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Abstract 

Musicians today have access to a vast array of multimedia content on personal and 

public databases, which consequently expands the possibilities for audio processing. Yet, 

composing with audio samples is still a very time-consuming task. A major reason for the 

disconnect between the state-of-the-art technology and current compositional practice is 

the lack of effective browsing methods for selecting, manipulating, and assembling 

samples for a particular application context. 

My dissertation addresses the aforementioned mismatch by proposing an analysis-

synthesis framework for assisting musicians in the daunting tasks of selecting and 

assembling audio signals, namely by incorporating algorithmic music strategies in the 

processing chain. I address problems raised by the implementation of audio signals in 

algorithmic composition by creating higher-level descriptions of sound objects, which 

drastically reduces their audio data representation and yet provides meaningful and highly 

flexible information. The proposed strategies for audio stream segmentation and 

description rely on musicological theories, psychoacoustic dissonant models, and content-

based audio processing techniques. Using these frameworks, I finally present algorithmic 

strategies for style imitation and genuine composition that recombine collections of 

annotated sound objects for a variety of musical contexts from installations to concert 
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music. 

EarGram, the proof-of-concept software I developed as a result of this study, 

integrates the proposed analysis-synthesis framework in a concatenative sound synthesis 

system. I also critically analyze some common issues in concatenative sound synthesis and 

propose the following three solutions that increase user flexibility and control, in 

particular for creative purposes: (1) meaningful visualizations of the corpus in relation to 

specific sound typologies; (2) prioritization strategies and/or weights in the unit selection 

adapted to particular application contexts; and (3) minimization of concatenation 

discontinuities between audio units by audio processing techniques. 

In sum, this dissertation proposes a description scheme for representing sound objects 

that offers relevant information for the sound-based composer as well as suitable 

descriptions for automatically modeling the temporal evolution of musical structure. In 

addition, the sound objects’ descriptions are highly flexible and allow the manipulation of 

audio signals in known computer-aided algorithmic composition strategies linked to 

symbolic music representations. Ultimately, earGram helps musicians to easily manipulate 

audio signals in creative contexts—particularly by assisting in and automating a sound 

mosaic, which allows greater focus on the creative aspects of music making. 

	  

	  

Keywords: algorithmic composition, music analysis, recombination, audio synthesis, 

concatenative sound synthesis. 
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Resumo 

Atualmente os músicos têm acesso a um vasta gama de conteúdo multimédia em bases 

de dados pessoais e públicas que, consequentemente, expande as possibilidades para o 

processamento de áudio. No entanto, compor com amostras de áudio é ainda uma tarefa 

bastante morosa. A razão fundamental para a discrepância entre o estado-da-arte em 

tecnologia e a prática atual da composição é a falta de métodos de pesquisa eficazes para 

selecionar, manipular e montar amostras de áudio num contexto de aplicação específico. 

A minha tese aborda a divergência anteriormente referida ao propor um sistema de 

análise e síntese para assistir o compositor nas exigentes tarefas de seleção e montagem 

de sinais de áudio, nomeadamente por incorporar estratégias de música algorítmica na 

cadeia de processamento. Eu abordo problemas que resultam da adopção de sinais de 

áudio na composição algorítmica através da criação de descrições de objetos sonoros de 

um nível mais alto que a sua codificação digital. Desta forma, reduz-se drasticamente a 

sua representação de áudio e providencia-se, no entanto, informações relevantes e 

altamente flexíveis. As estratégias propostas para a segmentação de áudio em objetos 

sonoros e a sua consequente descrição baseiam-se em teorias musicológicas, em modelos 

psicoacústicos de dissonância e em técnicas de processamento baseadas no conteúdo de 

sinais de áudio. Finalmente, apoiando-me em descrições de áudio, apresento estratégias 

algorítmicas para imitação de estilo musical e composição genuína que recombinam 
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coleções de objetos sonoros previamente anotados, e que se adaptam a uma série de 

contextos musicais desde instalações até música de concerto. 

EarGram, o software que implementa o modelo que desenvolvi e que valida os 

conceitos apresentados, integra o sistema proposto para análise e síntese num algoritmo 

de síntese concatenativa de som. Aqui, também analiso criticamente algumas questões 

pertinentes e conhecidas da síntese sonora concatenativa e propus as três soluções 

seguintes, as quais aumentam a flexibilidade de controlo do utilizador em contextos 

criativos: (1) visualizações representativas do corpus em relação a tipologias de som 

específicas; (2) estratégias de priorização e/ou factores de ponderação na seleção de 

unidades adaptados a contextos de aplicação específicos; (3) minimização das 

descontinuidades resultantes da concatenação de unidades de áudio através de técnicas 

de processamento de áudio.    

Em suma, esta tese propõe um esquema de descritores para representar objetos 

sonoros, que oferece informação relevante ao compositor de música baseada em som, 

assim como descrições apropriadas para a criação automática de modelos da evolução 

temporal da estrutura musical. O esquema analítico desenvolvido demonstra também uma 

grande flexibilidade e permite a manipulação de sinais de áudio em estratégias de 

composição algorítmica assistida por computador altamente ligadas a representações 

musicais simbólicas. Em última analise, earGram auxilia os músicos na manipulação de 

sinais de áudio em contextos criativos—particularmente por assistir e automatizar o 

processo de montagem de mosaicos sonoros, permitindo-lhes um maior foco nos aspectos 

criativos da composição musical. 

 

 

Palavras-chave: composição algorítmica, análise musical, recombinação, síntese de áudio, 

síntese concatenative de som.  
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Notes on Terminology 

In order to clarify and avoid terminological misconceptions, I will define and constrict 

the use of three concepts, or pairs of concepts, which will be extensively utilized in this 

dissertation: (1) computer-aided algorithmic composition; (2) concatenative sound 

synthesis; and (3) sound object/audio unit. 

 

Computer-aided algorithmic composition is a term coined by Christopher Ariza (2005) 

that combines two labels—computer-aided composition and generative music—and refers 

to algorithmic composition strategies mediated by a computer. While computer-aided 

composition emphasizes the use of a computer in composition, generative algorithms 

assign the nature of the compositional process to algorithmic strategies. I utilize the term 

CAAC to pinpoint my focus on algorithmic music strategies that are generally intractable 

without a high-speed digital computer given the central position of computer usage in the 

field of algorithmic composition. 

 

Concatenative sound synthesis is a sample-based synthesis technique that I adopted 

in this dissertation as the technical basis of a devised model. In literature, it is common to 

find descriptions such as musical mosaicing, musaicing, concatenative sound synthesis, and 

corpus-based concatenative sound synthesis that explain overlapping (or sometimes 
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identical) approaches—most enhance idiosyncratic aspects of a particular approach to the 

technique, yet all adopt a common framework. I use concatenative sound synthesis to 

address the technique in its broad range, avoiding specifying particularities. For a 

comprehensive definition of the technique please refer to section 1.3. 

 

Sound object denotes a basic unit of musical structure analogous to the concept of 

note in traditional Western music approaches (Schaeffer, 1966) and audio unit refers to 

an audio segment with any duration and characteristics manipulated in a concatenative 

sound synthesis system. Despite their differences, for the purpose of this dissertation, I 

use the terms sound unit and sound object interchangeably, because I limited the use of 

audio units to sound objects.  While sound objects relate to the conceptual basis of my 

study, which is greatly attached to musicological literature, audio units are used whenever 

I focus on a more technical consideration of concatenative sound synthesis, which may 

encompass audio segments of different structural natures than sound objects. 
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Chapter 1 

 

Introduction 

Music and technology have been closely linked since ancient times. It is even 

unthinkable to speak and discuss music and its history without considering the 

technological developments associated with it. Musical instruments like the piano and 

violin, for instance, are a remarkable result of the collaboration between music and 

technology. Musical instruments not only constitute major pieces of technological 

mastery, but are also seminal for the development of musical expression. As Curtis Roads 

notes, “the evolution of musical expression intertwines with the development of musical 

instruments” (Roads, 2001, p. 2).  

Given the close link between music and technology, it does not seem surprising that 

the rapid expansion of electronic technology in the late 19th century had a tremendous 

impact on musical practice a few decades later. In the beginning of the 20th century, the 

ability to record, amplify, reproduce, and generate sound by electronic means 

tremendously affected the way we perceive, interpret, and compose music. In the late 

1970s, the advent of affordable personal computers offered another avenue for the 

production of music by electronic means. Computers have become a fundamental tool. 
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However the music community was, and is still to a certain extent, reluctant to use 

computers as “creative machines” under the assumption that they are not capable of 

producing relevant artistic results. 

The early days of computer music systems relied almost exclusively in symbolic music 

representations, in particular the Musical Instrument Digital Interface (MIDI) standard. 

Symbolic music representations encode physical actions rather than an acoustic reality 

(Rowe, 2001), and model closely the behavior of a piano keyboard, as well as traditional 

concepts of music notation (Rowe, 2009). Despite its clean, robust, and discrete 

representation of musical events, symbolic music codes have many drawbacks. For 

instance, the MIDI standard, one of the most common symbolic music codes, was 

recognized since its inception to be slow and very limited in its scope of representation 

(Moore, 1988).1  

Audio signals, and in particular digital audio signals, are the most common music 

representations used today. Contrary to symbolic representations, audio signals encode 

the music experience, or, in other words, the physical expression or performance. Even if 

it is a very precise, flexible, and rich representation of the auditory experience and opens 

up possibilities others than the MIDI or any other symbolic music representation, audio 

signals also pose crucial problems. Audio signals’ low-level representation reclaim the use 

of algorithmic strategies, importantly including the field of sound and music computing 

and music information retrieval (MIR), to extract information from the content of the 

signal. 

The field of research concerned with the extraction of information from audio signals 

is commonly addressed as content-based audio processing, which gained increasing 

attention in recent years given the large expansion of multimedia content over personal 

and public databases. Due to the considerable increase of audiovisual contents, it became 

crucial to develop algorithms for browsing, mining, and retrieving these huge collections 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 For a comprehensive discussion of symbolic music representation, particularly its limitations please refer to 
Loy (1985) and Moore (1988). 
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of multimedia data (Grachten et al., 2009). A substantial body of knowledge has been 

presented over the last few years, which offers various solutions to help users deal with 

audio signals in the era of digital mass media production. 

The widespread availability of multimedia databases not only affected how users 

access, search, and retrieve audio, but also enacted critical transformations in how 

creative industries produce, distribute, and promote music. Research on multimedia 

information retrieval has also been gradually incorporated in creative work, despite the 

gap between state-of-the-art research in multimedia information retrieval and usability. 

From a creative standpoint, processing audio data is still a very elaborate and time-

consuming task. Currently, to create electronic music one usually needs to use software 

that emulates old analog-tape production means (e.g. audio and MIDI sequencers). These 

software workstations demand a considerable amount of time to select, segment, and 

assemble a collection of samples. Despite the large and ever-increasing amount of audio 

databases, sound-based composers must manage tremendous difficulties in order to 

actually retrieve the material made available in the databases. One of the most evident 

and prominent barriers for retrieving audio samples is the lack of appropriate and 

universal labels for sound description adapted to particular application contexts and user 

preferences. 

In this study, I aim to improve music analysis and composition by devising an analytical 

framework that describes the audio content of sound objects by minimal, yet meaningful, 

information for users with a traditional musical education background. Consequently, the 

audio descriptions will be tested as possible representations of sound objects in computer-

aided algorithmic composition strategies (CAAC) greatly attached to symbolic music 

representations. The ultimate goal is to devise CAAC strategies that deal almost 

exclusively with audio signals in order to ease the manipulation of audio samples in 

creative contexts. In addition to the reformulation of known CAAC to process audio 
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signals, I study new strategies for composing based on the idiosyncrasies of computer 

music and the description scheme.  

The framework proposed will be integrated into an algorithm for concatenative sound 

synthesis (CSS) and implemented as software (earGram) to test and verify several 

strategies to analyze and reassemble audio (a detailed description of CSS can be found in 

section 1.3).  

 

1.1 - Motivation 

 

After completing a Master of Music degree at the Conservatory of Amsterdam, which 

opened possibilities for aesthetic experimentation with interactive music systems, I had 

the chance to enroll in a new Doctoral program between two renowned Portuguese 

Universities—University of Porto and the New University of Lisbon—under the auspices of 

the University of Texas at Austin. 

At first, I was integrated into a project coordinated by my supervisors: “Gestural 

controller-driven, adaptive, and dynamic music composition systems” (project reference 

UTAustin/CD/0052/2008). My involvement with the project gave me a solid theoretical 

and applied knowledge of generative music, which became seminal for fulfilling the 

objective of this dissertation. By the time I enrolled in the PhD program, I was mainly 

concerned with the compositional possibilities of using audio signals as the primary music 

representation in interactive music systems, in particular the use of large collections of 

audio samples as raw material for musical processing. One of the major reasons motivating 

my research was the poor sound and expressive qualities of MIDI synthesizers. A major 

influence is the work of Tristan Jehan, namely his PhD dissertation Creating Music by 

Listening (Jehan, 2005), and soon it became clear that I would work at the intersection of 

many fields including sound synthesis (namely CSS), algorithmic composition, CAAC, and 

interactive music (see Figure 1.1).  
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The ultimate goal of this dissertation is twofold: (1) to reshape the compositional 

experience of working with audio samples, and (2) to devise an intuitive and intelligible 

guided search and navigation through large collections of sound-objects oriented towards 

music composition. 

 

Figure 1.1 - Overlapping fields addressed by my research, inspired by Ariza (2005). 

 

The model I propose aims at reformulating the audio-content description of CSS system 

audio units through a musical theory and practice standpoint, and targets an audience 

more familiarized with music theory than with music technology. While my intent is to 

minimize the usage of computer science terminology, some is unavoidable—particularly 

concepts related to music information retrieval.2 In addition, earGram will allow the fast 

exploration of compositional practices by incorporating several CAAC techniques related 

to symbolic music representation as unit selection strategies in a CSS system, thus 

proposing new approaches to explore creatively large collections of audio segments. 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Music information retrieval is “a multidisciplinary research endeavor that strives to develop innovative 
content-based searching schemes, novel interfaces, and evolving networked delivery mechanisms in an effort 
to make the world’s vast store of music accessible to all” (Downie, 2004, p. 12). 
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1.2  - Approach 

 

In this dissertation I claim the following hypothesis: 

 

Sharing the same constitutive elements manipulated through 

reciprocal operations, morphological and structural analyses of 

musical audio signals convey a suitable representation for 

computer-aided algorithmic composition. 

 

In other words, I suggest that analysis3 and composition share the same structural 

elements and can thus be (computationally) seen as complementary operations of a close 

musical activity cycle. While analysis fragments the sound continuum into constituent 

elements according to a bottom-up approach in order to reveal and abstract 

representations of the various hierarchical layers of musical structure, composition 

elaborates these same elements in an opposite fashion by organizing musical elements 

from the macrostructure down to the lowest level of musical structure (top-down 

approach).  

The interaction between analysis and composition cannot be discussed without 

considering music theory. Music analysis and composition not only depart from music 

theory, but also the constant dialogue between the two fields contributes to music theory 

with new principles and compositional systems (see Figure 1.2 for an abstract 

representation the interaction between several agents of the cycle). 

Any analysis-synthesis computational approach must describe musical structure. Music 

theorists have recognized and identified in the temporal span of the music continuum 

several hierarchical levels (Roads, 2001). The composer’s task is undoubtedly to elaborate 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 Analysis refers to the general process of separating something into its constituent elements and to a certain 
extent to the examination of the elements or structure of something, typically as a basis for discussion or 
interpretation. However, it does not imply music analysis, which focuses essentially on the interpretation and 
elaboration of the elements provided by the analysis carried here. 
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the several levels of creating a sonic work. Analysis often examines a compositional 

impulse, while composition often elaborates an analytical impulse. 

In order to pursue the aim of this dissertation, I intend to computationally model the 

music cycle present in Figure 1.2. Specifically, I aim to design a computational system 

that learns from given musical examples, and/or relies on music theory knowledge, in 

order to generate meaningful musical results with minimal user interference. The analysis 

agent encompasses two operations: listening (perception) and learning (cognition), while 

its complementary agent is composition (action). These two agents are in a constant and 

reciprocal dialogue with music theory, a repository of knowledge constantly populated 

with new knowledge generated by the two aforementioned agents. 

 

Figure 1.2 - Basic building blocks of the musical life cycle computationally modeled in this 

dissertation. 

 

My analysis of audio signal content aims at providing representations and revealing 

patterns of the musical surface higher than the sample temporal unit. In order to do so, I 

will devise a bottom-up or data-driven computational model for the automatic 

segmentation and description of sound objects and musical patterns according to criteria 

of musical perception grounded in sound-based theories by Pierre Schaeffer (1966), Denis 

Smalley (1986, 1997, 1999), and Lasse Thoresen (2007a, 2007b). Alongside a critical 

ANALYSIS 
listening & learning 
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discussion of the criteria of musical perception proposed in the cited theories, I will devise 

a set of descriptors for characterizing sound objects; the description scheme is adapted to 

the idiosyncrasies of a CSS system. Relying on the sound objects’ descriptions, I then 

identify and model higher structural levels of the audio data by grouping sound objects 

into recognizable patterns up to the macro-temporal level. 

Outlined from a music theory and practice standpoint, my model is adapted for music 

analysis and composition. The outcome of the model intends to provide a rich 

representation of the audio content in a compact and meaningful representation. 

However, it does not provide a successful answer to the ultimate goal of the analyst, 

which is to explain the organization of several events and to reveal how meaning derives 

from those organizations. Instead, the model provides information that can either allow a 

different view over the sound material or establish comparisons between vast amounts of 

material that are not traceable by human senses. A human interference is mandatory in 

order to determine the causal linkages between the sonic objects and to determine the 

relationships between patterns (if this level of syntax exists). 

 

 

Figure 1.3  – Hierarchical organization of the music time scales considered in the 

analytical module. 

 

 
patterns 

 
sound objects 

 
samples  
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Segmenting the several layers in an audio continuum, along with the description of its 

constituent units (sound objects), not only provides a groundwork for the analyst, but also 

for the sound-based composer. In other words, the outcome of my analytical model is 

suitable for guiding the composition process by reciprocating the analytical operations 

(i.e. through a top-down or knowledge driven approach). The outcome of my analysis 

offers the composer a good representation of the audio source’s structure and allows a 

fast and intuitive reorganization of the segments from the macrostructure to the basic 

element of the musical surface (sound object). 

One can compose the macrostructure in earGram by selecting sub-spaces of the corpus 

that can be assigned to a particular piece, performance, or even to different sections of a 

work. The process is manual, but guided by several visualizations that expose the 

structural organization of the corpus, such as similarity matrices and 2D-plots. Some 

patterns of the audio source(s) structure may also be revealed through the use of 

clustering techniques in combination with the visualization strategies aforementioned.  

The recombination of the sound segments in earGram is automatic and it is mostly 

done by adapting CAAC algorithms related to symbolic music representations to function 

as selection procedures in CSS. The CAAC strategies can be guided by music theory 

knowledge or models created during analysis from user-given examples.  

As the name implies, CSS deals with the concatenation or juxtaposition of sound 

segments, that is, the horizontal dimension of musical structure (e.g. melody, metrical 

accents, dynamics and properties relating to timbre). However, it is also my intention to 

expand the CSS scope of action to handle the recombination of units in the vertical 

dimensions of musical structure (units’ simultaneity) as a cause of timbre creation and 

variance, control of the event density, and (psychoacoustic) dissonance. 

Finally, in earGram I will explore the idea that all sonic parameters, such as brightness 

and sensory dissonance, can be as important as parameters like pitch and duration, which 

are commonly seen as primary elements of musical structure. I envision all criteria for 
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sound description as fundamental “building blocks” for compositional systems. This is not 

to say that every piece composed by these means must use equally all sonic parameters, 

but that all sonic parameters may be taken into careful consideration when designing a 

musical work and seen as primary elements of musical structure. 

 

1.3 - Concatenative Sound Synthesis 

 

CSS is “a new approach to creating musical streams by selecting and concatenating 

source segments from a large audio database using methods from music information 

retrieval” (Casey, 2009). Briefly, CSS uses a large “corpus” of segmented and descriptor-

analyzed sounds snippets, called “units”, and a “unit selection” algorithm that finds the 

best matching units from the corpus to assemble a “target” phrase according to a 

similarity measure in the descriptor space. 

The first CSS software appeared in 2000 (Schwarz, 2000; Zils & Pachet, 2001) and their 

technical basis strongly relied on concatenative text-to-speech (TTS) synthesis software—a 

technique presented in the late 1980s (Schwarz, 2004). CSS began to find its way into 

musical composition and performance beginning in 2004, in particular through the work of 

Bob Sturm (2004, 2006b) and Diemo Schwarz (Schwarz, Britton, Cahen, & Goepfer, 2007; 

this paper documents the first musical compositions and installations exclusively produced 

by CataRT, a real-time CSS software developed by Schwarz).  Currently CSS is considered 

state-of-the-art in terms of sample-based techniques and content-based audio processing. 

The technique is at an interesting phase of development and attracts a broad audience of 

users, researchers, and developers from the scientific to the artistic community. CSS 

shows great potential for high-level instrument synthesis, resynthesis of audio, interactive 

explorations of large databases of audio samples, and procedural audio—especially in the 

context of interactive applications, such as video games. Despite its mature development 

at engineering and technological levels, CSS is rather undeveloped in terms of aesthetic 
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and utilitarian concerns. In addition, even though most research in CSS is oriented toward 

music, the technique lacks substantial contributions in terms of creative output. 

In the next section, I will provide an overview of the modules that constitute a CSS 

system with regard to its technical implementation. Along with the description of the 

different modules, I will detail the signal data flow of the algorithm and the fundamental 

terminology associated with each operation. The following overview is restricted to the 

core components of a CSS and covers the majority of existing CSS software 

implementations, but it does not target existing variants and subtleties. In addition, the 

present overview does not distinguish between online or offline approaches. Even if there 

are some minor differences between the two approaches, the general architecture is the 

same. Whenever appropriate, I will note the most prominent distinctions. 

 

1.3.1 - Technical Overview 

 

CSS systems commonly comprise four modules: (1) analysis, (2) database, (3) unit 

selection, and (4) synthesis (see Figure 1.4). Analysis is responsible for segmenting an 

audio source into short snippets of audio (named units) and describing their content by a 

set of features (e.g. pitch, loudness, instrument, etc.). The database is responsible for 

storing all data produced during analysis, which can be later accessed by all of the 

remaining system components at runtime. The unit selection algorithm is responsible for 

finding the best matching unit from the database to a target specification. Finally, 

synthesis converts the output of the unit selection module into audio format. The 

following paragraphs examine each component of the system individually and point to the 

respective processing. In addition, the reader can refer to Appendix A for a broad 

comparison of CSS software according to prominent features such as types of 

segmentation, audio units’ representations, algorithms for unit selection, concatenation 

type, implementation code, and speed. 
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Figure 1.4 - Algorithmic scheme for CSS. 

 

Before describing the algorithm I should clarify two CSS-related concepts and one 

procedure necessary for the proper functioning of a CSS system. The concepts are unit and 

corpus, and the procedure is the user-assigned data needed to feed the system. The first 

tem, unit, is the most basic element of the synthesis algorithm. The algorithm synthesizes 

new sounds by concatenating selected units that best match a particular target 

specification. A unit has the same structural value in CSS as a musical note in traditional 

instrumental music, or even a grain in granular synthesis. Corpus refers to a collection of 

units. Before any processing takes places, the user must feed a CSS system with audio data 

that is subsequently segmented into units to form a corpus. This data will be addressed as 

audio source(s). The choice of the audio source(s) is crucial to the quality of the synthesis 

because it constitutes the raw material that is concatenated in the end of the processing 

chain to create new sounds. 
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1.3.1.1 – Analysis 

 

The analysis module is responsible for two tasks: (1) to segment the audio source(s) 

into units, and (2) to provide feature vectors that describe the intrinsic characteristics of 

the units. During segmentation the audio source is divided into several units according to 

an algorithmic strategy. CSS makes use of different algorithms to segment an audio 

stream. The outputs are pointers that define the boundaries of each unit.  

Analysis comprises a second task that is responsible for extracting relevant audio 

features from all units in the corpus. The extracted characteristics are further merged 

into feature vectors that represent the units in all subsequent operations of the system. 

The feature vectors can be seen as signatures of the units because they provide 

meaningful and significantly smaller representations of its data. The feature vectors 

commonly address various characteristics of the units, which, consequently, define a 

multidimensional space in which the collection of units can be represented. 

 

1.3.1.2 – Database 

 

The database is responsible for storing the data handled and generated during analysis. 

It includes basic information concerning the units’ location in the audio source, along with 

their representative feature vectors. Several database architectures can be found in CSS 

software. Most often the database is drawn from scratch in the language in which the 

application is developed and uses a proprietary analysis data format. Very few 

implementations adopt common architectures for managing data such as the Structured 

Query Language (SQL) or its derivatives (Schwarz, 2004; Schwarz, 2006a). 
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1.3.1.3 - Unit Selection 

 

After creating the corpus, the system is ready to synthesize target phrases. This 

operation takes place in the two remaining modules of the algorithm, that is, the unit 

selection and synthesis. Before I detail the unit selection algorithm, I would like to note 

that it is important to understand the various possibilities of defining target phrases. The 

target is a representation of a musical phrase, commonly provided by the user, which 

must be presented to the algorithm as a collection of features in a similar way as the 

feature vectors created during analysis. 

Most systems provide mechanisms for avoiding the user to specify targets as audio 

features. Instead, what the user commonly presents to the computer is either an audio 

signal or any other tangible music representation such as MIDI information. Consequently, 

the system must be able to convert the input representation into a collection of feature 

vectors. There are two major approaches to the task: (1) data driven and (2) rule-based 

methods. Data-driven strategies produce targets from the data by applying a set of 

analytical tools. An example is the transduction of an audio signal into proper feature 

vector representations. Rule-based approaches encapsulate knowledge to interpret 

provided information in a meaningful representation to the system. A typical example is 

the conversion of MIDI data into a string of audio features.  

Unit selection encompasses an algorithm that is responsible for searching the corpus 

and selecting the best matching units according to a given target. In most cases, the unit 

selection algorithm relies on two conditions to find the best matching unit from the 

corpus, according to the target specification: the (1) target cost and the (2) concatenation 

cost. The target cost, also known as local search, is computed by finding the units from 

the corpus that minimize the distance function to the target in the descriptor space. 

Different distance metrics are used in CSS, such as Euclidian distance (Hoskinson & Pai, 

2001; Hackbarth et al., 2010), Manhattan distance (Brent, 2009), Mahalanobis distance 
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(Schwarz, 2005), and dot product (Hazel, 2001; Kobayashi, 2003). The concatenation cost, 

or global search, controls the quality of the units’ concatenation. The computation of such 

criteria may encompass several variables and can be defined by different means. The most 

common approach is the computation of descriptors’ discontinuities introduced by 

adjacent units. Online systems take care of concatenation cost in a limited way. Most 

often, online systems consider characteristics of the previously selected unit to constrain 

the selection processes of the next unit (Schwarz, 2006a). This module outputs the units’ 

numbers or any other pointers that represent the selected units to be synthesized. 

 

1.3.1.4 - Synthesis 

 

Synthesis is the last stage of a CSS system. It is responsible for synthesizing the 

selected units provided by the unit selection module. The simplest approach to synthesis 

is to interpret the string of pointers provided by the previous module, find their position 

on the audio source, and play or render the respective units. The most recent CSS systems 

also allow the synthesis of overlapping units. This last possibility is quite similar to the 

playback engine of a granular synthesizer. Some systems also provide the possibility to 

apply audio effects at the end of the processing chain (Lazier & Cook, 2003; Schwarz et 

al., 2008). 

 

1.4 - Time Scales of Music 

 

The framework I am proposing deals extensively with the various hierarchical levels of 

music. In order to establish a set of unambiguous terms to address the various structural 

levels, I will adopt a taxonomy proposed by Roads (2001) to systematically define all 

possible time scales of music. Roads’ taxonomy presents a comprehensive list of nine 

music time scales, which cover the various layers of musical structure. The taxonomy 
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includes the following: 

1. “Infinite” refers to a time span of infinite mathematical durations. 

2. “Supra” refers to the temporal span beyond the duration of a composition. 

3. “Macro” represents the overall architecture, or form, of a musical work. 

4. “Meso” comprises the musical phrase formed by dividing the macro 

structure into smaller parts, or by grouping sound objects into constituent phrase 

structures of various sizes. 

5. “Sound object” is the basic unit of musical structure analogous to the 

concept of note in traditional instrumental music, but encompassing all 

perceivable sonic matter. 

6. “Micro” encompasses sound particles on a time scale that extends down to 

the threshold of auditory perception (measured in thousandths of a second or 

millisecond). 

7. “Sample” is the smallest level of the digital representation of an analog 

audio signal commonly expressed by numerical amplitude values at a fixed time 

interval. 

8. “Subsample” is an unperceivable time scale given its too short duration, 

and can be understood as the fluctuations that occur below the sample time scale. 

9. “Infinitesimal” refers to a time span of infinitely brief mathematical 

durations. 

The four most extreme time scales proposed by Roads—infinitesimal, subsample, 

infinite and supra, two micro and two macro time scales, respectively—define contextual 

music situations that are not relevant to the scope of this dissertation because one cannot 

directly manipulate them in a practical context. However, the reader should be familiar 

with the five remaining time scales—from sample to macro—because they will be 

extensively addressed throughout the dissertation. 

While defining various time scales of music, Roads provides approximate durations for 
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all time scales. Even if these values offer a comprehensible suggestion of the duration of 

each scale of music, they may also provide erroneous information because in a concrete 

musical work all time scales are identified and definable based on their function, rather 

than their effective duration. 

 

1.5 - Outline of the Dissertation 

 

I have divided this dissertation into two large parts. Part I (chapters 2, 3, and 4) 

provides a review of musicological theories for sound description and then offers an 

algorithmic description scheme for describing and modeling the content of audio signals at 

various hierarchical levels. Part II (chapters 5, 6, and 7) presents algorithmic strategies to 

automatically recombine segmented-analyzed audio units, then summarizes the original 

contribution of this study, and finally provides guidelines for future work. 

Chapter 2 presents an overview of three major musicological theories for sound 

description by Pierre Schaeffer, Denis Smalley, and Lasse Thoresen. In addition, I critically 

compare the three aforementioned theories with a particular focus on their criteria for 

the morphological description of sound objects. 

Chapter 3 discusses the conceptual and technical considerations that assisted the 

creation of a description scheme adapted to the automatic characterization of sound 

objects. 

Chapter 4 examines the higher layers of musical structure from an analytical 

standpoint, focusing on how visualization strategies and statistical analysis help reveal and 

model musical structure. The visualization strategies are supported by two topics, which 

are extensively discussed: (1) the computation of similarity between sound objects, and 

(2) clustering algorithms that help group sound objects that expose similar features and 

reveal temporal patterns of musical structure. 

Chapter 5 provides an overview of the technical and conceptual background of the 
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framework’s generative strategies, particularly an historical perspective of sample-based 

techniques and compositional systems that contributed to earGram’s design. In addition, it 

is details the articulation between the two major modules of earGram—analysis and 

composition—and how their interaction establishes a compositional system. 

Chapter 6 describes generative music strategies implemented in earGram, from the 

organization of the macrostructure down to the lowest level of the generated music.  

Finally, Chapter 7 discusses my conclusions and original contributions to then provide 

guidelines for further study. 
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PART I: ANALYSIS 

 

Ce n'est point avec des idées, mon cher Dégas, 

que l'on fait des vers. C'est avec des mots. 

 

— Stéphane Mallarmé 
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Chapter 2 

 

Sound Morphologies: From Pierre Schaeffer 

and Beyond 

This chapter presents an overview of three representative analytical theories of sound-

based works by Pierre Schaeffer (1966), Denis Smalley (1986, 1997) and Lasse Thoresen 

(2007a, 2007b). Each theory is largely presented according to three topics: (1) 

methodological premises; (2) conceptual framework; (3) and morphological criteria of 

sound perception. The first two topics acquaint the reader with select information 

regarding the foundations and guidelines of the analytical theories necessary in order to 

then focus special attention on the third topic, laying the groundwork for the development 

of a computational description scheme presented in the next chapter. 
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2.1 - Describing Sound 

 

Sound description is an essential task in many disciplines from phonetics and 

psychoacoustics to musicology and audio processing, which address it for a variety of 

purposes and through very distinct perspectives. The two disciplinary approaches to sound 

description most relevant to this dissertation are computational and musicological. 

Computational refers to content-based audio processing strategies, namely the use of 

audio descriptors to provide an automatic characterization of an audio signal’s content. 

For example, a computer can easily describe how bright, loud, and stable a sound is by 

inspecting characteristic present in its digital signal representation.  

Content-based audio processing systems that extensively use audio descriptors tend to 

exclude the analytical operations of the system from the interface. The computational 

descriptions in content-based audio processing systems like Shazam4 and Moodagent5 take 

place during the implementation, or training, phase of the algorithm and are hidden from 

the system’s interface, thus preventing the user from accessing them. Contrarily, creative 

applications like Echo Nest Remix API6 and CataRT (Schwarz, 2006a) give access to the 

generated audio descriptions and even allow their manipulation, because it is an inherent 

process of music creation. However, most audio descriptors extracted computationally, 

like spectral kurtosis and spectral flatness, are not adapted to the terminology of musical 

practice and are meaningless to musicians. 

The gap between computational descriptions of sound and music practice/theory is 

essentially a problem of terminology, because even if many audio descriptors measure 

musical or perceptual properties of sound, they are always addressed according to the 

mathematical operation involved. Developing a set of descriptors adapted to current 

music practice will increase the usability for those musicians more familiar with music 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 http://www.shazam.com. 
5 http://www.moodagent.com. 
6 http://echonest.github.io/remix. 
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theory and practice than with music technology. By unpacking the language, the usability 

of content-based audio systems would increase considerably, and appeal to a larger 

audience, most-importantly including musicians. Indebted to previous research by Ricard 

(2004), Peteers and Deruty (2008), and Schnell, Cifuentes, and Lambert (2010) (each of 

whom was inspired by Pierre Schaeffer’s typo-morphology), the strategy I apply here will 

offer a description scheme adapted to the needs and knowledge of musicians.  

I will now discuss musicological approaches to sound description for two reasons: (1) to 

present a theoretical basis of the mechanisms behind sound description; and (2) to provide 

a succinct set of descriptors adapted to music imperatives, particularly composition. In 

addition, utilizing perceptual criteria like mass, harmonic timbre, and dynamics, based on 

musicological literature describes abstract sounds independent of their sources because 

they rely on perceptual characteristics of the audio signal disregarding causal 

relationships. 

 

2.1.1 - A Western Musicology Viewpoint: From Note to Noise  

 

The emergence of electroacoustic music in the 1940s extended significantly the 

practice of music creation with new instruments, a myriad of tools resultant from the 

possibility of recording and diffusing audio, raw material that has been unexplored so far 

in music composition, etc. Until then, music composition was confined to acoustic 

instrumental and vocal models and uniquely focused on the manipulation of the following 

four elements: pitch structures (melody, harmony, aggregates, etc.), rhythm (meter), 

timbre (restricted almost exclusively to orchestration), and form (theme, motives, macro-

form, etc.) (Thoresen, 2007b). These musical elements convey a clear understanding of 

musical structures that are highly tied to the concept of musical note. The musical note, 

as the basic unit of composition, favors pitch and duration as primary musical elements 

over timbre or other attributes of sound.  
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 The appearance of new electronic instruments and sound manipulation strategies 

broke the paradigm linking sound to the physical object producing it, and allowed 

composers to work with dimensions that were previously inaccessible or totally 

disregarded in music composition, particularly the use of all sonic phenomena as raw 

material for a composition or expanding the act of composing to the sound material itself. 

In electroacoustic music, the basic structural unit of the composition is no longer the 

musical note. Instead, the concept of sound object comes to the fore, significantly 

extending the spectrum of possibilities (from note to noise) without indicating a priori 

sources or known causes. Electroacoustic music opened the exploration of timbre and 

reformulated the notion of spectrum as a compositional strategy.  

As a result, much electroacoustic music was particularly resistant to traditional 

analysis and categorization. In addition, the new dimensions explored in electroacoustic 

music existed for some decades without any theoretical ground or formal definition that 

could articulate the relevant shift within musical composition. Clearly, a unique set of 

terms and concepts was needed to discuss, analyze, and interpret electroacoustic music 

(Smalley, 1986). 

In the early years of electroacoustic music theory, the discourse was largely 

monopolized by engineering terminology, consequently lacking theoretical and aesthetic 

reflection. In 1966, Pierre Schaeffer presented Traité des Objets Musicaux  (TOM)—the 

first substantial treatise on the subject, which addresses the correlation between the 

world of acoustics and engineering with that of the listener and musical practice. While 

the technology used by Schaeffer is now outdated, and his argument far from the model 

presented here, his overall perspective in TOM is valid because of the approach taken to 

listening and the new concepts and taxonomies of timbre and sound description.  

2.2 - A Schaefferian Approach to Sound Based Theory 

 

TOM was the first major essay that attempted to understand and devise an analytical 
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theory for sound-based works. In TOM, Schaeffer outlines a Program of Music Research 

(PROGREMU) that provides several stages of action like the definition of different types of 

sounds along with their morphological description, characterization and organization. 

These stages aim to abstract musical value from audio signals for particular musical 

contexts (Landy, 2007). Although it provides a solid foundation for musical composition, 

TOM is “situated rather in the area of hearing than making, it is descriptive rather than 

being operational” (Chion, 1983, p. 98). Schaeffer reframes the act of listening to sound 

by articulating a phenomenological theory that is primarily concerned with the abstracted 

characteristics of sounds, rather than their sources and causes (Chion, 1983). The theory 

articulates modes of listening to sound that ultimately establish the basis of a solfeggio for 

sound-based works. 

In order to acquaint the reader the basis of TOM’s methodology, four concepts coined 

by Schaeffer—(1) concrete music (musique concrète), (2) listening functions, (3) reduced 

listening, and (4) sound object— will be examined next. Their order reflects a top-bottom 

organization of music practice/theory and human perception principles. 

According to Schaeffer, concrete music denotes the music created by a group of 

composers working at the French Radio, which later became the Groupe des Recherches 

Musicales (GRM). Schaeffer provides an explanation of this term, as many others, by 

referring to binary and antonym concepts (Landy, 2007). The term “concrete” is used to 

represent a musical reality, a new creation paradigm that opposes abstract music, which 

was the prevailing composition model for vocal or acoustic instruments at the time. It 

emphasizes that the raw material for a composition is based on pre-recorded sounds. In 

contrast, traditional Western music composers start with an abstract idea of the work, 

which only later achieves its concrete form when performed. 

Schaeffer’s theory derived from particular active listening functions. He describes four 

listening functions related to different ways of perceiving and understanding sound: 

écouter, comprendre, entendre and ouir. John Dack and Christine North translated them 
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to English as: to listen, to comprehend, to hear, and to perceive, respectively (Chion, 

1983). To listen refers to the identification of the sound-producing event through the 

sound. In this case, sound is seen as an index of an event. To comprehend implies the 

identification of a message transmitted by the sound. This listening function is well 

illustrated by speech, in which sound is only a “vehicle” carrying meaning for words. To 

hear is to perceive the intrinsic properties of a sound. These qualities allow us to 

distinguish between different instruments, for instance. To perceive refers to the 

discernment of the raw-sound data with no intention of interpreting or qualifying it. It is 

the lowest level of our auditory perception and can be seen as a kind of passive listening 

(Chion, 1983). 

Another key concept in TOM is reduced listening, which is a listening attitude that 

focuses on the morphological qualities of sound rather than its causes or meaning. 

Reduced listening neglects the phenomenon of source identification that is highly linked to 

vocal and instrumental music and describes Schaeffer’s methodological approach adopted 

in TOM for analyzing the qualities expressed by sound events. As Jean-Claude Risset notes 

“in the first instance, Schaeffer placed the accent on the primacy of the listening 

experience and on the necessity to develop a solfeggio of effects as opposed to causes” 

(as cited in Thomas, 1999, p. 37). It also would be difficult to approach sound with 

reduced listening as a strategy without available technology for sound recording and 

diffusion, because we must be exposed to a sound many times to fully grasp its 

morphology. The repetition of the physical signal prompts more awareness of its 

perceptual attributes and relegates the listener’s attention on the sound source to a 

secondary level (Schaeffer, 1966). Schaeffer’s reduced listening denotes an attitude 

toward listening that is characteristic of its time: to listen to sounds whose cause is 

invisible, such as radio broadcasts, telephone conversations, or recorded sounds. The 

focus on the sonic matter is a guiding principle for the compositional approach of the 

composers associated with the GRM.  
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Lastly, let us address the concept of sound object. The sound object is defined as the 

basic unit of musical structure, which resembles the concept of note in traditional 

Western music. In other words, the basic unit of composition and analysis is the concept of 

sound object that encompasses sound events that are perceived as an entity. A sound 

object can be identified by its particular and intrinsic perceptual qualities that unify it as 

a sound event on its own and distinguishes it from all other sound events (Chion, 1983). 

After enlightening seminal concepts and the methodology present in TOM, I will delve 

into the core of Schaeffer’s treatise and present first a brief overview of the basic 

organization of PROGREMU, and then focus on the second stage of this program— 

morphology—which aims at outlining perceptual criteria for describing sound.  

 

2.2.1 - Program of Music Research 

 

The core of Schaeffer’s TOM is the PROGREMU, which guides the user through “the art 

of practicing better listening” (Chion, 1983, p. 38) in relation to musical activity. 

PROGREMU is divided into five stages: (1) typology, (2) morphology, (3) characterology, (4) 

analysis, and (5) synthesis.  

The first two stages of the PROGREMU are commonly addressed together as “typo-

morphology,” and as the most detailed stages undertake three tasks in relation to sound 

objects: (1) to identify; (2) to classify; and (3) to describe. The first task aims at 

identifying sound objects from an audio stream. The resulting segments are further 

classified into distinctive types, and, finally, exhaustively detailed according to their 

morphological characteristics. Typology takes care of the first two operations and 

morphology the third. In sum, sound objects are categorized into a typology based on 

perceptual attributes. While the ultimate aim of Schaeffer’s typology is to assign “value” 

to sound object and derive their suitability for musical activity, morphology offers a 

refined and precise description of the sound objects and their inner structure. As 
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Schaeffer notes, typo-morphology is a “descriptive inventory which precedes musical 

activity” (Schaeffer, 1966, as cited in Chion, 1983, p. 124). 

The next three stages of PROGREMU—characterology, analysis, and synthesis—are 

intrinsically related. Characterology’s purpose is to formulate “genres,” or, in other 

words, to define compound classes that articulate the morphologic criteria of sound 

objects into representative groups (Landy, 2007). Characterology introduces implicit 

notions related to instrumental terminology and groups sound objects that share the same 

musical value or specific features together. Analysis can be seen as a complementary 

stage of characterology in the sense that it examines the potential of sound objects to be 

arranged in “scales”, also referred as “species”, according to perceptual features (Landy, 

2007). Finally, synthesis fills possible gaps in the available material for the composer by 

producing a “series of objects of the same genre leading to the emergence of a variation 

of a relevant feature, or value” (Chion, 1983, p. 114). Ultimately, synthesis provides to 

the sound based composer a larger pallet of raw material to assist the compositional 

process. 

 

2.2.2 - Morphological Criteria of Musical Perception 

 

Schaeffer’s morphological criteria for sound objects’ description are examined by 

human judgment through reduced listening. The morphological criteria are defined as 

“observable characteristics in the sound object” (Chion, 1983, p. 158), and “distinctive 

features […or] properties of the perceived sound object” (Schaeffer, 1966, p. 501), like 

the mass of a sound (e.g. sinusoidal or white noise), sound’s granularity and dynamics.  

Two concepts—matter and form—organize Schaeffer’s morphology. For Schaeffer, if 

matter refers to the characterization of stationary spectral distributions of sound, then 

sound matter is what we would hear if we could freeze the sound. Form exposes the 

temporal evolution of the matter. Schaeffer studied matter and form by listening tests 



	  
	  

28	  

that focused on sounds objects with two different natures: the first group encompassed 

sounds with fixed form to study the matter criterion, and the vice versa strategy on the 

second group of sounds, that is, a fixed matter that allowed him to study the form. In 

addition, Schaeffer provides a third category, called variation criteria, which analyzes the 

morphology of sounds in which both the form and the matter vary. These categories are 

further divided into seven criteria. A detailed description of each criterion follows. 

Sound matter is characterized by the mass and harmonic timbre. Mass is the “mode of 

occupation of the pitch-field by the sound” (Schaeffer, 1966, as cited in Chion, 1983, p. 

159). By examining the spectral distribution of a sound object, it is possible to define its 

mass according to classes that range from noise to a pure sinusoidal sound. Schaeffer 

divided the morphology of the mass criterion in seven classes: (1) pure sound: a tonic 

without harmonic timbre; (2) tonic or node: a mass characterized by a locatable pitch 

(e.g. a sinusoidal sound); (3) tonic group: a mass consisting of two or more tonics or nodes 

(e.g. a violin tone); (4) channeled sound: an ambiguous mass, composed of tonic, tonic 

groups, nodes, and nodal groups (e.g. piano chord); (5) nodal group: a mass formed of 

“bands” of mass (e.g. bell sounds); (6) nodal sound: a mass formed of an array of sounds 

which is non-locatable in pitch (e.g. sea sounds); (7) white noise: a complex mass that 

occupies the entire pitch-field (e.g. electronically-generated white noise). 

Harmonic timbre, is closely related to the criterion of mass and complements it by 

further describing additional qualities of the mass (Schaeffer, 1966). The classes that 

characterize harmonic timbre are interdependent features of the mass’ classes, and in 

certain cases it is even impossible to dissociate them (Chion, 1983). Schaeffer’s classes of 

the harmonic timbre criterion are an extension of the classes of mass, in the sense they 

provide more details concerning the spectral distribution of each sound object. Instead of 

giving a deeper perspective of the classes presented earlier in the mass criterion, I prefer 

to inspect the characterology and analysis of harmonic timbre since it enlightens the 

nature of this criterion by using binary pairs of concepts regularly used in the musical 
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practice. Some of these binary concepts are: empty/full, round/pointed, resonant/dull, 

dark/light, narrow/broad, poor/rich (mass), and the density or volume. 

Grain defines the microstructure of the sound matter, such as the rubbing of a bow. 

Even though it describes a temporal dimension of the sound, it is under the criterion of 

matter. Grain is divided into the following three classes: (1) resonance grain: non-

sustained sounds (e.g. cymbal resonance); (2) rubbing grain: sustained sounds (e.g. bow or 

breath sounds); and (3) iteration grain: iterative sounds (e.g. drum roll). 

Sound shape/form encompasses two criteria: (1) dynamic, and (2) pace. The dynamic 

criterion exposes and characterizes the shape of the amplitude envelope. Schaeffer 

distinguished several types of dynamic profiles (e.g. unvarying, impulsive, etc.), as well as 

several types of attack (smooth, steep, etc.). The pace (allure) defines the fluctuation in 

the sustainment of the spectrum of sound objects. It is analogous to the definition of the 

quality of the vibrato in instrumental or vocal sounds, or even, in electronic music, the 

attributes of amplitude or frequency modulations. Schaeffer (1966) defines three types of 

pace: (1) mechanical (very regular); (2) lively (“flexible periodicity, revealing a living 

being”); and (3) natural (unpredictable). 

The variation criteria expose the temporal dimension of pitch and mass. The melodic 

profile is related to the variation of the pitch and is characterized by three variation types 

(imperfect stability, continuous—e.g. a glissando, and discontinuous—e.g. a piano phrase) 

and to three variation speeds (slow, medium, and fast). The mass profile denotes the 

continuous variation of mass, and is defined by several typical mass variations, such as 

pitch to complex or thin to thick. 

 

2.3 – After Schaeffer 

 

For more than four decades, TOM by Pierre Schaeffer had no deep implications and 

concrete consequences in musical analysis and particularly in the analysis of electronic 
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music (Thoresen, 2007b; Landy, 2007). Two of the most pointed reasons for this neglect 

are the difficulty of Schaeffer’s writing and the unavailability of the document in English 

until 2004. According to Landy (2007), the first and only publicly available English 

translation is Schaeffer’s short Acousmatics chapter published in Cox and Warner (2004). 

In this regard, a note should be paid to the impressive work of Michel Chion, whose Guide 

des Objects Sonores: Pierre Schaeffer et la Recherche Musical (1983) introduces 

Schaeffer’s TOM and Solfège des Objects Sonores in a systematic fashion. Along with the 

work of Schaeffer there are two other sound-based theories—Denis Smalley’s 

“spectromorphology” and Lasse Thoresen’s aural sonology—that are seminal for this 

dissertation. Both theories acknowledge and extend the sound categorization provided by 

Schaeffer, in particular his morphological criteria of sound perception. 

 

2.3.1 - Denis Smalley’s Spectromorphology  

 

Denis Smalley’s spectromorphology is the most significant contribution to music theory 

related to sound categorization that acknowledges Schaeffer’s influence (Landy 2007). 

Today, Smalley’s spectromorphological criteria, which tremendously simplify and 

systematize Schaeffer’s typo-morphology, are probably the most known and frequently 

applied theory for the analysis of electroacoustic music. Smalley presented his 

spectromorphological theory in two major articles: “Spectromorphology and Structuring 

Processes” (1986) and “Spectromorphology: Explaining Sound-Shapes” (1997). Smalley 

(1986) defines spectromorphology as “an approach to sound materials and music 

structures which concentrate on the spectrum of available pitches and their shaping in 

time” (p. 61). The term spectromorphology is a word formed through juxtaposition, 

referring to the interaction between sound spectrum (spectro-) and the way it evolves 

through time (-morphology) (Smalley 1997). Similar to Schaeffer’s, Smalley’s theory is not 

a composition treatise, but rather an analytical theory that covers a wide range of 
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concepts and terminologies for describing and studying the listening experience. 

Spectromorphology broadens the discussion regarding electroacoustic music analysis by 

proposing a systematic and shared terminology (1986). Smalley commonly refers to 

Schaeffer’s typo-morphology, and even adopts reduced listening as his main research 

strategy.  

Smalley’s spectromorphology is divided into five basic classes: (1) spectral typology, 

(2) morphology, (3) motion, (4) structuring principles, and (5) space. He starts by offering 

an examination of the various sound types (spectral typology), and then moves into a 

broader description of the temporal shapes or morphologies of sound. Motion considers the 

organization of spectral shapes and the temporal discourse of the spectral-morphological 

design. Structuring principles, the fourth class, details how the listener experiences 

motion. Finally, Smalley’s examination of space addresses the reception and 

interpretation of electroacoustic music by the listener; namely how the aural spaces that 

can be simulated with the use of spatialization technology constraint and create musical 

structures. For the purposes of this dissertation, the first two classes of 

spectromorphology—spectral typology and morphology—are the most relevant.   

Spectral typology characterizes the spectrum of a sound according to a continuum 

whose boundaries are note (pure tone) and noise. Smalley (1986) points out that the 

concept of spectrum in electroacoustic music encompasses both the pitch and the timbre 

qualities of a sound (later, I address these separately in relation to instrumental and vocal 

music practices). The continuum of possibilities that this criterion defines is related to the 

density of the spectrum. The passage between notes to noise is a result of increased 

spectral density and compression. Smalley names this interval as “pitch-effluvium 

continuum.” Smalley also segments the continuum into several typological components. 

The three main typological categories are: (1) note: a discrete pitch, which is further 

subdivided into: note proper, harmonic spectrum, and inharmonic spectrum; (2) node: a 

band of sound without clear pitch identification; and (3) noise: a spectrum with a highly 
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compressed density that inhibits the perception of any internal pitch structure. 

Morphology denotes the temporal shaping of the spectrum. Smalley (1986) identifies 

and distinguishes three temporal phases of the sound objects: (1) onset, (2) continuant, 

and (3) termination. The articulations between these three phases produce a limited 

number of morphological models that expose a particular shape of the spectrum over 

time. Smalley provides a symbolic notation for each of the profiles, which depicts the 

temporal evolution of the shapes. Figure 2.1 offers a complete list of the profiles and 

their respective labels. 

 

Figure 2.1 - Smalley’s (1986) morphological profiles of sound objects. (Copyright 1986 by 

Palgrave Macmillan. Reproduced with permission.) 

 

Smalley (1986) states that these morphological profiles can be linked or joined in 

strings in order to generate a wide and subtle variety of hybrid temporal articulations. 

Figure 2.2 illustrates these connections. 
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Figure 2.2 – Smalley’s (1986) attack-effluvium continuum. (Copyright 1986 by Palgrave 

Macmillan. Reproduced with permission.) 

 

Similar to the spectral typology’s pitch-effluvium continuum, in morphology Smalley 

also presents an equivalent concept named “attack-effluvium continuum” that describes 

the range of possibilities offered by the rate and compression of the iteration between 

attack-impulses. Figure 2.2 depicts all possibilities within the attack-effluvium continuum. 

While the first two categories describe an iterative behavior with different time scales, 

the last two categories can be seen as a description of the sound’s granularity—of which 

the ultimate stage (effluvial) is perceivable as a sustained sound.  

 

2.3.2 - Lasse Thoresen and the Aural Sonology Project 

 

The Aural Sonology Project (ASP) is a research program initiated in the 1970s at the 

Norwegian Academy of Music in Oslo by Lasse Thoresen with the assistance of Andreas 

Hedman and Olav Anton Thommessen. A major contribution of this ongoing project is an 

analytical framework for music for which no score is available, or music in which no simple 

one-to-one correspondence between score and the aural phenomenon exists (Thoresen, 

2007a).  
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The project claims two main influences: the first is Sonology as taught at the Utrecht 

Institute of Sonology in The Netherlands, and the second, the typo-morphological point of 

view articulated by Pierre Schaeffer in TOM. ASP draws its fundamental principles on the 

primacy of the listening experience through reduced listening, a concept borrowed from 

Schaeffer (1966). However, ASP extends Schaeffer’s theory towards “a pragmatic use of 

selected structuralist techniques” (Thoresen, 2007a). The musical object is apprehended 

not only as an objective fact but is partly formed by the listener’s intentions.  

The ASP developed an analytical approach to sound-based compositions with the 

following three levels: (1) sound objects, (2) elementary patterns, and (3) patterns of 

patterns. The first two levels—sound objects and elementary patterns—encompass 

constituent units or simultaneous layers of the sound continuum, and the third level 

characterizes the functional relationships between the several units (Thoresen 2007b). 

The following parallels can be established between Thoresen’s concepts and the time 

scales defined by Roads (2001) and defined earlier: (1) sound objects is a common concept 

by both taxonomies; (2) elementary patterns and the meso time scale; and (3) patterns of 

patterns with the macro time scale. 

One of the most valuable contributions of the project for the scope of this dissertation 

is the redefinition of Schaeffer’s typo-morphology into a terminology suitable for 

describing the musical phenomenon in empirical terms and adapted to practical analysis. 

It relies on philosophical jargon, everyday language, and terminology from musicology and 

acoustics, employing terms that are not coined within a consistent phenomenological 

point of view. Bellow, I present the morphology proposed by Thoresen that is divided in 

four main criteria, each of which further subdivide into smaller classes: (1) sound 

spectrum, (2) dynamic profile, (3) gait, and (4) granularity.  

Sound spectrum is characterized by spectral width and spectral brightness. The width 

of the spectrum characterizes the magnitude of the spectral components of a signal 

according to a continuum of possibilities, whose boundaries range from pure tones to 
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white noise. Within these limits an endless set of possibilities can be described such as 

monophonic and polyphonic pitched sounds with harmonic or inharmonic spectrum, or 

even any further saturations of the sound spectrum from unrecognizably pitched 

structures to a fully saturated spectrum (white noise). Spectral brightness indicates the 

spectrum’s “center of mass” and has a strong connotation with the perception of the 

“color” of the sound; it is commonly described by adjectives such as “dark” or “bright.” 

As Thoresen (2007b) notes, spectral brightness is a well-known phenomenon in linguistics 

to discern and organize the vowels and consonants, and in the music domain is a crucial 

feature for distinguishing between several traditional musical instruments, for instance.  

Dynamic profile “expresses the energy articulation of a sound object” (Thoresen 

2007b). Thoresen proposes the following seven profiles, based on Schaeffer’s typology, to 

characterize the dynamic shape of sound objects: (1) no dynamic profile (dynamique 

nulle); (2) weak dynamic profile (dynamique faible); (3) formed dynamic profile 

(dynamique formée); (4) impulse-like dynamic profile (dynamique-impulsion); (5) cyclic 

dynamic profile (cyclique); (6) vacillating dynamic profile (rëiteré); (7) accumulation-like 

dynamic profile (accumulé). He (2007b) further characterizes the dynamic profiles by 

providing a typological description of two distinct phases of each profile: the onset and 

the termination. There are seven onset types and six termination types, which will not be 

detailed here, because the extrapolation of a sound typology is not relevant for the scope 

of this dissertation. The onset phase can be even further characterized by adding an 

indication of the spectral brightness of the opening transient.7 

Gait is Thoresen’s attempted translation of the French word allure, one of the criteria 

of Schaeffer’s typo-morphology. Gait is closely related to the idea of vibrato, and defined 

by Thoresen (2007b) as “the undulating movement or characteristic fluctuation that often 

can be found in the sustained part of sound objects” (p. 139). Thoresen further divides the 

gait criterion in three categories according to nature of the undulation, which can be 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 For a detailed description of typology of the onsets and terminations please refer to Thoresen (2007b).  
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traced in the pitch, dynamic, or spectrum dimensions. Each category can be addressed by 

their nature, namely, pitch gait, dynamic gait, and spectral gait. Gait can be also 

characterized according to the degree of the undulation’s deviation from its mean value 

(small, moderate, and large) and the pulse velocity of the undulation (slow, middle, and 

fast). 

Granularity describes the microstructure of a sound object, that is, the perceptual 

irregularities. It is analogous to the abrasiveness one can feel when touching a piece of 

cloth or material, or the visible granularity of a photograph. Granularity is intrinsically 

related to the notion of iteration, and it is hard to differentiate the two concepts. 

“Generally, grains are a micro feature of the object in question, whereas iterations are of 

a coarser kind; thus grains would tend to be smaller, quicker, and be inseparable from the 

main body of the sound” (Thoresen, 2007b). Thoresen distinguishes nine types of sound 

objects’ granularity, which result from the combination of two characteristics of the 

grains: coarseness (small, moderate, and large) and velocity (slow, middle, and fast). 

 

2.4 – Critical Review and Summary  

 

This chapter reviewed three major analytical theories by Pierre Schaeffer, Denis 

Smalley and Lasse Thoresen for sound-based compositions. Special attention is given to 

the typological and morphological criteria to describe sound objects because they support 

a major contribution of this dissertation, which is a computational description scheme for 

sound objects. Smalley’s and Thoresen’s theories are rooted in the seminal work of Pierre 

Schaeffer, whose typo-morphology has considerably inspired several approaches in music 

analysis and composition—like Smalley’s spectralmorphology and Thoresen’s ASP. 

The three aforementioned theories—typo-morphology, spectralmorphology, and aural 

sonology—were developed for the analysis of electroacoustic music. However, as Smalley 

(1986) points out in regards to his own theories, they are easily extensible to other music 
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genres. A GMR researcher named François Delalande asserts a position that may help us 

further understand the application of such theories to the analysis of music. While 

referring to Schaeffer’s solfeggio, Delalande (1998) notes that: 

The morphological analysis of electroacoustic music (based on a resolution into sound 

objects) is a ‘syllabic’ analysis, which does not provide the means of highlighting 

pertinent configurations either poietically (a ‘trace’ of compositional strategies) or 

aesthesically (contributing to explaining the behaviours and representations of 

listeners). Thus, we do not consider a morphological analysis to be a music analysis. (p. 

20) 

As descriptive properties, the information provided by the analytical theories should not 

be treated as ends unto themselves, but rather as intermediary characteristics of sound 

objects. Moreover, the theories, and particularly the criteria for sound description, are 

broad enough to not be restricted to any music genre or style. 

In music practice, the application of Schaeffer’s typo-morphology has been nearly 

inexistent. Among the existent theories, Denis Smalley’s spectromorphology has received 

the most attention from the music community. Lasse Thoresen has taken the 

inaccessibility of Schaeffer’s work and presented a simpler, yet systematic, model that 

synthesizes Schaeffer’s major classes and enhanced applicability, providing a symbolic 

notation for each descriptor. 

The following paragraphs provide a critical review of the description schemes of the 

three aforementioned authors and establish a comparison between criteria used by them. 

A comparison between the top-level criteria of the three sound-based theories is provided 

in Table 2.1. In the following paragraphs, I adopt Schaeffer’s typo-morphology as the basis 

for the discussion. 
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 SOUND MATTER SOUND SHAPE/ 

FORM 

VARIATION CRITERIA 

Pierre 

Schaeffer 

Mass Harmonic-

timbre 

Grain Pace 

(alure) 

Dynamic 

criteria 

Melodic 

profile 

Mass 

profile 

Denis 

Smalley 

Spectral typology Morphology 

(attack-) 

effluvium 

continuum 

 Morphology 

 

  

Lasse 

Thoresen 

Sound spectrum Granularity Gait Dynamic 

profile 

  

Spectral 

width 

Spectral 

brightness 

 

Table 2.1 - Comparison between criteria of music perception of three representative 

sound-based theories by Pierre Schaeffer, Denis Smalley, and Lasse Thoresen. 

 

Schaeffer’s criterion of mass is present in both description schemes by Smalley and 

Thoresen, under the designations spectral typology and sound spectrum (more precisely 

spectral width), respectively. The three criteria are very similar, in particular the 

categorization of sound according to discrete types, whose limits are pure tones and full-

saturated spectra. Alongside the description of the sound objects’ mass by types of 

sounds, Smalley also adopts a description of the sound objects’ mass in a continuum of 

possibilities, whose limits are note and noise. 

Harmonic timbre is probably the most ambiguous criterion presented in Schaeffer’s 

morphology. Its definition is very vague and its close relation with the mass criterion is 

somehow misleading. Smalley avoids this criterion altogether and Thoresen presents a 

sound descriptor that clearly belongs to the harmonic timbre criterion within the mass 

criteria (sound spectrum according to Thoresen’s terminology). 

All theories examine the grain or granularity of sound objects. However, while 

Schaeffer and Thoresen consider it as criterion on its own, Smalley describes this 

dimension within the morphology criterion, particularly in the attack-effluvium 
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continuum. Half of the interval of the attack-effluvium continuum, between grain and 

effluvial states, can be seen as a description of the granularity of the sound. 

Another ambiguous concept presented in Schaeffer’s TOM is the notion of pace 

(allure). Similarly to harmonic timbre, Smalley avoids this criterion. Thoresen adopts the 

criterion and enlightens its definition by providing simpler, yet reliable categories for 

describing both the nature (pitch, dynamic, and spectral), and the quality of the 

phenomenon (velocity and amplitude of the undulation). Still, I find Thoresen’s definition 

of pace unsystematic and inconsistent, namely having in mind its algorithmic 

implementation, since it does not offer a concise description of the limits of the criteria. 

The dynamic criterion is transversal to the three frameworks, even if some nuances 

may distinguish them. All authors give priority to the description of the amplitude attack. 

Schaeffer and Smalley focus on the description of the overall stability of the sound 

objects’ dynamic, as well as the type of attack. Thoresen further explores some harmonic 

timbre characteristics of the attack phase. 

A final comment should be addressed to the simplifying approaches of the frameworks 

that follow and acknowledge Schaeffer’s theory. Even though it is seminal to understand 

the roots of Smalley’s and Thoresen’s theories (i.e., Pierre Schaeffer’s TOM), their 

contributions provide a much better adapted framework for the ultimate goal of this 

discussion, which is the formulation of a computational scheme for the description of 

sound objects. 
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Chapter 3 

Computational Segmentation and 

Description of Sound Objects  

The current chapter aims at presenting strategies for segmenting and describing sound 

objects by computational means. It starts by providing an overview of techniques and 

tools used in MIR for the computational description of audio signals (§ 3.2), and ends by 

proposing algorithmic strategies for segmenting an audio stream into sound objects (§ 3.3) 

along with a musician-friendly description scheme that intends to characterize sound 

objects according to perceptual criteria (§ 3.4). The description scheme is particularly 

adapted to musical imperatives and targets a musicians’ audience by relying on the 

interaction between MIR and musicological literature. 

 

3.1 – Introduction 

 

The ever-increasing amount of digital audio made available through public and private 

databases has demanded a deeper understanding of audio signals, in particular the 
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formulation of algorithms that can automatically extract information from audio data. 

Content-based audio processing is a recent technology designed to address the problem of 

sound indexing—offering new functionality for browsing, interacting, rendering, 

personalizing and editing musical material—by automating the task of manually annotating 

large sound databases. Most content-based audio processing research focuses on the 

recognition of sound sources (Martin, 1999; Eronen, 2001; Herrera, Dehamel, & Gouyon, 

2003; Wold, Blum, Keislar, & Wheatom, 1996; Misdariis, Smith, Pressnitzer, Susini, & 

McAdams, 1998), music classification (Lu, Jiang, & Zhang, 2001; Tzanetakis & Cook, 2001; 

Ellis, Whitman, Berenzweig, & Lawrence, 2002), and music recommendation (Cano et al., 

2005). 

Research in, and attention to, this field increased significantly when the Moving 

Picture Experts Group (MPEG), started working around 1996 on MPEG-7, a standard for 

describing multimedia content. Unlike their previous standards, which were mostly codecs 

for multimedia content, MPEG-7 targeted the creation of standardized descriptions for 

multimedia data, along with ways for structuring them (Herrera, Serra, & Peeters, 1999; 

Kim, Moreau, & Sikora, 2005). The primary purpose of MPEG-7 is to easily allow users or 

agents to search, identify, filter, and browse audiovisual content. MEPG-7 represents 

audio signals using audio descriptors—a research topic that has captured a lot of attention 

from the MIR community and consequently extended how computers manage audio. 

 

3.2 - Audio Descriptors 

 

A critical feature of systems that deal with content-based audio processing, at any 

level, is the selection of audio data representations. The output quality of these systems is 

commonly dependent on such representations. The most common approach to represent 

audio in such systems is the adoption of audio descriptors, which measure properties of 

audio signal content and wrap audio features to sets of values. For example, the 
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brightness of a sound can be extracted by the audio descriptor spectral centroid, which 

measures the center of mass of the time-domain representation of an audio signal and 

expresses the brightness of a sound in a single value. Despite the numerous developments 

in this area, even state-of-the-art technology cannot compare with the accuracy, fastness, 

and detail of human perception and cognition. 

The computation of audio descriptors involves the use of various and sometimes 

overlapping approaches. Not even in the context of the MPEG-7 is there a standard way of 

obtaining these descriptions, or a customary approach on how to use them (Herrera et. al, 

1999). Some of the most common techniques for extracting relevant features from audio 

data are through signal processing, computational auditory scene analysis, and statistics. 

(Herrera et. al, 1999). Despite the idiosyncrasies of the various audio description 

approaches, there are common taxonomies applied. 

Descriptors can be classified according to the representation of their output as well as 

their level of abstraction. According to Schwarz (2000), audio descriptors can be organized 

into three different classes: (1) categorical (class membership); (2) static (a single value); 

and (3) dynamic (temporal evolution). Specific to the level of abstraction, audio 

descriptors can also be organized according to the following three categories: (1) low-

level, (2) mid-level, and (3) high-level. 

Low-level descriptors are computed from the digitized audio data by simple means and 

with very little computational effort in a straight or derivative fashion. Literature in signal 

processing and speech processing documents an enormous amount of different low-level 

features that can be computed from the audio signal representation, either on the time 

domain (e.g. amplitude, zero-crossing rate, and autocorrelation coefficients), or on the 

frequency domain (e.g. spectral centroid, spectral skewness, and spectral flatness) 

(Schwarz, 2000). Most low-level descriptors make little sense to humans, especially if one 

does not master statistical analysis and signal processing techniques, because the 
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terminology used to designate them denotes the mathematical operations on the signal 

representation. 

Mid-level descriptors require some level of interpretation from the data. This group of 

descriptors infers information directly from the audio data or from the results of a prior 

analysis, and usually relies on machine learning algorithms and statistical analysis. Known 

descriptions that fall within this group are chord, key, and meter induction. One of the 

downsides of this descriptor group is the time-consuming learning phase that most of the 

algorithms require (Gouyon et al., 2008). 

The jump from low- or mid-level descriptors to high-level descriptors requires bridging 

a semantic gap. High-level descriptors, also referred to as user-centered descriptors, 

express some categorical, subjective, or semantic attributes of the sound, such as mood 

and genre. The computation of high-level descriptors involves some level of learning that 

has to be carried by means of a user-model and not only a data-model (as is the case of 

mid-level descriptors). As an example, let us imagine a simplistic “mood” descriptor 

consisting of labels “happy” and “sad.” In order to automatically annotate unknown audio 

sources with such labels, it is necessary to initially create a computational model that 

distinguishes the two classes—happy and sad—by commonly relying on human annotations 

of audio tracks and machine learning algorithms; and then, one would be ready to 

compare a new track against the created model to infer its mood (Gouyon, et al., 2008). 

 

3.2.1 - Audio Description Schemes Inspired in Schaeffer’s Typo-Morphology 

 

There is a line of research within the content-based audio processing field that is 

particularly relevant for the scope of this study because it relies on the same basis as the 

description scheme I intend to propose; that is, the musicological work of Pierre 

Schaeffer. Three computational description schemes follow this approach. I am referring 

to the work of Julian Ricard (2004), Geofroy Peeters and Emmanuel Deruty (2008), and 
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Norbert Schnell et al. (2010), respectively. While the first two offer a general framework 

for sound description, without considering specific applications, the latter framework was 

devised with the purpose of assisting the creation of the Marco Antonio Suárez Cifuentes’ 

composition Caméléon Kaléidoscope (2010) for an ensemble of 15 instruments and 

electronics.  

All three authors claim that their primary motivation for departing from Schaeffer’s 

theory, which I also share, is the ability of his criteria to describe any type of sound 

independent of sources or causes. In addition, Schaeffer’s criteria limits the number of 

perceptual characteristics for sound description to a reduced number of descriptors, an 

attitude opposed to traditional methodological approaches in MIR that use the largest 

possible number of descriptors in order to achieve better results. Nonetheless, Schaeffer’s 

criteria encompass the most relevant parameters for sound description worth exploring in 

music analysis and composition. 

Table 3.1 not only provides the complete set of descriptors adopted in each of the 

description schemes of the three aforementioned authors, but also provides a comparison 

between them. The (horizontal) top layer organizes the descriptors according to the three 

major perceptual criteria in Schaeffer’s theory, as a way of establishing a bridge to their 

unifying root. Note that none of the three sets of criteria presents an exhaustive 

computational framework of Schaeffer’s PROGREMU. Instead, their focus is mainly 

restricted to the first two stages of the PROGREMU—the typo-morphology— that moreover 

are appropriated with relative freedom, due (from my perspective) to the difficulty to 

understand some criteria presented by Schaeffer and/or their subjectivity.  
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Table 3.1 - Comparison between computational schemes for the description of 

perceptual attributes of sound inspired by Schaeffer’s typo-morphology. 

 

Of notice in all schemes present in Table 3.1 is the lack of harmonic timbre 

descriptors, which, given its the importance in recent composition practices, seems a 

significant absence that I will attempt to solve in my description scheme. But before 

addressing my description scheme, I must detail the strategies I have employed to 

computationally identify and segment an audio stream into sound objects. 

 

3.3 – Identifying Sound Objects Computationally 

 

The segmentation of an audio stream into sound objects cannot rely on the premise 

that was described in the beginning of this chapter—that is, the formulation of 

computational strategies based on musicological literature—because a systematic 

musicological approach for the segmentation of a sound continuum into sound objects 

does not exist (Smalley, 1986). Therefore, the groundwork that supports the segmentation 

strategies will solely rely on MIR literature. In particular, algorithms for onset detection 
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and audio beat tracking. A description of the solutions adopted in my framework and 

implemented in my software earGram follows. 

 

3.3.1 - Onset Detection 

 

Onset detection algorithms find the location of notes or similar sound events in the 

audio continuum by inspecting the audio signal for sudden changes in energy, spectral 

energy distribution, pitch, etc. A large amount of MIR literature has been devoted to onset 

detection algorithms over the last few decades8 because it is widely used as a pre-

processing stage in many applications such as: automatic transcription (Bello & Sandler, 

2003), annotation (Tzanetakis & Cook, 1999), sound synthesis (Schwarz, 2004; Jehan, 

2005), or rhythm and beat analysis (Uhle & Herre, 2003; Goto, 2001). 

Onset detection is commonly computed in two steps. The first step is a pre-tracking 

stage and encompasses the computation of a continuous periodicity function, which 

expresses audio features (e.g. energy, phase, or pitch) along time lags. The second step 

attempts to find discontinuities or abrupt changes in the descriptor(s) function(s). Current 

algorithms for onset detection adopt quite distinct audio features, or combinations of 

them, in order to convey better results for specific types of sounds, such as percussive, 

pitched instrumental, or soundscapes (Bello, Duxbury, Davis, & Sandler, 2004; Dixon, 

2006). Therefore, in order to address a variety of sounds, I adopted and implemented 

three distinct onset detection algorithms in earGram. As Bello et al. (2004) state while 

referring to the choice of an appropriate onset detection method, “the general rule of 

thumb is that one should choose the method with minimal complexity that satisfies the 

requirements of the application” (p. 1045). Two of the algorithms (named “onset1” and 

“onset2”) inspect the audio for abrupt changes in the spectral energy distribution, and the 

third (“pitch”) detects different fundamental frequencies. The first two onset detection 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 Please refer to Bello, Duxbury, Davis, and Sandler (2004) and Paul Brossier (2006) for an exhaustive review of 
onset detection algorithms. 
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functions cover the totality of perceivable sounds, but despite using a common audio 

feature in the pre-tracking stage, they present levels of sensitivity very distinct and 

therefore target sounds with different natures. Onset1 provides better results for 

environmental sounds and onset2 for musical sounds. Pitch is limited to the segmentation 

of pitched monophonic sounds, and its implementation is due to the significant 

improvement in the detection of onsets in this type of audio signals. 

Onset1 and onset2 use the spectral flux as the audio feature over which all further 

processing is done. The choice of this descriptor relies on recent comparative studies 

evaluating alternative onset-detection functions (Dixon, 2006). A slight difference 

between the two algorithms relies on the spectral representation used: onset1 computes 

the spectral flux on the magnitude spectrum, and onset2 wraps the spectrum 

representation into a perceptually determined Bark frequency scale, which resembles the 

spectral information processing of human hearing.  

I utilized two onset detection strategies based on the same audio feature, mainly 

because their peak-peaking stage is considerably different. The peak detection phase of 

onset1 is rather simple and reports onsets when it detects local maximum values above a 

threshold value, after falling below a low threshold. The implementation of onset1 relies 

on code by William Brent (2011). The peak detection stage of onset2 algorithm reports 

onsets in a similar fashion as onset1, that is, by selecting local maxima above a higher 

threshold value; however, it adopts some processing on the descriptor function, and the 

threshold is assigned in a dynamic manner. The adoption of this peak-peaking pre-

processing stage was proposed by Paul Brossier (2006) to limit the number of spurious 

peaks in the detection function. To reject false positive detections in areas of low energy, 

onset1 and onset2 segmentation strategies adopt a simple envelope detector at the end of 

the processing chain that discards onsets below a given loudness threshold. 

Pitch defines units by slicing the audio continuum at the beginning of notes. The 

processing relies essentially on a pitch detection algorithm developed by Puckette, Apel, 
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and Zicarelli (1998). Some post-processing is applied to the algorithm to ignore sudden 

jumps in the analysis if their adjacent analysis windows report a stable pitch. In addition, 

detected notes need to be at least two analysis windows apart. 

 

3.3.2 - Audio Beat Tracking 

  

The aim of an audio beat tracking algorithm is to find an underlying tempo and detect 

the locations of beats in audio files. The task corresponds to the human action of tapping 

a foot on perceptual music cues that reflect a locally constant inter-beat interval. The 

topic is extensively discussed in MIR literature, and various algorithms that achieve quite 

remarkable results have been presented in the last decades (Davis & Plumbley, 2007; Ellis, 

2007; Oliveira, Gouyon, Martins, & Reis, 2010). Audio beat tracking is often mentioned as 

one of the solved problems in MIR, however there are still unresolved issues—namely 

handling complex times, extremely syncopated music, and long periods of silence.  

While providing a review of existing algorithms for audio beat tracking is out of the 

scope of this dissertation,9 it is important to understand the general building blocks 

commonly adopted in audio beat tracking algorithms, which served also as a basis for the 

my audio beat tracking algorithm implemented in earGram: (1) audio feature extraction, 

(2) beat or pulse induction, and (3) beat tracking per se. 

The starting point of most computational models for beat tracking is the extraction of 

features from the audio signal that carry relevant rhythmic information (e.g. amplitudes, 

pitches, and spectral flux). The second step infers the beat by finding periodic recurrences 

of features in time. And finally, the output of the second step feeds the third processing 

stage, which attempts to find the beat in the audio data. Although most algorithms 

assume that the pulse period is stable over an entire song, many algorithms take into 

account timing deviations, which commonly result from errors or expressivity. Gouyon and 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 Interested readers are referred to Gouyon and Dixon (2005) for a comprehensive review of rhythm 
description systems and in particular beat tracking algorithms.  
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Dixon (2005) point that the computation of short-term timing deviations is particularly 

relevant when attempting to find the location of beats. 

I had to implement a new algorithm for offline audio beat tracking in earGram because 

there are no available tools in Pure Data (earGram’s programming environment) to 

compute such task. Initially, my algorithm infers the tempo (beats per minute) of audio 

data stored in a buffer by finding the highest value of the accumulated spectral flux 

autocorrelation function. Then, in order to find the beat location, my algorithm starts by 

selecting the ten highest peak values of the spectral flux function (i.e., the ten onsets 

with higher growth values), and, relying on my hypothesis that one of these ten onsets 

corresponds to a beat location, the algorithm inspects for each selected onset the location 

of the beats according to the induced tempo. The computation of the beat locations 

allows short-term timing deviations, only if a local maximum is found within 2048 

tolerance samples from the predicted location. For each of the ten onsets a score is 

computed by accumulating the spectral flux values from each prediction. Finally, the beat 

locations with the highest score are reported. 

After the segmentation of user-assigned audio tracks into sound objects, earGram 

extracts meaningful information from the sound objects’ audio signal representations and 

provides feature vectors that exposes their most prominent characteristics. The audio 

descriptors used to extract features of the audio will be detailed in the remaining sections 

of this chapter. 

 

3.4 - A Musician-Friendly Audio Description Scheme 

 

In the creation of the description scheme that I will detail in this section, I relied on 

eight premises (formulated before its creation) to guide, unify, and regulate the set of 

perceptual criteria devised. In order to clarify the guidelines that assisted the creation of 

the description scheme utilized in earGram, the following premises are presented to the 
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reader.  

Some of the guiding principles of the description scheme were particularly devised to 

convey its primary use, the characterization of audio units of a CSS system (earGram). 

However, even if the scheme addresses idiosyncratic features of CSS, its application 

context is not restricted to this synthesis technique. The scheme encompasses dimensions 

that can be easily adapted to application contexts that require sound descriptions 

regardless of the relation between the sonic phenomenon and its source. Premises one to 

five address general considerations of the scheme, and premises six to eight address the 

idiosyncratic aspects of CSS. 

1)  The applied terminology in the scheme should rely on concepts from music 

theory and practice, in order to offer a more user-friendly experience for people 

with a music education background. 

2)  It should promote musical activity, specifically by providing representations 

of audio signals that can be easily manipulated in CAAC strategies.  

3)  It must rely solely on the abstract perceptual characteristics of sound—the 

morphology of sounds—disregarding their source, means of production, or stylistic 

features.  

4) The descriptors’ computation should be definable by a mathematical 

function. 

5) It should consider the emergence of higher-level descriptions of audio 

signals by associating or manipulating the basic criteria proposed in the scheme. 

6)  It should cover a continuum of possibilities and avoid the lattice-based 

organization of sound units (Wishart, 1994). Every criterion should be defined in a 

linear continuum with limited typological categories of sounds. This feature is 

appropriated from Smalley’s spectromorphology, namely its pitch- and attack-

effluvium continuums. 

7)  All descriptors must have the same range. 



	  
	  

51	  

8)  The descriptions should be invariable to the units’ duration. In other 

words, the descriptions should allow meaningful comparisons between units of 

different durations within the same time scale. 

Relying on the eight premises listed above, I started to devise the top-level 

organization of the description scheme, which relies on two concepts borrowed from 

Schaeffer: matter and form. While the criteria related to matter describe the units’ sound 

spectrum as a static phenomenon, the form criteria expose the temporal evolution of the 

matter.  

The matter criteria express features of the audio in numeric values in a linear 

continuum interval, whose limits correspond to typological categories; the form criteria 

are expressed as vectors. In other words, the matter criteria represent each sound object 

with a numerical value, which is meaningful in relation to a finite space whose limits 

represent particular types of sounds. The form criteria follow the same approach but 

provide a contour of the audio features’ evolution. For example, noisiness, a criterion of 

matter, describes sound objects in relation to two typological limits (pure tone and white 

noise), and within these limits, sound objects are defined by a numerical value according 

to its characteristics. Sound typologies (as defined by Schaeffer) are only used here to 

define the limits of the interval. The dynamic profile, in turn, exposes the evolution of the 

amplitude of a sound object. 

Matter is further divided in two other categories: main and complementary. While the 

criteria under the main category provide meaningful descriptions for the totality of sounds 

that are audible to humans, the criteria under the complementary category provides 

meaningful results for limited types of sounds. For example, pitch—a complementary 

criterion of mass—only provides meaningful results for pitched sounds, thus excluding all 

sounds that do not fall in this category. 
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 MATTER 
FORM 

MAIN COMPLEMENTARY 

Mass 

Noisiness Pitch   

Fundamental bass  

  Spectral variability 

Harmonic Timbre 

Brightness   

Width    

Sensory dissonance   

Harmonic pitch class profile    

Dynamics Loudness  Dynamic profile 

 

Table 3.2 - Description scheme used to characterize the audio content of sound objects in 

earGram. 

 

In choosing the descriptors that constitute the scheme, I relied on three musicological 

theories presented earlier—Schaeffer’s typo-morphology, Smalley’s spectromorphology, 

and Thoresen’s aural sonology—but I did not fully incorporate them into the scheme 

because of simplicity, usability, and/or technical reasons. Instead, I selected the ones that 

are more adapted to the practice of music composition, and whose technical 

implementations are feasible. A major concern behind the description scheme was the use 

of terminology from music theory and practice. Therefore, without disregarding the use of 

concise concepts, the terms used in the description scheme attempt to facilitate the 

usability for musicians with a traditional Western music education. 

While the conceptual basis of the scheme is entirely mine, the computation of each 

descriptor relies on algorithms from others—in particular William Brent’s timbreID library 

(Brent, 2009)—to extract low-level audio features from the audio. I chose Brent’s library 

for its robustness, efficiency, and ability to work in both real-time and non-real time. The 

detailed conceptual basis and technical implementation of each description in my scheme 

follows. 
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3.4.1 - Criteria of Mass 

 

The mass criteria examine the spectral distribution of a sound object in order to 

characterize the organization of its components. It not only attempts to detect spectral 

patterns (e.g. pitch, fundamental bass) but also to provide general consideration of the 

spectral distribution (e.g. noisiness). The criteria of mass encompass four descriptors: (1) 

noisiness, (2) pitch, (3) fundamental bass, and (4) noisiness profile. The first is a main 

descriptor of matter, the second and third are ancillary descriptors of matter, and the last 

descriptor falls into the form category. 

 

3.4.1.1 - Noisiness  

 

The noisiness descriptor estimates the amount of noisy components in the signal as 

opposed to pitched components. The measure of noisiness is present in all theories 

described in Chapter 2. However, each theoretician adopts a different term for this 

descriptor: Pierre Schaeffer designates it as mass; Denis Smalley uses spectral typology; 

and Lasse Thoresen names it spectral width. I adopted the term noisiness in the detailed 

scheme, because not only is it an easily understandable concept by both experts and non-

experts, but also because it is related to the algorithmic nature of the descriptor (detailed 

below). Another feature of the noisiness descriptor inspired by Smalley’s musicological 

theory is the adoption of a linear continuum to characterize the sound objects.  

The noisiness descriptor is calculated as a weighted sum of the following four low-level 

descriptors: (1) spectral flatness, (2) spectral kurtosis, (3) spectral irregularity, and (4) 

tonalness. Spectral flatness is the most significant descriptor, while spectral kurtosis, 

spectral irregularity, and tonalness are primarily useful to provide a better distinction 

between pitched sounds and noisy sounds. 

Spectral flatness is a very robust indicator of the noisy components of a signal, and 



	  
	  

54	  

provides reliable descriptions of all sounds. However, it poses a major and pertinent 

problem: its characterization of pitched sounds is extremely poor. In other words, spectral 

flatness has a very good resolution for noisy-like signals; however, it is quite crude in 

relation to pitched sounds. In some experiments I carried out with a corpus of 

heterogeneous sounds, I immediately noticed a discrepancy between the interval of 

pitched sounds, which fall roughly in the interval ]0, 0.1[, and the interval that comprises 

noisy sounds, which inhabit the rest of the scale. As mentioned, in order to reduce this 

problem, I merged the results from spectral flatness with three other descriptors—(1) 

spectral kurtosis, (2) spectral irregularity, and (3) tonalness. A brief definition of each of 

the aforementioned descriptors, along with their contribution to enhance the 

representation of pitched sounds in the noisiness criterion follows. 

Spectral kurtosis gives a measure of the flatness or “peakedness” of the spectral 

distribution around its mean value (Peeters, 2004). The kurtosis of a single sinusoid will be 

extremely high, while that of noise will be extremely low. Spectral kurtosis is particularly 

good at distinguishing between pitched sounds that range from pure tones to heavy 

frequency modulations. 

Spectral irregularity enhances the difference between jagged and smooth spectra by 

looking at the spectrum from low to high frequencies and denoting how each bin compares 

to its immediate neighbors. Spectral irregularity has two common definitions: one by 

Jensen (1999) and other by Krimphoff, McAdams, and Wimsberg (1994). For practical 

reasons, I use Jensen’s measure since it defines the irregularity of a spectrum by values 

between zero and one, avoiding further processing to convey the same numeric interval 

used in the other descriptors. For jagged spectra (e.g. tone with harmonic spectra), 

irregularity will be high, and for smooth contoured spectra (e.g. filtered noise) it will be 

low. Spectral irregularity enhances the distinction between sounds from tones with 

harmonic or inharmonic spectra to spectral distributions formed of several “bands” (e.g. 

bell sounds) to spectral distributions formed of an array of sounds, which is non-locatable 
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in pitch (e.g. sea sounds). 

Tonalness measures the “perceptual clarity of the pitch or pitches evoked by a 

sonority” (Parncutt & Strasburger, 1994, p. 93). Sounds with high tonalness values evoke a 

clear perception of pitch. I use the tonalness measure by Parncutt, which defines the 

(pure) tonalness as the quadratic sum of the spectral pitch weights (so that its maximum 

value is equal to one). The tonalness descriptor I use is a slightly altered version of code 

provided in the Dissonance Model Toolbox by Alexandre Porres (2011). 

The combination of descriptors detailed above enhances the quality of the noisiness 

criterion by providing a better definition of pitched sounds and a better distinction 

between pitched and noisy sounds. Still, I applied some additional processing to each 

descriptor individually to further enhance the balance between pitched and noisy sounds. 

Spectral flatness and spectral kurtosis were scaled by exponential and logarithmic 

functions, respectively. No post-processing was applied to the spectral irregularity and 

tonalness descriptors. 

The noisiness descriptor ranges between zero and one. Zero represents a full saturated 

(noisy) spectrum and one represents a pure sinusoidal without partials. Within these two 

extremes the descriptor covers the totality of audible sounds including instrumental, 

vocal, or environmental sounds. 

 

3.4.1.2 - Pitch 

 

The name of the second descriptor of mass is self-explanatory; it reports the pitch or 

fundamental frequency of the units. Pitch is a secondary criterion of mass, since it only 

conveys meaningful results for pitched sounds, and thus may reduce the corpus to a 

smaller collection of units. This descriptor is not contemplated in any theory discussed in 

Chapter 2 because it is highly attached to the concept of musical note and does not 

provide meaningful descriptions for the totality of perceivable sounds. However, the pitch 
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descriptor is adopted here since it may constitute an extremely important element in the 

composition process when dealing with pitched audio signals. 

There are several robust algorithms to estimate the pitch or fundamental frequency of 

monophonic audio signals. State-of-the-art algorithms for polyphonic pitch detection are 

not very reliable. The Pure Data’s built-in object sigmund~ by Miller Puckette is the pitch 

detection algorithm used to compute the fundamental frequency of (monophonic) sounds. 

The output of the descriptor is twofold: (1) in MIDI note numbers and (2) pitch classes. I 

additionally scale the resulting values to the interval [0, 1] to convey the general range of 

all descriptors. 

 

3.4.1.3 - Fundamental Bass  

 

The fundamental bass descriptor reports the probable fundamental frequency or chord 

root of a sonority. Similar to the pitch criterion, it is a secondary criterion of mass, 

because it may reduce the corpus to a smaller number of units. I utilize this descriptor as 

a strategy to overcome the limitation of the pitch descriptor when analyzing polyphonic 

audio signals.  

The fundamental bass is computed by an altered version of a Pure Data object from 

the Dissonance Model Toolbox by Alexandre Porres (2011). The fundamental bass 

corresponds to the highest value of the pitch salience profile of the spectrum. The pitch 

salience of a particular frequency is the probability of perceiving it or the clarity and 

strength of tone sensation (Porres, 2012). The fundamental bass is expressed in (1) MIDI 

note numbers and (2) pitch classes. The output of the descriptor is further scaled to the 

interval [0, 1].  
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3.4.1.4 - Spectral Variability 

 

Spectral variability provides a measure of the amount of change in the spectrum of an 

audio signal. It is computed by the low-level audio descriptor spectral flux (Peeters, 

2004), which compares adjacent frames by calculating the Euclidean distance between 

two non-normalized spectra. The use of non-normalized spectra not only accounts for 

spectral differences, but also denotes sudden amplitude changes. Spectral variability is a 

form descriptor since it describes a temporal phenomenon.  

The output of this descriptor is threefold: (1) a curve denoting the spectral variability 

of the unit, (2) basic statistical values that express characteristics of the curve (such as 

maximum and minimum values, mean, standard deviation and variance), and finally (3) a 

single value that expresses the overall spectral variability throughout the unit duration. 

The curve depicts the evolution of the spectrum at regular intervals of 1024 samples, and 

each analysis window encompasses 2048 samples.  

Relying on the computed curve some basic statistical properties are then extracted, 

such as minimum, maximum, mean, standard deviation, and variation. These statistical 

properties provide a characterization of the curve by a vector with a reduced 

dimensionality. A single value depicting the overall variability of the overall unit’s 

spectrum is computed in four steps: (1) dividing the units in two equal halves, (2) 

computing the spectrum of each half, (3) calculating the distance between the two 

spectral representations, (4) summing all values resulting from point 3. The output of the 

descriptor is further divided by the number of reported bins (resulting from the spectral 

difference computed in point 3 to scale the output to the interval [0, 1].  
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3.4.2 - Criteria of Harmonic Timbre 

 

The three musicological theories presented earlier provide little guidance for the 

formulation of algorithmic strategies to describe the harmonic timbre content of a signal. 

Schaeffer’s criteria of harmonic timbre are very misleading and too inconsistent to be 

encoded algorithmically. Smalley (1986, 1997) does not provide a specific set of criteria 

for harmonic timbre; even if he considers this dimension while describing the mass of 

sound objects under spectral typology. Thoresen’s sound spectrum criteria, in particular 

the spectral brightness, are the most adapted to a computational definition of harmonic 

timbre. His criteria also points towards the possibility of including psychoacoustic models 

as harmonic timbre descriptors, which Schaeffer rejected because (in his opinion) the in 

vitro psychoacoustic experiments do not fully apprehend the multidimensionality qualities 

of the timbre (Chion, 1983). Still, Thoresen’s suggestion led me to further investigate 

psychoacoustic literature, most notably models that examine the sensory dissonance 

phenomenon, which provide a good description of spectra distributions.  

The main source for investigating possible usages of psychoacoustic models in my 

description scheme was Alexandre Porres’ PhD dissertation (Porres, 2012). Porres not only 

explores several creative applications of psychoacoustic models in signal processing, but 

also points out the underexplored possibilities of psychoacoustic dissonance models for the 

automatic description of audio signals’ content. This has not been subject to any study 

and could contribute significantly to applications such as CSS and alike (Porres, 2012). 

While concatenative sound synthesis and similar techniques are common and are at an 

interesting development stage, processes of the same order with the higher-level 

descriptors, such as the attributes of dissonance here exposed, have not been fully 

explored, with the exception of some computer-assisted composition works by Sean 

[Ferguson] (2000) and [Clarence] Barlow (1980). (Porres, 2012, p. 86)  

Therefore, I will use here the psychoacoustic dissonance models presented by Porres 



	  
	  

59	  

(2012), which are largely based in Terhardt’s psychoacoustic theory (Terhardt, 1984), as 

harmonic timbre descriptors. Porres details a group of five “dissonance descriptors”, 

which are organized into two categories: (1) sensory dissonance and (2) harmony (see 

Table 3.3). The discriminating factor between the two groups is the perceptual nature of 

the dissonance, either by innate/objective factors (sensory dissonance), or cultural ones 

(harmony). 

ATTIBUTE DESCRIPTOR 

Sensory Dissonance Sharpness 

Roughness 

Tonalness 

Harmony Fundamental Bass 

Pitch commonality (affinity of tones) 

 

Table 3.3 - Perceptual attributes of musical dissonance according to Terhardt. 

 

The descriptors listed in Table 3.3 under sensory dissonance provide measurements of 

the following three innate or objective factors that contribute to the perception of 

dissonance: (1) sharpness (also referred to as brightness), (2) roughness, and (3) tonalness. 

These descriptors have a particularity that is interesting for the scope of my study, which 

is the possibility to provide meaningful results for all sounds, independently of their 

nature. 

The group of descriptors under harmony refers to subjective aspects of musical 

dissonance, which are acquired essentially by cultural factors. The term “musical 

consonance” is used to denote a number of basic auditory phenomena that govern the 

perception of tonal music. Therefore, descriptors under harmony only provide meaningful 

results for pitched sounds, such as those produced by traditional acoustic instruments, 

thus excluding noise, speech, and sounds alike. Harmony encompasses two descriptors: 

fundamental bass and pitch commonality.  

The applicability of psychoacoustic dissonance models as descriptors in my study serves 
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primarily to characterize the harmonic timbre of audio signals, but is not limited to this 

use. The first two sensory dissonance descriptors—sharpness and roughness—are 

appropriated as harmonic timbre descriptors, and the last—tonalness—was used as a mass 

descriptor, specifically in the report of the noisiness of an audio signal. Concerning the 

harmony descriptors, the fundamental bass was used as a complementary descriptor of the 

mass criteria, and pitch commonality will be used later to model the affinity between 

collections of sound objects (§ 4.1.2). 

The following sections will further detail each of the descriptors that characterize 

harmonic timbre: (1) brightness, (2) width, (3) roughness, and (4) sensory dissonance. All 

harmonic timbre descriptors fall under the main category of the description scheme 

because they can measure properties of all perceivable sounds, and offer a representation 

of the units with a single numerical value.   

 

3.4.2.1 - Brightness 

 

The brightness of a sound is related to the centroid of its spectrum representation and 

is expressed by the magnitude of the spectral components of a signal in the high-

frequency range (Porres, 2011). Although the root of this descriptor resides in 

psychoacoustics, one can also find it in Thoresen’s (2007b) musicological theory, which 

pinpoints its importance in linguistics—in order to distinguish between the sounds of 

vowels and consonants—and in music—as a distinguishable factor to perceive different 

traditional acoustic instruments. 

Brightness is computationally expressed by the barycenter of the spectrum. The 

computation of brightness assumes the spectrum as a distribution, whose values are the 

frequencies of the spectrum and the probabilities to observe these values are the 

normalized amplitudes (Peeters, 2004). Brightness is expressed in Hertz and its range has 

been limited to the audible range of human hearing, which is roughly from 20 Hz to 20 
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kHz. The output of the descriptor has been further scaled to the interval [0, 1]. 

 

3.4.2.2 – Width  

 

Width expresses the range between the extremities of the sound spectral components. 

It is considered in all three sound-based theories presented in Chapter 2 by Schaeffer, 

Smalley and Thoresen. In more empirical terms, I may say that the width characterizes the 

density, thickness, or richness of the spectrum of a sound.  

I should explain in better detail the adoption of the designation “width,” because it 

may lead to some misunderstandings. Thoresen (2007b) adopts a related term—spectral 

width—to characterize a different characteristic of the spectrum, the mass (called 

noisiness in the proposed scheme). Although width can be seen as a “satellite” descriptor 

of the mass or noisiness, the two concepts can offer different characterizations of the 

spectra. Therefore, the reader should realize the difference between the two concepts 

and avoid misconceptions between the definition proposed here and the one by Thoresen. 

An exact computational model of the width of the spectral components of a sound 

poses some problems, because the spectral representation of the audio signal may 

encompass an amount of uncontrollable noise, even if the ideal conditions during the 

recording stage were met. Instead of considering a solution for this problem, which has 

been a recurrent topic in literature, I adopted a simpler, yet effective workaround. In 

order to increase both the robustness and reliability of the value expressed by the 

descriptor, I adopted the low-level descriptor spectral spread as a representation of the 

width of the spectrum. The spectral spread measures the dispersion of the spectrum 

around its centroid. In other words, the spectral spread measures the amount of variation 

of the values (frequencies), assuming that the probability distribution of the values is the 

normalized amplitudes. In such a way, it does not take into account the range between 

the extreme frequencies of the spectrum to express its density. Like brightness, the 
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output of spectral spread is in units of Hertz.  

In order to scale the output of the descriptor to the interval [0, 1] the output values 

are divided by 6500 (this value corresponds approximately to the maximum value obtained 

from the analysis of the spectral spread of a large number of sounds). 

 

3.4.2.3 - Sensory Dissonance 

 

The descriptor sensory dissonance expresses innate aspects of human perception that 

regulate the “pleasantness” of a sonority. Even if the sensory dissonance is regulated by a 

few psychoacoustic factors, it is expressed in the current framework by its most prominent 

factor, which is the roughness of a sound. In detail, sensory dissonance describes the 

beating sensation produced when two frequencies are a critical bandwidth apart, which is 

approximately one third of an octave in the middle range of human hearing (Terhardt, 

1974). The partials of complex tones can also produce a beating sensation when the same 

conditions are met; that is, when they are a critical bandwidth apart. As a result, the 

timbre of complex tones can affect our experience of roughness (MacCallum & Eibound, 

2008). 

The computation of sensory dissonance is done by a Pure Data object coded by 

Alexandre Porres (2011), which implements Richard Parncutt’s roughness measure. The 

sensory dissonance measure is related to the number of tones or spectral components 

present in a sonority, as well as its amplitude. The sensory dissonance of two pure tones 

separated by ¼ of critical bandwidth and amplitude 100 dB is approximately equal to 1. 

Therefore, one may conclude that the sensory dissonance is dependent on the number of 

tones and partials of a sonority. This poses a problem, because I want to have the same 

range in all descriptors, and the system does not know a priori how many notes and 

partials there are in every sound object. In order to solve this problem and scale the 

descriptors’ output to convey the range [0, 1], I used a scaling factor of 0.050, which 
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seemed the best estimate for a large set of heterogeneous sound examples. 

 

3.4.2.4 - Harmonic Pitch Class Profile 

 

The harmonic pitch class profile (HPCP) is particularly suitable to represent the pitch 

content of polyphonic music signals, by mapping the most significant peaks of the spectral 

distribution to 12 bins, each denoting a note of the equal-tempered scale (pitch classes). 

Each bin value represents the relative intensity of a frequency range around a particular 

pitch class, which results from accumulating the 25 highest peaks of the spectrum warped 

to a single octave.  

HPCP is also commonly addressed as chroma vector (Peeters, 2006; Serrà, Gómez, 

Herrera, & Serra, 2008); however, the adoption of the term HPCP in disfavor of chroma 

vector is due to its widespread use in musical contexts. The word profile used in the 

descriptor can also be misleading because the term has been applied in the scheme to 

denote temporal evolutions; however, HPCP is a matter descriptor, because it provides a 

single representation of a sound object. The HPCP is stored in two different 

configurations: (1) the resulting accumulated vector, and (2) a normalized vector to the 

range [0, 1]. 

 

3.4.3 - Criteria of Dynamics 

 

The criteria of dynamics describe the loudness of the audio units in two distinct ways: 

(1) by a single value that offers a representation of the loudness of the overall duration of 

the unit, and (2) by a curve denoting the dynamic profile of the unit. The first measure is 

given by the loudness descriptor and the second representation by the dynamic profile. 
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3.4.3.1 - Loudness 

 

The loudness descriptor expresses the amplitude of a unit by a single value and is 

defined by the square root of the sum of the squared sample values, commonly addressed 

as root-mean-square (RMS). The loudness descriptions are computed by Miller Puckette’s 

object sigmund~, which is included in the software distribution of Pure Data. The output 

of the object is consequently scaled to convey the interval [0, 1]. 

If the units have a considerably long duration, the value expressed by the loudness 

descriptor may be relatively crude, since it is a temporal phenomenon by excellence. 

However, even if the representation of the units’ loudness by a single value may be seen 

as oversimplifying or too loose for the description of this perceptual phenomenon, it may 

constitute reliable information for many applications when compared with a full detailed 

description of the envelope curve over the duration of the unit. 

 

3.4.3.2 - Dynamic Profile 

 

The dynamic profile is a descriptor that belongs to the criteria of form since it 

represents the evolution of the units’ amplitude. The curve is scaled by a factor of 0.001 

to convey the interval [0, 1] and is expressed in two different ways: (1) by an amplitude 

envelope and (2) by basic statistics—such as minimum, maximum, mean, standard 

deviation, and variation—that represent the amplitude envelope shape (by considering it a 

probability distribution). Figure 3.1 shows an example of the dynamic profile information 

extracted from a sound object. 
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Figure 3.1 - Dynamic profile of a sound object and the values extracted from the 

profile. 

3.5 - Summary 

 

In this chapter, I proposed strategies for segmenting an audio continuum into sound 

objects using onset detection and beat tracking methods, along with a morphological 

scheme for describing their most prominent perceptual characteristics. The description 

scheme results from the interaction between musicological and psychoacoustic theories 

and MIR research, in particular the literature related with audio descriptors. In addition, 

the terminology adopted relies on empirical terms borrowed from musical theory and 

practice in order to increase usability. 

The description scheme is divided in three major perceptual criteria—mass, harmonic 

timbre, and dynamics—that unfold in a set of ten descriptors. The descriptors may also be 

categorized according to their output representation according to two concepts borrowed 

from Schaeffer: matter and form. 

Audio descriptors under matter are defined in a linear continuum and adopt the same 

range: the interval [0, 1]. While the interval limits of each descriptor corresponds to 

specific types of sounds, there is no strict one-to-one correspondence between regions of 

the interval and specific sound typologies. To achieve such uniformity in the descriptors’ 

range some scaling is applied to the descriptors output. However, the scaling factor is not 

relative to the maximum, minimum, or mean values of the descriptors functions. Instead, 

the scaling I use in some descriptors is relative to fixed values determined by specific 
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perceptual characteristics of the features in question. Therefore, not only is a 

“normalized” range guaranteed, but also meaningful information concerning the audio 

signal’s content. 

Despite the recent tendency to adopt large numbers of audio features in content-based 

audio processing systems in order to enhance their results, earGram purposefully 

encompasses a very limited number of descriptors. The adoption of a limited number of 

descriptors relies on recent studies (Mitrovic, Zeppelzauer, & Eidenberger, 2006; Peeters, 

Giordano, Susini, Misdariis, & McAdams, 2011), which argue that the information 

expressed by the totality of audio descriptors developed so far expose a high degree of 

redundancy. Therefore, I can conclude that my description scheme provides a rich 

representation of audio signals, since it covers the most significant classes of audio 

descriptors. 
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Chapter 4 

 

Musical Patterns 

In this chapter, I extend the analytical tools presented in the previous chapter by 

inspecting higher layers of musical structure. In other words, while the analytical 

strategies presented in Chapter 3 departed from the most basic representation of audio 

signals (i.e., the sample), the algorithms detailed here rely on sound objects’ descriptions 

in order to extrapolate representations of the higher temporal scales of musical structure. 

Ultimately, the aim of this chapter is threefold: (1) to create models of the temporal 

dynamics of the music (§ 4.1); (2) to discuss and propose strategies to compare and group 

sound objects (§§ 4.2-4.4); and (3) to provide mid-level descriptions of the corpus (§ 4.5). 

The following sections will introduce the reader to algorithms that may ultimately 

answer the following questions: how common is a particular characteristic throughout the 

audio source? Which features are more relevant? Which units recur, and in which order? 

Are there any outliers? How similar are the units in the corpus? Are any representative 

groups of units within the corpus? How are they organized in time? Does the original 
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temporal sequence of the units denote the use of repeating patterns?   

 

4.1 - Probabilistic Models of Musical Structure 

 

Given the temporal nature of music, the ability to represent the dynamics of musical 

structure is at the core of any analysis-synthesis system. Accordingly, earGram adopts 

strategies to model transitions between sound objects in order to map the dynamics of 

musical structure. In other words, earGram uses algorithms to learn and encode the 

temporal evolution of particular audio features of musical structure. In order to do that, I 

adopt the state-space models named n-grams, which encode sequences of discrete events 

using statistical properties (Jurafsky, Martin, Kehler, Vander Linden, & Ward,  2000). N-

grams are amongst the most used strategies to encode musical structures computationally 

(Cont, 2008). They provide a representation of time-indexed sequence of graphs (nodes 

and edges) where each node refers to a state of the system over time. When dealing with 

musical elements, the states may represent musical events of different time scales, such 

as sound objects (e.g. notes, chords, silences), meso structures (e.g. rhythmic patterns, 

melodic arcs), and macro structures (e.g. sections).  

I adopted n–grams because they embed a property that is seminal for my framework: 

they provide the basis for a Markov chain algorithm, which is an algorithm utilized in 

earGram for generating musical sequences. While the creation of the n-gram 

representations will be examined in the following section, its application for the 

generation of musical structures will only be addressed in the second part of this 

dissertation. 

 The models that will be presented not only learn and encode the dynamics of three 

elements of the audio source’s structure—noisiness, timbre, and harmony—but also 

“artificially” establish optimal transitions and overlaps between sound objects based on 

psychoacoustic theory principles. It is important to highlight that the modeling strategies 
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implemented in earGram only encode singular features of the original audio data because 

the goal is not to provide a comprehensive representation of all dimensions of musical 

structure and their inter-relationships, as it is attempted in many style imitation 

approaches to music (cf. Cope, 1996, 2001). Instead, I adopt models that provide a basis 

to assist and ease the process of music creation through sampling techniques by 

automating some of the parameters of a composition. 

A detailed explanation of the n-grams creation will be presented in the following 

sections. Section 4.1.1 details models that learn and encode particular elements retrieved 

from the structure of the audio source(s), and sections 4.1.2 and 4.1.3 detail 

psychoacoustic-based models for transitioning and superimposing audio objects. 

 

4.1.1 - Modeling Elements of Musical Structure 

 

EarGram creates n-grams that encode the temporal dynamics of the following three 

elements of the audio source(s) structure: noisiness, timbre, and harmony. My software 

starts by learning the probability of transitioning between discrete elements of musical 

structure for each of the aforementioned characteristics, and, consequently, stores all 

probabilities in a matrix. The modeled events need to be discrete features that are 

extracted from the sound objects, and the temporal dimension of the models encodes the 

original sequence of units. 

The elaboration of transition probability tables is fairly straightforward to compute. 

However, when dealing with audio signals, to obtain a finite-state space for each modeled 

element may pose some problems. If the states were directly observable, as in symbolic 

music representations, no pre-processing would be necessary. However, this is hardly the 

case when dealing with audio data. Thus, I applied a different strategy in order to create 

a finite-state space for each of the three musical characteristics. 

The noisiness descriptor characterizes the units in a linear continuum, whose limits are 
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zero and one. Given the need to have a finite number of classes to create a transition 

probability matrix, the range of the descriptor was arbitrarily divided in ten equal parts. 

Each class is represented by a numerical value from zero to nine, sequentially distributed 

in the interval from the lower to the upper limits. Timbre is expressed by a single integer 

that represents the three highest bark spectral peaks. The algorithm to find the compound 

value is shown in Table 4.1. Finally, the pitch class of the fundamental bass represents the 

audio units’ pitch/harmonic content. 

After obtaining the finite-state space for each characteristic, I computed the creation 

of a transition probability matrix in the following steps: (1) accumulating the number of 

observations from the n previous states to the following state and, after the totality of the 

sequence is considered, (2) divide each element of the matrix by the total number of 

observations in its row. The resulting matrix expresses the probabilities of transitioning 

between all events. 

Operation 

Number 
Operation Description Example 

1 Sort in an ascending order the three peaks with highest 

magnitude 
5, 14, and 15 

2 Convert the integers to binary 101, 1110, 1111 

3 Shift the 2nd and 3rd numbers by 5 and 10 cases to the 

left10 

101, 111000000, 

11110000000000 

4 Convert the result to decimal 5, 448, and 15360 

5 Sum the resulting values 15813 

 

Table 4.1 - Flowchart of the algorithm that reduces the Bark spectrum representation to a 

single value. 

 

A final note should be addressed to the order of n-grams used. By default, it is adopted 

a third order n-gram, that is, the algorithm encodes the probability of transitioning 

between the three last events and the next one. However, the user can easily change this 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10 This bitwise operation allows the codification of the three values in non-overlapping ranges, which makes 
the sum of their decimal representation a unique value for any possible combinations of three values that the 
algorithm can adopt (0-23). 
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parameter. If the corpus has a considerable number of units, increasing the order of the n-

gram may enhance the resemblance of the generated output to the original audio. The 

inverse procedure should be applied to corpora with a very small number of units. 

 

4.1.2 - Establishing Musical Progressions Based on Pitch Commonality 

 

All models exposed in the previous section rely on the structure of the original 

sequence of the units to formulate the probability of transitioning between musical 

events. In this section, I present a different strategy to determine the probabilities of 

transitioning between sound objects, which does not rely on the structure of the audio 

source(s). Instead of modeling a particular characteristic of the audio source(s) by learning 

its internal organization, the method presented here defines the probabilities 

“artificially” by applying a psychoacoustic dissonance model, in particular by computing 

the pitch commonality between all units. 

Pitch commonality provides a link between psychoacoustics and music theory and it is 

defined as the degree to which two sequential sounds have pitches in common. It 

measures the “pleasantness”11 of the transition between two sounds, and can be seen as 

an oversimplification of harmonic relationships (Porres, 2011). For instance, the pitch 

commonality of musical intervals is quite pronounced for perfect octaves, less pronounced 

for perfect fifths and fourths, and more or less negligible for any other intervals.  

The computation of pitch commonality depends on the amount of overlapping pitch 

saliences between two sounds. The pitch salience is defined as the probability of 

consciously perceiving (or noticing) a given pitch (please refer to Parncutt (1989) for a 

detailed description of its computation). Pitch commonality is calculated by the Pearson 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 The concept of pleasantness is understood here as sounds that express a low degree of sensory dissonance 
(see § 3.4.2.3 for a definition of sensory dissonance). 
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correlation coefficient12 of the pitch salience profiles across the frequency spectrum of 

two sonorities (Porres, 2011). It is equal to one in the case of equal spectra and 

hypothetically minus one for perfect complementary sonorities. For a complete 

mathematical description of the model please refer to Parncutt (1989) and Parncutt and 

Strasburger (1994). 

Initially, earGram creates a matrix that stores the results of the pitch commonality 

calculation between all pairs of units in the corpus. Consequently, all elements of the 

matrix are converted into probabilities. The last step is done by dividing the absolute 

value of each element in the matrix by the sum of all absolute values in its respective 

row. The resulting matrix is the transition probability table of a first-order Markov chain 

algorithm.  

 

4.1.3 – Vertical Aggregates of Sound Objects Based on Sensory Dissonance 

 

CSS deals primarily with the horizontal dimension of the music, that is, the generation 

of musical sequences. However, it is current practice to expand the technique to address 

the synthesis of overlapping units (Schwarz, 2012; Schwarz & Hackbarth, 2012). Despite 

the popularity of this new approach, the resulting sound quality of the vertical 

superposition of audio units has been overlooked. So far, there is no consistent method to 

define the sonic quality of target phrases that encompass vertical aggregates of audio 

units. 

The vertical dimension of music is related to the relationship between simultaneous 

events, or the sonic matter and its constituent components. According to Thoresen 

(2007b), the primary structural element of the vertical dimension in Western music is 

harmony. Timbre can be considered a secondary element. The description scheme 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 The Pearson correlation coefficient is often used to determine the relationship between two variables by 
measuring the linear correlation between them. It is calculated by the covariance of the two variables divided 
by the product of their standard deviations. The Pearson correlation coefficient may adopt values between 
minus one and one. Zero expresses no association between the two variables, minus one indicates total 
negative correlation, and one indicates total positive correlation (Taylor, 1990). 
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presented earlier (§ 3.4) allows the characterization of the vertical dimension of the sound 

objects, such as the width or degree of sensory dissonance of sound. However, from a 

creative standpoint, the use of any of these descriptors is confined to the horizontal 

organization of music. The sensory dissonance descriptor does not express much about the 

sonic result of simultaneous layers of audio units. 

I adopted the sensory dissonance descriptor in order to characterize and organize 

vertical aggregates of audio units, but in a different manner as used in the description 

scheme. To measure the “pleasantness” of two simultaneous units, I computed the degree 

of sensory dissonance between the combination of the spectral representations of the two 

units (see § 3.4.2.3 for a detailed explanation of the computation of sensory dissonance). 

A matrix stores the results of the sensory dissonance measures between all pairs of units 

in the corpus (see Figure 4.1). The resulting matrix will be utilized later to guide the 

generation of vertical aggregates in earGram. 

Unit 
number 

1 2 3 … 

1 1 0.1 0.2  

2 0.1 1 0.5  

3 0.2 0.5 1  

…     

 

Figure 4.1 – Example of a matrix that exposes the sensory dissonance between all pairs 

of sound objects in the corpus. 

 

Above, I have detailed the creation of five n-grams that encode optimal transitions and 

the superposition of sound objects. The creation of the models relies on descriptions of 

sound objects, whose computation was presented in Chapter 3. The following sections will 

continue to examine how musical structure can be apprehended and/or extrapolated, but 

the focus will shift towards higher layers of musical structure. In order to provide 
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strategies that ultimately expose the higher layers of musical structure, I will first 

introduce how sound objects can be consistently compared. 

 

4.2 – Audio Similarity 

 

Sounds can be compared to other sounds according to numerous properties. Tristan 

Jehan (2005) summarizes the criteria with which we can estimate the similarity between 

two songs to the following five categories: (1) editorial (title, artist, country), (2) cultural 

(genre, subjective qualifiers), (3) symbolic (melody, harmony, structure), (4) perceptual 

(energy, texture, beat), and (5) cognitive (experience, reference). A definite measure of 

similarity between two songs or audio samples does not exist (Jehan, 2005). Music 

similarity is an ambiguous task, not only because it is a very complex multi-dimensional 

problem, with varied subjective dimensions, but also because it is context-dependent. In 

other words, the evaluation of the similarity between audio signals is highly dependent on 

the application context and the user.  

A systematic computational model of music similarity poses even more problems, 

which can be roughly summarized in three topics: (1) the complexity of the task, (2) the 

subjectivity of criteria, and finally, (3) the difficulty of algorithmically considering and/or 

encoding application contexts and users’ preferences. While addressing computational 

models of similarity, it should be noted that I do not refer to any work that operates on 

metadata supplied by humans, or even high-level music representations, such as MIDI. Of 

interest here is the measurement of similarity between non-uniform audio units, generally 

ranging from a fraction of a second to a few seconds, which are represented by an audio 

feature vector. Ultimately, the aim of discussing audio similarity measures in the context 

of this dissertation is to provide a reliable method for comparing and depicting audio units 

according to their similarity. 

In order to compute the similarity between audio samples one usually calculates the 
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distance between their representative feature vectors. The choice of the audio descriptors 

that compose the feature vectors will determine the quality of the computed similarity, 

which should account for not only the nature of the signals being compared, but also the 

context of its application. In most content-based audio systems, this particular task is 

commonly hard to achieve because most descriptors involved in audio similarity 

computation are meaningless for most people. Therefore, one cannot expect users to be 

able to define and restrict the set of features to convey specific needs. 

The description scheme I utilize in earGram minimizes the drawbacks of this operation 

because the descriptors are already adapted to musical imperatives and adopt terminology 

from music theory and practice. In addition, the use of a standard scale for all descriptors 

not only prevents some unbalanced comparisons, resulting from disparities in the 

descriptors’ range, but also avoids the necessity of normalizing the descriptors’ output, 

which consequently allows the preservation of meaningful information about the audio 

units’ characteristics according to specific sound typologies. 

The description scheme proposed earlier also embeds a characteristic that is critical to 

achieve reliable comparisons between non-uniform audio units: the audio descriptions 

used are invariable to the audio units’ duration. The similarity computation between audio 

units with different durations raises some problems because the results of most 

descriptors depend on the duration of the analyzed units (Goto, 2003; Foote, 1999; Ong & 

Herrera, 2005; Jehan, 2005; Paulus, Müller, & Klapuri, 2010). In order to provide reliable 

comparisons between non-uniform audio units, the proposed description scheme only 

examines audio features that are invariant to the units’ duration, particularly because 

their computation relies essentially on ratios between spectral components. 

Finally, I will detail the strategies implemented in earGram to assign weights to the 

audio features at issue in order to enhance the quality of the results towards specific 

applications and uses. The weights in the context of the current study may bias the 

similarity measure towards specific properties of the audio source(s) one wants to 
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explore. For example, if we want to segregate audio units according to different pitched 

instruments that have distinct ranges, one may increase the weight of descriptors such as 

brightness and pitch. 

Despite the considerable body of knowledge on the automatic assignment of weights to 

descriptors in concatenative TTS synthesis (Hunt & Black, 1996; Macon, Cronk, & Wouters, 

1998; Meron, 1999; Lannes, 2005), in CSS the different nature of the music signals poses 

problems that are not yet solved. Assigning weights to descriptors involved in music 

similarity computation is rather difficult (Sturm, 2006b). In most CSS systems, the 

procedure is done manually and very little guidance is provided. In addition, common 

descriptors used in CSS (low-level audio features) are meaningless for most users, which 

leads to the assignment of arbitrary weights that may give rise to inconsistent results. 

Some attempts have been made to devise automatic strategies to assign weights to 

audio descriptors according to the characteristics of the corpus. Brent (2009) ascribes 

weights according to the variance of the descriptors, and Norowi and Miranda (2011) 

proposed the use of analysis hierarchy processes, a promising semi-automatic technique, 

to prioritize audio features based on user input that rates the degree of importance of 

each feature by comparing it to all remaining features used in the system. I adopt three 

strategies to specify the weights of audio features: (1) manual, (2) automatic specification 

according to the variance of the audio features, and (3) manual restriction and 

prioritization of audio features. 

The manual assignment of weights to audio features can be very simple and effective if 

the user has a working knowledge of the audio source(s) and/or descriptors available. 

EarGram minimizes the latter barrier because the set of descriptors devised already 

adopts terminology from music theory and practice, which is by far more accessible than 

MIR jargon. In addition, earGram provides a strategy to visualize multidimensional feature 

vectors that offers a clear representation of the distribution of the data for each 

descriptor, which can contribute significantly to understanding the most distinguishable 
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features of the corpus. The algorithm behind the visualization is named parallel 

coordinates (Inselberg, 2009). The visualization is done on top of parallel lines, commonly 

placed in a vertical position and equally spaced. A point in n-dimensional space is 

represented as a polyline whose endpoints for each segment (vertices) fall on the parallel 

axes. The position of the endpoints on the ith axis corresponds to the ith value of the 

feature vector (see Figure 4.2). 

 

Figure 4.2 – EarGram’s parallels coordinates visualization of a corpus comprising a 

single audio track—4 by Aphex Twin. 

The weights may also be automatically assigned according to the variance of the 

features. Weighting features according to their variance assumes that features with higher 

variance enhance the similarity computation, because they provide a more distinctive 

characterization of sound objects. If the user does not want to manually specify and 

experiment with different weights, this strategy may be the ideal choice, because it is 

automatic and clearly enhances the distinction between the sound objects present in the 

corpus. 

The third strategy, the specification of feature sub-collections and their prioritization 

in the unit selection process is particularly relevant here and is an adopted strategy in the 

recombination methods detailed later in Chapter 6. The need to restrict the proposed 

description scheme to a smaller set of audio features relates to the different nature of the 

audio source(s). For example, when dealing with soundscapes, the use of the pitch 
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descriptor to guide the recombination of audio units may provide some erroneous 

information and should be used carefully. The prioritization of features is seen here as a 

constraint-solving problem. The constraints are defined hierarchically, which reduces the 

corpus to sub-spaces that optimally satisfy all constraints at runtime. The application of 

this strategy is particularly detailed in section 6.4.1. 

After this discussion on strategies of, and problems raised by, the comparison between 

individual sound objects, I will expand the perspective on music similarity to include 

groups of sound objects that share perceptual features. In order to reveal such groupings, 

I adopted three clustering algorithms, whose conceptual and technical details are 

discussed next. 

 

4.3 – Clustering 

 

Clustering, or cluster analysis, is the process of grouping sets of objects that present 

common characteristics. Clustering is frequently applied to solve or assist various 

problems in machine learning, pattern recognition, image analysis, and information 

retrieval.  

For earGram, I implemented three clustering algorithms with the aim of grouping 

sound objects with similar features. Ultimately, the resulting clusters reveal musical 

patterns that can be utilized differently during performance. The current implementation 

comprises three non-hierarchical clustering algorithms: (1) k-means, (2) quality-threshold 

(QT) clustering, and (3) density-based clustering algorithm (DBSCAN). I chose this set of 

algorithms because they rely on different parameters defined in advance, and offer very 

different clustering configurations. The parameters defined a priori for each of the 

algorithms have direct implications in the resulting shapes of the clusters and can be 

associated with musical parameters. 
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If the user wants to have a concise number of clusters defined a priori and consider all 

sound units the choice should fall on k-means. On the other hand, if the user wants to 

define clusters based on parameters such as similarity thresholds or neighborhood 

proximity between units, he/she should choose either QT-clustering or DBSCAN, 

respectively.  

Before detailing the technical implementations of the clustering algorithms, I need to 

address some remarks regarding the dimensionality of the feature vectors considered by 

all clustering algorithms. Even though the clustering algorithms can deal with arbitrary 

long vectors, in order to convey a clearer and more understandable visualization of the 

results and allow physical navigation, I restricted the computation to two-dimensional 

feature vectors. Therefore, the sound objects are represented as two-dimensional data 

points in a plane prior to the clustering. The predominant use of two-dimensional vectors 

over multidimensional vectors will be further justified and discussed in a coming section (§ 

4.4.1). 

 

4.3.1 - K-means 

 

K-means is one of most popular clustering algorithms. It partitions a collection of data 

points into k clusters (defined a priori) by allocating each point to the cluster with the 

nearest centroid (MacKay, 2003). The main purpose behind the implementation of k-means 

in earGram is the possibility to divide the collection of sound objects into an exact number 

of representative clusters. For example, if the user wants to generate a specific number 

of concurrent layers of units, he/she may want to adopt k-means to create a sub-corpus of 

units that somehow share particular characteristics. 

K-means is an iterative algorithm that at each run assigns all data points to their 

nearest centroid. At the end of each iteration, the centroids’ positions are reallocated in 
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according to the points that were assigned to the cluster they represent. When the 

algorithm reaches a stable configuration, the iteration process stops (MacKay, 2003). 

The implementation of k-means does not guarantee that it will converge to the global 

optimum, because it is a heuristic algorithm. The results will be highly dependent on the 

initial position of the centroids. Therefore, in earGram, the initial centroid positions are 

assigned to the collection of k points that give the minimum distortion13 from a collection 

of 50 arbitrary sets of centroid positions. Although the described initialization has some 

computational costs associated, it will provide a faster computation of the results and 

hopefully the convergence to the global optimal configuration.  

 

4.3.2 - Quality-Threshold Clustering 

 

QT-clustering is an algorithm that was first presented by Heyer, Kruglyak, and Yooseph 

(1999) as a strategy to cluster gene expression patterns. The primary characteristic of this 

clustering algorithm is the possibility to specify a quality threshold and the minimum 

number of data points per cluster. In earGram, QT-clustering may be useful to distinguish 

and consequently group different classes of sounds, such as sounds produced by different 

instruments, as well as to define aggregates of sounds objects, which do not exceed a 

similarity threshold.  

Relying on the user-assigned threshold distance between data points and the minimum 

number of sound units per cluster, it is possible to detail the algorithm in five steps: (1) 

compute candidate clusters for each data point in the corpus by including for each 

candidate all reachable points within the distance threshold, (2) store the candidate 

cluster with the most points, (3) check if the candidate cluster meets the minimum 

number of data points, per cluster, defined in advance (4) remove all the points of the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13 The distortion is calculated by the sum of the squared distances between each data point and its allocated 
centroid. 
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stored cluster from further consideration, and finally (5) repeat the operations from the 

first point with the reduced set of points until no more clusters can be formed. 

QT-clustering considers all possible clusters. The candidate clusters are generated with 

respect to every data point and tested in order of size against the quality criteria. Major 

advantages of this clustering technique are the detection of outliers that can be treated 

differently at runtime (for instance, excluded from the recombination) and the precise 

control over the similarity of grouped units. The major disadvantage of this clustering 

strategy is its heavy computational cost. 

 

4.3.3 - Density-Based Clustering 

 

DBSCAN is a well-suited algorithm to discover clusters of arbitrary shapes in spatial 

databases. Clusters are defined according to two parameters: (1) the distance threshold or 

neighborhood proximity between data points and (2) their density (the minimum number 

of points within the radius of each unit to form a cluster). In other words, each unit in the 

cluster must not exceed an assigned distance threshold from another unit in the cluster 

and each cluster has to contain at least the specified minimum number of units within the 

distance threshold. Therefore, the formed clusters have a typical density of points, which 

is considerably higher than outside of the cluster.  

My implementation of the DBSCAN algorithm follows Ester, Kriegel, Sander, and Xu 

(1996). EarGram starts by inspecting an arbitrary unit that has not been visited by the 

algorithm. This unit’s neighborhood is examined, and if it includes enough points within 

the threshold distance, a cluster is defined. Otherwise, the point is labeled as “noise.” 

However, this unit might later be found in the neighborhood proximity of a different 

point. If a unit is found to be a dense part of a cluster, all of its neighborhood units 

(within the distance threshold) are also part of that cluster. This process continues until 

the density-connected cluster is found and repeated until all units have been visited. 



	  
	  

82	  

Similarly to the QT-clustering algorithm, DBSCAN avoids defining a priori the number of 

clusters. However, the algorithm finds arbitrarily shaped clusters that are very different 

from the ones found by the QT-clustering. It can even find clusters surrounded by (but not 

connected to) a different cluster. DBSCAN helps define action zones or large groups of 

interconnected data points according to a proximity distance and density, which may sort 

and group sound objects by “scales.” The resulting clusters will encompass sound units 

that express some continuity, that is, each cluster exposes perceptual trajectories of 

particular audio features. Similarly to QT-clustering, DBSCAN detects outliers, which may 

help restrict the corpus to a more unified collection of units during performance. 

The audio similarity and clustering algorithms detailed in the last sections are better 

understood through visuals. Corpus visualizations were adopted in earGram not only to 

expose the hidden results concerning audio similarity and clustering, but also to provide 

tools in which one can navigate, explore, and interact with the corpus. 

 

4.4 – Visualizations  

 

EarGram adopts two visualization strategies: 2D-plot and similarity matrix. Both allow 

the navigation, exploration, and interaction with the corpus, and also aim at depicting 

various (hidden) analytical stages of the system. Ultimately, the implemented 

visualization strategies reveal some intrinsic characteristics of the audio source(s), in 

particular its macrostructure by depicting the similarity between the sound objects that 

compose the corpus. The visualizations may assist in the decision-making processes during 

performance. In addition, they also allow interactive and guided explorations of the 

corpus. A detailed description of the two visualization strategies, along with their 

technical implementation, follows. 
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4.4.1 – Sound-Space 

 

Sound-space offers a visual representation of the sound objects’ collection in a 2D-

plot. It provides an intuitive visualization of the similarity between sound objects and is 

particularly suitable for browsing and exploring a corpus of audio units by navigating 

through its representation. 2D-plots are one of the most common visualizations adopted in 

CSS, and frequently allow physical interaction with the corpus of audio units (Martin, 

2011; Schwarz, 2012; Schwarz & Hackbarth, 2012). 

 

Figure 4.3 - Visual representation of a corpus of audio units comprising a single audio 

source—4 by Aphex Twin—in a 2D-plot whose axes were assigned to the following 

descriptors: noisiness (x-axis) and spectral variability (y-axis). The units’ color is 

defined by sensory dissonance, loudness, and duration, by assigning each descriptor to 

the values of R, G, and B, respectively, and using an additive color model. 

 

The following sections detail two different approaches to constructing the sound-space 

visualization in earGram. The first assigns individual audio features to the axes of the 2D-

plot, and the second adopts multiple audio descriptions in the representation, which can 
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be depicted in two dimensions with the help of multidimensional reduction algorithms. A 

common element to both approaches is the layer of information that is offered by the 

units’ color. The color of each unit in sound-space is defined by a list with three elements 

that correspond to the red, green, and blue values of an additive RGB color model. The R, 

G, and B values represent audio features from the available set of descriptors.  

 

4.4.1.1 – Two-Dimensional Visualizations of the Corpus Using Binary Sets of Descriptors 

 

In sound-space, the use of different binary sets of audio features to depict a corpus of 

audio units provides valuable information about the corpus, in particular the similarity 

between its constituent units. In order to create such visualization of the corpus, the user 

must first assign single audio features to each axis of sound-space. Then, earGram collects 

the analyzed information of both selected features for all audio units in the corpus, and 

depicts the corpus according to those values. In other words, the coordinates of each 

audio unit (single dot) in sound-space are two values (x and y) that correspond to audio 

features of the units. Therefore, the sound-space visualization provides as many 

visualizations of the corpus as the number of possible combinations between all pairs of 

audio features provided by earGram’s description scheme.  

In addition to the depicted information, the sound-space visualization also allows the 

definition of target phrases to be synthesized with a high level of precision by navigating 

its representation. In fact, sound-space functions in a similar way as traditional acoustic 

instruments. Its response is predictable, direct, and controlled, because the audio units 

are represented in a scale whose limits are specific types of sound. If the same conditions 

are met, in particular the same pair of descriptors, the same performance gestures result 

in the same sonic response. An important distinction is the mutability of the instrument 

according to the feature space of the 2D-plot. Changing the feature space in sound-space 

can be seen as changing a preset in a synthesizer. The adoption of different sets of 
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descriptors to depict the corpus of audio units imposes significant changes in the sonic 

feedback. If one repeats the same trajectory in sound-space with different sets of 

descriptors the sonic feedback of the gestures can be regarded as variations. Each 

compound set of descriptors has its own identity. 

A two-dimensional representation of the sound objects according to the descriptors 

pitch and loudness is a clear example of how the sound-space visualization may emulate a 

piano-keyboard behavior. However, earGram was not designed to primarily emulate this 

behavior. Instead, its purpose focuses rather on the exploration of all aspects of sound 

outside the pitch-duration primacy. For example, the combinations of pitch or 

fundamental bass descriptors with any of the harmonic timbre descriptors (e.g. brightness, 

width, and sensory dissonance) provide an extended control over the harmonic quality of 

the pitch/chords. One thus may “modulate” the timbre of particular pitches.  

The use of noisiness, brightness, width, and sensory dissonance is particularly effective 

for visualizing a corpus of electronic-generated sound units. This is due to the fact that 

these types of sounds commonly expose a rich variety of colors (timbre). Finally, any 

combination of the following descriptors: noisiness, loudness, width, and spectral 

variability is particularly interesting to visualize and control the synthesis of 

environmental sounds.  

I should also remind the reader that the descriptors pitch and fundamental bass do not 

provide meaningful information to all types of audio units. For this reason they were 

presented as complementary descriptors (see Table 3.2). To conclude, I just would like to 

add that the creation of sound events/structures organized by parameters other than 

pitch, duration, and loudness are not very common in Western music and their use should 

undergo an experimental phase that goes beyond the temporal scope of this investigation.  
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4.4.1.2 - Multidimensional Reduction of the Descriptor Space 

 

The most common way to describe and represent units in content-based audio 

processing applications is to include a large number of audio features in a 

multidimensional vector. In recent years, a large number of new descriptors have been 

presented and adopted despite the higher computational costs. We should also keep in 

mind that the incorporation of a larger number of descriptors does not always represent 

an improvement in the characterization of the audio signals. 

High-dimensional vectors are difficult to visualize and are not at all suitable for 

physical navigation, which is commonly performed in two- or three-dimensional spaces. 

Hence, the most common solution to this problem is either assigning a single descriptor to 

each of the axis of the two or three-dimensions representation (as discussed in the 

previous section), or employing dimensionality reduction algorithms to decrease the 

number of dimensions to two- or three-dimensions while retaining most of the information 

provided by the vectors. In this section, I propose a dimensionality reduction algorithm to 

decrease the number of dimensions of the feature vectors, and examine its implication in 

creative practices, such as musical composition. 

Multidimensional reduction techniques are commonly used in content-based audio 

processing applications. These techniques not only reduce computational costs associated 

with the matching process, but they also convey the visualization of the corpus in two- or 

three-dimensions. Hence, the topic could be examined in the current section with respect 

to the visualization of the corpus or in a different section where I address audio similarity 

computation. The decision to address multidimensional reduction techniques here is for a 

very simple reason: while in earGram the visualization of high-dimensional feature vectors 

in a 2D-plot is a very a pertinent problem, the description scheme does not encompass a 

very large number of descriptors and therefore does not pose tremendous problems in 
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terms of computational cost. 

I noted in the direct contact with a few composers that utilized earGram in their 

compositions that dimensionality reduction methods raised curiosity, even if the outcome 

of the algorithm is slightly misleading. The visual representations gathered after applying 

multidimensional reduction algorithms lack clarity. The axes of the plane are hardly 

related to any particular feature and what remains is a general and “blind” representation 

of similarity between the sound objects. 

The precise manipulation of individual dimensions of the sound matter is the most 

common approach in musical composition. The same level of accuracy is achieved if single 

features are assigned to each of the axis of a plane. However, dimensionality reduction 

methods might be helpful in cases where it is unclear which features the user wants to 

control, or when it appears that no pair of features will provide satisfactory results. The 

latter case might be true for applications using sounds of very different natures. 

Two of the most popular algorithms for dimensionality reduction are principal 

component analysis (PCA) (Shlens, 2005; Skočaj, Leonardis, & Bischof, 2007) and 

multidimensional scaling (MDS) (Mikula, 2008; Schwarz & Schnell, 2009). Both methods can 

be used to obtain smaller representations of high-dimensional feature spaces.  

EarGram adopts the algorithm star coordinates (Kandogan, 2000) for dimensionality 

reduction. The algorithm is substantially less known and applied than PCA or MDS, 

especially to address audio feature vectors. However, star coordinates offers two major 

advantages over the aforementioned algorithms: (1) the understandability of the axes 

after processing takes place, and (2) its suitability for both online and offline processing. 

A clear disadvantage of star coordinates is the need to explore the representation by 

weighing the variables and assigning different angles to the axes to find interesting 

patterns. 
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Figure 4.4 - Mapping of an eight-dimensional point to two dimensions. Axes are named 

as Cx, each dimension of the point as djx, and P is the final point position (Kandogan, 

2000). (Copyright 2000 by Eser Kandogan. Reproduced with permission.) 

 

Star coordinates map a high-dimensional point linearly to two dimensions by summing 

the vectors resulting from the point coordinates arranged on a circle on a two-dimensional 

plane with equal (initial) angles between the axes with an origin at the center of the 

circle (see Figure 4.4 for a demonstration of the algorithm). 

 

4.4.2 - Self-Similarity Matrix 

 

By depicting pairwise similarity between the same original sequence of sound objects 

assigned to both vertical and horizontal axes of a square matrix, it is possible to reveal 

patterns of the audio source(s) that ultimately expose the macro structure of the data. 

The graphical representation is called a self-similarity matrix. The technique was first 

introduced by Foote (1999) with the aim of visualizing musical structures. The method 

consists of building a square matrix where time runs from left to right, as well as from 

bottom to top, and the cells’ color denotes the similarity between audio units. The 

similarity between sound objects is computed by the Euclidian distance between their 
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representative feature vectors. The feature vectors may include a variable number of 

features from the available set of descriptors, as well as variable weights.  

The standard approach to audio similarity matrices consists of computing and depicting 

the similarity between short windows of fixed duration. In earGram, the compared units 

correspond to sound objects with non-uniform duration. I adopt similarity matrices in 

earGram mainly to guide the user through the selection of sub-spaces of the corpus that 

can be used differently during performance. 

 

       

 

       

Figure 4.5 – Visualizations of a corpus comprising a single audio track—4 by Aphex 

Twin—by a self-similarity matrix (left image) and a related visualization whose color of 

each cell results from two found clusters in the corpus (rightmost image). The middle 

image is a detail of the self-similarity matrix, which exposes with detail the color of 

each cell. 

 

EarGram provides a different visualization strategy of the corpus that follows the same 

principles behind similarity matrices. The major difference resides in the color of each 

matrix cell, which instead of resulting from the distance between feature vectors is 

attributed to the juxtaposition of the audio units’ colors (resulting from the clustering 

strategies). The visualization provides very similar information as the traditional 

approaches to similarity matrices and enhances its clarity in a similar fashion as reducing 

time 

tim
e 
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the noisiness of a signal by a smoothing function. 

It is important to note that the matrix configurations are highly dependent on the 

features used to compute the similarity or the clusters. Therefore, in order to find 

interesting patterns the user may need to explore different collections of features or 

assign different weights to each descriptor. In addition, both visualizations can provide 

interesting feedback to the user in understanding how different audio features’ weights 

and constraints, and/or the use of different feature spaces, can alter the notion of 

similarity between sound objects and their consequent grouping. 

Now that I have addressed how sound objects can be consistently compared and 

grouped to expose characteristics of the higher layers of musical structure, I will conclude 

the current chapter by providing two descriptions—key and meter—of the corpus/audio 

source(s) that will be preponderant for some decisions during the composition phase. 

 

4.5 - Mid-Level Description of the Corpus  

 

In this section, I will detail the adoption of two mid-level descriptors for meter and key 

induction. Unlike the audio descriptors proposed in Chapter 3, the two following 

descriptors do not target individual sound objects. Instead, they characterize collections 

of sound objects and may be applied as a strategy to constrain the corpus to sub-spaces of 

units, or simply to provide information that can be used at later stages of the system for 

the generation of new unit sequences. The conceptual and technical considerations that 

assisted the implementation of both descriptors follow. 

 

4.5.1 - Meter Induction 

 

In music, meter refers to the hierarchical organization of time based on perceived 

temporal regularities (Lerdhal & Jakendorff, 1983). It consists of a periodic system of 
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stressed downbeats, commonly subdivided on either two (duple meter) or three (triple 

meter) beats, or any of its multiples. 

Great strides have been made to create computational models to induce the meter of 

a particular music, because it offers valuable information for many musical applications 

such as music transcription (Schloss, 1985; Klapuri, 2003), editing (Chafe, Mont-Reinaud, & 

Rush, 1982), and interactive music systems (Malloch, 2005). However, despite all of these 

efforts, state-of-the art algorithms still pale in comparison to the level of accuracy 

achieved by humans (Sell, 2010). 

One of the most common approaches to meter induction is to find periodic recurrences 

of musical events, whose first beat (downbeat) is slightly stressed (Cooper & Meyer, 1960; 

Gouyon & Herrera, 2003). An important distinction should be made between literature for 

meter induction algorithms that process discrete musical events (Longuet-Higgins & Lee, 

1982; Lerdahl & Jackendoff, 1983; Povel & Essens, 1985; Lee, 1991) and audio data (Goto 

& Muraoka, 1998; Scheirer, 1998; Gouyon & Herrera, 2003; Klapuri, Eronen, & Astola, 

2006; Davis & Plumbey, 2006).  

The meter induction strategy implemented in earGram is largely based on Gouyon and 

Herrera (2003). In brief, the Gouyon and Herrera meter induction algorithm attempts to 

find regularities in feature vectors sequences through autocorrelation.14 The resulting 

peaks from the autocorrelation function indicate lags for which a given feature reveals 

periodicities. The audio feature over which all processing is done is spectral variability. It 

is considered the beat as the relevant temporal resolution to extract the features of the 

audio. Therefore, the aforementioned method is only applied when the audio is previously 

segmented on found beats. The autocorrelation function examines periods from 2 to 12 

beats, and picks the highest value of the accumulated autocorrelation function.  

The implemented meter induction algorithm only attempts to find the number of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
14 Autocorrelation is the “correlation of a signal with itself at various time delays” (Dunn, 2005, p. 459). In 
other words, autocorrelation measures the degree of similarity between a given time series and a lagged 
version of itself over successive time intervals. 
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pulses per measure that expose regularities over time. It does not attempt to track the 

position of the downbeats because the only purpose behind its computation is to find 

temporal recurrences in the description function. The resulting patterns provide valuable 

information for guiding generative music strategies, in particular to preserve intrinsic 

rhythmic features of the audio source(s). In fact, even if the algorithm reports a multiple 

of the actual meter, it does not disturb the output quality of the generative music 

algorithms. In addition to the meter, earGram also attempts to infer the key of the audio 

source(s), another important music-theoretical concept. 

 

4.5.2 - Key Induction 

 

The key or tonality of a musical piece is an important theoretical construct that not 

only specifies the tonal center of the music, but also hierarchical pitch and harmonic 

relationships. The tonal system prevalent in the most Western music practices is defined 

by two elements: a pitch class and a mode. The pitch class corresponds to one of the 12 

notes of the chromatic scale, and the mode may be major or minor.  

Although determining the tonal center of a musical piece is a rather difficult task for 

humans, to identify the mode of the key is often intuitive for a human listener. An 

effective computational model for key induction with the same level of accuracy as a 

trained musician has not yet been fully achieved (Sell, 2010). 

The key induction algorithm employed in earGram is an extension of one of the most 

prominent and applied algorithms for key induction, the Krumhansl-Schmuckler (K-S) 

algorithm. Besides its easy implementation and low-computational cost at runtime, the K-

S algorithm is quite reliable and effective. Briefly, the algorithm assumes that particular 

notes are played more than others in a given key. Although the postulate seems pretty 

evident from a music theory viewpoint, Krumhansl and Kessler have validated the 

assumption by perceptual experiments (Krumhansl, 1990). 
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In detail, the K-S algorithm estimates the key of a musical piece by finding the highest 

correlation between 24 profiles, each corresponding to one of the major and minor scales 

of the 12 chromatic notes of an equal-tempered scale, and the frequency distribution of 

the pitch information of a musical piece in 12 pitch classes. The profiles for each of the 

major and minor scales were devised by Krumhansl and Kesseler in 1990 and are commonly 

addressed as K-K profiles. The K-K profiles resulted from listening tests, which aimed at 

finding how well the total chromatic notes of the tempered scale perceptually fit in with 

musical elements designed to establish a key, such as scales, chords, or cadences. Two 

major profiles derived form the listening tests, one for the major scales and another for 

the minor scales, which can be shifted 11 times in order to map the profile to a different 

tonic. Figure 4.6 depicts the key profiles for the C major and A minor keys. 

Some authors have further Krumhansl and Kesseler’s research and proposed slight 

changes to the K-K profiles (Temperley, 1999, 2005; Chai, 2005). Please refer to Gómez 

(2006b) for a comprehensive review of key profiles used for key induction. 

 

 

 

Figure 4.6 - The Krumhansl and Kessler key profiles for C major and A minor keys 

(Krumhansl, 1990). 
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It should be noted that the aforementioned algorithm was proposed and extensively 

applied for the key induction of symbolic music data. Addressing the problem in the audio 

domain poses different problems, in particular to create the input vector that represents 

the frequency distribution of pitch classes, because audio data does not provide clean 

information of the pitch content. 

When dealing with audio signals, instead of creating a histogram that accumulates the 

pitch classes of the audio file, I adopt a vector that expresses the accumulated harmonic 

pitch class profiles (HPCP) of various frames of the audio as used in related research 

(Gómez & Bonada, 2005).15 The accumulated HPCPs express the frequency distribution of 

the harmonic content of audio signals in 12 pitch classes, and is computed in earGram by 

wrapping the highest 25 peaks of the audio spectrum into 12 pitch classes. In sum, the key 

induction algorithm proposed here compares the normalized accumulated HPCP with the 

K-K profiles in order to determine the most probable key.  

It is important to note that there is a disconnection between the representation of the 

K-K profiles and the HPCP input vector, because the K-K profiles do not consider the 

harmonic frequencies present in audio signals. Still, they are the most commonly used 

profiles in state-of-the-art audio key induction algorithms (Purwins, Blankertz, & 

Overmayer, 2000; Pauws, 2004; Gómez, 2005, 2006a). 

Izmirli (2005) and Gómez and Bonada (2005) have addressed the issue of the 

misrepresentation of harmonic frequencies in the key profiles and offered a similar 

solution, that is, the creation of harmonic templates obtained by inspecting the harmonic 

characteristics of a corpus of audio samples and merging it with the key profiles. 

However, in order to create reliable harmonic templates one should use a similar corpus 

of sounds as the analyzed musical pieces, reclaiming thus the computation of the profiles 

each time a different audio source is used. For this reason, the solution I refer to has not 

been considered in earGram.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
15 For a detailed definition of HPCP please refer to section 3.4.2.4 



	  
	  

95	  

The key induction algorithm provides valuable information concerning the corpus that 

facilitates the interaction between different corpora of audio units, or even between the 

system and a live musician that can be playing along with generated sonic material. In 

addition, knowing the key of the audio source(s) allows the user to transpose the 

generated output to any other tonality. 

 

4.6 - Part I Conclusion  

 

Chapter 2 discussed musicological literature that approaches sound description from a 

phenomenological standpoint, that is, descriptions that focus on the morphology of sounds 

disregarding sources and causes. My review focused on criteria for the morphological 

description of sound objects presented by the three following authors: Pierre Schaeffer, 

Denis Smalley, and Lasse Thoresen.  

Chapter 3 relied on the concluding remarks of the aforementioned discussion to 

formulate musician-friendly computational strategies to segment an audio stream into 

sound objects and describe their most prominent characteristics. The computational 

implementation of the scheme, and particularly the segmentation strategies of an audio 

stream into sound objects also relied on MIR research, in particular literature related to 

audio descriptors, onset detection, and audio beat tracking. The description scheme 

implemented in earGram encompasses two main properties that are seminal for this study 

in particular to the comparison and manipulation of sound objects in creative contexts. 

The first is the adoption of a limited number of descriptors, which cover the most 

prominent characteristics of sound and expose low levels of information redundancy. The 

second is the use of a standard range in all descriptors whose limits are fixed sound 

typologies; thus avoiding the normalization of the descriptor’s output by spectral features 

and providing reliable information concerning the unit’s content in relation to the 

descriptor’s limits.  
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Chapter 4 proposed computational strategies for modeling the temporal structure of 

the audio source(s) by establishing the probability of transitioning between all sound 

objects that comprise the corpus, along with reliable strategies for comparing and 

clustering audio units, with the ultimate goal of revealing the higher-level organization of 

the audio source(s). The similarity and grouping are better understood in earGram through 

the aid of two visualization strategies: 2D-plot and self-similarity matrix. Finally, I provide 

two algorithms to infer the presence of both a stable meter and key in audio source(s). 

The purpose behind the analytical strategies devised is either automatic music generation 

or assisting the composition process, which is addressed in the second part of this 

dissertation. 
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PART II: COMPOSITION 

 

Any text is constructed as a mosaic of quotations;  

any text is the absorption and transformation of another. 

 

— The Kristeva Reader, Julia Kristeva (1986) 
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The aim of Part II is to explore CAAC strategies that automatically recombine audio 

units by manipulating descriptions of sound objects as well as to suggest methods for 

incorporating the generative algorithms in a composition workflow. Part II will adopt a 

similar, but inverse, structure as Part I. In other words, while the first part of this 

dissertation adopts a bottom-up strategy for analyzing audio data, the second part adopts 

a top-down approach to algorithmic composition. 

I will adapt well-known CAAC strategies attached to symbolic music representations to 

address audio signals and function as unit selection algorithms in CSS. My generative 

methods were implemented and tested in earGram and are able to build arbitrarily long 

structures in a way that the synthesized musical output reflects some of the elements that 

constitute the audio source(s). Yet, due to the particularities of my generative methods, 

the created music is new and different from the raw material that supports its creation—

and any other existing music. EarGram demands little guidance from the user to achieve 

coherent musical results and it is suitable for a variety of music situations spanning from 

installations to concert music. 
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Chapter 5 

 

Organizing Sound 

Using sound as raw material for a composition is a central concern in electroacoustic 

music. The simplest approach to compose with sounds in order to create a new 

composition is by manually manipulating and assembling pre-recorded audio samples. I 

embrace this method through the recombination of sound objects. However, the 

recombination process is semi or fully automated by organizing prominent features 

inferred from the sound objects. The following subsections provide an overview of the 

technical and conceptual background of the framework’s generative component proposed 

in this dissertation, in order to place it in a particular historical context and justify its 

pertinence. The chapter concludes by explaining the articulation between the two major 

modules of the framework: analysis and composition. 

More specifically, this chapter provides an historical perspective of sample-based 

synthesis techniques—sampling, micromontage, and granular synthesis—which contributed 

to the emergence of CSS. Next, I provide an overview of musical applications of CSS over 

the last decade. Then, I examine the technical aspects of the framework by asking how 
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they influence the practice of music composition. The following three compositional 

approaches will be addressed: (1) the use of sound structure, namely its timbral qualities 

as the primary material for structuring musical processes; (2) music as a consequence of 

pre-devised processes; and (3) the notion of “appropriation” as a musical concept. In 

addition, I will detail the contribution of each topic to earGram’s design, in particular how 

they influenced the articulation between the analysis and composition modules. 

 

5.1 – From Sound to Music: Technical and Conceptual Considerations 

 

5.1.1 - Sampling 

 

In electronic music, sampling (also known as audio collage) is the act of taking a 

portion of a particular recording and reusing it in a different piece. Apart from previous 

isolated experiments, musicians began exploring the technique in the late 1940s. The very 

first sampling experiments were carried almost exclusively in radio broadcast stations, 

because they had the necessary technology. 

The most prominent pioneers of sampling are the French composers Pierre Schaeffer 

and Pierre Henry; they began to explore experimental radiophonic techniques with the 

sound technology available in the 1940s at the French Radio in Paris—where the current 

GRM still resides (Palombini, 1993). 

The advent and widespread use of magnetic tape in the early 1950s opened new 

possibilities to sampling techniques, in particular the exploration of large amounts of 

audio samples. It is interesting to note that the use of a large corpus of sounds, a crucial 

feature of earGram, appealed to composers from the very first moment the technology 

allowed its manipulation. Karlheinz Stockhausen, John Cage, and Iannis Xenakis are three 

representative composers of the electronic music of this period. Stockhausen used in 

Étude des 1000 collants (1952), known simply as Étude, a corpus of millimeter-sized tape 
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pieces of pre-recorded hammered piano strings, transposed and cropped to their sustained 

part to assemble a previously devised score that defined a series of pitches, durations, 

dynamics, and timbres (Manion, 1992). John Cages’ Williams Mix (1951–1953), a 

composition for eight magnetic tapes, is another piece from this period that explores the 

idea of using a large pre-rearranged corpus of sounds as the basis of a composition. 

Williams Mix’s corpus comprised approximately 600 recordings organized in six categories: 

city sounds, country sounds, electronic sounds, manually produced sounds, wind sounds, 

and "small" sounds, which need to be amplified (Cage, 1962). Xenakis’ compositions 

Analogique A and B (1958-1959) and Bohor (1962) are also worth mention, not only for its 

exploration of a large corpus of short sound fragments but also for the assembling process, 

which was driven by stochastic principles (Di Scipio, 2005). 

From the mid 1960s until the 1990s, we witnessed a rapid proliferation of sampling 

techniques, mainly because of the growing interest of popular music producers and 

musicians. Sampling featured prominently in renowned bands such as The Beatles, for 

example in Tomorrow Never Knows (1966) and Revolution 9 (1968), and The Residents, 

whose song Swastikas on Parade (1976) appropriates and samples James Brown 

extensively. 

Later, from the mid 1980s onwards, most electronic dance music has significantly 

explored samplings techniques. Sampling CDs, a new commercial product that contains 

rhythmic loops and short bass or melodic phrases, became quite popular among this group 

of musicians. Commonly, loops featured in these CDs were labeled and distributed by 

genre, tempo, instrumentation, and mood. Most well known uses of this practice occur in 

popular music, such as hip-hop, which has immediate roots in the 1960s reggae and dub 

music of Jamaica, and ancient roots in the oral traditions of Africa. 

Sampling techniques have been expanded since the 1940s, importantly including the 

use of various samples sizes, as explored in micromontage and granular synthesis, two 

techniques that will be further detailed in the following sections. 
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5.1.2 – Micromontage 

 

Micromontage defines the process of composing musical works by assembling short 

audio samples, usually known as microsounds. All sounds between the sample and sound 

object time scales can be defined as microsounds, roughly equivalent to the range 

between 10 and 100 milliseconds (Roads, 2001). Micromontage treats sound as streams of 

acoustic particles in time and frequency domains. 

Curtis Roads offers a systematic survey of the history and origins of microsound as well 

as its application in music composition in his seminal book Microsound (2001). Roads not 

only exposes the history and roots of microsound from the atomistic Greek philosophers of 

the 5th century BC until the modern concept of sound particles by Einstein and Gabor, but 

also provides a comprehensive overview of the artistic work done in this domain, including 

his own compositions.  

Iannis Xenakis was the first composer to develop compositional systems that explored 

microsounds extensively (Roads, 2001)—“grains of sounds” in Xenakis’ terminology. For 

Xenakis, all sounds can be seen as the “integration of grains, of elementary sonic 

particles, of sonic quanta” (Xenakis, 1971, p. 43). Xenakis developed a taxonomy for 

grains of sounds and sound-particles assemblages, such as “sound masses,” “clouds of 

sound,” and “screens of sound” (Xenakis, 1971). 

The Argentinian composer Horacio Vaggione has worked extensively with 

micromontage techniques and is recognized as a pioneer of using sampling techniques in 

the digital domain (Sturm, 2006b). Vaggione’s first experiments with micromontage date 

back to 1982 when he started composing Octuor. All the sound material used in Octuor 

derives from a set of five audio files that were previously synthesized by the composer. 

The files were initially segmented into small fragments and later edited and mixed into 

medium to large-scale structures. Thema (1985) for bass saxophone and tape and Schall 

(1995) for tape are two other major works from Vaggione that continue to explore 
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micromontage. In Schall, the composer transforms and arranges thousands of segments of 

piano sounds to create a variety of textures and themes (Roads, 2001).  

The initial experiments of these two composers—Xenakis and Vaggione—constitute the 

most important impulses in both the theory and practice of micromontage. Their works 

guided most future developments of the technique, which many composers have 

continued and extended towards different aesthetic approaches and technology, such as 

Karlheinz Stockhausen, Gottfried Michael Koenig, and Noah Creshevsky. Of notice the work 

of the Portuguese composer Carlos Caires, in particular his software IRIN (Caires, 2004), 

which combines graphic and script editing with algorithmic generation and manipulation of 

sound sequences to ease the creation of compositions through micromontage. Caires’s 

work points toward interesting directions in regards to how to obtain and compose with 

very short audio snippets, in particular how to organize and manipulate meso structures.  

 

5.1.3 - Granular Synthesis 

 

Granular synthesis is a technique that assembles very short segments of audio to build 

sonic textures, which can be understood as an extension of micromontage towards a 

higher degree of automation (namely in the selection procedures). In fact, a pioneer of 

granular synthesis—Curtis Roads—was under the supervision of Horacio Vaggione—a 

micromontage pioneer—while experimenting with the technique. Barry Truax, a Canadian 

composer and researcher, is another pioneer of granular synthesis in its extension towards 

real-time uses (Truax, 1988).  

Granular synthesis uses short snippets of sound, called grains, to create larger acoustic 

events. Grains are signals with a Gaussian amplitude envelope that can be constructed 

from scratch, like different types of sound waves, or short audio segments obtained by 

segmenting an audio sample. The duration of a grain typically falls into the range of 1-50 

milliseconds (Roads, 1998). Most granulators synthesize multiple grains simultaneously at 
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different density rates, speed, phase, loudness, frequency, and spatial position. Of note is 

how Barry Truax’s soundscape compositions demonstrated that granular synthesis is 

particularly efficient at generating natural acoustic environmental sounds, such as rain, 

waterfalls, or animal vocalizations. 

Above, I presented an overview of three representative sample-based synthesis 

techniques in order to introduce the reader to the state-of-the-art technology and artistic 

practices before the emergence of CSS. Despite having already discussed CSS in several 

sections of this dissertation,16 I will address once more this synthesis technique to describe 

its application in musical composition during the last years. 

 

5.1.4 – Musical Applications of Concatenative Sound Synthesis 

 

In 2006, while referring to Bob Sturm’s compositions17 and to his own compositions 

using real-time CSS, Diemo Schwarz claimed that “the musical applications of CSS are just 

starting to become convincing” (Schwarz, 2006, p. 13). Regarding the application of CSS to 

high-level instrument synthesis, Schwarz (2006) added that “we stand at the same position 

speech synthesis stood 10 years ago, with yet too small databases, and many open 

research questions” (p. 13). Schwarz furthers his remarks with a prediction that in a few 

year’s time, CSS will be where speech synthesis is at the time. “After 15 years of 

research, [concatenative TTS synthesis] now become a technology mature to the extent 

that all recent commercial speech synthesis systems are concatenative” (Schwarz, 2006, 

p. 14). 

Schwarz’s prediction became true regarding the application of CSS to high-level 

instrument synthesis. The Vienna Symphonic Library,18 and Synful (Lindemann, 2001) are 

two remarkable examples of state-of-the-art CSS software for instrumental synthesis. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
16 An overview of the technical components of CSS has been presented in section 1.3 and various aspects of 
CSS have been discussed in Chapters 3 and 4. 
17 Diemo Schwarz was referring to Bob Sturm’s compositions: Dedication to George Crumb (2004) and Gates of 
Heaven and Hell: Concatenative Variations of a Passage by Mahler (2005). 
18 http://www.vsl.co.at 
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Vienna Symphonic Library had several updates for the last years and increased 

significantly its database.19 On the contrary, Synful does not rely on its database’s size to 

provide better results, but in additional processing—using transformations of pitch, 

loudness, and duration. Nonetheless, Synful fulfills the application of high-level 

instrument synthesis strikingly well. 

The application of CSS to instrumental synthesis if of utmost importance for 

composition, but, even if it improves the quality of the results in comparison to other 

instrumental synthesis techniques, it does not provide tools that expand a compositional 

thinking towards new musical ideas. However, these ideas have been explored by different 

CSS software, such as MATConcat (Sturm, 2004), CataRT (Schwarz, 2006a), and AudioGuide 

(Hackbarth et al., 2010), and I can summarize them in three major compositional 

strategies: (1) re-arranging units from the corpus by other rules than the temporal order 

of their original recordings; (2) composition by navigating through a live- or pre-assembled 

corpus; and (3) cross-selection and interpolation, which allow to extract and apply the 

morphology of one corpus to another. 

Hitherto the above-mentioned compositional ideas have been mostly applied in musical 

composition by the CSS systems’ developers.20 A significant exception is Schwarz’s CataRT, 

which has been utilized in many creative projects, even if most of them result from a 

direct collaboration with Schwarz or from people working at the Institut de Recherche et 

Coordination Acoustique/Musique (IRCAM), where Schwarz currently works. Matthew 

Burtner, Sebastien Roux, Hector Parra, Luca Francesconi, Stefano Gervasoni, and Dai 

Fujikura are contemporary music composers that have worked at IRCAM and employed 

CataRT in their compositions (Schwarz, 2007). Schwarz has also been performing with 

CataRT for several years, either as a solo performer or in improvisation sessions with live 

performers. He is a regular presence in the music sessions of many international 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
19The latest Pro Edition Vienna Symphonic Library comprises 235 GB of instrumental sound samples—an 
increase of 135 GB since its first release in 2002. 
20 Note that my comment may also suffer from a lack of documentation about music composed by CSS. 
Composers are certainly less concerned with the documentation of the techniques they apply in their practice 
than researchers that work in the academia. 
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conferences related to computer music, such as Sound and Music Computing, Live 

Algorithms, International Computer Music Conference, and New Interfaces for Musical 

Expression. He has been performing with renowned musicians such as the trombonist 

George Lewis, the saxophonist Evan Parker, and the clarinetist Etienne Brunet.21 The last 

application of CataRT that I would like to highlight is the interactive exploration of sound 

corpora in combination with new interfaces for music expression. For example, the 

Plumage project explores sound corpora by navigating in three-dimensional visualizations 

of the corpora (Schwarz et al., 2007), and the project Dirty Tangible Interfaces (DIRTI) 

uses CataRT to sonify and interact with tangible interfaces such as granular or liquid 

material placed in a glass dish (Savary, Schwarz, & Pellerin, 2012). 

Norbert Schnell, another IRCAM researcher and head of the IRCAM Real-Time Musical 

Interactions team, has recently presented the MuBu library for Max/MSP, which is a set of 

externals for interactive real-time synthesis of analyzed and annotated audio segments. 

Similarly to CataRT, the MuBu library was already applied as a CSS system in musical 

composition, notably to assist composers in residence at IRCAM such as Marco Antonio 

Suárez-Cifuentes in Caméleon Kaléidoscope (2010) and Plis (2010), and Mari Kimura in 

Clone Barcarolle (2009). MuBu has also been used in projects dealing with new interfaces 

for music expression such as Mogees,22 which applies “realtime audio mosaicing” to 

augment everyday objects and transform them into musical instruments.  

Apart from the exception of the work developed at IRCAM and the aforementioned 

commercial CSS software for instrumental synthesis, Schwarz’s prediction about the 

dissemination of CSS is not yet apparent in contemporary music practice. Most of the 

remaining compositions or sound examples were mostly produced by the system’s 

developers, as is true of Tristan Jehan, William Brent, Michael Casey, and	  Ben Hackbarth. I 

believe that many musicians are interested in the technique, but most CSS software are 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
21 The improvisation with George Lewis, Evan Parker and Diemo Schwarz took place during the Live Algorithms 
for Music conference in 2006, and was later released on CD (Schwarz, 2007). The performance with the 
clarinetist Etienne Brunet, along with many other examples, is available in Schwarz’s website: 
http://diemo.free.fr. 
22 http://www.brunozamborlin.com/mogees/. 
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not easy to access, and there are still usability issues that pose major obstacles for its 

application (some of them have been extensively addressed in this dissertation). In 

addition, to my knowledge, many CSS systems were never available to the public, and 

their developers had not provided any sound examples produced by the systems, as the 

case of Musical Mosaicing and MoSievius.  

The popularity of CataRT and more recently MuBu may also be related with the 

programing environment for which they were developed (i.e., Max/MSP), which is a 

familiar tool for many artists working in the digital domain. Recently, the technique has 

also been ported to other programing environments for multimedia production, such as 

SuperCollider (Stoll, 2011), Pure Data (Brent, 2009; Bernardes, Guedes, & Pennycook, 

2013), and ChucK, whose inner structure allows the easy implementation of the technique 

(Wang, Fiebrink, & Cook, 2007). The dissemination of CSS through various programing 

environments not only shows an increased interest in the technique during recent years, 

but also enlarges the possibility for interested users to adopt CSS in the programing 

environment they are more familiar with. 

The recent work of Ben Hackbarth, and in particular his software for CSS named 

AudioGuide, should not remain unmentioned here due to the weight given by Hackbarth to 

the exploration of CSS from a compositional and aesthetic standpoint. In his catalogue I 

would like to highlight Hackbarth’s compositions Am I a Particle or a Wave? (2011), and 

Out Among Sharks, A Moving Target (2012), which clearly expresses his concept of “sonic 

transcription” using CSS (Hackbarth et al., 2013). 

To conclude, I would like to mention a particular group of systems, whose functionality 

is highly explored in earGram. I am referring to CSS software that focus on the automatic 

creation of mashups or stretching an audio source infinitely while retaining its 

morphology, such as Scrambled Hackz by Sven Koenig, the Plunderphonics’ systems 

presented by Zils and Pachet (2001) and Aucouturier and Pachet (2005), and the Echo Nest 

Remix API which is an extension of Jehan’s (2005) Skeleton. Unfortunately, most of these 
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systems were never released to the public (e.g., Scrambled Hackz, and the research by 

Zils, Aucouturier, and Pachet), and only a very limited number of sound examples have 

been provided, with the exception of Jehan’s work, which, is also inaccessible to most 

musicians, because the Echo Nest Remix API requires advance programming skills to 

produce musical results. These reasons have motivated me to create a flexible tool like 

earGram, which is not only adapted to musicians with a traditional educational 

background, but also freely available on the Internet.23 

After detailing some of the most prominent sample-based techniques that contributed 

to the emergence of CSS, along with significant musical applications of CSS, I will focus on 

the conceptual implications of musical practices that adopt sound as the basis for a 

composition. I will focus on three main practices: (1) spectral music, as a way of dealing 

with sound for organizing musical structures; (2) process music, following Steve Reich 

(1968) terminology to approach composition practices that exclude the need to a detailed 

low-level specification; and (3) the use of appropriation as a musical concept, which 

decisively shaped the design of this study, in particular many of earGram’s features.  

 

5.1.5 - Sound Structure as a Foundation for Compositional Systems 

 

The use of sound features as a strategy for composing is an attitude not exclusive, but 

more evident in spectral music. Spectral music was established in the early 1970s by a 

group of young French composers including Tristan Murail, Gérard Grisey, Hugues Dufourt, 

Michael Levinas, and Mesias Maiguashca. 

In its early days, composers associated with the musical school referred to as spectral 

music used the analytical possibilities offered by computers to identify, extract, and 

manipulate sonic properties from audio signals. The resulting analysis allowed the 

identification of complex patterns, which served as a basis for the extrapolation of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
23 EarGram can be freely downloaded from the following website: 
https://sites.google.com/site/eargram/download. 
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musical structures. Spectral music has evolved tremendously since then and today it 

exhibits a certain flexibility of style that transcends a dogmatic compositional belief 

system (Gainey, 2009). Since the early adopters of the seventies, many composers, such as 

Jonathan Harvey and Kaija Saariaho, have adopted, explored, and expanded the scope of 

action of spectral materials.  

These days, spectral music is rather understood as “music in which timbre is an 

important element of structure or musical language” (Reigle, 2008). In fact, as Grisey 

notes “spectralism is not a system… like serial music or even tonal music. It's an attitude. 

It considers sounds, not as dead objects that you can easily and arbitrarily permutate in 

all directions, but as being like living objects with a birth, lifetime and death” (as cited in 

Hamilton, 2003). Ultimately, what composers associated with spectral music share is a 

“belief that music is ultimately sound evolving in time” (Fineberg, 2000, p. 1). Therefore, 

what is central in the attitude of a spectral composer is the desire to formalize 

compositional systems based on the structure of sound. Music in this context is rather seen 

as color, timbres sculpted in time, or a general phenomenon of sound (Fineberg, 2000). 

The idea of composing music in which pitch and duration are not the primary elements 

of musical structure is an important idea behind earGram, which encompasses systematic 

approaches to explore various dimensions of timbre. However, as Trevor Wishart 

remarkably articulates, we should be aware that timbre is a “catch-all term for those 

aspects of sound not included in pitch and duration. Of no value to the sound composer” 

(Wishart, 1994, p. 135). To overcome the multidimensionality of timbre and allow its use 

in composition as a musical construct, earGram fragments this sonic attribute in many 

descriptors. For example, earGram allows the creation of ordered timbres and aggregates 

of sounds according to sound noisiness—a strategy explored in “spectral compositions” 

such as Murail’s Désintégrations (1982) and Saariaho’s Verblendungen (1984). Another 

strategy implemented in earGram is the possibility to organize audio units according to 

psychoacoustic models, namely the use of sensory dissonance, as utilized in the opening 
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section of Grisey’s Jour, Contre-Jour (1979).  

While addressing the specificity of timbre in sound-based compositions, Trevor Wishart 

(1994) articulates a related topic of seminal importance here. Wishart suggests that 

composers should focus on the exploration of the idiosyncratic possibilities offered by the 

new means of musical production such as synthesizers and the ever-increasing number of 

human-computer interfaces for music production that are presented every year in 

conferences such as the International Conference on New Interfaces for Musical Expression 

(NIME). I pay particular attention to the use of sound parameters dynamically, rather than 

discrete pitches and fixed durations and dynamics, which are highly attached to the 

paradigm of traditional Western musical creation for acoustic instruments. 

Below, after pointing to the use of spectral music—and particularly the use of timbre—

in my current work, I will analyze a strategy that organizes both lower and higher layers of 

musical structure by (pre-established) musical processes. 

 

5.1.6 - Music as a Process  

 

Another compositional principle that has been extensively explored in earGram is the 

idea of music as a result of pre-established processes that exclude the need for a detailed 

note-to-note or sound-to-sound realization. Algorithmic composition falls into this 

category because algorithms must be expressed as a finite list of well-defined instructions, 

which in its turn “compose” the score or the aural result of the piece. However, it is not 

my purpose to discuss in this section the use of algorithms in composition. Instead, I focus 

on the stylistic features resulting from those approaches. 

The term “musical process” is fairly indeterminate in meaning. Erik Christensen (2004) 

offers a categorization that may help grasp the essence of the term as discussed here, 

contributing to the term’s clarification. Christensen establishes two categories of musical 

processes: transformative and generative, which, despite the lack of reference, alludes to 
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Robert Rowe’s (1993) taxonomy of interactive music systems’ responses. 

Transformative musical processes determine all the note-to-note or sound-to-sound 

details of the composition and the overall form simultaneously by applying various 

transformations to musical material (Reich, 1968). The performance of musical pieces 

based on transformative musical processes commonly presents to the listener the genesis 

of the process.  

In this category we find composers such as Steve Reich and Alvin Lucier. Steve Reich’s 

first process compositions were based on tape loops played in two tape recorders out of 

synchronization with each other, a technique named phase shifting, which produces 

unforeseen rhythmic patterns. Phase shifting was initially explored in his compositions It’s 

Gonna Rain (1965) and Come Out (1966). The same technique was later transferred to live 

instrumental compositions in Reed Phase (1966), Piano Phase (1967), and Violin Phase 

(1967). Lucier’s I’m Sitting in a Room (1969) is another example of such an approach. 

Lucier explores a cyclic repetition of an initially spoken sentence, which is later processed 

over and over through a recording and diffusion mechanism, altering the nature of the 

initial signal to the level of rhythmic recognition. 

John Cage, Earl Brown, Morton Feldman, and musicians associated with practices such 

as free improvisation and indeterminacy, work with musical processes that fall into the 

second category. A clear example of such approach is John Cage’s use of the I Ching, an 

ancient Chinese book, in combination with chance operations to devise musical 

parameters. Cage also used the imperfections in a sheet of paper to determine elements 

of a musical score, namely pitches. This last technique was greatly explored in Music for 

Piano (1952–1962).  

A seminal distinction between the musical pieces of this group in relation to those of 

the first is that the compositional processes cannot be heard when the piece is 

performed—the musical processes and the sounding music have no audible connection. 

Also, contrary to the first approach, which eliminates any possibility of improvisation, this 
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category extends the role of the interpreter to a high degree of interference in the 

creative process, because many elements of musical structure remain undetermined.  

The musical processes explored in this study are mainly, but not exclusively, located in 

the second category, that is, generative and rule-based. However, with very few 

adjustments, the system may be adapted to incorporate other techniques, including 

transformative ones. The raw material that is manipulated relies on existing audio 

sources. Therefore, the final aspect that I would like to focus on is the aesthetic 

implications of using pre-recorded material in the compositional design, particularly the 

appropriation of musical works. 

 

5.1.7 - Appropriation as a Musical Concept  

 

The use of existing musical material as a basis for a new composition dates back to 

ancient times and cannot be fully detailed here because it goes beyond the core subject 

of this dissertation. However, I will provide a general overview of the subject because the 

aesthetics behind this attitude are present in earGram’s compositional design. The 

appropriation of musical material as a composition prerogative is as old as polyphony. The 

practice was mainly explored in two different ways: (1) by composers that refer to their 

previous works, and (2) composers that base parts of their works on material from others. 

When composers integrate material from others’ music in their compositions, they usually 

refer to contemporaries affiliated stylistically  (Griffiths, 1981).  

Between the 12th and 15th centuries, composers frequently used pre-existent melodies 

as a base for new compositions, particularly in motets. These melodies, named Cantus 

Firmus, were usually taken from Gregorian chants, and generally presented in long notes 

against a more quickly moving texture (Burkholder, 1983). Another significant example of 

music appropriation occurs between 17th and 18th centuries amongst the numerous 
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composers of Bach’s family legacy (Geiringer, 1950).24 

Until the 20th century, composers who integrated pre-existing music into their pieces 

adapted the material to their idiom, and their compositions maintained a sense of stylistic 

unity. Contrarily, appropriation in the 20th century shifted towards the use of “ready-

made” musical material that “clashes with the prevailing style of the original piece, 

rather than conforming to it” (Leung, 2008). The neoclassical works of Igor Stravinsky, 

such as Pulcinella (1920) and The Fairy’s Kiss (1928), are remarkable examples of 

compositions in which Stravinsky reworked upon a borrowed material. Stravinsky does not 

appropriate for increasing his own expressivity, but rather for expressing his view of the 

past (Leung, 2008). 

The idea of “ready-made” or collage is even more present in the works of Charles Ives 

and George Crumb. In Central Park in the Dark (1906) and The Fourth of July, the third 

movement of A Symphony: New England Holidays (1897-1913), Ives presents to the listener 

a complex interaction between his “imaginary present” and “memorable past.” Ives 

commonly refers to the past by quoting his childhood tunes (Leung, 2008). Crumb 

appropriates musical material from others by literally quoting the material in his 

compositions. In Crumb’s compositions appropriated musical materials cohabit 

independently, integrating and overlaying uneven aesthetics. A remarkable example of 

Crumb’s use of appropriation can be found in Night Spell I, the sixth piece in Makrokosmos 

(1972-1973).25  

Another notable example of music appropriation in the 20th century, which cannot 

remain unmentioned is the third movement of Berio’s Symphony (1969) for eight singers 

and orchestra, which was entirely conceived as a tapestry of quotes from various works by 

the following composers: Bach, Beethoven, Brahms, Mahler, Debussy, Ravel, Strauss, 

Stravinsky, Schoenberg, Berg, Stockhausen, Boulez, and even early works by Berio himself 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
24 Please refer to Burkholder (1983) and Leung (2008) for a comprehensive review of appropriation techniques 
in early Western music. 
25 For a deeper review on appropriation techniques used by 20th century composers please refer to J. Peter 
Burkholder (1983, 1994), who systematically outlines a large set of “borrowing” techniques found in music 
with a particular emphasis on the musical pieces of Charles Ives. 
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(Altmann, 1977). 

From the 1940s onwards, the practice of appropriation became popular due to 

technological advances that allowed musicians to record, manipulate and playback audio 

by electronic means. The gradual massification of music technology tools—in particular 

the sampler—since the 1940s, provoked an aesthetic shift from an early historical phase 

designated as acousmatic to a later stage addressed commonly as sampling culture 

(Waters, 2000). While the first relies mostly in self-referential matter and on the listening 

experience, the second relies on musical and cultural referential contexts, notably by 

incorporating and reutilizing pre-existing music recordings data to convey new means of 

expression (Waters, 2000). As I mentioned earlier, the sampling technique relies on 

existing recordings and is therefore related to the concept of appropriation as a 

compositional principle. In fact, it is only in the second half of the 20th century that the 

term appropriation became a musical concept (Landy, 2007). 

The first example of an electronic music composition entirely based of borrowed audio 

material is James Tenney’s 1961 composition Collage #1 (Blue Suede) (Cutler, 2004). In 

this composition, Tenney recombines and manipulates sound material from Elvis Presley’s 

song Blue Suede Shoes. Two additional early examples of compositions that explicitly 

expose the technique of appropriation are Bernard Parmegiani’s Pop'eclectic (1968) and 

Du pop à l'âne (1969). These tracks were created as tapestries of mostly late 1960s pop 

records, and assembled with unique and significant relationships between sonorities, 

genres, and cultural contexts by transitioning seamlessly between small samples. Tenney’s 

and Parmegiani’s works also question the distinction between low art and high art 

sometimes also referred to as popular music and art music. Since then the differences 

between these categories have become less prominent (Emmerson, 2001; Landy, 2007). 

Another proponent of appropriation in electronic music who explores this overlap between 

low art and high art is John Oswald.  His 1988 CD named Plunderphonic (Oswald, 2001), 

demonstrates an unusually broad eclecticism by plundering, recombining, and 
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decontextualizing music from Ludwig van Beethoven to the Beatles.26 

The practice of appropriation is even more evident in popular music, namely after the 

emergence of affordable technology such as the sampler, which was and still is a huge 

catalyst of the technique. Many concepts are associated with appropriation and expose 

similar or overlapping approaches, such as sampling, remix, collage, mashup, cutups, cut 

& paste, blend, crossover, plunderphonics, etc. All of these terms are highly associated 

with popular music, and in particular with practices and styles such as Hip-hop, Rap, and 

DJing. 

The idea of appropriation has been explored in many other fields, which to a certain 

extent have also influenced many contemporary composers. The idea of appropriation is 

particularly present in the visual arts. The collages of George Braque and Pablo Picasso, 

and the ready-mades from the artists associated with the Dada movement are clear 

examples of such. In literature, an exponent of the cut-up technique, that is, a literary 

technique in which a text is cut up and rearranged to create a new text is the American 

writer William Burroughs. In philosophy, I may cite Mikhail Bakhtin, in particular his 

concept of dialogisms, which has been acknowledge and followed by Julia Kristeva in her 

intertextual theory (Kristeva, 1969). 

The system developed here embraces the idea of appropriation by recombining user-

assigned sounds. In comparison with most CSS systems, earGram uses relatively larger 

sound segments, whose source is easily recognizable after recombination. Therefore, the 

resulting music can be seen to a certain extent as a remix or variation of the audio 

source(s). In addition, if one uses a corpus that comprises sound objects from audio 

sources with distinct styles, origins, or aesthetics, one may not only recombine sound 

objects according to morphological features, but also drawing upon the cultural 

associations of the original pieces. 

A final note should be paid to the relation between copyright laws and the practice of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
26 Please refer to Oswald (1986), Holm-Hudson (1997), and Cutler (2004) for an historical and conceptual 
overview of Oswald’s work.  
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appropriation. As Simon Waters (2000) points, sampling embeds an ambiguous relation 

between ownership and authorship. The practice of appropriation raises many problems 

concerning copyright infringements. I will not unpack the topic here, because it is not of 

primary importance to my dissertation. However, the reader may refer to Bob Sturm 

(2006a) for a legal discussion on the subject within the scope of sound synthesis, and 

Lawrence Lessig (2008, 2004, 2001) for a general take on the subject. 

Having situated earGram historically and aesthetically, I will narrow my perspective to 

the practical implications of the various technical and conceptual issues raised in this 

chapter. In order to do so, I will first discuss design strategies for musical composition (§ 

5.2), which will then be examined from an algorithmic perspective (§ 5.3) and more 

precisely in the devised framework (§ 5.4).  

 

5.2 – Design Strategies for Musical Composition  

 

As Gottfried Koenig (1978) points out, it is interesting to note that the concept of 

musical composition relates to both the act of producing a score or a fixed media work, 

and to the result of that process. While the concept can be seen as definite in terms of 

the resulting product, it says nothing with regard to the creative process. It is important 

to understand the creative process, however, in order to be able to encode it 

algorithmically (or at least partially) and ultimately generate some coherent musical 

results. 

A crucial feature of any computational system that intends to automate the processes 

of music creation is the need to algorithmically encode some creative features that are 

inherent to human activity. However, creativity is an extremely difficult concept to 

circumscribe in a strict definition, in particular because there is a lack of understanding of 

how our creative mechanisms fully work (Taylor, 1988; Csikszentmihalyi, 2009). Even 

though computer programs seem to oppose to the idea of limitless originality, they also 
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offer potentialities that are hardly achieved by humans. Computers can actively 

contribute to the development of new creative practices and promote interesting 

discussions concerning artificial creativity.  

Composing can be seen as a decision-making process. Many choices have to be made 

during the creation of a musical piece, from high-level attributes such as instrumentation 

to low-level elements, such as pitches and durations. Musical composition design and 

practice commonly require one of three distinct approaches: (1) top-down, (2) bottom-up, 

or (3) the combination of both (Roads, 2001). 

A top-down approach to musical composition starts by developing and formulating the 

macrostructure of the work as a predetermined plan or template, whose details or lower-

level formulation are elaborated at later stages of the composition process. All time scales 

below the macrostructure are considered and refined in greater detail according to the 

initial plan, until the most basic elements of the structure are elaborated. In Western 

music, this compositional strategy has been extensively adopted from the 17th to the late 

19th centuries, especially because during this historical period the form or macrostructure 

of the works was mainly confined to a limited number of options (Apel, 1972), such as the 

sonata form, the rondo, and the fugue. Many music theory textbooks catalog the generic 

classical forms (Bennett, 1981), whose widespread use enters into a decadent phase at the 

turn of the 20th century. 

By contrast, a bottom-up approach conceives the musical form as the result of a 

process. The macrostructure is the consequence of the development of small-scale ideas 

or provoked by the interaction of the lower levels of musical structure. Roads (2001) 

mentions serialism as a paradigmatic example of a bottom-up musical compositional 

technique, in particular the permutations resulting from applying the inversion or 

retrograde operations. Bottom-up compositional strategies may also be found in electronic 

music in processes such as time-expanding a sound fragment into evolving “sound 

masses.” These examples create an apparent line between different historical periods. 
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Top-down approaches were assigned to musical compositional practices before the 20th 

century and bottom-up strategies from the 20th century onwards. Although some 

generalization may be made in this regard, the implied distinction is not entirely true. Not 

only has the musical form evolved continuously from the 17th to the 19th centuries, but 

also in contemporary music the older forms remain present. This is not to say that the use 

of preconceived forms has died. The practice of top-down strategies in contemporary 

music still subsists (Roads, 2001), even if in most cases it does not apply to known forms. 

The compositional process may also incorporate both top-down and bottom-up 

approaches. In the case of what I call the hybrid approach, the composition is the result of 

a constant negotiation between its low- and high-hierarchical layers, which are drawn 

simultaneously. 

In electronic music the creative process is not dissimilar from traditional instrumental 

composition concerning the various levels of decision-making. However, it is possible to 

point to a clear difference between the two practices, which are related to the nature 

and idiosyncrasies of the raw material used. While instrumental music departs from an 

abstract to a concrete realization, electronic music commonly starts from concrete sounds 

(or synthesis methods) to an abstract level. Therefore, in electronic music the act of 

composing involves the need to define the elementary units of the composition, that is, 

the sounds themselves. As Koenig notes “electronic sounds or graphic symbols are not 

always additions to composition; they are often ‘composed’ themselves, i.e., put together 

according to aspects which are valid for actual composing” (Koenig, 1978). Koenig’s 

statement articulates a fundamental aspect of electronic music compositional processes, 

which must also be taken into consideration in CSS during the choice of the audio 

source(s) and segmentation strategies. The synthesis quality of earGram is not only 

dependent on the characteristics of its database, but also on the algorithmic composition 

strategies for unit selection. 
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5.3 - Algorithmic Composition 

 

Algorithmic composition is the term used to describe “a sequence (set) of rules 

(instructions, operations) for solving (accomplishing) a [particular] problem (task) [in a 

finite number of steps] of combining musical parts (things, elements) into a whole 

(composition)” (Cope, 1993). David Cope’s definition of algorithmic composition is one of 

the broadest and most concise descriptions of the field, especially because it does not 

imply any means of production. It not only encompasses the various historic periods that 

presented work in this domain, but also restricts its modus operandi to a set of specific 

and clear procedures. The definition comprises two parts. The first part addresses the 

general definition of algorithm (Knuth, 1968; Stone, 1972) and the second part restricts 

the target object of the algorithm problem-solving strategy to the music domain. For 

Cope, music is defined as an activity that groups musical elements into a whole 

composition. 

When designing an algorithmic work, the role of the composer is significantly different 

from the attitude undertaken in traditional Western compositional approaches. Heinrich 

Taube (2004) refers to this role as a new compositional paradigm. While creating an 

algorithmic composition, the composer works on a meta-level because instead of outlining 

a piece by stating musical events notation or soundwise, he/she designs a model which in 

turn generates the work. 

An algorithm, within this domain, constitutes a well-defined set of instructions that 

define and control particular aspects of the composition. The algorithm must effectively 

provide a finite number of states and their interaction. However, it does not necessarily 

convey deterministic results. Algorithms for music composition are commonly initialized 

by data that alters its behavior, and consequently its outcome. 
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5.3.1 – Algorithmic Composition Approaches  

 

The earliest experiments on algorithmic composition are commonly traced back to the 

11th century (Roads, 1996). Apart from their historic importance, algorithmic music 

composed before the mid 20th century constitutes isolated experiments with minor 

significance to the music field. Algorithmic composition establishes itself as a field in its 

own right in the late 1950s by integrating the power of digital computers in the design of 

algorithms to assist the generation of musical works.27  

Early approaches to CAAC—by Lejaren Hiller, Leonard Isaacson, Isacson, Iannis Xenakis, 

and Gottfried Koenig—have established the basis of the practice according to the following 

two major approaches: (1) generative models of music for style imitation and (2) 

generative models of music for genuine composition.28 Several composers and researchers 

have further research in CAAC according to these two major trends. 

The first line of research, whereby generative models of music for style imitation, 

follows the early experiments of Hiller, Isacson, and Koenig—in particular the 

formalization of principles from music theory or the emulation of a particular style, 

composer, or body of works. There are two approaches to generative models for style 

imitation: (1) knowledge engineering, in which the generation is guided by rules and 

constraints encoded in some logic or grammar, and (2) empirical induction, in which the 

generation relies on statistical models resultant from the analysis of existing compositions 

(Conklin & Witten, 1995). 

Some of the topics that have been continuously revisited within the knowledge 

engineering approach to generative models of music for style imitation are: the generation 

of species counterpoint (Ovans & Davidson, 1992; Farbood & Schoner, 2001); functional 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
27 For a comprehensive review of the history of CAAC please refer to Nierhaus (2009) and Ariza (2005). 
28 The concept of genuine compositions establishes a distinction between approaches to music composition, 
whose starting point for a work focus rather on idiomatic approaches that a clear desire to imitate the style of 
a particular composer, work(s), period, etc. The concept does not intend to raise aesthetic questions related 
to the originality and/or validity of a work, or even its definition as art. I am only concerned with 
distinguishing an attitude towards the act of composing. 
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harmony as used in Western music from the 17th to 19th centuries (Pachet & Roy, 2001); 

the automatic generation of rhythmic events, namely in the context of interactive music 

systems (Eigenfeldt, 2009; Bernardes, Guedes, & Pennycook, 2010; Sioros & Guedes, 

2011); and the exploration of serial music operations (Essl, 1995; Ariza, 2004). Concerning 

the empirical induction methods to generative models of music for style imitation one may 

highlight the work of David Cope (1993, 1996, 2001). Cope (1996) extensively used 

transition networks to create representations of musical data extracted from one or more 

compositions. These representations allow the automatic generation of new pieces that 

resemble the style of analyzed compositions. 

The second line of research in algorithmic composition—genuine compositions— applies 

techniques that are commonly inspired by models outside of music, or formulated from 

scratch. This research line is grounded in the early algorithmic music experiments carried 

out by Xenakis, Hiller, and Isacson. The adoption of terminology, concepts, and algorithms 

from disciplines outside the music domain, in particular from biology, became popular in 

this domain from the 1980s onwards. Typical examples of such strategies are cellular 

automata (Beyls, 1989; Miranda, 2001), chaos attractors (Pressing, 1988; Bidlack, 1992; 

Leach & Fitch, 1995), Lindenmayer systems (Prusinkiewicz, 1986; DuBois, 2003), and 

artificial neural networks (Hild, Feulner, & Menzel, 1992; Mozer, 1994).  

Current commercial digital audio workstations, such as (Magic) Garageband29, Ableton 

Live30, and in particular the programming environments for interactive music creation, 

such as Open Music,31 Max/MSP,32 Pure Data,33 and PWGL34 provide a large set of tools for 

the exploration of CAAC techniques. 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
29 http://www.apple.com/ilife/garageband/. 
30 https://www.ableton.com/en/live/. 
31 http://repmus.ircam.fr/openmusic/home. 
32 http://cycling74.com/products/max/. 
33 http://puredata.info/.  
34 http://www2.siba.fi/PWGL/. 
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5.4 – Computational Life Cycle of Music: An Analysis-Synthesis 

Approach 

 

In this section, I establish a link between the previous sections of this chapter, which 

provide theoretical and practical foundations of composition, and the generative music 

strategies developed to recombine sound objects. I will start by describing the 

architecture of the framework developed here, and conclude by detailing the interaction 

between the two major modules of the framework (i.e., analysis and composition) and 

how they determine compositional strategies. 

The proposed framework can be summarized and characterized by a compound word: 

analysis-synthesis. Analysis-synthesis defines two complementary procedures that were 

addressed in two distinct parts of this dissertation. The first is rather analytical, and its 

aim is threefold: (1) decomposing the audio continuum into elementary units, (2) 

describing the content of the audio units, and (3) modeling and depicting the higher 

structural levels of the audio source(s). The counterparts of these operations are the 

generative aspects of the framework. Both modules examine the same time scales, but 

assume an inverse or complementary path. While analysis deconstructs the audio 

continuum from lower to higher elements of musical structure, the composition module 

recombines the units using algorithmic strategies, from the higher to the lower levels of 

musical structure. 

The proposed framework can be placed along the axis between automatic music 

generation and assisted-algorithmic composition, merged in the concept of CAAC. 

Additionally, the generative strategies implemented in the framework are not exclusively 

focused on style imitation or genuine algorithmic strategies, but rather on a hybrid 

combination of these. As a matter of fact, in addition to a consistent description of all 

audio units, the analytical module goes as far as modeling individual elements of the audio 

source(s) structure, which can be used to automate parameters of the generated music. 
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Therefore, earGram does not create a comprehensive representation of the audio 

source(s) entire dimension or their inter-relationships. 

 

Figure 5.1 – Relationship between the components of the analysis and composition 

modules of the framework. 

 

The diagram depicted in Figure 5.1 not only exposes and summarizes the 

complementarity of the analysis and generation blocks, but also reveals another 

particularity that was planned while designing the framework. It is possible to draw an 

inverse relation between all constituent blocks that compose the two major modules of 

the framework. Even if the two modules have quite distinct goals, they have a unifying 

feature: both organize its various operations according to hierarchical layers of musical 

structure. The links are established between the various analyzed time scales and the 

hierarchical levels of the composition process. For each analyzed time scale there is a 

correspondent task that imposes constraints in the selection process of the generative 

algorithms. Parallels can be established between the time scales of the analytical module 

and the hierarchical structure of the composition module (see Figure 5.1).  

The following four parallels may be established between the two modules (with the 

path of the composition module as a primary reference): (1) definition of a sound corpus, 

or various sub-spaces of the corpus to the macro-level analysis provided by the 

macro	  
meso	  
sound	  object	  
sample	  

sound	  corpus	  
target	  phrases	  
selection	  
synthesis	  

AN
AL
YS
IS
	  

COM
POSITION

	  



	  
	  

124	  

visualization strategies, clustering algorithms, or key-induction algorithm; (2) the 

definition of target phrases has its parallel with the meso structure of the audio source(s); 

(3) the algorithmic selection procedures work at the same level as the description scheme 

devised to characterize the units of the corpus and the similarity computation measures; 

and (4) synthesis, the last module of the composition chain, has a parallel with the sample 

time scale, because both constitute the most extreme elements of musical structure 

considered here and correspond to the departing and final matter of the system. All these 

relationships will be better understood when examined in a practical application in the 

next chapter. 
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Chapter 6 

 

Content-Based Algorithmic-Assisted Audio 

Composition 

In the current chapter, I detail the strategies for generating music in earGram. I start 

by focusing on methods for “composing” a corpus of units and their organization into 

larger sections (§ 6.1). Next, I focus on the low-level aspects of the generation and 

describe the following four generative music strategies (also addressed as playing modes 

or recombination methods) that function as unit selection algorithms in earGram: (1) 

spaceMap, (2) soundscapeMap, (3) shuffMeter, and (4) infiniteMode. I organized the four 

playing modes into three sections corresponding to the types of generative strategies 

applied: (1) micro-time sound design (§ 6.2); and generative models for style imitation 

based on, (2) knowledge engineering (§ 6.3), and (3) empirical induction (§ 6.4). 

The chapter ends by detailing the methods implemented in earGram for synthesizing 

sequences of audio units selected by the generative methods (§ 6.5), and describing 
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musical compositions created almost exclusively by earGram (§ 6.6). For each generative 

strategy, I created several sound examples that not only demonstrate individual features 

of the software, but also the full creative potential of each of the generative strategies. 

The numbered sound examples referred throughout the chapter can be found in the 

accompanying CD. The reader is also invited to explore earGram—provided in the 

accompanying CD—in order to understand the musical results produced by each of the 

generative strategies. 

 

6.1 – Composing a Corpus of Sound Units 

 

The need to create the elementary units of the composition in electronic music 

practices is of utmost importance in the compositional process, and may be seen as similar 

to the choice of instrumentation in acoustic instrumental compositional approaches. 

In earGram, the elementary (audio) units that compose the corpus result from a rather 

automatic operation. However, the user is not only responsible for choosing the audio 

source(s) from which the units are devised, but also for setting important parameters that 

guide the type of units adopted. These two elements have tremendous implications in the 

synthesis quality and should be defined according to the target characteristics and/or the 

application context. The audio sources constitute the raw audio data that is concatenated 

at the final stage of the algorithm, and the segmentation strategy imposes severe 

constraints in the creative and technical possibilities of the algorithm, such as the balance 

between the identification of audio source and the target phrase, and the computational 

costs associated with the use of shorter audio units. In sum, the user must consider three 

fundamental properties while creating the corpus: (1) the characteristics of the audio 

source(s), (2) the application context, and (3) the duration of the units. 

Despite earGram’s design as an “agnostic” music system that processes any type of 

digitized music, regardless of genre or style, the user must be aware that in order to 
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synthesize a soundscape composed of environmental sound sources, one should not rely on 

collections of units segmented on a beat basis with a strong sense of pulse. To impose 

limits or define fixed solutions in creative contexts may be an inconsiderate option; 

nonetheless, for the sake of clarity, I will pinpoint certain directions and association 

between application contexts and preferable segmentation strategies. 

A possible distinction can be established between playing modes that are meant to 

work with units that were segmented according to a found pulse and more irregular non-

uniform units. The playing modes spaceMap and soundscapeMap can be assigned to the 

last category, the playing mode shuffMeter to the first category, and finally the playing 

mode infiniteMode to both categories. In sum, the two types of units can be associated 

with the following two application domains: (1) (polyphonic) music with a strong sense of 

pulse and (2) soundscapes. 

Unit duration is another parameter in CSS that has tremendous implications in the 

quality of the synthesis, in terms of regulating the identification of the source(s) in the 

synthesized signal. Concisely, unit duration is proportionally inverse to the identification 

of the audio source(s). While units with longer duration tend to preserve the acoustic 

identity of the source(s), units with smaller duration tend to emphasize the identity of the 

target. In earGram, the units’ duration is confined to sound objects, which offer a strong 

identity of the audio source(s) in the synthesized output of the system. This particular 

feature is of utmost importance in earGram because the target phrases are commonly 

defined according to features extracted from the audio source(s). Therefore, the system’s 

output focuses to a large degree in the generation of audio source “variations,” by 

preserving the morphology of the source and its sonic identity. 

The audio units’ duration can also be related to the quality of the units’ descriptions. 

The descriptions of shorter units also tend to be more accurate in comparison with longer 

units. The descriptions of longer units may sometimes provide crude, erroneous, or 

inaccurate descriptions because they often reduce successive analysis windows to single 
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values. However, the adoption of longer units tends to synthesize signals with greater 

naturalness, because there are less concatenation points. In earGram, the accuracy of the 

units’ descriptions reduce significantly the audio signal data to a minimal representation, 

but still provide valuable information for the musicians who want to manipulate them, as 

verified in the generative musical strategies present in earGram and detailed in the next 

sections. Concerning the concatenation points, the segmentation strategies adopted in 

earGram—onset detection and beat tracking—provide a greater degree of naturalness in 

the recombination/concatenation phase of the system. 

Two other technical implications should be considered when defining a segmentation 

strategy, which may impose changes in the units’ duration: (1) the computational cost 

involved, and (2) the amount of memory required. EarGram has reduced computational 

costs due to the relatively large duration of the audio units on both the analysis and 

selection phases of the system, allowing faster matches. The preferred use of sound 

objects over audio units with smaller duration also requires less memory space to store 

the units’ content analysis.  

A final note should be made in regards to the descriptions used to characterize audio 

units and its suitability for two application contexts described. In order to describe the 

audio units’ content, earGram adopts the description scheme detailed earlier (§ 3.4). The 

use of musicological studies grounded in the principle of reduced listening to devise a 

description scheme allows the characterization of the totality of sounds perceivable by 

humans disregarding its causes, genre, stylistic idiosyncrasies, or means of production. 

The descriptors only reveal abstract characteristics of sound objects and are consistent for 

describing any audio units within the sound object time scale. The resultant descriptions 

also allow the comparison between non-uniform audio units with consistency. Therefore, 

one needs only to focus on the suitability of the audio source(s) and their segmentation 

strategy to the application context—disregarding the choice of appropriate descriptions 

adapted to the nature of the audio source(s). 
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6.1.1 – Planning the Macrostructure 

 

I designed earGram with an awareness of some CAAC limitations, particularly the 

difficulty of organizing the higher layers of musical structure. Style imitation algorithms, 

for instance, tend to be very efficient in the generation of musical results that resemble 

the original data on a moment-to-moment basis. However, the output of such stochastic 

processes tends to fail at emulating the higher layers of musical structure 

(Cambouropoulos, 1994; Jacob, 1996). In this section, I propose an intermediary solution 

to generate longer pieces with consistency that minimizes the drawbacks of applying CAAC 

by providing some tools that may guide the user. 

In order to provide some control over the higher layers of musical structure, I adopt a 

technique that resembles the type of low-level decisions in CSS. The strategy is based on 

selection procedures. The user has the possibility to constrain the corpus to sub-spaces 

that can be easily chosen and interchanged during performance. Therefore, the user has 

not only real-time control of the target definition, but also of the sub-spaces defined in 

advance. 

The sub-spaces in earGram need to be manually assigned prior to performance. 

However, the system provides useful information, notably visualizations of the corpus that 

can guide the definition of corpus sub-spaces. An example of such is the possibility to 

interactively draw sub-spaces on top of the self-similarity matrix visualization (see Figure 

6.1). In addition, the decision process can become virtually automatic when combining 

visualization strategies with the implemented clustering algorithms. In that case, the user 

merely needs to map the automatically created clusters to sub-spaces. 
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Figure 6.1 - Three sub-spaces of the corpus defined on top of self-similarity matrix 

visualization. 

 

A more refined strategy for constraining the corpus is to assign limits to the set of 

available descriptors in the corpus (the constraints can be specified in the interface shown 

in Figure 6.2). By reducing the descriptors’ range, some units may be excluded from the 

corpus. An interesting use of this tool is to regulate parameters that are not considered in 

the generation of new sequences. For example, if the target phrase of the generative 

strategy considers only the units’ loudness, it is possible to regulate the use of very noisy 

sounds by constricting the noisiness descriptor to a narrow band. It is important to note 

that the results differ when the two descriptors are specified in the target. 

 

Figure 6.2 - Software interface that allows a user to constrain the corpus in earGram. 
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The presented solutions for organizing the higher structural layers of the generated 

music result from my motivation to design software with which I am able to play in 

musical contexts outside of the lab, but do not solve the essence of the problem. It is also 

important to bear in mind that in order to create relevant artistic results more research in 

CAAC is necessary (Jacob, 1996), namely to solve the problem of the organization of the 

meso and macro structures of generated music.  

As David Cope (1984) notes, Hiller's early CAAC experiments lack artistic success. 

However, these early experiments in algorithmic composition and their later impact in the 

work of many researchers/composers significantly increased our conception of music, 

namely by allowing us to test different compositional theories and redesign their modus 

operandi. Therefore, these experiments are intellectually stimulating, and time will tell 

whether or not they established the ground for the development of relevant artistic 

output.  

After addressing the organization of the higher structural layers of the generated music 

in earGram, I will detail four unit selection algorithms—spaceMap, soundscapeMap (§ 6.2); 

shuffMeter (§ 6.3); and infiniteMode (§ 6.4)—that automatically generate unit sequences 

(low-level elements of musical structure) according to pre-defined algorithms. 

 

6.2 - Micro-Time Sonic Design: SpaceMap and SoundscapeMap 

 

The first two playing modes, spaceMap and soundscapeMap, are addressed together 

because they share many features. The most distinctive among these common features are 

how they synthesize sound masses with variable density, and how they use a navigable 

graphical interface to define targets. This last feature is expressed in the names of the 

modes by the suffix “–Map.” 

Both strategies can be seen as extended granular synthesizers with an extra layer of 

control over the acoustic results. This refined control over the synthesis is driven by the 
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organized representation of the units in the descriptor space, which allows the creation of 

sonic textures with highly controllable nuances. Although the idea of variable densities 

may be contrary to the very concept of concatenation, simultaneous events have been 

extensively explored in CSS literature (Hackbarth et al., 2010, 2013; Schwarz, 2012). The 

outcome of these two modes can reach a dense “cloud of sounds” as a result of an 

arbitrary number of overlapping units and explore processes such as coalescence (cloud 

formation), and evaporation (cloud disintegration) in sonic form. 

The title of this section is partially borrowed from Agostino Di Scipio’s 2009 article in 

the Contemporary Music Review, and denotes an application context and a preferable 

music time scale that I consider in relation to these two playing modes. In “Micro-Time 

Sonic Design and Timbre Formation”, Di Scipio (2009) outlines a particular approach to 

composition, in which the formation of musical structures emerges from the assemblage of 

micro-level units driven by microstructural processes. I direct particular focus to the 

notion of timbre as the primary element of musical structure, which fosters a 

transformation of compositional paradigm (Di Scipio, 2009). 

SpaceMap and soundscapeMap are particularly adapted to musical practices or 

applications such as sound design for movies, video games, or installations, because they 

provide a useful set of tools to explore soundscapes whose behavior may be dynamically 

changed according to input data. 

 

6.2.1 - SpaceMap 

 

SpaceMap synthesizes spatial trajectories defined by navigating in a 2D-plot 

representation of the corpus (see Figure 4.3). Besides the creative potential of this target 

definition, spaceMap also allows an intuitive exploration of the corpus, which may be of 

primary importance when dealing with unknown audio sources. The technique has been 

greatly explored in CSS, in particular by Diemo Schwarz (Schwarz et al., 2008; Schwarz, 
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2012). I extend similar approaches to spaceMap in two aspects. The first aspect is related 

to the strategies used for plotting a corpus of sound units adapted to musical composition 

imperatives. The second aspect is the incorporation of tendency masks, a CAAC strategy, 

in the algorithmic chain. While the first aspect has already been addressed, the adoption 

of tendency masks exposes a major concern of my research: how to extend known CAAC 

strategies towards the adoption of audio-content descriptions, and will be extensively 

detailed in this section. I will mainly focus on how tendency masks may help enhance 

expressive phrasing, mostly by allowing a larger degree of freedom in the target 

definition. 

The interface of spaceMap is a two-dimensional plane whose axes may be assigned to 

any of the descriptors (or any combination of them) from the description scheme. This 

representation corresponds to a visualization strategy named sound-space (§ 4.4.1). The 

visual representation of the corpus is the point of departure for defining targets in the 

descriptor space as spatial trajectories. While small movements synthesize similar-

sounding units, larger movements pick grains with greater sonic differences. The feature 

space is easily changed during performance by switching between four available presets. 

SpaceMap encompasses the following four modes of interaction to define spatial 

trajectories or targets, referred to in the software as trigger modes: (1) 

continuousPointer: continuously plays units at a user-defined rate according to the 

controller’s position on the interface; (2) pointerClick: follows the same method as point 

1, but the units are played in response to a controller command; (3) colorPicker: selects 

units based on RGB color values retrieved from a navigable color grid; and (4) liveInput: 

plays units at a user-defined rate and maps the pointer position to coordinates provided by 

the analysis of a live input source. Various controllers may steer the navigation and adopt 

most of the aforementioned trigger modes. The software implementation only adopts the 

mouse and audio signals as input controllers; however, with very few adjustments to the 

code, it is easy to implement any other controller with similar or higher degrees of 
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freedom. 

The target specifications of spaceMap are the coordinates of two-dimensional points, 

which represent the controller’s trajectory. For each of the target’s point, the unit 

selection algorithm retrieves its closest unit. A random degree of variability may be 

assigned to the target, which allows the creation of rich textures by slightly deviating 

around a point’s coordinates and also avoids the continuous repetition of the same units or 

the creation of undesired rhythmic patterns if the controller is stationary. The user may 

also specify a random degree of variability in the playing rate of the units of trigger modes 

1, 3, and 4.  

SpaceMap also allows the control of three other parameters in real-time: (1) 

amplitude, (2) pitch, and (3) spatial location. Similarly to the target specification and the 

playing rate, all aforementioned parameters may also adopt random degrees of variability. 

Despite the refined control the parameters offer over the synthesis, their manipulation 

during performance is highly limited because the user is already busy defining trajectories 

in the interface. To overcome this limitation the software allows the definition of 

automations for any of these parameters, which outline its evolution in time with fixed 

values or through the use of tendency masks. 

From a creative point of view, the implementation of random deviations in some 

parameters allows the creation of sonic variations of the same controller’s gesture, which 

can also be seen as a variation of a musical phrase. Sound example 1 demonstrates this 

strategy by synthesizing the same trajectory three times using the following pairs of 

features: (1) fundamental bass and spectral variability; (2) width and sensory dissonance; 

and (3) noisiness and loudness. 

Tendency masks are well-known strategies for the generation of musical structures 

that can be understood by their graphical representation. The use of tendency masks 

allows the user to define the direction of a parameters’ gesture, which is decided 

stochastically according to an assigned range. To regulate tendency masks the user defines 
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upper and lower limits at particular times. The tendency masks implemented in earGram 

allow the control of density, degree of random deviation from the pointer position, gain, 

pitch, and spatial position. The tendency masks can be specified in earGram by enlarging 

its range and changing the direction of the curve on the interface (shown in Figure 6.3). 

Each pixel corresponds to a user-assigned duration. Therefore, one can experiment with 

the same curves but in different time frames. In other words, the representation may be 

stretched while retaining the same characteristics.  

Tendency masks have been used in earGram to demonstrate how algorithmic strategies 

may assist the definition of targets in spaceMap. Many other CAACs, in particular methods 

commonly used in the manipulation of symbolic representations of music (such as cellular 

automata, fractals, and Lindenmayer systems) can be implemented in the framework for 

the same purpose as tendency masks. 

 

Figure 6.3 - Software interface that allows a user to specify the automation of several 

parameters of the playing mode spaceMap in earGram through the use of tendency 

masks. 

 

The software also allows the creation of several bus-channels that support the 

incorporation of audio effects or combinations of them (e.g. spectral morphing, flanger, 
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chorus, reverberation, filters, etc.). The units may be separately routed to different bus-

channels created in advance. 

 

6.2.2 – Playing with a Live Input Audio Signal 

 

SpaceMap is the only playing mode in earGram that can interact in real-time with a 

live input audio source. EarGram can process live audio signals in two different ways: (1) 

as a target (by translating the audio representation in a collection of audio descriptions); 

and (2) as a source to create the corpus. 

EarGram can synthesize target phrases as soon as the corpus comprises a reasonable 

number of units. As the earGram is synthesizing information from a live input source, the 

database is being created. In other words, earGram can simultaneously analyze a live 

input audio source and synthesize musical phrases by concatenating the audio units that 

are being created. This last approach is particularly suited to the practice of 

improvisation, because besides the automatic and meaningful segmentation of the live 

audio signal, the software organizes and plots the material on the screen, creating a 

“score” of the ongoing performance in real-time. 

The visual feedback is updated on every found unit. The units’ location on the screen 

is driven by the analysis of content according to a pre-defined descriptor space. The units’ 

color offers a representation of the original temporal sequence of the units from a scale 

that goes from cold to warm colors. 

The result from the collaboration between a live audio signal input and the computer 

response in an improvisation setup can be highly organic. An effective dialogue can be 

established between an ongoing performance and the computer response. 
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6.2.3 - SoundscapeMap 

 

I designed the playing mode soundscapeMap to preferably manipulate and synthesize 

soundscapes. Targets can be defined in a similar mode as spaceMap—that is, by navigating 

in a two-dimensional plane. However, the plane does not provide a representation of the 

corpus (as in spaceMap); instead, the user navigates in a “blank” plane whose axes are 

assigned to musical features that are relevant to control the synthesis of soundscapes (see 

Figure 6.4). A particularity of this playing mode is the possibility to organize the vertical 

dimension of musical structure (overlapping layers of units) by the psychoacoustic notion 

of sensory dissonance. SoundscapeMap distributes the corpus on a maneuverable squared 

space according to perceptual qualities of the audio units. The navigable space is divided 

into four regions arranged in pairs of variables (see Figure 6.4). The first set of variables 

controls the density of events, and the second controls the “sharpness” of the events. 

 

Figure 6.4 - Software interface of the playing mode soundscapeMap. 

 

Density-sparsity regulates the number of units played simultaneously and ranges from 

one to five events. Smooth-sharp dichotomy, the second set of variables, controls the 

diversity and stability of the synthesis and is assessed by the spectral variability 

descriptor, which measures how quickly the non-normalized magnitude spectrum changes 
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over time. This descriptor not only denotes amplitude, pitch, and timbre changes in the 

sound, but also reveals the overall stability of the units’ spectrum. Sound examples 2 and 

3 were created in soundscapeMap and synthesize a target that largely goes from sparser 

and smoother (lower-left corner of the interface) to denser and sharper (top-right corner 

of the interface). 

Note that the terms used in the interface are not fixed sound types; instead, they are 

highly dependent on the audio source(s) used to create the corpus. For instance, if we 

feed the system with very smooth spectral shapes as audio units, the difference between 

smooth and sharp will be almost imperceptible. This feature of soundscapeMap is 

accentuated by the need to expand the corpus through the whole plane in order to 

consistently explore the entire space. Otherwise, the navigation would not exploit the 

corpus equally, because some regions of the plane could stay empty, while other regions 

could contain a high density of units. The space optimization is done by equally arranging 

all coordinate values on both axes (see Figure 6.5 for a comparison of a corpus’ 

distribution before and after the space optimization).  

 

Figure 6.5 - Comparison between a corpus representation in a 2D-plot before (left 

image) and after (right image) space optimization. 

 

The control of the target phrases’ density in soundscapeMap offered a closer look at 

the quality of the resulting vertical aggregates. The density of the units itself imposes 
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significant changes in the quality of the “clouds of sounds” formation. A considerable 

amount of literature in granular synthesis is devoted to this issue (cf. Roads, 2001). 

However, the control of density does not provide a clear idea of the sonic characteristics 

of the synthesized results. The units’ overlap is a quite complex tapestry with perceptual 

qualities shaped by a combination of factors such as the units’ amplitude envelop, 

duration, and spectral characteristics. Therefore, the result is mostly unpredictable given 

the multiple factors involved.  

Despite the multidimensionality of the sonic matter, or even the unpredictable factors 

that result from the vertical agglomeration of several units, soundscapeMap provides an 

extra layer of control over the vertical dimension of musical structures by regulating the 

sensory dissonance between overlapping units. I utilize strategies to control the vertical 

dimension of the synthesis in soundscapeMap instead of spaceMap—which also synthesizes 

vertical layers of units—due to the limited number of possible layers and the resulting 

transparency of the vertical aggregates in soundscapeMap. 

I chose the sensory dissonance to organize the vertical layers of the synthesis because 

of its direct relation with the concept of harmony—a primary element of musical structure 

in Western music.35 In addition, sensory dissonance provides meaningful descriptions for 

both pitched and non-pitched sounds, thus allowing the regulation of the sensory 

dissonance of both harmonic and non-harmonic sounds during generation (sound example 4 

comprises three phrases separated by silence that synthesize a target that slowly change 

from the most consonant to the most dissonant—all remaining parameters, such as 

density-sparsity and smoothness-sharpness remain unchanged). 

In order to control the resulting sensory dissonance of the vertical aggregates, the user 

must define a region of sensory dissonance in which the units should preferably fall in the 

interface of soundscapeMap (bottom slider of Figure 6.4). Consequently, the algorithm 

restricts the corpus to units that have sensory dissonance values that fall within the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
35 The reader should refer to section 3.4.2 for a detailed comparison between sensory dissonance and 
harmony. 
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selected range in relation to the last played unit. If the algorithm does not retrieve any 

units, it searches for the closest unit to the specified range of sensory dissonance. 

 

6.3 - Knowledge Engineering: ShuffMeter 

 

ShuffMeter relies on music theory knowledge to guide the generation of musical 

sequences that reflect a user-assigned meter. Despite the use of musical theory 

knowledge that is associated with the notion of style, to describe shuffMeter as a style 

imitation algorithm may be misleading because the meter is a musical feature that is 

present in centuries of musical production and associated with many musical styles. Yet, 

the basic principle of the algorithm can be related to algorithmic strategies for style 

imitation. 

The generation of patterns characteristic of a meter result from the stochastic 

recombination of units with different stresses. The recombination in shuffMeter attempts 

to match a metrical template generated by Clarence Barlow’s metrical indispensability 

algorithm (Barlow, 1987). Barlow’s metric indispensability has been successfully applied as 

a metrical supervision procedure in the generation of drum patterns in a particular style 

(Bernardes et al., 2010), as well as a model for constraining a stochastic algorithm that 

generates rhythmic patterns given a particular time signature and metrical level (Sioros & 

Guedes, 2011). Before I provide a detailed description of the algorithm behind shuffMeter, 

one should understand Barlow’s metric indispensability.  

Barlow’s metric indispensability algorithm defines the probabilistic weight each accent 

on a given meter should have in order for that meter to be perceived, that is, how 

indispensible each accent is at a certain metrical level for it to be felt. The accents’ 

weights are calculated by a formula that takes into account the time signature (e.g. 4/4) 

and the metrical level (e.g. 16th note) for which one wants to calculate the 

indispensabilities (see Figure 6.6). The metrical level is defined by a unique product of 
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prime factors, which equals the number of pulses at that metrical level and takes into 

account the division (binary or ternary) at higher levels. For example, the six pulses 

comprising the 8th note level in a meter would be defined as 3x2 (representing the three 

quarter notes at the quarter-note level that subdivide into two 8th notes at the level 

below), whereas the six pulses comprising the 8th note level in 6/8 would be represented 

as 2x3 (two dotted quarters that subdivide into three 8th notes). Figure 6.6 shows the 

normalized distribution for the 16 pulses comprising the 16th note level in 4/4. 

 

 

Figure 6.6 - Probability distribution given by Clarence Barlow’s indispensability 

formula for the 16 pulses comprising the 16th note level of 4/4, which is defined as the 

product of prime factors 2x2x2x2. 

 

I use Barlow’s algorithm in shuffMeter to create a template that guides the definition 

of target phrases characteristic of a given meter. The template creation is fully automatic 

and relies on two parameters that must be previously assigned by the user: a time 

signature and a metrical level.  

I ascribed the template representation to two audio descriptors: loudness and spectral 

variability. To simplify the computation, I merged the two descriptors into a single value 

by calculating their mean. In the last operation, it is assumed that spectral and loudness 
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changes are most likely to occur on stronger metrical accents. A similar approach is found 

in Sioros and Guedes (2011)—namely the use of Barlow’s metric indispensability to devise 

a metric template whose pulses are assigned to weights according to importance in the 

meter so that a pattern characteristic to the meter emerges. The use of the metrical 

template devised by Barlow’s algorithm can be also seen as a representation of the notion 

of phenomenal accents by Lerdahl and Jackendoff (London, 2012), that is, emphases in 

particular moments of the musical flow, such as dynamic accents, sudden changes in 

timbre, long notes, and large intervals, which contribute decisively for the perception of 

meter.  

At each query, the algorithm retrieves the units whose mean value between the 

loudness and spectral variability descriptors fall on an interval defined by the 

indispensability value for that specific accent plus an additional range of 0.2, which 

results from subtracting and adding 0.1 to the indispensability value. 

  

Figure 6.7 – Software interface of the playing mode shuffMeter. 

 

Each concatenated unit is triggered by a timer that is by default assigned to a detected 

tempo, or manually defined by the user. Selected units whose durations do not match the 

specified tempo are stretched in time by using a time-stretching algorithm, which changes 

the speed of the audio signal without affecting the pitch. The use of a strictly timed pulse 
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instead of a more natural concatenation strategy results from the need to synchronize 

several layers of units. 

The user can navigate in real time on a square present in the interface to adapt the 

target specifications. The navigation automatically regulates the indispensability’s values. 

Two sets of variables mapped to each of the vertices of the square force changes to the 

template. Rough-smooth, will adjust the variability between all accents and loud-soft will 

scale the values of the template proportionally (Figure 6.8 depicts the indispensability 

values’ distribution of each pointer present in the interface in Figure 6.7, please note the 

color correspondence between both figures). 

 

Figure 6.8 - Indispensability weights’ distribution for four pulses of a 4/4 bar given by 

Clarence Barlow’s (1987) formula. The three graphs correspond to the clusters 

depicted in Figure 6.7 and each configuration was scaled and conveys a percentage of 

variance according to their position on the navigable map. 

 

ShuffMeter allows the creation of several synchronized layers of units. The user may 

consider the totality of the corpus in a single-layer recombination strategy or divide the 

corpus into various sub-spaces and assign each space to a different layer (sound example 5 

explores the possibility to recombine and layer a collection of short drum and bass 

samples organized into four instrumental clusters). ShuffMeter also effectively changes 

the meter of a given music, and provides interesting results when clustering a corpus of 
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audio samples from different instruments and layering each cluster separately (sound 

examples 6 and 7 recombine and layer different clusters extracted from Bob Marley’s 

Don’t Worry, Be Happy, singed by Bobby McFerrin, utilizing two different time signatures: 

3/4 and 4/4, respectively). Although the algorithm may adopt any type of unit, it conveys 

better results when using the beat segmentation strategy. 

 

6.4 - Empirical Induction and Knowledge Engineering: InfiniteMode 

 

InfiniteMode generates arbitrarily long audio streams by stretching a piece of music 

without affecting its tempo. The output of this mode never repeats nor loops the original 

audio source(s) or the new synthesized music, yet keeps playing as if on hold. I adopt two 

strategies in infiniteMode to extend a given musical piece. The first, structSeq, is an 

empirical induction method, which emulates the structure of the audio source(s) by 

reconstructing its time-varying morphologies. The second, chordSeq, is a knowledge 

engineering solution, which relies on psychoacoustic principles to guide the recombination 

of the corpus. InfiniteMode covers the generation of both soundscapes and polyphonic 

music. 

From a technical standpoint, the two modes that comprise infiniteMode—structSeq and 

chordSeq—rely on a Markov chain algorithm for generating sequences of units. Markov 

chains are a special case of Markov models and a well-established algorithm to model 

musical data (Buys, 2011). It is one of the most popular algorithms for stochastic music 

generation, especially because they are very fast and easy to implement.36  

 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
36 For an extensive survey of Markov processes as a compositional model please refer to Ames (1989) and 
Nierhaus (2009). 
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6.4.1 - StructSeq 

 

StructSeq generates arbitrarily long musical excerpts, that never repeat, yet keep 

playing as if on hold by preserving structural elements previously extracted from a given 

piece of music. The algorithm attempts to emulate up to three of the following four time-

varying morphologies of the audio source(s): (1) the metrical structure, and the temporal 

evolution of the (2) harmonic, (3) timbre, and (3) noisiness content of the audio. Earlier, I 

presented the process of creating representations for each of these characteristics (§ 4.1). 

The user is responsible for selecting a set of characteristics adapted to the nature of 

the audio source(s) and application context (see Figure 6.9). In other words, the user must 

know if the set of chosen characteristics are meaningful in relation to the audio source(s). 

StructSeq’s interface also suggests two generic characteristic sets adapted to the 

generation of soundscapes and (polyphonic) music with a strong sense of pulse. The 

soundscapes set includes the characteristics timbre and noisiness, and the set for 

polyphonic music with a strong sense of pulse includes meter, harmony, and timbre (sound 

example 8 utilizes structSeq to recombine and extend the initial 28 seconds of Jean-

Baptiste Lully’s Les Folies d’Espagne according to the set of characteristics suggested for 

polyphonic music). The target is automatically defined by the system on a unit basis, and 

its specifications rely on models created in advance for each characteristic involved in the 

generation. The selection of the best matching units is done by satisfying constraints 

defined hierarchically.  

 The temporal evolution of the timbre, noisiness, and harmony (fundamental bass) 

content of the audio source(s) was encoded earlier as models that specify the probabilities 

of transitioning between a finite set of classes for each of the characteristics. These 

transition probability tables serve as a basis of Markov chain algorithms, which define 

targets stochastically based on past events.  

In order to maintain the metrical structure of the audio source(s), the algorithm 



	  
	  

146	  

preserves sequences of units labeled consecutively according to their position in the 

metrical grid. For example, if a recurrent pattern of four units is found, all units in the 

corpus are labeled in their original order according to their position in the metrical grid, 

which in this case would be from zero to three. At runtime, the algorithm shuffles the 

units, yet preserves the sequence of numerical labels. 

 

Figure 6.9 – Software interface of the playing mode infiniteMode. 

 

The structSeq chain of operations can be described in three steps: (1) define a target 

specification, (2) pick the unit or collection of units that satisfies the target specification, 

and finally, (3) select the unit from the collection of units selected in point 2 with the 

most similar spectrum to the previously played unit in order to avoid discontinuities 

between concatenated units. 

The definition of the target depends on the characteristics selected by the user in the 

interface and the previously played units. To define the target specification for a new 

unit, the algorithm examines the last played units and finds a good continuation for the 

selected characteristics in the interface according to the models devised during analysis. 

Then it retrieves all units that satisfy the requirements of each characteristic defined in 

the target, and finds the units that are common to all specifications. From the remaining 

units, it selects the one that minimizes the distance on the bark spectrum representation 
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to the previously selected unit. 

If the algorithm does not find any unit that satisfies all the assigned characteristics, it 

will sequentially ignore characteristics until it finds suitable candidates. The selected 

characteristics on the upper slots have priority over the lower ones. If three 

characteristics are selected and the algorithm does not find any common units for a 

specific query, it will eliminate the third characteristic and again examine the number of 

units that satisfy the query. If it still cannot retrieve any units, it will eliminate the 

second characteristic. 

The algorithm behind the playing mode structSeq exposes an idea suggested earlier 

while discussing the similarity between sound objects: the prioritization of audio features 

as a composition strategy. In structSeq, I use a hierarchy of audio features that is 

respected during unit selection, instead of assigning weights to the set of audio features. 

In the interface upper descriptors are satisfied at the expense of lower ones (see Figure 

6.9). Therefore, the user may prioritize any modeled descriptor over others in order to 

achieve better (or simply different) results. Even if it is not guaranteed that the use of 

prioritization over weights provides more consistent results, it provides an extended and 

precise control to creatively explore the corpus. StuctSeq is unique because it addressed 

each characteristic of musical structure separately, rather than merging all parameters in 

a single model, like using a Hidden Markov Model for example. This last algorithm would 

enhance the quality of the imitation of the audio source’s structure, but reduce the 

creative possibilities of exploring the corpus. 

 

6.4.2 - ChordSeq 

 

ChordSeq uses the pitch commonality model devised earlier to stochastically generate 

sequences of units. The strategy I applied in chordSeq was explored in the scope of 

generative music to create chord progressions using symbolic music representations 
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(Parncutt, 1991; Parncutt & Strasburger, 1994; Ferguson, 2000; Parncutt & Ferguson, 

2005). Here, the concept is extended to the use of audio signals and not restricted to the 

generation of chord progressions.  

The computation of sequences is very simple. The transition probability table of the 

pitch commonality between units serves as a basis of a Markov chain algorithm, which 

stochastically generates sequences of units. The stochastic selection of units gives 

preference to sequences of units with high harmonic affinity. The first unit is randomly 

selected among the 10 units with the highest sensory dissonance values, that is, the 10 

most consonant units (sound example 9 utilizes chordSeq to recombine and extend the 

initial 28 seconds of Jean-Baptiste Lully’s Les Folies d’Espagne—it is also interesting to 

compare sound examples 8, 9 and 10 because they recombine the same source by 

different generative strategies: structSeq, chordSeq, and random recombination, 

respectively). 

The computation of pitch commonality avoids the examination of the continuity 

between concatenated units (i.e. concatenation cost), because the principle behind 

selection already includes that feature. In other words, the pitch commonality model 

reinforces the probability of transitioning between units whose spectrums expose 

similarities and continuity between units with overlapping pitches. 

 

6.5 - Synthesis 

 

The synthesis module is responsible for converting the information output by the 

playing modes into an audio signal. Synthesis also encompasses some audio effects to 

enhance concatenation quality and to provide greater creative expression.  

The playing modes produce strings of values that convey various types of information 

to the synthesis module. The minimal amount of information the synthesis module may 

receive is a single integer, which defines the unit number to be synthesized. If no further 



	  
	  

149	  

processing should be applied to the original raw audio data, no additional information is 

supplied. However, in some playing modes, such as spaceMap and shuffMeter, some 

additional information is compulsory. For instance, in spaceMap additional information 

concerning time- and frequency-shifting ratios, amplitude of the units, and spatial position 

should be provided. Therefore, in addition to the unit number, the output should clarify 

all necessary processing that must be applied to the unit. In sum, the output of the 

playing modes may be either a single value or a string of values, which specify additional 

processing. 	  

I utilized two synthesis methods in earGram. The first method concatenates selected 

units with a short cross-fade. In this method, the duration of selected units is extended by 

30 milliseconds (1323 samples at a 44.1kHz sample rate) to create an overlap period 

between adjacent units (see Figure 6.10). The second method plays selected units with a 

Gaussian amplitude envelope, and allows the playback of up to 200 units simultaneously.  

 

Figure 6.10 - Representation of the amplitude envelope of synthesized units with 

slight overlap. The yellow box corresponds to the actual duration of the unit, and the 

red box to the extension added to the unit in order to create the overlapping period. 

 

The additional audio effects implemented may be divided into three categories 

according to their function: (1) to convey audio processing specified in the playing modes’ 

output, (2) to allow greater artistic expression, and (3) to enhance the concatenation 

quality of the synthesis. 
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The first set of audio effects encompasses three algorithms for pitch-shifting, time-

stretching, and spatializing the units. It conveys precise frequency, speed changes, and 

spatial position of the audio units as specified in the target phrases. This group of audio 

effects is frequently applied in the playing modes spaceMap and shuffMeter.  

The second group allows the exploration of creative possibilities that enhance artistic 

expression. It comprises algorithms such as adaptive filtering, reverberation, chorus, and 

spectral morphing. The user may add additional effects to the available set with very little 

effort (in fact, all playing modes may apply this extra layer of expression).  

Finally, the last category of audio effects improves the concatenation quality between 

adjacent units, namely by avoiding discontinuities in the spectral representation of the 

audio continuum. Even if most playing modes already incorporate some strategies to avoid 

discontinuities between adjacent units, in order to improve the concatenation quality, I 

added an additional feature to the end of the system to filter discontinuities in the audio 

spectrum. The filtering process is done by smoothing the units’ transitions by creating 

filtering masks resulting from the interpolation of their spectra. The processing is done by 

an object from the Soundhack plugins bundle37 called +spectralcompand~, which is a 

spectral version of the standard expander/compressor, commonly known as compander. It 

divides the spectrum in 513 bands and processes each of them individually. The algorithm 

computes an average of the spectrum over the last 50 milliseconds iteratively and applies 

it as a mask during synthesis. 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
37 http://soundhack.henfast.com/. 
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Figure 6.11 - Spectrogram representations of the same concatenated output without 

(top image) and with (bottom image) spectral filtering (expansion-compression). 

 

Figure 6.11 presents two spectral analyses of four seconds of audio, which correspond 

to eight concatenated audio units with (top image) and without (bottom image) the 

processing of the spectral compander. The lower image shows a higher degree of stability 

and continuity between the harmonic components of the spectrum, quite noticeable in the 

sonic result. However, some artifacts may result from this process, such as a noticeable 

decrease of amplitude. 

 

6.6 - Early Experiments and Applications of EarGram in Musical 

Composition 

 

My first contact with CSS software was during the creation of the composition In Nuce 

(2011) by the Portuguese composer Ricardo Ribeiro for tenor saxophone and electronics, in 
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which I participated as saxophonist and musical informatics assistant. The creation of the 

electronic part of the composition started in 2009. Ribeiro asked me to experiment with 

techniques that could not only process/transform the saxophone sound, like an audio 

effect, such as chorus, but also to provide an extra layer of audio that could enrich and 

enlarge the musical gestures. I gave a single response to both of Ribeiro’s requests: the 

adoption of CSS not only to mask the saxophone, but also to provide an extra layer of 

audio to enrich the timbral qualities of the piece, like a sonic transcription of the 

saxophone. In order to create the electronics, I started to experiment with Diemo 

Schwarz’s CataRT and Michael Casey’s SoundSpotter. After some tests, I decided to adopt 

SoundSpotter because of its simplicity and the possibility to work in Pure Data (the 

programming environment I am more familiar with). SoundSpotter offered some great 

results, but its “black-box” implementation offered solutions that were hard to predict 

and replicate.38 From my experience, the software produces very distinct results even 

with the same audio signal and/or recording conditions. 

Later that year, the same composer asked me to apply the same processes in a piece 

for ensemble and electronics, named In Limine (2011). From that moment on, in order to 

fully understand the mechanisms behind CSS and to work with more flexible solutions, I 

decided to start programming a small CSS patch in Pure Data. The dedicated software I 

built for In Limine enhanced the lack of predictability of SoundSpotter, and allowed me to 

utilize and switch between different feature spaces and experiment with different 

normalization strategies between input vector and corpus analysis. Later, these small 

patches became the core components of earGram. 

Rui Dias is another Portuguese composer with whom I worked closely to utilize 

earGram in the creation of two of his compositions. Dias was the first composer to apply 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
38 I used SoundSpotter as a Pure Data external, which allowed me to manipulate the following three 
parameters: (1) the number of features involved in the matching process (2) the envelope following, and (3) 
transition probability controls that switch between a moment-to-moment matchings and finding a location 
within the audio source, and bias the probability of recently played events. However, it neither allowed me to 
control the segmentation—the only available mode was to segment the units uniformly with durations (in 
samples) that needed to be necessarily a power of two—nor the quality of the audio features involved in the 
matching process. 
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earGram in a composition—Schizophonics (2012)—in particular to create raw material that 

he would later assemble in an audio sequencer. The same process was revisited a year 

later in an installation named Urban Sonic Impression (2013), whose authorship I shared 

with Dias. The feature that most attracted Dias in earGram was the software capability to 

navigate and interact with a corpus of sound units organized according to a similarity 

measure, which allowed him to produce granular sounds that were not possible in a 

practical way to do in a granulator. In both of the aforementioned pieces, Dias used the 

playing mode spaceMap, and the trigger mode continuousPointer, to create highly nuanced 

trajectories between short (200 ms) and uniform audio units. 

In Schizophonics the use of earGram can be better understood between 4’15’’ until 

5’50’ (sound example 11). The continuous granular layer was composer by synthesizing a 

trajectory drawn in the sound-space corpus visualization. The feature space used to 

create the corpus visualization employed weighted audio features translated to two 

dimensions using star coordinates. In this collaboration, and after several discussions with 

Dias, I realized the need to unpack the audio descriptors terminology I was using at the 

time—that corresponded to all descriptors from the timbreID library (Brent, 2009)—to 

musical jargon because the terminology adopted by most descriptors was highly 

inaccessible for musicians. These discussions have reinforced my motivation to redefine 

earGram’s description scheme and resulted in the work detailed in Chapter 3.  

Urban Sonic Impression is a sound installation that creates moving sound textures using 

sounds from the Porto Sonoro sound bank.39 This work used the same playing mode as 

Schizophonics, that is, sapaceMap to create large amounts of raw material that were later 

edited an assembled by Dias. However, contrary to Schizophonics, a single audio feature—

spectral brightness—was used to create the corpus representation in sound-space. Given 

that the navigation surface is two dimensional, both axis of the plane were assigned to the 

same audio feature, thus resulting in a diagonal line of ordered audio units (see Figure 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
39 http://www.portosonoro.pt. 
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6.12). This representation allowed the creation of scales by navigating (diagonally) 

through the depicted line (sound examples 12 and 13). In order to fill certain “holes” in 

the scales and to create seamless transitions between sound units I used spectral 

morphing, an audio effect that has been added to earGram since then. The resulting 

scales were later imported into Max/MSP and used to sonify sound analysis data resultant 

from the project URB (Gomes & Tudela, 2013).40 The URB data was mapped to dynamically 

control the reading position of the audio files generated in earGram that were being 

manipulated in a granulator (sound example 14 presents an excerpt of the sound 

installation). 

 

Figure 6.12 – Visualization of the corpus that supported the creation of raw material 

for the installation Urban Sonic Impression. 

 

Nuno Peixoto was the composer who used earGram the most. Peixoto used earGram in 

the four following pieces: Dialogismos I (2012), Dialogismos II (2012), Your Feet (2012), 

and A Passos de Narufágio (2013). The first piece, Dialogismos I, used one of the very first 

versions of earGram and employed a strategy that was later even abandoned. All 

remaining pieces utilized more recent versions of the software and used the same strategy 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
40 The URB system captures and analyzes sound features from various locations in Porto (Portugal). For more 
information on this project, please refer to the following web address: http://urb.pt.vu. 
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for composing; therefore, I decided to only detail one of them—Your Feet—because the 

material generated in earGram is exposed in the piece with extreme clarity. 

The structure of Dialogismos I merges various elements from very different 

compositions. For example the pitch/harmonic structure is taken from Arvo Pärt’s Fur 

Alina (1976) and the rhythmic structure from Bach’s 1st Suite in G major (BWV 1007) for 

Unaccompanied Violoncello. This idea, and conceptual basis of the piece, relies on 

techniques for music appropriation/quotation by J. Peter Burckholder (1983).41 

In Dialogismos I, earGram was used to synthesize the 1st Suite of Bach—encoded as MIDI 

files—using sound databases that include samples from Freesound,42 and music by 

Wolfgang Mitterer, in particular the compositions that feature in his 2008 CD Sopop – 

Believe It or Not. The MIDI target phrases from Bach’s 1st Suite were additionally filtered 

to only allow the synthesis of notes from particular bars of Arvo Pärt’s Für Alina. 

Ultimately, the result was a tapestry of influences and a mixture of musical elements 

gathered from various sources. In addition to the identity of Bach and Pärt compositions, 

the generated music also offered a strong identification of the database sounds because 

they were segmented by the onset2 method in order to create sound objects that preserve 

the identity of the source. The strategies employed in Dialogismos I were not further 

explored and excluded from the current earGram version, mainly because I decided to 

focus only on the manipulation of audio signals. In addition, from all the processes Peixoto 

used in earGram, this was the most time-consuming and the piece that required more 

post-processing. The real-time capabilities of earGram are also utilized during 

performance in Dialogismos I to generate a B pedal tone (no octave is specified in the 

target), and target phrases encoded as MIDI information that function as interludes (or 

transitions) between the 6 movements of the piece. 

Your Feet (sound example 15) is a paradigmatic example of the processing used in the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
41 For a deeper review of the conceptual basis of Dialogismos I please refer to Bernardes et al. (2012). 
42 http://www.freesound.org.	  
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remaining pieces.43 The most noticeable difference between the remaining 

abovementioned pieces of Peixoto and Dialogismos I is the use of an audio signal as target 

in the playing mode spaceMap, more specifically the liveInput trigger mode. The resulting 

synthesis can be seen as a sonic transcription of the target by reconstructing its 

morphology by other sounds (sound examples 16, 17, and 18 are “sonic transcriptions” of 

sound example 19, which is a MIDI synthesized version of Your Feet played on a piano and 

clarinet). After the realization of several tracks with earGram, Peixoto edited the material 

by layering all music generated with earGram and selecting fragments of the material. 

  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
43 The remaining pieces can be listen in the following web address: 
https://sites.google.com/site/eargram/music-made-with-eargram 
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Chapter 7 

Conclusion 

In this dissertation, I formulated the hypothesis that the morphological and structural 

analyses of musical audio signals convey a suitable representation for computer-aided 

algorithmic composition, since they share the same constitutive elements manipulated 

through reciprocal operations. My assumptions led to the development of a framework for 

CAAC that manipulates representations of audio signals resulting from the structural 

analysis of audio sources. The ultimate aim of my work is to assist musicians to explore 

creative spaces, in particular to provide tools that automatically assemble sound objects 

into coherent musical structures according to pre-defined processes. My framework has 

been consequently adapted to fit the structure of a CSS algorithm and implemented as 

software (earGram) in the modular programing language Pure Data. EarGram, the proof-

of-concept software of my analysis-synthesis framework, is a new tool for sound 

manipulation. 

The following summary describes the steps I took in order to conceive the framework 

and its software implementation. Finally, I highlight the original contribution of my study 
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along with the artistic potential of earGram, which has been applied in several 

compositions that illustrate the fundamental concepts that are made possible by the 

software. 

 

7.1 - Summary 

 

The proposed framework is divided into two major modules that have a direct 

correspondence to the two parts that of this dissertation: analysis and composition. In Part 

I, I discussed and combined listening and learning competences in order to formulate a 

computational model to segment, describe, reveal, and model the various hierarchical 

layers of user-assigned audio sources.  

I started by providing an overview of three musicological theories by Pierre Schaeffer, 

Denis Smalley, and Lasse Thoresen (Chapter 2). Special attention was given to the 

morphological description schemes of sound objects devised by each of the 

aforementioned authors. These theories in combination with MIR and psychoacoustic 

literature established the basis of computational strategies for segmenting an audio 

stream into sound objects along with their content description by a minimal and concise 

set of criteria (presented in Chapter 3). In turn, the description scheme provided the basis 

for the computation of the algorithms presented in Chapter 4 that aim to reveal and 

model the higher-level time scales of audio sources. 

I decided to use n-grams to encode structural elements of sound objects because 

besides their reliable and simple representation of musical structural, they also provide a 

basis for a Markov chain algorithm, which is used here for the generation of new musical 

structures. There are two model groups adopted in this study. The first encodes structural 

elements that are extracted from the audio source(s), and the second establishes 

“artificial” associations between sound objects based on psychoacoustic models. The first 

point creates n-gram representations for the three following elements of musical 
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structure: (1) noisiness, (2) harmony, and (3) timbre. The second point encompasses two 

different models: (1) the probability of transitioning between all sound objects based on 

the affinity between sound units, and (2) the “pleasantness” between the vertical 

superposition of audio units. In Chapter 4, I also detailed some strategies that assist the 

extrapolation of higher layers of musical structure by visualizing features of the corpus 

organized in their original temporal order. The adopted visualization strategies are 

supported by audio similarity measures and clustering techniques. Finally, Chapter 4 

concludes by providing two algorithms for inferring the key and meter of the audio source.  

All analytical strategies devised in Part I aim not only at providing a consistent basis 

for the manipulation of sound objects, but also at easing the creation of sound mosaics 

through the automatic organization and/or recombination of their characteristics by a 

generative music algorithm. I examined the generation of musical structures in the second 

part of this dissertation. 

The second part started by presenting strategies for organizing the macrostructure in 

earGram, followed by a description of four generative music algorithms that recombine 

the audio units into sequences other than their original order. The algorithmic strategies 

recombine the audio units by manipulating audio descriptions, and are driven by models 

devised during analysis—such as n-grams—or music theory principles. The set of algorithms 

presented are well known CAAC strategies, related to symbolic music representations, and 

cover a variety of musical contexts spanning from installations to concert music. The 

framework design is not constrained to any particular musical style; instead, it can be 

seen as an “agnostic” music system for the automatic recombination of audio tracks, 

guided by models learned from the audio source(s), and music and psychoacoustic 

theories.  

 

 

 



	  
	  

160	  

7.2 - Original Contribution 

 

This dissertation, placed at the intersection of scientific, engineering, and artistic 

fields, presents original contributions to each of the fields in different degrees. My artistic 

background provided a different perspective of, and uses for scientific findings, the 

application design of which was articulated and conceived through an engineering basis 

even though the most important application of the study resides in musical composition. 

The major contribution of this study is my computational scheme for the automatic 

description of sound objects, regardless of the sound sources and causes. The description 

scheme adopts a reduced number of descriptors in comparison to analogous state-of-the-

art applications. However, it covers the most prominent classes of relatively independent 

audio descriptors from a statistical point of view, and presents low levels of information 

redundancy.  

Even though I relied on MIR research to mathematically define the audio descriptors, 

the computation has been subject to small adjustments. For example, the noisiness 

descriptor is computed by a weighted combination of low-level audio features that 

balances the characterization between pitched and noisy sounds, and encompasses more 

subtleties that are hardly expressed by a single low-level audio feature. Furthermore, in 

order to adopt a uniform scale for all descriptors—a feature that is compulsory in many 

MIR applications—the description scheme adopts specific scaling factors in relation to the 

descriptor at issue. The uniform range of the descriptors’ output avoids the need to 

normalize the data by any statistical feature, which normally leads to a consequent lack 

of meaning in the results. 

The last innovative aspect of the description scheme I would like to highlight is the 

implementation of psychoacoustic dissonance models as audio descriptors. The use of such 

descriptors offers a systematic characterization of the harmonic timbre qualities of the 

sound objects and allows the creation of probabilistic models that can ultimately guide 
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the generation of transitions between sound objects and/or their overlap. 

Based on the low-level descriptions of the units, mid- and high-level representations of 

the corpus are inferred and/or presented to the user in an intuitive manner through the 

use of visuals in earGram. Although the algorithms used for the mid-level description of 

the corpus are not original contributions, their articulation in a single framework is 

unique. The corpus visualizations represent the higher layers of the audio source’s 

structure, which facilitates the reorganization and/or exploration of smaller sections of 

the source during generation. In particular, by depicting and grouping the sound objects 

that compose the corpus according to their similarity it is possible to expose the main 

characteristics of the corpus. In addition, if the sound objects are organized in their 

original temporal order—as in the self-similarity matrix—it is even likely to get an idea of 

the macrostructure of the audio source(s). Based on this information, the user may 

constrain the corpus to smaller sections that expose particular characteristics and use 

them differently while composing with earGram. 

The aim behind the analytical strategies implemented in earGram is the exploration of 

the corpus by generative music strategies. In fact, the analytical tools were shaped to 

convey easy and fast experimentation of sound objects mosaics for musicians. Even though 

the analytical tools implemented in earGram suggest their suitability for generative music 

purposes, the following paragraphs will illustrate how the sound objects’ representations 

devised during analysis are manipulated to generate consistent music results. 

The generative strategies implemented in earGram allow the manipulation of several 

hierarchical layers of musical structure, with different degrees of automation. For 

example, while the user needs to manually assign the subsets of the corpus used in each 

section or phrase, the low-level selection of sound objects is entirely automatic and 

managed by the system according to user-given specifications. 

The possibilities offered by earGram to create sub-corpora of units minimize a major 

drawback of most generative music strategies, that is, the organization of the meso and 
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macro levels of musical structure. Interestingly, the adopted principle for organizing the 

meso and macro structure in earGram follows the same principle as the method for 

assembling the low-level morphology of the music surface (at the sound object time 

scale), that is, through the use of selection principles.  

As far as the low-level units selection in earGram is concerned, the units’ descriptions 

were successfully applied as sound objects’ representations in known CAAC strategies, 

such as Markov chains, tendency masks, or rule-based algorithms. The adopted units’ 

representations solved the problem of low-level information, complexity, and density of 

audio signals that make them extremely difficult to manipulate in generative music. The 

following four generative music strategies were developed and implemented in earGram 

as unit selection algorithms of a CSS system: (1) spaceMap, (2) soundscapeMap, (3) 

shuffMeter, and (4) infiniteMode. The four playing modes encompass very distinct 

strategies for generating music, spanning from micromontage for sound design to more 

traditional generative approaches for polyphonic music, such as algorithms for style 

imitation and/or the emulation of music theory principles.  

In terms of creative output, the four generative strategies implemented in earGram 

not only provide the composer tools for the fast and easy creation of large amounts of raw 

material for a particular composition, but also allow more ready-to-use solutions that can 

actively participate in live performances. In the first point, earGram can be seen as a 

computer-aided composition system, in a similar fashion as improvisation may serve the 

composer for the preliminary exploration of an idea and/or to create large chunks of raw 

material that can be manually assembled later. Concerning the second point, the playing 

modes implemented in earGram were designed to consistently produce results according 

to pre-defined processes or to explore, manipulate, and interact with a corpus of sound 

objects in real-time—particularly by navigating in spaces that define and/or constrain the 

generation of target phrases to be synthesized. 

The first compositional feature implemented in earGram that I would like to highlight 
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is the possibility to systematically work with audio features like noisiness, width, and 

brightness that are commonly understood as secondary elements of musical structure in 

Western music. In other words, one may work outside of the pitch-duration primacy 

because the description scheme devised in combination with the generative strategies 

allow the systematic and identical manipulation of all descriptors. For example, spaceMap 

synthesizes target phrases that are drawn on top of a corpus visualization organized by 

audio features. Thus, the user can synthesize trajectories by navigating in a visualization 

organized according to sensory dissonance and noisiness, or any other combination of 

descriptors.  

Still, with regard to spaceMap, it is interesting to note that the definition of target 

phrases by drawing trajectories on the interface offers interesting avenues for 

composition—especially if one explores the trajectories as musical gestures/events. One 

can build compositional systems based on visual trajectories. If the same trajectory is 

drawn with distinct audio feature spaces, it is possible to create a sort of sonic 

transcription and/or variation of the same “musical” gesture. Also, one may create 

visually related gestures (i.e. mirrored, inverse, etc.) that somehow expose sonic 

affinities. 

SoundscapeMap follows the same mode of interaction as spaceMap, that is, the 

definition of targets through physical navigation in a constricted space on the interface, 

but the possibilities to guide generation are directed toward soundscapes. SoundscapeMap 

exposes how CSS may be ideal to procedural audio applications. One of the most 

innovative aspects of soundscapeMap is its ability to organize the sensory dissonance of 

vertical aggregates of musical structure, a feature commonly overlooked in CSS. 

The two remaining playing modes—shuffMeter and infiniteMode—focus on more 

traditional music making strategies. Still, it presents solutions for dealing with audio that 

would take considerable time and effort if done manually. For instance, shuffMeter allows 

rapid experimentation with different time signatures and various layers using the same 
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audio source(s).  

ShuffMeter utilizes	  a strategy that may be ideal for composing with commercial audio 

loops clustered by instruments in order to create cyclic patterns for each instrument 

(defined by the metric structure), which can be varied by navigating in a simple 

interface—an ideal tool for practices such as DJing. Finally, infiniteMode limitlessly 

extends a given audio source by preserving the structural characteristics of the audio 

source(s), yet reshuffling the original order of its constituent sound objects. In addition, it 

is possible to experiment with sound object progressions based on the affinity of tones 

between sound objects, referred to as pitch commonality in psychoacoustics. InfiniteMode 

also allows the specification and prioritization of the characteristics to guide the 

generation. In other words, one can use this playing mode to slightly alter the morphology 

of the source by changing the prioritization and/or the features involved in the 

generation. For instance, one may only reshuffle a particular audio track by preserving its 

metric structure and ignoring all other components. 

After addressing the creative uses of earGram, I would like to make a few remarks on 

the technical basis of earGram; in particular, the means by which this study extends CSS, 

even as a consequence of the adopted methodology, since it was not intended as a 

primary objective. The extensive use and implications of this synthesis technique led me 

to examine in detail its technical and conceptual basis. Therefore, many considerations 

present in this dissertation may decisively contribute to the development of this synthesis 

technique.  

The particular innovative aspect of earGram in relation to other CSS is the use of 

generative music strategies as unit selection algorithms, as opposed to finding the best 

candidate unit to a target representation based on the similarity between n-dimensional 

feature vectors. Additionally, the database in earGram is understood as a time-varied 

resource in a system that allows the user to dynamically assign sub-spaces of the corpus 

that are easily interchangeable at runtime. Therefore, there is no pre-defined or fixed set 
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of audio feature vectors. Instead, the system is highly flexible and explores weighting, 

prioritizing, and constraining audio features adapted to particular audio sources and 

application contexts. Finally, despite the common synthesis of overlapping audio units in 

CSS, its organization is commonly overlooked. I proposed the use of psychoacoustic 

dissonance models, in particular sensory dissonance, to examine and consequently 

organize the vertical dimension of musical structure. 

While the analytical part of the model described in this dissertation relied heavily on 

music and musicological theory, many decisions taken in its generative counterpart relied 

heavily on empirical judgments. The readers may judge for themselves the quality of the 

results produced by the system by listening to some sound examples at: 

https://sites.google.com/site/eargram/ (also included in the accompanying CD), and 

tryout the software with various playing modes and different sound corpora. 

The musical examples made available not only testify the effectiveness of the system, 

but also illustrate the artistic potential of the detailed CAAC methods. In addition, 

collaborations with three Portuguese composers—Ricardo Ribeiro, Rui Dias, and Nuno 

Peixoto—in eight compositions have both tested and verified the usefulness of earGram, 

and contributed actively to the software’s design.44  

 

7.3 - Future Work 

 

I have designed the four recombination modes detailed here to not only assist the 

composer at work by providing him/her raw material, but also to participate in live 

performances. Despite the real-time capabilities of the system, its effective contribution 

to a live performance can be enhanced if prior experimentation and organization of the 

material has been made. However, the user may need to limit the corpus to a collection 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
44 One of the collaborations with the composer Nuno Peixoto has been reported in a peer-reviewed paper 
presented at the ARTECH 2012 – 6th International Conference on Digital Arts (Bernardes et al., 2012). For a 
complete list of compositions created with earGram please refer to Appendix C. 
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of units that more effectively generate coherent music results. This experimentation 

phase could be avoided if the system had more high-level information concerning the 

sound source(s) and greater knowledge of the structural function of each unit in the 

overall composition of the audio source(s). 

Another particularity of the framework that could enhance the synthesis results is the 

adoption of categorical descriptions grounded in perceptual sound qualities. In particular, 

the aspect that would greatly profit from the use of perceptual categories of sound would 

be the modeling strategies of the current framework. In order to divide the audio features 

at issue into sound typologies to model the temporal evolution of particular musical 

elements, I divided the descriptor’s range into an arbitrary number of categories. The 

range of each category (“sound typology”) is artificial and does not take into account any 

musical or perceptual considerations. 

The counterpart of the framework—composition—may adopt audio effects at the end of 

the processing chain to enhance the concatenation quality and provide greater 

expressivity. Integrating more audio effects into the framework could expand its 

possibilities. In addition to this, the use of audio effects could fill some gaps in the 

database. In other words, instead of simply finding the best matching units for a particular 

target specification, the system could apply transformations that would provide better 

matches. 

Finally, although the main purpose behind the listening and learning modules and the 

visualization strategies is to drive synthesis, its range of application could be expanded 

toward areas such as musical analysis—namely computational musicology and cognitive 

musicology. 
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APPENDIXES 

Appendix A 

 

List of Representative Concatenative Sound Synthesis Software, 

Inspired by Schwarz (2006b) and Sturm (2006b) 

 

NAME, 

AUTHOR  

(YEAR) 

Unit 

type 

Audio 

representation 

 

Selection 

process 

Concatenation type Code 

language/ 

software 

environment 

Speed 

Caterpillar, 

Schwarz 

(2000) 

Uniform 

and non-

uniform 

 

Low- and high-

level audio 

features 

Global and 

local 

constraints 

Slight overlap with 

crossfade 

Matlab Offline 

Musaicing,  

Zils & Pachet  

(2001) 

Uniform Low-level audio 

features 

Global and 

local 

constraints 

? ? Offline 

Soundmosaic, 

Hazel  

(2001) 

Uniform Waveform Maximum inner 

product 

Direct substitution C++ Offline 



	  
	  

196	  

Soundscapes, 

Hoskinson & Pai  

(2001) 

Non-

uniform 

Wavelet 

transform 

representation 

Random 

selection based 

on a 

probabilistic 

model of the 

audio source 

Slight overlap with 

crossfade 

Java Online 

Granuloop, 

Xiang  

(2002) 

Uniform Short-time 

Fourier 

transform 

Random 

selection based 

on a 

probabilistic 

model of the 

audio source 

Direct substitution 

combined with 

digital signal 

processing 

Pure Data Online 

Sound 

Clustering 

Synthesis, 

Kobayashi 

(2003) 

Uniform Short-time 

Fourier 

transform  

Local 

constraints 

? ? Offline 

Directed 

Soundtrack 

Synthesis, 

Cardle et al. 

(2003)  

Uniform Low-level audio 

features 

Local 

constraints 

? ? Offline 

MoSievius,  

Lazier & Cook 

(2003) 

Non-

uniform 

Low-level audio 

features 

Local search Overlap/add and 

PSOLA 

C++ Online 

Synful,  

Lindemann 

(2004) 

Non-

uniform 

High-level audio 

features 

Lookahead Transformations on 

the selected units 

utilizing 

reconstructive 

phrase modeling 

? Online 

MATConcat, 

Sturm  

(2004) 

Uniform Low-level audio 

features 

Local search User-defined, 

windowed 

Matlab Offline 

Soundspotter, 

Casey 

(2005) 

Uniform 

and non-

uniform 

Low-level audio 

features 

Local and 

global 

constraints 

? C++ Online 
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Ringomatic, 

Aucouturier & 

Pachet, 

(2005) 

Uniform Low- and mid-

level audio 

features 

Local and 

global 

constraints 

? Java Online 

Audio  

Analogies, 

Simon et al. 

(2005) 

Non-

uniform 

High-level audio 

features 

Local and 

global 

constraints 

Digital signal 

processing 

techniques 

? Online 

Skeleton, 

Jehan 

(2005) 

Uniform Low- and mid-

level audio 

features 

Local 

constraints 

Direct substitution Objective-C Offline 

CataRT, 

Schwarz 

(2005) 

Non-

uniform 

Low-level audio 

features 

Local search, 

navigable 

Units played at 

specific times with 

an amplitude 

envelope combined 

with digital signal 

processing 

Max/MSP (uses 

FTM, Gabor, 

and MnM 

libraries) 

Online 

Vienna 

Symphonic 

Library, 

(2006) 

Non-

uniform 

High-level audio 

features 

Lookahead ? ? Online 

MEAPsoft, 

Weiss et al. 

(2009) 

Non-

uniform 

Low-level audio 

features 

Local search ? Java Offline 

timbreID 

Brent 

(2009) 

Uniform 

and non-

uniform 

Low-level audio 

features 

Local search 

 

(Not applicable)  Pure Data Offline/Online 

Audiogarden 

Frisson et al. 

(2010) 

Non-

uniform 

Low-level audio 

features 

? ? MediaCycle 

framework 

 

AudioGuide 

Hackbarth 

(2010) 

Non-

uniform 

Low-level audio 

features 

Local search Direct substitution Python Online 
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Appendix B 

 

Related Publications 

 

Bernardes, G., Davis, M. E. P., Guedes, C., & Pennycook, B. (2014). Considering roughness 

to describe and generate vertical musical structure in content-based algorithmic-assisted 

audio composition. Proceedings of the Joint International Computer Music and Sound and 

Music Computing Conference. 

 

Bernardes, G (2014). Para além da recuperação de dados: Proposta de um modelo de 

geração automática de narrativas musicais dialógicas.  Workshop Narrativa, Média e 

Cognição. 

 

Bernardes, G., Guedes, C., & Pennycook, B. (2013). EarGram: An application for 

interactive exploration of concatenative sound synthesis in Pure Data. In M. Aramaki, M. 

Barthet, R. Kronland-Martinet, & S. Ystad (Eds.), From sounds to music and emotions (pp. 

110-129). Berlin-Heidelberg: Springer-Verlag. 

 

Bernardes, G., Peixoto de Pinho, N., Lourenço, S., Guedes, C., Pennycook, B., & Oña, E. 

(2012). The creative process behind Dialogismos I: Theoretical and technical 

considerations. Proceedings of the ARTECH 2012—6th International Conference on Digital 

Arts. 

 

Bernardes, G., Guedes, C., & Pennycook, B. (2012). EarGram: An Application for 

interactive exploration of large databases of audio snippets for creative purposes. 

Proceedings of the 9th International Symposium on Computer Music Modeling and 

Retrieval (CMMR). 
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Bernardes, G., Guedes, C., Pennycook, B. (2010). Style emulation of drum patterns by 

means of evolutionary methods and statistical analysis. Proceedings of the Sound and 

Music Computing Conference. 
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Appendix C 

 

Chronological List of Works Created With EarGram 

 

Title of the 

Work 

Author Type of Work Performer(s) of 

the Premiere  

Date of the 

Premiere 

Event/Location of the 

Premiere 

In Nuce Ricardo 

Ribeiro 

Piece for saxophone 

and live-electronics 

Gilberto 

Bernardes 

31-03-2011 Escola Superior de 

Música e Artes do 

Espetáculo do Porto, 

Portugal. 

In Limine Ricardo 

Ribeiro 

Piece for ensemble 

and live-electronics 

Sond'Ar-te Electric 

Ensemble 

02-12-2011 Centro Cultural de 

Cascais, Portugal 

Schizophonics Rui Dias Electroacoustic 

piece 

Rui Dias (sound 

diffusion)  

05-10-2012 Festival Manobras, 

Porto, Portugal 

Dialogismos I Nuno Peixoto Piece for saxophone 

and electronics 

Gilberto 

Bernardes 

12-10-2012 ISMIR 2012 

Conference, Maus 

Hábitos, Porto, 

Portugal  

Dialogismos II Nuno Peixoto Piece for ensemble 

and electronics 

Sond'Ar-te Electric 

Ensemble 

10-10-2012 Goethe-Institut, 

Lisbon, Portugal 

Your Feet Nuno Peixoto  Piece for voice, 

percussion, and 

electronics 

Rita Redshoes and 

Nuno Aroso 

14-12-2012 Centro Cultural de 

Belém, Lisboa, 

Portugal 

A Passos de 

Naufrágio 

Nuno Peixoto Piece for timbales 

and electronics 

José Silva 30-6-2013 Escola Profissional de 

Música de Viana do 

Castelo 

Urban Sonic 

Impression 

Rui Dias and 

Gilberto 

Bernardes 

Sound installation  28-10-2013 Sonoscopia, Future 

Places Festival, Porto, 

Portugal 

 


