing wastewaters were also used in this work. The first one, cotton-textile 

dyeing wastewater, was collected in a textile company located at the north of Portugal, before being 

subjected to any form of treatment. The wastewater selected is exclusively originating from the dyeing 

process of cotton fibres. The wastewater presents a lilac colour, resulting from the mixture of different 

reactive dyes, originating a maximum absorbance peak at 641 nm (Figure 2.7). The wastewater presents 

a relatively high pH value and temperature, and a moderate organic load (COD = 684 mg O2 L
-1 and 

DOC = 152 mg C L-1). High values were found for total dissolved nitrogen and ammonia, 117 mg L-1 

and 79 mg L-1, respectively. 

According to the Zahn-Wellens test, the wastewater presents a moderate biodegradability, mainly 

attributed to: i) presence of the textile biodegradable auxiliaries (e.g. acetic acid and others) used on 

cotton dyeing process and, ii) some organic compounds leached from the cotton fibres during the 

chemical washing (scouring process), which removes natural wax and non-fibrous impurities (e.g. the 

remains of seed fragments) from the fibres and any added soiling or dirt. 
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Figure 2.7. UV-Vis absorption spectra of ( ) cotton-dyeing textile wastewater and ( ) bio-treated textile 

wastewater. 

Another textile wastewater sample was collected after the biological oxidation and filtration steps in a 

wastewater treatment plant (WWTP), located in northern Portugal. The raw wastewater that enters in 

the WWTP has two main sources: 70% textile wastewater and 30% domestic sewage. Before being 

discharged to the sewerage system and further diluted with the urban wastewaters, still in the textile 

facilities, the textile wastewater goes through a neutralization procedure, normally with CO2 injection. 

The WWTP comprises the following treatment units: (i) equalization tanks; (ii) activated sludge reactors; 

(iii) sedimentation tanks; (iv) filtration columns and (v) ozonation system. Samples were collected at the 

outlet of filtration columns. 

The bio-treated textile wastewater presents a near neutral pH value, a low organic load 

(COD = 107 mg O2 L
-1 and DOC = 32 mg C L-1). High values were found for chloride and sodium ions, 

613 mg Cl- L-1 and 659 mg Na+ L-1, respectively. The wastewater shows a reddish colour, equivalent to 

160 mg Pt-Co L-1. Furthermore, it was observed a major absorbance on DFZ436nm than DFZ525nm and 

DFZ620nm, which indicates high predominance of violet colour and weak presence of green and orange 

colours on the wastewater absorption spectra (Figure 2.7). Table 2.7 presents the main physicochemical 

characteristics for both real textile-dyeing wastewaters. 
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Table 2.7. Main physicochemical characteristics of real textile-dyeing wastewaters. 

Parameters Units Cotton dyeing WWTP 

pH Sorensen scale 8.2 7.8 

Temperature ºC 32.5 30.0 

Conductivity mS cm-1 4.3 6.9 

COD - Chemical oxygen demand mg O2 L-1 684 107 

BOD5 - Biochemical oxygen demand mg O2 L-1 255 - 

BOD5 /COD ratio - 0.37 - 

DOC – Dissolved organic carbon mg C L-1 152 32 

Biodegradability - Zahn-Wellens test % 40 - 

Absorbance at 254 nm - 2.459 0.841 

Colour 

DFZ436nm m-1 34.1 14.5 

DFZ525nm m-1 34.5 11.4 

DFZ620nm m-1 41.3 4.5 

Pt-Co Scale mg L-1 500 160 

Visual colour dilution 1:20 - - visible 

Visual colour dilution 1:40 - visible - 

Chloride mg Cl- L-1 105 613 

Sulphate mg SO4
2- L-1 35 121 

Total Dissolved Nitrogen mg N L-1 117 13 

Nitrate mg N-NO3
- L-1 <0.2 9.4 

Nitrite mg N-NO2
- L-1 5.3 2.7 

Ammonia mg N-NH4
+ L-1 79 0.8 

Phosphate mg P-PO4
3- L-1 6.7 <0.05 

Sodium mg Na+ L-1 495 659 

Potassium mg K+ L-1 42 <0.05 

Magnesium mg Mg2+ L-1 11 27 

Calcium mg Ca2+ L-1 20 61 

Total suspended solids mg TSS L-1 193 9.6 

Volatile suspended solids mg VSS L-1 171 6.0 

2.4 Experimental units 

The experiments were carried out in four different experimental units: i) a lab-scale sunlight simulator 

photoreactor; ii) a lab-scale lamp photoreactor; iii) a CPC solar pilot plant and iv) a lab-scale biological 

reactor. All experimental units have been installed at the Chemical Engineering Department of the 

Faculty of Engineering, University of Porto (FEUP), Portugal. The detailed description of all reactors 

and the corresponding experimental procedures can be seen below. 

2.4.1 Lab-scale sunlight simulator photoreactor 

The lab-scale sunlight simulator photoreactor (Figure 2.8) incorporates the following systems: i) a solar 

radiation simulator (ATLAS, model SUNTEST XLS) with 1100 cm2 of exposition area, a 1700 Watt 
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air-cooled xenon arc lamp, a daylight filter and quartz filter with IR coating; ii) a compound parabolic 

collector (CPC) with 0.026 m2 of illuminated area with anodized aluminum reflectors and a borosilicate 

tube (Schott-Duran type 3.3, Germany, cut-off at 280 nm, internal diameter 46.4 mm, length 161 mm 

and thickness 1.8 mm); iii) one glass vessel (capacity of 1.5 L) with a cooling jacket coupled to a 

refrigerated thermostatic bath (Lab. Companion, model RW-0525G) to ensure a constant temperature 

during the experiment; iv) a magnetic stirrer (Velp Scientifica, model ARE) to ensure complete 

homogenization of the solution inside the glass vessel; v) one gear pump (Ismatec, model BVP-Z) to 

recirculate the water between the CPC and the glass vessel; vi) pH and temperature meter (VWR 

symphony - SB90M5). All the systems are connected by Teflon tubing. 

 

 

 
Figure 2.8. Schematic representation of the experimental set-up and views of the lab-scale sunlight simulator 

photoreactor. 

For the set of experiments described in Chapters 3 and 4, the UV irradiance was measured by a 

broadband UV radiometer (Kipp & Zonen B.V., model CUV5), which was placed inside the sunlight 

simulator at the same level as that of the photoreactor center. The radiometer was plugged into a 

handheld display unit (Kipp & Zonen B.V., model Meteon) to record the incident irradiance (WUV m-2) 

in the wavelength range from 280 to 400 nm. The amount of accumulated UV energy (QUV,n kJ L-1) 

received on any surface in the same position with regard to the sun, per unit of volume of water inside 

the reactor, in the time interval Δt is calculated using the Eq. (2.6): 
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where tn is the time corresponding to n-water sample (s), Vt the total reactor volume (L), Ar the 

illuminated collector surface area (m2) and n,GUV  the average solar ultraviolet radiation (W m-2) 

measured during the period Δtn (s). 

For the set of experiments described in Chapter 5 and 6, the UV radiance was determined by potassium 

ferrioxalate actinometry [12], considering that the radiation source used in the lab-scale sunlight 

simulator photoreactor is positioned in the external side. The radiation intensity was always set at 

500 W m−2, and the photonic flux reaching the reaction volume was 1.81 JUV s-1. The amount of 

accumulated UV energy (QUV,n, in kJ L-1) inside the reactor in a time per unit of volume of solution was 

calculated from Eq. (2.7): 
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  (2.7) 

where pf is the photonic flux reaching the system (JUV s-1), tn is the time corresponding to the n sample 

(s), Vt is the solution volume (L) and 1000 is a conversion factor (J kJ-1). 

2.4.2 Lab-scale lamp photoreactor 

The experiments regarding the use of UVC or UVA radiation were carried out in a lab-scale lamp 

photoreactor (Figure 2.9), consisting of: i) a gear pump (Ismatec, model BVP-Z); ii) a cylindrical glass 

vessel equipped with a cooling jacket coupled to a refrigerated thermostatic bath (Lab. Companion, 

model RW-0525G); iii) a magnetic stirrer (Velp Scientifica, model ARE); iv) a pH and temperature 

meter (VWR symphony - SB90M5); v) a borosilicate tube (Schott-Duran type 3.3, Germany, cut-off at 

280 nm, internal diameter 70 mm, length 200 mm and thickness 1.8 mm) associated to a concentric inner 

quartz tube with 22 mm external diameter filled with a) a Philips TL 6W/08 fluorescent blacklight blue 

lamp (photonic flux = 0.65 JUV s
-1); b) a Philips G6T5 6W UVC Germicidal Sterilamp (photonic flux = 

0.65 JUV s
-1); c) a Philips G5T5 4W UVC Germicidal Steriamp (photonic flux = 0.51 JUV s

-1); d) a Philips 

G5 11W UVC Germicidal Steriamp (photonic flux = 1.22 JUV s
-1). 
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Figure 2.9. Views of the lab-scale lamp photoreactor and the schematic representation of the experimental set-

up. 

 

Two polypropylene caps with four equidistant inlets and outlets ensured a better distribution of the feed 

stream throughout the photoreactor. The borosilicate tube was allocated in the focus of two stainless 

steel reflectors (double CPC), each one consisting of two truncated parabolas and exhibiting a total 

dimension of 19.5 cm × 21.0 cm, one at the bottom and another at the top, allowing illumination along 

the total tubular reactor perimeter and minimizing radiation losses. For the lab-scale lamp photoreactor, 

the radiation source is located inside the tubular reactor, provided by an UVC or UVA lamp. In this case 

the incident light flux was determined by hydrogen peroxide [11] (UVC lamps) and 2-nitrobenzaldehyde 

[21] (UVA lamp) actinometry methods. The amount of accumulated UV energy inside the reactor was 

calculated from Eq. (2.7). 
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2.4.3 CPC solar pilot plant 

The solar driven AOPs experiments were carried out in a CPC solar pilot plant installed at the roof of 

the Chemical Engineering Department of the Faculty of Engineering, University of Porto (FEUP), 

Portugal (Figure 2.10 and Figure 2.11). The solar collector consists of a CPC unit (0.91 m2) of four 

borosilicate (Duran) tubes (Schott–Duran type 3.3, Germany, cut-off at 280 nm, internal diameter 

50 mm, length 1500 mm and width 1.8 mm) connected in series by polypropylene junctions, with their 

CPC mirrors in anodized aluminum, supported by a aluminum structure, oriented to south and tilted 41° 

(local latitude). 
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Figure 2.10. Schematic representation of the CPC solar pilot plant. 
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any surface in the same position with regard to the sun, per unit of volume of water inside the reactor, 

in the time interval Δt is calculated using the Eq. (2.6). 

  

Figure 2.11. Views of the CPC solar pilot plant. 

 

2.4.4 Lab-scale biological reactor 

The experimental set-up (Figure 2.12) used to carry out the biological experiments consists in: i) a 

cylindrical glass vessel (capacity of 3.0 L) equipped with a cooling jacket coupled to a refrigerated 

thermostatic bath (Lab. Companion, model RW-0525G); ii) a mechanical stirrer (VWR, VOS 14 

overhead stirrer); iii) pH and temperature meter (VWR symphony - SB90M5); iv) an air pump to supply 

oxygen to the activate sludge, through air diffusers located on the bottom of the reactor. 

 
Figure 2.12. Schematic representation of the lab-scale biological reactor. 
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2.5 Experimental procedure 

The experimental procedure varied according to the employed photocatalytic processes and 

experimental units. Therefore, the detailed description of the experimental procedures was separated 

according to the employed processes for each experimental unit. The range of operational conditions 

also can be seen here. However, each chapter presents the detailed operational conditions applied to each 

set of experiments. 

2.5.1 Lab-scale sunlight simulator photoreactor 

The lab-scale sunlight simulator photoreactor was used in the sets of experiments presented in Chapters 

3, 4, 5 and 6.  In this experimental unit, three experimental procedures were performed, namely: 

i) Fenton´s reaction, ii) UVA-Vis/Fe2+/H2O2 and, iii) UVA-Vis/Fe3+/H2O2/Organic ligands. 

i) Fenton´s Reaction 

The temperature set-point of the refrigerated thermostatic bath was controlled to keep the desired 

wastewater temperature (30ºC). The recirculation glass vessel was filled with 1.0 L of wastewater, which 

was pumped to the CPC unit and homogenized by recirculation in the closed system during 15 min. pH 

was adjusted to 2.8 using sulphuric acid and another sample was taken 15 min later to confirm the desired 

value. Afterwards, ferrous sulphate was added to obtain the desired iron concentration (60 mg L-1), and 

another sample was taken after 15 min for iron concentration control. 

Finally, H2O2 was added (500 mg L-1/14.7 mM), and its concentration was maintained between 200 and 

500 mg L-1 (5.9-14.7 mM), during the entire runs, through the addition of small amounts of hydrogen 

peroxide to compensate the consumption. Samples were taken at successive time intervals to evaluate 

the progress of the Fenton´s reaction and different analytical determinations were performed. 

ii) UVA-Vis/Fe2+/H2O2  

In the photo-Fenton reactions, the recirculation glass vessel was filled with 1.0-1.5 L of wastewater, 

which was pumped to the CPC unit and homogenized by recirculation in the closed system. The 

temperature set-point of the refrigerated thermostatic bath was controlled to keep the desired wastewater 

temperature (between 10-50ºC). pH was adjusted using sulphuric acid (between 2.4-5.5) and another 

sample was taken 15 min later. Afterwards, ferrous sulphate was added to obtain the desired iron 

concentration (between 2-100 mg L-1), and another sample was taken after 15 min for iron concentration 
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control. The SUNTEST was turned on and the first dose of hydrogen peroxide was added (between 24-

500 mg L-1/0.7-14.7 mM). The H2O2 concentration was maintained within the desired range along the 

reactions course (between 50-100 mg L-1/1.5-2.9 mM, 100-200 mg L-1/2.9-5.9 mM and 200-500 mg L-

1/5.9-14.7 mM), by replenishing the consumed amount. In some reactions, only one dose of H2O2 was 

added at the beginning and no more additions were performed. Samples were taken at pre-defined times 

to evaluate the degradation process. 

iii) UVA-Vis/Fe3+/H2O2/Organic ligand 

A similar procedure was followed in the UV/Fe3+/H2O2/Organic ligand reactions. The temperature set-

point of the refrigerated thermostatic bath was controlled to keep the desired wastewater temperature 

(between 20-40ºC). The recirculation glass vessel was filled with 1.0-1.5 L of wastewater, which was 

pumped to the CPC unit and homogenized by recirculation in the closed system during 15 min in the 

darkness. Oxalic acid, citrate acid or EDDS was added at iron/organic ligand molar ratios of 1:3; 1:1 and 

1:1, respectively, and another sample was taken 15 min later. Additional assays were carried out using 

different iron/oxalate molar ratios (between 1:3-1:10). pH was adjusted using sulphuric acid (between 

2.8-5.5) and another sample was taken 15 min later. 

Afterwards, ferrous sulphate was added to obtain the desired iron concentration (between 2-80 mg L-1), 

and another sample was taken after 15 min for iron concentration control. The SUNTEST was turned on 

and, the first dose of hydrogen peroxide was added (between 71-2,319 mg L-1/2.1-68.2 mM). The H2O2 

concentration was maintained within intervals 50-100, 100-200 or 200-500 mg L-1 (1.5-2.9, 2.9-5.9 or 

5.9-14.7 mM) along the reaction course, by replenishing the consumed amount. Samples were taken at 

pre-defined times to evaluate the degradation process. 

2.5.2 Lab-scale lamp photoreactor 

The lab-scale lamp photoreactor was used in the sets of experiments presented in Chapters 5 and 6.  In 

this experimental unit, four experimental procedures were performed, namely: i) UVC photolysis, 

ii) H2O2, iii) UVC/H2O2 and iv) UVC or UVA/Fe2+/H2O2. 

i) UVC photolysis 

In the UVC photolysis, the set-point of the refrigerated thermostatic bath was controlled to keep the 

desired wastewater temperature (30ºC) and the recirculation glass vessel was filled with 1.5 L of 

wastewater. pH was adjusted using sulphuric acid (2.8 and natural wastewater pH) and a sample was 
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taken 15 min later. The UVC lamp was turned on and samples were taken at pre-defined times to evaluate 

the degradation process. 

ii) H2O2  

The recirculation glass vessel was filled with 1.5 L of wastewater, which was pumped to CPC unit and 

homogenized by recirculation in the closed system. The set-point of the refrigerated thermostatic bath 

was controlled to keep the desired wastewater temperature (30ºC). pH was adjusted using sulphuric acid 

(2.8 and natural wastewater pH) and another sample was taken 15 min later. Then, only one dose of 

hydrogen peroxide was added (between 235-1,768 mg L-1/6.9-52 mM). Samples were taken at pre-

defined times to evaluate the decolourisation process. 

iii) UVC/H2O2 

In the UVC/H2O2 reactions, the recirculation glass vessel was filled with 1.5 L, which was pumped to 

the CPC unit and homogenized by recirculation in the closed system. The set-point of the refrigerated 

thermostatic bath was controlled to keep the desired wastewater temperature (between 15-45ºC). pH was 

adjusted using sulphuric acid (2.8; 5.0; 11.0 and natural wastewater pH) and another sample was taken 

15 min later. The UVC lamp was turned on and, the first dose of hydrogen peroxide was added (between 

24-340 mg L-1/0.7-10 mM) and if necessary, other doses were added. Samples were taken at pre-defined 

times to evaluate the decolourisation process. 

iv) UVC or UVA/Fe2+/H2O2  

In the UVC or UVA/Fe2+/H2O2 reactions, a similar procedure was followed. The recirculation glass 

vessel was filled with 1.5 L, which was pumped to the CPC unit and homogenized by recirculation in 

the closed system. The set-point of the refrigerated thermostatic bath was controlled to keep the desired 

wastewater temperature (between 15-45ºC). pH was adjusted using sulphuric acid (pH 2.8) and a sample 

was taken 15 min later, and then ferrous sulphate was added to obtain the desired iron concentration 

(between 0.5-2.0 mg L-1). After that, another sample was taken 15 min later. The lamp was turned on 

and, the first dose of hydrogen peroxide was added (between 24-340 mg L-1/0.7-10 mM) and if 

necessary, other doses were added. Samples were taken at pre-defined times to evaluate the 

decolourisation process. 
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2.5.3 CPC solar pilot plant 

The CPC solar pilot plant was used in the set of experiment presented in Chapters 3 and 4.  In this 

experimental unit, five experimental procedures were performed, namely: i) UVA-Vis photolysis, 

ii) UVA-Vis/H2O2, iii) UVA-Vis/Fe2+/H2O2, iv) UVA-Vis/Fe2+/H2O2/Oxalic acid and, v) UVA-

Vis/TiO2. 

i) UVA-Vis photolysis 

A volume of 15 L of wastewater was added to the recirculation tank of the CPC units and homogenized 

by turbulent recirculation, during 15 min in darkness (a first control sample was taken for further 

characterization). Preliminary acidification of the textile wastewater to approximately pH 4.5 was 

performed, in order to eliminate the carbonates and bicarbonates, just before uncovering the CPCs. 

Samples were taken at successive time intervals to evaluate the progress of the oxidation. 

ii) UVA-Vis/H2O2  

A volume of 15 L of wastewater was added to the recirculation tank of the CPC units and homogenized 

by turbulent recirculation, during 15 min in darkness, and a control sample was taken. Preliminary 

acidification of the textile wastewater to approximately 4.5 was performed. The first dose of hydrogen 

peroxide (500 mg L-1/14.7 mM) was added. The CPCs were uncovered and samples were taken at 

different time intervals to evaluate the degradation process. Hydrogen peroxide concentration was 

maintained between 200 and 500 mg L-1 (5.9-14.7 mM), during the entire runs, through the addition of 

small amounts of hydrogen peroxide to compensate the consumption. 

iii) UVA-Vis/Fe2+/H2O2 

A volume of 15 L of wastewater was added to the recirculation tank of the CPC units and homogenized 

by turbulent recirculation, during 15 min in darkness (a first control sample was taken). pH was adjusted 

to 2.8 with sulfuric acid and another sample was taken 15 min later. Afterwards, iron salt (60 mg L-1) 

was added, the mixture was well homogenized for 15 min and a sample was taken for iron concentration 

control. Finally, the first dose of hydrogen peroxide (500 mg L-1/14.7 mM) was added, the CPCs were 

uncovered and samples were taken at different time intervals to evaluate the degradation process. 

Hydrogen peroxide concentration was maintained between 200 and 500 mg L-1 (5.9-14.7 mM), through 

the addition of small amounts of hydrogen peroxide to compensate the consumption. 
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iv) UVA-Vis/Fe3+/H2O2/Oxalic acid  

22 L of wastewater was added to the recirculation tank, which was pumped to the CPC unit and 

homogenized by recirculation in the closed system during 15 min in the darkness (a first control sample 

was taken for further characterization). Afterwards, oxalic acid (iron/oxalate molar ratio of 1:3) and 

ferric chloride (40 mg L-1) were added. After 15 min another sample was taken for iron and oxalic 

concentrations control. Finally, H2O2 was added (200 mg L-1/5.9 mM), the CPCs were uncovered and 

the reaction started. 

Hydrogen peroxide concentration was maintained between 100 and 200 mg L-1 (2.9-5.9 mM), during 

the entire runs, through the addition of small amounts of hydrogen peroxide to compensate the 

consumption. In all cases, samples were taken at successive time intervals to evaluate the progress of 

the photo-Fenton reaction and different analytical determinations were performed. 

v) UVA-Vis/TiO2 and UVA-Vis/TiO2/H2O2  

A volume of 15 L of wastewater was added to the recirculation tank of the CPC units and homogenized 

by turbulent recirculation, during 15 min in darkness (a first control sample was taken). pH was adjusted 

to 4.5 with sulfuric acid and another sample was taken 15 min later. After taking the sample, titanium 

dioxide was added up to a concentration of 200 mg L-1 and the mixture recirculated for more than 15 min. 

For UVA-Vis/TiO2 tests, a sample was collected just before uncovering the CPC units, in order to 

evaluate the pollutants adsorption onto the catalyst surface. 

In the case of UVA-Vis/TiO2/H2O2 experiments, a sample was as well collected and hydrogen peroxide 

(500 mg L-1/14.7 mM) was added to the mixture TiO2/wastewater, just before uncovering the CPCs. 

Hydrogen peroxide concentration was maintained between 200 and 500 mg L-1 (5.9-14.7 mM), during 

the entire runs, through the addition of small amounts of hydrogen peroxide to compensate the 

consumption. In both tests, samples were taken at successive time intervals to evaluate the progress of 

the photocatalytic oxidation. 

2.5.4 Lab-scale biological reactor 

The lab-scale biological reactor was used in the sets of experiments presented in Chapters 5 and 6. In 

the first cycle, the reactor was inoculated with 200 mL of well-settled activated sludge from a municipal 

wastewater treatment plant and mineral nutrients were added (KH2PO4, K2HPO4, Na2HPO4, NH4Cl, 

CaCl2, MgSO4 and FeCl3). Then, a volume of 2 L of textile wastewater was added to the aerobic 
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biological system and agitated for 5 days for acclimation of the microorganisms. In subsequent cycles, 

the reactor was fed with 1.5 L of wastewater to compensate the amount of treated wastewater discharged. 

The set-point of the refrigerated thermostatic bath was controlled to keep the desired wastewater 

temperature (30ºC). The pH was maintained between 6.5 and 8.0 and the dissolved oxygen in a 2–

4 mg O2 L
−1 range. Samples were taken at successive time intervals to evaluate the progress of the 

biodegradation, until DOC values were constant, which happened, in average, approximately after 44 h 

(0.5 h feeding, 40 h reaction, 3 h sedimentation, 0.5 h discharge). 
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3 Insights into Real Cotton-Textile Dyeing 

Wastewater Treatment using Solar Advanced 

Oxidation Processes1 

Different advanced oxidation processes (AOPs) were 

applied to the treatment of a real cotton-textile dyeing 

wastewater as a pre-oxidation step to enhance the 

biodegradability of recalcitrant compounds, which can be 

further oxidized by a biological process. Tests were 

conducted on a lab-scale prototype using artificial solar 

radiation and at pilot scale with compound parabolic 

collectors using natural solar radiation. The efficiency of 

the photo-Fenton reaction was evaluated for different 

process variables such as iron concentration, pH, 

temperature and irradiance. 

                                                           
1This Chapter is based on the research article: “Soares, P., Silva, T.C.V., Manenti, D., Souza, S.A.G.U., 

Boaventura, R.R., and Vilar V.P., Insights into real cotton-textile dyeing wastewater treatment using 

solar advanced oxidation processes. Environmental Science and Pollution Research, 2014. 21(2): p. 

932-945.” 
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3.1 Introduction 

The Portuguese textile industry is an important economic pillar representing 21% of all exports from 

this country [1]. The textile industry is one of the largest consumers of water in the world, and 

consequently, one of the largest producers of wastewaters (until 300 L kg-1 material) [2]. Textile 

wastewaters resulting mainly from dyeing and finishing processes, present different dyes with a complex 

organic structure, surfactants, detergents and inorganic salts, which constitutes a risk for the environment 

and ecosystems when unloaded improperly in the environment [3]. During the last years, publications 

regarding textile wastewaters treatment rose continuously. Although biological treatments present 

competitive costs they are usually ineffective in degradation of complex organic dye molecules. 

Scientific community research interests have been focused in biological, membrane and advanced 

oxidation processes (AOPs) technologies for the treatment of textile wastewaters (Figure 1.3). Other 

processes, such as, coagulation/flocculation, activated carbon adsorption and membrane separation can 

only transfer the contaminants from one phase to another leaving the problem essentially unsolved [4]. 

Therefore, much attention has been paid to the development of wastewater treatment techniques that 

lead to the complete destruction of the dye molecules into CO2, H2O and mineral acids or transforming 

them into biodegradable compounds that can be easily eliminated by biological oxidation. In this context, 

advanced oxidation processes (AOPs) are recognized by their effectiveness in the treatment of 

recalcitrant wastewaters through the formation of highly reactive and non-selective hydroxyl radicals [5, 

6]. Several studies propose the use of AOPs for the treatment of textile wastewater: UVA-Vis/H2O2 [7]; 

UVA-Vis/TiO2 [8, 9]; UVA-Vis/TiO2/H2O2 [10]; Fe2+/H2O2 [5, 11, 12]; UVA-Vis/Fe2+/H2O2 [13]. 

However, the costs involved with the energy requirements and chemicals, especially when the goal is 

the complete mineralisation, are high and eventually make these technologies non-competitive [6]. An 

alternative is the use of solar radiation, as UV-Vis photon source [14] and applies the chemical oxidation 

as a pre-treatment to enhance the biodegradability through the degradation of the most persistent organic 

compounds [15, 16]. The photo-Fenton reaction was found to be the best solar driven AOP in the 

treatment of different recalcitrant wastewaters [17, 18], including real textile wastewaters, which is 

related to the higher light sensitivity up to 580 nm, corresponding to 35% of solar radiation spectrum. 

Therefore, this work compares the efficiency of different AOPs in the treatment of a real cotton-textile 

dyeing wastewater at pilot scale under natural sunlight and evaluates the influence of the main photo-

Fenton reaction variables, such as iron concentration, pH, temperature and irradiance, in a lab-scale 

prototype under controlled conditions using artificial solar radiation. 
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3.2 Material and Methods 

All the chemicals and reagents used in this work, the detailed description of the lab-scale and pilot-plant 

scale experimental units, along with the corresponding experimental procedures followed, and, finally, 

the employed methods can be consulted in Chapter 2. The detailed operational conditions of the assays 

performed in this chapter are shown in Table 3.1. 

Table 3.1. Operational conditions of the assays performed. 

Experiments I TDI T pH 

N
a

tu
ra

l 

su
n

li
g

h
t 

UVA-Vis 19.0a - 17.7c 4.51d 

UVA-Vis/H2O2 25.0a - 25.2c 4.47d 

UVA-Vis/TiO2 17.0a - 25.8c 4.46d 

UVA-Vis/TiO2/H2O2 22.1a - 22.3c 4.45d 

UVA-Vis/Fe2+/H2O2 26.0a 47.1b 40.7c 2.80d 

A
rt

if
ic

ia
l 

su
n

li
g

h
t 

UVA-Vis/Fe2+/H2O2 44 

20 

30 2.8 

40 

60 

80 

100 

UVA-Vis/Fe2+/H2O2 44 60 30 

2.4 

2.8 

3.2 

3.6 

4.5 

UVA-Vis/Fe2+/H2O2 44 60 

10 

2.8 

20 

30 

40 

50 

UVA-Vis/Fe2+/H2O2 

22 

60 30 2.8 44 

68 
aAverage irradiation intensity (W m-2); bAverage total dissolved iron (mg L-1); cAverage liquid temperature (ºC); 

dAverage pH. 
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3.3 Results and discussion 

3.3.1 Cotton-textile dyeing wastewater characterization 

Table 2.7 (Materials and methods – Chapter 2) shows a brief characterization of the cotton-textile dyeing 

wastewater used in this study, which was collected in a textile company located at the north of Portugal, 

before being subjected to any form of treatment. The wastewater selected is exclusively originating from 

the dyeing process of cotton fibres. The wastewater presents a lilac colour, resulting from the mixture of 

different reactive dyes, originating a maximum absorbance peak at 641 nm. The wastewater presents a 

relatively high pH value (8.2) and temperature (32.5ºC), and a moderate organic load 

(COD = 684 mg O2 L
-1 and DOC = 152 mg C L-1). 

High values were found for total dissolved nitrogen and ammonia, 117 mg L-1 and 79 mg L-1, 

respectively. The concentration of chloride and sulphate ions is relatively small when compared with 

other textile wastewaters [19, 20]. According to the Zahn-Wellens test, the wastewater presents a 

moderate biodegradability, mainly attributed to presence of the textile biodegradable auxiliaries (e.g. 

acetic acid and others) used on cotton dyeing process. Besides, organic compounds leached from the 

cotton fibres during the chemical washing (scouring process) also can enhance the content of 

biodegradable organic matter in the wastewater. 

3.3.2 Solar Driven AOPs 

Preliminary treatment studies at CPC solar pilot plant (Figure 2.10, Materials and methods – Chapter 2) 

were performed in order to compare the efficiency of different advanced oxidation processes (UVA-Vis; 

UVA-Vis/TiO2; UVA-Vis/H2O2; UVA-Vis/TiO2/H2O2 and UVA-Vis/Fe2+/H2O2) under natural solar 

conditions. Figure 3.1 shows the mineralisation profiles for all the solar driven AOPs tested and Table 

3.1 presents the operational conditions. 
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Figure 3.1. Mineralisation of the cotton-textile dyeing wastewater: comparison between the different AOPs 

evaluated.  – UVA-Vis process;  – UVA-Vis/TiO2;  – UVA-Vis/H2O2;  - UVA-Vis/TiO2/H2O2;  – UVA-

Vis/Fe2+/H2O2. 

Preliminary acidification of the textile wastewater to approximately pH 4.5 was performed for all tests, 

with exception of photo-Fenton (pH = 2.8), in order to eliminate the carbonates and bicarbonates, which 

act as scavengers, leading to formation of less reactive species [21]. The acidification procedure to 

pH 4.5 or 2.8 (photo-Fenton reaction) resulted in a DOC abatement of approximately 13% and 23%, 

attributed to the formation of small amount of foam (which can retain a certain amount of organic matter) 

and precipitation of some organic compounds as observed by the sludge formation. 

Table 3.2 shows clearly that the solar photo-Fenton process is the most efficient of all solar AOPs 

studied, achieving 85.5% mineralisation after 5.8 kJUV L-1 and consuming 68.4 mM of H2O2. The initial 

reaction rate of the photo-Fenton reaction, considering a pseudo-first-order reaction kinetics, is more 

than 47 times higher than that of the UVA-Vis/TiO2/H2O2 system. Similar results have been also reported 

by Vilar et al., [19] for the treatment of a real textile wastewater. 
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Table 3.2. Operational conditions and pseudo-first-order kinetic constants of the assays performed. 

Experiments I TDI T pH 

Kinetic parameters 

DOC degradation H2O2 consumption 

ke R2 kH
f R2 

N
a

tu
ra

l 
su

n
li

g
h

t UVA-Vis 19.0a - 17.7c 4.51d 0.0010 ± 0.0001 0.995 - - 

UVA-Vis/H2O2 25.0a - 25.2c 4.47d 0.0050 ± 0.0004 0.999 0.20 ± 0.01 0.999 

UVA-Vis/TiO2 17.0a - 25.8c 4.46d 0.014 ± 0.002 0.993 - - 

UVA-Vis/TiO2/H2O2 22.1a - 22.3c 4.45d 0.020 ± 0.002 0.995 1.20 ± 0.08 0.994 

UVA-Vis/Fe2+/H2O2 26.0a 47.1b 40.7c 2.80d 1.0 ± 0.6 0.997 9 ± 2 0.984 

A
rt

if
ic

ia
l 

su
n

li
g

h
t 

UVA-Vis/Fe2+/H2O2 44 

20 

30 2.8 

0.081 ± 0.009 0.999 2.6 ± 0.3 0.997 

40 0.11 ± 0.02 0.997 3.9 ± 0.2 0.999 

60 0.26 ± 0.04 0.992 5 ± 1 0.983 

80 0.25 ± 0.05 0.991 7 ± 2 0.994 

100 0.30 ± 0.03 0.996 7 ± 3 0.979 

UVA-Vis/Fe2+/H2O2 44 60 30 

2.4 0.13 ± 0.01 0.994 5.1 ± 0.5 0.994 

2.8 0.26 ± 0.04 0.992 5 ± 1 0.983 

3.2 0.26 ± 0.04 0.997 6.6 ± 0.9 0.990 

3.6 0.24 ± 0.01 0.999 6.6 ± 0.8 0.996 

4.5 - - 2.1 ± 0.1 0.999 

UVA-Vis/Fe2+/H2O2 44 60 

10 

2.8 

0.029 ± 0.008 0.960 1.5 ± 0.1 0.994 

20 0.043 ± 0.007 0.988 3.8 ± 0.1 0.999 

30 0.26 ± 0.04 0.992 5 ± 1 0.983 

40 0.28 ± 0.02 0.999 7 ± 2 0.988 

50 0.49 ± 0.04 0.996 9 ± 2 0.980 

UVA-Vis/Fe2+/H2O2 

22 

60 30 2.8 

0.32 ± 0.06 0.990 7.9 ± 0.9 0.996 

44 0.26 ± 0.04 0.992 5 ± 1 0.983 

68 0.4 ± 0.2 0.999 6 ± 2 0.988 

aAverage irradiation intensity (W m-2); bAverage total dissolved iron (mg L-1); cAverage liquid temperature (ºC); 

dAverage pH; ePseudo-first-order kinetic constant (L kJ-1); fH2O2 consumption rate (mmol kJ-1);. 

3.3.3 Photo-Fenton reaction: Processes variables and their influence 

As the photo-Fenton reaction showed the highest efficiency in the treatment of the cotton-textile 

wastewater, considering all the AOPs applied, the influence of the main reaction variables, such as, iron 

concentration, pH, temperature and radiation intensity, was evaluated under controlled conditions in a 

lab-scale photoreactor with a sunlight simulator (Figure 2.8, Materials and methods – Chapter 2). Table 

3.2 presents the photo-Fenton reaction conditions used in all sets of experiments and pseudo-first-order 

kinetic constants. 
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3.3.3.1 Iron concentration 

Malato Rodrı́guez et al. [22] reported that the optimum iron concentration for the solar photo-Fenton 

reactions, using CPCs with borosilicate tubes with an internal diameter of 46.4 mm, is between 0.2 and 

0.5 mM (amount of iron necessary to absorb all the UV-Vis photons). However, if there are other light-

absorbing species present in solution, especially in coloured wastewaters, such as textile effluent (dyes 

presents an aromatic structure that absorbs UV and visible light), this decreases the number of photons 

that can be absorbed by the iron complexes, being necessary higher iron concentrations (above 1 mM) 

to achieve the desired reaction rates [23]. Therefore, the optimum iron concentration must be optimized 

for each particular application, aiming at cost reduction and reaction rate maximization. 

Figure 3.2 presents the textile wastewater mineralisation profiles for five different initial iron 

concentrations (TDI) (20, 40, 60, 80 and 100 mg Fe2+ L−1), at a constant temperature of approximately 

30ºC, similar to the real cotton-textile wastewater conditions, and pH 2.8. A similar DOC abatement 

(15%) was observed after pH adjustment to pH 2.8 due to the formation of foam and sludge (possible 

precipitation of some compounds at low pH).  

 
Figure 3.2. Textile wastewater treatment by photo-Fenton reaction at different concentrations of dissolved total 

iron, as well as the Fenton´s reaction. Photo-Fenton´s operation conditions: pH = 2.8; T = 30ºC; I = 44 W m-2; 

solid symbols – DOC; open symbols – H2O2 consumed; cross symbols – Total dissolved Iron (TDI).    - 

[Fe2+] = 20 mg L-1;    - [Fe2+] = 40 mg L-1;    - [Fe2+] = 60 mg L-1;    - [Fe2+] = 80 mg L-1;    - 

[Fe2+] = 100 mg L-1. Fenton´s operation conditions: pH = 2.8; T = 30 ºC; [Fe2+] = 60 mg L-1;   . 
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Afterwards, it can be observed a small induction period (up to 0.4 kJUV L−1), characterized by low 

mineralisation and low hydrogen peroxide consumption (which is more visible in the experiment with 

the lowest iron dose). However, decolourisation is very fast suggesting a fast breaking down of the dyes 

molecules. Fenton tests were performed (only data for 60 mg Fe2+ L-1), and it was observed the same 

mineralisation in the same period according to the amount of iron added, and afterwards the reaction 

almost stopped, achieving a constant DOC concentration. This suggests that after the first iron oxidation 

in the presence of hydrogen peroxide, the limiting step of the reaction is the availability of radiation for 

the regeneration of ferrous ions (reduction of Fe3+ to Fe2+)[24], as absorption of photons by other light 

absorbing species (inner filter effects), such as, dyes and its initial degradation molecules with aromatic 

structure, decreases the number of photons absorbed by the iron complexes. 

Normally the direct photolysis of dyes has a low quantum yield, and consequently originates a loss of 

the photons absorbed [25]. The higher the iron concentration the smaller is the induction period, being 

almost eliminated for the highest iron concentration tested, which means that a high catalyst 

concentration is needed to compete efficiently for the photons with the other absorbing species present 

in the dark solution. 

After this induction time, the mineralisation profile follows a pseudo-first-order kinetic model. Although 

the kinetic constants increase with iron concentration, the increment is very small for concentrations 

higher than 60 mg L-1, being necessary higher amounts of H2O2. After approximately 4 kJUV L-1, a very 

small mineralisation rate is observed, principally for iron concentrations above 60 mg L-1, indicating the 

formation of iron complexes with some low molecular weight carboxylic acids, which are very stable 

and are not photodecarboxylated (e.g., ferrioxalate and ferricitrate complexes are easily 

photodecarboxylated), being necessary high energy doses for their complete mineralisation. 

3.3.3.2 pH 

Different authors reported that the optimum pH value for the photo-Fenton reaction is 2.8 mainly due to 

the fact that the predominant iron species in solution is FeOH2+, which is the most photoactive ferric 

ion-water complex, but also because it avoids ferric hydroxide precipitation [26]. However, the need for 

acidification in the photo-Fenton process is often outlined as one of its major drawbacks, due to the 

additional cost associated to acidification and subsequent neutralization. Figure 3.3 presents the 

mineralisation of the textile wastewater at five different initial pHs values (2.4, 2.8, 3.2, 3.6 and 4.5) 

using the same initial iron concentration (60 mg L-1). 
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Figure 3.3. Textile wastewater treatment by photo-Fenton reaction at different pHs. Operation conditions:  

[Fe2+] = 60 mg L-1; I = 44 W m-2; T= 30ºC. Solid symbols – DOC; open symbols – H2O2 consumed; cross symbols 

– Total dissolved Iron (TDI); half-painted symbols - pHs.     – pH = 2.4;     - pH = 2.8;     - 

pH = 3.2;     - pH = 3.6;     - pH = 4.5. 

For an initial pH value of 4.5, after the first oxidation of ferrous ions to ferric ions caused by hydrogen 

peroxide, it is observed a fast decay of dissolved iron concentration for values lower than 5 mg L-1. The 

formation of the hydroxyl radicals during the first oxidation leads to a small initial oxidation and after 

that DOC remained approximately constant. The iron precipitation can be explained by theoretical 

speciation diagrams, which were made taking into account the importance of the type of iron complexes 

formed during the photo-Fenton reaction. The ferric speciation diagrams showed the formation of 

Fe(OH)3(s) and consequent iron precipitation at pHs higher than 3.5 (Table 3.3 and Figure 3.4). 

For the reaction at an initial pH value of 3.6, after the first oxidation of ferrous ions with H2O2, the 

dissolved iron concentration decreased to about 35 mg L-1 until 3.0 kJUV L-1, and then started to 

precipitate leading to dissolved iron concentrations below 5 mg L-1. The DOC abatement for the 

experiment at pH 3.2 is similar to that obtained at pH 3.6, although dissolved iron concentration 

remained near 50 mg L-1 during the entire run. These behaviours are not in concordance with the 

theoretical speciation diagrams shown in Figure 3.6, which demonstrated that large part of iron would 
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precipitate at these pHs under these assay conditions. However, it is important to take into account that 

the information provided by the speciation diagrams must be used carefully and cannot be taken for 

granted, since this type of wastewater is composed by many compounds and its degradation can originate 

much more, which can also affect the type of iron complex formed. With this in mind, the high iron 

concentration that remained in the reactions can be associated with the formation of stable iron 

complexes with some organic compounds that were not considered in the speciation diagrams 

construction, e.g. ferricarboxylate complexes. The observed iron precipitation during reaction at pH 3.6, 

after an accumulated UV energy of 3 kJUV L-1, can be associated with the photodecarboxylation of 

ferricarboxylates complexes formed and corroborates with explanation provided above. 

Table 3.3. Theoretical molar fraction of Fe3+ species, associated to pH value in different assays. 

pH 
Iron Species Percentage (%) 

Fe3+ FeOH2+ Fe(OH)2
+ FeSO4

+ Fe(SO4)2
- Fe(OH3)(S) 

2.4 6.7 2.7 1.6 79.8 9.2 0.0 

2.8 5.2 7.1 5.3 75.3 7.1 0.0 

3.2 0.0 3.5 3.3 13.1 1.4 78.8 

3.6 0.0 2.6 0.0 0.0 0.0 97.4 

4.5 0.0 0.0 0.0 0.0 0.0 100.0 

It is observed a faster kinetic rate for the experiment at an initial pH 2.8 than pH 2.4, although the amount 

of dissolved iron during the experiments was very similar. Considering the analysis of the Figure 3.3 

along with the data provided by speciation diagrams shown in the Table 3.3, for acid conditions pH 

range 2.4-2.8, it is possible to observe a directly proportional relation between the photo-Fenton reaction 

constant and the theoretical amount of FeOH2+ species (the most photoactive complex). This suggests 

that the photo-Fenton reaction efficiency is mostly affected by the concentration of FeOH2+ in solution, 

since this species is an additional source of hydroxyl radicals. Besides, it is worth mentioning that the 

concentration of H+ rises in acidic medium, which can also have negative effects on the reaction (see 

Figure 3.3), since it can react with H2O2 (Eq.(3.1)), yielding the peroxonium ion (H3O2
+), therefore 

decreasing substantially its reactivity with Fe2+ ions, and working as a scavenger of the  (Eq.(3.2)) 

[27, 28]. 

  2322 OHHOH  (3.1) 

OHeHOH 2   (3.2) 

OH
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Figure 3.4. Speciation diagrams for ferric complexes as a function of pH, for a solution containing Fe3+/SO4

2-/Cl- 

in the conditions of the experiments performed at temperature of 30ºC and at different pH values: (a) pH 2.4: 

Ionic strength = 0.06 M; [Fe3+] = 1.1 mM; [SO4
2-] = 18.1 mM; [Cl-] = 3.0 mM; (b) pH 2.8: Ionic strength = 0.05 M; 

[Fe3+] = 1.1 mM; [SO4
2-] = 14 mM; [Cl-] = 3.0 mM; (c) pH 3.2: Ionic strength = 0.05 M; [Fe3+] = 1.1 mM; [SO4

2-

] = 12.8 mM; [Cl-] = 3.0 mM; (d) pH 3.6: Ionic strength = 0.05 M; [Fe3+] = 1.1 mM; [SO4
2-] = 12.4 mM; [Cl-] = 

3.0 mM; (e) pH 4.5: Ionic strength = 0.04 M; [SO4
2-] = 11.6 mM; [Cl-] = 3.0 mM. 
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3.3.3.3 Influence of temperature  

Typical textile wastewaters present temperatures higher than 30ºC [29]. The oxygen solubility decreases 

with the increase of temperature, promoting algal growth, fish mortality and a decrease in water 

biodiversity. However, high temperatures (until 40-50ºC) favour the solar photo-Fenton reaction, which 

is an advantage when applied to the treatment of textile wastewaters [23]. 

Figure 3.5 shows the mineralisation of the textile wastewater at different temperatures (10°C, 20°C, 

30°C, 40°C and 50°C), using an iron concentration of 60 mg L-1 and a pH value of 2.8. For temperatures 

between 10ºC and 20ºC the kinetics rates were extremely low achieving a mineralisation efficiency of 

about 60% after 9 kJUV L-1. However, the consumption of H2O2 doubled when increasing the temperature 

from 10ºC to 20ºC (Table 3.2). 

 
Figure 3.5. Textile wastewater treatment by photo-Fenton reaction at different temperatures. Operation 

conditions: pH = 2.8; [Fe2+] = 60 mg L-1; I = 44 W m-2; solid symbols – DOC; open symbols – H2O2 consumed; 

cross symbols – temperature; half-painted symbols - Total dissolved Iron (TDI).      - T = 10 ºC;     

- T = 20 ºC;      - T = 30 ºC;      - T = 40 ºC;     -  - T = 50 ºC. 

As can be seen in the Figure 3.5, the increase of temperature improves the reaction rate, especially when 

is compared the reactions at 10ºC/20ºC with reaction at 30ºC. The molar fractions of the iron species 
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were calculated by the chemical equilibrium modelling system MINEQL+ [30] under the initial 

conditions in the presence of Fe3+, SO4
2- and Cl-. According to the theoretical iron speciation diagrams 

at different temperatures, the molar fraction of the FeOH2+ species increases with temperature (see 

Figure 3.6), achieving values of 4.5%, 6.3%, 7.1%, 8.3 and 9.5% respectively for the temperatures 

between 10ºC and 50ºC. Hence, the influence of temperature in photo-Fenton reactions at pH near 2.8 

can be associated with the presence of different amounts of photoactive species (FeOH2+) [31]. Besides, 

the increase of the reaction rate at high temperatures also can be related with the thermal reactions 

involved in the reduction of ferric ion, particularly Eqs. (3.3), (3.4) and (3.5), which use radiation of 

wavelengths higher than 500 nm. 

  HHOFeOHFe 2

2

22

3  (3.3) 

  HOFeHOFe 2

2

2

3  (3.4) 

2

2

2

3 OFeOFe    (3.5) 

However, the increase from 30ºC to 50°C did not affect so much the mineralisation, approximately 85% 

after 5 kJUV L-1, although the H2O2 consumption increased by a factor of 1.6 due to two mains factors: 

i) the inefficient H2O2 decomposition through the thermal reactions (Eqs. (3.3), (3.4) and (3.5)) involved 

in the Fe3+ reduction, with the formation of less reactive species, ii) the quicker thermal decomposition 

of H2O2 into H2O and O2 (inactive species), the rate of decomposition of hydrogen peroxide doubles 

every time the temperature rises by 10ºC. 

For the experiments at 40ºC/50ºC, the iron concentration decreased slightly to values below 50 mg L-1, 

indicating that some ferric-organic complexes with low solubility are formed. Iron speciation diagrams 

(Figure 3.6) clearly show the formation of Fe(OH)3(s) and consequent iron precipitation at lower pH 

values due to increase of reaction temperature. 
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Figure 3.6. Speciation diagrams for ferric complexes as a function of pH for a solution containing Fe3+/SO4

2-/Cl- 

at different temperatures: (a) T = 10ºC; (b) T = 20ºC; (c) T = 30ºC; (d) T = 40ºC; (e) T = 50ºC. Ionic 

strength = 0.05 M; [Fe3+] = 1.1 mM; [SO4
2-] = 14 mM; [Cl-] = 3.0 mM. 
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3.3.3.4 Influence of radiation intensity  

In northern Portugal, UV radiation power can achieve maximum values of around ~50 W m-2 between 

12:00 and 16:00 hours and an average daily intensity of ~20 W m-2 in spring and summer seasons. 

Considering the irradiation intensity variation during the day, location and season and, high radiation 

intensities are associated to higher temperatures, assays were performed at different radiation intensities: 

22, 44 and 68 WUV m-2, within the limits of the SUNTEST equipment (Figure 3.7). 

Kinetic profiles show a slight improvement in the mineralisation with the increase of radiation intensity 

in terms of accumulated energy, with similar hydrogen peroxide consumption (Table 3.2). This means 

that the reaction rate remains approximately constant within the range of radiation intensities studied, 

which proves that the photo-Fenton reaction can be used efficiently during all the year. Considering the 

reaction velocity as a function of time, higher radiation intensities allow the same mineralisation rates 

in less time, since more photons per unit of time are available for the production of hydroxyl radicals. 

 
Figure 3.7. Textile wastewater treatment by photo-Fenton reaction at different radiation intensities. Operation 

conditions:  [Fe2+] = 60 mg L-1; pH = 2.8; T= 30ºC. Solid symbols – DOC; open symbols – H2O2 consumed; cross 

symbols – TDI.     – I = 22 W m-2;     – I = 44 W m-2;     – I = 68 W m-2. 
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3.3.3.5 Biodegradability assays  

A Zahn–Wellens test was carried out to evaluate the wastewater biodegradability at different stages of 

the solar-photo-Fenton treatment, in order to determine the optimum phototreatment time for coupling 

with a biological process. To collect pre-treated samples for this test, the previous solar-photo-Fenton 

experiment at pilot scale under natural solar conditions was repeated (pH= 2.8; [Fe2+] =60 mg L-1), 

adding small amounts of hydrogen peroxide, and after total H2O2 consumption, a sample was taken for 

bioassays and another amount of H2O2 was added. This process was very important not only to prevent 

any reaction under dark conditions after sample collection but also to prevent the inhibition of 

microorganisms in bioassays due to the presence of residual H2O2. Besides the biodegradability test, 

some other analyses, such as COD, BOD5, total nitrogen and low-molecular-weight carboxylate anions 

were also performed for a more thorough analysis of each step of the photo treatment. 

The COD and DOC concentration decreased 63% and 67%, respectively, showing a strong oxidation of 

the organics, which is well correlated with the COS parameter as it increased from -2.8, indicating the 

presence of some reduced organic compounds, to +1.5 after 19.6 mM of H2O2 consumption, meaning 

strong mineralisation and generation of highly oxidized intermediates (Figure 3.8). Analysing the 

different process phases, more oxidized organic intermediates were formed at the beginning of the 

process, with substantial mineralisation, principally during the Fenton oxidation, which is corroborated 

by fast COD and DOC decrease until H2O2 consumption of 2.3 mM. To achieve almost complete 

decolourisation, 93% (Pt-Co method), 94% (DFZ436 nm); 95% (DFZ525 nm) and 93% (DFZ525 nm), it was 

necessary less than 8 mM of H2O2, following the same trend of the mineralisation process and in 

agreement with the kinetic tests conducted, both at lab and pilot scale photoreactors, showing that the 

photo-Fenton process is efficient in the decolourisation. 

Figure 3.8 shows also a fast increase of the DOC corresponding to low-molecular-weight carboxylate 

anions (LMWCA/DOC ratio) after the beginning of the photo-Fenton reaction, achieving maximum 

values of 20.5% (considering the LMWCA analysed) at 7.5 mM H2O2 consumed (sample 4) (6.6, 2.8 

and 1.5 mg C L-1 for propionate, malonate and oxalate respectively), followed by a fast decrease, since 

those acids correspond to the last oxidation products. 
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Figure 3.8. Solar-photo-Fenton treatment of the cotton-textile dyeing wastewater.  – COD;  – DOC;  – 

LMWCA/DOC ratio;  – COS;  - Pt-Co scale;  - DFZ436nm;  - DFZ525nm;  - DFZ620nm. 

According to the Zahn-Wellens test (Figure 3.9) the cotton-textile dyeing wastewater presents a 

moderate biodegradability of 40% related to the aspects reported above. The biodegradability remained 

approximately constant for the sample that suffered the acidification process until pH 2.8. 

However, it decreased by 32% for the sample after the addition of iron, which can be attributed to the 

sedimentation of some biodegradable compounds. This is associated with the precipitation of iron 

phosphate, which is in agreement with the decrease of phosphates concentration from 6.7 mg L-1 to 

values lower than the detection limit of the analytical method, and dissolved iron concentration reduction 

from 60.0 to 48.7 mg L-1. However, as expected, the biodegradability of the textile wastewater was 

enhanced during the photo-Fenton treatment, obtaining values of 38%, 40%, 48% and 58%, 

corresponding to 2.5, 7.5, 12.7 and 17.0 mM of H2O2 consumed (samples 3, 4, 5 and 6), respectively. 
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Figure 3.9. Zahn–Wellens test for selected samples during the solar-photo-Fenton treatment:  – S0, DOC = 151.2 

mg L-1;  – S1, DOC = 148.0 mg L-1;  – S2, DOC = 97.4 mg L-1;  – S3, DOC = 93.1 mg L-1;  – S4, DOC = 

62.9 mg L-1;  – S5, DOC = 56.9 mg L-1;  – S6, DOC = 50.1 mg L-1;  – reference, DOC = 107.6 mg L-1. 

Taking into consideration three main factors: a) higher LMWCA/DOC ratio; b) Zahn-Wellens results 

and c) UV energy and H2O2 savings; sample 4 can be considered the best point to stop the pre-oxidation 

process to achieve a COD < 250 mg O2 L
-1 (discharge limit into water bodies imposed by the Portuguese 

Legislation-Portaria nº423/97 of 25 June 1997) after the 28 days of the Zahn-Wellens test. 

Considering the combination of a photo-Fenton reaction with a biological oxidation process in order to 

reach a final COD below 250 mg O2 L-1, the energy dose required for the photo-Fenton reaction is 

0.5 kJUV L-1 (T  = 30.7 ºC; pH  = 2.80; n,GUV = 13 W m-2) consuming 7.5 mM of hydrogen peroxide 

(added in excess), as calculated from the kinetic studies performed at pilot plant under natural solar 

radiation, and leading to 58.4% mineralisation (DOCf = 62.9 mg C L-1). Throughout the treatment, the 

total nitrogen concentration remained approximately constant (113-117 mg N L-1). Nitrite concentration 

decreased from 5.3 to 1.9 N-NO2
- L-1 principally after the acidification process, although no nitrates 

were detected. On the other hand, ammonia increased from 79 to 91 mg N-NH4
+ L-1 mainly due to the 

oxidation of the organic nitrogen. Sulphates increased from 34 to 1600 mg L-1 as the result of the addition 

of sulphuric acid for the acidification and iron sulphate. Chloride concentration remained at around 

108 mg Cl- L-1.
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3.4 Conclusions 

Cotton-textile dyeing wastewaters presents a moderate organic load and low to moderate 

biodegradability mainly due to the presence of a mixture of recalcitrant dyes used in the dyeing process, 

which must be removed before discharging into the water bodies. The solar-photo-Fenton treatment was 

the most efficient of all solar AOPs studied, enhancing the biodegradability of the effluent and making 

possible its combination with a biological oxidation process, being possible to achieve a wastewater with 

a COD below 250 mg O2 L
-1. The minimum iron concentration needed to compete efficiently for the 

photons with the other absorbing species in solution, leading to the highest reaction efficiency, is 

60 mg L-1. Although the better results with photo-Fenton reaction were obtained at pH 2.8, the efficiency 

remained approximately constant until pH of 3.6, decreasing the costs associated with acid and base 

consumption. The photo-Fenton efficiency increased greatly with the temperature, principally from 10 

to 30ºC, mainly due to increase of the molar fraction of the photoactive species (FeOH2+) as well as to 

the thermal reactions involved in the reduction of ferric ions, which use radiation of wavelengths higher 

than 500 nm. This condition is favourable, because the textile wastewater normally presents 

temperatures higher than 30ºC. The reaction rate remained approximately constant within the range of 

radiation intensities studied, which proves that the photo-Fenton reaction can be used efficiently during 

all the year or in regions with lower solar radiation intensities. Finally, considering the combination of 

a photo-Fenton reaction with a biological oxidation system for the treatment of the textile wastewater in 

order to reach a COD below 250 mg O2 L
-1, the energy dose required for the photo-Fenton reaction is 

0.5 kJUV L-1 (T = 30ºC; pH = 2.8) consuming 7.5 mM of hydrogen peroxide and leading to 58.4% 

mineralisation (DOCf = 62.9 mg C L-1). 
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4 Enhancement of a Solar Photo-Fenton Reaction 

with Ferric-Organic Ligands for the Treatment of 

Acrylic-Textile Dyeing Wastewater2 

This chapter reports on the enhancement of a solar photo-

Fenton reaction through the use of different ferric-organic 

ligands applied to the treatment of a simulated acrylic-

textile dyeing wastewater, as a pre-oxidation step to 

increase its biodegradability. The degradation efficiency by 

the photo-Fenton reaction of different textile dyeing 

auxiliary products used in the preparation of the synthetic 

wastewater was also individually assessed. Different design 

parameters such as iron concentration, pH, temperature, 

flow conditions, UV irradiance and H2O2 addition strategy 

and dose were evaluated. 

                                                           
2This Chapter is based on the research article: “Soares, P.A., Batalha, M., Souza, Selene M. A. Guelli 

U., Boaventura, Rui A. R., Vilar, Vítor J. P., Enhancement of a solar photo-Fenton reaction with ferric-

organic ligands for the treatment of acrylic-textile dyeing wastewater. Journal of Environmental 

Management, 2015. 152: p. 120-131.” 
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4.1 Introduction 

Textile industries are among the biggest users of water and complex chemicals, such as dyes, 

surfactants, soaps, fats, waxes, oils, solvents and salts. During textile processing stages, a high 

fraction of those organic and inorganic chemicals used is discharged into the wastewater stream, 

constituting a big environmental concern [1-3]. The dyeing process, perhaps the most studied step in 

textile processing, generates wastewaters with an intense colour, related to the mixture of different 

types of dyes and auxiliary products, such as organic acids, fixing agents, reducing agents, and 

diluents. The amount and composition of these wastewaters depend on various factors, including the 

processed fabrics, the process type and the chemicals used. 

Some of the dyes commonly used in industry are considered to be electron-deficient xenobiotic 

compounds. For example, the azo-dyes have the azo (N=N) electron-withdrawing group, generating 

electron deficiency in the molecule and making the compound less susceptible to oxidative catabolism 

by bacteria [4]. Other synthetic organic chemicals are used as additives in different stages of textile 

manufacturing, with a wide range of functions (e.g.: sequestering agents, stabilizers, colour fixers, 

dispersants, etc.). They comprise substances which are used as auxiliary products in textile 

production, and are categorized under the term ‘‘xenobiotic’’ due to their biological persistence, i.e. 

their recalcitrant and even toxic nature [5, 6]. The recalcitrant feature of the textile wastewaters 

requires advanced treatment technologies, such as advanced oxidation processes (AOPs). Successful 

applications of AOPs to dyes solutions and textile wastewaters have been reported in the literature 

[7-9]. However, little attention has been paid to the treatability of textile dyeing auxiliary products 

[10]. 

The photo-Fenton process is among the most applied AOPs in the treatment of industrial wastewaters 

[11]. The optimum pH for the photo-Fenton reaction is 2.8, not only because the predominant iron 

species in solution is FeOH2+, the most photoactive ferric ion-water complex, but also because iron 

precipitation is avoided. The major drawbacks of the photo-Fenton process when applied to the 

treatment of textile wastewaters are: i) the formation of stable complexes between ferric ions and 

organic constituents present in textile wastewaters, limiting the photoreduction of Fe3+, decreasing 

the decomposition of H2O2 in the Fenton reaction and the overall efficiency of the photo-Fenton 

process [12, 13]; ii) the high alkalinity of the wastewater due to the presence of carbonates and 

bicarbonates, requiring high quantities of acid for the acidification process, increasing the 

concentration of sulphates in solution (H2SO4 is the most commonly used acid); they form stable 
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complexes with ferric ions, such as FeSO4
+ and Fe(SO4)2

-, which are much less photoactive than 

FeOH2+, and also lead to the formation of less oxidant species SO4
•- when compared with HO• 

radicals; iii) high chloride content generates soluble complexes with iron, such as FeCl+, FeCl2+ and 

FeCl2
+, which are much less photoactive than FeOH2+ and also leads to the formation of less oxidant 

species as Cl•, Cl2
•- when compared with HO• radicals. The enhancement of the photo-Fenton reaction 

can be achieved through the use of ferricarboxylate complexes, such as ferrioxalate, ferricitrate and 

ferrimaleate [14-19], which i) have much higher quantum yields than ferric iron-water complexes; ii) 

can use a higher fraction of the solar radiation spectrum, up to 580 nm [19, 20]; iii) are 

photodecarboxylated under visible radiation; iv) provide a quicker pathway for Fe3+ regeneration 

accelerating thereby the process [12]; v) are more soluble than ferric iron-water complexes, allowing 

to work at neutral pH values, increasing the applicability of this process on an industrial scale, since 

costs and drawbacks of acidification and the subsequent neutralisation are eliminated; vi) are more 

stable and strong complexes than ferric iron-sulphates, iron-chloride or iron-organic ligands 

complexes. 

This chapter reports on treatment of a synthetic acrylic-textile dyeing wastewater using a photo-

Fenton process enhanced by ferric-organic ligands (oxalic acid, citrate acid and EDDS-

Ethylenediamine-N,N'-disuccinic acid), in a lab-scale prototype under controlled conditions, using 

artificial solar radiation and in a pilot scale under natural sunlight. The influence of the main 

ferrioxalate-solar-photo-Fenton reaction variables, such as iron concentration, pH, temperature, UV 

irradiance and H2O2 concentration and dosage strategy was investigated. The effect of hydrodynamics 

on the reactors performance was also assessed both in the dark and light parts of the system. The 

degradation efficiency by the photo-Fenton reaction of different textile dyeing auxiliary products used 

in the preparation of the synthetic wastewater was also individually assessed. For the first time, light 

intensity was correlated to the needs of iron in order to avoid the loss of photons. 
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4.2 Material and Methods 

The detailed operational conditions of the assays performed in this chapter are shown in Table 4.1 

(lab-scale sunlight simulator photoreactor) and in Table 4.2 (CPC solar pilot plant). All the chemicals 

and reagents used in this chapter, along with the corresponding experimental procedures followed, 

and, finally, the employed methods can be consulted in Chapter 2. 

Table 4.1. Operational conditions with artificial sunlight. 

System Ia TDIb Tc pH Range of H2O2
 

Fe2+/H2O2 - 
60.0 30.0 2.8 200 - 500 

UVA-Vis/Fe2+/H2O2 41.6 

UVA-Vis/Fe2+/H2O2
1 

41.6 40.0 30.0 2.8 200 - 500 

UVA-Vis/Fe2+/H2O2
2 

UVA-Vis/Fe2+/H2O2
3 

UVA-Vis/Fe2+/H2O2
4 

UVA-Vis/Fe2+/H2O2
5 

UVA-Vis/Fe3+/H2O2/Oxalic acid 

41.6 60.0 30.0 2.8 200 - 500 UVA-Vis/Fe3+/H2O2/EDDS 

UVA-Vis/Fe3+/H2O2/Citric acid 

UVA-Vis/Fe3+/H2O2/Oxalic acid 20.6 

40.0 

30.0 2.8 200-500 60.0 

80.0 

UVA-Vis/Fe3+/H2O2/Oxalic acid 41.6 

20.0 

30.0 2.8 200-500 
40.0 

60.0 

80.0 

UVA-Vis/Fe3+/H2O2/Oxalic acid 59.2 

40.0 

30.0 2.8 200-500 60.0 

80.0 

UVA-Vis/Fe3+/H2O2/Oxalic acid 41.6 40.0 

20.0 

2.8 200 - 500 30.0 

40.0 

UVA-Vis/Fe3+/H2O2/Oxalic acid 41.6 40.0 30.0 

2.8 

200 - 500 

3.5 

4.0 

4.5 

5.0 

UVA-Vis/Fe3+/H2O2/Oxalic acid 41.6 40.0 30.0 2.8 

50 – 100 

100 – 200 

200 – 500 

68.2d  

aIrradiation intensity (W m-2); bDissolved iron concentration (mg L-1); cLiquid temperature (ºC); d dosage at the 

reaction start. Treated matrix: 1dye; 2Sera®Sperse; 3Sera®Con; 4Sera®Lube; 5Sera®Tard. 
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Table 4.2. Operational conditions for solar driven photo-Fenton reactions. 

System Qa Vi
b Vi/Vt

c ti
d tdark

e Ref 

UVA-Vis/Fe3+/H2O2/oxalic acid1 

2 

5.1 0.23 

2.6 8.5 1027 
2g 2.6 8.5 1027 
9 0.6 1.9 4622 

20 0.3 0.9 10271 
35 0.2 0.5 17974 

a(L min-1); billuminated volume (L); cilluminated volume divided by the total volume; dillumination time (min); 

etime in the dark (min); fReynolds number; gmechanically stirred dark phase; 1Operation conditions: pH = 2.8; 

[Fe3+] = 40 mg L-1; iron/oxalate molar ratio of 1:3.
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4.3 Results and discussion 

4.3.1 Acrylic-textile dyeing wastewater characterization 

Table 2.3 (Materials and methods – Chapter 2) shows a brief characterisation of the synthetic acrylic-

textile dyeing wastewater used in this chapter. The wastewater presents a blue colour, which is mainly 

related to the dye colour, originating a maximum absorbance peak at 610 nm. The wastewater 

presents a neutral pH value, low alkalinity and moderated organic load, where more than 96.5% of 

DOC is related to the dyeing auxiliary products and 3.5% is due to the dye. The low BOD5/COD ratio 

indicates low biodegradability of this textile wastewater, which was confirmed by the Zahn-Wallens 

test. 

The low biodegradability of acrylic-textile dyeing wastewater is mainly associated with the presence 

of the dispersing agent Sera® Sperse M-IW and the surfactant auxiliary product Sera® Tard A-AS. 

The first is composed of polyglycol ethers used in acrylic yarn dyeing with cationic dyes. These 

chemicals are reported in the literature as highly water soluble, causing low turbidity, toxic, 

recalcitrant and are often referred to as xenobiotic [21-24]. The second is basically composed of alkyl 

dimethyl benzyl ammonium chloride, used as a retarder for dyeing acrylic fibers and in blends with 

cationic dyestuffs. This chemical compound, used in the textile industry, is also found in disinfectants 

and highly efficient cleaning products, cosmetics, food and in marine antifouling paints, personal care 

products, mainly because of its biocide characteristic [10, 24]. The biodegradability of these 

surfactants seems to increase with increasing water affinity and depends also on the length of alkyl 

chain, the number of ethoxylate groups and the total molecular weight [23]. 

A high concentration of formic acid was also detected in the textile wastewater, which was attributed 

to the textile auxiliary Sera® Con N-VS. Formic acid is highly biodegradable and represents 21% of 

the biodegradable organic fraction of the synthetic textile wastewater. The constituents of the 

auxiliary Sera® Con N-VS, acid carboxylic esters, correspond to 27% of the total organic carbon, 

which is correlated to the biodegradability index. 

The wastewater presents also a high conductivity associated mainly to the high concentration of 

sulphates (593 mg SO4
2- L-1) and sodium (344 mg Na+ L-1) ions. Sulphate concentration corresponds 

to the amount of sodium sulphate added. On the other hand, sodium concentration is only 75% related 

with the sodium sulphate added and the remaining 25% must be originated from the other dyeing 
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auxiliary products. The wastewater presents total dissolved nitrogen of 20 mg N L-1 which is mainly 

derived from the two textile auxiliary products used, namely Sera®Lube M-CF, composed of 

polymeric amines, and Sera®Tard A-AS, a surfactant, mainly composed of alkyl dimethyl benzyl 

ammonium chloride. 

4.3.2 Fenton and Photo-Fenton reactions 

Figure 4.1 shows the textile wastewater mineralisation profiles using conventional Fenton and photo-

Fenton reactions, at pH = 2.8, T = 30ºC, [Fe2+] = 60 mg L-1 and irradiance of 41.6 WUV m-2 (only for 

the photo-Fenton reaction). Mineralisation was negligible using the Fenton reaction, which is in 

agreement with the low hydrogen peroxide consumption and a high decrease of dissolved iron 

concentration to values lower than 15 mg L-1. 

For the photo-Fenton reaction it is observed an induction reaction period (low mineralisation and low 

hydrogen peroxide consumption) of 6 kJUV L
-1 (100 min), mainly related to the formation of iron 

complexes with the dissolved organic matter (DOM) present in solution, decreasing substantially the 

photoreduction of Fe3+ (Eq. (4.1)), leading to a low H2O2 consumption. The reaction rate is very slow 

indicating that these iron complexes have a low photo-activity. 

*

1n

IIh

n

III DOM)DOM(Fe)DOM(Fe  

  (4.1) 

After this initial induction period, the reaction rate increases significantly, associated to the increase 

of dissolved iron concentration and consumption of H2O2, meaning that the iron-organic complexes 

initially formed were destroyed. Additional photo-Fenton reactions were carried using pure solutions 

of dye and dyeing auxiliary products, individually, in order to evaluate the influence of each organic 

constituent in the acrylic-textile wastewater treatment. 
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Figure 4.1. Evolution of the DOC concentration, H2O2 consumed and total dissolved iron during the Fenton 

and photo-Fenton reactions. Operation conditions: pH = 2.8; T = 30ºC; [Fe2+] = 60 mg L-1; I = 41.6 WUV m-2 

(only for the photo-Fenton). Solid symbols – DOC; open symbols – H2O2 consumed; cross symbols – total 

dissolved iron (TDI).    – UVA-Vis/Fe2+/H2O2;    - Fe2+/H2O2. 

Figure 4.2 shows a high decrease of dissolved iron for all the experiments performed with the dyeing 

auxiliary chemicals, which indicates that these compounds form stable complexes with iron, limiting 

the photo-Fenton reaction rate (Table 4.3). 

The iron-dyes complexes are less relevant, confirmed by the higher values of dissolved iron 

concentration, leading to mineralisation rates of the pure dye solution higher than that observed for 

the synthetic wastewater and for all dyeing auxiliary products. The reverse situation was reported by 

Arana et al. [2], considering the photocatalytic degradation of the commercial dye Lanaset Sun 

Yellow 180, in the presence and absence of different additives (citric acid, alkyl amine polyglycol 

ether sulphate, sodium sulphate, sodium acetate and a special detergent composed of water, iso-

propanol and a mixture of ethoxylates and sulphated aliphatic alcohols), where a high complexation 

between iron species and dye was observed. 
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Table 4.3. Operational conditions and pseudo-first-order kinetic constants with artificial sunlight. 

System Ia TDIb Tc pH Range of 

H2O2
 

Kinetic parameters 

DOC degradation H2O2 consumption 

kd R2 kH
e R2 

Fe2+/H2O2 - 
60.0 30.0 2.8 200 - 500 

0.005±0.001 0.889 0.19±0.02 0.940 

UVA-Vis/Fe2+/H2O2 41.6 0.05±0.02 0.900 3.0±0.7 0.799 

UVA-Vis/Fe2+/H2O2
1 

41.6 40.0 30.0 2.8 200 - 500 

0.5±0.1 0.926 2.8±0.4 0.969 

UVA-Vis/Fe2+/H2O2
2 0.05±0.02 0.882 1.1±0.2 0.913 

UVA-Vis/Fe2+/H2O2
3 0.45±0.04 0.981 3.8±0.3 0.980 

UVA-Vis/Fe2+/H2O2
4 0.4±0.1 0.912 3.1±0.3 0.960 

UVA-Vis/Fe2+/H2O2
5 0.19±0.02 0.970 3.1±0.6 0.907 

UVA-Vis/Fe3+/H2O2/Oxalic acid 

41.6 60.0 30.0 2.8 200 - 500 

0.34±0.02 0.994 9±1 0.940 

UVA-Vis/Fe3+/H2O2/EDDS 0.18±0.02 0.978 5.7±0.7 0.921 

UVA-Vis/Fe3+/H2O2/Citric acid 0.28±0.03 0.964 10±1 0.933 

UVA-Vis/Fe3+/H2O2/Oxalic acid 20.6 

40.0 

30.0 2.8 200-500 

0.26±0.01 0.968 7.8±0.9 0.989 

60.0 0.28±0.06 0.994 19±1 0.999 

80.0 0.49±0.05 0.994 21±2 0.996 

UVA-Vis/Fe3+/H2O2/Oxalic acid 41.6 

20.0 

30.0 2.8 200-500 

0.106±0.007 0.925 1.12±0.07 0.981 

40.0 0.27±0.03 0.964 6.5±0.3 0.993 

60.0 0.34±0.02 0.994 14±2 0.940 

80.0 0.61±0.02 0.997 23.2±0.2 0.999 

UVA-Vis/Fe3+/H2O2/Oxalic acid 59.2 

40.0 

30.0 2.8 200-500 

0.148±0.009 0.984 4.2±0.3 0.979 

60.0 0.35±0.04 0.957 11.3±0.7 0.980 

80.0 0.55±0.01 0.993 16±3 0.988 

UVA-Vis/Fe3+/H2O2/Oxalic acid 41.6 40.0 

20.0 

2.8 200 - 500 

0.106±0.009 0.941 2.3±0.1 0.992 

30.0 0.27±0.03 0.964 6.5±0.3 0.993 

40.0 0.29±0.02 0.987 11.6±0.5 0.995 

UVA-Vis/Fe3+/H2O2/Oxalic acid 41.6 40.0 30.0 

2.8 

200 - 500 

0.27±0.03 0.964 6.5±0.3 0.993 

3.5 0.24±0.02 0.991 9.0±0.4 0.991 

4.0 0.25±0.02 0.980 8.4±0.7 0.980 

4.5 0.28±0.04 0.961 7.5±0.4 0.993 

5.0 0.20±0.03 0.946 5.2±0.5 0.972 

UVA-Vis/Fe3+/H2O2/Oxalic acid 41.6 40.0 30.0 2.8 

50 – 100 0.12±0.01 0.953 2.2±0.1 0.990 

100 – 200 0.205±0.009 0.993 5.9±0.2 0.996 

200 – 500 0.27±0.03 0.964 6.5±0.2 0.993 

68.2f  0.156±0.009 0.978 5.6±0.6 0.962 

aIrradiation intensity (W m-2); bDissolved iron concentration (mg L-1); cLiquid temperature (ºC); dPseudo-first-order 

kinetic constant (L kJ-1); eH2O2 consumption rate (mmol kJ-1); f dosage at the reaction start. Treated matrix: 1dye; 

2Sera®Sperse; 3Sera®Con; 4Sera®Lube; 5Sera®Tard. 
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Figure 4.2. Mineralisation of individual solutions of dyeing auxiliary products and dye using a photo-Fenton 

reaction. Operation conditions: pH = 2.8; T = 30ºC; [Fe2+] = 40 mg L-1; I = 41.6 WUV m-2. Solid symbols - 

DOC; open symbols - H2O2 consumed; cross symbols - total dissolved iron (TDI).    – Dye;    – 

Sera Sperse M-IW;    – Sera Con N-VS;    – Sera Lube M-CF;    – Sera Tard A-AS. 

According to the obtained results, the dispersing agent Sera® Sperse M-IW, with a non-ionic nature, 

and the cationic surfactant Sera® Tard A-AS, are the main causes for the induction reaction period 

in the photo-Fenton reaction applied to the synthetic textile wastewater. This can be attributed to the 

chemical structure of these organic compounds as also to the iron-organic complexes, since the 

dissolved iron concentration decreased in average 85% and 40%, for the assay with Sera® Sperse M-

IW and Sera® Tard A-AS, respectively. 

Figure 4.2 also shows that after a certain reaction time the photo-Fenton reaction almost stops, which 

can be associated with two main factors: i) the formation of low-molecular-weight carboxylic acids 

and their respective complexes with ferric ions, which present low photoactivity and recalcitrant 

characteristic to further mineralisation by hydroxyl radical attack [25, 26] and ii) the low 

mineralisation rate of the dyeing auxiliary products which present a short-chain aliphatic structure 

(alcohols, carboxylic acids, etc.) [27, 28]. 
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4.3.3 Ferric-organic ligands complexes 

Different studies report the photochemistry/chemistry of ferric and ferrous complexes in the presence 

of oxalic acid [18, 19, 29, 30], citric acid [31-33] and EDDS [16, 17, 34]. Ferric ions form stable and 

strong complexes with oxalic acid (Eq. (4.2)), citric acid (Eq. (4.3)), and/or EDDS (Eq. (4.4)), 

avoiding the undesired interactions with other organic ligands and at same time providing a quicker 

pathway for ferric iron regeneration in the presence of UV-visible light. 

OxaFe)Oxa(Fe 2h3    (4.2) 

CitFe)Cit(Fe 2h3    (4.3) 

EDDSFe)EDDS(Fe 2h3    (4.4) 

The enhancement of the photo-Fenton reaction through the use of ferric-organic ligands complexes, 

such as ferrioxalate, ferricitrate and ferric-EDDS, was evaluated in the treatment of the synthetic 

acrylic-textile dyeing wastewater, in order to avoid the formation of low photoactive complexes 

between ferric ions and auxiliary dyeing products present in the wastewater. 

4.3.3.1 Oxalic Acid 

The most stable ferric-oxalate complex results from the binding of three oxalate ions with one ferric 

ion [20, 35] which corresponds to a stoichiometric iron/oxalate molar ratio of 1:3. For lower molar 

ratios, insufficient oxalate is available to form the complex, decreasing the quantum yield for ferrous 

production. On the other hand, an excess of oxalate cannot complex totally with ferric ions in solution, 

and oxalate can act as an additional organic carbon source, competing for hydroxyl radicals with the 

target pollutant, then decreasing the reaction rate. 

As expected, the addition of oxalic acid resulted in an increase of the dissolved organic carbon 

concentration (54 mg C L-1). The DOC profile (Figure 4.3), after the addition of hydrogen peroxide 

in the presence of solar light, shows a fast decay until an accumulated UV energy of ~3.7 kJUV L-1, 

following pseudo-first-order kinetics (k = 0.34 ± 0.02 L-1 kJ) (Table 4.3). 
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Figure 4.3. Mineralisation of the textile wastewater using a photo-Fenton reaction mediated by different ferric-

organic ligand complexes. Operation conditions: pH = 2.8; T = 30ºC; [Fe3+] = 60 mg L-1; I = 41.6 WUV m-2. 

Solid symbols – DOC; open symbols – H2O2 consumed; cross symbols – total dissolved iron (TDI).    – 

UVA-Vis/Fe3+/H2O2/EDDS;    – UVA-Vis/Fe3+/H2O2/EDDS (pH 6.8);    - UVA-

Vis/Fe3+/H2O2/CIT;    - UVA-Vis/Fe3+/H2O2/OXA;    - UVA-Vis/Fe3+/OXA. 

According to the ferric speciation diagram (Figure 4.4A), in the absence of oxalic acid, a molar 

fraction of only 15% for FeOH2+ species at pH 2.8 is obtained, against a molar fraction of 38% for 

FeSO4
+ species, which are less photoactive species when compared to FeOH2+, and also can lead to 

the formation of less oxidant species 

4SO  when compared to •OH radicals. However, in the presence 

of oxalic acid (iron/oxalic molar ratio of 1:3), for the same pH value (Figure 4.4C), the predominant 

species in solution are Fe(C2O4)2
- (50%) and Fe(C2O4)3

3- (49%), which allow fast mineralisation 

kinetics, as therefore reducing significantly the formation of ferric-dyeing auxiliary products, ferric-

sulphates and ferric-chloride complexes. Besides, ferrioxalate complexes are photodecarboxylated in 

the presence of UV-visible radiation (Eqs. (4.5)-(4.8)), enhancing the quantum yield for ferrous 

production and consequently the reaction rates [36]. 
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Figure 4.4. Speciation diagrams for ferric complexes as a function of pH for a solution containing: (A) 

Fe3+/SO4
2-/Cl-; (B) Fe3+/SO4

2-/Cl-/Citric acid; (C) Fe3+/SO4
2-/Cl-/Oxalic acid; (D) Fe3+/SO4

2-/Cl-/EDDS. Ionic 

strength=0.02 M; Temperature=30ºC; [Fe3+]=7.16×10-1 mM (40 mg Fe3+ L-1); [Citrate acid]=7.16×10-1 mM; 

[Oxalic acid]=2.15 mM; [EDDS]=7.16×10-1 mM; [SO4
2-]=6.17×10-3 mM; [Cl-]=1.16×10-3 mM. The formation 

of the solid iron phase Fe(OH)3 (s) was excluded in the calculation. 

Another interesting characteristic of the photo-Fenton reaction mediated by ferrioxalate complexes is 

the capacity of in situ generation of hydrogen peroxide, according to (Eqs. (4.9)-(4.12)). The 

photodecarboxylation of ferrioxalate complexes leads to the formation of carboxylate radical anion   
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( 

42OC ), which decomposes into carbon dioxide radical anion ( 

2CO ). Those radicals in the presence 

of oxygen form the oxygen and/or peroxide radicals and further reaction with ferrous ions promotes 

the formation of H2O2 [37]. 

  2222 OCOOCO  (4.9) 

  22 HOHO  (4.10) 

22

3

2

2 OHFeH2OFe    (4.11) 

22

3

2

2 OHFeHHOFe    (4.12) 

A photo-Fenton reaction mediated by ferrioxalate complexes without the addition of hydrogen 

peroxide was also performed and the results showed a low mineralisation, which can be associated 

with the insufficient in situ generation of H2O2 necessary to fuel the reaction. 

4.3.3.2 Citric Acid 

Although the effect of Fe(III) to citrate molar ratio on the photodegradation of different organic 

compounds has been discussed by several authors [32, 38, 39], the best iron-citrate molar ratio seems 

to be far from a consensus. However, 1:1 stoichiometry for the Fe(III) and citrate binding is 

recognized for the mononuclear complexes formation [32]. Considering the formation of 

mononuclear complexes and that the supplement of citrate consists in additional organic carbon 

source, 1:1 stoichiometry molar ratio of ferric-citrate was used. 

The dissolved iron concentration remained also constant along the reaction, indicating that the 

ferricitrate complexes are stronger than ferric-dyeing auxiliary products, allowing a quicker 

photoreduction of ferric ions, and consequently leading to an enhancement of the photo-Fenton 

process. Although the addition of citric acid (68 mg C L-1) leads to a higher increase on DOC than 

with the addition of oxalic acid, similar reaction rates were observed (0.28 ± 0.03 L-1 kJ), when 

compared to the reaction with oxalic acid, which suggests a high quantum yield of the Fe(Cit) (86%) 

species for Fe2+ formation (Figure 4.4B). 
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4.3.3.3 EDDS 

Zhang [40], using a starting solution of Fe(III) (0.3 mM), additions of EDDS showed the complex 

formation through the increase of absorption. The complex absorption investigated at 340 nm showed 

a maximum at 0.3 mM of EDDS reaching a plateau up to 1 mM demonstrating that EDDS 

(hexadentate ligand) forms a 1 to 1 stable complex with Fe(III). The addition of EDDS led to a 

substantial increase of dissolved organic carbon (112 mg C L-1), significantly higher when compared 

with contribution of citric and oxalic acids (Figure 4.3). 

The addition of EDDS, as organic ligand of ferric ions, enhanced significantly the photo-Fenton 

reaction, when compared to the conventional one, achieving a pseudo-first-order kinetic constant of 

0.18 ± 0.02 L-1 kJ, mostly due to two main factors: i) the [Fe(EDDS)]- complex enhances the 

dissolution and stability of iron in aqueous solution, which leads to higher activity of iron in solution 

(Figure 4.4D) [41]; ii) the [Fe(EDDS)]- complex is stable and photochemically efficient leading to a 

higher quantum yield for the formation of •OH (ϕ•OH ≈ 2.5 × 10−3 at pH = 3.0) [34, 42]. 

Another photo-Fenton reaction with the ferric-EDDS complex was performed at the neutral 

wastewater pH value. Figure 4.3 shows an initial mineralisation profile similar to that obtained at pH 

2.8 and afterwards the reaction stopped. According to the ferric speciation diagram, iron precipitation 

in the form of Fe(OH)3(s) starts to occur after pH 7 (Figure 4.5D). However, according to Figure 4.3, 

iron starts to precipitate at the beginning of the reaction indicating that other ferric-organic complexes 

with low solubility are formed at these pH values, which present a higher stability constant than the 

soluble [Fe(EDDS)]- complexes. 

The catalytic activity of the organic ligands toward the ferrous-catalysed system followed this order: 

Fe(III)-Oxalate > Fe(III)-Citrate > Fe(III)-EDDS. For all tested organic ligands, the dissolved iron 

concentration remained almost constant during the entire reaction, which indicates that the formation 

of ferric-dyeing auxiliary products was avoided in the presence of the organic ligands. Therefore, the 

low photo-Fenton reaction rates can be mainly attributed to the formation of ferric complexes with 

the dissolved organic matter present in solution (for example: auxiliary products), reducing the 

quantum yield of ferrous formation. 
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Figure 4.5. Speciation diagrams for ferric complexes as a function of pH for a solution containing: (A) 

Fe3+/SO4
2-/Cl-; (B) Fe3+/SO4

2-/Cl-/Citric acid; (C) Fe3+/SO4
2-/Cl-/Oxalic acid; (D) Fe3+/SO4

2-/Cl-/EDDS. Ionic 

strength=0.02 M; Temperature=30ºC; [Fe3+]=7.16×10-1 mM (40 mg Fe3+ L-1); [Citrate acid]=7.16×10-1 mM; 

[Oxalic acid]=2.15 mM; [EDDS]=7.16×10-1 mM; [SO4
2-]=6.17×10-3 mM; [Cl-]=1.16×10-3 mM. The formation 

of the solid iron phase Fe(OH)3 (s) was included in the calculation. 

4.3.4 Effect of different reaction variables of the photo-Fenton process enhanced by 

ferrioxalate 

Further studies regarding the photo-Fenton reaction mediated by ferrioxalate were performed, in order 

to evaluate the effect of different reaction variables, such as iron concentration, temperature, 

irradiance, pH and hydrogen peroxide concentration and dosage strategy. The effect of flow rate in 

the photo-Fenton reaction was also evaluated in order to know the best hydrodynamic regime to 

achieve the higher reaction rate. 
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4.3.4.1 Effect of iron concentration 

Figure 4.6 shows the influence of the iron concentration on the textile wastewater treatment using the 

photo-Fenton reaction mediated by ferrioxalate. Dissolved iron concentration remained almost 

constant during the entire experiment and very similar to the amount added initially. This indicates 

that the ferrioxalate complexes lifetime, considering an iron/oxalate molar ratio of 1:3, was sufficient 

to destroy all the dissolved organic matter responsible for the formation of unwanted low photoactive 

iron complexes. 

 
Figure 4.6. Photo-Fenton reaction mediated by ferrioxalate at different iron concentrations. Operation 

conditions: pH = 2.8; T = 30ºC; I = 41.6 WUV m-2. Solid symbols – DOC; open symbols – H2O2 consumed; 

cross symbols – total dissolved iron (TDI).    – [Fe3+] = 20 mg L-1;    - [Fe3+] = 40 mg L-1;    

- [Fe3+] = 60 mg L-1;   - [Fe3+] = 80 mg L-1. 

The reaction rate increased substantially with the increase of iron concentration, principally between 

20 and 40 mg L-1. For concentrations higher than 40 mg L-1, the increment in the reaction rate is 

small. This indicates that a concentration of 40 mg Fe3+ L-1 is enough to maximise the absorption of 

UV-visible photons, overcoming the presence of other light-absorbing species in solution (e.g.: dye) 

[43]. Higher iron concentrations require higher amounts of oxalic acid to be added in order to maintain 

the iron/oxalate molar ratio of 1:3. Moreover, oxalate can act as an additional organic carbon source, 
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competing with the target pollutant for hydroxyl radicals, and increasing the H2O2 consumption. This 

explains the increment in H2O2 consumption by a factor of 1.8 when total iron dissolved was changed 

from 40 to 80 mg L-1. 

4.3.4.2 Effect of solution temperature 

Figure 4.7 shows the mineralisation of the textile wastewater at different temperatures (20°C, 30°C, 

and 40ºC) for an iron concentration of 40 mg L-1, iron/oxalate molar ratio of 1:3, pH value of 2.8 and 

irradiance equal to 41.6 WUV m-2. 

 
Figure 4.7. Evolution of the DOC concentration, H2O2 consumed and total dissolved iron during the photo-

Fenton reaction mediated by ferrioxalate at different temperatures. Solid symbols – DOC; open symbols – 

H2O2 consumed; cross symbols – total dissolved iron (TDI); columns – oxalic acid concentration.     – 

T=20ºC;     – T = 30ºC;     – T = 40ºC. 

The kinetic rate for the experiment performed at 20ºC was extremely low achieving a mineralisation 

efficiency of about 57% after 9 kJUV L−1. The increase of the solution temperature from 20ºC to 30ºC 

improved significantly the reaction, achieving a mineralisation efficiency of 87% after 9 kJUV L-1, 

consuming 64 mM H2O2. At the first moment, the observed mineralisation increase can be attributed 
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to a higher Fe3+ reduction through Fenton’s thermal reactions [44]. But, a more careful analysis of 

the iron species in solution can reveal important considerations about this phenomenon. 

The molar fractions of the iron species were calculated by the chemical equilibrium modelling system 

MINEQL+ [45] under the initial conditions in the presence of oxalate, Fe3+, SO4
2- and Cl- and under 

the same settings but in the absence of oxalate ion (Figure 4.8), which corresponds to the system after 

photodecarboxylation of Fe(III)-oxalate complexes. According to the iron speciation diagrams at 

different temperatures, considering the starting conditions in terms of iron and oxalic acid 

concentration, quite similar molar fractions of Fe(C2O4)2
- and Fe(C2O4)3

3- were obtained for all the 

temperatures at pH 2.8 (see Figure 4.8D; Figure 4.8E and Figure 4.8F). However, in the absence of 

oxalic acid, the molar fraction of the FeOH2+ species increases with temperature (see Figure 4.8A; 

Figure 4.8B and Figure 4.8C), achieving values of 9%, 15% and 16%, respectively for the 

temperatures of 20°C, 30°C, and 40ºC. So, after photodecarboxylation of ferrioxalate complexes, the 

beneficial effect of temperature on the reaction rates can be associated with two main factors [46]: i) 

presence of different amounts of photoactive species (FeOH2+), and ii) higher Fe3+ reduction through 

Fenton’s thermal reactions. 

The increase of the solution temperature from 30ºC to 40ºC showed a negligible influence on the 

reaction rate, but increased significantly the H2O2 consumption mainly attributed to two main factors: 

i) thermal ferric ion reduction reactions without hydroxyl radicals production in contrast with the 

photo reduction pathway, where H2O2 is not necessary and leads to the production of more hydroxyl 

radicals and ii) hydrogen peroxide decomposition into H2O and O2 (inactive species) and the 

formation of radicals with smaller oxidation potential at high temperatures [30, 47] (the rate of 

decomposition of hydrogen peroxide doubles every time the temperature rises by 10ºC). 
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Figure 4.8. Speciation diagrams for ferric complexes as a function of pH for different temperatures, for a 

solution containing:  Fe3+/SO4
2-/Cl-: (A)-(T=20ºC); (B)-(T=30ºC); (C)-(T=40ºC). Fe3+/SO4

2-/Cl-/Oxalic acid: 

(D)-(T=20ºC); (E)-(T=30ºC); (F)-(T=40ºC). Ionic strength=0.02 M; [Fe3+]=7.16×10-1 mM (40 mg Fe3+ L-1); 

[Oxalic acid]=2.15 mM; [SO4
2-]=6.17×10-3 mM; [Cl-]=1.16×10-3 mM. The formation of the solid iron phase 

Fe(OH)3 (s) was included in the calculation. 

4.3.4.3 Effect of UV irradiance 

The solar light irradiance changes during the day, over the year, and according to the climatic 

conditions and local, e. g. latitude, seasons of the year or cloud cover, etc. Therefore, in this work it 

was evaluated the effect of solar light irradiance in the photo-Fenton reaction mediated by ferrioxalate 

process, using different weather conditions normally found in the north of Portugal - 20.6 WUV m-2 

(average daily irradiance in spring and summer), 41.6 WUV m-2 (sunny midday in spring) and 

59.2 WUV m-2 (peak values in sunny midday in summer). Figure 4.9 shows the mineralisation of the 

textile wastewater at different solar light irradiances for different iron concentrations as a function of 

accumulated UV energy (kJUV L-1). 
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Figure 4.9. Mineralisation of the textile wastewater using a photo-Fenton reaction mediated by ferrioxalate at 

different UV irradiances and different iron concentrations. (a) [Fe3+] = 40 mg L-1; (b) [Fe3+] = 60 mg L-1; (c) 

[Fe3+] = 80 mg L-1. Operation conditions: pH = 2.8; T = 30ºC. Solid symbols – DOC; open symbols – H2O2 

consumed.   – I = 20.6 WUV m-2;   – I = 41.6 WUV m-2;   – I = 59.2 WUV  m-2. 

According to the mineralisation values obtained, when iron concentration was 60-80 mg Fe3+ L-1, for 

all three tested irradiance conditions, similar behaviour was found. However, when only 

40 mg Fe3+ L-1 was used, for 59.2 WUV m-2 of irradiance, it was observed a loss in the reaction 

efficiency. This means that considering the optical length of the reactor (borosilicate glass tube with 

46.4 mm internal diameter), in order to avoid the loss of photons for irradiances of 59.2 WUV m
-2, 

higher doses of iron are required to absorb all the photons. This indicates that the optimum iron 

concentration must be evaluated taking into account the variability on the UV irradiance (amount of 

photons available for the reaction). 
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4.3.4.4 Effect of H2O2 concentration range and dosage strategy  

The hydrogen peroxide concentration plays an important role in the oxidation of organic compounds, 

since the decomposition of H2O2 catalysed by Fe(II), leads to the generation of the highly reactive 

hydroxyl radicals. A set of experiments were performed trying to explain the best strategy for the 

H2O2 supply, aiming high reaction rates and low H2O2 consumption (Figure 4.10). In the first three 

assays, hydrogen peroxide was supplied in multiple small doses, keeping always the desired H2O2 

concentration between: i) 50-100 mg L-1; ii) 100-200 mg L-1 and iii) 200-500 mg L-1. Another 

experiment was performed adding all required H2O2 at the beginning of the reaction (2.3 g L-1; 

68.2 mM). 

 
Figure 4.10. Mineralisation of the textile wastewater using a photo-Fenton reaction mediated by ferrioxalate 

using different hydrogen peroxide addition strategies and concentrations. Operation conditions: pH = 2.8; 

T = 30ºC; [Fe3+] = 40 mg L-1; I = 41.6 WUV m-2. Solid symbols – DOC; open symbols – H2O2 consumed; cross 

symbols – total dissolved iron (TDI).    – [H2O2] = 200-500 mg L-1;    – [H2O2] = 100-200 mg L-1; 

   – [H2O2] = 50-100 mg L-1;    – one dose of H2O2 at the start of the reaction (68.2 mM). 

Figure 4.10 shows that the strategy of adding small amounts of H2O2 during the photo-Fenton reaction 

improves the mineralisation rates, as also minimizes the consumption rate of H2O2. However, the 

mineralisation rate increases with the availability of H2O2, up to an optimal hydrogen peroxide 

concentration range between 100-200 mg L-1. Further increase in the H2O2 concentration had 

negligible effect in the mineralisation, but higher amounts of H2O2 are required to achieve the same 
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mineralisation mainly associated with the well-known scavenger effect [48]. Although other radicals 

(e.g., HO2
•) are produced (Eq. (4.13)), their oxidation potential is much smaller than that of the 

hydroxyl radicals [18, 34, 49]. Furthermore, the decomposition of hydrogen peroxide to form water 

and oxygen is also favoured (Eq. (4.14)) [30]. 

  2222 HOOHOHOH  (4.13) 

2222 OOH2OH2   (4.14) 

4.3.4.5 Effect of solution pH  

The high alkalinity of textile wastewaters constitutes a limitation for the application of the photo-

Fenton reaction, since high amounts of acid are required to achieve the optimum pH (2.8) for the 

traditional photo-Fenton reaction. Beyond that, high amounts of base are also required to proceed 

with the correction of the pH until neutral pH conditions, to comply with the discharge limits 

established by authorities [1, 7]. Most of the photo-Fenton studies are performed under acidic 

conditions (2.5 < pH < 3.5) to avoid ferric precipitation [16, 20, 43] and since the predominant 

species in solution is FeOH2+, the most photoactive ferric ion-water complex [50]. One of the main 

advantages on the use of ferric-organic ligands, such as ferrioxalate, is the high solubility of the 

ferrioxalate complexes, more soluble than ferric iron-water complexes, allowing to work at neutral 

pH values. 

In order to evaluate the behaviour of the photo-Fenton reaction mediated by ferrioxalate complexes 

at near neutral pH conditions, assays were performed at different controlled pH values (2.8; 3.5; 4.0; 

4.5 and 5.0). Figure 4.11 shows that higher initial doses of oxalic acid were required to achieve the 

same mineralisation profiles at higher pH values (pH 2.8 (1:3), pH 3.5 and pH 4.0 (1:7.5), pH 4.5 and 

5.0 (1:10)). 
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Figure 4.11. Mineralisation of the textile wastewater using a photo-Fenton reaction mediated by ferrioxalate 

at different pH values. Operation conditions: T = 30ºC; [Fe3+] = 40 mg L-1; I = 41.6 WUV m-2. Solid symbols – 

DOC; open symbols – H2O2 consumed; cross symbols – total dissolved iron (TDI); half painted symbols – 

oxalic acid concentration.     – pH 2.8 and iron/oxalate molar ratio of 1:3;     – pH 3.5 and 

iron/oxalate molar ratio of 1:7.5;     – pH 4.0 and iron/oxalate molar ratio of 1:7.5;     – pH 4.5 

and iron/oxalate molar ratio of 1:10;     - pH 5.0 and iron/oxalate molar ratio of 1:10. 

From the oxalic acid concentration profiles, it can be seen that the lifetime of ferrioxalate complexes 

is very short. This indicates that higher doses of oxalic acid are necessary to avoid the precipitation 

of ferric hydroxides at higher pH values during the reaction time, enough to achieve the mineralisation 

of the recalcitrant textile organic compounds. For 1:1, 1:2, 1:3, 1:75 and 1:10 iron/oxalate molar ratios 

(Figure 4.12), the precipitation of Fe(OH)3(s) only starts for pH values higher than 3.1, 3.9, 5.1, 6.6 

and 6.8. Figure 4.11 shows that, regardless of the initial oxalic acid concentration and solution pH, 

the precipitation of iron was only observed when the iron/oxalate molar ratio was lower than 1:1, 

since normally the formation of Fe(OH)3(s) is a slow reaction. 
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Figure 4.12. Speciation diagrams for ferric complexes as a function of pH for a solution containing 7.16×10-

1 mM (40 mg Fe3+ L-1) ferric ions, with different iron/oxalate molar ratios 1:1, 1:2, 1:3; 1:7.5; 1:10 and without 

oxalate. The formation of the solid iron phase Fe(OH)3 was included in the calculation. Ionic 

strength = 0.02 M; Temperature = 30ºC; [SO4
2-] = 6.17×10-3 mM; [Cl-] = 1.16×10-3 mM. 

It was also observed that the increase of oxalic acid concentration, needed for the reactions at higher 

pH values, decreases the H2O2 consumption. This indicates that the ferrous ions regeneration 

catalysed by the ferrioxalate complexes is more significant than the thermal Fenton reaction, at higher 

pH values [19], as also the possible generation of H2O2 due to photodecarboxylation of ferrioxalate 

complexes. 

4.3.4.6 Effect of flow-rate 

Several studies reported that if the catalyst is used in suspension, such as TiO2 nanoparticles, a 

turbulent flow regime must be ensured to guarantee adequate fluid mixture and to avoid potential 

catalyst settlement along the hydraulic circuit. Therefore, the absorption of the UV photons by the 

photocatalyst is maximised and the mass transfer limitations between organic pollutants and the 

catalyst surface is reduced [51]. 
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Figure 4.13 shows the photo-Fenton mineralisation profiles for the textile wastewater obtained in the 

lab-scale photoreactor prototype using simulated solar radiation at a flow-rate of 0.63 L min-1 

(Re = 324, laminar regime), and in a pilot plant (natural sunlight) at different flow-rates: 2 L min-1 

with and without mechanically stirred dark phase (Re = 1027; laminar regime); 9 L min-1 (Re = 4622; 

turbulent regime); 20 L min-1 (Re = 10271; turbulent regime); and 35 L min-1 (Re = 17974, turbulent 

regime) (Table 4.4). 

The mineralisation profile obtained in the lab-scale prototype (laminar regime) is similar to the ones 

obtained in the pilot plant in turbulent regime (Re > 4000). In both plants, the hydraulic circuit is 

composed by a recirculation tank/vessel, connection tubing and borosilicate tubes (illuminated part). 

The glass vessel of the lab-scale prototype is magnetic stirred, allowing for a perfect mixture of the 

wastewater in the dark phase. On the other hand, in the pilot plant, the mixture inside the recirculation 

tank is only the one produced by the entrance of the wastewater, consequently a small mixture is 

obtained when low recirculation rates are used. 

 
Figure 4.13. Mineralisation of the textile wastewater using a photo-Fenton reaction mediated by ferrioxalate 

(iron/oxalate molar ratio of 1:3) at different flow-rates. Operation conditions: pH = 2.8; [Fe3+] = 40 mg L-1. 

Pilot plant:     – 2 L min-1;    – 2 L min-1 with mechanically stirred dark phase;    – 9 L min-

1;    – 20 L min-1;    – 35 L min-1. Lab-scale photoreactor:    - 0.63 L min-1.  
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A low reaction rate can be observed for the experiment at a flow-rate of 2 L min-1 in the pilot plant, 

in agreement with the low H2O2 consumption profile and low dissolved iron concentrations. These 

results are explained by the low mixture in the recirculation tank (dark phase), as also the laminar 

flow inside the tubular photoreactors (illuminated phase). An additional experiment was performed 

at 2 L min-1 and the wastewater present in the recirculation tank was mechanically stirred. In these 

conditions, a faster reaction rate was observed, similar to the ones performed using a turbulent regime 

in the photoreactors. The design of a CPC plant must therefore take into account not only the need of 

a turbulent regime inside the tubular photoreactors, but also the mixing of the wastewater in the 

recirculation tank. 

Table 4.4. Operational conditions and pseudo-first-order kinetic constants for solar driven photo-Fenton 

reactions. 

System Qa Vi
b Vi/Vt

c ti
d tdark

e Ref 

Kinetic parameters 

DOC degradation H2O2 consumption 

kg R2 kH
h  R2 

UVA-Vis/Fe3+/H2O2/oxalic 

acid1 

2 

5.1 0.23 

2.6 8.5 1027 0.08±0.02 0.991 3±1 0.962 

2i 2.6 8.5 1027 0.32±0.09 0.986 7.6±0.4 0.994 

9 0.6 1.9 4622 0.17±0.02 0.961 6.7±0.9 0.996 

20 0.3 0.9 10271 0.20±0.01 0.978 6.0±0.1 0.999 

35 0.2 0.5 17974 0.23±0.01 0.992 5.8±0.2 0.997 
a(L min-1); billuminated volume (L); cilluminated volume divided by the total volume; dillumination time (min); 

etime in the dark (min); fReynolds number; gPseudo-first-order kinetic constant (L kJ-1); hH2O2 consumption 

rate (mmol kJ-1); imechanically stirred dark phase; 1Operation conditions: pH = 2.8; [Fe3+] = 40 mg L-1; 

iron/oxalate molar ratio of 1:3. 

4.3.5 Integration of the photo-Fenton reaction with a biological oxidation process 

The use of the photo-Fenton process should be considered when the wastewater presents toxic and/or 

non-biodegradable organic pollutants and therefore, not treatable by conventional biological 

processes [43]. In order to optimise the treatment process, reducing operation and capital costs, 

integrated system is becoming more frequent, combining the photo-Fenton reaction, as pre-oxidation 

step to enhance the biodegradability of the wastewater, with a biological oxidation process [11]. 

Therefore, a photo-Fenton reaction mediated by ferrioxalate, using the optimum conditions optimised 

at a lab-scale prototype (pH = 2.8; iron/oxalate molar ratio of 1:3; [Fe3+] = 40 mg L-1; flow-

rate = 35 L min-1), was conducted in a solar pilot plant (Figure 4.14), to evaluate the optimal 

phototreatment time to achieve a higher biological degradation efficiency. Various samples at 
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different phototreatment times were collected and a detailed characterisation was performed, 

including DOC, COD, BOD5, low-molecular-weight carboxylic acids and the Zahn-Wellens test. 

 
Figure 4.14. Evaluation of the solar photo-Fenton mediated by ferrioxalate (iron/oxalate molar ratio of 1:3) in 

the textile dyeing wastewater treatment:  - COD,   - DOC,  - COS,  - LMWCA/DOC ratio,  - H2O2 

consumed and  - BOD5/COD ratio. Operation conditions: pH = 2.8; [Fe3+] = 40 mg L-1; T  = 33ºC; 

I  = 45 W m-2. 

Figure 4.14 shows a strong oxidation of the organics, with 66% and 73% COD and DOC decrease, 

respectively, after 5.7 kJUV L-1. This behaviour is well related to the COS parameter, which showed 

a significant increase from -0.5 to 2.5 for the same energy dosage, suggesting the generation of highly 

oxidized intermediates. Additionally, the BOD5/COD ratio increased significantly up to 83% after 

3.85 kJUV L-1 only, corresponding to sample 6, which indicates a high enhancement of the textile 

wastewater biodegradability. Figure 4.14 also shows an increase of the DOC corresponding to low-

molecular-weight carboxylate anions (LMWCA/DOC ratio), achieving maximum values of 90% 

(considering the analysed LMWCA) at 54.3 mM H2O2 consumed. Whilst the concentrations of oxalic 

acid (added) and formic acid decreased during the treatment, glutaric and acetic acid substantially 

increased after sample 5 (Table 4.5), achieving values of 56 mg C5H8O4 L
-1 and 86 mg C2H4O2 L

-1 at 

the end of the reaction. 

Acetate ions form a stable complex with ferric ions which present a low photoactivity under UV-

visible light and acetic acid presents a recalcitrant characteristic to further mineralisation by hydroxyl 
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radical attack [28, 52]. The presence of this complex can be associated with the low mineralisation 

rates observed after 5.7 kJUV L-1. 

Table 4.5. Concentration of carboxylic acids during the solar-photo-Fenton treatment. 

Samples 
Concentration of carboxylic acids (mg L-1) 

Oxalic Acid Formic Acid Glutaric Acid Tartaric Acid Fumaric Acid Acetic Acid 

S1 <0.04 64 <0.4 <0.05 <0.03 <0.5 

S2 231 62 <0.4 <0.05 <0.03 <0.5 

S3 130 64 <0.4 <0.05 <0.03 <0.5 

S4 101 43 <0.4 <0.05 <0.03 <0.5 

S5 29 43 11 <0.05 <0.03 15 

S6 12 11 24 <0.05 <0.03 34 

S7 6 <0.6 47 1.8 0.2 67 

S8 8 <0.6 54 2.1 0.3 77 

S9 7 <0.6 56 2.2 0.4 86 

The photo-Fenton reaction mediated by ferrioxalate also indicated high decolourisation efficiency 

(Figure 4.15). Maximum values of colour reduction were 92% (Pt-Co method), 96% (DFZ436 nm), 96% 

(DFZ525 nm) and 97% (DFZ620nm) consuming 32.4 mM H2O2 and 5.7 kJUV L-1. 

  
Figure 4.15. Cotton-textile dyeing wastewater decolourisation using Solar-photo-Fenton treatment mediated 

by ferrioxalate (iron/oxalate molar ratio of 1:3).   - Pt-Co scale;  - DFZ436nm;  - DFZ525nm;  - DFZ620nm. 

According to the Zahn-Wellens test (Figure 4.16), the textile dyeing wastewater presents a low 

biodegradability of 27% after 28 days of test. This value is mainly related to the presence of formic 
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acid (64 mg CH2O2 L
-1), resulting from the addition of the auxiliary textile Sera® Con N-VS in the 

dyeing process. 

After the addition of iron and oxalate acid, the biodegradability reaches approximately 52%, which 

is related to the content of oxalic acid (231 mg H2C2O4 L
-1) (Table 4.5). As expected, the 

biodegradability of the textile wastewater was significantly enhanced during the photo-Fenton 

treatment, achieving value of 73% corresponding to 32.4 mM of H2O2 consumed and 5.7 kJUV L-1 of 

energy dose. Over than 50% of the biodegradable organic fraction was in the form of low-molecular-

weight carboxylic acids (the most representative: Glutaric Acid (27%) and Acetic Acid (23%)). 

 
Figure 4.16. Zahn–Wellens test for selected samples at different photo-treatment times using a solar photo-

Fenton reaction mediated by ferrioxalate (iron/oxalate molar ratio of 1:3):   – S1, DOC = 295 mg L-1;   – 

S2, DOC = 342 mg L-1;  – S3, DOC = 339 mg L-1;  – S4, DOC = 278 mg L-1;  – S5, DOC = 214 mg L-1; 

 – S6, DOC = 139 mg L-1;  – S7, DOC = 79 mg L-1;  – S8, DOC = 74 mg L-1; – S9, DOC = 57 mg L-1; 

 – reference, DOC = 400 mg L-1. 

Throughout the treatment, successive additions of small dosages of sulphuric acid were responsible 

for the increment on the sulphate concentration (593-718 mg SO4
2- L-1). The chloride concentration 

increased from 41 to 100 mg Cl- L-1 after ferric chloride dosing and remained constant during the 

whole phototreatment time. The concentration of sodium, magnesium, calcium and total nitrogen 

remained approximately constant during all reaction time. On the other hand, the phosphates 

concentration decreased from 0.8 mg PO4
3- L-1 to values below the detection limit (0.1 mg PO4

3- L-1) 

during the reaction. This can be associated with the formation of Strengite (FePO4.2H2O(s)) and 

0 4 8 12 16 20 24 28

0

10

20

30

40

50

60

70

80

90

100

D
t(%

)

D
t(%

)

Time (days)

0

10

20

30

40

50

60

70

80

90

100

 

 



Chapter 4 

136 

consequently precipitation of iron. Considering all the studied indicators and the current Portuguese 

Legislation (Decree-Law nº 236/98), the phototreatment must be performed until achieving the 

conditions of sample 7 before subsequent coupling with a biological treatment. 
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4.4 Conclusions 

The acrylic-textile wastewater presents a moderate organic load with very low biodegradability 

associated with the presence of different recalcitrant dyeing auxiliary products. The traditional solar-

photo-Fenton process showed limited efficiency in the mineralisation of the acrylic-textile 

wastewater, mainly attributed to the iron complexation with the dyeing auxiliaries, which presented 

a low photoactivity, almost stopping the photo-Fenton reaction. 

The addition of organic ligands, such as oxalic acid, citric acid and EDDS, enhanced the photo-Fenton 

reaction significantly, minimising the formation of ferric complexes with the dyeing auxiliary 

products, and consequently increasing the quantum yield for ferrous ions production. The catalytic 

activity of the organic ligands toward the ferrous catalysed system followed the order: Fe(III)-

Oxalate>Fe(III)-Citrate>Fe(III)-EDDS. 

The optimum values for the acrylic-dyeing textile wastewater treatment variables using a photo-

Fenton reaction mediated by ferrioxalate shall consider the following: i) the iron concentration must 

be selected taking into account the available UV irradiance; ii) the addition of small doses of H2O2 

during the photo-Fenton reaction improves the mineralisation rates, while reducing the H2O2 

consumption; iii) the mineralisation rate increases with the availability of H2O2 up to an optimal 

concentration range between 100-200 mg L-1; iii) higher temperatures enhance the photo-Fenton 

reaction due to molar fraction increment of the photoactive species (FeOH2+) and higher Fe3+ 

reduction rates through Fenton’s thermal reactions; iv) hydrodynamic conditions in the dark phase 

(recirculation tank) and illuminated phase (tubular photoreactors) must be evaluated in order to 

achieve a complete mixing and turbulent regimes to minimise the mass transfer resistances as well as 

the catalyst sedimentation; vi) high doses of oxalic acid are required to work at near neutral pH 

conditions; vii) the photo-Fenton reaction mediated by ferrioxalate substantially enhances the textile 

wastewater biodegradability, mainly associated with low-molecular-weight carboxylic acids 

formation (acetic and glutaric acids), being possible to couple this process with a biological oxidation 

system minimizing the operation costs; viii) acetic acid forms a stable complex with ferric ions which 

has a low photoactivity under UVA-visible light and is very resistant to the attack of hydroxyl and 

other reactive oxygen species, almost stopping the photo-Fenton reaction. 
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5 Remediation of Textile Wastewater from Polyester-

Cotton Dyeing Combining Biological and 

Photochemical Oxidation Processes3 

This chapter regards an integrated treatment strategy for 

synthetic polyester-cotton dyeing wastewater, combining 

biological and photochemical oxidation processes. The 

characterization of chemicals used as additives in different 

stages of cotton and polyester textile manufacturing was 

carried out. The synthetic wastewater was firstly subject to 

a biological oxidation with objective to remove the 

biodegradable matter. Thus, UVC/H2O2 and photo-Fenton 

oxidation processes were used as a polishing step for the 

decolourisation of bio-treated textile wastewater. The effect 

of hydrogen peroxide dosage, lamp power, solution pH and 

temperature on the UVC/H2O2 system was evaluated. 

 

 

 

 

                                                           
3This Chapter is based on the research article: “Petrick A. Soares, Renata Souza, Juan S. Escoda, Tânia 

F. C. V. Silva, Selene M. A. Guelli U. Souza, Rui A. R. Boaventura, Vítor J. P. Vilar, Remediation of 

Textile Wastewater from Polyester-Cotton Dyeing Combining Biological and Photochemical Oxidation 

Processes. Submitted. 
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5.1 Introduction 

Textile industry is a major consumer of water and chemicals and consequently, one of the largest groups 

of industries causing intense water pollution. The amount and composition of the generated wastewater 

depends on many different factors such as processed fabric, type of fibres, the season of the year and 

others. In addition, textile manufacturing employs a variety of chemicals (one kilogram of these 

substances is used for each kilogram of fabric) during the different processing steps with many functions, 

depending on the nature of the raw material and product [1, 2]. The main chemicals usually used during 

the textile dyeing processes are composed by a mixture of different types of dyes and different auxiliary 

products, such as organic acids, fixing agents, reducing agents, oxidizing agents and others [3]. This 

leads to the generation of wastewaters with an intense colour, which are characterized by a moderate 

organic content, moderate biodegradability, variable pH values, usually in the alkaline range [4]. 

Generally, biological processes are the preferred choice for textile wastewater treatment due to their low 

cost and non-toxic products generation [5]. Furthermore, biological oxidation shows good results for the 

mineralisation of the non-recalcitrant fraction of textile wastewater [6]. However, conventional 

biological processes do not always provide satisfactory results, especially when the wastewater shows 

high concentration of synthetic organic chemicals, some categorized under the term ‘‘xenobiotic’’ due 

to their biological persistence [2, 7]. 

Many chemical and physical processes have been proposed for the treatment of textile wastewaters, such 

as adsorption, coagulation and oxidation by hypochlorite. These methods can be expensive and, in some 

cases, they also may not eliminate completely the colour [8]. Therefore, it has been increasingly accepted 

that the only feasible treatment for biologically persistent wastewater is the use of advanced technologies 

based on chemical oxidation, such as the Advanced Oxidation Processes - AOPs [9]. In addition, many 

studies have already demonstrated the high potential of AOPs for textile wastewater decolourisation [10-

12]. However, the application of AOPs is limited and the costs involved are high given the energy and 

chemicals requirements, especially when the goal is the complete mineralisation, making these 

technologies non-competitive [13]. 

In order to overcome drawbacks on textile wastewater treatment, some researchers have demonstrated 

the suitability of AOPs as pre-treatment and post-treatment steps [6, 9, 14, 15]. Oller et al. [9] describe 

the application of chemical oxidation processes as pre-treatment to convert the initially persistent organic 

compounds into more biodegradable intermediates, which could be then treated by biological oxidation 

processes at considerably lower cost. Besides, some works have described real cases in which the 



Chapter 5 

146 

combination strategy is in the opposite direction, first eliminating the highly biodegradable part of the 

wastewater and then degrading the recalcitrant contaminants by an AOP post-treatment [6, 16]. 

The aim of this work was to optimize an integrated treatment strategy for textile wastewater from 

polyester-cotton dyeing combining biological activated sludge and chemical oxidation processes. The 

biodegradability of all constituents present in the synthetic wastewater was first evaluated by a Zahn-

Wellens test. The biodegradable fraction of the wastewater was initially eliminated using a biological 

oxidation system. The UVC/H2O2, UVC/Fe2+/H2O2 and UVC/Fe3+/H2O2/Oxalic acid chemical oxidation 

systems were used as polishing step, regarding the wastewater decolourisation. Additionally, the effect 

of pH value, H2O2 dosage, temperature and lamp power was assessed for the UVC/H2O2 system. 
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5.2 Material and Methods 

All the chemicals and reagents used in this chapter, the detailed description of the lab-scale lamp 

photoreactor experimental unit, along with the corresponding experimental procedures followed, and, 

finally, the employed methods can be consulted in Chapter 2. The detailed operational conditions of the 

assays performed in this chapter are shown in Table 5.1 (lab-scale lamp photoreactor). 

Table 5.1. Operational conditions for reactions under UVC radiation. 

System 
Pa 

(W) 

T 

(ºC) 
pH 

Dosage of H2O2
 

(mM) 

H2O2 - 

30 

8.4(d) 

42 

UVC 

6 

- 

UVC/H2O2 42 

UVC/Fe2+/H2O2
(b) 3.0 

3 
UVC/Fe3+/H2O2/Oxalic acid(c) 

3.0 

5.0 

UVC/H2O2 

4 30 8.4(d) 

10 

20 

30 

42 

54 

6 30 8.4(d) 

10 

20 

30 

42 

54 

11 30 8.4(d) 

10 

20 

30 

42 

54 

6 30 

3.0 

42 
5.0 

8.4(d) 

11.0 

6 

15 

 8.4(d) 42 30 

45 
aLamp Power; b[Fe2+] = 2 mg L-1; c[Fe3+] = 2 mg L-1; dnatural bio-treated textile wastewater pH.  
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5.3 Results and discussion 

5.3.1 Characteristics of the textile wastewater 

The synthetic textile wastewater from polyester-cotton dyeing presents a neutral pH value and high 

organic load, being 97% of DOC related to dyeing auxiliary products and only 3% due to dyes (Table 

2.6 - Materials and methods – Chapter 2). The wastewater presents a high concentration of sulphates 

(737 mg SO4
2- L-1) and sodium (1772 mg Na+ L-1) ions. Sulphates can be associated, in large part, with 

the addition of the sodium hydrosulphite, commonly used as reducing agent [17] in the polyester dyeing 

and reduction cleaning processes. Besides, the sodium hydrosulphite, along with sodium hydroxide 

(reduction cleaning processes – polyester and fibre preparation - cotton), sodium chloride and sodium 

carbonate (dyeing process – cotton) and sodium dodecyl sulphate (washing process – cotton) are the 

main sources of sodium in the wastewater. High concentration of chloride (1470 mg Cl- L-1) is also 

observed and can be related to the high dosage of sodium chloride added, a retardant agent often used in 

reactive dyeing during the cotton dyeing process [17]. 

The mixture of different dyes resulted in a polyester-cotton dyeing textile wastewater with a red colour, 

mainly associated with Procion Red H-EXL gran, an azo dye frequently used in the cotton dyeing 

process. Azo dyes are non-biodegradable under aerobic conditions, and therefore the discharge of azo 

dyes-containing wastewaters can cause several problems to the aquatic life [18]. On the other hand, as 

observed from the colour data (DFZs and Pt-Co scale), the polyester dyeing process almost does not 

contribute to the colour found in the final wastewater (mixture of polyester and cotton wastewaters) 

because this fibre dyeing processes include a reduction cleaning process as final step, which largely 

eliminates the wastewater colour. 

According to the results obtained in the Zahn-Wellens test, both wastewaters present a high 

biodegradability (64-89%). Table 5.2 and Table 5.3 present the biodegradability of the textile auxiliaries 

and dyes used in both dyeing processes. Considering that some of textile auxiliaries show low DOC 

values, 50 mg C L-1 was adopted as standard concentration for all samples during the Zahn-Wellens test. 

The dispersing agent Sera® Sperse M-IF and the dispersing and sequestering agent Sera® Quest C-PX, 

used in the polyester dyeing process, present a low biodegradability (6% to 9%, respectively). Sera® 

Sperse M-IF, as many dispersant agents, has polyglycol ethers in its composition. These chemicals are 

reported in the literature as highly water soluble, toxic, recalcitrant and are often referred as xenobiotic 

[19-22]. The non-ionic dispersing and sequestering agent Sera® Quest C-PX is a polymer often applied 
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as sequestering agents of calcium and magnesium ions from hard waters used in the dyeing process. The 

two disperse dyes, Dianix Blue K-FBL and Dianix Orange K3G, show 0% of biodegradability. 

Table 5.2. Characteristics of the dyes and dyeing auxiliary products present in the synthetic polyester dyeing 

textile wastewater. 

Step Dyeing Product 

Chemical 

Characteristics/main 

function 

Wastewater Characteristics 

Concentration 

(g L-1) 

DOC 

(mg C L-1) 

Biodegradability 

(%) 

Fibre 

preparation 

Sera® Lube Neo 
Polymeric amines/Creasing 

prevent 
2.000 53.2  100 

Sera® Quest C-PX 

Polymer combination/ 

dispersing and sequestering 

agent 

1.000 27.0 9 

Dyeing 

Sera® Lube M-CF 

Polymeric amides/ 

Lubricant and crease 

inhibitor 

2.000 38.2  66 

Sera® Sperse M-IF 

Sodium naphthalene 

sulfonate condensate/ 

dispersing agent 

1.500 187.6  6 

Sera® Gal P-LP 
Alkyl polyglycol derivative/ 

dispersing agent 
2.000 183.3 91 

Sodium 

hydrosulphite 

Sodium dithionite/ 

reducing agent 
3.000 0.0 - 

Acetic acid C2H4O2/fixer 0.150 25.6 100 

Dianix Orange 

K3G 
Disperse Orange 30/dye 0.022 5.7 0 

Dianix Blue KFBL Disperse Blue 56/dye 0.008 2.3 0 

Reduction 

cleaning 

Sera® Wash M-SF Non-foaming detergent 0.450 66.5 93 

Sodium hydroxide NaOH/mercerization 5.000 0.0 - 

Acetic acid C2H4O2/acid generator 0.150 69.3 100 

Sodium 

hydrosulphite 

Sodium dithionite/ 

reducing agent 
3.000 0.0 - 

The high biodegradability of cotton textile dyeing wastewater is associated with the textile auxiliary 

products. The only exceptions are a polymeric amide, used as lubricant and crease inhibitor, 

denominated Sera® Lube M-CF, and dyes. Procion Yellow H-EXL gran and Procion Red H-EXL gran 

present 0% and 1% of biodegradability, respectively and the polymeric amide shows 66% of 

biodegradability after the 28 days of Zahn-Wellens test. 

Considering the Portuguese discharge regulations into water bodies [23] and the wastewater 

characteristics presented in Table 2.6, the treatment strategy adopted for the textile wastewater included: 

i) an activated sludge biological oxidation process, able to eliminate the biodegradable organic fraction 

of the wastewater; ii) a chemical oxidation process, as polishing step, for the degradation of the 

recalcitrant organic fraction, targeting colour removal. 

http://en.wikipedia.org/wiki/Sodium_dithionite
http://en.wikipedia.org/wiki/Reducing_agent
http://en.wikipedia.org/wiki/Sodium_dithionite
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Table 5.3. Characteristics of the dyes and dyeing auxiliary products present in the synthetic cotton dyeing textile 

wastewater. 

Step Dyeing Product 

Chemical 

Characteristics/main 

function 

Wastewater Characteristics 

Concentration 

(g L-1) 

DOC 

(mg C L-1) 

Biodegradability 

(%) 

Fibre 

preparation 

Sera® Foam M-HTS Mineral oil/emulsifier 0.450 56.3 100 

Sera® Fil FFB 

Ethoxylate and 

phosphonated 

alcohol/wetting agent 

0.450 26.3 90 

Sera® Zyme C-SX 
Aqueous enzyme 

preparation/bleaching 
1.800 2.4 96 

Acetic acid C2H4O2/acid generator 0.250 48.6 100 

Hydrogen peroxide H2O2/oxidizing 1.300 0.0 - 

Sodium hydroxide NaOH/alkaline system 1.200 0.0 - 

Dyeing 

Sera® Lube M-CF 

Polymeric amide/ 

lubricant and crease 

inhibitor 

2.000 38.2 66 

Sera® Quest M-USP 

Organophosphonic acid/ 

dispersing and 

sequestering agent 

1.000 4.4 0 

Sodium chloride NaCl/retardant 20.000 0.0 - 

Sodium carbonate Na2CO3/alkaline system 5.000 0.0 - 

Procion Yellow H-EXL 

gran 

Reactive Yellow 

138:1/dye 
0.005 3.0 0 

Procion Red H-EXL 

gran 
Azo dye 0.015 5.6 1 

Sodium hydroxide NaOH/alkaline system 1.200 0.0 - 

Washing 
Sodium dodecyl 

sulphate 

NaC12H25SO4/surfactant, 

detergent 
0.225 51.6 100 

5.3.2 Biological oxidation 

Figure 5.1 shows a fast decay of the DOC profile during the first 5 hours of operation, corresponding to 

the removal of the easily biodegradable organic fraction, achieving 38% mineralisation at a kinetic rate 

of 12±2 mg DOC g-1 VSS h-1. The slow biodegradable organic fraction was almost totally removed after 

48 hours, at a kinetic rate of 1.5±0.1 mg DOC g-1 VSS h-1, leading to a final mineralisation of 76%, in 

agreement with the Zahn-Wellens results. 

The remaining organic carbon fraction can be considered recalcitrant (84 mg C L-1; 24% of the initial 

DOC), mainly attributed to the dispersing agent Sera® Sperse M-IF and the dispersing and sequestering 

agent Sera® Quest C-PX, used in the polyester dyeing process, as well as, the presence of the dyes used 

in both dyeing process. 
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Figure 5.1. Biological oxidation of the textile wastewater from polyester-cotton dyeing:  - DOC;  - DFZ436nm; 

 - DFZ525nm;  - DFZ620nm;  - Pt-Co scale;  - TN and  - pH. 

Sludge volume index (SVI) can be considered a good indicator of sludge settling properties [24, 25]. 

The SVI obtained during biological treatment was 103 mL g-1. In general, SVI can vary from 30 to 

400 mL g-1, but a value lesser than 100-150 mL g-1 indicates good settling properties of the sludge [25, 

26]. Another important operational parameter of activated sludge systems is the food-to-microorganism 

ratio (F/M ratio). The F/M ratio achieved was 0.119 g BOD g-1 VSS d-1, a typical value for extended 

aeration processes [25]. 

According to the Zahn-Wellens results, in this preliminary biological pre-treatment, the organic 

contribution of Sera® Lube Neo, Sera® Gal P-LP and Sera® Wash M-SF, used in polyester dyeing and 

Sera® Foam M-HTS, Sera® Fil FFB, Sera® Zyme C-SX and sodium dodecyl sulphate, used in cotton 

dyeing, and acetic acid, used in both dyeing processes, was totally eliminated. The presence of those 

compounds have been previously correlated with lower mineralisation rates using chemical oxidation 

processes, due to the formation of undesired iron organic complexes, with low or null photoactivity [27, 

28]. Furthermore, it is known that acetic acid molecule is very recalcitrant to hydroxyl radicals attack 

and that soluble ferric–acetate complexes have a low photoactivity [29, 30]. So, the biological oxidation 

of these organic compounds, as a low cost process, is essential to avoid negative interferences in the 

chemical oxidation system. 
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Nevertheless, the biological oxidation system was inefficient in wastewater decolourisation, being the 

colour visible after a dilution of 1:40. Pt-Co scale [31] and DFZ-DurchsichtFarbZahl (Visual colour 

number in German) [32] indicators were used as a quantitative colour measurement. To achieve a final 

wastewater in agreement with the discharge limits imposed by the Portuguese legislation must be 

obtained. 

Considering the quantitative colour indicators, the efficiency of the biological oxidation process was less 

than 5% (Pt-Co scale), 9% (DFZ436nm), 3% (DFZ525nm) and 0% (DFZ620nm), and consequently a further 

polishing treatment is necessary. Such inability to degrade textile dyes by biological oxidation is in 

agreement with other published works [33-35] and it was confirmed by the low biodegradability values 

obtained in the Zahn-Wellens test. 

5.3.3 Photochemical oxidation 

Different photochemical oxidation processes using UVC radiation (UVC/H2O2, UVC/Fe2+/H2O2 and 

UVC/Fe3+/H2O2/Oxalic acid) were applied as a polishing step of the bio-treated textile wastewater, 

targeting colour removal (Table 5.4 and Figure 5.2). All reactions were carried out with a 6 W UVC 

lamp (T = 30ºC). In the photo-Fenton reactions, an iron concentration of 2 mg L-1 (TDI) was used, which 

is the legal discharge limit for total iron according to the Portuguese legislation [36]. 

All photo-Fenton reactions enhanced by oxalic acid were carried out using an iron/organic ligand molar 

ratio of 1:3, which is reported in literature as the most stable ferric-oxalate complex [37]. Pt-Co, 

DFZ436nm and DFZ525nm measurements were used as quantitative colour indicators during the 

photochemical oxidation experiments, presenting a good agreement with visual observations. DFZ620nm 

colour indicator was not displayed due to the low values obtained for the bio-treated wastewater. 

UVC or H2O2 alone were not efficient in the decolourisation of the bio-treated wastewater, considering 

the UVC and H2O2 dose used. The UVC photolysis of the bio-treated wastewater resulted in a small 

increment on the colour indicators, Pt-Co and DFZ436nm. The UV-visible spectra show a decline of the 

absorbance at wavelengths below 300 nm and an increase of the absorbance at wavelengths between 

300 and 500 nm. This can be associated with the bathochromic shift of the dyes molecules [38-41] under 

irradiation, wherein the displacement of the absorption to longer wavelengths occurs. 
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Table 5.4. Operational conditions and pseudo-first-order kinetic constants for reaction under UVC radiation. 

System 
Pa 

(W) 

T 

(ºC) 
pH 

Dosage 

of H2O2
 

(mM) 

Kinetic parameters 

Decolourisationb H2O2 consumption 

kc  

(L kJ-1) 
R2 

kd  

(L kJ-1) 
R2 

H2O2 - 

30 

8.4(g) 

42 - - 2.5±0.6 0.969 

UVC 

6 

- - - - - 

UVC/H2O2 42 0.50±0.01 0.995 5.5±0.7 0.981 

UVC/Fe2+/H2O2
(e) 3.0 

3 

- - 0.10±0.02 0.979 

UVC/Fe3+/H2O2/Oxalic acid(f) 
3.0 - - 0.11±0.02 0.962 

5.0 - - 0.8±0.2 0.979 

UVC/H2O2 

4 30 8.4(g) 

10 0.120±0.006 0.981 0.7±0.2 0.963 

20 0.199±0.006 0.988 2.2±0.5 0.952 

30 0.357±0.005 0.998 2.0±0.7 0.919 

42 0.459±0.001 0.998 5.2±0.8 0.984 

54 0.489±0.009 0.998 6.1±0.9 0.982 

6 30 8.4(g) 

10 0.066±0.003 0.948 0.9±0.2 0.932 

20 0.189±0.001 0.998 2.3±0.7 0.912 

30 0.29±0.01 0.961 3.4±0.6 0.957 

42 0.50±0.01 0.995 5.5±0.7 0.981 

54 0.54±0.02 0.992 6.9±0.4 0.995 

11 30 8.4(g) 

10 0.055±0.003 0.900 0.5±0.1 0.950 

20 0.099±0.001 0.998 1.2±0.3 0.937 

30 0.173±0.006 0.982 1.4±0.4 0.910 

42 0.309±0.006 0.996 2.4±0.5 0.951 

54 0.35±0.02 0.986 3.6±0.5 0.976 

6 30 

3.0 

42 

0.189±0.002 0.998 3.4±0.5 0.980 

5.0 0.47±0.02 0.971 3.5±0.7 0.950 

8.4(g) 0.50±0.01 0.995 5.5±0.7 0.981 

11.0 0.35±0.01 0.989 9.5±2 0.955 

6 

15 

 8.4(g) 42 

0.256±0.004 0.997 3.3±0.4 0.984 

30 0.50±0.01 0.995 5.5±0.7 0.981 

45 0.595±0.007 0.998 6.2±0.7 0.987 
aLamp Power; bPlatinum-Cobalt method; cPseudo-first-order kinetic constant; dH2O2 consumption rate; 

e[Fe2+] = 2 mg L-1; f[Fe3+] = 2 mg L-1; gnatural bio-treated textile wastewater pH.  

For the photo-Fenton reaction, a colour reduction after acidification was obtained, i.e. 9% (Pt-Co scale), 

20% (DFZ436nm), and 11% (DFZ525nm). A DOC decrease of 25% was also observed after pH adjustment, 

which may have occurred due to the precipitation of some organic compounds (sludge formation) as 

also retention in the generated foam (Figure 5.3) [42]. For the reaction at pH 5, the colour reduction 

observed after the acidification step was negligible. 
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Figure 5.2. Bio-treated textile wastewater decolourisation using different AOPs. Operation conditions: T = 30ºC; 

6W UVC lamp. Solid symbols – colour indicators; open symbols – H2O2 consumed; cross symbols – TDI 

concentration; “x” within symbols – pH.     – UVC (pH 8.4);     – H2O2 (pH 8.4; [H2O2] = 42 mM); 

    – UVC/H2O2 reaction (pH 8.4; [H2O2] = 42 mM);     – UVC/Fe2+/H2O2 (pH 3.0; [H2O2] = 3 mM; 

[Fe2+] = 2 mg L-1);     - UVC/Fe3+/H2O2/Oxalic acid (pH 3.0; [H2O2] = 3 mM; [Fe3+] = 2 mg L-1; 

iron/oxalate molar ratio of 1:3);      - UVC/Fe3+/H2O2/Oxalic acid (pH 5.0; [H2O2] = 3 mM; 

[Fe3+] = 2 mg L-1; iron/oxalate molar ratio of 1:3). 

Considering the wastewater colour removal measured by Pt-Co and DFZ436nm indicators, the photo-

Fenton reaction was an ineffective decolourisation method. The low efficiency of the photo-Fenton 

reaction on the wastewater decolourisation can be due to two possible effects: i) the presence of organic 

and inorganic species (e.g., auxiliary products) in the textile wastewater and their respective complexes 

with ferric ions, with a low photoactivity and recalcitrant characteristic to further mineralisation by 

hydroxyl radical attack [43, 44]; ii) the low iron concentration used is not able to suppress the inner filter 

effects related to other light-absorbing species present in the solution, namely dyes [13]. 
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Figure 5.3. Textile wastewater mineralisation using different AOPs. Operation conditions: T = 30ºC and 6W 

UVC lamp. Solid symbols – DOC; open symbols – H2O2 consumed.   – UVC (pH 8.4);   – H2O2 (pH 8.4; 

[H2O2] = 42 mM);   – UVC/H2O2 reaction (pH 8.4; [H2O2] = 42 mM);   – UVC/Fe2+/H2O2 (pH 3.0; [H2O2] 

= 3 mM; [Fe2+] = 2 mg L-1);   - UVC/Fe3+/H2O2/Oxalic acid (pH 3.0; [H2O2] = 3 mM; [Fe3+] = 2 mg L-1; 

iron/oxalate molar ratio of 1:3);   - UVC/Fe3+/H2O2/Oxalic acid (pH 5.0; [H2O2] = 3 mM; [Fe3+] = 2 mg L-1; 

iron/oxalate molar ratio of 1:3). 

It is widely known that ferric ions form stable and strong complexes with oxalic acid, avoiding the 

undesired interactions with other organic and inorganic species [27, 37, 45-47]. Figure 5.2 shows that 

the photo-Fenton reaction mediated by ferrioxalate complexes showed also negligible wastewater 

decolourisation efficiency, in terms of Pt-Co units and DFZ436nm. However, a small improvement on 

colour removal was observed for DFZ525nm indicator. The total dissolved iron was similar for the 

reactions with and without oxalic acid. 

The photolysis of hydrogen peroxide using UVC radiation was the most effective method for the 

decolourisation of the bio-treated textile wastewater. This indicates the high contribution of •OH 

generated from H2O2 cleavage under UVC radiation (Eq. (5.1)). 

OH2OH h

22

  (5.1) 

Maximum values of colour reduction were 71% (Pt-Co scale), 86% (DFZ436nm) and 97% (DFZ525nm) 

consuming 14.1 mM H2O2 and 2.5 kJUVC L-1. It must be underlined that the photo-Fenton reactions were 

performed with much lower H2O2 concentrations when compared with the UVC/H2O2 system. Further 

UVC/H2O2 reactions were performed in order to evaluate the effect of different reaction variables, such 

as H2O2 dosage, lamp power, wastewater pH and temperature. 
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5.3.3.1 Effect of H2O2 dosage 

The decolourisation of the bio-treated textile wastewater was evaluated through the UVC/H2O2 method 

using different initial H2O2 dosages (10, 20, 30, 42 and 54 mM) and UVC lamps (4, 6 and 11 W). Figure 

5.4 shows that the decolourisation rates increase significantly with the availability of hydrogen peroxide, 

being almost six times higher for the initial H2O2 dose of 42 mM when compared with 10 mM. For H2O2 

dosages higher than 42 mM the reaction rates remain almost unchanged. 

Shu et al. [48] reported that when the equilibrium between the  radicals and H2O2 concentrations 

is achieved, any increase on the hydrogen peroxide concentration cannot enhance the free radical 

concentration. Besides, higher H2O2 concentrations could inhibit the reaction rate because H2O2 acts as 

 scavenger (Eq. (5.2)) [49-51]. Additionally, hydroxyl radicals generated at high concentration, 

dimerize to H2O2 (Eq. (5.3)). The peroxy radicals produced, as a result of Eq. (5.2), can also enter in 

other reaction pathways (Eq. (5.4)-(5.6)) [52-55].  

  2222 HOOHOHOH  (5.2) 

22OHOHOH   (5.3) 

22222 OOHOHOHHO    (5.4) 

2222 OOHHO2   (5.5) 

222 OOHOHHO   (5.6) 

Although the decolourisation rates increase significantly with the H2O2 dosage, higher amounts of H2O2 

are consumed. In addition, higher residual H2O2 concentrations are obtained at the end of the 

experiments when using high H2O2 dosages (Figure 5.4), making necessary a subsequent system to 

achieve the complete decomposition of H2O2 present in the wastewater before its discharge to the aquatic 

environment. 

OH

OH
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Figure 5.4. Decolourisation of the bio-treated textile wastewater using the UVC/H2O2 system at different H2O2 

dosage. (a) 4W UVC lamp; (b) 6W UVC lamp; (c) 11W UVC lamp. Operation conditions: pH 8.4; T = 30ºC. 

Solid symbols – colour indicators; open symbols – H2O2 consumed.   - [H2O2] = 10 mM;   - 

[H2O2] = 20 mM;   - [H2O2] = 30 mM;   – [H2O2] = 42 mM;   - [H2O2] = 54 mM.  
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Several authors reported that the UVC/H2O2 oxidation system is able to mineralise different organic 

pollutants, such as azo and reactive dyes [56, 57]. For the bio-treated textile wastewater, the UVC/H2O2 

system showed negligible mineralisation values using H2O2 concentrations below 42 mM (Figure 5.5). 

However, DOC mineralisation around 40% was observed for a H2O2 dose of 54 mM (11W UVC lamp). 

This indicates that high doses of H2O2 are necessary to break the dyes molecules and other auxiliary 

products into smaller molecules and further conversion into carbon dioxide, water and inorganic acids. 

 

Figure 5.5. Textile wastewater mineralisation using UVC/H2O2 reaction at different H2O2 dosage. (a) 4W UVC 

lamp; (b) 6W UVC lamp; (c) 11W UVC lamp. Operation conditions: pH 8.4; T = 30ºC. Solid symbols – DOC; 

open symbols – H2O2 consumed.   - [H2O2] = 10 mM;   - [H2O2] = 20 mM;   - [H2O2] = 30 mM;   

– [H2O2] = 42 mM;   - [H2O2] = 54 mM. 

5.3.3.2 Effect of lamp power 

The pseudo-first-order kinetic constants obtained from the Pt-Co profiles, as a function of the H2O2 

concentration, are plotted in Figure 5.6 (see also Table 5.4), considering three different UVC lamp 

powers. For the hydrogen peroxide dosage interval studied, it is possible to observe two different 

behaviours: i) for the interval between 10 and 30 H2O2 mM, the decolourisation rate obtained with a 4W 

UVC lamp is higher than those obtained with 6W and 11W UVC lamps; and ii) for the range between 

42 and 54 H2O2 mM, the decolourisation rate achieved with 6W UVC lamp is higher. For all H2O2 doses 

tested, the decolourisation rates as a function of accumulated UVC energy, for the 11W UVC lamp are 

lower than for 4 and 6 W UVC lamps. 
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Figure 5.6. Pseudo-first-order kinetic constants vs. hydrogen peroxide dosage for UVC/H2O2 reactions using 

different UVC lamps. (a) – kinetic constants as a function of accumulated UVC energy; (b) - kinetic constant as 

a function of time.  – 4W UVC lamp;  – 6W UVC lamp;  – 11W UVC lamp. 

This indicates that an excess of UVC photons emitted by the 11W UVC lamp is not properly used in the 

reaction according to the reactor pathlength. On the other hand, kinetic profiles show a slight 

improvement in the decolourisation with the radiation intensity increasing along time (see Figure 5.7), 

since more photons per unit of time are available for the production of hydroxyl radicals. 

Finally, it is demonstrated that a detailed study considering the optical length of the reactor and linking 

the lamp power to the peroxide dosage should always be done in order to avoid unnecessary expenses 

with reagents and energy. Considering the presented results, the H2O2 dosage of 42 mM and 6W UVC 

lamp were used for further studies. 
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5.3.3.3 Effect of wastewater pH 

Figure 5.8 shows the decolourisation kinetic profiles for the bio-treated textile wastewater using the 

UVC/H2O2 system at different initial pH values (3.0, 5.0, 8.4 and 11.0). Increasing the wastewater pH 

to 11 through the addition of NaOH, DFZ436nm value increases ~24%, DFZ525nm value decreases ~10%, 

while the value of Pt-Co indicator did not change (DOC remained constant). The wastewater pH affects 

the chemical speciation of the dyes and other organic and inorganic species, affecting the absorption 

properties of the wastewater (Figure 5.9) [58-62]. 

 

Figure 5.8. Bio-treated textile wastewater decolourisation using UVC/H2O2 reaction at different pH values. 

Operation conditions: T = 30ºC; [H2O2] = 42 mM and 6W UVC lamp. Solid symbols –colour indicators; cross 

symbols – DOC; open symbols – H2O2 consumed; “x” within symbols – pH.     – pH 3.0;     – pH 

5.0;     – pH 8.4;      – pH 11.0. 
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After radiation was turned on, the reaction at natural wastewater pH (pH 8.4) showed better results than 

reactions at acidic and basic pH. The reaction rate at pH 5.0 was very similar to that observed at natural 

pH. However, the kinetic rates decreased by a factor of 2.6 when the pH decreased from 8.4 to 3.0, 

respectively. 

 

Figure 5.9. Variation of the UV-vis absorption spectra for the bio-treated textile wastewater as a function of pH. 

The poor decolourisation results at low pH can be related to the presence of HSO4
- at acid pH (as 

demonstrated on the Figure 5.10) [63], which is known to be a strong hydroxyl free radical scavenger 

(Eq. (5.7)) [52, 56, 64]. 

 

Figure 5.10. Speciation diagrams for SO4
2- complexes as a function of pH for the bio-treated textile wastewater. 

Ionic strength = 0.08 M; Temperature = 30ºC; [SO4
2-] = 7.67 mM; [Na+] = 7.71×101 mM. 
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Depending on the operating conditions, the sulphate radical can oxidise some reactive oxygen species, 

including H2O2 (Eq. (5.8)-(5.12)). Beyond that, even being a strong oxidant, this species is slightly less 

reactive and more selective compared to  [65, 66], affecting the organic compounds oxidation rates 

[67, 68]. 

OHSOOHHSO 244    k = 3.5 105 M-1 s-1 (5.7) 

OHSOHOHSO 2

424

   k = 6.6 102 s-1 (5.8) 

OHSOHOSO 2

44

   k = 1.4 107 M-1 s-1 (5.9) 

  2

2

4224 HOHSOOHSO  k = 1.2 107 M-1 s-1 (5.10) 

2

2

424 OHSOHOSO    k = 3.5 109 M-1 s-1 (5.11) 

  2

8224 OSSOSO  k = 2.7 108 M-1 s-1 (5.12) 

Furthermore, in acidic medium, the concentration of H+ rises, which can also have negative effects on 

the reaction, since it can react with H2O2 (Eq. (5.13)), yielding the peroxonium ion (H3O2
+), and acting 

as a scavenger of  (Eq. (5.14)) [63]. 

  2322 OHHOH  (5.13) 

OHeHOH 2   (5.14) 

Similar inhibition of the colour reduction was observed at pH 11. However, the H2O2 consumption rate 

is almost 2.0 times higher at pH 11 when compared with the reaction at natural wastewater pH. This can 

be attributed to two main factors: (i) in alkaline medium, the H2O2 becomes highly unstable and self-

decomposition occurs, which is strongly pH dependent [69]. The self-decomposition will rapidly break 

down the H2O2 molecules into water and oxygen and they lose their characteristics as an oxidant, and 

most importantly as source of hydroxyl radicals (Eq. (5.15)); (ii) previous works described that under 

alkaline conditions, hydrogen peroxide deprotonates until achieving an equilibrium between H2O2 and 

HO2
- species (pKa =11.55 at 30ºC) (Figure 5.11) [52, 57, 64, 70]. 

The HO2
- species reacts with  (Eq. (5.16)) [71-73], which leads to dioxygen and water, instead of 

producing hydroxyl radicals under UVC radiation. Therefore, the instantaneous concentration of  

OH

OH

OH

OH
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is lower than expected. Furthermore, the deactivation of  is more important at basic pH values. The 

reaction of  with HO2
-  is approximately 100 times faster than with H2O2 [64].  

2222 OOH2OH2    (5.15) 

  222 OOHHOOH  
k = 7.5 x 109 M-1 s-1 (5.16) 

 

Figure 5.11. Distribution diagram of the molar fractions of hydrogen peroxide and hydroperoxy anion as a 

function of pH. (pKa =11.55 at 30ºC) [70]. 

5.3.3.4 Effect of wastewater temperature 

Figure 5.12 shows the effect of the bio-treated wastewater temperature on the decolourisation efficiency 

using the UVC/H2O2 system. Decolourisation and mineralisation rates are favoured at higher 

temperatures, especially when the temperature raises from 15 to 30ºC. This suggest that the generation 

of OH radicals through H2O2 photolysis is enhanced by the increase of the solution temperature [74]. 

Even though a slight increase in reaction efficiency was observed, increasing the temperature from 30 

to 45ºC did not result in a considerable increase on the mineralisation and decolourisation. For the 

reaction at 15ºC, after 3.2 kJUV L
-1 of energy, only 7% of initial DOC was removed, in contrast with 

nearly 41% removal at 30ºC. Besides, the increase of the wastewater temperature from 30ºC to 45ºC did 

not promoted the H2O2 consumption rate. These results reinforce other ones from a similar work [75], 

where higher H2O2 consumption was observed only at higher temperatures than those tested here 
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(>50ºC), as a result of hydrogen peroxide decomposition into H2O and O2 (inactive species) and the 

formation of radicals with lesser oxidation potential [37]. 

 

Figure 5.12. Decolourisation of the bio-treated textile wastewater using UVC/H2O2 reaction at different 

temperatures. Operation conditions: pH 8.4; [H2O2] = 42 mM and 6W UVC lamp. Solid symbols – colour 

indicators; cross symbols – DOC; open symbols – H2O2 consumed; “x” within symbols – Temperature.    

 – T = 15ºC;      - T = 30ºC;      - T = 45ºC. 

5.3.3.5 Evaluation of inorganic ions and low-molecular-weight carboxylate anions (LMWCA) 

Throughout the UVC/H2O2 reaction, the concentration of all measured inorganic ions remained 

approximately constant. As an example, Figure 5.13 shows that chloride and sulphate ions concentration 

remained at around 1465 mg Cl- L-1 and 730 mg SO4
2- L-1, respectively. Figure 5.13 also shows an 

increase of the DOC corresponding to low-molecular-weight carboxylate anions (LMWCA/DOC ratio) 

after 0.8 kJUV L
-1 of energy dosage, achieving maximum values of 20% (considering the LMWCA 

analysed). Previous works have reported that the oxidative cleavage of aromatic compounds can lead to 
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ring opening products, consisting of simpler organic acids including acetic, formic, glyoxylic and oxalic 

acids [73, 76]. 

It is noteworthy that, the carboxylic acids have emerged exactly after the induction period in DOC 

abatement (0.8 kJUV L-1). After that, the mineralisation increases substantially associated with the 

conversion of carboxylic acids (final products of an oxidative reaction) to CO2, H2O and mineral acids 

[77]. According to the LMWCA analysis, only oxalic, maleic and tartaric acids were detected. Maleic 

acid, which can compete for the free radicals [30], was detected in very low concentrations 

(<0.18 mg L−1). In contrast, the tartaric acid was accumulated in a larger extent up to 21.4 mg L−1. 

Finally, oxalic acid, which is regarded as one of the ultimate carboxylic acids because it is directly 

oxidized to carbon dioxide [78] and is a common short-chain carboxylic acid resulting from the treatment 

process under study [79], was formed after 1 kJUV L-1 radiation and probably results from the degradation 

of the benzenic moieties of aromatic intermediates [80]. 

 

Figure 5.13. Detailed assessment of the bio-treated textile wastewater oxidation using the UVC/H2O2 system:       

 - DOC;  - LMWCA/DOC;  - DFZ436nm;  - DFZ525nm;  - Pt-Co scale;  - Chloride;  - Sulphate;  - 

Oxalic acid;  - Maleic acid;  - Tartaric acid. 
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5.4 Conclusions 

The textile wastewater from polyester-cotton dyeing exhibited a moderate biodegradability and, as a 

consequence, a significant DOC removal above 76% was achieved by biological oxidation. However, 

no significant decolourisation was detected during the biological oxidation, being the colour visible after 

1:40 dilution. So, different AOPs were applied as a polishing step, regarding colour removal. UVC and 

H2O2 alone showed negligible decolourisation efficiencies. The UVC/Fe2+/H2O2 process showed limited 

efficiency in the decolourisation of the bio-treated textile wastewater, mainly attributed to the low iron 

content able to be used, since the total iron discharge limit is 2 mg L-1. In these conditions, the low iron 

concentration used is not able to suppress the inner filter effects related to other light-absorbing species 

present in the solution. Beyond that, ferric ions complexes with the organic and inorganic species (e.g., 

auxiliary products) present in the textile wastewater, which present low photoactivity and recalcitrant 

characteristic to further mineralisation by hydroxyl radical attack. The addition of oxalic acid, as a ferric 

ions ligand, did not lead to an increase of the wastewater decolourisation.  

Although the UVC/H2O2 system showed to be effective in the decolourisation of the bio-treated textile 

wastewater, H2O2 in excess is requested. Higher wastewater temperature showed to have a positive effect 

on the UVC/H2O2 reaction. Alkaline and acidic wastewaters inhibited the decolourisation of the bio-

treated wastewater using the UVC/H2O2 system. Besides, it was shown that the UVC/H2O2 reaction 

efficiency is mostly affected by the relation between the H2O2 dosage and lamp power. Finally, the 

integrated treatment strategy for the textile wastewater, combining biological and UVC/H2O2 oxidation 

processes, was able to meet with the legal discharge limits.
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6 Assessment of AOPs as a polishing step in the 

decolourisation of bio-treated textile wastewater: 

technical and economic considerations4 

This chapter reports on the decolourisation of a bio-treated 

real textile wastewater using UVC/H2O2 and photo-Fenton 

oxidation processes, as a polishing step. The efficiency of 

hydrogen peroxide photolysis using UVC radiation on the 

wastewater decolourisation was evaluated at different 

reaction conditions. The effect of radiation source, iron 

concentration, pH value and H2O2 concentration on the 

photo-Fenton reaction was also assessed. The viability of 

the photo-Fenton reaction enhanced by ferric-organic 

ligands using artificial solar radiation was also under 

consideration. In addition, the costs associated with the 

processes studied were evaluated and compared. 

 

 

 

 

 

                                                           
4This Chapter is based on the research article: “Soares, P.A., Silva, Tânia F. C. V., Arcy, A. R., Selene 

M. A. Guelli U., Boaventura, Rui A. R., Vilar, Vítor J. P., Assessment of AOPs as a polishing step in the 

decolourisation of bio-treated textile wastewater: technical an economic considerations. Journal of 

Photochemistry and Photobiology A: Chemistry. 2016 317: p. 26-38. 
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6.1 Introduction 

Wastewaters discharged from textile plants have a considerable recalcitrant organic fraction, normally 

associated with dyes, surfactants and other additives [1]. In addition, wastewaters from the textile dyeing 

processes have a strong coloration which is difficult to remove, causing serious environmental impacts 

[2]. In response to increasingly stringent legislation, environmental engineers are looking for eco-

efficient and environmentally sound technologies for the decolourisation and mineralisation of textile 

wastewaters [2-5]. The combination of biological and physical/chemical processes, such as 

coagulation/flocculation, is currently the most common approach applied to textile wastewater treatment 

[6]. Biological oxidation systems have provided good results for the mineralisation of the non-

recalcitrant organic fraction of textile wastewater, especially when it is mixed with biodegradable 

wastewaters, e.g., domestic sewage [7]. On the other hand, it is known that biological processes are not 

always efficient as regards wastewater decolourisation, mainly due to the recalcitrant characteristic of 

most synthetic organic dyes. In the case of coagulation/flocculation systems,  the contaminants are 

merely transferred from the wastewater to the sludge, which then needs careful disposal [8]. 

Recently, other technologies for the decolourisation of textile wastewater have been emerging, such as 

advanced oxidation processes (AOPs). In this regard, the photo-Fenton (PF) process using solar light 

has shown to be a promising low cost technique, since solar radiation as a UV–Vis photon source 

represents an extra mechanism for •OH generation through the photolysis of iron complexes [9]. 

However, several drawbacks associated with the application of this process in the treatment of textile 

wastewaters have been reported in the literature [10], for instance: i) textile wastewaters are usually 

alkaline and thus high amounts of acid are required in the acidification step of the photo-Fenton reaction, 

with the subsequent need for neutralisation; and ii) ferric-dissolved organic matter complexes can be 

formed, limiting the photoreduction of Fe3+, hindering the decomposition of H2O2 in the Fenton reaction 

and decreasing the overall efficiency of the photo-Fenton process [11, 12]. The enhancement of the 

photo-Fenton reaction can be achieved through the use of ferricarboxylate complexes [13], minimizing 

the formation of undesirable poorly photoactive and/or insoluble ferric-organic matter complexes and 

making it possible to work under near neutral pH conditions. 

On the other hand, UVC/H2O2 is one of the most commonly applied AOPs [14-16], where hydroxyl 

radicals are generated through the photolysis of hydrogen peroxide under UVC radiation. UVC/H2O2 

has been extensively investigated for the degradation of different organic pollutants, such as phenol 

derivatives [17, 18], pesticides [19], EDTA [20] and antibiotics [21]. In recent years, UVC light emitting 

diodes (UV-LEDs), which are a mercury-free source of monochromatic UVC radiation, have been 
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shown to be a promising UV light source for the photolysis of H2O2 [22, 23]. Although UVC/H2O2 has 

also been efficiently used for the decolourisation of several dye solutions on the lab scale [8, 24-26], the 

lack of information related to the treatment of real textile wastewaters is one of the main reasons for the 

absence of real applications in this field. 

The aim of this study was to assess the decolourisation of a bio-treated real textile wastewater using 

UVC/H2O2 and the photo-Fenton oxidation process as polishing step. The efficiency of hydrogen 

peroxide photolysis under UVC radiation in relation to the decolourisation of the wastewater was 

evaluated at different pH values, H2O2 concentrations and temperatures. The effect of the radiation 

source (UVC, UVA or UVA-Visible), iron concentration, pH value and H2O2 concentration on the 

photo-Fenton reaction was also studied. The viability of the photo-Fenton reaction enhanced by ferric-

organic ligands using artificial solar radiation was also evaluated at different iron concentrations, pH 

values and iron/organic ligand molar ratios. In addition, the costs associated with the studied processes 

were calculated and compared. 
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6.2 Material and Methods 

All the chemicals and reagents used in this work, the detailed description of the lab-scale and pilot-plant 

scale experimental units, along with the corresponding experimental procedures, and, finally, the 

employed methods can be consulted in Chapter 2. The detailed operational conditions of the assays 

reported in this chapter are shown in Table 6.1 (lab-scale lamp photoreactor) and Table 6.2 (lab-scale 

sunlight simulator photoreactor). 

Table 6.1. Operational conditions reactions under UVC radiation. 

System TDIa Tb pH Dosage of H2O2
c 

UVC/H2O2 - 

30 2.8 2.1 
UVC/Fe2+/H2O2 

0.5 

1 

2 

UVC/H2O2 - 

15 

Natural 2.1 30 

45 

15 

2.8 2.1 30 

45 

UVC/Fe2+/H2O2 2 

15 

2.8 2.1 30 

45 

UVC/H2O2 - 30 Natural 

0.7 

1.3 

2.1 

4.2 

6.9 

10.0 

UVC/Fe2+/H2O2 2 30 2.8 

0.7 

1.3 

2.1 

4.2 

6.9 

10.0 

aDissolved iron concentration (mg L-1); bLiquid phase temperature (ºC); c(mM H2O2). 
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Table 6.2. Operational conditions for reactions under UVA-Visible radiation. 

System TDIa Molar Ratio 

(Fe:LIG) 
Tb pH 

Dosage of 

H2O2
c 

UVA-Vis/Fe2+/H2O2 

10 

- 

30 2. 8 

2.1 

UVA-Vis/Fe3+/H2O2/Oxalic acid 1:3 3.1 

UVA-Vis/Fe3+/H2O2/EDDS 1:1 2.1 

      UVA-Vis/Fe3+/H2O2/Citric acid 1:1 3.1 

UVA-Vis/Fe3+/H2O2/Oxalic acid 10 

1:3 

30 2.8 

3.1 

1:6 5.1 

1:9 5.1 

UVA-Vis/Fe3+/H2O2/Oxalic acid 

2 

1:3 30 2.8 

2.1 

6 3.1 

10 3.1 

20 5.1 

40 9.8 

UVA-Vis/Fe3+/H2O2/Oxalic acid 6 
1:3 

30 

2.9d 3.1 

3.7d 3.1 

4.1d 3.1 

4.9d 3.1 

5.5d 3.1 

5.9d 3.1 

1:6 6.1d 3.1 

aDissolved iron concentration (mg L-1); bLiquid phase temperature (ºC); c(mM H2O2); daverage pH. 
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6.3 Results and discussion 

6.3.1 Characteristics of the textile wastewater 

Table 2.7 (Materials and methods – Chapter 2) shows a brief characterisation of the bio-treated real 

textile wastewater used in this study. The wastewater presents a near neutral pH value (~7.8) and a low 

organic load (COD = 107 mg O2 L
-1 and DOC = 32 mg C L-1). High concentrations were found for 

chloride and sodium ions (613 mg Cl- L-1 and 659 mg Na+ L-1, respectively). The wastewater shows a 

reddish colour, equivalent to 160 mg Pt-Co L-1. Furthermore, a greater absorbance was observed at 

DFZ436nm compared with DFZ525nm and DFZ620nm, which indicates a predominance of violet with respect 

to green and orange in the wastewater absorption spectrum. 

The bio-treated real textile wastewater was found to be in accordance with the Portuguese regulations 

for discharge into water bodies [27] with one exception, that is, the limits for colour. According to the 

cited standard, the wastewater has to be uncoloured at a 1:20 dilution. However, this quality criterion 

does not allow the colour removal efficiencies to be calculated and the results from different experiments 

to be compared. 

In order to overcome this limitation, the German textile wastewater discharge standard [28] was used 

for the technical and economic assessment carried out in this study. This legislation was selected for two 

main reasons: i) a simple and efficient technique for colour measurement based on DIN EN ISO:7887 

[29] is adopted; and ii) for the textile wastewater used in this study, the German legislation establishes 

7 m-1 (DFZ436nm), 5 m-1 (DFZ525nm) and 3 m-1 (DFZ620nm), which is in accordance with Portuguese 

legislation (uncoloured wastewater at 1:20 dilution). 

6.3.2 Photo-Fenton decolourisation using different radiation sources 

The decolourisation of the textile wastewater through the conventional photo-Fenton reaction was 

evaluated using different radiation sources (pH = 2.8; [Fe2+] = 2 mg L-1; T = 30ºC) (Figure 6.1). Although 

a similar colour reduction after acidification was obtained for all test conditions, i.e., ~38% (Pt-Co 

method), ~27% (DFZ436nm), ~29% (DFZ525nm) and ~44% (DFZ620nm), negligible mineralisation was 

observed (Figure 6.2). 

This may be caused by: i) the dissociation of some dyes, which leads to different absorption properties 

as a function of pH [30-34]; or/and ii) the precipitation of some dyes, e.g., sulphur and vat dyes [35], 
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which means that the dye molecules, before ionisation and water solubilisation in moderately alkali 

solution, become insoluble in water at acid pH [36-38]. Since the reduction in the colour was partial and 

textile dyes normally contribute to a low DOC in textile wastewaters, it is possible that the precipitation 

of a small part of these compounds would not be detected through DOC monitoring. 

 
Figure 6.1. Decolourisation of the textile wastewater using different sources of radiation.  - UVC/Fe2+/H2O2;  

- UVA/Fe2+/H2O2;  – UVA-Vis/Fe2+/H2O2. 
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After the radiation was turned on, the photo-Fenton reaction under UVC radiation led to better results 

than when UVA and UVA-Visible light were used, as regards the colour removal associated with dye 

species absorbing in the lower range of visible light (DFZ436 nm and Pt-Co). Similar results were obtained 

in the decolourisation of dye species which absorb at longer wavelengths, such as 525 nm and 620 nm. 

The evaluation of the decolourisation by the platinum-cobalt and DFZ436nm methods showed good 

agreement with the visual observations. 

 
Figure 6.2. Mineralisation of the textile wastewater using different sources of radiation. Solid symbols – DOC; 

open symbols – H2O2 consumed; cross symbols – total dissolved iron (TDI).    - UVC/Fe2+/H2O2;    - 

UVA/Fe2+/H2O2;    – UVA-Vis/Fe2+/H2O2. 

The low efficiency of the photo-Fenton reaction under UVA and UVA-Visible light may be associated 

with the formation of stable complexes between Fe3+ and organic pollutants present in the textile 

wastewater, which present low photoactivity under UVA and visible light, limiting the photoreduction 

of Fe3+. 

Under UVC radiation, the photo-Fenton reaction showed a high decolourisation efficiency related to the 

photolysis of hydrogen peroxide, leading to the formation of extra OH radicals. The photolysis of H2O2 

has a low quantum yield under UVA and visible light. In addition, the beneficial effect of the use of 

UVC radiation can be related to the higher quantum yield of FeOH2+ and other iron species for OH 

generation at lower wavelengths [39]. Further reactions under UVC radiation were performed in order 
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to evaluate the effect of different reaction variables, such as iron concentration, temperature, pH and 

hydrogen peroxide concentration. 

6.3.3 Decolourisation under UVC reaction 

6.3.3.1 Effect of iron concentration 

Figure 6.3 shows the decolourisation results obtained for the photo-Fenton reaction under UVC radiation 

at different initial ferrous iron concentrations (0.5, 1.0 and 2.0 mg Fe2+ L-1; T = 30ºC; pH = 2.8; 

[H2O2] = 2.1 mM) and for the UVC/H2O2 system (T = 30ºC; pH = 2.8; [H2O2] = 2.1 mM). 

 
Figure 6.3. Decolourisation of the textile wastewater under UVC radiation using different iron concentrations.  

- [Fe2+] = 2 mg L-1;  - [Fe2+] = 1 mg L-1;  - [Fe2+] = 0.5 mg L-1;  – without iron. 
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The decolourisation kinetics profiles show a very similar behaviour up to QUV ≈ 0.75 kJUV L-1, indicating 

that the photolysis of H2O2 is the predominant mechanism. For higher QUV values, a slight improvement 

in the decolourisation rate with an increase in the iron concentration is observed. This may be related to 

the breakdown of poorly photoactive iron-organic complexes due to OH radicals generated from the 

photolysis of H2O2, and consequently more OH radicals are generated from the H2O2 decomposition in 

the presence of ferrous iron as well as from the photoreduction of Fe(III)-hydroxy complexes. 

6.3.3.2 Effect of solution temperature 

Figure 6.4 shows the textile wastewater decolourisation profiles for different temperatures (15°C, 30°C, 

and 45ºC) resulting from: (a) the UVC/H2O2 system with the natural wastewater pH and acidic pH of 

2.8, with a H2O2 dosage of 2.1 mM; and (b) the UVC/Fe2+/H2O2 system with a pH value of 2.8, iron 

concentration of 2 mg Fe2+ L-1 and H2O2 dosage of 2.1 mM. 

 
Figure 6.4. Textile wastewater decolourisation under UVC radiation at different temperatures. (a) UVC/H2O2 

reactions; (b) UVC/Fe2+/H2O2 reactions. Solid symbols – Colour on Pt-Co scale; open symbols – H2O2 consumed; 

cross symbols – Colour on DFZ436nm scale; half painted symbols - Temperature. Continuous line – pH 2.8; dotted 

line – natural pH.     – T=15ºC;     – T=30ºC;     – T=45ºC. 
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An increase in temperature favours the decolourisation rates (Figure 6.4a and Table 6.3) of the textile 

wastewater using the UVC/H2O2 system, suggesting that the generation of OH radicals through H2O2 

photolysis is enhanced, i.e., the UV/H2O2 system is positively influenced by a temperature increase [40]. 

For the reactions at natural pH, although the decolourisation rate at 45ºC is 1.6 times higher than at 15ºC, 

the H2O2 consumption rate is almost 2.0 times higher at 45ºC; the same behaviour was observed at pH 

2.8. This phenomenon can be explained by hydrogen peroxide decomposition into H2O and O2 (inactive 

species) and the formation of radicals with lower oxidation potential at high temperatures, and 

consequently the rate of decomposition of hydrogen peroxide can duplicate every time the temperature 

rises by 10ºC [41, 42]. 

Table 6.3. Operational conditions and pseudo-first-order kinetic constants for reaction under UVC radiation. 

System TDIa Tb pH 

Dosage 

of 

H2O2
c 

Kinetic parameters 

Decolourisationd H2O2 consumption 

ke  R2 kH
f  R2 

UVC/H2O2 - 

30 2.8 2.1 

0.57±0.08 0.991 0.56±0.09 0.919 

UVC/Fe2+/H2O2 

0.5 0.7±0.2 0.974 0.7±0.3 0.916 

1 0.71±0.08 0.996 0.88±0.04 0.999 

2 1.0±0.1 0.993 1.0±0.2 0.979 

UVC/H2O2 - 

15 

Natural 2.1 

0.41±0.05 0.990 0.39±0.01 0.999 

30 0.6±0.1 0.970 0.59±0.07 0.994 

45 0.66±0.07 0.992 0.71±0.06 0.992 

15 

2.8 2.1 

0.35±0.04 0.992 0.36±0.03 0.995 

30 0.57±0.08 0.991 0.56±0.09 0.919 

45 0.8±0.2 0.980 0.9±0.2 0.981 

UVC/Fe2+/H2O2 2 

15 

2.8 2.1 

0.54±0.04 0.993 0.7±0.1 0.986 

30 1.0±0.1 0.993 1.0±0.2 0.979 

45 1.6±0.3 0.990 1.87±0.05 0.999 

UVC/H2O2 - 30 Natural 

0.7 0.21±0.04 0.992 0.3±0.1 0.922 

1.3 0.43±0.05 0.994 0.53±0.05 0.990 

2.1 0.6±0.1 0.970 0.59±0.07 0.994 

4.2 1.3±0.3 0.970 0.8±0.1 0.985 

6.9 2.1±0.6 0.976 1.7±0.1 0.998 

10.0 2.2±0.4 0.969 3.0±0.2 0.994 

UVC/Fe2+/H2O2 2 30 2.8 

0.7 0.69±0.09 0.995 0.41±0.05 0.993 

1.3 0.9±0.1 0.992 0.57±0.09 0.982 

2.1 1.0±0.1 0.993 1.0±0.2 0.979 

4.2 1.4±0.3 0.995 2.6±0.8 0.990 

6.9 1.9±0.1 0.996 5.6±0.9 0.987 

10.0 2.0±0.3 0.992 5.4±0.9 0.912 

aDissolved iron concentration (mg L-1); bLiquid temperature (ºC); c(mM H2O2); dPlatinum-Cobalt method; 

ePseudo-first-order kinetic constant (L kJ-1); fH2O2 consumption rate (mmol kJ-1). 
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Although the decolourisation rate for the UVC/H2O2 system is similar at neutral and acid pH values, the 

amount of UVC energy required to achieve the same decolourisation efficiency is higher under neutral 

pH conditions. This is mainly related to the marked contribution of the acidification procedure to the 

colour removal. It should be noted that at the end of the UVC/H2O2 assay performed at acid pH, the 

solution was neutralized using sodium hydroxide but the colour indicators (Pt-Co, DFZ436nm) remained 

the same. 

An increase in the temperature improved significantly the photo-Fenton decolourisation reaction rate 

(Figure 6.4b and Table 6.3), achieving a wastewater suitable for discharge to water bodies in accordance 

with the legislation [28], after 0.13 kJUV L-1 energy uptake and 0.3 mM H2O2 consumption. It has been 

previously reported that the molar fraction of the FeOH2+ species increases with temperature [43] and 

therefore the beneficial effect of temperature on the reaction rates can be associated with two main 

factors: i) the presence of different amounts of photoactive species (FeOH2+); and ii) higher levels of 

Fe3+ reduction through thermal Fenton reactions [10], which may also be associated with the fact that 

the H2O2 consumption rate in the photo-Fenton reactions was higher than in the UVC/H2O2 reactions. 

6.3.3.3 Effect of H2O2 concentration 

Figure 6.5a shows the decolourisation kinetics profiles for the textile wastewater using the UVC/H2O2 

system at different initial hydrogen peroxide concentrations (0.7, 1.3, 2.1, 4.2, 6.9 and 10 mM) at the 

natural wastewater pH. The decolourisation rates increase significantly with the availability of hydrogen 

peroxide, being ten times higher for the initial H2O2 dose of 6.9 mM when compared with 0.7 mM. For 

H2O2 dosages higher than 6.9 mM the reaction rate remains almost unchanged. 

As reported by other authors [8, 24, 44], the presence of excess hydrogen peroxide can lower the 

decolourisation efficiency, which occurs mainly because the ●OH radicals reach equilibrium with the 

concentration of hydrogen peroxide. Above the equilibrium concentration, an increase in the hydrogen 

peroxide does not enhance the free radical concentration [8]. In addition, the results of other studies also 

suggest that H2O2 itself can act as an effective OH radical scavenger at concentrations that are specific 

for each pollutant, and the presence of excess H2O2 can lower the treatment efficiency of AOPs [45]. 
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Figure 6.5. Textile wastewater decolourisation under UVC radiation at different H2O2 dosage. (a) UVC/H2O2 

reactions; (b) UVC/ Fe2+/H2O2 reactions. Solid symbols – Colour on Pt-Co scale; open symbols – H2O2 consumed; 

cross symbols – Colour on DFZ436nm scale; half painted symbols – H2O2 concentration.     – [H2O2] = 0.7 

mM;     – [H2O2] = 1.3 mM;     – [H2O2] = 2.1 mM;     – [H2O2] = 4.2 mM;     - 

[H2O2] = 6.9 mM;     – [H2O2] = 10.0 mM. 

In order to evaluate the role of photolysis and the effect of the applied peroxide dosage on the 

decolourisation, control experiments in the absence of UVC radiation or H2O2, at natural pH and pH 2.8, 

were carried out separately (Figure 6.6). Both systems showed a negligible decolourisation rate, which 

suggests that the wastewater studied is photolytically stable under UVC radiation and the oxidizing 

potential of H2O2 is not sufficient to decolorise the wastewater. As expected, acidification to pH 2.8 

leads to a colour reduction. However, at the end of the assays the solutions were neutralized using sodium 

hydroxide and the colour indicators (Pt-Co, DFZ436nm) provided values similar to those of the raw 

wastewater. 
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Figure 6.6. Decolourisation of the textile wastewater using UVC and H2O2 processes.  – UVC radiation at 

natural pH;  – UVC radiation at pH 2.8;  – H2O2 process at natural pH and [H2O2] = 6.9 mM;  – H2O2 process 

at pH 2.8  and  [H2O2] = 6.9 mM. 

Figure 6.5b shows a significant increase in the decolourisation rate with the availability of H2O2 using 

the photo-Fenton reaction with UVC radiation under acidic conditions (pH = 2.8). The decolourisation 

rate using 6.9 mM of H2O2 is almost three times higher than that obtained with 0.7 mM. Although the 

decolourisation rate increases significantly with the H2O2 dosage, higher amounts of H2O2 are consumed. 

Also, higher residual H2O2 concentrations are obtained at the end of the experiments when using high 
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H2O2 dosages, a subsequent system being necessary to achieve the complete decomposition of the H2O2 

present in the wastewater before its discharge to the aquatic system. 

The results for pseudo-first-order kinetics constant versus H2O2 initial concentration, for both systems 

studied, are summarized in Figure 6.7. It can be observed that in the interval between 0.7 mM and 

6.9 mM of H2O2 the initial H2O2 concentration had a greater effect in the UVC/H2O2 system than in the 

photo-Fenton process. 

 

Figure 6.7. The pseudo-first-order kinetic constants vs. hydrogen peroxide initial concentration for (a) UVC/H2O2 

reactions (natural wastewater pH and T = 30ºC) and for (b) UVC/Fe2+/H2O2 reactions (pH = 2.8; T = 30ºC and 

[Fe2+] = 2 mg L-1).  – UVC/H2O2 reactions and  - UVC/ Fe2+/H2O2 reactions. 

6.3.4 UVA-Visible decolourisation reactions 

As demonstrated above (Figure 6.1), the photo-Fenton reaction exhibited a low performance under 

UVA-Visible radiation when compared with the reaction under UVC radiation. In order to improve the 

efficiency of the photo-Fenton reaction under UVA-Visible radiation, which enables the use of natural 

solar light, additional experiments were performed using ferrioxalate complexes (Table 6.4). 
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Table 6.4. Operational conditions and pseudo-first-order kinetic constants for reactions under UVA-Visible 

radiation. 

System TDIa 

Molar 

Ratio 

(Fe:LIG) 

Tb pH 

Dosage 

of 

H2O2
c 

Kinetic parameters 

Decolourisationd H2O2 consumption 

ke  R2 kH
f  R2 

UVA-Vis/Fe2+/H2O2 

10 

- 

30 2. 8 

2.1 0.21±0.09 0.966 0.32±0.04 0.994 

UVA-Vis/Fe3+/H2O2/Oxalic acid 1:3 3.1 1.4±0.3 0.994 1.0±0.7 0.990 

UVA-Vis/Fe3+/H2O2/EDDS 1:1 2.1 0.8±0.2 0.990 0.7±0.1 0.989 

      UVA-Vis/Fe3+/H2O2/Citric acid 1:1 3.1 0.7±0.3 0.914 0.9±0.2 0.995 

UVA-Vis/Fe3+/H2O2/Oxalic acid 10 

1:3 

30 2.8 

3.1 1.4±0.3 0.994 1.0±0.7 0.990 

1:6 5.1 0.7±0.2 0.966 1.6±0.5 0.990 

1:9 5.1 0.6±0.1 0.991 1.7±0.3 0.990 

UVA-Vis/Fe3+/H2O2/Oxalic acid 

2 

1:3 30 2.8 

2.1 0.3±0.1 0.935 0.24±0.08 0.990 

6 3.1 1.3±0.1 0.998 0.7±0.3 0.926 

10 3.1 1.4±0.3 0.994 1.0±0.7 0.990 

20 5.1 1.2±0.2 0.995 2.4±0.9 0.990 

40 9.8 0.9±0.4 0.899 4.4±0.4 0.997 

UVA-Vis/Fe3+/H2O2/Oxalic acid 6 
1:3 

30 

2.8 3.1 1.3±0.2 0.997 0.8±0.3 0.945 

3.5 3.1 1.3±0.5 0.980 1.1±0.4 0.940 

4.0 3.1 0.8±0.1 0.993 0.9±0.4 0.899 

4.5 3.1 0.4±0.1 0.900 1.0±0.4 0.900 

5.0 3.1 0.5±0.2 0.900 1.0±0.5 0.920 

5.5 3.1 0.16±0.07 0.950 0.7±0.2 0.958 

1:6 5.5 3.1 0.16±0.08 0.901 0.7±0.1 0.975 

aDissolved iron concentration (mg L-1); bLiquid phase temperature (ºC); c(mM H2O2); dPlatinum-Cobalt method; 

ePseudo-first-order kinetic constant (L kJ-1); fH2O2 consumption rate (mmol kJ-1); gaverage pH. 

6.3.4.1 Effect of iron concentration 

Figure 6.8 shows the effect of the iron concentration (2, 6, 10, 20 and 40 mg Fe3+ L-1) on the 

decolourisation of the bio-treated textile wastewater using the UVA-Vis/Fe3+/H2O2/Oxalic acid system. 

It can be observed that the addition of oxalic acid, as an organic ligand of ferric ions, enhanced 

significantly the photo-Fenton reaction under UVA-Visible radiation, for an iron concentration in the 

range of 6 to 10 mg Fe3+ L-1. The reaction with 2 mg Fe3+ L-1 clearly did not achieved significant 

decolourisation, which can be explained by two possible facts: i) at this concentration the iron available 

was not able to absorb all available UV-visible photons, probably hampered by the presence of other 

light-absorbing species in solution, namely the dyes [13], or ii) the short lifetime of ferrioxalate 

complexes, which was not sufficient to destroy all of the dissolved organic pollutants responsible for the 

formation of unwanted iron complexes with low photoactivity. 
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Figure 6.8. Decolourisation of the textile wastewater using UVA-Vis/Fe3+/H2O2/Oxalic Acid reaction with 

different iron concentrations. Solid symbols – Colour on Pt-Co scale; open symbols – H2O2 consumed; cross 

symbols – Colour on DFZ436nm scale; “x” within symbols - TDI concentration.     – [Fe2+] = 2 mg L-1;  

   – [Fe2+] = 6 mg L-1;    - [Fe2+] = 10 mg L-1;    - [Fe2+] = 20 mg L-1;     - 

[Fe2+] = 40 mg L-1. 

 

For the two highest iron concentrations tested, 20 and 40 mg Fe3+ L-1, a large increase in the colour 

intensity was observed after the addition of oxalic acid and ferric ions, which indicates that ferrioxalate 

complexes affect significantly the colour results obtained by the Pt-Co method. After the total 

decarboxylation of ferrioxalate complexes, the decolourisation efficiency achieved for the two highest 

iron concentrations was similar to that obtained for 6 and 10 mg Fe3+ L-1 (Figure 6.9). 
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Figure 6.9. Mineralisation of the textile wastewater using UVA-Vis/Fe3+/H2O2/Oxalic Acid reaction with 

different iron concentrations. Solid symbols – DOC; half-painted symbols - Oxalate.   – [Fe2+] = 2 mg L-1;  

 – [Fe2+] = 6 mg L-1;   - [Fe2+] = 10 mg L-1;   - [Fe2+] = 20 mg L-1;   - [Fe2+] = 40 mg L-1. 

Higher iron concentrations require higher amounts of oxalic acid to be added in order to maintain the 

same iron/oxalate molar ratio. The added oxalate can act as an additional organic carbon source, 

competing with the target pollutant for hydroxyl radicals, and increasing the H2O2 consumption, which 

may be related to the increase in H2O2 consumption by a factor of 2.4 when the total dissolved iron was 

increased from 20 to 40 mg L-1. 

The enhancement of the photo-Fenton process was also assessed using citrate acid and EDDS, as ferric-

organic ligands, with an iron/organic ligand molar ratio of 1:1, which corresponds to the most stable and 

strong complexes for these ligands [46-48]. The photo-Fenton reaction mediated by ferric-organic 

ligands performs much better than the conventional photo-Fenton reaction, and the Fe(III)-Oxalic system 

performs slightly better than Fe(III)-Citrate and Fe(III)-EDDS (Figure 6.10). Ferric ions form stable and 
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strong complexes with organic ligands, such as oxalic acid, EDDS and citric acid, avoiding the undesired 

interactions with other organic and inorganic species present in the wastewater while at the same time 

providing a quicker pathway for ferric iron regeneration in the presence of UV-Visible light [49-51]. 

 
Figure 6.10. Decolourisation of the textile wastewater under UVA-Visible radiation with different iron ligands. 

Solid symbols – Colour on Pt-Co scale; open symbols – H2O2 consumed; cross symbols – Colour on DFZ436nm 

scale; half-painted symbols – DOC; columns – TDI concentration.      – UVA-Vis/Fe2+/H2O2;      – 

UVA-Vis/Fe3+/H2O2/Oxalic Acid;      – UVA-Vis/Fe3+/H2O2/EDDS;      – UVA-

Vis/Fe3+/H2O2/Citric Acid. 

It is important to note that the discharge limit for total iron according to Portuguese legislation is 

2 mg Fe L-1 [27]. Considering this regulation, in order to lower the iron concentration to within the legal 

limit, a subsequent step for iron precipitation has to be considered. However, when the German 

legislation [28] is considered, the additional precipitation step is not necessary. 
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6.3.4.2 Effect of iron/oxalate molar ratio 

Reports in the literature state that the most stable ferric-oxalate complex results from the binding of three 

oxalate ions with one ferric ion [47]. However, due to the short lifetime of ferrioxalate complexes, as 

observed in the previous assays with different iron concentrations, higher amounts of oxalic acid may 

be required to avoid the formation of undesired ferric-organic complexes with low photoactivity [52]. 

Figure 6.11 shows that the increase in the stoichiometric molar ratio did not have a positive effect on the 

textile wastewater decolourisation. However, an increase in the oxalic acid concentration did affect 

significantly the colour reduction. For both decolourisation monitoring methods, the photo-Fenton 

reaction using an iron/oxalate ratio molar of 1:3 performs better compared with using ratios of 1:6 and 

1:9. 

  
Figure 6.11.  Decolourisation of the textile wastewater under UVA-Visible radiation with different iron/oxalate 

stoichiometry molar ratios. Solid symbols – Colour on Pt-Co scale; open symbols – H2O2 consumed; cross 

symbols – Colour on DFZ436nm scale; half painted symbols – Oxalate.     – iron/oxalate molar ratio of 1:3;  

    – iron/oxalate molar ratio of 1:6;     - iron/oxalate molar ratio of 1:9. 
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6.3.4.3 Effect of solution pH 

The high alkalinity of most textile wastewaters constitutes a limitation for the application of the photo-

Fenton reaction, since pH is one of the critical operating parameters in this process. Not only does the 

consumption of reagents needed for acidification and subsequent neutralisation generate additional 

costs, but the salt load of the treated wastewater also increases [10]. In this regard, in order to assess the 

performance of the UVA-Vis/Fe3+/H2O2/Oxalic acid reaction at higher pH values, experiments using 

6 mg Fe3+ L-1, a temperature of 30ºC, an iron/oxalate molar ratio of 1:3 and different initial pH values 

(2.8, 3.5, 4.0, 4.5, 5.0 and 5.5) were performed (Figure 6.12). Although the UVA-Vis/Fe3+/H2O2/Oxalic 

acid reaction can be performed at higher pH values, a significant decrease in the decolourisation 

efficiency is observed. This phenomenon can be attributed to two main factors: i) the low photoactivity 

of the ferrioxalate complexes at near neutral pH values [53]; and ii) the short lifetime of ferrioxalate 

complexes leading to a fast iron precipitation. 

 
Figure 6.12. Decolourisation of the textile wastewater under UVA-Visible radiation with different initial pH 

values. Solid symbols – Colour on Pt-Co scale; open symbols – H2O2 consumed; cross symbols – Colour on 

DFZ436nm scale; – “x” within symbols - TDI concentration.      – pH 2.8;     – pH 3.5;     – 

pH 4.0;     – pH 4.5;      – pH 5.0;     – pH 5.5;     – pH 5.5 and iron/oxalate molar 

ratio of 1:6. 
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The formation of stable iron complexes, with low photoactivity, between iron (III) and compounds 

present in the textile wastewater (e.g., dyes and textile auxiliaries), favoured by alkaline conditions, 

could be associated with the decrease in decolourisation efficiency at higher pH. However, additional 

assays without oxalate were carried out and the precipitation of iron at alkaline pH was observed (data 

not shown), demonstrating that stable iron complexes do not form under these conditions. 

The iron speciation diagrams in Figure 6.13 demonstrate that the presence of oxalic acid extends the pH 

range available for the process application, since the precipitation of Fe(OH)3 (s) begins at pH=4.8 for 

an initial iron/oxalate molar ratio of 1:3 and at pH 5.6 for an initial iron/oxalate molar ratio 1:6. However, 

on increasing the oxalic acid concentration, the decolourisation efficiency increased only slightly and 

higher amounts of oxalic acid could be required, making the process economically unfeasible. 

 
Figure 6.13. Speciation diagrams for ferric complexes as a function of pH for a solution containing Fe3+/SO4

2-/Cl-

/Oxalic acid. Ionic strength = 0.03 M; T = 30ºC; [Fe3+] = 1.07×10-1 mM (6 mg L-1); [SO4
2-] = 1.26 mM; [Cl-

] = 17.3 mM; a) [Oxalic acid] = 3.22×10-1 mM and, b) [Oxalic acid] = 6.45×10-1 mM. 

6.3.5 Assessment of treatment costs  

An assessment of the costs associated with the required treatment to achieve a wastewater colour values 

of 7 m-1 (DFZ436nm), 5 m-1 (DFZ525nm) and 3 m-1 (DFZ620nm), according to the German regulations for 

discharge into water bodies [28], which is also in agreement with Portuguese legislation (uncoloured at 

1:20 dilution), was carried out. 
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In the economic assessment of the photocatalytic plant the treatment of a textile wastewater obtained 

from a biological pre-oxidation process was considered, applying the following operating conditions: 

(a) initial pH = 2.8, T = 30ºC, [H2O2] = 2.1 mM, UVC radiation; (b) natural pH, T = 30ºC, [H2O2] = 

2.1 mM, UVC radiation; (c) initial pH = 2.8, T = 30ºC, [H2O2] = 2.1 mM, [Fe2+] = 2 mg L-1, UVC 

radiation; (d) initial pH = 2.8, T = 30ºC, [H2O2] = 2.1 mM, [Fe2+] = 10 mg L-1, UVA-Visible radiation; 

(e) initial pH = 2.8, T = 30ºC, [H2O2] = 2.1 mM, [Fe2+] = 6 mg L-1, iron/oxalate molar ratio of 1:3, UVA-

Visible radiation; and (f) initial pH = 5.0, T = 30ºC, [H2O2] = 3.1 mM, [Fe2+] = 6 mg L-1, iron/oxalate 

molar ratio of 1:3, UVA-Visible radiation. 

Table 6.5 shows the main process operation variables required for the economical assessment, 

considering the decolourisation of bio-treated textile wastewater. Values for yearly UV radiation and 

accumulated UV energy were obtained considering fixed solar energy collectors oriented southward 

(northern hemisphere) in order to capture the maximum amount of global UV energy, and tilted from 

the horizontal to a degree equal to the latitude (city of Porto: 41º) (Figure 6.14). 

Table 6.5. Operation data for the treatment of 30,240 m3 per day of textile wastewater. 

Parameter Values 

Daily flow – 𝑄𝑑 (m3 day-1) 30,240 

Yearly volume - 𝑉𝑦 (m3) 11,037,600 

Yearly average global UV irradiation  – 𝐼𝑚
a (W m-2) 21.2 

Total yearly hours of insolation – 𝑡𝑖𝑛𝑠
a (h) 2547 

Yearly accumulated UV energy – 𝐸𝑦
b (kJUV m-2) 194,479 

Lamp, Ballast and accessoriesc – unit cost (€)  1,838 

Lamp reactor – unit cost (€) 500 

Electric energy – cost (€ kWh-1) 0.10 

H2SO4 98% - costd (€ ton-1) 180 

NaOH 30% - costd (€ ton-1) 270 

Ferrous sulphate (FeSO4 ) – costd (€ ton-1) 290 

Ferric chloride (FeCl3) – costd (€ ton-1) 350 

Hydrogen peroxide (H2O2) 50% – costd (€ ton-1) 450 

Oxalic acid (H2C2O4) – costd (€ ton-1) 2,000 

aValues obtained from the integration of the yearly UV radiation data from April 2014 to February 2015, using 

4 W m-2 as the integration limit; bAccumulated UV energy from April 2014 to February 2015 (Ey = 3.6×Im×tins); 

cUV-Lamps with 12 kW and 1.8 kW of UVC radiation flow and 20,000 hours of total operation; dAverage prices 

in 2015. 
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Figure 6.14. Average global UV irradiance.   - Im, insolation,  - tm and ‘cloud factor’,  - fc for global UV 

irradiance from March 2014 to February 2015, Porto, Portugal. 

Total collectors area (ACPC) needed for the treatment of 30,240 m3 of bio-treated textile wastewater per 

day was calculated based on Eq. (6.1) [5]: 

insm

yUV

CPC
tI

VQ
A




  

(6.1) 

were QUV is the accumulated UV energy required for the treatment, Vy is the yearly volume of textile 

wastewater, Im is the yearly average global UV radiation power and tins is the total yearly hours of 

insolation. 

Table 6.6 shows the annual costs for two radiation sources: UVA-Visible radiation (solar light) and UVC 

radiation (artificial light-lamps). Furthermore, the treatment costs for the systems using iron (UVC 

radiation) and oxalic acid (UVA-Visible radiation) at near neutral or acidic pH were also assessed. Table 

6.6 shows that for the UVC/H2O2 system the treatment costs are lower at natural pH than at acidic pH 

(conditions (a) and (b)), which is mainly associated with a substantial reduction in the expenses related 

to consumables (acids and bases) (0.131 € m-3), while the increase in capital expenditure is not so 

expressive (0.010 € m-3) (Figure 6.15). 
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Table 6.6. Yearly cost associated to pre-treated real textile wastewater treatment under UVA-Visible radiation 

(using CPC technology) and under UVC radiation (using lamps) considering different operation conditions. 

Description of costs 

Under UVC radiation Under UVA-Visible radiation 

UVC/H2O2 UVC/Fe2+/H2O2 UVA-Vis/Fe2+/H2O2 UVA-Vis/Fe3+/H2O2/Oxalic acid 

Acid pH(a) Basic pH(b) Acid pH(c) Acid pH(d) Acid pH(e) pH 5.0(f) 

Direct Cost:       

CPCs area (m2) - - - 164,362 12,327 82,181 

Total collector cost - - - 21,154,148.73 € 1,586,561.15 € 10,577,074.37 € 

Lamps number 222 398 133 - - - 

Lamp, ballast and accessories 408,036.00 € 731,524.00 € 244,454.00 € - - - 

Reactor cost 111,000.00 € 199,000.00 € 66,500.00 € - - - 

Piping and tanks(g) 126,009.38 € 226,735.07 € 75,597.84 € 1,692,331.90 € 126,924.89 € 846,165.95 € 

Auxiliary equipment and 
controls(h) 

157,511.73 € 283,418.84 € 94,497.30 € 2,115,414.87 € 158,656.12 € 1,057,707.44 € 

Others(i) 236,267.59 € 425,128.27 € 141,745.94 € 3,173,122.31 € 237,984.17 € 1,586,561.15 € 

Total Direct Cost (TDC) 1,038,824.70 € 1,865,806.18 € 622,795.08 € 28,135,017.81 € 2,110,126.34 € 14,067,508.91 € 

Indirect Cost:       

Contingencies(j) 124,658.96 € 223,896.74 € 74,735.41 € 3,376,202.14 € 253,215.16 € 1,688,101.07 € 

Spare parts(k) 10,388.25 € 18,658.06 € 6,227.95 € 281,350.18 € 21,101.26 € 140,675.09 € 

Total Capital Required (TCR) 1,173,871.91 € 2,108,360.99 € 703,758.44 € 31,792,570.13 € 2,384,442.76 € 15,896,285.07 € 

Yearly Cost:       

Capital(l) 140,864.63 € 253,003.32 € 84,451.01 € 3,815,108.42 € 286,133.13 € 1,907,554.21 € 

Consumables 2,090,177.36 € 637,077.78 € 2,243,264.02 € 2,835,817.97 € 8,356,553.73 € 7,268,828.75 € 

Operation and maintenance 108,000.00 € 108,000.00 € 108,000.00 € 36,000.00 € 36,000.00 € 36,000.00 € 

Electricity 262,537.20 € 470,674.80 € 157,285.80 € - - - 

Lamp replacement 160,439.40 € 287,634.60 € 96,119.10 € - - - 

Labour cost of replacement 5,250.74 € 9,413.50 € 3,145.72 € - - - 

Total Yearly Cost (TYC) 2,767,269.33 € 1,765,803.99 € 2,692.265.65 € 6,686,926.38 € 8,678,686.87 € 9,212,382.96 € 

Unit Cost (UC) 0.25 € m-3 0.16 € m-3 0.24 € m-3 0.61 € m-3 0.79 € m-3 0.83 € m-3 

aOperational conditions: initial pH = 2.8; T = 30ºC; [H2O2] = 2.1 mM; bOperational conditions: natural pH; 

T = 30ºC; [H2O2] = 2.1 mM; cOperational conditions: initial pH = 2.8; T = 30ºC; [H2O2] = 2.1 mM; 

[Fe2+] = 2 mg L-1; dOperational conditions: initial pH = 2.8; T = 30ºC; [H2O2] = 2.1 mM; [Fe2+] = 10 mg L-1; 

eOperational conditions: initial pH = 2.8; T = 30ºC; [H2O2] = 2.1 mM; [Fe2+] = 6 mg L-1; iron/oxalate molar ratio 

of 1:3; fOperational conditions: initial pH = 5.0; T = 30ºC; [H2O2] = 3.1 mM; [Fe2+] = 6 mg L-1; iron/oxalate molar 

ratio of 1:3; g8% of total collector cost; h10% of total collector cost; i15% of total collector cost; j12% of total 

direct cost; k1% of total direct cost; l12% of total capital required, 20 years. 
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However, the addition of iron (condition (c): UVC/Fe2+/H2O2) resulted in more efficient energy 

consumption in the photo-Fenton reaction and, as a consequence, lower expenses associated with 

electricity, lamps and labour costs related to lamp replacement and capital spending. The only increase 

in the cost of the consumables is due to the addition of iron. 

On comparing the total unit cost for the systems using different radiation sources, it was verified that the 

use of solar radiation does not result in a cost reduction when compared to systems using UVC radiation. 

As can be seen in Figure 6.15, capital spending causes a significant increase in the total cost of solar 

treatment systems, representing up to 57% of the total cost of the treatment (condition (d): 

UVA-Vis/Fe2+/H2O2). In addition, the expenses associated with consumables were even lower for the 

systems using UVC radiation as the energy source. 

 
Figure 6.15. Comparative cost of treatment under UVA-Visible radiation with CPCs and UVC radiation with 

lamps. Assessed operational conditions:  (a) initial pH = 2.8; T = 30ºC; [H2O2] = 2.1 mM; (b) natural pH; 

T = 30ºC; [H2O2] = 2.1 mM; (c) initial pH = 2.8; T = 30ºC; [H2O2] = 2.1 mM; [Fe2+] = 2 mg L-1; (d) initial 

pH = 2.8; T = 30ºC; [H2O2] = 2.1 mM; [Fe2+] = 10 mg L-1;(e) initial pH = 2.8; T = 30ºC; [H2O2] = 2.1 mM; 

[Fe2+] = 6 mg L-1; iron/oxalate molar ratio of 1:3; (f) initial pH = 5.0; T = 30ºC; [H2O2] = 3.1 mM; 

[Fe2+] = 6 mg L-1; iron/oxalate molar ratio of 1:3. 

In an effort to reduce the energy required for the treatment under UVA-Visible radiation, reducing the 

required CPC area and capital costs, the use of oxalic acid as the iron ligand was evaluated (condition 
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(e): UVA-Vis/Fe3+/H2O2/Oxalic acid). As a result, the capital spending decreased 93% due to a reduction 

in the energy dosage required for the treatment. Furthermore, the spending related to consumables 

increased 195% (up to 0.757 € m-3), representing 96% of the total treatment cost, mainly due to the high 

price of oxalic acid. The costs associated with UVA-Vis/Fe3+/H2O2/Oxalic acid at near neutral pH 

conditions were also assessed (condition (f)). This condition resulted in a 10% reduction in the spending 

related to consumables, but the capital costs are five times higher than those for the system operating at 

acidic pH due to the increased energy demand and, as a consequence, the extra CPC area required. 

The land requirement for the implementation of the treatment plant was not considered in the cost 

calculation for all conditions assessed. The significant volume of textile wastewater considered in the 

cost calculations (11,037,600 m3 year-1, current operating volume of the WWTP) resulted in the need 

for a huge land area for the implementation of CPCs, which is equivalent to 80 football fields. However, 

if land costs were considered in the calculations, the addition of oxalic acid would probably result in a 

global cost reduction, since the area required for the CPCs would be significantly reduced (from 164,362 

to 12,327 m2), which means a 92% reduction in land area. 

Gumy et al., [5] estimated a unitary treatment cost of 7.2 € m-3, considering the treatment of 1000 m3 

per year of a biodegradable azo-dye found in textile wastewaters, through the solar-photo-Fenton 

reaction. Rodrigues et al., [3] reported the integration of the SBR (sequential batch reactor) with the 

Fenton reaction for the treatment of three different types of synthetic textile wastewater. The researchers 

obtained estimated costs of 2.9, 7.5 and 14.8 € m-3 for polyester, cotton and acrylic wastewater, 

respectively. It should be noted that in this study the significant costs associated with the disposal and/or 

treatment of the sludge were not considered, which is an important factor in relation to the Fenton 

reaction. 
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6.4 Conclusions 

UVC/H2O2, UVC/Fe2+/H2O2 and UV-Vis/Fe2+/H2O2/oxalic acid advanced oxidation processes showed 

promising results as polishing step for the decolourisation of a bio-treated textile wastewater. The use of 

UVC radiation enhanced significantly the textile wastewater decolourisation rates mainly when 

associated with hydrogen peroxide photolysis and a quantum yield of FeOH2
+ for the formation of 

hydroxyl radicals. A higher hydrogen peroxide dosage and wastewater temperature showed a positive 

influence on the UVC/H2O2 and UVC/Fe2+/H2O2 systems. Although natural solar radiation, such as a 

UV-visible light source, can be used to promote the photo-Fenton reaction, high amounts of energy are 

required to achieve wastewater decolourisation, mainly due to the formation of iron-organic pollutant 

complexes which present low photoactivity. The addition of organic ligands, especially oxalic acid, 

enhanced significantly the photo-Fenton reaction, minimizing the formation of ferric-organic pollutant 

complexes and ensuring lower energy consumption. An increase in the stoichiometric iron/oxalate molar 

ratio did not have a positive effect on the textile wastewater decolourisation. The optimum iron 

concentration under the tested conditions was 6 mg Fe3+ L-1 for an iron/oxalate stoichiometric molar 

ratio of 1:3. Although the photo-Fenton reaction mediated by ferrioxalate can be carried out at near 

neutral pH, the decolourisation rate decreases significantly when compared to acidic conditions. 

The economic assessment using UVA-Visible radiation (solar light) or UVC radiation (lamps) based on 

the operation variables obtained, for the treatment of 30,240 m3 per day of a textile wastewater after a 

biological pre-oxidation process, in order to achieve the values required by German regulations for 

discharge into water bodies, allowed the following conclusions: i) at acidic pH values the addition of 

iron to the UVC/H2O2 reaction enhanced the decolourisation rates, resulting in a lower treatment cost 

when compared to neutral pH conditions; ii) the UVC/H2O2 system at natural wastewater pH is cheaper 

than at acid pH, mainly due to the need for acids and bases; iii) the use of solar radiation (UVA-Visible) 

increases the treatment costs, mainly due to an increase in the capital spending associated with CPCs; 

iv) the addition of oxalic acid to the photo-Fenton reaction decreases the capital spending (high reaction 

rates), but the cost of consumables increases significantly, making the treatment more costly; and v) the 

photo-Fenton system mediated by ferrioxalate at near neutral pH using solar radiation is the most costly 

treatment process, due to the low decolourisation rates and high consumption of reactants, especially 

oxalic acid. 
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7.1 Main conclusions 

The main goal of this thesis was to study alternative strategies combining biological and advanced 

oxidation processes (AOPs), such as Fenton, photo-Fenton, UV/TiO2, UV/H2O2, UV/TiO2/H2O2 and 

UVC/H2O2, for the treatment of textile wastewaters with different characteristics, targeting an effective 

decolourisation and mineralisation at low operating cost. Considering that textile wastewaters are known 

to show different compositions, an integrated treatment strategy was applied to four different textile 

wastewaters, two real textile wastewaters and two synthetic ones, taking into account their main 

characteristics. 

In this way, for two wastewaters (from a real cotton dyeing process and from a synthetic acrylic dyeing 

process), both with high percentage of recalcitrant organic matter, an AOP followed by a biological 

oxidation treatment was proposed. For the other two wastewaters (a real bio-treated textile wastewater 

and other one from a synthetic polyester-cotton dyeing), both with high percentage of biodegradable 

organic matter, a biological oxidation treatment followed by an AOP was proposed. 

7.1.1 Advanced Oxidation processes followed by biological oxidation  

In Chapter 3 the efficiency of different AOPs, namely UVA-Vis; UVA-Vis/TiO2; UVA-Vis/H2O2; 

UVA-Vis/TiO2/H2O2 and UVA-Vis/Fe2+/H2O2, in the treatment of a real cotton-textile dyeing 

wastewater at pilot scale under natural sunlight, was compared. The solar-photo-Fenton treatment was 

the most efficient of all solar AOPs studied, enhancing the biodegradability of the wastewater and 

making possible its combination with a biological oxidation process, in order to achieve a wastewater 

quality in agreement with the discharge limits imposed by legislation. A subsequent study was performed 

in order to evaluate the influence of the main photo-Fenton reaction variables, such as iron concentration, 

pH, temperature and irradiance, in a lab-scale prototype under controlled conditions using artificial solar 

radiation. The results obtained in this study lead to the following conclusions: 

 Although the kinetic constants increase with iron concentration, the increment is very small for 

concentrations higher than 60 mg L-1, being necessary higher amounts of H2O2; 

 Although the photo-Fenton reaction was more efficient at pH 2.8, the reaction rates remained 

very similar up to pH 3.6, which can reduce the costs associated with acid and base consumption; 
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 The increase of solution temperature favoured the photo-Fenton efficiency, principally from 10 

to 30ºC, which was associated with the increment of the molar fraction of the most photoactive 

species (FeOH2
+), as well as to the thermal reactions involved in the reduction of ferric ions, 

which use radiation of wavelengths higher than 500 nm. This condition favours the textile 

wastewater treatment since textile dyeing wastewaters normally present temperatures higher than 

30ºC; 

 The reaction rate remained approximately constant within the range of UVA irradiance studied, 

therefore, during spring and summer, considering the path length of the photoreactors, energy 

losses are negligible, and, over autumn and winter, the kinetic reaction rate remains constant in 

terms of accumulated UV energy, but the photo-Fenton reaction can take a longer time; 

 Finally, considering the combination of an AOP with a biological oxidation system, the energy 

dose required for the photo-Fenton reaction was 0.5 kJUV L-1 (T = 30ºC; pH = 2.8) consuming 

7.5 mM of hydrogen peroxide and leading to 58.4% mineralisation (DOCf = 62.9 mg C L-1). 

In Chapter 4 it was reported that the traditional solar-photo-Fenton process showed limited efficiency in 

the mineralisation of the synthetic acrylic-textile dyeing wastewater, which was attributed to the iron 

complexation with the dyeing auxiliaries products. The photo-Fenton process was enhanced by ferric-

organic ligands (oxalic acid, citrate acid and EDDS-Ethylenediamine-N,N'-disuccinic acid), on a lab-

scale prototype under controlled conditions, using artificial solar radiation. The addition of organic 

ligands enhanced the photo-Fenton reaction significantly, minimising the formation of ferric complexes 

with the dyeing auxiliary products. The catalytic activity of the organic ligands toward the ferrous 

catalysed system followed the order: Fe(III)-Oxalate>Fe(III)-Citrate>Fe(III)-EDDS. The influence of 

the main ferrioxalate-solar-photo-Fenton reaction variables, such as iron concentration, pH, temperature, 

UV irradiance and H2O2 concentration and dosage strategy was also investigated, and the following 

considerations emerged from the obtained results: 

 The optimum iron concentration must be evaluated taking into account the variability on the UV 

irradiance (amount of photons available for the reaction); 

 The addition of small amounts of H2O2 during the photo-Fenton reaction improves the 

mineralisation rates, as also minimizes the consumption rate of H2O2; 

 Acetic acid formation was observed during the reaction. This carboxylic acid can form a stable 

complex with ferric ions, which has a low photoactivity under UVA-visible light and is very 
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resistant to the attack of hydroxyl and other reactive oxygen species, almost stopping the photo-

Fenton reaction. 

The effect of the hydrodynamic conditions, on a lab-scale prototype using artificial solar radiation and 

on a pilot scale under natural sunlight, was also assessed both in the dark and light parts of the system. 

The results obtained demonstrated that the design of a CPC plant must take into account not only the 

need of a turbulent regime inside the tubular photoreactors, but also promoting the mixing of the 

wastewater in the dark system (recirculation tank). 

Finally, the ferrioxalate induced photo-Fenton process achieved 87% mineralisation after 9.3 kJUV L-1, 

and allowing working until pH 5.0. As expected, the biodegradability of the textile wastewater was 

significantly enhanced by the photo-Fenton treatment, achieving a value of 73%, consuming 32.4 mM 

of H2O2 and 5.7 kJUV L-1. 

7.1.2 Biological oxidation followed by Advanced Oxidation processes 

Chapter 5 regards an integrated treatment strategy for synthetic polyester-cotton dyeing wastewater, 

combining biological and photochemical oxidation processes. The biodegradability of all constituents, 

dyes and dyeing auxiliary products, present in the synthetic polyester dyeing textile wastewater, was 

firstly assessed through a Zahn-Wellens test. More than 80% of the constituents are easily biodegradable, 

being possible to achieve their complete removal by biological oxidation. Consequently, the synthetic 

wastewater was firstly subjected to a biological oxidation, achieving a DOC removal of 76%, resulting 

in a bio-treated wastewater with 84 mg L−1 of DOC. However, colour reduction was less than 5% (Pt-

Co scale), 9% (DFZ436nm), 3% (DFZ525nm) and 0% (DFZ620nm). 

Different chemical oxidation systems, such as UVC/H2O2, UVC/Fe2+/H2O2 and UVC/Fe3+/H2O2/Oxalic 

acid, were used as a polishing treatment step, regarding the wastewater decolourisation. The photo-

Fenton reaction did not promote wastewater decolourisation. The low iron concentration used was not 

able to suppress the inner filter effects related to other light-absorbing species present in the solution. 

Beyond that, complexes of ferric ions with organic and inorganic species (e.g., auxiliary products) 

present in the textile wastewater show low photoactivity and recalcitrant characteristic to further 

mineralisation by hydroxyl radical attack. The addition of oxalic acid, as a ferric ions ligand, did not 

lead to an increase of the wastewater decolourisation. 

On the other hand, the photolysis of hydrogen peroxide using UVC radiation showed decolourisation 

efficiencies of 71% (Pt-Co scale), 86% (DFZ436 nm) and 97% (DFZ525 nm) and more than 40% of 
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mineralisation, consuming 14.1 mM H2O2 and 2.5 kJUV L−1 of energy (time = 95 min; 6W UVC lamp; 

natural pH = 8.4; T = 30ºC). The effect of hydrogen peroxide dosage, lamp power, solution pH and 

temperature, on the UVC/H2O2 system was evaluated, leading to the following conclusions: 

 The decolourisation rates increased significantly with the availability of hydrogen peroxide, 

being almost six times higher for the initial H2O2 dose of 42 mM when compared with 10 mM. 

A higher H2O2 dose was necessary to break the dyes molecules and other auxiliary products into 

smaller molecules and further conversion into carbon dioxide, water and inorganic acids; 

 It was demonstrated that a detailed study considering the optical length of the reactor and linking 

the lamp power to peroxide dosage should always be done in order to avoid unnecessary expenses 

with reagents and energetic costs; 

 Alkaline and acidic wastewaters inhibited the decolourisation of the bio-treated wastewater using 

the UVC/H2O2 system; 

 Decolourisation and mineralisation rates are favoured at higher temperatures, especially when 

the temperature raised from 15 to 30ºC. This behaviour was associated with the increase of the 

generation of OH radicals through H2O2 photolysis as temperature increases. 

During the photochemical reaction some low-molecular-weight carboxylic acids were detected, as oxalic 

acid, maleic acid and tartaric acid, which is an indirect indicator of the biodegradability enhancement. 

Finally, the integrated treatment strategy was able to achieve a wastewater quality in agreement with the 

discharge limits imposed by legislation. 

In Chapter 6 it was assessed the decolourisation of a bio-treated real textile wastewater using UVC/H2O2 

and photo-Fenton oxidation processes, as a polishing step. The photolysis of hydrogen peroxide using 

UVC radiation showed decolourisation efficiencies of 86% (Pt-Co scale) and 96% (DFZ436nm), 

consuming 1.6 mM H2O2 after 0.9 kJUV L−1 (time = 35 min; 6 W UVC lamp; natural pH = 7.8; T = 

30ºC). The efficiency of hydrogen peroxide photolysis under UVC radiation on the wastewater 

decolourisation was evaluated at different pH values, H2O2 concentration and temperature. Although the 

decolourisation rate is similar for the UVC/H2O2 system at neutral and acid pH values, the amount of 

UVC energy required to achieve the same decolourisation efficiency is higher at neutral pH conditions. 

This is mainly related to the high fraction of decolourisation obtained in the acidification procedure. The 

initial concentration of hydrogen peroxide, for the dosage range studied, showed a higher effect on the 

UVC/H2O2 system than on the photo-Fenton system. The photo-Fenton reaction was promoted by 
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different radiation sources (UVC, UVA or UVA-Visible), showing better results under UVC light. 

Decolourisation efficiencies of 78% (Pt-Co scale) and 93% (DFZ436nm), were achieved by the 

UVC/Fe2+/H2O2 system at pH = 2.8 and T = 30ºC, consuming 3.6 mM H2O2 after 0.6 kJUV L−1 

(time = 25 min; 6 W UVC lamp). The efficiency of the UVC/Fe2+/H2O2 system was also studied for 

different iron concentrations, H2O2 availability and pH values, resulting in the following conclusions: 

 The decolourisation kinetic profiles show a very similar behaviour in the initial part of curves of 

the different tested concentrations of iron, indicating that the photolysis of H2O2 is the 

predominant mechanism. In the second part of the curves, a slight improvement on the 

decolourisation rate with the increase of iron concentration was observed; 

 The increase of the textile wastewater temperature improved significantly the decolourisation 

reaction rate using the photo-Fenton reaction, which was associated with two main factors: i) 

presence of different amounts of photoactive species (FeOH2+); ii) higher Fe3+ reduction through 

Fenton’s thermal reactions. 

Aiming at using solar energy, additional photo-Fenton assays mediated by ferric-organic ligands under 

UVA-Visible radiation were also performed, considering the effect of the type of ferric-organic ligand, 

iron/ferric-organic ligand molar ratio, iron concentration and pH. Maximum values of decolourisation 

achieved by the UVA-Vis/Fe3+/H2O2/Oxalic acid system were 84% (Pt-Co scale) and 94% (DFZ436nm), 

consuming 1.9 mM H2O2 after 2.9 kJUV L−1 (pH = 2.8): 

 The addition of organic ligands, especially oxalic acid, enhanced significantly the photo-Fenton 

reaction, minimising the formation of ferric-organics complexes and ensuring lower energy 

consumption; 

 The optimum iron concentration in the tested conditions was 6 mg Fe3+ L-1 for an iron/oxalate 

stoichiometric molar ratio of 1:3. The increase of stoichiometric iron/oxalate molar ratio did not 

produce positive effect on the textile wastewater decolourisation. Considering the Portuguese 

regulation, a subsequent step for iron precipitation has to be considered in order to meet the legal 

limit for the iron concentration; 

 Although the photo-Fenton reaction mediated by ferrioxalate can be carried out at near neutral 

pH, the decolourisation rates decrease significantly when compared to acidic conditions; 

Finally, the total unit costs for the optimal conditions were estimated, aiming at achieving the legal 

wastewater discharge requirements, leading to the following conclusions: i) at acidic pH values the 
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addition of iron to the UVC/H2O2 reaction enhanced the decolourisation rates, resulting in a lower 

treatment cost when compared to neutral pH conditions; ii) the UVC/H2O2 system at natural wastewater 

pH is cheaper than at acid pH; iii) the use of solar radiation increases the treatment costs, due to an 

increase in the capital spending associated with CPCs; iv) the addition of oxalic acid to the photo-Fenton 

reaction decreases the capital spending (high reaction rates), but the cost of consumables increases, 

making the treatment more costly; and v) the photo-Fenton system mediated by ferrioxalate at near 

neutral pH using solar radiation is the most expensive treatment process, due to the low decolourisation 

rates and high consumption of reactants, especially oxalic acid.
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7.2 Recommendations for future work 

According to the obtained results, some suggestions for further investigations can be proposed. 

In order to overcome the restrictions of working at neutral pH levels, a possible strategy can be the use 

of immobilized photocatalysts, as well as, tests with other iron-carboxylate complexes. Moreover, 

Electrochemical Advanced Oxidation Processes, considering their capacity for in situ generation of 

H2O2, could be also tested for textile wastewater treatment. Another strategy could be the development 

of photocatalytic membranes (separation function/photocatalytic activity), which would enhance their 

antifouling properties and at the same time would lead to membrane concentrates with lower organic 

loads. 

Efforts must be also spent on the possible combination of natural and artificial radiation, development 

of new designs for photocatalytic reactors using artificial radiation through computational fluid 

dynamics (CFD) tool, optimization of the optical system for sunlight capture, based in CPCs systems, 

in terms of photon and thermal flux (high temperatures favour the reaction rate) and, volumetric capacity 

per unit of collector area using nonimaging optics (NIO) techniques. 

 


