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Resumo

Asma e DPOC (Doença Pulmonar Obstrutiva Crónica) são doenças crónicas do foro respiratório
que afetam dezenas de milhares de pessoas por todo o mundo. Podem provocar falta de ar,
diminuição severa da qualidade de vida e, no caso da DPOC, pode ser causa de morte, se não
for detetada e devidamente controlada.

As abordagens e aparelhos Mobile Health (mHealth) têm aumentado em popularidade e estão
a revolucionar os sistemas de saúde mundiais, através de formas mais baratas e eficientes para
prevenção, diagnóstico e monitorização de doenças e respetivos tratamentos.

Nesta dissertação, pretende-se chegar à melhor e à mais eficiente combinação dos métodos
de processamento de sinal e aprendizagem computacional estudados, de modo a poder ser in-
cluída numa aplicação de smartphone para classificar a função respiratória, baseando-se apenas
em gravações de microfone. A possibilidade de produzir semelhante aplicação poderá levar ao
aumento da prevenção e deteção precoce de dificuldades respiratórias e proporcionar um sistema
de monitorização de doenças acessível, portátil e de reduzidas dimensões.

O projeto foi dividido em duas partes. A primeira consiste no processamento de sinal, em que o
sinal de audio é processado e são calculadas várias envolventes, de onde se extraem os parâmetros
clínicos de espirometria. A segunda parte consiste nos modelos aprendizagem computacional que
permitem regredir os parâmetros e classificar as gravações, seja no par de classes Normal e Anor-
mal seja no conjunto de classes função respiratória Normal e alterações ventilatórias Obstrutiva,
Restritiva e Mista.

O conjunto de dados é composto por 101 gravações de manobras de expiração forçada, de
61 pacientes. A comparação de experiências de processamento de sinal foi realizada numa abor-
dagem em backward selection, reduzindo de um total inicial de 54 envolventes, para 8 envolventes
finais, por gravação. Geraram-se modelos de regressão para Peak Expiratory Flow (PEF), Forced
Expiratory Volume em menos de 1 segundo (FEV1), Forced Volume Capacity (FVC) e indíce
FEV1/FVC, obtendo os erros médios de cerca de 21.3%, 32.2%, 22.6% e 10.0%, respetivamente.
Todos os modelos de aprendizagem computacional foram treinados e testados num esquema de
validação cruzada em 5 fold, com um conjunto de dados que continha a idade e a altura dos pa-
cientes. O modelo de classificação para duas classes apresentou um erro de classificação de 8%,
com precisão e recall de 90.90% e 98.59%, respetivamente. O modelo de classificação em múlti-
plas classes apresentou um erro de classificação de cerca de 10%.

Os resultados experimentais deste projeto são promissores e encorajam futuros desenvolvi-
mentos do sistema.
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Abstract

Asthma and COPD (Chronic Obstructive Pulmonary Disease) are chronic lung conditions that
affect tens of millions of people worldwide. They can result in breathlessness, a harsh decrease in
quality of life and, in case of COPD, death, if not detected and duly managed.

Mobile Health (mHealth) approaches and devices have been increasing in popularity and are
revolutionizing the world’s health care systems by providing cheaper and more efficient ways to
prevent, diagnose and monitor diseases, as well as to track a patient’s treatment response.

In this dissertation, we aim to find the best and most efficient combination of signal processing
and machine learning methods in order to produce a smartphone app that could accurately classify
lung function, using microphone recordings as the only input. The possibility to produce such
application is bound to increase prevention and early detection of respiratory diseases and provide
a highly portable and affordable lung monitoring system.

The project was divided into two procedural stages. The first consists of the signal processing
stage, in which the audio signal is fed to several functions and transformed into an envelope,
from which spirometry clinical parameters are extracted. The second consists of machine learning
models that regress the parameters and classify the recordings, either into Normal versus Abnormal
labels or into Normal lung function, Obstructive, Restrictive or Mixed abnormality labels.

The dataset was composed by 101 recordings of forced expiration maneuvers from 61 patients.
The signal processing comparison experiments were conducted in a backward selection approach,
reducing to 8 final envelopes, per recording, out of the initial 54, and produced a final regression
model for Peak Expiratory Flow (PEF), Forced Expiratory Volume under 1 second (FEV1), Forced
Volume Capacity (FVC) e the index FEV1/FVC, with mean error of around 21.3%, 32.2%, 22.6%
and 10.0%, respectively. All machine learning models were trained and tested on a 5 fold cross
validation scheme, with a dataset’s feature space that contained the patients’ age and height. The
two label classification model presented an 8% misclassification rate with precision and recall
values of 90.90% and 98.59%, respectively. The multiple label classification model presented a
misclassification rate around 10%.

The experimental results from this project seem promising and encourage further development
of the system.
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“Some people see things that are and ask, Why?
Some people dream of things that never were and ask, Why not?

Some people have to go to work and don’t have time for all that.”

George Carlin
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Chapter 1

Introduction

This chapter introduces the dissertation and the work conducted on the project. It’s motivation

and scope are presented. The problem statement, with the project’s objectives and requirements,

is described. A brief summary of the business environment is presented. Finally, the structure of

the document is detailed.

1.1 Motivation

Asthma is defined by the World Health Organization (WHO)1 as a chronic disease in which the

patients suffer from recurrent events of breathlessness and wheezing. Although the causes of

asthma are not fully understood there are risk factors and asthma "triggers" such as allergens,

tobacco, and chemical irritants, which can be found with relative ease on an industrialized or

developed country. This illness can severely reduce a person’s quality of life, if left unmanaged.

It is the most common chronic disease among children and currently afflicts 235 million people2.

COPD stand for Chronic Obstructive Pulmonary Disease. It covers a number of obstructive

diseases that cause limitations in lung airflow3 such as emphysema and chronic bronchitis. The

main symptoms of COPD are breathlessness, as asthma, excessive sputum and chronic cough. Left

under-diagnosed and untreated, COPD can be a life threatening lung disease. Risk factors include

Tobbaco smoking, indoor (biomass fuel used for cooking and heating) and outdoor air pollution

and occupational dust and chemicals, such as vapors, irritants and fumes. According to the 2004

WHO estimates, 64 million people have COPD, 3 million people died of COPD and it will be the

third leading cause of death worldwide in 2030.

mHealth approaches and devices are revolutionizing worldwide health systems and enable

to take health practices and low cost equipment to isolated places and to people in need. These

platforms are increasingly seen as cost-effective alternatives for hospital care and allow more com-

fortable monitoring and treatment, regardless their location, and a better quality of life. Although

1http://www.who.int/topics/asthma/en/ accessed on 26-06-2014
2http://www.who.int/features/factfiles/asthma/en/ accessed on 26-06-2014
3http://www.who.int/respiratory/copd/en/ accessed on 26-06-2014

1
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there has been a significant effort of the medical device industry to make spirometers portable,

they are still quite expensive, single purposed and, generally, require external pieces or sensors.

One mHealth platform that has increasingly gained popularity is the smartphone. Smartphones

have a considerable computational power for their relatively small size, are easily compatible with

several types of devices thanks to serial connections (USB) and wireless communication (Wi-Fi,

Bluetooth) and are effortlessly and continuously carried by people.

On the other hand, the transition to smartphones is among the top global mobile networking

trends and "the increasing number of wireless devices that are accessing mobile networks world-

wide is one of the primary contributors to global mobile traffic growth" [4]. Furthermore, areas in

relatively severe poverty have had a booming growth in smartphone use. Africa and Middle East is

expected to increase from the current 10% of share of smart devices and connections to 36% until

2018. The mobile data traffic CAGR will also grow to 70% [4]. Currently about 1 in 5 Africans

have access to a smartphone [5].

The possibility of reaching such a number of people with less access to medical facilities

would certainly improve respiratory healthcare and awareness.

1.2 Problem Statement

1.2.1 Project Objectives

This project aims to develop a mobile and easy to use platform that can help evaluate a patient’s

respiratory function. This kind of technology can also enable monitoring systems for patients with

lung problems such as asthmatics, COPD patients and people with other obstructive and/or restric-

tive airway diseases. A smartphone application could be a relatively cheap and easy prevention

and monitoring system that could enable the early detection of lung illnesses. As guidelines to the

development of such application, the platform should have the following properties:

• Self contained,

• Detached from external systems (no external sensors),

• Fast enough (Timely results),

• Precise in the classification,

• Robust to background noise.

The mobile and the self contained characteristics are important in order to reach the most iso-

lated places and avoiding the necessity of constant internet connection for the lung function eval-

uation and value display. It should be detached from external sensors since requiring disposable

and/or replaceable parts both adds to the cost and becomes an additional maintenance problem.

The app should also provide timely results, not necessarily in real time. Finally, it should be
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precise in the evaluation, since people should not be unduly alarmed of a disease, and should be

referred to a physician in the case they do have it or are starting to show symptoms.

In this sense, the methods for the developing of such application, should provide an accurate

classification, in a reasonable diversity sound environments, and relatively low delay, i.e., should

use the least and the less complex methods possible. Additionally, the system input should consist

solely of a smartphone’s microphone recordings.

1.2.2 Application Requirements

The basic system should have the following features:

• Audio recording feature,

• Audio envelope generation,

• Appropriate signal filtering options (if necessary),

• Clinical parameter regression,

• Classification of lung function.

This dissertation focuses on finding the best options among these features, in order to provide

an implementation design for the aforementioned smartphone app.

1.3 The Company

Center for Health Technology and Services Research (CINTESIS) is a non-profit research

and development unit, recognized and supported by the Fundação para a Ciência e a Tecnologia

(FCT), with a classification of "Very Good". It is currently hosted by the Faculty of Medicine

of the University of Porto (FMUP), located in the recently inaugurated Medical Research Center

(CIM) in Porto, Portugal.

Recently, following FCT recommendations, 100 integrated researchers together with 135 PhD

students and 139 collaborator members decided to create a large, multidisciplinary and decen-

tralized, translational research unit: CINTESIS, Center for Research in Health Technologies and

Services, which will be in effect in 2015. The new unit resulted mostly from merging 3 existing

units, classified as “Very Good” in 2007, i.e. the Center of Experimental Morphology, UNIFAI

- Unit for Research and Education on Adults and Elders and the former CINTESIS, Center for

Research in Health Technologies and Information Systems, it also comprises 50 researchers pre-

viously integrated in other R&D units. Altogether, nearly 360 researchers – mostly based in 6

Portuguese higher education institutions, i.e. UPorto, UAveiro, ULisboa, UAlgarve, Polytech-

nic Institute of Porto (IPP), Nursing School of Porto (ESEP) – are organized into 4 thematic

lines, i.e. TL1-Clinical and Health Services Research, TL2-Ageing and Neurosciences Research,

TL3-Diagnosis, Disease and Therapeutics Research and TL4-Data and Methods Research, and 16



4 Introduction

research groups, addressing various aspects from these 4 main research lines. In addition, many re-

searchers are health professionals working in healthcare institutions (e.g. CH-S. João, IPO-Porto,

HCP (CUF-Porto), and CHA-HFaro), which is necessary to implement research projects involving

patients.

Such projects include Digiscope4, which concerns the development of algorithms for diag-

nosis support, Chronic Diseases of the Airways5 and ICAR6, which aim to find the underlying

conditions of respiratory diseases, Smart Diabetes Self-Management Care7, which consists on the

development of a mobile application for chronic disease self-treatment, and CARAT8, which is a

mobile application for chronic disease support.

1.4 Structure of the document

This document is structured in five chapters: introduction, literature review, system for classifica-

tion of lung function, experimental evaluations and conclusion and future work.

Chapter 2 is a review of the literature concerning the relevant medical field, the evolution of

spirometry devices and some current projects of eHealth and mHealth. It also includes descriptions

of some available solutions related to the work developed.

In Chapter 3 the proposed initial system is described as well as the methods and algorithms

that compose it.

The comparison of the several methods, in different settings, is approached in Chapter 4.

Finally, in Chapter 5, the dissertation’s conclusions are presented along with some concepts

for future work.

4cintesis.med.up.pt/index.php/projects/9-projects/49-digiscope-digitally-enhanced-stethoscope-for-clinical-usage
5cintesis.med.up.pt/index.php/projects/9-projects/44-chronic-diseases-of-the-airways-contents-and-tools-for-

productive-interactions-between-empowered-patients-and-proactive-professionals
6cintesis.med.up.pt/index.php/projects/9-projects/56-icar-control-and-burden-of-asthma-and-rhinitis
7cintesis.med.up.pt/index.php/projects/9-projects/108-smart-diabetes-self-management-care
8www.caratnetwork.org/index.php?lang=pt



Chapter 2

Literature Review

This chapter presents the state of the art of both medical field and technology concerning lung

function evaluation. First, a brief description of the medical science behind respiration and spirom-

etry is made. Afterwards, the technology of spirometers is presented, along with a description of

their sensors. The chapter will also discuss some eHealth and mHealth projects and the roles of

applications (apps) in lung function evaluation. Finally, a brief discussion of some architectural

solutions available for smartphone lung function evaluation and spirometry is presented.

2.1 Spirometry

2.1.1 The science of lung function

Respiration is the process by which the body exchanges CO2, from pulmonary blood, for O2 from

the atmosphere, in order to meet the body’s metabolic demands. Physiologically, the process

consists on the integration of the ventilation, blood flow and gaseous diffusion.

Spirometry is a widely used, non-invasive test of ventilatory response and assessment of the

mechanical or bellow characteristics of the patient’s pulmonary system. Along with arterial gas

tension or pulmonary gas exchange measurements it enables an overall assessment of lung function

which can be used for detection, differentiation and diagnosis of several respiratory diseases. It is

also useful for tracking a respiratory disease progression or improvement and therapeutic response

over time. The test itself consists of a timed measurement of the dynamic or respired lung volumes

and capacities during forced expiration and inspiration, enabling the quantification of how quickly

and effectively the lungs are depleted and filled [1].

However, the lungs are never completely emptied since that would cause the lungs to collapse.

The remaining gas volume is called the residual volume (RV). During the normal respiration cy-

cle, the lungs keep within a volume range called the Tidal Volume (TV). The forced expiration

maneuver (FEM), that is performed during spirometry tests, consists of instantaneously inspiring

and completely filling the lungs and then forcefully expiring, emptying the lungs. The lung vol-

ume variation during one of these tests is depicted on Figure 2.1. The maximal slow excursion of

volume after a maximum inhalation is named the Vital Capacity (VC).

5
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Figure 2.1: Respiratory Tidal Volume and Forced exhalation

In the 1800s, Hutchinson developed a water-sealed spirometer that enabled the measurement

of VC. He later observed that the VC was proportional to a person’s height and created tables to

estimate a healthy patient’s expected VC. The Forced Vital Capacity (FVC) is an enhancement of

the simpler VC test.

During the 1930s, Barach observed that healthy patients exhale more quickly than patients with

asthma or emphysema and noted that the airflow was a key aspect of detecting airway obstruction.

In 1947, Tiffeneau described the FEV1/VC, ratio between the Forced Exhaled Volume under

one second and the Volume Capacity, as an index of obstruction, hence the name Tiffeneau index.

However, the medical community has embraced the FEV1/FVC index, rather than Tiffeneau’s,

partly because it implied another, slower, exam and the results evaluate almost the same lung

characteristics.

Around 1950, Gaensler observed that, for healthy individuals, approximately 80% of the FVC

was expired in the first second and the FVC in 3 seconds. This established a baseline for compar-

ison between obstructed and unobstructed airways.

In 1955, Leuallen and Fowler introduced the Maximum Midexpiratory Flow Rate (MMFR)

which is calculated by 1/2FVC / (t75%− t25%). It can also be named just Maximum Midexpira-

tory Flow (MMEF or MEF). This provides an approximate, somewhat graphical way, to quantify

the center slope of the Flow-Volume exhalation curve. This characteristic of the curve’s shape is

another method used by physicians to characterize lung function. Later the term was standard-

ized as Forced Expiratory Flow 25%-75% (FEF25%−75%). However, for shortness of writing, the

terminology MMEF will be used on Chapter 4.

In the 1960s, Wright and McKerrow spread the concept of monitoring asthmatic patients us-

ing the Peak Expiratory Flow rate (PEF or PEFR). PEF tests, referred as bronchial challenge or

bronchial provocation tests, consisted of performing forced expirations before and after the in-

halation of bronchodilator. The analysis was based on the percentage of change [2]. The PEF

also became important for a simpler tracking of intra-daily specific change patterns in respiratory

function, such as those that occur for general and occupational asthmatics [1].
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Figure 2.2: Types of ventilatory defect with typical spirograms and flow-volume curves. Image
taken from [1]

There are also methods to analyze lung function, less focused on forced mechanic character-

istics and more on gas exchange. Examples of those tests are carbon monoxide diffusion capacity

and blood oxygen and carbon dioxide levels measurements [1]. However, "Spirometry is recom-

mended as the "Gold Standard" for diagnosis of obstructive lung disease by the National Lung

Health Education Programme (NLHEP), the National Heart, Lung and Blood Institute (NHLBI),

the World Health Organization (WHO), and numerous other organizations concerned with diag-

nosis of lung diseases" [2], and thus, the focus of the dissertation.

2.1.2 Lung function parameters

Although there are other possible clinical parameters that can describe lung function, only those

on Table 2.1 will be measured, since those are the most popular. However, FEF25%−75% and FEFx

are seldom considered useful on the lung function evaluation since they are highly dependable of

the patients’ cooperation. Cust1 is a custom parameter proposed by [6] that, allegedly, provided

values more stable then FEV1. It is calculated as FEF25%−75% / FEV1 x 100.

The primary components refer to the wider airways and the secondary refer to the smaller

airways. Generally, obstruction affects the rate at which the smaller airways can expel air, and

can be noticed with the decrease of FEV1 and, consequently, FEV1/FVC. FEF25%−75% may be

indicative of obstruction of medium and small airways, though it should not be used alone for

diagnosis [2].

Lung restriction is characterized by the strong reduction of total exhaled air, as well as a

relatively slight decrease of airflow exhalation rate. This can be identified by a slight reduced

1A physician may also evaluate the patient’s collaboration based on the PEF performance relative to the reference
values, which are calculated from the patient’s vital characteristics (height, age, ect.).
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Table 2.1: Clinical parameters used

Parameter Type Meaning/Airway
component measured

Forced Vital Capacity (FVC) Measured Primary and Secondary (All)
Forced Expiratory Volume under 1
second (FEV1)

Measured Primary

FEV1/FVC index Calculated Ratio of Primary over All

Peak Expiratory Flow (PEF) Measured
Primary and patient
collaboration1

Forced Expiratory Flow 25% − 75%
(FEF25%−75%)

Measured Secondary

Custom parameter (Cust1) Calculated Secondary over Primary
Forced Expiratory Flow at 25% (FEF25%) Measured Secondary
Forced Expiratory Flow at 50% (FEF50%) Measured Secondary
Forced Expiratory Flow at 75% (FEF75%) Measured Secondary

FEV1, a strongly reduced FVC and, as a consequence, a slight increase of the aforementioned

index.

Mixed Abnormalities are rare conditions in which both obstruction and restriction features

manifest. It is characterized by overall reduction of VC, FEV1 and Tiffeneau index [7]. This type

of classification shall not be analyzed in detail due to its rarity and the fact that no reference values

are used, either for the FEV1% predicted or other similar typical parameters.

Examples of the respective lung functions can be observed on Figure 2.2.

2.2 Spirometry Technology

The precursor of the modern spirometer was introduced by Hutchinson around 1844. It was a

volume displacement water-sealed device. In recent years the sensor paradigm has shifted towards

the flow measurement type thanks to the evolution and wide-spreading of electronic devices. Also,

it became possible to measure lung function parameters, using several other methods.

During the course of lung function testing history many types of systems have been developed.

Some of them enable exams that complement each other and others are specific for providing

data from particular respiratory related diseases. A short presentation of each medically accepted

spirometry device, and respective sensors, is provided, as described on [2].

2.2.1 Pneumotachometers

From Greek, pneuma, "wind" or "breath", thacos, "speed" and metron, "measure", pneumota-

chometer means that which measures breath speed. "The flow sensors that historically have been,

and continue to be, the mainstay of the respiratory laboratory utilize flow resistors with approx-

imately linear pressure-flow relationships. These devices are usually referred to as pneumota-

chometers" [8].
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2.2.1.1 Volume Displacement Spirometers

As the name implies, these spirometers measure directly the shifting fluid volumes. Since the

designs of this kind of devices were made during a time prior to the electronic massive growth they

are mainly based on mechanical actuation. The movement caused by the breathing expirations is

transferred to a stylus which could write on a moving chart. More recently, with the development

of computers, potentiometers were incorporated so the signal could be better analyzed.

Water-Seal Spirometer: This device consists of a large bell suspended in a container with its

open end submerged. Breathing into the spirometer moves upwards the bell by an amount pro-

portional to the volume expired. During an inspiration the bell submerges beyond the stable level.

For many years the bell had a pen attached, that moved sympathetically with the bell. The pen

recorded on a rolling chart, the kymograph, the respective volume. In recent years the bell acti-

vates a potentiometer handle that varies a DC voltage output. This signal could later be digitized

with an ADC and processed by a computer.

Dry Rolling-Seal Spirometer: This spirometer is cylindrically shaped holding a lightweight

piston inside. A flexible plastic seal couples the piston to the cylinder wall. The seal rolls on itself

when the piston moves slightly with the gas’ volume displacement. The piston shaft rides on a

linear bearing which actuates a rotary potentiometer. This generates an analog signal for flow and

volume that can be fed to an ADC and analyzed.

Bellows-Type Spirometer: This kind of device uses a collapsible bellow that folds or unfolds

depending on the fluid’s flow direction. The common bellow design resembles a flexible accor-

dion. One end is fixed and the other moves freely with the expirations. This movement actuates

either a pen that writes on a moving chart or a potentiometer similar to the other volume displace-

ment spirometers.

2.2.1.2 Flow-Sensing Spirometers

The following spirometers measure air flow based on several different principles. All of them in-

clude the respective sensor and a tube to contain the expiration. Figure 2.3 illustrates the following

sensor types.

Turbine: The turbine, or respirometer, is an instrument that "consists of a vane connected to

precision gears". The vane’s rotation is triggered by the gas flowing through it. This sensor is more

suited to measure VC. The sensor’s configuration can also use a light source and a photoreceptor

to retrieve the number of rotations per unit of time, just like an odometer for motor controllers.

Pressure Differential Flow Sensors: This types of sensors make a pressure differential mea-

surement. The sampling openings are placed one before and another after a resistive element, in
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the middle of the sensor tube. The element accelerates the gas by narrowing the gas flow opening,

while reducing the pressure. This is called the Venturi effect. While changing the gas’ velocity

and pressure, the element also ensures laminar flow.

The resistive element can either be a bundle of capillary tubes, the Fleisch type, or a mesh

screen or membrane, the Silverman or Lilly type. The Fleisch type is more reliable than the Lilly

type. Though the Lilly type is better suited for measuring widely varying flows. The disadvan-

tages of these kinds of measurement devices are that they are very sensitive to local atmospheric

pressure, temperature and humidity. As a consequence, they need to be calibrated daily.

Heated-Wire Flow Sensors: The heated wire method is based on the cooling effect of a flowing

gas. The wire is preheated to a fixed amount and, during the expiration, the gas’ flow reduces the

wire’s temperature. The instantaneous energy consumption to reheat the wire gives a flow value

at that time.

Figure 2.3: Common Flow Sensing Devices (Pneumotachometers). A-Fleisch type sensor, B-
Heated wire sensor, C-Pitot tube sensor, D-Turbine sensor, E-Ultrasonic sensor. Image taken
from [2].

Pitot Tube Flow Sensors: The Pitot tube sensors are based on the principle that states that the

pressure of a fluid is related to it’s density and velocity. In general, a spirometry Pitot tube sensor

has, at least, two sets of small tubes, one facing each flow direction for measuring both expiration

and inspiration. The tubes are connected to pressure transducers.

Ultrasonic Flow Sensors: A sound wave is a compression wave that is influenced by the means

through it travels. The flowing of gas can increase or decrease a sound’s speed depending of the
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relative direction it travels. The sensor consists of two oppositely faced ultrasound transducers,

angled with the tube. By measuring the sound’s traveling time the flow measurement can be

integrated into volume. There is also a different type of gas flow measurement that can be obtained

by quantifying the ultrasound’s frequency shift, based on the Doppler effect.

The design includes a disposable tube which is introduced between the sensors. This allows

a great advantage over several other spirometer types since it needs no calibration and solves the

problem of patient cross-contamination.

2.2.2 Peak Flow Meters

This instrument was designed to measure Peak Expiratory Flow (PEF). It provides a simple mea-

surement that aids asthma monitoring with an inexpensive device. The meters themselves tend to

be made disposable. These meters work by forcing air through a resistor or a flow tube with a

movable indicator.

2.2.3 Plethysmographs

From Greek, plethysmos, "increase" and graphein, "to write". The plethysmograph is an instru-

ment that measures the change in volume within an organ or body.

There are two types of body plethysmographs: the constant-volume variable-pressure and the

flow or variable volume plethysmographs, pressure plethysmograph and flow plethysmograph,

respectively. Both are devices that include a sealed box which the patient has to be in. They

are used to measure the thoracic gas volume (VTG), the specific airway resistance (sRaw) and its

derivatives.

2.2.3.1 Pressure Plethysmograph

This spirometer is based on an adaptation of Boyle’s law. The change in volume inside the chamber

is inversely proportional to the pressure variation. The pressure change is caused by compressing

and decompressing the atmosphere inside the box, including the patients chest. If the temperature

remains constant, the pressure change corresponds to a specific volume change. Since the chamber

has rigid walls and is sealed, its free volume experiences the same, mirror-image shift volume as

the lungs [9].

2.2.3.2 Flow Plethysmograph

This kind of plethysmograph uses a flow transducer in the chamber’s wall. This device measures

the volume changes inside the box. As gas is compressed and decompressed, flow passes through

the chamber’s opening. That flow is integrated and volume change is recorded as the sum of the

volume compressed and the one that left through the opening. With this device there are also some

other tests that can be conduced using a pneumotachometer connected to the outside room.
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2.3 eHealth and mHealth approaches

The rise of the Internet’s generalized access and widespread on the mid-1990s enabled the emer-

gence of a frontier field, where web based services fused with health related systems [10]. World

Health Organization defines eHealth as "the transfer of health resources and health care by elec-

tronic means" and encompasses the delivery of health information by the Internet and other telecom-

munication means, the use of Information Technology and e-commerce to improve public health

services and the use of e-commerce and e-business practices in health system management [11].

Some common examples of eHealth are telemedicine and remote patient monitoring.

As mentioned on chapter 1, in recent years, there has been a miniaturization of electronics

as well as an improvement of mobile devices’ computing capability. The rapid penetration of

technologies such as smartphones, personal digital assistants (PDA), tablet computers, wireless

wearable bio-sensors and disease monitoring devices has enabled a significant shift of medical

decision-making tasks from the medical community to the patient side. Such tasks range from

diagnosis, selection of appropriate treatment and prognosis. This change in perspective has the

focus of improving the awareness of a patient’s own health condition and consequent empower-

ment [10]. Mobile health, or mHealth, although not defined as a standard yet, is a field of eHealth

that makes use of the aforementioned types of devices in order to improve medical and public

health [12].

2.3.1 Games and Applications

Throughout spirometry history there have been several technological advances. As described on

Section 2.2, sensory methods have shifted from purely mechanical to partially electronic. As

a consequence, spirometry apparatuses have become computerized and became able to include

secondary functions or add-ons. Computers have maintained the tendency of getting smaller,

following a corollary of Moore’s law2. This means that there has been a reduction of the size of

the platforms where spirometry related software run. In recent years, significant effort has been

focused around smartphones since they are continuously carried around and include a significant

amount of electronic devices.

Games for compliance: The forced expiration maneuver is somewhat difficult to execute cor-

rectly. This case is specially true for children that need to make a lung function evaluation. There-

fore, pulmonary function laboratories commonly have computer programs that guide children

through the process, most of the time without them even noticing. Usual tests comprise com-

puter games that are played using breathing apparatuses, such as breathing forcefully through a

tube. This enables a better cooperation from the patient since kids rarely wish to lose a game.

2Moore’s law is an empirical prediction which states that within roughly 18 months a chip performance will double,
due to the miniaturization of transistor technology.
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On the other hand, this gaming environment has also been reaching the long term vital pa-

rameter monitoring. Azmo the Dragon3, a Microsoft Imagine Cup finalist, is a game developed

by students of Rice University in Houston. This game’s aim is to get children excited on tracking

their own lung function and better manage their condition. The child temporarily forgets about the

illness and becomes a player, more precisely, a dragon that attacks castles, by breathing fireballs,

in order to retrieve it’s siblings and defeat the evil empire.

Another Imagine Cup entry that focuses on lung function monitoring is Ki-Breath4. This

platform combines a series of mini-games, which acts both as a complement to physiotherapy and

encouragement to patients with respiratory problems, such as suffering from cystic fibrosis, to

fight against the disease.

Finally, mCOPD, which will be discussed on Section 2.3.2, was designed to include lung

function monitoring games [13].

Games for entertainment: With the growth in smartphone use and a rising concern about respi-

ratory diseases, several independent application developers have created sets of games that relate

to spirometry. Many measure the loudness recorded by the smartphone’s microphone to actu-

ate something. Some of them actually advertise spirometry, though they appear under the game

application category.

An example of an entertainment oriented application is Spirometer by Patrick Giudicelli5.

The purpose of this application is to raise a ball above a red line, by expiring to the smartphone’s

microphone, in order to score how long an exhalation takes.

Another game, somewhat related to lung function evaluation, is Blow Up Balloon6, from MTM

HZSTUDIO. The objective is to take a deep breath and forcefully exhale to the microphone. The

score is proportional to how fast the balloon explodes, which might be based on exhalation time

and loudness.

Mobile health applications: There is a significant amount of developers that create smartphone

applications that measure spirometric parameters. Those applications usually have an external

sensor that is connected by Bluetooth, Wi-Fi or USB to the smartphone. The application becomes

a mean to relay data, observe it and update a patient’s profile. Some solutions are also compatible

with multiple sensors for different health problems such as heart rate monitors, pulse glucose and

cholesterol meters, oximeters and so on.

SpiroID7, from Thor Laboratories, is one of such applications. By using the external Spiro-

Tube Mobile Edition sensor8, which connects by Bluethooth to the smartphone, real, medical

grade, spirometry curves and clinical parameters can be measured.

3http://www.bethherlin.com/167918/2433983/projects/azmo-the-dragon, last accessed on 20-06-2014
4https://www.imaginecup.com/finalists/team?teamName=ki(breadth), last accessed on 20-06-2014
5App store link: https://itunes.apple.com/us/app/spirometer/id315550839, last accessed on 20-06-2014
6App store link: https://play.google.com/store/apps/details?id=com.hz.game.balloon, last accessed on 20-06-2014
7Web store page: http://play.google.com/store/apps/details?id=com.thorlabor.spiroid, last accessed on 20-06-2014
8Thor Laboratories SpiroTube page: http://thorlabor.com/en/products/pulmonary-medical-devices/spirotube-

mobile-edition-bluetooth-spirometer/ last accessed on 20-06-2014
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In addition to this SpiroID, all prototypes that are discussed on the following section constitute

a form of mHealth applications, despite not needing any external sensor (embedded microphone

only).

2.3.2 Prototypes and developing projects

There has been a significant effort to develop spirometric devices focused on the availability of

materials or cost efficiency. This aims to reach areas with less access to health care and in isolation,

as described on Section 1.2.

A team from Penn State University developed a Lilly-Pneumotach type spirometer from easily

accessible materials [14]. This Mashavu project prototype was designed as a do it yourself (DIY)

concept enabling the wide-spreading of the design. It used a pressure differential electronic sensor

to measure the airflow and was made with PVC tubing, coffee stirrers, protoboard as a mesh along

with cotton cloth for filtering.

Another relevant project came from a multidisciplinary team of students from the University

of Washington in St.Louis. They worked towards a low cost spirometer [15]. Their solution

consisted of using a microphone as a pressure transducer and coupling it to a custom designed

breathing piece. The piece was relatively cheap to produce, could be easily sterilized and was of

robust manufacturing.

Smartphones have also been a research focus. A group from Radbound University [16, 17]

developed a system in which measurements were made with external sensors (a pulse-oximeter and

a custom spirometer), which were directly connected to a bluetooth sensor interface that relayed

the data to a smartphone. This smartphone app also integrated a questionnaire, communication

with a web-center and computed the predictions. The multiple COPD exacerbation classification

were made by a Bayesian Network constructed with medical help.

TeleSpiro [18] is a combination of custom spirometer design and interface for computer, tablet

or smartphone. The spirometer consists of PVC tubing and a differential pressure sensor which is

mounted on a flash drive like circuit board. This board also contains a digital humidity/temperature

sensor and can communicate using a male USB 2.0 port.

One project that motivated this dissertation was the SpiroSmart application [19] addressing

the Ubiquitous Computing field. The application consists of a somewhat complex software that

records the patient’s breath while giving incentive and showing the performance. It employs signal

processing and machine learning methods to measure lung function.

Two ensuing projects, that started simultaneous and independently, as MSc theses, were the

mCOPD [13] and the SpiroApp [6]. Both systems use forced expiration sounds, recorded with the

built-in smartphone microphones, analyze them and provide some means of clinical information

concerning lung function, similarly to SpiroSmart. mCOPD is focused on the interactivity of

Exergaming (fusion between Exercise and Gaming), while SpiroApp tries to provide a more robust

implementation of lung function evaluation using the microphone.
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2.4 Software Solution Review

This section describes in detail the systems’ architecture of some relevant projects that tackle simi-

lar problems as this dissertation project. Table 2.2 presents a brief summary of the aforementioned

projects.

2.4.1 SpiroSmart

This system’s goal was to accurately replicate the spirometer’s Flow-Volume and Volume-Time

curves, as well as to obtain several clinical parameters from those curves.

The Signal Processing stage first converted the audio input into pressure at the lips and airflow

at the lips. Then all those signals were fed to envelope generating models, namely Hilbert Trans-

form, Linear Predictive Coding (LPC) and Mean of Resonances. All of the envelopes were fed to

low pass filters to remove noise and finally, smoothed with Savitzky-Golay polynomial filter. All

of these methods are described in greater detail in Section 3.2.

On the Machine Learning end, the smoothed envelopes were extracted for parameters (PEF,

FEV1 and FVC) which were regressed with bagged decision trees. Those values were later clus-

tered with k-means, which predicted their final values. These values were used to normalize the

several envelopes and, combined with raw envelopes, the final envelopes were obtained, using

Bagged Regression Trees and Conditional Random Fields (CRF) on 15ms frames. These last

curves were filtered for abnormal events such as non-monotonic Volume-Time curves and, finally,

clustered with k-means, producing the final curves.

2.4.2 SpiroApp

The SpiroApp’s implementation records the audio from the FEM, calculates FFT magnitudes on

50% overlapping, 100ms frames and regresses the Flow-Time curve with a fourth order polyno-

mial function. It’s main objective is to provide a simple way to calculate an approximation of a

patient’s vital parameters, mainly for classification in "good", "maybe bad" and "bad" lung func-

tion. The use of just polynomial regression aims to provide a more robust system against ambient

noise and to reduce the implementation space and speed requirements.

2.4.3 mCOPD

This system records the sounds with the microphone and converts the air pressure to air velocity

based on the microphone response model. The pre-processed signal is low pass filtered to remove

noise and the frequency components are obtained with a 64-point FFT. This result is regressed

either by Nearest Neighbor Matching or by a second order polynomial, depending of the platform

requirements. From the regressed Flow-Time curve the Volume-Time is obtained and the clinical

parameters FEV1, FVC, and FEV1/FVC are calculated. These are displayed, as well as the total

duration of the exhalation.
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System Shape
regression9

Classification
/ Diagnosis

Clinical
Parameters

Project
Stage

Objective

SpiroSmart [19] Yes No Yes Prototype Curve regression
and clinically
accepted parameters
extraction

SpiroApp [6] No Yes Yes MSc
Dissertation
/ Prototype

Gross evaluation as
healthy or not.

mCOPD [13] No No Yes MSc
Dissertation
/ Prototype

COPD detection,
evaluation and
monitoring based on
FEV1 and FVC.

Table 2.2: Microphone based smartphone solutions’ characteristics

9By shape regression it is intended as accurately representing the shape of the exhalation, in a similar fashion as in
a spirometer report.



Chapter 3

System for Lung Function Classification

This chapter presents the classification system and methods that were tested in the course of this

project. First, the testing architecture is described as well as the reasons for comparing the several

sets of methods. Then, the methods and algorithms are explained.

3.1 Initial System Architecture

3.1.1 Concept and Structure

The project’s objective is to use microphone recordings of people performing the forced expiratory

maneuver (FEM) in order to classify the respective lung function. The system is structured in two

main stages: the signal processing stage and the machine learning stage.

On the signal processing stage the recordings’ envelopes are calculated in order to extract

those curves’ clinical parameters, just as it would be done on a spirogram. Initially, the record-

ings undergo some pre-processing conversion models, namely the Inverse Radiation and the Flow

Conversion. Then, both the original audio and the other steps are fed to the envelope generat-

ing functions: Hilbert Transform, Shannon Entropy and Energy, LPC and Mean of Resonances

(MRess). Several envelope functions are used since they have different characteristics and pro-

vide different aspects of the sounds to be analyzed. The envelopes are then subject to an LPF1or

smoothed with a moving average (window size of 4% of the sampling frequency). Finally, these

results are fed to a Savitzky-Golay smoothing filter (order 3 and size 11). The unprocessed en-

velopes are also subject to a polynomial approximation (4th order). The clinical parameters are

extracted from both the polynomial fitting and smoothing results. Figure 3.1 presents the initial

signal processing diagram, containing all the methods evaluated.

The machine learning stage can be divided in two other stages: the regression stage and the

classification stage. The total of processed envelopes is 54 resulting in 486 parameters extracted.

These are far too many comparing with the dataset available, hence the parameter reduction with

the regression stage. Each clinical parameter from each recording is regressed, resulting in the 9

1Low Pass Butterworth filters, for Hilbert and Shannon envelopes: 2nd order at 50Hz followed by 1st order at
100Hz; for LPC and MRess: 1st order at 2560Hz.

17
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Figure 3.1: Initial Signal Processing stage Diagram
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parameters described on Section 2.1.2. The regression models used were Regression Trees em-

ploying the following ensemble methods: Bootstrap Aggregation (Bagging) and Random Forest.

These parameters, along with some patient’s vital information (height and age), were fed to the

classification stage. At this point, there were still quite some parameters/dimensions where to

scatter the classifications, therefore linear classifiers such as Classification Trees and SVMs were

tested. It was also tested the Naïve Bayes classifier.

3.2 Signal Processing

This section discusses the several signal processing methods tested on the project. First, some au-

dio cropping and conversions are presented, then the envelope generating functions are explained

and finally, the filtering and smoothing methods are detailed. A discussion concerning the choos-

ing of the implemented methods is presented on Section A.1.

3.2.1 Pre-processing

Automatic Crop Algorithm: The recording environment varies significantly from session to

session. Additionally, each recording contains the rapid inspiration sound, which is not intended

to be explored, and occasional background noise, such as people talking or machine sounds. In

order to cope with these, a method to automatically segment the recordings was devised.

Clinical spirometers, although do not have to worry about flow direction, usually provide a

method to calculate the zero time instant, named Back Extrapolation. This value defines the start

for all timed measurements since it corresponds to the start of the forced expiration. It changes

slightly the time at which the patient starts the expiration but provides a mean to discern if the

FEM had a hesitant start or if the effort was maximal [20].

The back extrapolation method was adapted to find the approximate time of the beginning

of the exhalation. First, the LPC envelope of the recording is obtained, as described on Section

3.2.5. Then the envelope is subtracted of an arbitrary ratio of the maximum flow value (9% of

PEF) in order to retrieve the two zero-crossings immediately before the PEF. By removing the

part of the envelope prior to the average of those instants, the most relevant part of the inspiration

is discarded. The back extrapolation itself consists of finding the zero-crossing of the steepest

slope of the Volume-Time curve [20]. This slope coincides with the instant when occurs the PEF.

The slope is calculated using the two neighboring points of the PEF in the Volume-Time curve,

which corresponds to a, roughly, 47 ms period. The recording crop is made around 80 ms before

the zero time to ensure a margin for the envelope calculation algorithms to work with. This back

extrapolation and cropping process is shown in Figure 3.2 and Figure 3.3 is an enlargement of

Stage 3.

A second cropping method is used for the ending of the recording. The method consists of a

sliding window, starting at the absolute maximum of the recording, which moves to the end of the

recording, in order to reach noise level. This noise level is defined as an arbitrary ratio (2%) of

the absolute maximum value of the recording. This way, the noise after the FEM is removed from
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Figure 3.2: Zero time Back Extrapolation algorithm. Top left: Stage 1, original Flow-Time en-
velope, grossly separating the inspiration from the expiration portions. Top right: Stage 2, Flow-
Time Envelope with the inspiration portion removed. Bottom left: Stage 3, Volume-Time envelope
back extrapolating the zero time. Bottom right: Stage 4, Flow-Time envelope with pre-zero time
values removed.

Figure 3.3: Stage 3 of the Zero time Back Extrapolation algorithm (enlargement). The zero time
is where the PEF time tangential line intercepts with the zero volume. The PEF time is marqued
as a circle.
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analysis. The window size is also arbitrary (used 5% of the recording length, moving with 25% of

overlap). The results of the two methods are shown on Figure 3.4.

Figure 3.4: Automatic crop steps. Top image: Original recording. Middle image: Recording after
crop from the back extrapolation algorithm. Bottom image: Recording after the previous crop and
the final, moving window crop.

Inverse Radiation Model: The input of the classification system is a microphone recording

of the FEM. However, a microphone can only measure the air pressure around it. Spirometers

measure the airflow that comes from the mouth. Therefore, it seems reasonable to approximate

the airflow at the mouth based on conversion models [19].

The transfer function that translates the pressure loss around the patient’s body and across

the distance between the mouth and the microphone is given by equation 3.1. It constitutes an

approximation of the breath as a spherical baffle in an infinite plane [21]. Darm is the length of the

patient’s arm/distance to the microphone, Chead is the head circumference (approximated from the

subject’s height, just like Darm, and c is the speed of sound. Darm is calculated proportionally to

the height and according the gender, using values from [22]. Chead values are estimated based on

the 50% centiles of [23], also according height and gender.

H
(
e jw)= P

(
e jω
)

Plips (e jω)
∼ jωChead

Darm
exp
(
− jωDarm

c

)
(3.1)

The intended model is the inverse of this transfer function. However, since it is non-causal,

the inverse is converted to the time domain, hinv, for a "manual" convolution of the delayed time
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series, given by equation 3.2.

hinv (t) =
Darm

Chead
u
(

t +
Darm

c

)
(3.2)

On the other hand, the operation involves a step function with a simple delay, which does not

have any relevant meaning, since the recordings are first fed to an autocrop algorithm. This way,

the model was reduced to a gain whose importance will be discussed on chapter 4.

Figure 3.5: Pre-processing conversion models’ results

Pressure to Flow Conversion Model: The non-linear equation 3.3 models the pressure drop

across the lips (plips (t)) to flow rate through the lips (ulips (t)) considering the turbulent airflow

[21]. rlips is the radius of the mouth opening. To the best of our knowledge, there are no studies

concerning adult mouth open radius and, therefore, these values had to be estimated based on a

linear regression produced with values from an online proportion calculator2. In turn, these values

were calculated based on the height and gender.

ulips (t)∼ 2πr2
lips

√
2plips (t) (3.3)

It should be noted that the expressions for both the inverse radiation and pressure to flow

conversion models are only proportional. This is due to the removal of scaling constants, that

are not meaningful for the intended analysis since the microphone is not calibrated and may have

a non-linear model. Also, only relative values are relevant for the regression stage. The results

from the conversion models are depicted on Figure 3.5, as they would have been calculated on

2http://hpc.anatomy4sculptors.com/
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the system, i.e., the results from the Inverse Radiation model become the input of the Airflow

conversion model.

3.2.2 Mean of Resonances

When a system’s response has a tendency to oscillate at a specific range of frequencies it is said

to resonate. As pointed out in [19], it is reasonable to assume that airflow should be proportional

to the magnitude of frequencies resonating on the vocal tract and mouth opening. A spectrogram

of a recording is made: the signal is divided into overlapping chunks (of 31.25ms) from which the

frequency components are obtained by an FFT.

The Fast Fourier Transform (FFT) is an algorithm commonly used in sound processing and

analysis. It is an efficient way to compute the Discrete Fourier Transform (DFT) and its inverse.

This process can be viewed as the transformation of an amplitude and time signal into its frequency

power spectrum contents.

Let x0, ...,xN−1 be complex numbers:

DFT : Xk =
N−1

∑
n=0

xne−i2πk n
N k = 0, . . . ,N−1. (3.4)

where n stands for a discretized instant of time, k is a discretized frequency, xn is the nth com-

plex sample from a Nth periodical signal and Xk is the kth value of the frequency spectrum. After

the frequency images are sequenced and the spectrogram is attained, only the resonant frequencies

are saved. Every value lower than 20% of the global maximum is filtered as well as any resonance

less than 125ms. Figure 3.6 represents the stages of filtering the spectrogram. The mean of all

remaining frequency contents is obtained, culminating in an envelope.

The conservation of relatively long resonances would be, sometimes, broken due to frequency

shift of a component. That would produce abrupt valleys on the curves. To solve this issue, a

mechanism was developed in order to keep the magnitude components based on the existence of

neighboring bins. The spectrogram of the results can be seen on Figure 3.7.

3.2.3 Hilbert Transform

The Hilbert Transform is a linear operator that results in the convolution of a real valued signal

with the signal −1/(πt). The process is a basic tool in Fourier analysis and can calculate the

harmonic conjugate of a given function or Fourier series. Additionally, it can also be obtained on

the time domain based on a moving average approach [24]. If this conjugate is added back to the

original signal and processed using a LPF it is possible to extract the original signal’s envelope.

The signal was segmented into 50% overlapping chunks (of 31.25ms) which underwent an
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Figure 3.6: Frequency tracking spectrogram process, from left to right, original, noise filtered,
persistence of resonances

Figure 3.7: Frequency tracking spectrogram output, on the left using bin tolerance of 0, on the
right using bin tolerance of 2
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Figure 3.8: Original signal (in black) and Hilbert transform envelope (in red): Top image is an
unprocessed result. Bottom image is the filtered result

FFT operation. The Hilbert Transformation was implemented using the Rice–Dugundji represen-

tation:

Hη( f ) =


0, for f = 0.

−iFη( f ), for f > 0.

iFη( f ), for f < 0.

(3.5)

Where f corresponds to frequency, i is the imaginary unit, Fη( f ) is the Fourier series of the

original audio signal, Hη( f ) is the harmonic conjugate, on the frequency domain. Finally, after

the conjugate was calculated, the envelope was obtained.

3.2.4 Shannon Envelopes

The Shannon envelope functions, namely Entropy and Energy, come from the Information Theory

field, employing notions of measure of uncertainty and expected value. These functions are quite

popular for retrieving the envelope of AC signals in signal processing, particularly for enabling

the segmentation/detection of cardiac sounds [25–28]. In some cases, the energy is normalized
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and averaged [29].

Shannon Energy: E =−x2(t) · log x2(t) (3.6a)

Shannon Entropy: E =−|x(t)| · log |x(t)| (3.6b)

The equations 3.6a and 3.6b have slightly different characteristics. E is either the Shannon

Energy or the Entropy and x is the input audio signal. As shown in Figure 3.9, Shannon Entropy

focuses on the lower-mid intensities while the Energy on the mid-higher ones, respectively atten-

uating the counterparts. After the envelopes are obtained, they are either smoothed with a shifting

mean or filtered.

Figure 3.9: Comparison of different envelope methods. The solid line is the Shannon Energy
that converts the original amplitude values and enhances the upper amplitudes. The dotted line is
the Shannon Entropy that converts the amplitude values and enhances the lower amplitudes. The
dashdot line is the absolute value (|x|) that has a linear amplitude response. The dashed line is the
Energy (x2) which is non-linear and boosts the dynamic range of the signal.

3.2.5 Linear Predictive Coding

Linear Predictive Coding (LPC) is a popular audio processing tool used to characterize a signal

source in a compressed format. It is used for reducing speech information, subsequent transmis-

sion and voice reconstruction in a very accurate way, at the receiving end. There are many variants

of LPC, namely LPC-10, CELP, MELP, RELP, among others. However, all of them are based
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Figure 3.10: Comparison of Original signal and Shannon envelopes (black) and filtered results
(red)

on a single model: an excitation signal and a filter. This speech/signal production model can be

represented as a signal produced by a difference equation (3.7).

y(n) =
p

∑
n=1

aiy(n− i) Gx(n) (3.7)

Where x(n) is the excitation signal, y(n) the speech/output signal, G the "history parameter"

and ai the filter coefficients. The excitation signal can be either an impulse train, for voiced sound,

or white noise, for unvoiced.

The respiration process implies two concepts similar to LPC: a vocal tract which can be mod-

eled as a varying width tube [30]; and the exhalation itself, which is the power source of the ex-

piration sound. This tube model is represented by the aforementioned filter and the power source

can be modeled as white noise.

In order to retrieve the envelopes from the exhalation recordings, one can segment the input

into 50% overlapping chunks of 31.25ms, and obtain the white noise variance, or power, from

the LPC outputs. This succession of variance values should be proportional to the expiration

power at the respective time [19], and thus, can be considered as a downsampled envelope of the

original. The implementation exported the LPC envelopes with degrees 2, 4, 8, 16 and 32 to model

increasing vocal complexity.
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3.2.6 Post processing

Savitzky-Golay filter: The method popularized by Savitzky and Golay’s convolution coefficient

tables is based on the notion of weighted moving averages. The main drive of this method was

the necessity to remove random noise from generic physics and chemistry related information,

surpassing the contemporary methods in simplification and computation speed [31]. Once a con-

volution function is chosen, more precisely, after the degree of the a polynomial and the window

size are chosen, the values of the window are convoluted with the polynomial coefficients, in order

to calculate the window’s center smoothed value.

3.3 Feature Extraction

For each envelope the clinical parameters were extracted. This envelope represents the Flow-

Time curve. However, some parameters can only be collected from the Volume-Time curve and,

generally, a spirometer also presents the Flow-Volume curve. The Volume-Time curve can easily

be generated by integrating the flow over time. The Flow-Volume curve is produced by remapping

the Flow-Time points (abscissas) to the Volume-Time ordinates. As a consequence of constant rate

sampling and a non-linear Volume-Time curve due to the FEM itself (specially at the beginning

and end), the mapping presents uneven spacing between data points. This can be adjusted with

simple linear or quadratic interpolation. Examples of these curves are shown in Figure 3.11.

The parameters are obtained as described:

• The FVC corresponds to the total volume exhaled during the FEM, so it corresponds to the

last value of the Volume-Time curve.

• The FEV1 is the volume exhaled during the first second. It is equal to the value of the

Volume-Time curve at the sampling frequency value sample.

• The FEV1/FVC ratio is calculated as defined.

• The PEF corresponds to the maximum value of the Flow-Time curve.

• The parameters FEF25%, FEF50% and FEF75% are gathered from the Volume-Time curve at

the instants of 25%, 50% and 75% of the total volume, respectively.

• The FEF25%−75% corresponds to half of the total volume (FVC) divided by the time differ-

ence between the 75% and 25% of the volume.

• Cust1 is calculated as FEF25%−75%/FEV1x100.

As mentioned on Section 3.1.1, all the values extracted are not calibrated and thus, there is

a need for a regression phase, to both reduce the number of features and adjust them to medical

values range.

3Adapted from http://www.associatedhealthsystems.com/images/pages/diagnostics/SpiroChart.jpg
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(a) Recorded data results: from left to right, Flow-Time, Volume-Time and Flow-Volume.

(b) Part of spirometer report3, three FEM maneuvers: from left to right, Flow-Volume and Volume-Time.

Figure 3.11: Clinical curves
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3.4 Machine Learning

The dataset is constituted by a very unbalanced, small quantity of observations. There are sig-

nificantly less cases of anomalous lung behavior (obstruction and restriction classes) than normal

ones. Additionally, due to the feature space initially being considerably larger than the number

of observations, it should also be considered the Hughes effect. This consists of the tendency

of the classification error to increase as the feature space increases, for the same number of ob-

servations [32]. The dataset will is discussed in Section 4.2. This conjugation of factors could

easily enable a situation where the classifier would overfit. Therefore, it was decided to employ a

regression-first-classification-later approach. A discussion concerning the choosing of the imple-

mented methods is presented on Section A.2.

3.4.1 Regression Algorithms

Regression Trees: A tree is a structure that consists of a root node and several others attached to

it in some kind of hierarchical fashion. The decision tree’s nodes represent decisions, separating

data according to the node’s function. The terminal leaf nodes are the data labels. This kind of

structure is transparent to the user since it progressively sorts the data based on some feature until

it is completely defined.

The tree, or in fact, the node’s functions, are generated based on the training data. There is

significant effort to find the best and fastest ways to divide the training data. The termination of

the dividing algorithm generally isolates many data entries to their own leaf. This causes problems

concerning the overfitting of the method. Many variations were proposed to reduce this problem

such as terminating the algorithm before the tree grows to full depth or pruning some of the outlier

branches.

Specifically, the terminal nodes of Regression Trees consist on the attribution of the average

value of the training data that falls into it. Each new data entry undergoes the decision process,

traversing through the tree until the leaf node is reached and the respective numeric value is as-

signed.

3.4.2 Classification Algorithms

Classification Trees: are quite similar to Regression Trees, except for the fact that the leaf

nodes’ value does not correspond to a numeric value but to the most frequent classification of

the training set that arrived to that node.

Support Vector Machines (SVMs): SVMs [33] are focused on separating labeled data using

hyperplanes. Their aim is to maximize a "margin" between the boundary of different classifications
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Figure 3.12: Regression Tree example, regressing PEF

and the instances of either side. Minimizing the Lagrangian in 3.8 with respect to the weight vector

w and bias b would get the best hyperplane cut [3].

LP ≡
1
2
‖w‖2−

N

∑
i=1

αiyi(xi ·w−b)+
N

∑
i=1

αi (3.8)

where x is observation matrix, y is the observation label vector, α is the observations’ La-

grangian multiplier vector. The SVMs’ training algorithms necessarily reach the optimal separa-

tion, avoiding local minimums. Though, if each dimension is to be considered equally important,

i.e. have the same weight, and enable a more generic solution, the dataset should be normalized

before being fed to the training model.

When the data is not linearly separable there are some non mutually exclusive methods to

reach a solution. Usually, even if some data points are misclassified or fall within the other classes’

hyper-dimensional region a classification model can still be devised by tolerating the misclassi-

fication of some data points. These are called soft margin SVMs. By introducing positive slack

variables (ξi) on the constraints it is possible to accept some misclassifications of the training set.

The Lagrangian turns into:

LP ≡
1
2
‖w‖2 +C

N

∑
i=1

ξi−
N

∑
i=1

αi {yi(xi ·w−b)−1+ξi}+
N

∑
i=1

µiξi (3.9)

where µi are the Lagrange multipliers that keep ξi positive.

The second method solves the problem of simple non-linear separation as a transformation

of the dataset, named kernels. For instance, if a dataset had a radial distribution, like the one

presented on Figure 3.13, it could be linearly separated provided the radial basis function kernel

would be applied before the SVM was trained.

Finally, one can also improve the SVM classifier performance for not linearly separable data

by adding a dimension to the dataset [3].
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Figure 3.13: Separable classification with Radial Basis kernel functions in different spaces. Left:
original space. Right: feature space4

s

Although, SVMs are strictly binary classifiers there are also strategies to cope with multiple

classes at the same time by dividing the problem into several suboptimal ones.Some are, for ex-

ample, One against One (also referred as All against All) and One against All. The first strategy

consists of developing one SVM classifier for each pair of classes while the later consists of de-

veloping N SVM classifiers where each distinguishes between one class and the remaining others.

In either case, the class with most votes is deemed the output [34].

Naïve Bayes: is a predicting model that, given an n dimensional distribution θ , can compute a

class’ probability given new data, Pθ (C|D). The model’s decision should be the one with highest

conditional probability. According to Bayes rule, the conditional probability can be rewritten as in

equation 3.10a. However, since the maximization will be made over C, P(D) can be ignored. Also,

it is assumed that the data features are conditionally independent given the classification, enabling

the conditional probability to be rewritten as equation 3.10b. Both likelihood, P(Di|C), and prior,

P(C), can be estimated from the training set and so, the model output is given by equation 3.10c

P(C|D) =
P(D|C)P(C)

P(D)
(3.10a)

P(D1, ...,Dn|C) = P(D1|C) ...P(Dn|C) (3.10b)

Ĉ = argmax
C

(
P

θ̂
(D|C)P

θ̂
(C)
)
= argmax

C

(
P

θ̂
(C)

n

∏
i=1

P
θ̂
(Di|C)

)
(3.10c)

4Image taken from http://www.dtreg.com/svm.htm
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3.4.3 Ensemble Algorithms

Bootstrap Aggregation: A known technique of variance reduction that diminishes overfitting

problems is Bootstrap Aggregation (Bagging). By using n random data subsets, with replacement,

to generate learner models and enabling a voting/averaging process of new data, it can enhance

local adaptivity of the boundary [35]. It works well with classifiers that are unstable like decision

trees.

Random Forests: This method is similar to Bootstrap Aggregation, however, it differs on the

number of observation features/dimensions that are considered at each split of a decision tree.

An initial random training subset is used to grow each tree and, at each node, only a random

subspace of features of the training set is used for splitting. Eventually, each tree is fully grown

(not pruned) and either the majority vote (classification) or the average (regression) of all trees

decision values is deemed the method output for a given input. This method is relatively robust

to outliers and noise, and is faster than either bagging or boosting. In terms of accuracy, it also

outperforms bagging and rivals with boosting [36]. Random Forest number of deciding features

usually are one third of the total number, for regression, and the square root of the total number,

for classification.

Boosted Methods: The boosting process is an online learning method that enables weak learn-

ing models, such as decision trees, to become high performance models. The concept of boosting

comes from the idea of focusing the learning process on the hard-to-learn portion of a distribu-

tion [37]. Like any other online learning method. The learner is first presented with a training

set with uniform importance, tries to learn the model and how to classify observations. The weak

learner model is stored, each wrong observation weight is increased and a new weak learner model

is trained the same way, using the new distribution weights. After a fixed amount of iterations, a

uniform voting process, using all the stored learners is used to decide the test data set.

Adaptive Boosting (AdaBoost): AdaBoost is an improvement of generic boosting methods

whose voting process is weighted [38]. Each weak learner’s vote weight αi = log{(1− eb)/ei},
where eb is the iteration’s weighted missclassification error given by equation 3.11:

eb =

n

∑
i=1

ωi1
{

yi 6= f̂wl,b (xi)
}

n

∑
i=1

ωi

(3.11)

where f̂wl,b is the bth weak learner from the ensemble class estimation, n is the number of

training observations, xi and yi are the ith training data and classification, respectively, and ωi

is the ith observation weight. The curly braces indicate the expression is logical. Either wi is

multiplied by 0 or by 1.
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There are two different implementations: AdaBoost.M1 is for binary classification and Ad-

aBoost.M2 is for multi-class problems, though their details will not be approached in this docu-

ment.



Chapter 4

Experimental Evaluations

This chapter describes the experiments conducted to evaluate how different groups of signal pro-

cessing, regression and classification methods perform using the available dataset. The chapter

is divided in experimental setup and the description and results of those experiments. First, the

tools used are presented and the recording protocol explained. The data acquisition processes is

described along with how the dataset is composed and how it was obtained. The experiments ini-

tially devised are presented, followed by those that were afterward deemed interesting in light of

the first results. Finally, the architecture of the final prototype is proposed.

4.1 Experimental Setup

4.1.1 Technologies and tools

The methods and architecture were implemented in Matlab, as well as the simulations. The SVM

models were implemented using LIBSVM.

The "ground truth" clinical values were obtained using the spirometer devices presented on

Table 4.1. The recordings were made on a Samsung GT-I9000, using a custom made app designed

by the student and developed by Bernardo Pinho.

4.1.2 Recording process/protocol

Firstly, each patient performs a few forced expiratory maneuvers into the clinical spirometer. This

step was repeated until the ATS repeatability standards were achieved. From the best maneuver,

the clinical parameters, mentioned on subsection 2.1.2 were obtained. Since most of the recording

process was included in screening events, other tests were conducted, namely, Nasal Peak Inspi-

ratory Flow (PIF) measurement, carbon monoxide (CO) quantity measurement and nitric oxide

(NO) exhaled fraction measurement.

The patient was then explained how to perform the FEM with the smartphone, stretching

his/her arm at mouth level, holding the device, facing the screen and not the microphone. It was

35
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(a) Main menu (b) Recording menu

Figure 4.1: Screenshots from the enhanced recording app

emphasized to exhale directly to the screen, avoiding holding the phone either tilted or obstructing

the microphone. A few recordings were made in order to reduce variability.

Afterwards, the patient was often asked to do a post-bronchodilator (BD) test, repeating the

previous steps after a few minutes of taking the drug. Due to time constraints of the events or

excessive effort/strain caused by the numerous FEMs, not all patient’s were asked to record a

post-BD maneuver.

In all maneuvers, using a spirometer or otherwise, the patient’s were asked to wear a plastic

nose-clip to prevent exhaling through the nose.

The recordings were made with the following settings: AMR file encoding, on a 3GP package,

with a 16kHz sampling rate. All the recordings were later converted to Wave format at a sample

rate of 16kHz and bit depth of 16 using the ffmpeg codec1.

4.2 Dataset

The dataset is composed by 101 recordings from 61 patients performing the forced expiration ma-

neuver, without any mouthpiece, at an arm’s length. Additionally, each recording is accompanied

by the patient’s anthropometric parameters (age, height, weight, gender and race), the clinical pa-

rameters, and classification (classtype) and degree label (classdeg) of the patient’s lung function

provided by the recording physician.

The classification types are normal, obstruction, restriction and mixed, and the degrees are

mild, moderate, severe and other. There are also annotations concerning the recording environ-

ment, who performed the recordings, an open text field (for indicating that a bronchodilator was

used or there was coughing, for example) and a classification of the recording/maneuver as good,

1www.ffmpeg.org/
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bad cooperation or error (no maneuver performed). This last field provides a quick insight of the

recording’s content which is helpful since all recordings were saved for later analysis.

The recorded patients were either part of studies of Control and Burden of Asthma and Rhini-

tis (ICAR), patients from CUF Porto Institute (ICP) or from CUF Porto Hospital (HCP). The

recordings were made on the dates and places shown on Table 4.1.

Table 4.1: Recordings’ Distribution and ground truth device

Number of
recordings

Date Location Spirometer

14 3-04-2014 to 5-04-2014 Aveiro - ICAR Spirodoc - MIR
17 10-04-2014 Coimbra - ICAR Spirodoc - MIR
18 22-04-2014 to 20-05-2014 ICP Jaeger IOS – Carefusion
2 15-04-2014 HCP Jaeger IOS – Carefusion
10 17-05-2014 Vila Real - ICAR Spirodoc - MIR
9 24-05-2014 Viseu - ICAR Spirodoc - MIR
15 3-06-2014 Loulé - ICAR Spirodoc - MIR
16 4-06-2014 to 5-06-2014 Portimão - ICAR Spirodoc - MIR

The patients ranged from 18 to 82 years old. Since children’s lungs have higher elasticity and,

therefore, very different characteristics than adults and teenagers, they were not considered for the

study. The patient classification distribution is shown on Table 4.2.

Table 4.2: Recordings’ clinical classification distribution

Class Total Mild Moderate Severe
Normal 71 - - -
Obstruction 23 21 2 0
Restriction 2 0 0 2
Mixed 5 2 3 0

4.3 Regression Experiments

The algorithms used for the subsequent experiments were based on a backward selection approach.

Initially, all the signal processing methods were used and the clinical parameters’ sets were ob-

tained by successively removing some methods out of the initial set. For each set, a 5-fold cross

validation set was made to verify the models’ expected accuracy and to obtain the average error

and standard deviation. All presented error values are shown in their absolute value. This also

applies to boxplots and other figures. Some tables present method sets labeled using a negative,

for instance, "Minus plips" or "No Energy". This tries to clarify that those functions are the only

ones removed from the current envelope set, and that the remaining others are still combined.
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4.3.1 Preliminary Regression Results

First, the stability of the regression ensemble methods was verified and the best number for weak

learners chosen. Table 4.3 shows the results of the test. Both Bootstrap Aggregation (Bagging)

and Random Forests were tested using 5-fold cross validation (out-of-bag) prediction.

Table 4.3: Regressed Values of FEV1, using Bagging and Random Forests, using the original
signal processing architecture

Methods Measurement Number of Trees Avg. Std.80 110 140 170 200

Bagging
Avg. Error % 22.28 21.41 21.25 20.78 20.82 21.31 0.61
Error Std. % 21.08 20.42 21.51 20.05 20.53 20.71 0.57
K Fold Loss 2.99 2.86 2.71 2.56 2.64 2.75 0.17

Random
Forest (1/3)

Avg. Error % 21.72 21.84 22.63 20.60 21.04 21.56 0.78
Error Std. % 21.03 22.03 22.65 20.39 20.48 21.32 0.99
K Fold Loss 2.73 2.84 3.03 2.58 2.62 2.76 0.18

The preliminary results show that bagging and random forests are quite similar. Even though

the results are very stable, and nearly identical, the best number of decision trees for each ensemble

seems to be around 180. Henceforth, 180 trees are used for all regression models. Additionally,

both methods consistently produced between 5 to 7 outliers, with regressed values reaching the

double of the intended targets (from the spirometer).

4.3.2 FEV1/FVC Regression and Calculation

Since the regression methods try to model as close as possible the conversion from data envelope

parameters to the target values, it stands to reason that the FEV1/FVC parameter is closest when

it is directly regressed than when it is calculated based on the regressed values of FEV1 and FVC.

Also, as a consequence of regression, both values of FEV1 and FVC are prone to error and the

error of each one can be of different sign, diverting considerably the ratio.

In order to test that assumption, a complete parameter set, containing all methods, as initially

described on Figure 3.1, was generated. Since the regression should be fairly the same for this

number of envelope methods with either bagging and random forests, it was decided to compare

the index’s values using random forests, that enable a shorter learning time. The learning and

prediction procedure was the same as in the previous experiment, 5 fold cross validation, with

180 trees in each forest. Figure 4.2 presents the results of the test. It clearly supports the original

thesis. The directly regressed values of the index were used henceforth.

In order to try to simplify the tables and diagrams, the parameter the FEV1/FVC index is

referred as Tiff, hereafter. It is not exactly the Tiffeneau’s index, in a medical sense, since the

Tiffeneau’s index is defined as FEV1/VC, as described on Section 2.1.1.
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Figure 4.2: FEV1/FVC index error comparison, to the left, directly regressed values, and to the
right, calculated based on regressed values of FEV1 and FVC, independently

4.3.3 Comparison of Conversion vocal models

As discussed on Section 3.2.1, the Inverse Radiation Model (IRM) can be reduced to a gain. This

raises the question if the respective waveforms should be used for envelope generation, since the

envelopes should not change their relative values, i.e., the curve shapes should be the same. This

means that including the results from this model would introduce redundant information on the

learning process and, most likely, would increase the learner’s overfitting.

This experiment involves comparing the regression results from three envelope sets. The first

set (All) includes all the methods initially considered for the systems, as described in Section 3.1.

On the second set (Minus plips), the envelopes generated from the plips waveform (IRM’s output)

are removed. On the third set (Minus plips gain), the influence of the IRM is removed from the

Pressure to Flow Conversion Model (PFM). Specifically, the PFM’s input becomes directly the

recording’s audio.

Table 4.4: Conversion Models experiment - Regressed Values Error - Bagging

Models Regressed Parameters error
PEF FEV1 FVC Tiff MMEF Cust1 MEF25 MEF50 MEF75

Avg.%
All 20.91 30.40 20.05 9.99 42.16 25.10 71.23 41.81 37.46
Minus plips 21.93 29.11 19.55 9.76 41.19 24.86 68.92 40.84 33.36
Minus plips
gain 21.41 29.58 21.14 9.84 42.96 25.02 70.79 40.91 35.33

Std.%
All 20.04 27.78 18.10 8.78 53.53 27.80 100.16 46.87 47.06
Minus plips 22.29 25.58 19.10 8.97 53.04 27.17 96.03 47.04 44.40
Minus plips
gain 22.27 26.77 20.14 8.56 56.69 28.05 105.07 46.12 41.25

where Avg. corresponds to the percent average of regression error, Std. is the percent standard

deviation of regression error and Tiff corresponds to the FEV1/FVC index.

Both Tables 4.4 and 4.5 and Figure 4.3 present the regression results of the three method sets

across the 9 clinical parameters.
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Table 4.5: Conversion Models experiment - Regressed Values Error - Random Forest

Models Regressed Parameters error
PEF FEV1 FVC Tiff MMEF Cust1 MEF25 MEF50 MEF75

Avg.%
All 22.70 30.92 20.99 9.74 41.96 25.30 69.28 42.04 34.06
Minus plips 22.03 31.38 20.44 10.09 42.08 24.63 64.96 38.87 35.26
Minus plips
gain 20.84 29.42 21.41 9.86 40.40 24.90 71.14 39.32 35.01

Std.%
All 21.01 29.02 19.03 8.46 54.32 28.28 92.81 44.41 41.54
Minus plips 21.59 28.67 19.47 9.30 52.35 26.74 86.91 44.57 45.00
Minus plips
gain 19.99 27.97 20.34 8.79 50.68 27.09 100.55 42.54 44.18

One relevant analysis that can be conducted over these results comprise each parameter’s re-

gression variability and their relevance to medical diagnosis. As Figure 4.3 shows, frequently used

lung function indicators as FEV1/FVC (shown as Tiff), FVC and PEF rank among the ones with

the least variability, denoted with lower 75 percentile. Both MMEF and MEFx parameters also

followed the predictions of high variability since those values are rarely medically used for those

same reasons. On the other hand, FEV1 was not expected to have such high variability than the

aforementioned parameters, since it is widely used by physicians. The custom parameter, Cust1,

managed to present some cautiously promising results. Though, it ought to have greater meaning

and impact on the classification, since no other study has established the characteristic ranges of

the parameter, to the best of our knowledge. Either way, the relatively small error of FEV1/FVC

(∼10%) presents a good starting point for later classification.

The results show that, for both Bagging and Random Forests, either method set is similar to the

others, in terms of regression error. In order to reduce by one third the number of curves for which

to calculate the clinical parameters, the conversion model p-> plips was removed. Additionally,

that model’s gain, also does not seem to produce any changes. Therefore, the gain will be ignored.

To support the removal of certain envelopes from the set, another test was devised. 5 fold

ensembles of 180 trees were trained. Each variable/generating envelope split was counted over

the all the trees and all the 9 clinical parameters. A gross approximation of the importance of an

envelope method can be obtained by comparing the total number of splits. Figure 4.4 shows the

Figure 4.3: Comparison of Bagging Regression Error Distribution along the clinical parameters
and sets of methods (enlargement)
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results for the complete set of envelopes, as originally described.

The labels shanEnerg and shanEntrp refer to the envelopes retrieved by Shannon Energy and

Entropy, respectively, Hilbert to Hilbert Transform, LPC 2 through 32 refer to the Linear Predic-

tive Coding, with the respective order and mRess refers to Mean of Resonances. Additionally, LP

indicates that the envelope underwent a Low Pass filter, sGolay means it underwent a Savitzky-

Golay filter and poly that the envelope was fitted using a polynomial, all of which are described

on Section 3.1.1.

It is straightforward to see that the methods with less split count generally are those of pLips,

thus corroborating the previous findings. In fact, the lowest 20% of the summed splits over all 9

parameters, are all based on pLips, except for one from uLips (LPC 16-polynomial fitting) and two

from p (LPC 4 and Hilbert - polynomial fitting).

4.3.4 Filtering options

The output of the envelope generating methods is considerably noisy and quite different from a

spirometer’s curve, in terms of smoothness, thus a filtering algorithm is needed. Two options

were devised as described on Section 3.1.1, either using Butterworth Low Pass filters or Moving

Average. Both were tested, in mutual exclusivity, on the same set of methods (same as before,

without plips model or gain) and the error results are shown on Figure 4.5 and Tables 4.6 and 4.7.

Table 4.6: Filtering options experiment - Regressed Values Error - Bagging

Models Regressed Parameters error
PEF FEV1 FVC Tiff MMEF Cust1 MEF25 MEF50 MEF75

Avg.% LPF 20.22 29.85 22.51 9.94 39.76 26.49 70.07 40.09 35.09
MA 21.92 30.07 21.99 10.04 43.44 25.68 70.87 38.80 33.72

Std.% LPF 22.08 25.70 21.40 8.90 47.93 27.49 101.52 43.36 46.22
MA 21.28 25.99 21.60 9.06 56.29 27.13 88.86 45.76 44.11

Table 4.7: Filtering options experiment - Regressed Values Error - Random Forest

Models Regressed Parameters error
PEF FEV1 FVC Tiff MMEF Cust1 MEF25 MEF50 MEF75

Avg.% LPF 22.19 30.07 22.16 9.65 42.49 24.30 69.25 39.74 36.14
MA 21.75 29.61 21.73 10.12 42.17 25.80 66.78 42.09 36.33

Std.% LPF 22.49 27.01 21.25 8.80 55.70 26.64 91.18 43.69 40.69
MA 20.42 25.92 20.42 9.32 51.39 27.43 87.01 47.07 47.79

The results are quite similar, leaving no obvious criteria for deciding which set of filtering

methods to employ. The Low Pass Filter approach was chosen since the Moving Average (MA)

recurrently uses division, becoming more computationally intensive than LPF, which uses only

multiplication by pre-calculated coefficients. Additionally, the Savitsky-Golay filter is based on a

weighed moving average approach. Consequently, it seems counter-productive to continue using

the Moving Average since it will be afterwards smoothed in a similar fashion.
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Figure 4.5: Comparison of Low Pass Filter and Moving Average, Bagging Regression results. Er-
ror Distribution, throughout the clinical parameters, using the same set of methods (enlargement)

4.3.5 Hilbert Transform and Shannon Envelopes

The SpiroSmart project [19] uses Hilbert Transform, as a general envelope calculation method,

Mean of Resonances, which focuses on the magnitude of the frequency components characteristic

to each patients vocal tract, and Linear Predictive Coding, which models the patients vocal tract

with filters and, in this case, only the sound source’s power is retained. All of these methods try to

develop envelopes using somewhat different concepts.

For this dissertation, the Shannon Envelopes are proposed as a general envelope calculation

method, similarly to the Hilbert Transform. However, as each of the Shannon envelopes focuses

on different intensities, they should be compared as a pair. Comparing these general envelope

generators was considered relevant since they serve the same purpose and the best solution should

employ the least number of methods as possible, to improve energy efficiency and make the system

computationally lighter. Figure 4.6 and Tables 4.8 and 4.9 show the results of both methods used

together, removing only Hilbert Transforms and removing only Shannon envelopes.

Table 4.8: Hilbert Transform and Shannon Envelopes experiment - Regressed Values Error -
Bagging

Models Regressed Parameters error
PEF FEV1 FVC Tiff MMEF Cust1 MEF25 MEF50 MEF75

Avg.%
All 20.19 31.67 21.33 9.74 40.87 25.74 68.99 43.20 35.28
No Hilbert 21.61 29.66 21.45 10.03 40.64 23.90 71.57 38.93 32.71
No Shannon 21.99 31.31 22.61 9.45 39.56 25.50 64.85 41.78 33.28

Std.%
All 20.91 28.52 21.75 8.89 52.79 26.23 95.51 51.46 48.69
No Hilbert 22.70 27.07 20.36 8.95 52.94 26.79 97.65 41.84 40.89
No Shannon 21.82 26.85 21.02 8.70 50.88 28.03 86.11 47.46 41.91

The results presented on the tables and on Figure 4.6 are similar across the three sets of meth-

ods and all parameters. As with the comparison between Low Pass filtering and Moving Average,

there is no clear method set that confers a particular advantage over the others, including using

both methods (All method set).

Since one of the objectives of the project is to keep a reduced number of methods, it was

considered that the Shannon envelopes should be kept instead of the Hilbert Transform. Although,
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Table 4.9: Hilbert Transform and Shannon Envelopes experiment - Regressed Values Error -
Random Forest

Models Regressed Parameters error
PEF FEV1 FVC Tiff MMEF Cust1 MEF25 MEF50 MEF75

Avg.%
All 21.92 31.16 22.76 9.64 42.62 25.00 69.84 41.63 39.34
No Hilbert 21.39 30.83 21.27 10.11 41.64 24.15 69.52 39.33 36.06
No Shannon 21.81 30.50 22.48 9.92 42.08 24.25 64.74 42.26 33.76

Std.%
All 21.24 28.54 22.41 8.82 55.61 27.06 89.86 52.34 61.11
No Hilbert 21.90 27.55 18.55 8.94 51.01 26.36 89.75 42.60 43.63
No Shannon 20.36 26.12 20.85 9.11 52.15 26.71 84.65 46.47 40.99

this means having to double the envelopes to filter, smooth and extract for parameters than just

using the single Hilbert Transform, it is reasonable to say that it would still be the best option

in terms of speed and computational complexity. Hilbert Transform implies taking the FFT and

IFFT of the signal while the Shannon envelopes just square and take the envelope’s absolute values

and compute the base 10 logarithm. For a current smartphone with a dedicated floating point co-

processor (which is fairly common) removing the Hilbert Transform envelopes would be the best

option.

Therefore, for the remaining experiments the Hilbert Transform envelopes were removed.

4.3.6 Shannon Entropy and Energy

As mentioned on Section 3.2.4, Shannon Entropy enhances the lower intensities while Shannon

Energy emphasizes the mid-higher intensities. The proposed experiment aims to verify if either

has better results than the other or if both should keep being combined together to provide a more

accurate regression.

Tables 4.10 and 4.11 and Figure 4.7 show the results of regression on sets with both methods

or either without Shannon Entropy or Energy. As shown, removing either envelope method does

not increase significantly the error’s average or standard deviation. In fact, all three envelope sets

present very similar results, across all parameters. This does not make clear which of envelope

functions should be removed.

Figure 4.6: Comparison of Shannon envelopes and Hilbert Transform envelopes’ influences on
Bagging Regression results. Error Distribution, throughout the clinical parameters (enlargement)
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Table 4.10: Shannon Entropy and Energy experiment - Regressed Values Error - Bagging

Models Regressed Parameters error
PEF FEV1 FVC Tiff MMEF Cust1 MEF25 MEF50 MEF75

Avg.%
All 23.03 31.55 22.61 10.18 41.24 25.53 71.24 40.29 33.79
No Entropy 20.93 29.97 23.54 9.75 44.92 25.04 72.74 39.08 34.20
No Energy 21.53 31.36 21.79 9.78 40.96 24.28 69.62 37.96 36.10

Std.%
All 21.38 29.90 20.77 8.87 51.20 26.58 96.71 43.74 44.35
No Entropy 20.10 25.90 24.12 8.71 58.57 26.81 85.23 41.31 47.02
No Energy 23.37 27.15 21.29 8.89 57.04 25.51 91.32 44.83 48.31

Table 4.11: Shannon Entropy and Energy experiment - Regressed Values Error - Random Forest

Models Regressed Parameters error
PEF FEV1 FVC Tiff MMEF Cust1 MEF25 MEF50 MEF75

Avg.%
All 22.96 29.67 21.88 9.72 42.27 25.41 69.76 39.01 36.44
No Entropy 21.48 30.13 23.04 9.92 40.29 25.36 71.56 40.18 34.23
No Energy 21.73 30.12 23.34 10.17 42.11 24.08 69.67 40.71 35.33

Std.%
All 25.39 26.39 22.41 9.01 54.91 27.73 90.19 44.75 56.35
No Entropy 21.06 27.11 21.04 9.01 50.87 26.61 93.51 45.29 42.82
No Energy 22.13 27.79 24.37 8.84 55.42 25.92 85.26 45.06 43.31

Figure 4.7: Comparison of Shannon Energy and Entropy envelopes’ influences on Bagging Re-
gression results. Error Distribution, throughout the clinical parameters (enlargement)

Figure 4.8: Split count distribution over the 9 parameters, for a set containing both of Shannon
envelope methods
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Figure 4.8 presents the relative gross importance of each method on the parameters’ regression

process. At this stage, the total number of methods is considerably less than the original set. The

figure shows that among the two Shannon options, the one with the most frequently high split

count is Shannon Energy. Let’s consider each pair of Shannon envelopes within each processing

option. In the p-SGolay process, both Energy and Entropy are quite similar and have a split

count distribution that is fairly the same, however, when comparing the ulips-sGolay or ulips-poly

processes, Energy seems to have a more consistent distribution than Entropy.

Considering both the similarity between the error results and the slight one-sided overuse

on the split count distribution, the Shannon Entropy envelopes are henceforth removed from the

envelope set.

4.4 Additional Regression Experiments

The first set of experiments enabled to trim a significant amount of envelopes and, consequently,

remove 9 times more parameters from regression analysis and learning. The first objective of this

project is to accurately retrieve the lung function indicators from the available envelopes and not

the best, medical grade, exhalation envelope. Therefore, several of the remaining methods still

seem redundant for the goal task. Such methods include the five grades of LPC envelopes and the

Savitzky-Golay smoothing.

In this section, further experiments are presented as well as their results. The first experiment

consists of removing some of the LPC envelopes, the second concerns trading smoothing after

filtering for just filtering. The last experiment seeks to perceive the importance of the polynomial

approximation for the regression.

4.4.1 LPC fundamental vocal complexity

Figure 4.8, can still provide an insight on which methods are important to correctly regress the

parameters. Among the methods with the lowest percentages of total split count are some LPC

envelopes of specific orders 2, 4, 8 and 16. To be precise, all of LPC 16 envelopes seem to have

relatively low split count and only some of the envelopes of orders 2, 4 and 8 generate a high split

count. In general, the envelopes of order 32 are more likely to generate splits. For simplicity’s

sake, a test was made, "downsampling" the LPC’s orders, comparing LPC 2, 8 and 32, named LPC

set A, and keeping only those that model the most and least complexity of the vocal tract, namely

orders 2 and 32, LPC set B.

Tables 4.12 and 4.13 and Figure 4.9 show the results of removing these LPC envelopes from

the current group, set A and B. The results present no significant change across all parameters,

when removing first, orders 4 and 16, and second, order 8 LPC envelopes from the method set.

This goes to show that these additional envelopes were indeed redundant and can also be removed

from the regression sets without relevant loss.

Figure 4.10 shows the split count distribution after removing LPC envelopes of order 4, 8 and

16. It can be seen that all the remaining envelope generating processes have a more uniform split
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Table 4.12: LPC options experiment - Regressed Values Error - Bagging

Models Regressed Parameters error
PEF FEV1 FVC Tiff MMEF Cust1 MEF25 MEF50 MEF75

Avg.%
All LPC 21.57 31.52 22.2353 9.98 42.86 25.14 70.90 43.32 34.21
LPC A 20.71 32.00 24.0082 10.17 40.71 25.52 77.31 40.51 34.32
LPC B 22.23 31.82 23.1340 9.99 41.64 24.96 77.76 41.44 34.44

Std.%
All LPC 23.86 28.80 20.2520 8.86 53.87 26.71 91.35 47.45 43.36
LPC A 21.07 31.01 22.7291 9.03 53.50 28.09 90.68 46.51 46.70
LPC B 22.84 28.44 22.3020 8.78 53.71 27.75 108.34 47.81 47.86

Table 4.13: LPC options experiment - Regressed Values Error - Random Forest

Models Regressed Parameters error
PEF FEV1 FVC Tiff MMEF Cust1 MEF25 MEF50 MEF75

Avg.%
All LPC 22.59 29.23 23.85 10.11 39.66 24.35 74.73 41.64 37.10
LPC A 21.60 29.61 24.20 9.42 41.02 25.58 70.46 42.35 34.36
LPC B 21.85 29.96 23.77 10.01 41.81 25.23 71.84 38.93 37.26

Std.%
All LPC 22.83 25.82 21.33 9.01 49.22 25.92 96.44 46.46 47.81
LPC A 21.15 26.95 22.95 8.54 53.96 26.99 82.33 46.74 42.50
LPC B 20.17 25.47 24.89 8.74 53.44 28.29 90.09 40.90 47.89

Figure 4.9: Comparison of subsets of LPC envelopes’ and their influences on Bagging Regression
results. Error Distribution, throughout the clinical parameters (enlargement)

Figure 4.10: Split count distribution over the 9 parameters, for LPC set B (containing only orders
2 and 32)
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count distribution than with the previous amount of methods. Reaching this point, there would

be little further to do in order to remove additional methods, retaining the lowest prediction error.

However, in the next sections some still relevant experiments are discussed.

4.4.2 Low Pass Filtering and Savitzky-Golay Smoothing

SpiroSmart [19] employes Savitzky-Golay smoothing in order to perfect the envelopes’ form,

"denoising" it. However, since their main objective is to regress the envelope, they also keep

the Low Pass filtered envelopes in order to get the best of both worlds, more noisy peaks and a

more "truefull" response by using LPFed envelopes and a more spirometricly realistic and robust

exhalation curve when cascading the smoothing.

Until now, all curves were either smoothed with Savitzky-Golay filter or approximated by a

polynomial. This experiment seeks to find if using both types of envelopes is the best option for

parameter regression or if using just LP filtering is as accurate in regressing those values, which

would enable to discard the smoothing from the process.

Table 4.14: LPF and Savitzky-Golay experiment - Regressed Values Error - Bagging

Models Regressed Parameters error
PEF FEV1 FVC Tiff MMEF Cust1 MEF25 MEF50 MEF75

Avg.%
Both 20.60 31.02 23.38 9.91 41.83 24.96 76.01 40.15 36.95
SGolay 21.64 31.21 25.46 10.15 42.72 25.50 75.33 40.47 34.10
Just LP 21.83 31.29 24.12 9.81 43.07 24.89 76.21 43.13 34.47

Std.%
Both 21.02 28.73 23.80 8.86 53.17 27.30 108.54 44.88 45.51
SGolay 21.14 28.65 22.92 8.75 52.97 27.82 97.54 41.05 41.53
Just LP 20.54 28.49 25.28 9.11 55.41 27.95 101.71 48.06 43.29

Table 4.15: LPF and Savitzky-Golay experiment - Regressed Values Error - Random Forest

Models Regressed Parameters error
PEF FEV1 FVC Tiff MMEF Cust1 MEF25 MEF50 MEF75

Avg.%
Both 21.10 30.76 24.69 9.84 43.86 24.09 71.30 43.66 33.25
SGolay 22.49 31.00 23.95 10.06 43.50 25.10 73.71 40.89 34.66
Just LP 21.51 29.71 23.82 10.01 43.18 25.43 70.98 43.06 34.97

Std.%
Both 20.86 29.19 24.57 9.28 51.59 26.58 86.15 46.41 41.66
SGolay 22.61 27.91 21.55 8.65 53.59 26.81 86.78 44.23 44.89
Just LP 20.73 26.91 22.01 8.87 53.36 28.09 83.58 51.81 47.35

Figure 4.11 and Tables 4.14 and 4.15 present the results from adding the LP filtered envelopes

directly and removing the Savitzky-Golay smoothing from the process. The set in which Both

envelope types are used does not significantly improve the parameter’s prediction. On the best

case, it improves the error average by 2%, which is hardly significant considering the relatively

high standard deviation.

This suggests that only keeping the direct filtered envelopes should be enough for regression.

This hypothesis is backed up by the results from the split count distribution.

Figure 4.12 shows the split count distribution for the set which uses LP filtered envelopes

directly as well as Savitzky-Golay smoothed envelopes. This figure is particularly eloquent con-

cerning the relative importance of the smoothed envelopes for regressing the parameters. Only

the complete set of smoothed envelopes are on the bottom 35% of total split count (counting all
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Figure 4.11: Comparison of the Low Pass filter and Savitzky-Golay envelopes’ and their influ-
ences on Bagging Regression results. Error Distribution, throughout the clinical parameters (en-
largement)

Figure 4.12: Split count distribution over the 9 parameters, for the Savitzky-Golay and Low Pass
filtering options (using both)
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regressed parameters’ results) which makes their contribution on the distribution relatively small

as well.

These results clearly indicate that the Savitzky-Golay smoothing could be removed from the

process without considerable downfall. This reduces the post-processing set to just Low Pass

filtering and Polynomial fitting.

4.4.3 Polynomial Fitting

For the final parameter regression experiment, the importance of the polynomial fitting is going

to be assessed. In past projects [6, 13], the envelope regression was based on polynomial ap-

proximations and had relatively high success on regressing the lung function parameters on their

datasets.

This experiment consists of either removing the polynomial approximation from the param-

eter regression set or the Low Pass filtering. As control sample, the method set using both post-

processing methods shall be compared as well.

Table 4.16: Polynomial Fitting experiment - Regressed Values Error - Bagging

Models Regressed Parameters error
PEF FEV1 FVC Tiff MMEF Cust1 MEF25 MEF50 MEF75

Avg.%
Both 22.51 31.43 23.18 10.12 43.54 24.60 75.77 40.77 34.63
No Poly 21.33 32.21 22.60 10.02 41.40 26.95 70.50 42.65 34.12
No LPF 21.41 32.45 22.26 9.53 47.86 24.19 76.34 43.47 36.89

Std.%
Both 20.43 28.29 21.94 9.00 55.31 28.24 100.01 43.53 46.20
No Poly 18.82 26.12 21.93 8.49 47.30 25.51 101.06 47.37 42.05
No LPF 24.85 31.94 22.23 9.22 58.87 30.07 93.66 48.77 46.15

Table 4.17: Polynomial Fitting experiment - Regressed Values Error - Random Forest

Models Regressed Parameters error
PEF FEV1 FVC Tiff MMEF Cust1 MEF25 MEF50 MEF75

Avg.%
Both 22.59 31.01 23.27 10.16 43.40 24.21 70.97 43.72 34.47
No Poly 21.40 30.41 24.34 10.02 41.33 26.97 73.60 41.93 34.32
No LPF 22.12 30.76 25.12 9.58 47.94 24.60 69.97 41.10 35.39

Std.%
Both 20.79 27.63 23.28 9.09 54.47 26.36 81.22 45.43 43.10
No Poly 19.81 27.09 21.52 8.81 48.18 26.23 90.88 47.80 43.84
No LPF 24.52 30.19 24.46 8.66 58.75 27.30 83.26 44.06 44.40

Figure 4.13 and Tables 4.16 and 4.17 present the parameter regression results from the removal

of either post-processing method. The errors’ average do not vary significantly between the three

sets and thus, one of them can be removed from the process without compromising the regression

results. The choice must fall again on method complexity and performance issues.

Although polynomial fitting provides a smoother and, apparently, more robust curve, it re-

quires more computational resources than a Buttherworth filter. The polynomial approximation

can be done in an iterative fashion using Least Squares or using a Gauss-Jordan elimination as

done in [6]. In either method, each curve data point or error, is taken to the power of 2 or above

(in the case of Gauss-Jordan), and may be computed more than once (on the iterative process).

A Butterworth low pass filter, however, only requires to be computed once, the 2 coefficients

(for order 2, as the one used) and a few additions, over all curve points.
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Figure 4.13: Comparison of the Low Pass filter and Polynomial Fitting envelopes’ and their in-
fluences on Bagging Regression results. Error Distribution, throughout the clinical parameters
(enlargement)

In addition to this performance argument, a physician could obtain more relevant informa-

tion from the un-smoothed LPF curve than an unrealistic polynomial fit, by merely observing the

curve’s slope, as depicted on Figure 4.14.

Therefore, it was decided to remove the polynomial approximation, leaving only LPF on the

post-processing methods. However, as a classification baseline, and curiosity as to the extent of its

robustness, both regressed datasets (containing either polynomial fitted or LP filtered envelopes)

were initially tested.

Figure 4.14: Comparison between a filtered envelope and a polynomial fitted envelope

4.4.4 Final Regression Model

After all these experiments, the Signal Processing methods that were employed in the final regres-

sion model are the following:

• Pre-processing: Flow Conversion Model,
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• Envelope generation:

– Shannon Energy,

– Linear Predictive Coding, orders 2 and 32,

– Mean of Resonances,

• Post-processing: Low Pass Butterworth Filter.

Figure 4.15 presents a diagram of the Signal Processing system.

Figure 4.15: Signal Processing stage Diagram
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4.5 Two Label Classification

Due to an severely uneven distribution of labels and for simplicity’s sake, the classification process

was first devised as a normal against abnormal classification problem, ignoring both the distinction

between obstruction and restriction and the several degrees of the pathologies.

The linear learners/classifiers should easily discard the degrees of the pathologies, without

compromising much of the classification. The worst case scenario would be not segmenting the

data at the place that proves to guarantee the best margin. However, since obstruction and re-

striction (and mixed abnormalities) have significantly different parameter patterns, probably tree

based methods would surpass SVM methods since the first are based on several hyperplane splits,

tending to overfit, while the later generates a single hypercut/hypersplit and would probably need

a kernel transformation, for a relatively small feature space. Either way, the following classifiers

were experimented upon:

• Single Classification Tree (Baseline)

• Tree Bagging

• Tree Bagging using the regression targets as dataset (GTruth)

• Random Forest

• AdaBoost Trees

• µ-SVM / soft margin, with several kernel functions

• Naïve Bayes

4.5.1 Tree Ensemble Setup

Since ensemble methods generally have an optimal number of learners for reducing the decision

error, a series of 5 runs of 5-fold, tree bagging learning and prediction process was made. The

number of trees to use on the ensemble methods was decided based on the average misclassifica-

tion count of each ensemble set. Table 4.18 shows the results of those 5 simulations for the various

numbers of trees.

All the classification errors are quite similar. The 70 trees set gave the second smallest average

misclassification count, although only slightly less than the best option. In this case, choosing the

second best can also reduce significantly the time spent teaching the learner how to classify and

providing a prediction. For Boosted methods, however, we chose to use 10 iterations/trees in order

to avoid overfitting.

4.5.2 Classification with the 9 clinical parameters

Once the tree number was selected for the ensemble methods, the regression output was used to

train the several classification methods and test them, in a 5 fold sense. Tables 4.19 and 4.20 the
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Table 4.18: Classification percentage error - Tree Bagging test

Number of Trees Average %
20 24.35
30 24.35
40 22.37
50 22.17
60 22.97
70 21.38
80 23.16
90 24.15
100 23.56
110 22.77
120 24.95
130 23.96
140 25.14
150 22.17
160 21.18
170 22.17
180 22.97
190 23.36

misclassification results, as percentage error, precision and recall. Precision is defined as equation

4.1a and recall as 4.1b.

Precision =
tp

(tp+ fp)
(4.1a)

Recall =
tp

(tp+ fn)
(4.1b)

where tp refers to the true positive count (Normal labeled observations predicted as Normal

class), fp refers to the false positive count (Abnormal labeled observations predicted as Normal

class) and fn refers to the false negative count (Normal labeled observations predicted as Abnormal

class).

Although the method of choice for post-processing was the Low Pass filter, the regressed

dataset using the polynomial fitting was also tried for the classification models.

The SingleTree-Bag is a classification model based on a single tree which uses all features,

simultaneously, while trying to find the optimal splits, while SingleTree-RF is the same model

with the exception of only considering a portion of the features (
√

D) in each split, like in Random

Forest method. AdaBoostM1 Trees is the AdaBoost method applied to decision tree classifiers, for

a binary classification problem. The several SVM models use different kernels, though all their

coefficients and internal parameters were left as LIBSVM’s default values.

In addition to the regressed parameter trained classification models, three other classification

models were implemented.

These GTruth models, which stands for Ground Truth, are classifiers trained and tested directly

with the regression targets instead of the regressed values, in a 5 fold sense. This model also

acts as a baseline for both the machine learning models’ performance as for the regressed values

results. Since there are less regression targets than recordings (multiple recordings per patient) this
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particular dataset is only constituted by 61 patients/values, from which 47 are labeled as Normal

and 14 are labeled as Abnormal lung function.

Table 4.19: Classification percentage error, precision and recall for Normal label, on the
polynomial fitting set (101 observations, 61 patients)

Method Error Precision Recall
SingleTree - Bag 33.66 76.05 76.05
SingleTree - RF 35.64 74.64 74.64
Bagging Trees 25.74 80.00 84.50
Random Forest 19.80 84.93 87.32
AdaBoostM1 Trees 22.77 82.43 85.91
Naïve Bayes 26.73 87.93 71.83
SVM - Linear 22.77 82.43 85.91
SVM - Poly-2 29.70 70.29 100
SVM - Poly-3 29.70 70.29 100
SVM - RBF 34.65 69.56 90.14
SVM - Sigmoid 29.70 70.29 100
SVM - OneClass 30.69 70.40 97.18
GTruth - Bag Trees 24.59 82.00 87.23
GTruth - RF Trees 18.03 84.61 93.61
GTruth - AdaBoostM1 21.31 85.41 87.23

Table 4.20: Classification percentage error, precision and recall for Normal label, on the LPF
filtering set (101 observations, 61 patients)

Method Error Precision Recall
SingleTree - Bag 34.65 73.68 78.87
SingleTree - RF 40.59 71.42 70.42
Bagging Trees 29.70 78.08 80.28
Random Forest 24.75 81.08 84.50
AdaBoostM1 Trees 28.71 78.37 81.69
Naïve Bayes 32.67 80.64 70.42
SVM - Linear 28.71 76.92 84.50
SVM - Poly-2 29.70 70.29 100
SVM - Poly-3 29.70 70.29 100
SVM - RBF 32.67 70.21 92.95
SVM - Sigmoid 29.70 70.29 100
SVM - OneClass 32.67 69.79 94.36
GTruth - Bag Trees 26.22 81.63 85.10
GTruth - RF Trees 29.50 80.85 80.85
GTruth - AdaBoostM1 27.86 82.60 80.85

As expected from a training set based on very noisy and poorly repeatable recordings, the

misclassifications count is considerable. Among all the classifiers, the average error is 29.8, for

the polynomial fitting dataset, and 30.5, for the LPF dataset, in 101. Additionally, as previously

mentioned, the abnormal classification also includes values from three pathologies with different

parameter patterns, lung Obstruction, Restriction and Mixed abnormalities.

Nevertheless, the proprieties of each classifier can be studied and compared with the expected

results and with each other. As mentioned in Section 3.4.2, generally, ensemble methods tend

to perform better than single learner methods. This can be observed by comparing the ensemble

methods results (Bagging Trees, Random Forest, AdaBoostM1 Trees) to non-ensemble classifiers’

( SingleTree - Bag and RF and even SVM, although with less significance).

For exactly the same folding distribution, Random Forest performed a little better than Ad-

aBoost, corroborating the fact that both methods obtain very similar results and both best normal,
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full feature, bagging methods. Additionally, Linear SVM also performed relatively well, being on

par with AdaBoost.

Naïve Bayes almost sets a frontier between the best and worst methods. Although, unlike

every other tested method, it tends to mistake normal labels for abnormal ones, having therefore,

a significantly lower recall than precision. This might be due to the scatter pattern of the abnormal

class and the classifier being hyperspacial radial based.

Kernel based SVM models mostly classified all samples as normal, which might indicate that

the present conditions might not be the best, or that using a kernel is unnecessary.

GTruth models had fairly good results comparing with regression valued classification models.

This was not unexpected since the spirometers’ measurement errors have to be within 6% [20] and

they also are the regression target values, which may propagate the error to the regressed values.

Even between the GTruth models, the difference in performance of the three methods is noticeable

and consistent with difference in performance regressed values’ ensemble methods.

Despite having initially chosen the LPF only regression dataset, these results show that, indeed,

the robustness of the polynomial approximation is a property that should be kept. All tree related

methods, as well as Linear SVM, suggest that the dataset to use should, instead, be the one with

the polynomial fitting. Therefore, hereafter, all classification tests were conducted using this last

post-processing method. Figure 4.16 presents the new and final signal processing stage of the

system.

4.5.3 Classification with the 4 most used clinical parameters

The same experiment was conducted using only the 4 most popular parameters for lung function

evaluation, PEF, FEV1, FVC and Tiff. The result are shown on Table 4.21.

Table 4.21: Influence of Height and Age on the Classification percentage error, precision and
recall for Normal labels (101 observations, 61 patients)

Method Error Precision Recall
SingleTree - Bag 39.60 70.12 76.05
SingleTree - RF 35.64 75.36 73.23
Bagging Trees 32.67 73.75 83.09
Random Forest 30.69 77.77 78.87
AdaBoostM1 Trees 33.66 73.41 81.69
Naïve Bayes 30.69 82.25 71.83
SVM - Linear 29.70 70.29 100
SVM - Poly-2 29.70 70.29 100
SVM - Poly-3 29.70 70.29 100
SVM - RBF 33.66 69.07 94.36
SVM - Sigmoid 29.70 70.29 100
SVM - OneClass 37.62 77.04 66.19
GTruth - Bag Trees 22.95 82.35 89.36
GTruth - RF Trees 16.39 84.90 95.74
GTruth - AdaBoostM1 21.31 86.95 85.10

In general, all methods had worse predictions. As expected, ensemble Random Forest becomes

worse due to the reduction of both the total number of parameters and the number of splittable

parameters over each node. However, kernel based SVMs results did not change significantly,

except for OneClass which became around 7% worse.
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Figure 4.16: Signal Processing stage Final Diagram
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GTruth models, on the other hand, improved a little over the previous results. Since this dataset

is less error prone, this suggests that the parameters removed are error inducing values.

4.5.4 Influence of Height and Age in Classification feature space

For the final experiments, the patients’ height was included on the training and testing datasets,

then the patient’s age was also included. For the last dataset, the least relevant parameters were

removed, leaving only PEF, FEV1, FVC, Tiff, height and age. The results of the three learning and

classification processes are shown on Table 4.22.

Table 4.22: Classification percentage error, precision and recall for Normal label, using using
different sets of parameters (101 observations, 61 patients)

Method Plus Height Plus Height and Age 4 most popular, Plus
Height and Age

Error Precision Recall Error Precision Recall Error Precision Recall
SingleTree - Bag 31.68 80.00 73.23 17.82 92.06 81.69 20.79 85.71 84.50
SingleTree - RF 33.66 77.61 73.23 29.70 78.08 80.28 29.70 78.87 78.87
Bagging Trees 17.82 87.32 87.32 11.88 88.31 95.77 9.90 91.78 94.36

Random Forest 19.80 84.00 88.73 15.84 85.71 92.95 7.92 90.90 98.59
AdaBoostM1 Trees 21.78 83.56 85.91 16.83 85.52 91.54 9.90 91.78 94.36

Naïve Bayes 24.75 87.09 76.05 23.76 88.52 76.05 16.83 86.48 90.14
SVM - Linear 17.82 86.30 88.73 9.90 92.95 92.95 7.92 94.36 94.36
SVM - Poly-2 29.70 70.29 100 29.70 70.29 100 29.70 70.29 100
SVM - Poly-3 29.70 70.29 100 29.70 70.29 100 29.70 70.29 100
SVM - RBF 30.69 70.00 98.59 29.70 70.29 100 20.79 77.17 100

SVM - Sigmoid 29.70 70.29 100 29.70 70.29 100 29.70 70.29 100
SVM - OneClass 29.70 70.29 100 29.70 70.29 100 30.69 70.00 98.59

GTruth - Bag Trees 22.95 82.35 89.36 21.31 82.69 91.48 21.31 85.41 87.23
GTruth - RF Trees 21.31 84.00 89.36 19.67 85.71 89.36 21.31 86.95 85.10

GTruth - AdaBoostM1 27.86 80.00 85.10 26.22 82.97 82.97 24.59 84.78 82.97

On the first parameter set, there seems to be a reduction of the misclassification count on the

4 most prominent classifiers. In fact, Bagged Trees and Linear SVM outperformed both Random

Forest and AdaBoost, even if only slightly.

When Age is introduced in the parameter set, the results of those classifiers are even better.

This is somewhat expected considering that both height and age are relevant anthropometric pa-

rameters. These parameters are usually used by physicians to evaluate if the patient’s PEF, FEV1

and FVC are in the normal values range for their physiognomy or not.

The results from the third set parameter further reinforce these parameters’ importance. By

leaving only the 4 most medically relevant parameters, height and age, the models were enabled

to focus on the most valuable information. In fact, most of the parameters removed, MEFx and

MMEF, were parameters that are considered very unstable and extremely effort dependent. There-

fore, they most likely only introduced noise on the classifiers’ choices.

Concerning the GTruth models, each step improved the AdaBoost results, which also supports

the MMEF and MEFx statement. On the other hand, Bagging and Random Forest results stayed

more or less the same, which might indicate that the 180 trees, in the ensemble, might be inducing

overfitting, on this dataset. Either way, these three models do not improve to the extent of the

regressed valued classification models, which might indicate that those models are promising or

that GTruth dataset is just reduced and less variable.
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Summing up the results of the two label classification problem, the best parameter combination

for the classification model would be PEF, FEV1, FVC, FEV1/FVC (Tiff), height and age. These

results however, do not enable a clear decision concerning the best classification model to use. If

the simplicity of the implementation is the major issue, probably either Bagging or Random Forest

method should be used. Although, once the boosted method generates the trees and their voting

weight, it becomes as simple as the other two. Likewise, Linear SVM trained classifier would

be fairly simple to implement however, if an online method was necessary to be updated, than it

would not be the case.

4.6 Multiple Label Classification

In this section, some experiments of the multiple label classification problem are discussed. While

the last section approached the prediction into normal or abnormal lung function, these experi-

ments show how the learners deal with the 4 different classes: normal, obstruction, restriction and

mixed abnormalities.

The last section’s results shed some light on what to expect from the classifiers trained with

this regressed dataset. However, in this classification task, the considerably smaller sub-dataset

(Abnormal label) is scattered among the 3 abnormal classifications, which reduces significantly

the number observations per class. This is expected to increase the misclassification count, if not

for predicting abnormal class observations as another, nearby, abnormal class.

Also, due to the limited number of observations, some changes had to be made to the normal 5-

fold distribution. For instance, since there are only two lung restriction observations, each training

set had to include one of the observations, while the testing set had to include the other.

The Naïve Bayes classifier could not be trained with all labels since in each class, at least two

observations must be present. This condition could not be fulfilled due to the aforementioned train-

ing and testing scheme. As an alternative, for this classifier only, the restriction label observations

were discarded.

Additionally, since the mixed abnormality observations came from the same patient, both

height and age are the same. This made it impossible for the Naïve Bayes classifier to find the

variance for those features and, therefore, the Mixed class observations could not be used. To

circumvent that issue, for the subsequent experiments, both height and age, of all observations,

were added a random amount (from an uniform distribution), which ranged from 0 to 1/1000

(centimeters and years, respectively). This enabled the use of the Mixed abnormality observations

and changed minimally the original values.

4.6.1 Classification with the 9 clinical parameters

In order to establish a comparison baseline, the first multi-class experiment uses the same feature

space as the first dual-class experiment. This way, the classification issues from both problems

(dual and multi-class) can be addressed and a starting point for the subsequent multi-class experi-

ments is provided.
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Table 4.23: Linearized Confusion Matrices for the Classification with the 9 clinical regressed
parameters

Methods
Confusion Matrix

TErrPredicted as Nm Predicted as Ob Predicted as Rs Predicted as Mx
Nm Ob Rs Mx Nm Ob Rs Mx Nm Ob Rs Mx Nm Ob Rs Mx

SingleTree - Bag 62 13 2 3 5 8 0 1 2 0 0 1 2 2 0 0 31
SingleTree - RF 51 10 2 3 13 9 0 1 3 0 0 0 4 4 0 1 40
Bagging Trees 61 13 2 2 10 10 0 2 0 0 0 0 0 0 0 1 29
Random Forest 64 12 2 2 7 11 0 2 0 0 0 0 0 0 0 1 25
AdaBoostM2
Trees 66 15 2 2 5 7 0 2 0 0 0 0 0 1 0 1 27

Naïve Bayes 53 5 - 1 18 18 - 4 - - - - 0 0 - 0 28
SVM - Linear 61 10 2 4 8 13 0 1 2 0 0 0 0 0 0 0 27
SVM - Poly-2 71 23 2 5 0 0 0 0 0 0 0 0 0 0 0 0 30
SVM - Poly-3 71 23 2 5 0 0 0 0 0 0 0 0 0 0 0 0 30
SVM - RBF 67 22 2 3 4 1 0 2 0 0 0 0 0 0 0 0 33
SVM - Sigmoid 71 23 2 5 0 0 0 0 0 0 0 0 0 0 0 0 30

Table 4.23 shows the linearized confusion matrices of each method. Nm refers to the Normal

lung function label, Ob to Obstructive abnormality label, Rs to Restrictive abnormality label and

Mx to Mixed abnormality label. The TErr column indicates the total misclassification count across

all labels.

As expected, the total number of misclassifications increased when compared with the ex-

periment in Section 4.5.2. Not only a misclassification is considered when an abnormal label is

mistaken for a normal one, but also when abnormal labels are mistaken between themselves.

The restriction labeled observations were predicted as normal label by all classifiers, which

indicates that either the regressed values are far off the expected values for a lung restriction

pattern, which might have crippled the learner, or that indeed learning from one observation is

considerably difficult.

Like in the experiment mentioned above, SVM classifiers with non-linear kernels maintain

about the same misclassification count and false Normal prediction.

Among the best classifiers are still Random Forests, AdaBoost (in the multi-class version) and

Linear SVM. Naïve Bayes also preformed relatively well, although it had less two observations

to train and classify, as well as one less label to consider. Finally, as in the original, two label

prediction problem, the SingleTree methods perform worse than ensemble methods.

4.6.2 Classification with the 4 most popular clinical parameters

As in Section 4.5.3, the second experiment required that the less clinically relevant parameters

would be discarded, maintaining only the 4 most popular: PEF, FEV1, FVC and FEV1/FVC (Tiff).

From the previous results, it was expected that the removal of these parameters would also reduce

a little of the overfitting effort which implies that misclassification would increase.

Table 4.24 shows the linearized confusion matrices concerning the current experiment. As has

happened on the equivalent experiment for the two label classification, just by removing the pa-

rameter subset, the classification results generally worsened. The best classifier models increased

their total misclassification count by an amount from 2 to 8, becoming on par with the previously
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Table 4.24: Linearized Confusion Matrices for the Classification with the 9 clinical regressed
parameters plus height

Methods
Confusion Matrix

TErrPredicted as Nm Predicted as Ob Predicted as Rs Predicted as Mx
Nm Ob Rs Mx Nm Ob Rs Mx Nm Ob Rs Mx Nm Ob Rs Mx

SingleTree - Bag 49 17 1 4 14 4 1 1 0 0 0 0 8 2 0 0 48
SingleTree - RF 49 16 0 3 21 6 2 2 1 0 0 0 0 1 0 0 46
Bagging Trees 59 12 1 3 12 10 1 1 0 0 0 0 0 1 0 1 31
Random Forest 61 16 1 4 10 7 1 1 0 0 0 0 0 0 0 0 33
AdaBoostM2
Trees 62 17 2 3 9 6 0 2 0 0 0 0 0 0 0 0 33

Naïve Bayes 57 15 - 2 13 7 - 3 - - - - 1 1 - 0 35
SVM - Linear 71 23 2 5 0 0 0 0 0 0 0 0 0 0 0 0 30
SVM - Poly-2 71 23 2 5 0 0 0 0 0 0 0 0 0 0 0 0 30
SVM - Poly-3 71 23 2 5 0 0 0 0 0 0 0 0 0 0 0 0 30
SVM - RBF 70 23 2 5 1 0 0 0 0 0 0 0 0 0 0 0 31
SVM - Sigmoid 71 23 2 5 0 0 0 0 0 0 0 0 0 0 0 0 30

worse methods such as SVMs with non-linear kernels. However, unlike those, the errors are dis-

tributed among the other classes, i.e., a significant portion of abnormal labels is not mistakenly

predicted as normal. On the other hand, the problem shifted towards a normal versus obstruc-

tive abnormality dichotomy, which is somewhat similar to the normal versus abnormal, two label

problem. Kernel based SVM models more or less maintained their misclassification distribution.

4.6.3 Influence of Height and Age in Classification feature space

The following experiment aims to find the importance of the patients’ height and age when trying

to classify the lung function based on the regressed parameters. As with the first experiment on

Section 4.5.4, the 9 parameters were kept on the feature space and both height and age were also

included. The results from this experiment are shown on Table 4.25.

Table 4.25: Linearized Confusion Matrices for the Classification with the 9 clinical regressed
parameters, plus height and age

Methods
Confusion Matrix

TErrPredicted as Nm Predicted as Ob Predicted as Rs Predicted as Mx
Nm Ob Rs Mx Nm Ob Rs Mx Nm Ob Rs Mx Nm Ob Rs Mx

SingleTree - Bag 58 7 2 2 8 12 0 1 1 2 0 0 4 2 0 2 29
SingleTree - RF 63 12 1 1 6 8 0 1 2 0 1 0 0 3 0 3 26
Bagging Trees 68 9 2 1 3 13 0 3 0 0 0 0 0 1 0 1 19
Random Forest 65 10 2 2 6 13 0 3 0 0 0 0 0 0 0 0 23
AdaBoostM2
Trees 65 10 2 3 5 12 0 2 0 0 0 0 1 1 0 0 24

Naïve Bayes 54 3 - 1 17 20 - 0 - - - - 0 0 - 4 21
SVM - Linear 68 3 2 1 1 17 0 2 1 0 0 0 1 3 0 2 14
SVM - Poly-2 71 23 2 5 0 0 0 0 0 0 0 0 0 0 0 0 30
SVM - Poly-3 71 23 2 5 0 0 0 0 0 0 0 0 0 0 0 0 30
SVM - RBF 71 23 2 5 0 0 0 0 0 0 0 0 0 0 0 0 30
SVM - Sigmoid 71 23 2 5 0 0 0 0 0 0 0 0 0 0 0 0 30

These results present a slight, overall, improvement in comparison with the original ones, in

Section 4.6.1. The ensemble methods continued among the best to classify this dataset, although,

Linear SVM outperformed all the others, in this case. The increased dimensionality might have

provided a more valuable hyperplane split (or in this case splits). Both Normal and Obstruction
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label classification improved slightly, and in the case of non-ensemble methods, so did the Mixed

abnormality label.

In this experiment, the Naïve Bayes performed somewhat better than the original multi-class

experiment and could correctly classify almost all of the mixed abnormalities. On the other hand,

it did not improved much on the obstruction and normal labels. This might indicate that the

single change, with the mixed label observations as the main target, was what caused the great

improvement. This seems to be a case of severe overfitting. In fact, this hypothesis is supported

by the results from the other methods: SingleTree (Bag and FR) were among the best in discerning

mixed abnormality labels for this parameter set because the methods themselves tend to overfit. As

consequence, provided new mixed abnormal lung recordings were gathered, these methods would

not classify as well. The ensemble methods, however, had a greater difficulty at this task, which

also contributes to the validity of the previous statements. Kernel based SVM models maintained

their misclassification distribution.

4.6.4 Classification with the 4 most popular clinical parameters plus Height and
Age

For the last experiment, the dataset’s feature space included the 4 clinical parameters, as in the

dataset in Section 4.6.2, as well as the patients’ height and age. Table 4.26 presents the results of

the experiment.

Table 4.26: Linearized Confusion Matrices for the Classification with the 4 most popular clinical
regressed parameters, plus height and age, for the Polynomial dataset

Methods
Confusion Matrix

TErrPredicted as Nm Predicted as Ob Predicted as Rs Predicted as Mx
Nm Ob Rs Mx Nm Ob Rs Mx Nm Ob Rs Mx Nm Ob Rs Mx

SingleTree - Bag 59 4 1 1 8 16 1 1 3 0 0 0 1 3 0 3 23
SingleTree - RF 60 8 1 2 8 14 1 1 1 0 0 0 2 1 0 2 25
Bagging Trees 66 2 2 0 5 21 0 1 0 0 0 0 0 0 0 4 10
Random Forest 69 4 2 1 2 19 0 1 0 0 0 0 0 0 0 3 10
AdaBoostM2
Trees 70 5 2 1 1 17 0 1 0 0 0 0 0 1 0 3 11

Naïve Bayes 67 7 - 0 4 16 - 0 - - - - 0 0 - 5 11
SVM - Linear 69 6 2 0 1 17 0 4 0 0 0 0 1 0 0 1 14
SVM - Poly-2 71 23 2 5 0 0 0 0 0 0 0 0 0 0 0 0 30
SVM - Poly-3 71 23 2 5 0 0 0 0 0 0 0 0 0 0 0 0 30
SVM - RBF 71 14 2 5 0 9 0 0 0 0 0 0 0 0 0 0 21
SVM - Sigmoid 71 23 2 5 0 0 0 0 0 0 0 0 0 0 0 0 30

The improvement from the previous experiment mainly consisted of the misclassification de-

crease of the obstruction label observations. In addition, the mixed abnormality observations were

almost all correctly classified both in ensemble and on non-ensemble methods, disregarding the

ones that have a considerable misclassification rate such as SVMs with non-linear kernels.

These results, once again, support the way physicians conduct the lung function evaluation,

accounting PEF, FEV1, FVC, FEV1/FVC and the patients’ anthropometric parameters height and

age and disregarding, most of the times, the MMEF and MEFx values due to their variability. In

fact, since the exhaled volumes (in the first second and total) are only relevant when comparing
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with height and age, only index-like parameters such as FEV1/FVC would amount to any reason-

able classification, when lacking the anthropometric parameters.

Considering the relatively small dataset and the somewhat harsh recording environment, the

best methods managed to produce classification errors under 10%.

The results of the multiple label classification problem were similar to the binary label classi-

fication problem. In fact, even after scattering the already small number of abnormal observations,

the methods were on par with their binary model counterparts. There is also the issue of close

mistakes such as predicting mixed abnormality when it should be obstruction, which will not be

approached in this study due to the small contribution to the abnormal lung function recorded

population. Based on the results from these last multi-label classification experiments and the first

binary label ones, the best methods for classifying a dataset similar to this would be the simpler

implementation, ensemble methods, namely Tree Bagging or Random Forests.

Table 4.27: Linearized Confusion Matrices for the Classification with the 4 most popular clinical
regressed parameters, plus height and age, for the LPF dataset

Methods
Confusion Matrix

TErrPredicted as Nm Predicted as Ob Predicted as Rs Predicted as Mx
Nm Ob Rs Mx Nm Ob Rs Mx Nm Ob Rs Mx Nm Ob Rs Mx

SingleTree - Bag 61 7 2 1 8 15 0 2 0 0 0 1 2 1 0 1 24
SingleTree - RF 59 8 1 2 8 11 1 1 0 0 0 0 4 4 0 2 29
Bagging Trees 66 7 2 0 5 15 0 2 0 0 0 0 0 1 0 3 17
Random Forest 68 8 2 0 3 14 0 1 0 0 0 0 0 1 0 4 15
AdaBoostM2
Trees 66 9 2 0 5 14 0 2 0 0 0 1 0 0 0 2 19

Naïve Bayes 69 12 0 2 2 11 0 0 0 0 2 0 0 0 0 3 16
SVM - Linear 68 4 2 1 3 19 0 3 0 0 0 0 0 0 0 1 13
SVM - Poly-2 71 23 2 5 0 0 0 0 0 0 0 0 0 0 0 0 30
SVM - Poly-3 71 23 2 5 0 0 0 0 0 0 0 0 0 0 0 0 30
SVM - RBF 71 19 2 5 0 4 0 0 0 0 0 0 0 0 0 0 26
SVM - Sigmoid 71 23 2 5 0 0 0 0 0 0 0 0 0 0 0 0 30

Table 4.27 presents the same analysis as on Table 4.26, using, however, the LPF dataset. This

enables a final comparison between the last two signal processing methods discussed, coming full

circle, after the initial classification experiment on Section 4.5.2. As found on that experiment,

the models trained and tested on the polynomial dataset overperform those trained and tested with

the LPF dataset. All the methods that gave better results on the original experiment from Section

4.5.2, continue to do so, in the same relative proportion. These results further reinforce the change

of heart, concerning the post-processing methods, on Section 4.5.2.

4.7 Final Prototype

In this chapter several experiments concerning learning models of the envelope parameter set were

made.

First, the extracted parameters were regressed and the best combination of simplicity and

accurate predictability of signal processing portion was made. Figure 4.16 shows that final signal

processing architecture. The regression experiments also made it possible to choose Random

Forests as the method to use due to the advantages over normal Bagging: higher robustness of the
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classification and higher speed of learning, for the same regression error. Also, by regressing the

several extracted parameters it was possible to reduce the feature space to 9 parameters.

The classification experiments provided an insightful view on the relative importance of the

feature space, confirmed that MMEF and MEFx were error inducing parameters and that, non-

regressed, patient anthropometric parameters are important for the classification modeling of the

problem. This enabled to further reduce the feature space to 6 parameters. Finally, although the

binary class models had slightly better results than the multiple class models, it was verified that

not only is possible to classify the several lung abnormalities as it would have a relatively good

accuracy, providing more data was available for training and testing. Again, for performance

and simplicity issues, the Random Forest ensemble approach would be the best, for the present

multiple classification problem.

Table 4.28 presents the results from this and other related projects, for the parameter regression

task. As shown, this project did not perform very well, regression-wise, even with a larger number

of patients. However, the dataset used contained, approximately, an average of 1.6 recordings

per patient, which hardly constitutes a solid dataset, with relatively poor repeatability standards.

Additionally, all the dataset was tested using 5-fold cross validation. Like in mCOPD’s work,

recordings were both gathered in controlled and uncontrolled environments, although, the learning

and testing process did not make a distinction from which set it would choose the recordings from.

Additionally, the uncontrolled environment recordings outnumbered the controlled environment

ones by 81 to 20.

SpiroApp [6], although not providing the average clinical parameters’ regression error, states

that the error generally did not exceed 0.5 liters. They also only conducted one test on one COPD

and one Asthma patients each.

Table 4.28: Clinical parameters’ results comparison

Methods Parameters’ mean error Nº of patientsPEF FEV1 FVC FEV1/FVC
SpiroSmart [19] 6.3 4.8 5.2 4.0 52

mCOPD [13] - 3.6 6.5 3.9 40
SpiroSS2 21.3 32.2 22.6 10.0 61

In terms of classification, all of the projects mentioned earlier either do not offer any sys-

tem or do provide such information by non-learning, rule based, guidelines. This dissertation’s

system provides two classification models: one for the Normal versus Abnormal classification

problem and a second for the decision into Normal, Obstructive, Restrictive and Mixed abnormal-

ities labels. The models with the best results attained around 8% and 10% misclassification rate,

respectively.

2SpiroSS was the unofficially designation of this dissertation’s project.
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Conclusion and Discussion

5.1 Conclusion

The focus of this project was to evaluate several sets of signal processing and machine learning

methods, in order to find a suitable, efficient and accurate architecture for a smartphone app that

measures and classifies lung function, through microphone recordings.

The final signal processing stage of the prototype is divided in three components: pre-processing,

envelope generation and post-processing. On the pre-processing portion, the audio signal is fed to

a non-linear model that converts the sound pressure into airflow. Both processed and unprocessed

signals become inputs of the envelope generation functions. These are the Shannon Energy, Linear

Predictive Coding (LPC), of orders 2 and 32, and the Mean of Resonances. After the envelopes

are produced, they are approximated by a polynomial of the fourth degree. Then the envelopes are

extracted for the clinical parameters PEF, FEV1, FVC and FEV1/FVC.

The removal of the missing methods from the original set was based on no alteration of re-

gression error upon their withdrawal, gross importance, measured by envelope-wise total split

count, with 900 bagged trees, across all 9 clinical parameters, and weighting of the computational

complexity and speed characteristics of the methods.

From the initial total of 54 envelopes and 486 extracted clinical parameters, the system suffered

considerable shrinking until it produced only 8 envelopes and extracted 32 parameters (discarding

the 5, least significant, types of measurements), without noticeable change in the regression results.

The final stage of the system consists of the classification of the regressed values, using a 5

fold cross-validated Random Forest model. After some experimentation, the best learner/classifier

input was a combination of the 4 most relevant clinical parameters, as described earlier, and the

patients’ anthropometric parameters, height and age. The model, under these settings, attained

around 8% and 10% misclassification rate, performing, respectively, as a two label and as a mul-

tiple label classifier. On the two label problem, the Random Forest was one among those with

the highest precision and the one with the highest recall, among the best classifiers, with, respec-

tively, 90.90% and 98.59%. Although the multiple label model could not accurately predict the
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two restriction labeled observations, it managed to perform relatively well with Normal, Obstruc-

tive and Mixed abnormalities labels. The method chosen presented one of the best classification

rates among all tested classifiers and was deemed the fastest and less computational intensive of

the group.

In conclusion, a system design was devised and proved to be relatively precise in the classifica-

tion of expiration recordings into both Normal and Abnormal labels and into Normal, Obstructive

and Mixed labels. Some results of [13] and [6] were corroborated, such as the robustness of

polynomial approximation of the expiration envelope. A study of several signal processing and

machine learning methods was conducted and their characteristics were verified, such as, the use-

fulness of LPC in envelope calculation and the high classification performance of Random Forest.

There is significant room for improvement, starting with the collection of more recordings,

with a higher repeatability quality. It would also be important to increase the number of record-

ings of restriction and mixed abnormalities labels, to produce more accurate regression and classi-

fication models. Also, further experiments could determine if other envelope generating methods

could be removed without compromising both regression and classification results. Nevertheless,

the methods that remain on the prototype are relatively simple and easy to implement on any

smartphone app which makes the design feasible in practice. The results from this project seem

promising and encourage further development.

5.2 Discussion

5.2.1 Main problems

As mentioned throughout the document, there were some project characteristic issues which are

discussed in this section. First, some patient-wise issues are approached and then some technical

issues are presented.

Patient’s effort and fatigue: During the lung function screening, the patients have to perform

several times the forced expiratory maneuver (FEM), or another forced maneuver. This can be due

to the performance of the various tests or simply because of repeatability issues. Nevertheless,

throughout this process, it is expected that a patient feels fatigue and vary their effort on the

maneuvers. Consequently, either for spirometry as for the recordings, the expiration curves never

quite exhibit the patient’s real, undisturbed, expiration capacity, which leads to recording and

spirometry effort mismatch.

Performing the FEM: One particularly hard part of the recording sessions is teaching patients

how to correctly perform the FEM. In spirometry exams, the patient has to repeat the maneuver

several times until at least three of them are considered acceptable according to the ATS standards.

Additionally, expiring to a spirometer and to the screen of a smartphone have considerable differ-

ences. Due to the patients’ breathing settling time, after a FEM, and the screening’s tight schedule,

for a considerable number of patients, only a couple of recordings were made per patient.
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First, no mouthpiece was used on the smartphone tests, which forced the patients to, abnor-

mally, keep their mouth and lips un-pursed, sometimes wide open, in order to unobstruct the pas-

sage of air from their mouths to the microphone. Second, patients have a tendency to either rotate

the smartphone while performing the FEM or to flex their smartphone holding arm, which conse-

quently changes the distance the air has to travel and alters the measured volume. Finally, it also

seemed that exhaling without a mouth piece, made the patients uncomfortable enough to increase

the probability of coughing, which is undesired for both spirometer and recording maneuvers.

Screening Schedule: Due to the recording session limitation to the ICAR screening sessions’

schedule, only a relatively small number of patients was recorded. On the other hand, only rela-

tively few different cases of abnormal lung function were recorded. This was, however, somewhat

expected since a normal screening process is expected to find substantially more normal lung

function patients then abnormal ones. Consequently, in the end only about 30% of the dataset

contained abnormal observations, with obstruction lung disease’s predominance over the other

two abnormal labels.

Microphone saturation: The ICAR project consists of a nation wide study in which a team of

physicians conducts their evaluations on an itinerant lab. As a consequence, some recordings were

conducted outdoors, on somewhat windy conditions. On the other hand, patients have a tendency

to rotate the smartphone, uncovering the microphone, while doing the FEM. Both situations lead

to a set of recordings in which the microphone saturated, even though not always directly visible

on the recordings.

Background noise during recordings: In addition to environmental noise, the recordings also

would record the lab’s background noise. This would include physicians speaking (even giving

verbal incentive during the maneuvers), machine operation noises and occasional objects falling.

Recording application delay: Due to several unforeseen circumstances, the recording app de-

sign and implementation of all functionalities were only completely finalized mid-March. This

made the recording sessions only possible from that point on. The closing of the dataset was done

at about one month from the dissertation’s deadline, in order to gather a reasonably comfortable

number of recordings.

5.2.2 Future Work

For this dissertation, several methods, algorithms and experiments were implemented and con-

ducted, in order to build a smartphone app that matched the requirements stated in Section 1.2.

Nevertheless, some improvements and method optimizations can be done to further reduce the

computing time and additional important features can be incremented. Some key features and

other possibly relevant experiments are proposed.
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5.2.2.1 Automatic Segmentation Algorithm Improvement

The segmentation algorithm worked relatively well, specially once the zero-time back-extrapolation

was introduced. However, more recordings could have been used, from the original recordings set,

if background and occasional noise could have been removed.

For this purpose, it would be of interest to experiment with Blind Source Separation algorithms

in order to cancel such sound interferences.

5.2.2.2 AM demodulation

Another envelope generating method that could have been tested was AM demodulation. It terms

of electronic circuitry the simplest implementation consists of a diode in series with a parallel of

a capacitor and a resistance, which is not a particularly complex topology.

In terms of signal processing, it translates into taking the absolute values of the recordings and

then filtering them with an LPF. Both concepts are already employed in the post-processing part

(LPF) and on the Shannon envelopes, which take either the square or the absolute values and then

calculate the logarithm of the curves.

Since it is a considerably accessible method and significantly lower complexity algorithm, the

AM demodulation should also be experimented with.

5.2.2.3 Shape regression scheme

A relevant issue for spirometry that lacked in the project was the curve regression, mainly due to

the inaccessibility to the spirometer’s waveforms. In [19], one of the main focus was precisely

the envelope regression stage since no classification was provided or even intended. The fact is,

even if any application provided parameter regression and followed the standard ATS evaluation

guidelines, when it came to the classification/diagnosis, the last word, concerning a patient’s lung

function would always be from the physician.

While this work attempted to provide a somewhat useful tool for lung function tracking, the

physicians would still rather have all the clinical parameters, as well as the Flow-Volume and

Volume-Time curves, to properly assess the patient, than relying solely of the parameters and a

computerized diagnosis.

Due to these issues, the envelope regression would be a key feature in a future work. Inci-

dentally, a slightly different architecture than of [19] could be useful. While they regress both

Flow-Time and Volume-Time curves separately and them present both, it would be interesting

if those two curves would be transformed in each other and calculate some sort of cross regres-

sion, which would then be presented to the user, to make up for the two distinct regression paths.

Also, these final, cross-regressed curves could be used to correct the regressed clinical parameters,

previously used to normalize the raw envelopes.
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5.2.2.4 Robustness algorithms

One problem that affected a considerable amount of recordings was microphone saturation, as

previously mentioned in this chapter. Although the recordings would not always present a signif-

icant spike, which would present maximum excursion values, there was often a wind-like sound

followed by a subsequent reduction of sound magnitude. This effects caused a sharp decrease of

the normal expiration sound volumes.

One of the most frequent causes of this effect was the exhalation incorrectly directed at the

microphone instead of the screen.

Although, unverified, this problem might still be visible on the recordings as a temporary, DC

offset. If this is accurate, then a detection algorithm for these events could be easily devised. This

would be helpful since the application could then inform the user that the previous recording did

not meet the standards and ask to perform and record the FEM again. The detecting algorithm

could consist of calculating a moving average, over the recording itself, which if it crossed a

certain absolute tolerance then it indicated the offset.

5.2.2.5 Bronchodilator change test

Considering a smartphone app implementation of this work, a bronchodilator (BD) test would be

most significant for asthma and COPD patient’s. A BD test may enable to monitor the lung change

characteristics. It generally consists of performing two times the FEM, one before and another a

few minutes after the inhalation of a BD. The differences between the two results should provide

useful information about the state progression of the clinical parameters.

For instance, the non-improvement of FEV1 values, may indicate a certain type of lung prob-

lem such as COPD. For asthma patients, the non-improvement of their PEF values (at the same

time of day), may indicate that their prescription drug (BD) may not be the most suited treatment

for that person.

Even if a patient has initial values consistent with the references (i.e. normal values), there

still may be an obstruction which could be reduced with a bronchodilator. Due to the importance

of this analysis, this is a basic step on physicians protocol towards lung function testing.

5.2.2.6 Forced Inspiration test

One of the first tasks in this project was to remove the inspiration sound and to keep only the

exhalation sound. This was done for two main reasons: first the physicians feel that expiration

maneuver provides more valuable information about the lung function than the inspiration, though

they do both and may indicate different pathologies in case of an abnormality.

Second, it was assumed that inhalation produced a significantly quieter sound than expiration.

In some cases, this was true, however, in the majority of the recordings the inspiration is louder

than the expiration. Most inhalation sounds were found with a better clarity, less hesitation and

left few doubts where the FEM portions started and ended, unlike expiration.
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Additionally, people have a harder time doing the expiration part than when they do the inspi-

ration portion of the FEM. In fact, when they expire, they have a higher tendency to cough than

when they are inspiring.

Therefore, stands to reason to investigate the possibility of using the sounds of both directions

of breathing since the inspiration also provides useful information about the lung function.

5.2.2.7 Comparison with predicted values

As was discussed on Section 4.6.4, height and age are important parameters for lung function.

In fact, spirometry studies lead people to propose expected reference curves and spirometric

values for healthy individuals [39]. Current physicians usually evaluate lung function based on

FEV1/FVC index, FEV1-pre%, which stand for the ratio between the FEV1’s predicted value and

measured before the usage of bronchodilator, and similar types of ratios for FVC and PEF, either

before and after the use of bronchodilator.

An important study that should be conducted would be to include such parameters into the

feature space and observe the model’s learning accuracy.



Appendix A

Initial Method Discussion

A.1 Choosing the Signal Processing methods

The initial literature review presented some relevant envelope generating methods, as well as pre

and post processing algorithms to alter the sound signals and the envelopes. In this section such

methods are discussed and the reasons for their use are presented.

The Hilbert Transform seemed to be a crucial process since it provides a simple way to com-

pute the envelope of the breath signal. Another way to compute an envelope was tracking the major

frequencies of the signal, with an FFT, and regenerating a time series. Also, the source power of

the exhalation could be estimated using Linear Predictive Coding. Envelope signals might need

to be filtered of noise in order to correctly extract the features. Therefore, it could prove beneficial

to use LPF. All of these were employed by [19] and were found to give good results.

On the other hand, an envelope can be made immune to noise if a function approximation

is computed. An initial choice among these functions had to be made in order to reduce the

number of methods with the same approximate proprieties. The reasoning behind this choice was

somewhat similar to the one [6] presented:

The Linear Regression probably would not produce good results since the FEM does not fol-

low a linear function. A Polynomial Regression seems to a good candidate though it has the

instability problem for higher orders. On the other hand, it could have good results for an order

between 3 and 5, which seems to be enough to represent the FEM accurately.Splines have a track

record of lower order requirements and have similar results to Polynomial Regression. Though,

since the polynomial order seems to be relatively low it might not be justifiable. In the end, Poly-

nomial approximation was the one chosen.

The last couple of methods were envelope generating functions that shaped the envelope in

a way that intensifies certain amplitudes. These are Shannon Energy and entropy. They have

been used on heart rate signals and also had significant success [25, 26]. Additionally it would be

interesting to compare them with the Hilbert Transform results.

It was defined that one of the requirements of the application is to have a processing time

relatively small so only a reasonably few of the methods mentioned were expected to be present
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on the final implementation. Primarily, all the signal processing methods were chosen because

they presented different characteristics and their individual contribution was deemed worthwhile

to experiment.

A.2 Choosing the Machine Learning methods

In this section a discussion concerning some machine learning algorithms is presented as well

as the reasons why certain methods were chosen for this dissertations’ experiments. Figure A.1

shows a comparison of several machine learning methods as presented on [3].

A.2.1 Regression

The regression portion of the initial system constituted a bottleneck in terms of learning speed

and model implementation complexity. Furthermore, initially it was already expected that the

dataset would not contain a substantial number of observations and, therefore, the quickness of

learning in respect to the number of instances was also a pressing issue. The regression models

considered were Regression Trees, Artificial Neural Networks (ANNs), Locally Weighed Regres-

sion and Support Vector Regression models (SVRs). Although Table A.1 presents a table with a

comparison of classification models, some of them are also available for regression tasks with a

minor alteration.

Regression Trees are fairly weak learning models that would most definitely overfit the data.

However, if ensemble methods such as Bagging and Random Trees were used than that overfitting

characteristic would benefit the whole tree set. These methods are relatively easy to understand,

quick to train and use and are tolerant to missing values and irrelevant and redundant data.

ANNs, unlike tree methods, are strong learners that are quick give results and are generally

quite accurate. However, the speed at which they learn is considerably low and they need a con-

siderable learning dataset to become accurate, which would not be available.

Locally Weighed Regression is a k-Nearest Neighbors based regression model and, there-

fore, shares almost all it’s characteristics. Although it is relatively transparent and learns instan-

taneously, the speed at which it classifies is proportional to the number of training examples and

may be unaffordable in terms of memory usage, since it needs to keep every training example to

compute the output.

Support Vector Regression models [40] attempt to minimize the generalized error bound in

order to produce a generalized performance and avoid overfitting, unlike regular regression algo-

rithms that minimize the observed training error. This is a promising method, however, it seemed

a far more complex than needed for the application regression stage.

In light of of these options and characteristics, the Tree Bagging and Random Forest methods

were chosen to regressed.
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A.2.2 Classification

Choosing the methods to test on the classification portion of the project is a somewhat simpler

task. Since by this stage the several clinical parameters are reduced to a much smaller set, several

methods can be experimented upon, even if only for obtaining control values. The classifica-

tion models considered were Classification Trees, Artificial Neural Networks, k-NN, Naïve Bayes

and Support Vector Machines (SVMs). Some of these classifiers’ reasoning can be found on the

previous section since their classification counterparts have similar features.

Concerning Classification Trees, they present the same characteristics as regression trees, ex-

cept for the fact that their output are labels instead of continuous values. In addition to the already

mentioned ensemble methods, it seemed interesting to also use boosting, for which the AdaBoost

algorithms were experimented with.

Naïve Bayes is a classification model which learns fairly quick, generates a moderate number

of classifier parameters (mean and standard deviation for each class and feature). On the other

hand, it generally has a relatively low performance and does not tolerate well irrelevant and re-

dundant values. Additionally, most parameters of the feature space are expected to be highly

interdependent, which further worsens the Naïve Bayes results’ expectations. Nevertheless, it was

also used as a control model from which to measure the other methods improvement.

As mentioned on the previous section, SVM classifiers are very accurate and quick to produce

an output. Additionally, they tolerate very well irrelevant, redundant and interdependent features.

Considering all of this and due to the more unconstrained situation, SVMs were used.
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Decision
Trees

Neural
Networks

Naïve
Bayes

kNN SVM Rule-learners

Accuracy in general ** *** * ** **** **
Speed of learning with
respect to number of
attributes and the number
of instances

*** * **** **** * **

Speed of classification **** **** **** * **** ****
Tolerance to missing
values

*** * **** * ** **

Tolerance to irrelevant
attributes

*** * ** ** **** **

Tolerance to redundant
attributes

** ** * ** *** **

Tolerance to highly
interdependent attributes
(e.g. parity problems)

** *** * * *** **

Dealing with
discrete/binary/continuous
attributes

**** ***(not
discrete)

***(not
continuous)

***(not
directly
discrete)

**(not
discrete)

***(not
directly
continuous)

Tolerance to noise ** ** *** * ** *
Dealing with danger of
overfitting

** * *** *** ** ***

Atempts for incremental
learning

** *** **** **** ** *

Explanation
ability/transparency of
knowledge/classifications

**** * **** ** * ****

Table A.1: Comparing learning algorithms (**** stars represent the best and * star the worst in
performance). Reproduction from [3].
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