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Abstract 

Matrix metalloproteinases (MMPs) are crucial mediators in sculpting tissue 

architecture, and are required for many physiological and pathological 

processes. MMP3 has been shown to regulate branching morphogenesis in 

mammary gland. Ectopic expression of proteolytically active MMP3 in 

mouse mammary epithelia triggers supernumerary lateral branching and 

eventually tumors. Because the proteolytic activity of MMPs resides within 

the catalytic domain, it has been generally assumed that this domain is re-

sponsible for all the functions of MMP3. 

Using a three-dimensional (3D) collagen-I (Col-1) gel assay that simu-

lates epithelial invasion and branching, we found that it is the hemopexin 

domain of MMP3 that directs these processes. Using three different engi-

neered constructs containing a variation on MMP3 structural domains, we 

confirmed the importance of the hemopexin domain not only in cultured 

cells but also in primary organoids of the mammary gland. A proteomic 

screen of MMP3 binding partners surprisingly revealed that the intracellular 

chaperone, HSP90β, is present extracellularly, and its interaction with the 

hemopexin domain of MMP3 is critical for invasion. Blocking of HSP90β with 

specific inhibitory antibodies added to the medium abolished invasion and 

branching in mammary organoids. Additionally, we observed that the levels 

of expression of Hsp90ab1 and Mmp3 are positively correlated in pubertal 

mammary glands, reaffirming their importance in sculpting the mammary 

epithelial tree during branching morphogenesis. 

These findings shift the focus from the proteolytic activity of MMP3 as 

the central player to its hemopexin domain, and add a new dimension to 

HSP90β’s functions by revealing a hitherto undescribed mechanism of 
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MMP3 regulation. Our data also may shed light on the failure of strategies 

to use MMP inhibitors in cancer treatment and other related disorders. 
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Resumo 

As metaloproteinases de matriz (MMPs) são mediadores cruciais na 

construção da arquitectura dos tecidos, e são necessárias em muitos proc-

essos fisiológicos e patológicos. A MMP3 regula a formação de ramificações 

na glândula mamária. A expressão ectópica de MMP3 com atividade prote-

olítica no epitélio mamário de ratinhos desencadeia o desenvolvimento ex-

cessivo de ramificações laterais e, eventualmente, de tumores. O facto de a 

atividade proteolítica das MMPs residir no seu domínio catalítico levou os 

investigadores a assumirem que este domínio é responsável por todas as 

funções da MMP3. 

Utilizando um ensaio tridimensional (3D) em colagénio tipo I (Col-1), 

que simula a invasão epitelial e a ramificação mamária, demonstramos que 

estes processos são dirigidos pelo domínio hemopexina da MMP3. Utili-

zando três constructos diferentes, engenhados com variações nos domínios 

estruturais da MMP3, confirmamos a importância do domínio hemopexina, 

não só numa linha celular, mas também em organóides primários da glân-

dula mamária. Um screening proteómico para identificar proteínas que in-

teragem com a MMP3 revelou, surpreendentemente, que a chaperona inter-

celular HSP90β está presente no meio extracelular, e que a sua interação 

com o domínio hemopexina da MMP3 é crucial para o processo de invasão. 

A inibição da HSP90β com anticorpos específicos adicionados ao meio de 

cultura aboliram a invasão e ramificação em organóides mamários. Adi-

cionalmente, observamos que os níveis de expressão dos genes Hsp90ab1 

e Mmp3 estavam correlacionados positivamente em glândulas mamárias em 

fase de puberdade, o que reafirma a sua importância na formação da árvore 

epitelial mamária durante o processo de ramificação. 
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Esta descoberta muda o foco de investigação da função da MMP3 da 

sua atividade proteolítica para o seu domínio hemopexina e confere uma 

nova dimensão às funções da HSP90β ao revelar-lhe um papel fundamental, 

e até agora desconhecido, no mecanismo de regulação da MMP3. Os nossos 

resultados podem ainda contribuir para elucidar a causa do insucesso do 

uso de inibidores de MMPs no tratamento do cancro e outras doenças 

relacionadas. 
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Chapter 1 

1 Introduction 

1.1 Tissue Architecture 

The function of a tissue or organ relies on its constituent cell types and 

overall organization. It is the evident uniqueness of this architecture that 

distinguishes, for example, the heart from the mammary gland, and that 

directs the cells within the former to pump blood and within the latter to 

make milk; this is so despite the fact that different tissues emerge from a 

single cell, and thus all share an identical genome. 

Tissue and organ architecture is early specified in the embryo. Morpho-

gens (“form producers”) diffuse through embryonic tissues, setting up 

concentration gradients that govern pattern formation as well as the po-

sition of the several specialized cell types within a tissue (Turing 1952). All 

organs, with a few notable exceptions, such as the mammary gland and the 

brain, ‘arrive’ together and are complete when the organism is born. Pre-

serving the original construction, however, is a permanent task. The ability 

of cells to proliferate, move, differentiate and die poses a continuous chal-

lenge to tissue homeostasis, and yet most adult tissues show architectural 

consistency over many decades. Loss of architecture is part of the definition 

of many diseases, including cancer. Indeed, this is how oncologists and pa-

thologists diagnose tumors and determine their stage or grade (Burstein et 

al. 2004; Miller and Mihm 2006). Understanding the framework that main-

tains architectural stability is not only crucial to determine how organs re-
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main functional and disease-free, but also how cells within tissues lose or 

overcome these controls in cancer. 

1.1.1 Cell-Microenvironment Interactions are Integral 

Determinants of Tissue Architecture 

Tissue function and homeostasis are driven by tissue architecture. But, if 

architecture is the product of cell arrangements, and if every cell in our 

body carries the same genetic information, how does each cell know how to 

behave within a tissue? Two-way communication has emerged as the organ-

izing principle that enables ‘dynamic and reciprocal’ exchanges of informa-

tion between cells and their surroundings (Bissell et al. 1982; Bissell et al. 

2002). According to this model (Figure 1.1), tissues and organs are embed-

ded in extracellular matrix (ECM)/basement membrane (BM) that provide 

them structural support and contextual information together with soluble 

factors. The model of Bissell et al. took the bidirectional cross talk between 

the ECM and the cell membrane (Bornstein et al. 1982), and extended it to 

the level of control of gene expression, by connecting ECM-ECM receptor 

interactions to the cytoskeleton and to the nuclear matrix and chromatin. 

Indeed Bissell and Hall argued that in the last analysis the organ (or indeed 

the organism) is the unit of function in all organisms (Bissell and Hall 

1987). Cells respond then to cocktails of soluble and insoluble signaling 

molecules and, in turn, tune their microenvironment. It is the result of this 

harmonious combination that governs tissue dynamics and function. 

The importance of ‘tissue interaction’ to formation of organs was first 

hypothesized by Pander in 1817 (Pander 1817). Over a century later, semi-

nal work of early developmental biologists demonstrated that cells of dis-

tinct embryonic lineages engage in a highly organized cross talk that en-

sures proper cell sorting and directs tissue and organ morphogenesis and 

differentiation (reviewed by (Nelson and Bissell 2006)). This truism of organ 

development is made strikingly clear by tissue-recombination experiments, 

in which living pieces of tissue from various regions of the developing ani-

mal are combined and monitored. For example, combining mammary epi-

thelium with mammary mesenchyme results in the development of a mam-
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mary tree, but recombination with mesenchyme taken from the salivary 

gland generates structures reminiscent of the salivary epithelial tree 

(Kratochwil 1969; Sakakura et al. 1976). Conversely, mammary mesen-

chyme can induce epithelial cells from other tissues to build a lacta-

tion-competent gland (Cunha et al. 1995). The importance of reciprocal tis-

sue interactions and the identification of the molecular mediators have now 

been demonstrated for several other organs, including the lung, prostate 

and kidney (reviewed in (Cardoso 2001; Marker et al. 2003; Yu et al. 2004)). 

 
Figure 1.1 The model of ‘dynamic reciprocity’: the minimum required unit for tis-

sue-specific functions. 

Many mechanical and biochemical signals flow bidirectionally between the ECM and the nu-

cleus (arrows). These signals are received at points of cell–cell or cell–ECM contact and are 

transduced to the nucleus, where they trigger the expression of specific gene products that 

are excreted back into the extracellular milieu. Integrins are connected to filamentous actin 

(F-actin), and sense elements of the extracellular matrix (ECM)/basement membrane (BM) to 

promote growth-factor activation. A combination of tight junctions, adherens junctions and 

gap junctions maintains the physical contact between neighboring cells. Additionally, des-

mosomes and hemidesmosomes serve as anchoring points for intermediate filaments and 

also provide signaling information. 
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Cell-microenvironment interactions are thus a major source of information 

regulating morphogenesis and differentiation. It is important to mention 

that phenotypic plasticity is implicit to this normal differentiation (Bissell 

1981), as all living forms have the ability to adapt to changes in both the 

environment external to the organism and the internal microenvironment. 

The flexibility of differentiated cells is apparent during tissue remodeling 

and repair and to a remarkable degree in organisms, such as the newt, that 

can regenerate entire organs and limbs even in the adult animal. The fact 

that a differentiated cell can even react to signals that direct the develop-

ment of a different tissue to express the latter’s specific traits (Chiu and 

Blau 1984; Blau et al. 1985) should have dispelled the notion that the proc-

ess of differentiation locks cells into a particular fate without recourse. 

There is now ample evidence that all cells retain the ability to morph from 

one cell type to another, and that they maintain a stable phenotype by inte-

grating cues from the extra- and intra-cellular milieu. Dynamic reciprocity is 

thus scalable both in time and space and is a mechanism by which individ-

ual cells within tissues maintain the normal architecture and homeostasis in 

spite of an uncertain environment over the organism’s lifetime. 

1.1.2 Tissue Architecture and Normal Context as 

Overriding Tumor Suppressors 

Much of the milestone research in demonstrating the importance of 

cell-microenvironment interactions did so by showing that context could 

override tumorigenicity; that is, tumor cells could be tricked into thinking 

they are normal if provided the right cues. The observation that the embryo 

comprises such a suppressive microenvironment is one that was first made 

over 100 years ago, when Askanazy showed that ovarian teratomas could 

form ‘normal’ tissues composed of the correct embryonic germinal layers 

when injected into embryos (Askanazy 1908). Decades later, a series of 

studies from different laboratories provided further evidence that the em-

bryonic microenvironment could induce tumors to function normally in de-

velopment. For example, using RSV (Rous sarcoma virus, encoding the on-

cogene v-src), Dolberg and Bissell showed that cells within injected chick 
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embryos expressed the virus, but that early embryos failed to form tumors 

(Dolberg and Bissell 1984; Howlett et al. 1988). Maintaining embryonic ar-

chitecture was key, however, as dissociating the embryos and placing cells 

in culture resulted in rapid transformation (Stoker et al. 1990). The lasting 

impact of these studies is that tissue architecture is dominant to the power-

ful oncogene in embryos, thus overriding tumorigenicity of malignant cells. 

These studies offered also the clue that the malignant genotype could be 

suppressed if the interactions between a tumor and its microenvironment 

could somehow be normalized. 

Evidence of the coexistence of normal and malignant cell populations 

within the same tissue, without resulting in a frank malignant tumor, has 

been reported also in human tissue specimens. Studies of large autopsy se-

ries have revealed that the majority of middle-aged and older people who 

die from causes other than cancer have frequent precancerous lesions 

throughout their bodies (Rich 1979; Harach et al. 1985; Nielsen et al. 1987; 

Folkman and Kalluri 2004). Analyses of ‘normal’ epithelial tissue adjacent 

to tumors have shown that similar patterns of mutations can be found in 

both, yet tumor growth is restrained by normal contextual cues (Deng et al. 

1996; Washington et al. 2000). These and other related findings led Bissell 

and Hines recently to propose the microenvironment as the attenuator of 

both tumor onset and malignant progression, providing a rational frame-

work to explain why the majority of people live cancer-free lives for dec-

ades, yet harboring a number of harmful mutations they accumulate over 

time (Bissell and Hines 2011). The phenotype is dominant over the geno-

type of even tumor cells; how else can one explain the occult tumors and 

dormancy of tumor cells that disseminate very early during tumor progres-

sion? Indeed, how else would one explain why people with familial BRCA or 

APC mutations have these in all their cells and yet they develop tumors only 

in a few of cells in specific organs? 
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1.1.3 Loss of Tissue Architecture and Abnormal Context 

as Tumor Promoters 

If reciprocal communication between a normal context and ECM defines the 

normal tissue homeostasis, the opposite should also be true: abnormal con-

text should lead to abnormal conversation allowing cells to disregard 

sorting rules and violate normal tissue boundaries, setting the stage for 

cancer progression. That this indeed is the case has long been obvious to 

pathologists, as judged by common reports of fibrotic tissue, ECM deposi-

tion, and immune and inflammatory infiltration, collectively called ‘reactive’ 

tumor stroma. As early as 1938, Orr observed that morphological changes 

in the microenvironment of the skin of carcinogen-treated mice appear long 

before neoplastic alterations in epithelial cells (Orr 1938). Subsequently, 

Tarin showed that complex sequential changes occur at the epithelial–

mesenchymal boundary during mammary tumor progression (Tarin 1969). 

Insights into the nature of the reciprocal tumor–stromal interactions 

that both precede and stimulate tumorigenesis have gradually accumulated. 

The presence of cancer-associated fibroblasts (CAFs) has been reported in 

many cancer types, and bidirectional CAF–epithelial interactions were 

shown to precede invasion and stimulate tumor growth and progression 

(Picard et al. 1986; Camps et al. 1990; Hayashi et al. 1990; Skobe and 

Fusenig 1998; Olumi et al. 1999; Cunha et al. 2003; Bhowmick et al. 2004). 

Concomitantly, cancer cells overproduce proteolytic enzymes, particularly 

matrix metalloproteinases (MMPs) (Chambers and Matrisian 1997), which 

generate fragments with pro-migratory and pro-angiogenic functions 

(Folkman and Kalluri 2002) as well as activate cell-surface and ECM-bound 

growth factors (Egeblad and Werb 2002), reflecting the extensive crosstalk 

between the microenvironment and the malignant cells. Recently, adipo-

cytes have been recognized as important mediators of normal context dis-

ruption as well, since they produce a host of biologically active molecules 

that promote the inflammatory process and angiogenesis (Iyengar et al. 

2005; Motrescu and Rio 2008; Cao et al. 2010; Dirat et al. 2011). Prefer-

ence for metastatic colonization is heavily influenced also by communica-

tion between circulating tumor cells and bone marrow-derived cells 
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(BMDCs); these cells home to the tumor and promote its progression, ma-

lignant cell escape and survival, and ultimately metastatic growth (reviewed 

in (Joyce and Pollard 2009)). In addition to the plethora of cell types above 

described, cell-intrinsic and -extrinsic forces have also a significant effect 

on ECM alignment (Butcher et al. 2009), contributing thus to shape the eco-

logical landscape that is the tumor microenvironment. 
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1.2 The Mammary Gland as an Experimental 

‘Organism’ 

The mammary gland is an excellent example of an organ, the development 

and differentiation of which require dynamic and reciprocal communication 

between cells and their microenvironment. It is one of the very few organs 

that develop mainly after birth, and it undergoes multiple rounds of growth, 

differentiation, apoptosis, regression and remodeling during the lifetime of 

the organism. As such the mammary gland is a versatile experimental 

model for studying how structure and function unite to bring about func-

tional differentiation. 

Our understanding of the mammary gland has been enriched by the 

use of the mouse as an experimental system. Despite the differences be-

tween the mouse mammary gland and the human breast (Cardiff and 

Wellings 1999), the acinar unit of function is largely similar in the two spe-

cies, making it a suitable surrogate for understanding human breast func-

tion. 

1.2.1 The Structure of the Mammary Gland 

The mammary gland distinguishes mammals from all other animals with its 

unique architecture that allows the synthesis and secretion of milk for the 

nourishment of the newborn. The mammary epithelium develops into an 

elaborate network of bilayered ducts (Figure 1.2), which begin at the nipple, 

are branched throughout a heterogeneous stroma, and end at mammary 

acini — the functional units of the gland. The mature mammary duct con-

sists of a central layer of luminal epithelial cells (LEPs) specialized for milk 

production and secretion into the ducts, and an outer layer of myoepithelial 

cells (MEPs) that provide the coordinated contractile forces necessary to 

eject secreted milk through the ducts towards the nipple (Forsyth and 

Neville 2009). It also harbors stem and progenitor cells, which are the 

source of both luminal and myoepithelial cells (reviewed in (Visvader 
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2009)). The epithelial ductal tree is ensheathed by BM (Williams and Daniel 

1983) and embedded within a complex stroma, the mammary fat pad, 

which contains adipocytes, fibroblasts, immune cells, blood vessels and 

nerves, all of which are important for normal mammary development and 

function. 

 
Figure 1.2 The bilayered tree-like structure of the mammary epithelium. 

The mouse has five pairs of mammary glands that extend from the thoracic to the inguinal 

side. The mammary epithelium develops into an elaborate network of bilayered ducts 

(mammary gland inset), which begin at the nipple and are branched throughout a heteroge-

neous stroma. The mature mammary duct consists of an inner layer of milk-producing lumi-

nal epithelial cells (LEPs), surrounded by a layer of contractile myoepithelial cells (MEPs) and 

basement membrane (BM) (mammary duct inset and cross-section). 

1.2.2 The Dynamic Journey of Mammary Morphogenesis 

Mammary development occurs in three distinct and differentially regulated 

stages: embryonic, pubertal and adult. In mice, embryonic mammary devel-

opment begins mid-gestation with the specification of two bi-lateral epi-

dermal ridges, the milk lines, which run from forelimb to hindlimb on each 

side of the animal (Figure 1.3) (Cowin and Wysolmerski 2010). Five pairs of 

disk-shaped placodes then segregate along these lines at the site of each 

future nipple, and invaginate into the underlying mesenchyme to form the 

mammary buds, or anlagen (Watson and Khaled 2008). The buds then 

sprout and extend to form a rudimentary ductal structure, which in female 
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embryos lies quiescent until puberty, but degenerates in males due to acti-

vation of androgen receptors (Veltmaat et al. 2003). 

 
Figure 1.3 Overview of mouse embryonic mammary gland development. 

In the mouse embryo, mammary development begins when five pairs of placodes form in the 

epithelium adjacent to the fat pad precursor (embryonic day 11.5 (E11.5)). Placodes sink into 

the underlying mesenchyme (grey) to become mammary buds (E15.5). These buds sprout 

and elongate to form a rudimentary mammary tree (E18.5), which remains morphogeneti-

cally quiescent until puberty. 

Mammary gland development resumes postnatally, and the pubertal stage 

is perhaps the most remarkable of mammary morphogenesis (Figure 1.4). 

During this stage, the female mammal develops an elaborate epithelial tree 

through the process of branching morphogenesis. Prompted by elevated 

levels of hormones and growth factors, the ends of the rudimentary ducts 

proliferate and swell into distinct multilayered epithelial structures called 

terminal end buds (TEBs) (Hinck and Silberstein 2005). These ductal struc-

tures then undergo successive rounds of elongation and bifurcation to form 

adequately spaced primary ducts, whereas concomitant secondary 

side-branches sprout laterally from the trailing ducts (Wiseman et al. 2003). 

Presumably, distinct mechanisms control the timing of TEB branching and 

the periodicity of side branch eruption from pre-existing main ducts. Cur-

rently neither is understood, and it is possible that they occur stochasti-

cally. Interestingly, branching ducts never cross paths, most likely due to 

the secretion of inhibitory factors that act on neighboring ducts to influence 

their path of migration (Faulkin and Deome 1960; Silberstein and Daniel 

1987). The epithelial tree ceases forward growth when it reaches the limit 

of the fat pad of the young adult female. Thereafter, short tertiary 
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side-branches form along the ducts in response to cycling ovarian hor-

mones, further decorating the mature ductal tree. 

 
Figure 1.4 The pubertal mouse mammary gland branches through two distinct mecha-

nisms: side branching and TEB bifurcation. 

At birth, the mammary epithelium is rudimentary, consisting of only a few small ducts that 

grow allometrically until puberty (4 weeks in mice). With the onset of puberty, the female 

mammal develops an elaborate epithelial tree through two distinct processes of branching 

morphogenesis. Bifurcation of TEBs (lower right) occurs only from immature ducts. The 

branch point is formed through deposition of stroma at the cleft site, and the ducts extend 

directly into adipose tissue, without MEPs or stroma and with only a minimal BM at their in-

vasive front. In contrast, in side branching (lower left), a new branch forms from a mature 

duct. The region where the bud is to form is first defined, and only then the emerging bud 

extrudes through and remodels a region containing layers of MEPs, BM and periductal 

stroma. The epithelial tree ceases forward growth when it reaches the limit of the fat pad of 

the young adult female (12 weeks in mice), and thereafter, short tertiary side branches form 

along the ducts in response to cycling ovarian hormones. 

During pregnancy, the combined action of progesterone, prolactin and pla-

cental lactogen orchestrates remarkable changes in preparation for the im-

portant function of lactation (Figure 1.5). A massive increase in secondary 

and tertiary branching provides ductal arbors for alveolar development. Pro-
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liferating epithelial cells give rise to alveolar buds that progressively differ-

entiate into milk producing secretory alveoli (Brisken et al. 1999). The 

epithelial to adipocyte ratio increases, and each individual alveolus be-

comes surrounded by a basket like network of capillaries (Djonov et al. 

2001). By late pregnancy, the alveoli have filled the majority of the fat pad 

and start showing secretory activity as pregnancy approaches term (Richert 

et al. 2000). The process of lactation continues for approximately three 

weeks until the pups are weaned. 

 
Figure 1.5 The mouse mammary gland experiences major changes to generate lactation 

competence during pregnancy. 

During pregnancy, the combined action of progesterone, prolactin and placental lactogen 

orchestrates alveologenesis. Prolactin stimulation persists throughout the lactation stage, 

which culminates in milk production that continues until a lack of demand at weaning. The 

loss of suckling stimuli at weaning causes milk to stagnate in the mammary epithelium and 

triggers post lactational involution. This two-stage remodeling process restores a ductal 

structure somewhat similar to the pre gestation state. 

The loss of suckling stimuli at weaning causes milk to stagnate in the 

mammary epithelium, initiating a remodeling program called 

post-lactational involution (Walker et al. 1989) (Figure 1.5). Two phases of 

involution have been described: the first is a potentially reversible period 

initiated by mechanical triggers associated with milk-stasis; and the second 
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is a programmed deconstruction of the alveoli and the supporting struc-

tural ECM (Lund et al. 1996). The latter phase is dominated by the involve-

ment of extracellular proteases with concomitant reconstitution of the adi-

pocyte compartment. The secretory alveoli collapse, eventually restoring a 

ductal structure somewhat similar to the pre-gestation state. The gland is 

then ready to initiate another cycle of pregnancy, lactation, and involution, 

and maintains this remarkable ability for several months throughout the 

female mouse lifespan. 

1.2.3 The Mammary Remodeling Program 

As discussed above, the mammary gland encounters constant physiological 

demands during the female lifespan. To maintain its unique function of lac-

tation, the gland must repeatedly reacquire its fundamental architecture 

with the preservation of cell types, ratios, differentiation state, and matrix 

integrity. This requires a remodeling program that involves deconstruction 

and reassembly of multiple intricate structures throughout the gland. A 

plethora of molecular signals cooperate to execute the remodeling program 

through communication between epithelial and stromal cells. Systemic 

hormones induce mitogens to initiate growth, epithelial ductal branching 

and differentiation, and inhibitors to terminate ductal growth and balance 

proliferation with apoptosis. A suite of ECM modifiers, particularly MMPs, 

operates at the cell-microenvironment interface to tailor the structural sup-

port of the mammary tissue and rearrange cell-cell and cell-ECM adhesion. 

The overall tissue regenerative ability also requires concerted and recipro-

cal signaling between the epithelium and distinct cell types from the sur-

rounding stroma. 

1.2.3.1 Hormone-Induced Signaling 

The process of mammary remodeling is set in motion by systemic hor-

mones. The major sources of reproductive hormones in mature females in-

clude the ovaries, which secrete estrogens and progesterone, the anterior 

pituitary gland, which synthesizes growth hormone (GH) and prolactin, and 
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the adrenal glands, which release cortisol and precursors of sex steroids. 

Estrogen is known to play a critical role in stimulating mammary ductal 

elongation during mouse pubertal development. Exogenous estrogen ad-

ministration can directly stimulate mammary ductal growth in female mice 

that have had their ovaries surgically removed (ovariectomized animals) 

(Daniel et al. 1987). Estrogens, however, are not sufficient, as they fail to 

rescue mammary branching in rodents that have been subjected to surgical 

removal of the pituitary gland (hypophysectomized animals) (Reece et al. 

1936; Gardner and White 1941; Lewis et al. 1942). Branching is restored 

upon supplementation with GH (Lyons 1958; Nandi 1958) or insulin-like 

growth factor 1 (IGF1) (Kleinberg et al. 2000). 

In contrast to estrogen, progesterone is redundant for pubertal ductal 

development, but instead is necessary for tertiary side branching and secre-

tory differentiation of the alveolar compartment (Lydon et al. 1995; Brisken 

et al. 1998). Similarly, mice lacking either prolactin or its receptor (PRLR) 

show neither alveolar structures nor production of milk proteins (Ormandy 

et al. 1997; Brisken et al. 1999; Gallego et al. 2001). Prolactin and proges-

terone act partially by inducing the expression of receptor activator of nu-

clear factor kappa-B ligand (RANKL), and Rankl-null mice fail to undergo al-

veolar differentiation and therefore do not lactate (Fata et al. 2000). 

A notable feature of the hormone-directed mammary remodeling pro-

gram is the sequential action on the epithelium to orchestrate mammary 

gland development. During puberty, a burst of estrogen induces the ex-

pression of progesterone receptor and sets the stage for progesterone 

(Haslam and Shyamala 1979). Cyclic secretion of progesterone is estab-

lished as the mouse attains sexual maturity, which coincides with the ducts 

reaching the limit of the fat pad. Progesterone and prolactin interact then in 

a number of ways to control alveolar development during pregnancy. This 

sequential action ensures that the distinct morphological steps occur in an 

orderly manner, so that all the ducts are established before alveoli bud, and 

they find adequate space to unfold and to be drained efficiently. 
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1.2.3.2 Epithelial Mitogens and Inhibitors 

Systemic hormones stimulate a number of signaling pathways that serve 

specific functions in TEB proliferation, ductal elongation and side branching 

(Figure 1.6). For example, GR induces expression of insulin-like growth fac-

tor 1 (IGF1) in stromal cells (Gallego et al. 2001), which in turn signals to its 

receptor (IGF1R) in the epithelium to direct TEB formation (Kleinberg et al. 

2000). Similarly, estrogen stimulates stromal cells to produce hepatocyte 

growth factor (HGF), which acts in a paracrine way to induce epithelial 

branching (Zhang et al. 2002). Estrogen also binds to estrogen receptor al-

pha (ERα) in the epithelium, thereby inducing the expression of STAT5A, 

which is required for lateral branching (Liu et al. 1997; Santos et al. 2010). 

Several receptor tyrosine kinases have also profound effects on puber-

tal mammary development (Figure 1.6). Among the fibroblast growth factor 

receptor (FGFR) family members, FGFR2 is found to regulate proliferation of 

luminal epithelial cells and formation of TEBs (Lu et al. 2008; Parsa et al. 

2008). Epidermal growth factor receptor (EGFR) signaling is also required 

for adequate branching morphogenesis, and of its seven ligands, am-

phiregulin (AREG) has emerged to be the most critical (Sternlicht et al. 

2005). The EGFR family member ERBB2 has also been implicated in mam-

mary morphogenesis (Jackson-Fisher et al. 2004; Andrechek et al. 2005), 

although its ligand and exact role remain elusive. Intriguingly, ERBB2 is re-

quired in the epithelium for normal ductal development, but the partner 

proteins that it normally dimerizes with, ERBB4 or EGFR, are required only 

in the stroma (Sebastian et al. 1998; Sternlicht et al. 2005). The compart-

mental localization and requirement of specific ligands and their receptors 

highlights the crucial importance of integrated paracrine signaling between 

the epithelium and stroma during pubertal development. 

The involvement of many of these molecules in mammary gland re-

modeling has been recognized for nearly two decades. However, it has 

been difficult to uncouple the individual signals and receptors, given how 

many downstream effectors they share. For example, EGFR and FGFRs elicit 

at least part of their effects through mitogen-activated protein kinases 

(MAPKs), but they seem to yield distinct and even antagonistic phenotypic 

outcomes. The kinetic profile of MAPK activity may determine the final 
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morphogenetic response, at least of primary mammary organoids in cul-

ture; whereas sustained MAPK activation downstream of transforming 

growth factor alpha (TGFα) and EGFR induces branching, transient MAPK ac-

tivation downstream of FGF7 and FGFR2 stimulates proliferation (Fata et al. 

2007). This suggests that temporal responses may be used by the mam-

mary epithelium to integrate and interpret distinct signals. However, the 

precise role of MAPKs in mammary morphogenesis in vivo is unclear. A 

combined loss of the MAPK inducers AREG, EGF and TGFα severely impairs 

branching morphogenesis in mice but has no discernable effect on prolif-

eration, apoptosis or MAPK activation within the TEBs, which indicates that 

MAPKs may not be sufficient to promote morphogenesis (Luetteke et al. 

1999). 

 
Figure 1.6 Multiple integrated signaling networks regulate mammary morphogenesis 

during puberty. 

Global endocrine signals from the ovary (estrogen) and pituitary gland (GH) activate a pleth-

ora of paracrine signaling pathways to initiate mammary morphogenesis. Cellular crosstalk 

between the epithelial and stromal compartments is mediated by growth factors including 

IGF1, HGF, EGF and FGF, which bind to their cognate receptors to induce cell proliferation, 

survival and branching. Classic pathways, such as WNT and Hedgehog, are also emerging as 

indispensable regulators of the process. 

Other classical signaling pathways have been also reported to play a role in 

pubertal mammary branching. Defects in branching morphogenesis found 

in mice genetically engineered in WNT ligands or their transcriptional tar-
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gets point to the involvement of canonical WNT signaling in pubertal mam-

mary development (reviewed in (Jarde and Dale 2012)). Factors that play 

important local functions in maintaining the TEB or ductal morphology in-

clude netrin-1 and its receptor neogenin (Srinivasan et al. 2003) and the cell 

surface morphogen epimorphin (Radisky et al. 2003). The trans-acting 

T-cell-specific transcription factor GATA-3 is also critical for pubertal mam-

mary morphogenesis and maintenance of luminal differentiation in the 

adult mammary gland (Kouros-Mehr et al. 2006; Asselin-Labat et al. 2007). 

In contrast to the above-discussed mitogens, the autocrine signaling 

morphogen transforming growth factor beta (TGFβ) negatively regulates 

mammary gland development. Studies in mice revealed that TGFβ overex-

pression leads to hypoplastic mammary development (Pierce et al. 1993), 

whereas its absence enhances ductal proliferation and accelerates lateral 

branching (Joseph et al. 1999; Crowley et al. 2005). Microfabrication-based 

culture models combined with computational approaches have also shown 

that the local concentration of TGFβ is determined by tissue geometry 

(Nelson et al. 2006). Accordingly, TGFβ gradients might specify sites of 

branch initiation and maintain proper ductal spacing in vivo, thus generat-

ing the characteristic open architecture of the gland. The precise mecha-

nism by which TGFβ inhibits branching is still unclear. However, there is 

evidence that non-canonical WNT5A acts downstream of TGFβ in vivo 

(Roarty and Serra 2007) and downstream of SMADs in culture (Pavlovich et 

al. 2011), and Wnt5a-null glands phenocopy those of TGFβ-deficient ani-

mals (Roarty and Serra 2007). TGFβ and WNT5A may influence branching by 

modulating cell adhesion by activation of the collagen-binding protein 

DDR1 (discoidin domain receptor 1) (Vogel et al. 2001). TGFβ may also af-

fect branching by inhibiting cell proliferation (Roarty and Serra 2007; 

Macias et al. 2011), enhancing ECM deposition (Silberstein and Daniel 

1982; Daniel et al. 1996), and modulating MMP expression (Sternlicht and 

Werb 2001). 

Besides TGFβ, other morphogens have been described as branching 

antagonists, including tissue inhibitors of metalloproteinases (TIMPs), 

heparan sulphate proteoglycans (HSPGs), IGF-binding proteins (IGFBPs) and 

SPROUTY family members (summarized in (Sternlicht et al. 2005)). Interest-
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ingly, many of the mitogens and inhibitors here mentioned have similar 

functions in other branched organs, such as the lung, kidney, and salivary 

gland (Lu and Werb 2008). 

1.2.3.3 Stromal ECM Modifiers 

The mammary stroma remodels concurrently with the epithelial ductal tree. 

The collective activity of members of the metalloproteinase family is suffi-

cient to degrade all proteins of the ECM network and clear paths for inva-

sion of the growing ducts. Of the 23 MMPs (Jackson et al. 2010) and 12 pro-

teolytically active ADAMs (Weber and Saftig 2012) that belong to this family, 

only a few have been studied with regard to mammary gland remodeling. 

Noteworthy is the finding that epithelial ADAM17 is required for mammary 

development and is the critical sheddase for the release of AREG (Sternlicht 

et al. 2005). Interestingly, the only endogenous inhibitor of ADAM17, 

TIMP3, is specifically downregulated in and around the TEBs (but not in 

trailing ducts) (Sternlicht et al. 2005). Site-specific activities of MMP2 and 

MMP3 contribute also to branching morphogenesis (Wiseman et al. 2003). 

Whereas Mmp2-null mice exhibit delayed mammary ductal invasion but ex-

cessive secondary branching, mice lacking MMP3 show defective side 

branching. On the other hand, mice overexpressing MMP3 or MMP14 yield 

supernumerary side branches, precocious alveologenesis, and eventually 

develop mammary tumors (Witty et al. 1995; Sternlicht et al. 1999; Ha et al. 

2001). Although Mmp9-null mice have no differences in ductal length or 

branching (Wiseman et al. 2003), this protease may have a redundant in-

hibitory role in pubertal mammary development (Ucar et al. 2010). Glands 

lacking microRNA‑212 and ‑132 show increased expression and accumula-

tion of MMP9 around the ducts, and a corresponding decrease in collagen 

deposition within the periductal sheath and hyperactivation of latent TGFβ 

(Ucar et al. 2010). 

The abundance and requirement of metalloproteinases is also evident 

at involutional stage as this involves copious restructure of the gland. Ex-

pression profiling studies have shown that MMP2 (Dickson and Warburton 

1992; Talhouk et al. 1992), MMP3 (Dickson and Warburton 1992; Talhouk 
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et al. 1992; Clarkson et al. 2004), MMP11 (Lefebvre et al. 1992), MMP12 

and ADAMTS1 (Clarkson et al. 2004) are induced at involution, with MMP3 

showing the most dramatic increase (Lund et al. 1996). In addition to 

MMPs, there is evidence to support a role for the serine protease 

urokinase-type plasminogen activator (uPA) in mammary tissue remodeling, 

as mice lacking plasminogen show compromised lactation and involution 

(Lund et al. 2000; Green et al. 2006). 

1.2.3.4 Stromal Cell Contribution 

Sculpting of the epithelial tree requires integrated interactions among the 

epithelium and the cells that comprise the stroma. Recent advances in ge-

netic manipulations have allowed the roles of individual stromal cell types 

to be dissected (Figure 1.7). 

 
Figure 1.7 Interactions between distinct stromal cell types coordinate mammary 

morphogenesis. 

Adipocytes form the largest component of the mammary stroma. In response to estrogen, 

adipocytes secrete IGF1 and HGF, which bind to their cognate receptors to induce cell prolif-

eration, survival and branching of the epithelium; conversely, epithelial cells secrete AREG, 

which signals to the stromal compartment. Adipocytes also secrete adipokines and vascular 
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endothelial growth factor (VEGF), being the latter a potent inducer of angiogenesis. Macro-

phages and eosinophils are also recruited to the TEB, partly by signals released from the 

epithelium, such as macrophage colony-stimulating factor 1 (CSF1) and eotaxin. Addition-

ally, macrophages enhance the formation of collagen fibers in the periductal sheath, provid-

ing a framework for ductal elongation. Mast cells localize to the stroma surrounding the in-

vading TEB and secrete serine proteases, which are required for branching and for mainte-

nance of the cap cell layer. 

By volume, adipocytes form the largest population of cells within the fat 

pad. They express several critical stromal ligands and receptors, including 

ERα, IGF1 and HGF1, and can induce branching in culture (Pavlovich et al. 

2010). Adipocytes are also required for branching in vivo, as their selective 

ablation during puberty blocks the formation and elongation of TEBs 

(Landskroner-Eiger et al. 2010), and mice lacking white adipose tissue show 

a rudimentary epithelial anlage (Couldrey et al. 2002). Moreover, pubertal 

branching is disrupted in obese mice (Kamikawa et al. 2009), which sug-

gests either systemic or local effects from excess adipose tissue. In addi-

tion to signaling directly to the epithelium, adipocytes synthesize and se-

crete molecules that can modulate the function of other stromal cell types. 

For example, vascular endothelial growth factor (VEGF) is expressed by 

mammary adipocytes during puberty (Hovey et al. 2001). Since VEGF is a 

known inducer of vascular sprouting, adipocytes may therefore regulate 

angiogenesis during mammary branching. The presence of a robust vascu-

lar network in the fat pad becomes crucial for the transport of fluids and 

nutrients into milk during lactation. 

Cells of the immune system have also been implicated in mammary 

gland remodeling. Macrophages and eosinophils are both recruited around 

the TEBs by macrophage colony-stimulating factor 1 (CSF1) (Van Nguyen 

and Pollard 2002) and eotaxin (Gouon-Evans et al. 2000) secreted locally, 

and the depletion of either cell type disrupts branching morphogenesis 

(Gouon-Evans et al. 2000). Macrophages assist the formation of long colla-

gen fibers around the neck of the TEB (Ingman et al. 2006), providing a 

framework for ductal elongation. Mast cells also surround the TEBs during 

puberty, and induce branching by secreting serine proteases (Lilla and Werb 

2010). Mice lacking mast cells or an activator of serine proteases develop 

hypoplastic glands (Lilla and Werb 2010), whereas accumulation of mast 
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cells increases collagen deposition around the growing ducts (Russell et al. 

2007). 

One major function of the stromal compartment is to maintain mam-

mary stem cells (MaSCs). MaSCs are the basis of the profound renewal ca-

pacity required for branching and acinar morphogenesis, but different 

populations of stem cells may complete each function (Van Keymeulen et al. 

2011). In mice, MaSCs located in the cap region of the TEB are responsible 

for the growth that drives ductal extension during branching (Shackleton et 

al. 2006; Stingl et al. 2006). The MaSC population is maintained by signals 

from its specialized local microenvironment, or niche. Protein microarrays 

have been used to define niche constituents, which include the BM compo-

nent laminin-111, the cell-cell adhesion molecule P‑cadherin and the Notch 

ligand jagged 1, all of which are present near MaSCs in vivo (LaBarge et al. 

2009). Resident macrophages may be also an important constituent of the 

MaSC niche, as MaSCs of animals depleted of macrophages are unable to 

repopulate the gland (Gyorki et al. 2009). The niche is both necessary and 

sufficient for stem cell activity. Indeed, cells other than native MaSCs, such 

as neural stem cells (Booth et al. 2008) and cells from the seminiferous tu-

bules (Boulanger et al. 2007), can function as MaSCs when placed within the 

niche. Further studies are required to define how the integrated signaling 

within the mammary gland induces maintenance and differentiation of 

MaSCs during pubertal branching. 

1.2.4 3D Culture Models of Mammary Architecture, 

Function and Dysfunction 

Many of the details of microenvironmental signaling in the mammary gland 

have been uncovered using three-dimensional (3D) culture models (re-

viewed in (Nelson and Bissell 2005)). The structure and function of a differ-

entiated mammary epithelial cell can be reproduced in culture only when 

cells are given an appropriate microenvironment that recapitulates aspects 

of the above-described tissue architecture. When grown on plastic sub-

strata, mammary epithelial cells flatten out and fail to respond to lactogenic 

cues. However, when grown within a compliant laminin-rich ECM (lrECM), 
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these same cells assemble into polarized 3D acinar structures that resem-

ble alveoli in vivo (Emerman and Pitelka 1977; Lee et al. 1985; Barcellos-

Hoff et al. 1989; Aggeler et al. 1991). Cells that are not in contact with BM 

undergo apoptosis (Boudreau et al. 1995), therefore cells in the center of 

3D acinar structures die off to form hollow lumina (Blatchford et al. 1999; 

Debnath et al. 2002). Remarkably, when stimulated with lactogenic hor-

mones, cultured acini start synthesizing and secreting milk proteins into 

the central lumina (Emerman and Pitelka 1977; Lee et al. 1985; Streuli et al. 

1995). 

In addition to illuminating the processes of acinus formation and milk 

protein secretion, 3D culture models have been highly successful in 

recapitulating the epithelial remodeling and invasion central to branching 

morphogenesis. Primary epithelial organoids or clustered mammary epithe-

lial cells cultured within gels of collagen‑I (Col‑1) or lrECM can be induced 

to form branching structures by co-culture with fibroblasts or by exogenous 

addition of growth factors (Brinkmann et al. 1995; Soriano et al. 1995; Hirai 

et al. 1998; Simian et al. 2001) or cytokines (Lee et al. 2000; Michaelson et 

al. 2005). 

Recreating the microenvironment in culture also allows one to distin-

guish between non-malignant and malignant cells on the basis of their 

structural integrity (Figure 1.8). Whereas non-malignant cells form polarized 

growth-arrested acini in 3D lrECM, primary breast tumor cells or breast can-

cer cell lines form highly disorganized and proliferative colonies (Petersen 

et al. 1992; Weaver et al. 1995). Under these conditions the balance of sig-

naling pathways are deranged in tumor cells. Antagonizing one or more of 

the many signaling pathways that are deregulated in tumor cells causes 

them to functionally revert to a ‘normal’ phenotype, despite their malignant 

genome ((Howlett et al. 1995; Weaver et al. 1997; Wang et al. 1998; Weaver 

and Bissell 1999; Muschler et al. 2002; Wang et al. 2002; Kirshner et al. 

2003; Liu et al. 2004; Kenny and Bissell 2007; Beliveau et al. 2010)). Inter-

estingly, there is a reciprocal interaction between any oncogenic pathway 

and all the rest in 3D and the changes do not occur in 2D (Anders et al. 

2003). 
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The same concepts were used to demonstrate that survival and sensi-

tivity to drugs used in the clinic of human breast cells is dependent on cell 

and tissue polarity as well as integrin-mediated adhesion to BM, and do not 

correlate with the rate of growth or quiescence ((Weaver et al. 2002); re-

viewed in (Correia and Bissell 2012)). The 3D culture systems represent, 

therefore, the toolkit to more successfully translate fundamental research 

findings into therapies in the clinic, and may have great potential in provid-

ing answers before proceeding into costly clinical trials. So far, most 3D 

models available allow co-culture of epithelial cells only with one other cell 

type. Thus heterotypic culturing systems that more closely mimic the het-

erogeneity of the tumor microenvironment still need to be developed. 

 
Figure 1.8 The 3D model of the normal mammary gland acinus allows the distinction 

between non-malignant and malignant cells. 

When cultured on 2D substrata, non-malignant and malignant human breast cells are indis-

tinguishable (A, upper panel). However, when placed in 3D lrECM gels, S-1 non-malignant 

cells form polarized growth-arrested acini (A, lower panel, left), whereas T4-2 malignant cells 

appear highly disorganized and proliferative (A, lower panel, right). Perturbing apical-basal 

polarity of S-1 acini, by treatment with E-cadherin function-blocking antibody, results in dis-

ruption of the normal organization (B, upper panel). Conversely, restoring cell and tissue 

polarity in T4-2 structures, by treatment with signaling inhibitors, induces malignant cells to 

functionally ‘revert’ (B, lower panel). 
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1.3 Matrix Metalloproteinase 3 (MMP3) 

We now appreciate mammary branching morphogenesis as an ensemble 

performance. Epithelial cells engage in extensive crosstalk with the sur-

rounding stroma to mobilize the necessary machinery for invasion of the 

growing ducts into the fat pad and formation of secondary and tertiary 

branches for the eventual design of the adult mammary architecture. The 

success of this process relies on pericellular proteolysis. MMPs are pivotal 

components of the cascade of locally activated proteolytic enzymes neces-

sary for sculpting the epithelial tree. 

Amongst the 23 MMP family members, MMP3 stands out as the archi-

tect of ductal side branching during mid-puberty and early pregnancy 

(Wiseman et al. 2003). MMP3 affects the selection of branch sites by itself, 

and in excess, can trigger branch formation from stem and progenitor cells 

that lie dormant along the ducts (Sympson et al. 1994; Thomasset et al. 

1998). Remarkably, MMP3 can directly stimulate phenotypic and genotypic 

malignant transformation in normally functioning cells (Sternlicht et al. 

1999; Radisky et al. 2005). This fact raised our interest in investigating the 

role of this molecule as an instructive switch for acquisition of invasive 

properties. 

1.3.1 MMP Family Traits 

The ability to degrade extracellular proteins is essential for any individual 

cell to interact properly with its immediate surroundings and for multicellu-

lar organisms to develop and function normally. This was obvious long be-

fore it was first shown that involuting tadpole tails contained a diffusible 

enzyme capable of degrading fibrillar collagen (Gross and Lapiere 1962). 

Since then, a family of related enzymes has been identified in species from 

hydra to humans and collectively called matrix metalloproteinases (MMPs). 

Historically, MMPs were thought to function mainly as enzymes that 

degrade structural components of the ECM, creating space for cell and tis-

sue movement. More recently, our understanding of MMP substrates and 
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the means by which MMPs affect cell behavior has dramatically expanded 

(Figure 1.9). MMPs can generate specific substrate-cleavage fragments with 

independent biological activity, can regulate tissue architecture through 

cleavage of intercellular junctions or BM, and can activate, deactivate or 

modify the activity of signaling molecules, thereby regulating cell behavior 

in several ways (Sternlicht and Werb 2001). MMPs are thus required for 

many physiologic and pathologic processes, including aspects of embryonic 

development, tissue morphogenesis, wound repair, inflammatory diseases, 

and cancer. 

 
Figure 1.9 MMPs exhibit different modes of action. 

MMPs can cleave ECM components, creating space for cell or tissue movement (A). Addition-

ally, MMP proteolysis can generate specific cleavage products with independent biological 

activity. MMPs can also directly regulate epithelial tissue architecture through cleavage of 

intercellular junctions (B) or BM (C). MMPs can activate or modify the action of latent signal-

ing molecules, which results in many cellular consequences (D). Conversely, MMPs can deac-

tivate or modify the action of active signaling molecules, leading to changes in proliferation, 

cell death, differentiation or cell motility (E). 

MMPs belong to the metzincin superfamily of proteases, which is distin-

guished by a highly conserved zinc-binding motif (HExxHxxGxxH) and a 

conserved methionine-containing turn at the active site (Bode et al. 1993; 

Stocker et al. 1995). The 23 MMP family members are categorized by their 

modular domain structure (Figure 1.10). 
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Figure 1.10 MMP domain structure. 

All MMPs share a conserved minimal domain, which comprises a signal peptide, the 

pro-domain and the catalytic domain with a zinc-binding site. Additionally, most MMPs have 

a hemopexin domain and a hinge region. Besides their differential domain structure, MMPs 

can be principally divided into secreted (MMP-1, -2, -3, -7, -8, -9, -10, -11, -12, -13, -19, -20, -

21, -22, -27, -28) and membrane-anchored proteinases (MMP-14, -15, -16, -17, -23, -24, -25), 

the latter of which use either a transmembrane domain with a cytoplasmic domain attached 

to it, a glycosylphosphatidylinositol (GPI) anchor, or an amino-terminal signal anchor, which 

is only the case for MMP23, as it is anchored in the plasma membrane. MMP23 contains also 

a unique cysteine array and an immunoglobulin-like (IgG) domain. MMP2 and MMP9 have 

three fibronectin type II repeats within their catalytic domains. 

All MMPs share a conserved domain structure that consists of a catalytic 

domain featuring the zinc-binding site, and a pro-domain containing a cys-

teine residue that coordinates the active-site zinc to inhibit catalysis. When 

the pro-domain is destabilized or removed, the active site becomes avail-

able to cleave substrates (Rosenblum et al. 2007). In addition to the mini-

mal domain, most MMPs contain a hemopexin domain, consisting of a 

four-bladed propeller structure that is linked to the catalytic domain via a 

flexible hinge region. The hemopexin domain is known to mediate pro-

tein-protein interactions, as well as contribute to proper substrate recogni-

tion and protease localization, internalization and degradation (Piccard et 

al. 2007). The hinge region, in turn, varies in length and composition and 

also influences substrate specificity (Knauper et al. 1997). Whereas MMP7 

and MMP26 merely lack these extra domains, MMP23 contains a unique 

cysteine array and an immunoglobulin-like domain instead (Gururajan et al. 

1998). MMP2 and MMP9 are further distinguished by the insertion of three 
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head-to-tail cysteine-rich repeats within their catalytic domain, which re-

semble the collagen-binding type II motif of fibronectin and are required to 

bind and cleave collagen and elastin (Murphy et al. 1994). Finally, the 

membrane-type (MT) MMPs have either a transmembrane domain with a 

short cytoplasmic tail attached to it (MMP-14, -15, -16 and -24) or a glyco-

sylphosphatidylinositol (GPI) anchor (MMP17 and MMP25). These domains 

play a critical role in placing several important proteolytic events at specific 

regions of the cell surface. 

1.3.2 Regulation of MMP Activity 

The ability of MMPs to alter cell fate and developmental outcomes implies 

the need for higher levels of control. Yet, it took nearly a decade from the 

time collagenolytic activities were first demonstrated to realize that MMPs 

are synthesized as inactive zymogens that require activation (Harper et al. 

1971), and even longer to demonstrate the existence of the first endoge-

nous tissue inhibitor of metalloproteinases (TIMP) (Bauer et al. 1975). Since 

then, other levels of MMP regulation have been elucidated. 

Because MMP substrate specificities tend to overlap, the biological 

function of individual MMPs is largely dictated by their differential patterns 

of expression. Most MMPs are tightly regulated at the level of transcription 

by many stimulatory and suppressive factors that influence multiple signal-

ing pathways (reviewed in (Yan and Boyd 2007)). Importantly, different 

types of cells produce a specific set of MMPs and TIMPs, and their local bal-

ance defines MMP function in vivo. 

A critical step in regulating MMP activity is the conversion of the zy-

mogen into an active proteolytic enzyme. Although most MMPs are secreted 

as latent zymogens, MMP11, MMP27 and the MT-MMPs contain a furin-like 

enzyme recognition motif that allows them to be activated by intracellular 

serine proteinases before they reach the cell surface or are secreted (Pei 

and Weiss 1995). MMP23 also has a furin-susceptible cleavage site and is a 

likely target of intracellular proprotein convertases (Gururajan et al. 1998). 

All other MMPs lack a furin-susceptible insert and are thus activated outside 
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the cell by other already activated MMPs or by several serine proteinases 

(Sternlicht and Werb 2001). 

The localization or compartmentalization of MMPs under physiological 

conditions often dictates their biological function. Several MMPs interact 

with surface receptors such as integrins or localize to specific areas of the 

ECM, which potentiates MMP activity by increasing their local concentration 

and limiting the access of TIMPs. Transmembrane and GPI-linked MT-MMPs 

are the most obvious mediators of proteolytic activity at the cell surface. 

Indeed, removal of the transmembrane domains of MMP14, MMP15 and 

MMP16 abolishes their ability to promote invasion (Hotary et al. 2000). Fur-

thermore, MT-MMPs can concentrate within specific cell surface domains 

such as cellular protrusions named invadopodia, where active ECM degrada-

tion takes place (Nakahara et al. 1997). Another means of localizing MMPs 

to the cell surface is via cell surface docking receptors. For example, the 

binding of MMP2 to integrin-αvβ3 via its hemopexin domain is crucial for 

endothelial and cancer cell invasive activity (Brooks et al. 1996). In sum-

mary, there are localized pericellular feedback networks that coordinate the 

need for a given MMP with its appropriate expression, activation and physi-

cal placement. 

1.3.3 MMPs in Development and Disease 

Our understanding of the role of MMPs in the regulation of tissue remodel-

ing has been enriched by the use of genetic knockouts. MMP function can 

be most simply analyzed in Drosophila, which has only two MMP genes, 

Mmp1 and Mmp2, each containing the conserved domain structure typical 

of mammalian MMPs (Llano et al. 2000; Llano et al. 2002). The fly mutants 

demonstrate that MMPs are dispensable, both individually and together, for 

embryonic fly development, but are crucial for tissue growth and tis-

sue-ECM remodeling in the larvae and during larval development. In mam-

mals, the 23 MMP genes seem to share redundant functions, most likely to 

protect against any losses of regulatory control. Analysis of sin-

gle-MMP-mutant mice has identified subtle developmental phenotypes in 

postnatal mammary, skeletal and circulatory development, three prominent 
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sites of postnatal tissue and ECM remodeling (reviewed in (Page-McCaw et 

al. 2007)). Strikingly, MMPs are not required to build blood vessels or bones 

in the embryo, but rather for their postnatal development and tissue re-

modeling. This seeming dispensability of MMPs during embryonic develop-

ment suggests that they might function specifically as regulators of 

post-embryonic cell motility and tissue architecture. 

The role of MMPs is not limited to developmental processes. Examina-

tion of mouse mutants has revealed that MMPs are necessary to maintain 

homeostasis in response to environmental challenges, such as wounding, 

infection and inflammation. For example, MMP7 functions in intestinal mu-

cosal defense, and Mmp7-null mice are more easily infected with intestinal 

bacteria (Wilson et al. 1999). Additionally, MMP7 seems to mediate 

wound-induced epithelial migration by cleaving E-cadherin and loosening 

cell-cell contacts (McGuire et al. 2003). MMP3 also functions in epidermal 

wound healing, as skin wounds of Mmp3-null mice heal more slowly than 

those of control mice, owing to a defect in ‘actin purse-string’ formation 

(Bullard et al. 1999). Both injury and infection induce inflammation, which 

constitutes another physiological response to environmental challenge that 

requires MMPs. MMPs facilitate inflammatory cell recruitment (Haro et al. 

2000) and clearance of inflammatory cells (Kumagai et al. 1999; Wang et al. 

1999) by cleaving inflammatory mediators, resulting in a tightly inflamma-

tory response. 

Interest in MMPs increased in the late 1960s and early 1970s following 

observations that MMPs are upregulated in diverse human diseases, includ-

ing cancer. Significant positive correlations have been found between MMP 

expression and several indicators of poor prognosis in virtually all types of 

cancer, and in some instances, increased MMP levels represent an inde-

pendent predictor of shortened disease-free and overall survival (reviewed 

in (Egeblad and Werb 2002)). However, there are a few cases in which in-

creased expression of specific MMPs reflects a favorable prognosis. In colon 

cancer, for example, MMP12 expression by carcinoma cells is associated 

with increased survival (Yang et al. 2001), and expression of MMP9 by infil-

trating macrophages is associated with reduced metastases (Takeha et al. 

1997). Likewise, MMP12 delivered by macrophages can suppress the 
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growth of lung metastases (Houghton et al. 2006), and loss of the inflam-

mation-suppressing function of MMP8 accounts for increased incidence of 

skin cancer in Mmp8-null mice (Balbin et al. 2003) and melanoma in hu-

mans (Palavalli et al. 2009). Thus, the many aspects of MMP function in 

cancer must be understood in the design of therapeutic agents in order to 

optimize their efficacy and minimize their toxicity. 

1.3.4 MMP3 as an Architect of the Mammary Gland 

Combined pharmacological and genetic analyses have revealed that two 

distinct MMPs (MMP2 and MMP3) function in the mammary epithelial micro-

environment in a network of interacting pathways designed to give the 

gland its final branching pattern. Whereas Mmp2-null mice exhibit delayed 

TEB invasion during early puberty and increased lateral branching during 

late puberty, Mmp3-null mammary glands show normal TEB elongation, but 

are characterized by deficient secondary branching (Wiseman et al. 2003). 

MMP3 is, thus, the architect of secondary and tertiary lateral branching dur-

ing mid-puberty and early pregnancy. Owing to its ability to cleave BM com-

ponents, including laminin-111, nidogen and collagen-IV (Alexander et al. 

1996), MMP3 clears paths for invading ducts at bud initiation sites 

(Wiseman et al. 2003). Additionally, MMP3 can cleave the ectodomain of the 

cell-cell adhesion molecule E-cadherin, thus inducing loose cell-cell contacts 

and epithelial invasion (Lochter et al. 1997a; Noe et al. 2001). 

Paradoxically, the loss of mammary structure is dependent also on 

MMP3. Indeed, our laboratory showed two decades ago that during the 

process of involution, up regulation of MMP3 is responsible for the collapse 

and remodeling of the alveoli of lactating mice, indicating the intimate con-

nection between functional differentiation and tissue structure (Talhouk et 

al. 1991; Talhouk et al. 1992). Conditional activation of MMP3 in function-

ally normal mouse mammary epithelial cells led to cleavage of E-cadherin 

and epithelial-to-mesenchymal transitions (EMT) (Lochter et al. 1997a). Our 

laboratory showed also that ectopic expression of constitutively active 

MMP3 in mammary epithelia enhanced lateral branching and induced pre-

cocious alveolar development in virgin mice (Sympson et al. 1994). As these 
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animals aged, the stroma was profoundly altered in both structure and 

function (Thomasset et al. 1998) and mice eventually developed mammary 

tumors that exhibited chromosomal aberrations (Sternlicht et al. 1999). The 

mechanism involved a change in cytoskeleton and cell shape through in-

duction of RAC1B, a spliced isoform of RAC1 found in human breast tumors 

(Schnelzer et al. 2000). Additon of MMP3 or the expression of RAC1B also 

led to formation of reactive oxygen species (ROS) and genomic instability 

(Radisky et al. 2005). 

MMP3 seems to act as an instructive switch for normal mammary 

epithelial invasion. Therefore, a comprehensive understanding of the role 

played by MMP3 in this model will shed light on how mammary gland re-

mains functional and disease-free, but also how it may become cancerous. 
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Aims 

It is now clear that MMPs are crucial mediators in sculpting tissue architec-

ture, and are required for many physiological and pathological processes. 

Because the proteolytic activity of MMPs resides within the catalytic domain, 

it has been generally assumed that this domain is responsible for all the 

functions of MMPs. More recently some biochemical literature has indicated 

that the non-catalytic domains of certain MMPs, such as MMP-9, -12 and 

-14, may also have activities in mammalian cell lines (Mori et al. 2002; 

Wang et al. 2004; Dufour et al. 2008; Sakamoto and Seiki 2009). The failure 

of clinical trials based on inhibitors of MMP catalytic domains (Overall and 

Kleifeld 2006) suggested to us that the other domains of MMP3 might have 

crucial functions in invasion and possibly cancer. 

 

General Aim: 

The general aim of this thesis was to understand the role of MMP3 as an 

instructive switch for normal mammary epithelial invasion. 

 

Specific Aims: 

To achieve our goal, the following specific aims were addressed: 

 

1. To examine activities associated with other domains of MMP3 that 

may be relevant for normal mammary epithelial invasion; 

 

2. To identify novel MMP3 interacting proteins required for 

MMP3-induced invasion in mammary epithelial cells; 

 



 

62 

3. To validate the functional significance of distinct MMP3 domains and 

binding partners in a 3D culture model of mammary epithelial inva-

sion and branching; 

 

4. To study the expression of the identified MMP3 binding partners in 

different stages of normal mammary gland development. 
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Chapter 2 

2 Material and Methods 

2.1 Restriction Enzymes, Antibodies, Proteins and 

Chemical Reagents 

All restriction enzymes were acquired from New England BioLabs. Bovine 

dermis acid-solubilized Col-1 solution (IAC-50) was purchased from Koken. 

Antibodies were obtained as indicated in Table 2-1. Alexa Fluor 594 Phal-

loidin (A12381, Molecular Probes, 1:400) was used to stain F-actin. DAPI 

(Sigma) was used to stain nuclei. HSP90β inhibitor CCT018159 (385920), 

MMP3-specific peptide-based inhibitor (444218) and recombinant HSP90β 

(385903) were purchased from Calbiochem/EMD Millipore. 

 

Table 2-1 Antibodies used in the immunofluorescence (IF), western bloting (WB), 

co-immunoprecipitation (Co-IP) and function-blocking experiments (FBlock). 

 

Antibody Clone, Catalogue # Supplier Dilution 

ANXA2 AF3928, Polyclonal R&D Systems 1:1,000 for WB 

E-cadherin 13-1900, ECCD-2 Invitrogen 1:1,000 for WB 

1:200 for IF 

FLAG F1804, M2 Sigma 1:500 for WB 

HSP90β 5087, Polyclonal Cell Signaling 1:1,000 for WB 
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Antibody Clone, Catalogue # Supplier Dilution 

HSP90β NBP1-61773, Polyclonal Novus Biologicals 1:1,000 for WB 

1:100 for IF 

10 µg for Co-IP 

40 µg/mL for FBlock 

HSP90α NBP1-77685, Polyclonal Novus Biologicals 1:1,000 for WB 

HSP70 610607, 7/Hsp70 BD Transduction 

Laboratories 

1:1,000 for WB 

Normal Rabbit 

IgG 

2729, Polyclonal Cell Signaling 40 µg/mL for FBlock 

MARCKS P0370, Polyclonal Sigma 1:1,000 for WB 

MMP3 ab18898, Polyclonal Abcam 1:1,000 for WB 

1:50 for IF 

α-SMA-Cy3 C6198, 1A4 Sigma 1:300 for IF 

α-Tubulin T6074, clone B-5-1-2 Sigma 1:5,000 for WB 

2.2 Construction of Expression Plasmids 

All MMP3 mutants were constructed using a polymerase chain reaction 

(PCR)-based method. The cDNA sequence used as template was cloned from 

a human breast cell line and sequence confirmed by comparison with gene 

accession number NM_002422.3. FL contains the full-length MMP3 cDNA. 

EA is a catalytically inactive mutant, holding a point mutation E219A at the 

catalytic core. dPEX is a hemopexin domain-deleted mutant (ΔN289-C477). 

To generate FL and dPEX constructs, PCR fragments flanked by EcoRI/BamHI 

restriction enzyme digest sites at the 5’ and 3’ ends, respectively, were ob-

tained using the same sense primer 

(5’-CGTTACGAATTCATGAAGAGTCTTCCAATCCTACTG-3’) and different an-
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tisense primers: for FL: 5’-CGAATCGGATCCCTTGTCATCGTCGTCCTTGTAG 

TCACAATAAGCCAG-3’; and for dPEX 5’-CCTGCAGGATCCCTTGTCATCGT 

CGTCCTTGTAGTCGTTGGCTGGCGTC-3’. To create the EA construct, two 

PCR-fragments were first generated using two different primer sets: PCR1, 

sense primer: 5’-CGTTACGAATTCATGAGAGTCTTCCAATCCTACTG-3’; PCR1, 

antisense primer: 5’-AGCAACAAGAAATAAATTGGTCCCTGTTG-3’; PCR2, 

sense primer: 5’-GTTGCTGCTCATGCCATTGGCCACTCCCTG-3’; and PCR2, 

antisense primer: 5’-CGAATCGGATCCCTTGTCATCGTCGTCCTTGTAGTCCAA 

TTAACCG-3’. These fragments were then linked together (using 

5’-CGTTACGAATTCATGAAGAGTCTTCCAATCCTACTG-3’ and 5’-CGAATCGGA 

TCCCTTGTCATCGTCGTCCTTGTAGTCACAATTAAGCCAG-3’ as sense and an-

tisense primers, respectively), generating the final PCR-fragment encom-

passing the point mutation E219A. After EcoRI/BamHI digestion, FL, dPEX 

and EA products were ligated into EcoRI/BamHI digested 

pCDH-EF1-MCS-T2A-copGFP (System Biosciences), a mammalian expression 

vector that was used to express the gene products. To detect MMP3 pro-

tein, the FLAG epitope (Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys) was inserted at 

the C-terminus of every construct generated. All cDNA constructs were con-

firmed by DNA sequencing. 

2.3 shRNA-Mediated Knockdowns 

shRNA constructs selectively targeting HSP90β, ANXA2, MARCKS or MMP3 

were purchased from MISSION shRNA library (Sigma) (sequences detailed in 

Table 2-2). Control cells were infected with non-targeting shRNA (SHC002, 

Sigma, sequences detailed in Table 2-2). Knockdown efficiency was verified 

by western blotting with appropriate antibodies. 
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Table 2-2 Detailed sequences of distinct shRNAs used in the experiments. 

 

shRNA Sequence (5’ – 3’) 

HSP90β #1 CCGGCAGGAGGAGTATGGCGAATTCTCGAGAATTCGCCATACTCCTCCTG-

CTTTTTG 

HSP90β #2 CCGGCATGGAAGAGGTGGATTAAAGCTCGAGCTTTAATCCACCTCTTCCAT-

GTTTTTG 

HSP90β #3 CCGGGCTGAACAAGACAAAGCCTATCTCGAGATAGGCTTTGTCTTGTTCAG-

CTTTTT 

ANXA2 #1 CCGGGTATGATGCTTCGGAACTAAACTCGAGTTTAGTTCCGAAGCAT-

CATACTTTTTG 

ANXA2 #2 CCGGGAGCATCAAGAAAGAGGTCAACTCGAGTTGACCTCTTTCTTGATGC-

TCTTTTTG 

ANXA2 #3 CCGGCGAGACAAGGTCCTGATTAGACTCGAGTCTAATCAGGACCTTGTC-

TCGTTTTTG 

MARCKS #1 CCGGCTTCTCCTTCAAGAAGAGCAACTCGAGTTGCTCTTCTTGAAGGA-

GAAGTTTTTG 

MARCKS #2 CCGGGCCAAGATAATATGCCACTAACTCGAGTTAGTGGCATATTATCTTGG-

CTTTTTG 

MARCKS #3 CCGGCTCCTCCACGTCGTCGCCCAACTCGAGTTGGGCGACGACGTGGAG-

GAGTTTTTG 

MMP3 #1 CCGGCAAGATGATGTAGATGGTATTCTCGAGAATACCATCTACATCATCTT-

GTTTTTG 

MMP3 #2 CCGGCCCACATATTGAAGAGCAATACTCGAGTATTGCTCTTCAATATGTGG-

GTTTTTG 

Non-targeting CCGGCAACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTT-

GTTTTT 
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2.4 Lentiviral Production and Concentration 

293FT packaging cells (Invitrogen) were transfected with plasmids carrying 

FL, dPEX, EA, control vector or shRNA constructs using FuGENE6 (Roche), 

according to the manufacturer's instructions. Transfected cells were cul-

tured in Dulbecco’s Modified Eagle’s Medium (DMEM) high glucose contain-

ing 10% fetal bovine serum (FBS), 100 U/ml penicillin, 100 µg/mL strepto-

mycin, 0.1 mM MEM Non-Essential Amino Acids, 6 mM L-glutamine and 1 

mM MEM Sodium for 24 h, after which the medium was replaced with fresh 

one. Viral supernatant was collected 48 h later, filtered with 0.45 µm filters, 

concentrated using Lenti-X Concentrator (Clontech), aliquoted and stored at 

-80 ºC until use. 

2.5 Cell Culture and Transduction 

SCp2 cells were cultured in DMEM/Ham’s F-12 Nutrient Mixture 

(DMEM/F-12) supplemented with 5% FBS, 5 µg/mL insulin and 50 µg/mL 

gentamicin, and maintained as previously described (Desprez et al. 1993). 

EpH4 cells were cultured in DMEM/F-12 medium supplemented with 2% FBS, 

5 µg/mL insulin and 50 µg/mL gentamicin, and maintained as previously 

described (Reichmann et al. 1989). For transduction, cells were seeded in 

24-well plates (1x105 cells/well) and infected with lentiviral particles carry-

ing different expression plasmids using MISSION ExpressMag Beads 

(Sigma), according to the manufacturer's instructions. Cells transduced with 

lentivirus carrying shRNA constructs were additionally selected with 2 

µg/mL puromycin. 

2.6 Mice 

For preparation of primary mammary epithelial organoids, FVB female mice 

were raised until 8 weeks of age and then sacrificed. For the in vivo devel-

opmental studies, tissue specimens were collected from FVB female mice at 

different post-natal developmental stages: virgin (3-, 4-, 5-, 8-, 12-weeks), 
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mid-pregnant (8-12 days gestation), late-pregnant (16-19 days gestation), 

lactating, and involuting (1 and 3 days after weaning). Experimental animal 

protocols were followed in accordance with guidelines set by the Lawrence 

Berkeley National Laboratory’s Animal Welfare and Research Committee 

(AWRC). 

2.7 Preparation of Primary Mammary Organoids 

and Transduction 

Primary epithelial organoids were isolated from 8-week-old, virgin FVB mice 

as previously described (Fata et al. 2007). Briefly, inguinal glands were re-

moved, minced with two parallel razor blades and gently shaken for 30 min 

at 37 ºC in a 50 mL collagenase/trypsin mixture (0.2% trypsin, 0.2% type-IV 

collagenase, 5% FBS and 5 µg/mL Insulin in DMEM/F-12). After centrifuga-

tion at 80 g for 10 min, supernant was discarded and cell pellet was re-

suspended in DMEM/F-12. The suspension was pelleted again, re-

suspended in 4 mL DMEM/F-12 containing 80 U of DNase I (Sigma) and in-

cubated for 5 min at room temperature with occasional shaking. After the 

suspension was spun at 80 g for 10 min, a series of differential centrifuga-

tions in DMEM/F-12 was implemented to separate the epithelial organoids 

from single cells, fibroblasts and fibrillar extracellular matrices. The final 

pellet was re-suspended in the desired amount of medium. For transduc-

tion, organoids were seeded in 24-well polyhema-coated plates (1,000 or-

ganoids/well) and infected with lentivirus in the presence of 8 µg/mL poly-

brene for 24 h. 

2.8 Preparation of Cell Clusters and Transduction 

EpH4 cells suspended in growth medium were plated in 6-well polyhema-

coated plates (1x105 cells/well) and incubated at 37 ºC overnight, yielding 

rounded clusters. Single cells were removed by differential centrifugation, 

and the final pellet was re-suspended in the desired amount of medium. 
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2.9 Branching Morphogenesis Assay 

Primary organoids or clustered EpH4 cells were embedded in 3D Col-1 gels 

as previously published (Simian et al. 2001; Mori et al. 2013). In brief, acid-

solubilized Col-1 solution was mixed gently on ice with 1 volume of 10x 

DMEM/F-12, pH adjusted to 7.4 with 0.1M NaOH, and concentration ad-

justed to 3 mg/mL with DMEM/F-12. A basal layer of 80 µL Col-1 was 

poured into each well of an 8-well chambered coverglass (155409, Thermo 

Scientific) and allowed to gel for 5 min at 37 ºC. A second layer of 200 µL 

Col-1 containing 150 organoids or EpH4 clusters was added to each well 

and placed immediately at 37 ºC. After gelation, 400µL of chemically de-

fined medium (DMEM/F-12 containing 1% insulin/transferrin/selenium and 

1% penicilin/streptomycin) with 9 nM TGFα (Sigma) or 9 nM bFGF (Sigma) 

was added to each well (unless stated otherwise) and replaced every other 

day. 

After 3 days of culture, gels were fixed with 4% formalin for 30 min, 

and stained with phalloidin and DAPI for 1h. Structures were imaged with 

an upright Zeiss LSM710, using a 0.8 NA 20× air objective. An organoid or 

cell cluster was defined as invading and branching when it had at least 

three independent extending processes that were at least half the diameter 

of the center of the organoid or cell cluster. The number of extending proc-

esses and their average length were determined using the Imaris software 

(Bitplane). We defined a new metric of invasion and branching, which we 

refer to as the ‘spatial network’ per organoid. This is defined as the sum of 

the length of all the extending processes developed from each organoid. 50 

structures were counted per condition and the experiments were executed 

at least 3 times. 

2.10 Tissue immunostaining 

Tissue samples were fixed overnight in 4% paraformaldehyde/PBS, trans-

ferred to 70% ethanol, and embedded in paraffin. 5-mm-thick serial sections 

were then prepared. Slides were deparaffinized at 55 ºC for 10 min, and re-

hydrated through a series of xylene (10 min), graded ethanol (100% for 2x 
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1 min, 90% for 1 min, 70% for 1 min, and 50% for 5 min), and water (for 10 

min). Antigen retrieval was performed with citrate buffer (pH 6.0), using 

two cycles of microwave boiling (5 and 9 min, respectively) followed by a 

period of 30 min’ slow cooling at room temperature. Slides were washed in 

PBS, and then incubated with 20 µg/mL Proteinase K in TE buffer, for 5 min. 

Slides were washed again in PBS, and tissues permeabilized in 0.25% Triton 

X-100/PBS for 10 min, followed by incubation with blocking buffer (1% BSA, 

5% Donkey Serum and 5% Goat Serum in PBS) for 1 h at room temperature, 

with primary antibodies diluted in blocking buffer overnight at 4 ºC, and 

with secondary antibodies for 1 h at room temperature. 

2.11 RNA Isolation and quantitative real-time PCR 

(qPCR) Analysis 

Total RNA was isolated from mammary tissues using the RNeasy Mini Kit 

(Qiagen) according to the manufacturer’s instructions. cDNA was synthe-

sized using the SuperScript II Reverse Transcriptase Kit (Invitrogen) accord-

ing to the manufacturer’s instructions. Primers for MMP3, HSP90β and 18S 

rRNA were obtained from Qiagen (QuantiTect Primer Assays), and quantita-

tive real-time PCR (qPCR) was performed with the LightCycler 480 SYBR 

Green I Master using the LightCycler 480 Multiwell Plate 384 System, follow-

ing the manufacturer’s instructions. Relative expression between MMP3 or 

HSP90β and 18S rRNA was quantified. 

2.12 Caseinase Activity Assay 

CM was incubated with a casein derivative quenching red-fluorescent dye 

(BODIPY TR-X Casein, E6639, Invitrogen). Protease-catalyzed hydrolysis re-

leased highly fluorescent BODIPY TR-X dye-labeled peptides. The accompa-

nying increase in fluorescence is proportional to MMP3 proteolytic activity 

and was monitored with a microplate reader. A control without BODIPY ca-

sein was used to subtract residual fluorescence background. 
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2.13 Cell Scatter Assay 

SCp2 cells were seeded in 6-well plates at low density (1x105 cells/well), al-

lowed to form colonies (≈ 48 h) and serum-starved for 24 h. Epithelial cell 

islets were then stimulated with 9 nM EGF (Sigma) and imaged at 48 h with 

a Zeiss Imager Z1 microscope, using a 10x objective. 

2.14 Immunofluorescence 

SCp2 cells were cultured for 72 h on glass coverslips, fixed with 4% para-

formaldehyde/PBS for 10 min, washed with PBS and permeabilized in 0.25% 

Triton X-100/PBS for 10 min. Samples were blocked with 1% BSA, 5% Don-

key Serum and 5% Goat Serum/PBS for 1 h, followed by incubation with the 

primary antibody in blocking buffer overnight at 4 ºC and the secondary an-

tibody for 1 h at room temperature. Images were acquired with an upright 

Zeiss LSM710, using a 1.4 NA 63× oil-immersion. 

2.15 Morphometry Analysis 

Cell edges were outlined in F-actin stained cells using an “Object Identifica-

tion Module” from CellProfiler software (Carpenter et al. 2006). Cellular el-

liptical factors, defined as the ratio of the longest (length) to the shortest 

(width) axis of the cell, were calculated for 100 random cells per culture. 

2.16 Invasion Assay 

Cell culture inserts (8 µm, 24-well format, BD Biosciences) were evenly 

coated with 20 µL diluted (1:5 in DMEM/F-12 medium) Matrigel (BD Bio-

sciences). 1x105 cells in 200 µL of DMEM/F-12 medium or different CM (as 

indicated in each experiment) were added to the upper compartment of the 

chamber. The lower compartment of the chamber was filled with 300 µL 

medium containing 10% FBS as a chemoattractant. After 48 h of incubation 

at 37 ºC, the topside of the insert was cleared from non-invasive cells with a 
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cotton swab and washed with serum-free DMEM/F-12. The remaining (inva-

sive) cells at the lower surface of the filter were fixed and stained with a so-

lution of Coomassie Blue 0.125% in methanol:acetic acid:H
2
O (45:10:45, 

v/v/v) for 15 min. Invasive cells were scored by counting 10 x20 magnifica-

tion fields per filter with a Zeiss Imager Z1 microscope, using a 20x objec-

tive. Mouse embryo fibroblast NIH/3T3 cells were routinely included as a 

positive control. Results are expressed as mean ± s.d. from three inde-

pendent experiments. 

2.17 Western Blotting 

Cells were lysed with a buffer containing 1% Triton X-100, 1% NP-40 and 

protease and phosphatase inhibitor cocktails (Calbiochem/EMD Millipore) in 

PBS, and the lysates were clarified by centrifugation at 16,000 g for 15 min. 

Protein concentration was determined using the BCA Protein Assay kit 

(Thermo Scientific) according to the manufacturer’s instructions. Protein 

samples were mixed with electrophoresis sample buffer containing 5% (v/v) 

2-β-mercaptoethanol and 5% (v/v) bromophenol blue and boiled for 5 min at 

95 ºC. Samples were loaded in equal amounts into pre-cast 4-20% gradient 

polyacrylamide gels (Invitrogen) and separated by SDS-PAGE. Resolved pro-

teins were transferred to a nitrocellulose membrane (Whatman) at 130 V for 

90 min, followed by blocking of non-specific binding with 5% BSA in 0.05% 

Tween-20/PBS for 1 h at room temperature. The membranes were probed 

with primary antibodies specific to each protein overnight at 4 ºC, and then 

incubated with HRP-conjugated secondary antibodies (Thermo Scientific and 

Santa Cruz Biotechnology). Blots were visualized with an ECL detection sys-

tem (Thermo Scientific) according to the manufacturer’s instructions, and 

chemiluminescent signal was captured with a FluorChem IS-8900 (Alpha In-

notech). Each western blot was done at least three times, and here we show 

representative experiments. 
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2.18 Co-Immunoprecipitation (Co-IP) 

For Co-IP of FLAG-tagged MMP3 protein complexes, CM was incubated with 

anti-FLAG M2 antibody-conjugated agarose beads (F2426, Sigma) for 16 h 

at 4 ºC. The beads were then washed three times with 0.05% Tween-20/PBS 

and the immune complexes were directly eluted with electrophoresis sam-

ple buffer and analyzed by western blotting. For LC-MS/MS analysis, beads 

were washed with 0.05% Tween-20/PBS and protein complexes were eluted 

with a FLAG peptide (F3290, Sigma) in 0.05% Tween-20/PBS. Samples were 

then precipitated with trichloroacetic acid and reconstituted with a buffer 

(Invitrosol, MS10007, Invitrogen) suitable for mass spectrometry analysis. 

For Co-IP of HSP90β protein complexes, CM was incubated with 10 µg 

of control rabbit-IgG or anti-HSP90β antibody for 16 h at 4 ºC. Precipitation 

was performed with protein G sepharose beads (17-0618-01, GE Healthcare) 

for 4 h at 4 ºC. The beads were then washed three times with 0.05% 

Tween-20/PBS and the immune complexes were directly eluted with elec-

trophoresis sample buffer and analyzed by western blotting. 

2.19 Mass Spectrometry Analysis 

The detailed methodology on LC-MS/MS is given below. Scaled signal inten-

sities were log2-transformed and analyzed by R software. 

2.19.1 Trypsin Digestion of Samples for LC-MS/MS Analysis 

100 µg of eluted proteins from control, FL and dPEX 

FLAG-immunoprecipitated samples were digested by trypsin (modified, se-

quencing grade, Promega) at a ratio of 1:30 enzyme/protein along with 2 

mM CaCl
2
 and for 16 h at 37 ºC. Following digestion, all reactions were 

acidified with 90% formic acid (2% final) to stop the proteolysis. Then, sam-

ples were centrifuged for 30 min at 14,000 rpm to remove insoluble mate-

rial. The soluble peptide mixtures were collected for LC-MS/MS analysis. 
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2.19.2 Multidimensional Chromatography and Tandem 

Mass Spectrometry (LC-MS/MS) 

Peptide mixtures were pressure-loaded onto a 250 µm inner diameter (i.d.) 

fused-silica capillary packed first with 3 cm of 5 µm strong cation exchange 

material (Partisphere SCX), followed by 3 cm of 10 µm C18 reverse phase 

(RP) particles (Aqua). Loaded and washed microcapillaries were connected 

via a 2 µm filtered union (UpChurch Scientific) to a 100 µm i.d. column, 

which had been pulled to a 5 µm i.d. tip using a P-2000 CO2 laser puller 

(Sutter Instruments), then packed with 13 cm of 3 µm C18 reverse phase 

(RP) particles (Aqua) and equilibrated in 5% acetonitrile, 0.1% formic acid 

(Buffer A). This split-column was then installed in-line with a NanoLC Eski-

gent HPLC pump. The flow rate of channel 2 was set at 300 nL/min for the 

organic gradient. The flow rate of channel 1 was set to 0.5 µL/min for the 

salt pulse. Fully automated 11-step chromatography runs were carried out. 

Three different elution buffers were used: 5% acetonitrile, 0.1 % formic acid 

(Buffer A); 98% acetonitrile, 0.1% formic acid (Buffer B); and 0.5 M ammo-

nium acetate, 5% acetonitrile, 0.1% formic acid (Buffer C). In such sequences 

of chromatographic events, peptides are sequentially eluted from the SCX 

resin to the RP resin by increasing salt steps (increase in Buffer C concentra-

tion), followed by organic gradients (increase in Buffer B concentration). The 

last chromatography step consists in a high salt wash with 100% Buffer C 

followed by acetonitrile gradient. The application of a 2.5 kV distal voltage 

electrosprayed the eluting peptides directly into an LTQ-Orbitrap XL mass 

spectrometer equipped with a nano-LC electrospray ionization source (Ther-

moFinnigan). Full MS spectra were recorded on the peptides over a 400 to 

2,000 m/z range by the Orbitrap, followed by five tandem mass (MS/MS) 

events sequentially generated by LTQ in a data-dependent manner on the 

first, second, third, and fourth most intense ions selected from the full MS 

spectrum (at 35% collision energy). Mass spectrometer scan functions and 

HPLC solvent gradients were controlled by the Xcalibur data system 

(ThermoFinnigan). 
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2.19.3 Database Search and Interpretation of MS/MS 

Datasets 

Tandem mass spectra were extracted from raw files, and a binary classifier 

— previously trained on a manually validated data set — was used to re-

move the low quality MS/MS spectra. The remaining spectra were searched 

against a mouse protein database containing 56,871 protein sequences 

downloaded as FASTA-formatted sequences from EBI-IPI (database version 

3.75, released on July, 20, 2010) (Kersey et al. 2004), and 124 common 

contaminant proteins, for a total of 56,871 target database sequences. To 

calculate confidence levels and false positive rates, we used a decoy data-

base containing the reverse sequences of 56,871 proteins appended to the 

target database (Elias and Gygi 2007), and the SEQUEST algorithm (Eng et 

al. 1994; Yates et al. 1995) to find the best matching sequences from the 

combined database. 

SEQUEST searches were done using the Integrated Proteomics Pipeline 

(IP2, Integrated Proteomics Inc.) on Intel Xeon X5450 X/3.0 PROC processor 

clusters running under the Linux operating system. The peptide mass 

search tolerance was set to 50 ppm. No differential modifications were con-

sidered. No enzymatic cleavage conditions were imposed on the database 

search, so the search space included all candidate peptides whose theoreti-

cal mass fell within the 50 ppm mass tolerance window, despite their tryptic 

status. 

The validity of peptide/spectrum matches was assessed in DTASelect2 

(Tabb et al. 2002) using SEQUEST-defined parameters, the cross-correlation 

score (XCorr) and normalized difference in cross-correlation scores (Del-

taCN). The search results were grouped by charge state (+1, +2, and +3) 

and tryptic status (fully tryptic, half-tryptic, and non-tryptic), resulting in 9 

distinct sub-groups. In each one of the sub-groups, the distribution of 

XCorr and DeltaCN values for (a) direct and (b) decoy database hits was ob-

tained, and the two subsets were separated by quadratic discriminant 

analysis.  Outlier points in the two distributions (for example, matches with 

very low Xcorr but very high DeltaCN were discarded. Full separation of the 

direct and decoy subsets is not generally possible; therefore, the discrimi-
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nant score was set such that a false positive rate of 1% was determined 

based on the number of accepted decoy database peptides. This procedure 

was independently performed on each data subset, resulting in a false posi-

tive rate independent of tryptic status or charge state. 

In addition, a minimum sequence length of 7 amino acid residues was 

required, and each protein on the final list was supported by at least two 

independent peptide identifications unless specified. These additional re-

quirements — especially the latter — resulted in the elimination of most 

decoy database and false positive hits, as these tended to be overwhelm-

ingly present as proteins identified by single peptide matches. After this 

last filtering step, the false identification rate was reduced to below 1%. 

2.20 Statistical Analysis 

Statistical analyses were performed using GraphPad Prism 5.0 software. 

Student’s t-test (unpaired with Welch’s correction, two-tailed, 95% confi-

dence interval) was used to determine statistical significance. Statistical 

analyses were always performed in relation to vector control cells (unless 

stated otherwise). 
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Chapter 3 

3 Results 

3.1 The Hemopexin Domain of MMP3 is Required 

for a Change in Cell Shape in 2D Substrata and 

Invasion in Boyden Chambers 

3.1.1 Overexpression of Distinct MMP3 Constructs in 

Functionally Normal Mouse Mammary Epithelial 

Cells (SCp2) 

To investigate the function of different domains of MMP3, we engineered 

three FLAG-tagged constructs containing different domains of the MMP3 

molecule: a wild type (FL) MMP3, a mutant lacking the hemopexin domain 

(dPEX) and a construct containing a point mutation E219A (EA) at the cata-

lytic core (Figure 3.1A). We overexpressed the distinct MMP3 constructs in 

SCp2 (Figure 3.1B), a mammary cell line previously shown to undergo EMT 

upon expression of MMP3 (Lochter et al. 1997a; Radisky et al. 2005). SCp2 

cells have a low level of endogenous MMP3 activity that resembles that 

found in vivo in mammary epithelia; we chose to maintain this activity ad-

visedly to have a positive control for the overexpression of the human 

homologues in murine cells. This was additionally useful because we ob-

served that the concurrent knockdown of endogenous MMP3 and the intro-
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duction of the exogenous levels of the human constructs would lead to ab-

errant cell behavior. To compare the cultures transduced with different con-

structs to each other and to the control, we ensured that the endogenous 

as well as the exogenous levels of MMP3 were comparable in all engineered 

cell lines (Figure 3.1C,D). Overexpression of the exogenous constructs in 

SCp2 showed that the proteolytic activity (measured by casein-quenched 

degradation) in dPEX was similar to FL and they both were higher than EA-

SCp2 or control cells (Figure 3.1E). 

 
Figure 3.1 Overexpression of distinct MMP3 constructs in functionally normal mouse 

mammary epithelial cells (SCp2). 

(A) Schematic representation of engineered MMP3 constructs. (B) Overexpression of MMP3 

and its mutants in SCp2 cells assessed by western blotting (WB). Conditioned-medium (CM) 

was isolated from cells transduced with each of the MMP3 constructs and the control vector. 

FLAG epitope tag was detected with anti-FLAG antibody. Both latent (lat) and activated (act) 

forms of MMP3 were recognized. (C) Expression of endogenous and exogenous MMP3 in 

SCp2 cells assessed by WB. Whole cell lysates were isolated from each engineered cell line. 

Exogenous and endogenous MMP3 were detected with anti-FLAG antibody and an antibody 

specific for murine MMP3, respectively. α-Tubulin was used as loading control. (D) Quantifi-

cation of the ratio between exogenous and endogenous MMP3 in each culture. Results are 

indicated as mean ± s.d. from three independent experiments. (E) MMP3 proteolytic activity 

of SCp2 cells overexpressing each construct assayed by casein degradation. CM was incu-

bated with a dye-quenching casein substrate (BODIPY TR-X casein). MMP3-mediated degrada-

tion of casein generated fluorescent dye-labeled peptides that were monitored over time. 

Fluorescence intensity is indicated as arbitrary units (AU). 
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3.1.2 MMP3 Hemopexin Domain Induces Scattering, Loose 

Adherens Junctions and Elongated Morphology in 

both SCp2 and EpH4 Cells 

Cell scattering is a functional consequence of EMT (Vincent-Salomon 

and Thiery 2003); overexpression of FL-MMP3 induced scattering in 2D cul-

tures (Figure 3.2A, first and second rows). The EA mutant also stimulated a 

spindle-shaped morphology and scattered phenotype, albeit to a lower ex-

tent (Figure 3.2A, third row). In contrast, dPEX-SCp2 did not scatter and re-

sembled the control cultures (Figure 3.2A, fourth row). Others and we have 

shown that E-cadherin is a substrate for MMP3 and its loss is associated 

with scattering (Lochter et al. 1997a; Noe et al. 2001). Consistent with 

these observations, we found that FL and dPEX-MMP3 both reduced the ex-

pression of E-cadherin (Figure 3.2B, second and fourth rows) by shedding 

its extracellular domain (Figure 3.2C,D). Surprisingly, however, EA-SCp2 

cells (which lack the proteolytic activity) exhibited a stretched phenotype 

even in the presence of E-cadherin levels similar to control cultures (Figure 

3.2B, third row), suggesting that the ability of MMP3 to disrupt epithelial 

morphology was due to activities residing in its other domains. 

Using changes in cell morphology and reorganization of filamentous 

actin (F-actin) as additional endpoints, we observed that in dPEX-SCp2 and 

control cultures, F-actin was predominantly organized in cortical bundles 

and cells had a classical epithelial morphology in 2D (Figure 3.3A, first and 

last rows). In sharp contrast, actin filaments were extended in FL and 

EA-SCp2 cultures and cells were elongated (Figure 3.3A, second and third 

rows). We quantified these morphological changes by calculating the ratio 

of the longest (length) to the shortest (width) axis of the cell that we refer 

to as cellular elliptical factor (Figure 3.3B). Whereas FL and EA-SCp2 dis-

played elliptical factor >2, cells expressing control vector or dPEX had ellip-

tical factors close to 1. These observations show a critical role for MMP3 

hemopexin domain in altering epithelial cell shape. 

Despite the small amount of proteolytic activity of SCp2 cells, these 

exhibit little invasive behavior (Lochter et al. 1997b); the same is true in 

SCp2 cells transduced with control vector (Figure 3.3C, control). SCp2 
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transduced with FL-MMP3 had the highest invasive rate, followed by EA and 

dPEX-SCp2, respectively (Figure 3.3C). These data indicate that despite the 

background proteolytic activity, MMP3 requires the hemopexin domain to 

induce invasion in SCp2 cells. A similar trend was obtained with EpH4, an-

other mouse mammary epithelial cell line (D-F). 

 
Figure 3.2 Overexpression of MMP3 containing the hemopexin domain induces scatter-

ing and loose adherens junctions in SCp2 cells. 

(A) The hemopexin domain of MMP3 is required to induce scattering in SCp2 cells. Scattering 

ability was evaluated in cells transduced with each construct upon stimulation with EGF. 

Scale bars: 20µm. (B) MMP3 hemopexin domain disrupts adherens junctions. Immunofluo-

rescence images show E-cadherin distribution (green) in cells expressing each construct. 

Arrows depict areas of cell-cell contact. Nuclei stained with DAPI (blue). Scale bars: 10µm. (C) 

E-cadherin is a substrate for MMP3. WB showing soluble fragments of E-cadherin 

(sE-cadherin) detected in CM from SCp2 cells overexpressing distinct MMP3 constructs and 

control vector. Total E-cadherin and α-tubulin from whole cell lysates were used as loading 

controls. (D) Quantification of sE-cadherin levels in each culture. Results are indicated as 

mean ± s.d. from three independent experiments (** P < 0.001 by Student’s t-test). 
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Figure 3.3 MMP3 hemopexin domain induces elongated morphology and invasion in 

both SCp2 and EpH4 cells. 

Panels (A-C) and (D-F) refer to SCp2 and EpH4 cells, respectively. (A,D) MMP3 hemopexin 

domain induces reorganization of F-actin. Images show F-actin (magenta) and nuclei (DAPI; 

blue) in each culture. Scale bars: 10µm. (B,E) The hemopexin domain of MMP3 stimulates 

elongated cell shape. Quantification of morphological changes in each culture by calculation 
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of the cellular elliptical factor. The box plot shows the median and the interquartile range, 

and the whiskers show the extreme values (n = 100 cells for each stable cell line). (C,F) The 

hemopexin domain of MMP3 directs signaling for invasion. Invasiveness in each condition 

was assayed in Boyden chambers. Results are indicated as mean ± s.d. from three independ-

ent experiments (10 bright field images in x20 magnification were counted). *** P < 0.0001, 

** P < 0.001, * P < 0.05 by Student’s t-test. 

3.1.3 Secreted MMP3 is Required to Induce Morphological 

and Functional Changes in Parental SCp2 Cells 

Because MMP3 is a secreted protein, we asked whether the secreted form of 

this enzyme and its mutants were required to induce the morphological and 

functional changes observed (Figure 3.4). 

 
Figure 3.4 Conditioned medium from cells overexpressing each of the MMP3 constructs 

is sufficient to induce morphological and functional changes in parental SCp2 cells. 

(A) Images showing F-actin organization (magenta) and nuclei (DAPI; blue) in each culture. 

Scale bars: 10 µm. (B) Plot of the cellular elliptical factors of each culture. The box shows the 

median and the interquartile range, and the whiskers show the extreme values (n = 100 cells 

per culture). (C) Invasiveness in each condition assayed in Boyden chambers. Results are ex-

pressed as mean ± s.d. from three independent experiments (10 bright field images in 20x 

magnification were counted). *** P < 0.0001, * P < 0.05 by Student’s t-test. 

Conditioned-medium (CM) from FL-SCp2 was sufficient to induce scattering, 

elongated shape and a substantial increase in invasion in parental SCp2 

cells. Whereas dPEX-SCp2 CM did not trigger scattering or enhance the el-
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liptical factor, there was a small but significant increase in invasion. How-

ever when the proteolytic activity of the MMP3 construct was ablated (CM 

from EA-SCp2) there was still a considerable increase in invasion and cells 

were elongated. This finding additionally supports the fact that the he-

mopexin domain is required for invasion in SCp2 cells. 
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3.2 Proteomic Screen Identifies HSP90β as 

Interacting with MMP3 Hemopexin Domain in 

the Extracellular Milieu 

3.2.1 HSP90β, ANXA2 and MARCKS are Present 

Extracellularly and Interact with MMP3 via 

Hemopexin Domain 

The fact that CM from cells overexpressing each of the MMP3 constructs 

was sufficient to induce morphological and functional changes in parental 

SCp2 cells raised the question of whether MMP3 functions alone or depends 

on other factors being present in CM. The hemopexin domain of MMPs is 

known to interact with other proteins. MMP14 hemopexin domain was re-

ported to be required for invasion through Col-1 (Tam et al. 2002; Wang et 

al. 2004) and for binding to the adhesion receptor CD44 and integrin-β1 

(Mori et al. 2002; Mori et al. 2013). 

To explore what other factors may be required for the functional activi-

ties of MMP3, we isolated FLAG-tagged-FL or -dPEX protein complexes from 

CM and performed a proteomic analysis to identify proteins that interact 

with MMP3 hemopexin domain (Figure 3.5A). Based on spectra counts, we 

selected proteins with abundances greater than 1.5-fold change in FL com-

pared to dPEX (Figure 3.5B, left; Figure 3.6). Amongst the 75 proteins that 

passed the selection criteria, we selected myristoylated alanine-rich 

C-kinase substrate (MARCKS) and annexin A2 (ANXA2), which were previ-

ously implicated in regulation of cell shape, motility and invasion in 

Xenopus embryos and canine kidney cells (Iioka et al. 2004; de Graauw et 

al. 2008). Additionally we selected heat shock protein 90 beta (HSP90β) de-

tected in both FL and dPEX but much higher in FL (Figure 3.5B, right). We 

validated the interaction of the hemopexin domain of MMP3 with these 

three proteins by co-immunoprecipitation (Co-IP) (Figure 3.5C). 
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Figure 3.5 Proteomic screen of MMP3 binding partners reveals the extracellular interac-

tion with HSP90β, ANXA2 and MARCKS via the hemopexin domain. 

(A) Strategy for screening MMP3 binding partners through the hemopexin domain. (B) Selec-

tion of MARCKS, ANXA2 and HSP90β from proteomic analysis. Left: Venn diagram showing 

the spectrum of proteins detected in FL and/or dPEX FLAG-immunoprecipitated samples. 

Right: Heat map illustrating the relative difference in abundance of proteins detected both in 

FL and dPEX but much higher in FL. Proteins were sorted by the highest ratio between FL and 

dPEX. (C) Co-IP of each mutant shows the association between MMP3 and the selected tar-

gets via hemopexin domain. FLAG-tagged MMP3 FL, EA and dPEX were immunoprecipitated 

from CM with an anti-FLAG antibody, and blotted with antibodies for its binding partners. 

3.2.2 Silencing of HSP90β, ANXA2 and MARCKS Reduces 

MMP3-Driven Invasion in SCp2 Cells when the 

Hemopexin Domain of MMP3 is Present 

We then asked whether this interaction is functionally significant and re-

quired for MMP3-induced invasion. We generated SCp2 cell lines 

co-expressing each of the MMP3 constructs and either non-targeting short 

hairpin RNA (shRNA; negative control) or shRNA selectively targeting each 

of the three proteins (Figure 3.7A-C,G-I,M-O, three distinct shRNAs for each 

of the targets). We treated parental SCp2 with CM from each engineered cell 

line and screened for invasion using Boyden chambers (Figure 

3.7D-F,J-L,P-R). 
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Figure 3.6 Proteins identified as interacting with MMP3 in the extracellular milieu. 

Left: Heat map showing the relative difference in protein abundance in FL vs. control, dPEX 

vs. control and FL vs. dPEX FLAG-immunoprecipitated samples. Proteins are sorted by the 

ratio of FL and dPEX. Right: Complete list of the identified proteins. Targets selected for vali-

dation and further studies are highlighted. 
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Figure 3.7 Silencing of HSP90β, ANXA2 and MARCKS reduces MMP3-driven invasion in 

SCp2 cells when the hemopexin domain of MMP3 is present. 

(A-C), (G-I) and (M-O) Blots showing shRNA-mediated silencing of HSP90β (A,G,M), ANXA2 

(B,H,N) and MARCKS (C,I,O) in SCp2 cells overexpressing each of the MMP3 constructs and 

the control vector. Non-targeting shRNA was used as negative control. Knockdowns were 
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verified by WB of whole cell lysates with antibodies specific for each target protein. α-Tubulin 

was used as loading control. (D-F), (J-L) and (P-R) Silencing of HSP90β, ANXA2 and MARCKS 

reduces MMP3-driven invasion in SCp2 cells when the hemopexin domain of MMP3 is pre-

sent. SCp2 cells were co-transduced with each of the MMP3 constructs and either non-

targeting shRNA or shRNAs selectively targeting HSP90β (D,J,P), ANXA2 (E,K,Q) or MARCKS 

(F,L,R). SCp2 parental cells were treated with CM from each engineered cell line and assayed 

for invasiveness in Boyden chambers. Parental cells treated with CM from SCp2 cells express-

ing each of the MMP3 constructs and the control vector (untreated CM) were used as control. 

Results are expressed as mean ± s.d. from three independent experiments (10 bright field 

images in x20 magnification were counted in each experiment). ** P < 0.001, * P < 0.05 by 

Student’s t-test. 

The knockdown did not affect invasion of cells treated with CM from control 

or dPEX-SCp2, but it significantly reduced invasiveness of cells treated with 

FL or EA-SCp2 CM. These results indicate that binding of each one of these 

three proteins to the hemopexin domain of MMP3 has functional signifi-

cance, but the inhibition was much more dramatic when HSP90β was inhib-

ited (Figure 3.7D,J,P). The nature of the complexes containing MMP3 and 

HSP90β was clarified further by reverse Co-IP of HSP90β protein complexes 

from CM of control SCp2 cells (Figure 3.8). 

 
Figure 3.8 Co-IP of HSP90β protein complexes confirms the extracellular association of 

MMP3 and HSP90β in reverse. 

HSP90β protein complexes were immunoprecipitated from CM from control SCp2 cells with a 

rabbit anti-HSP90β antibody, and blotted with antibodies for HSP90β, MMP3, ANXA2 and 

MARCKS. Control rabbit-IgG and plain protein G sepharose beads were used as controls. 

Whereas the association of MMP3 and HSP90β was confirmed in reverse, 

ANXA2 and MARCKS could not be recovered in the immunoprecipitated 

fraction under these conditions. This suggests that either these proteins do 

not exist in a single complex at a given time, but may instead represent a 

network of proteins interacting with one another at different times for dif-
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ferent purposes, or the interaction of the other two proteins is weak and 

thus cannot be detected easily by the reverse Co-IP. These data also justify 

the importance of HSP90β as the major player in regulation of MMP3 func-

tion. 

3.2.3 The Levels of Extracellular HSP90β Determine 

MMP3-Induced Invasion 

Given the significance of HSP90β in cellular and tissue function, we concen-

trated on understanding the role of this molecule in regulating MMP3. The 

levels of HSP90β in each engineered cell line were tuned by adding either a 

recombinant protein or a specific inhibitor (CCT018159; (Sharp et al. 2007)) 

(Figure 3.9). 

 
Figure 3.9 HSP90β regulates MMP3-driven invasion in a dose-dependent manner when 

the hemopexin domain is present. 

(A) Addition of purified HSP90β enhances the invasiveness of SCp2 cells overexpressing 

MMP3 constructs containing the hemopexin domain. Cell invasiveness of FL, EA, 

dPEX-overexpressing SCp2 and control vector cells cultured in the presence of increasing 

doses of recombinant HSP90β. Untreated cells were used as a control. (B) Inhibition of 

HSP90β reduces invasiveness of SCp2 cells overexpressing MMP3 constructs containing the 

hemopexin domain. Cell invasiveness of FL, EA, dPEX-overexpressing SCp2 and control vec-

tor cells cultured in the presence of increasing doses of a cell-permeable HSP90β inhibitor. 

Cells cultured with vehicle DMSO and untreated cells were used as controls. Invasiveness 
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from experiments in (A,B) was assayed in Boyden chambers. Results are expressed as the 

mean ± s.d. from three independent experiments (10 bright field images in 20x magnifica-

tion were counted). ** P < 0.001, * P < 0.05 by Student’s t-test. 

Increasing HSP90β levels enhanced invasion significantly in FL and EA-SCp2 

(Figure 3.9A, second and third panels), but did not raise the invasive poten-

tial of dPEX-SCp2 or control cells significantly (Figure 3.9A, first and last 

panels). Conversely, inhibition of HSP90β reduced invasion in FL and EA-

SCp2 (Figure 3.9B, second and third panels) and had no significant effect on 

dPEX-SCp2 or control cells (Figure 3.9B, first and last panels). 

The above pattern was reproduced when we used a function-blocking 

antibody against HSP90β and demonstrated that inhibition of extracellular 

HSP90β was sufficient to reduce invasiveness of FL and EA-SCp2 (Figure 

3.10). These data show that MMP3 is unable to perform much of its invasive 

functions without interacting with HSP90β in the extracellular milieu. 

 
Figure 3.10 Blocking of extracellular HSP90β is sufficient to reduce invasiveness of SCp2 

cells transduced with MMP3 constructs containing the hemopexin domain. 

Cell invasiveness of FL, EA, dPEX-overexpressing SCp2 and control vector cells cultured in 

the presence of a cell-permeable HSP90β inhibitor or a function-blocking antibody against 

HSP90β. Untreated cells and rabbit IgG were used as controls. Invasiveness was assayed in 

Boyden chambers. Results are expressed as the mean ± s.d. from three independent ex-

periments (10 bright field images in 20x magnification were counted). ** P < 0.001, * P < 

0.05 by Student’s t-test. 
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3.3 The Hemopexin Domain is Required for the 

Invasive Function of MMP3 During Branching 

Morphogenesis 

The finding of the critical role of the hemopexin domain in the invasion 

function of MMP3 in cell lines needed to be confirmed in a more physiologi-

cal context. We used two culture models that simulate the normal proc-

esses of mammary invasion and branching: cell clusters of a functionally 

normal mouse mammary epithelial cell line (EpH4) (Figure 3.11A; (Hirai et 

al. 1998; Mori et al. 2013)) and primary mammary organoids (Figure 3.12A; 

(Simian et al. 2001)), embedded in Col-1 gels. The physiological relevance 

of this model is illustrated by the presence of copious amounts of Col-1 in 

the stroma surrounding epithelial ducts in the murine mammary gland 

(Williams and Daniel 1983). 

 
Figure 3.11 The hemopexin domain of MMP3 directs invasion and branching of clus-

tered EpH4 cells in 3D Col-1 gels even without the proteolytic activity. 

(A) Schematic representation of cell cluster preparation and culture in 3D Col-1 gels. (B) Im-

ages of maximum-intensity projection of EpH4 cell clusters transduced with each of the 

MMP3 constructs as well as the control vector, and cultured in 3 mg/mL Col-1 for 4 days. 

EpH4 clusters invaded and branched only in the presence of the growth factor (bFGF). Struc-

tures were stained for F-actin (red) and nuclei (DAPI; blue). Image background was pseudo-

colored in grey. Scale bars: 100µm. 
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Figure 3.12 MMP3 hemopexin domain signals for epithelial invasion and branching of 

mammary organoids in 3D Col-1 gels even without the proteolytic activity. 

(A) Schematic representation of primary mammary organoid preparation and culture in 3D 

Col-1 gels. (B) Overexpression of MMP3 containing the hemopexin domain enhances inva-

sion of mammary organoids in Col-1. Images of maximum-intensity projection of mammary 

organoids transduced with each of the MMP3 constructs as well as the control vector, and 

cultured in 3 mg/mL Col-1 gels for 3 days. Organoids invaded and branched only in the 

presence of the growth factor (TGFα). Structures were stained for F-actin (red) and nuclei 

(DAPI; blue). Image background was pseudo-colored in grey. Scale bars: 100µm. (C) The 

presence of the hemopexin domain of MMP3 increases the number of extending processes 

developed from each organoid invading through Col-1 (150 organoids were counted per cul-

ture). (D) The size of the ‘spatial network’ per organoid is increased by overexpression of 

MMP3 containing the hemopexin domain. The ‘spatial network’ per organoid is defined as 

the sum of the length of all the extending processes of an organoid (50 organoids were 

counted per culture. *** P < 0.0001, ** P < 0.001, * P < 0.05 by Student’s t-test. 

There are a number of advantages of using the versatile assay employing 

organoids from the mammary gland. Cell-cell and cell-matrix interactions 

remain intact, and the architecture of the tissue is not disrupted. Addition-

ally, we can prepare enough mammary organoids from a single mouse 

(≈1200) and infect with the four distinct constructs. Even inbred mice are 

known to change biochemical and morphological characteristics at different 

stages of estrogen cycle as well as in response to handling and context. In 

this way we could control for all variations and avoid the excessive use of 

animals, but also achieve statistical significance. Lastly we could mark 
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them: the presence of the GFP in the constructs indicated that more than 

80% of the cells were infected. These cultures allow us not only to create a 

physiological condition where the organoids regenerate an epithelial tree-

like structure, but also to observe and control extracellular events much 

more robustly. 

The functional significance of the hemopexin domain was reproduced 

in our 3D assays with clustered EpH4 cells (Figure 3.11B) and most impor-

tantly with primary organoids (Figure 3.12B). We used two different criteria 

to quantify invasion and branching of organoids: the number of extended 

sprouts and processes developed from each structure (Figure 3.12C), and 

the ‘spatial network’ per organoid (Figure 3.12D). As expected, organoids 

overexpressing FL-MMP3 had the highest number of extending processes 

and longest spatial network, indicating that the proteolytic activity would be 

still necessary if the path is obstructed. 

For the purpose of the current experiments, we did not distinguish be-

tween branches that were more than one cell layer thick and demonstrated 

basal and apical polarity, and strands that grew as a single file. However, 

there were very few of the latter in dPEX-overexpressing and control cul-

tures. As mentioned above we advisedly decided against inhibiting the en-

dogenous MMP3 activity using multiple genetic manipulations because both 

cells and organoids were sensitive to more than one set of viral infections. 

We therefore used a peptide that has been shown to inhibit MMP3 prote-

olytic activity effectively and specifically (Fotouhi et al. 1994; Farina et al. 

2002). Inhibition of both endogenous as well as exogenous MMP3 prote-

olytic activity decreased branches in a dose-dependent manner in all or-

ganoids (Figure 3.13A,B). Nevertheless, there still was invasion of cells indi-

vidually or in a single file, with less branching than untreated cultures 

(Figure 3.13A). These data indicate that the hemopexin domain of MMP3 

allows epithelial invasion, but that in the presence of proteolytic activity 

there are more multilayered branches. Additionally, when we knocked down 

MMP3 in control organoids there was a significant decrease in invasion and 

branching (Figure 3.14). This reaffirms the requirement for MMP3 for mam-

mary branching morphogenesis, and provides additional reason for our 

choice of preserving the endogenous MMP3 intact. 
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Figure 3.13 The hemopexin domain of MMP3 is sufficient for epithelial invasion, but the 

proteolytic activity is still required for the formation of branches. 
(A) Images of maximum-intensity projection of mammary organoids transduced with each of 

the MMP3 constructs as well as the control vector, and cultured in 3 mg/mL Col-1 gels for 3 

days. Organoids were cultured in the presence of the growth factor (TGFα) and increasing 

doses of a peptide that was shown previously to inhibit MMP3 proteolytic activity specifically 

and significantly. Structures were stained for F-actin (red) and nuclei (DAPI; blue). Image 

background was pseudo-colored in grey. Scale bars: 100 µm. (B) Quantification of invasion 

and branching by measuring the ‘spatial network’ per organoid (50 organoids were counted 

per culture). *** P < 0.0001, ** P < 0.001, * P < 0.05 by Student’s t-test. 
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Figure 3.14 shRNA-mediated knockdown of MMP3 reduces invasion and branching sig-

nificantly in control organoids. 

(A) Images of maximum-intensity projection of control mammary organoids infected with 

either non-targeting shRNA or shRNA selectively targeting MMP3, and cultured in 3 mg/mL 

Col-1 gels for 3 days. Organoids were cultured in the presence of the growth factor (TGFα). 
Structures were stained for F-actin (red) and nuclei (DAPI; blue). Image background was 

pseudo-colored in grey. Scale bars: 100µm. (B) Blots showing silencing of MMP3 using two 

distinct shRNAs. Knockdown was verified by western blotting of whole cell lysates with an 

antibody specific for murine MMP3. α-Tubulin was used as loading control. (C) Silencing 

MMP3 decreases the size of the ‘spatial network’ per organoid (50 organoids were counted 

per culture). *** P < 0.0001 by Student’s t-test. 
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3.4 Extracellular Interaction of MMP3 with HSP90β 

is Required for Invasion and Branching, with 

Binding Occurring via Hemopexin Domain 

Having shown the relevance of the distinct domains for invasion and 

branching also in organoids, we examined the requirement of HSP90β in 

organoids transduced with different constructs receiving either recombi-

nant protein (Figure 3.15A) or a function-blocking antibody against HSP90β 

(Figure 3.15B). 

 
Figure 3.15 Extracellular HSP90β modulates MMP3 function in invasion and branching of 

mammary epithelial organoids. 

(A) Recombinant HSP90β added to the medium increases the invasiveness of mammary or-

ganoids expressing MMP3. Images of maximum intensity projection from confocal z-stacks 

of mammary organoids overexpressing FL-MMP3 or control vector embedded in 3 mg/mL 

Col-1 gels. Organoids were cultured for 3 days in the presence or absence of a recombinant 

HSP90β. Structures were stained for F-actin (red) and nuclei (DAPI; blue). Image background 

was pseudo-colored in grey. Scale bars: 100µm. (B) Inhibition of extracellular HSP90β abol-

ishes branching ability of mammary organoids. Images of maximum intensity projection 

from confocal z-stacks of mammary organoids overexpressing FL MMP3 or control vector 

embedded in 3 mg/mL Col-1 gels. Organoids were cultured for 3 days with a function-
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blocking antibody against HSP90β or a control IgG. Structures were stained for F-actin (red) 

and nuclei (DAPI; blue). Image background was pseudo-colored in grey. Scale bars: 100µm. 

(C,D) Quantification of invasion and branching by measuring the ‘spatial network’ per or-

ganoid (50 organoids were counted per culture). *** P < 0.0001, * P < 0.05 by Student’s 

t-test. 

The recombinant HSP90β added extracellularly enabled the secreted MMP3 

to induce the most exuberant branched structures (Figure 3.15A, bottom 

right) and the longest spatial network observed so far (Figure 3.15C, right). 

Importantly, blocking the extracellular HSP90β with inhibitory antibodies 

added to the medium abolished branching ability in all organoids including 

controls (Figure 3.15B, bottom; D). Organoids receiving the construct with 

deleted hemopexin domain were essentially identical to the controls (Figure 

3.16A,B). Additionally, there was very little Co-IP of MMP3 with HSP90β in 

the absence of exogenous HSP90β (Figure 3.16C). These findings identify 

the crucial role of extracellular HSP90β in mammary epithelial invasion and 

branching with binding occurring in the presence of the hemopexin domain 

of MMP3. 

 
Figure 3.16 Binding of HSP90β to MMP3 occurs in the presence of the hemopexin do-

main. 

(A) Addition of recombinant HSP90β to organoid cultures overexpressing MMP3 without the 

hemopexin domain induces a small but significant increase in invasiveness, whereas block-

ing of extracellular HSP90β results in complete inhibition of invasion and branching. Images 

of maximum intensity projection from confocal z-stacks of mammary organoids overex-

pressing dPEX-MMP3 embedded in 3 mg/mL Col-1 gels. Organoids were cultured for 3 days 

in the presence of recombinant protein or a function-blocking antibody against HSP90β. Un-

treated cultures or organoids treated with normal IgG were used as controls. Structures were 
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stained for F-actin (red) and nuclei (DAPI; blue). Image background was pseudo-colored in 

grey. Scale bars: 100µm. (B) Quantification of invasion and branching by measuring the ‘spa-

tial network’ per organoid (50 organoids were counted per culture). (C) Co-IP of each mutant 

shows the association between MMP3 and HSP90β via hemopexin domain. FLAG-tagged 

MMP3 FL, EA and dPEX were immunoprecipitated from CM of organoid cultures with an 

anti-FLAG antibody, and blotted with an antibody specific for HSP90β. *** P < 0.0001, * P < 

0.05 by Student’s t-test. 

The fact that HSP90α and HSP90β are closely related isoforms of HSP90, 

showing 86.3% identity in human homologues (Gupta 1995), poses the 

question of whether HSP90β regulates MMP3 function specifically. Our pro-

teomic screen identified only HSP90β as interacting with MMP3 extracellu-

larly in SCp2 cells (Figure 3.6). Additionally, whereas both isoforms were 

present intracellularly in organoids from the mammary gland, only HSP90β 

was found in the extracellular milieu (Figure 3.17). It has been previously 

shown that MMP2 can interact with HSP90α (Eustace et al. 2004), and this 

association is increased by the presence of a complex of co-chaperones in-

cluding HSP70 (Sims et al. 2011). Despite the fact that HSP70 is expressed 

endogenously in our model, it was not found extracellularly in the medium 

(Figure 3.17). Since HSP90β and MMP3 interaction occurs extracellularly, we 

believe that HSP70 is not part of this complex. This is further proof that 

HSP90β has a specific and crucial extracellular role in the regulation of 

MMP3 function. 

 
Figure 3.17 HSP90β, but not HSP90α or HSP70, is present extracellularly in mammary 

organoid cultures. 

Blots showing the endogenous expression (A) and extracellular presence (B) of HSP90β, 
HSP90α and HSP70 in mammary organoid cultures. Whole cell lysates or conditioned-medium 

(CM) were isolated from organoids transduced with each of the MMP3 constructs and the 

control vector. HSP90β, HSP90α and HSP70 were detected with specific antibodies for each 

protein. 
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3.5 Coordinated expression of HSP90β and MMP3 

regulates epithelial cell function during 

post-natal mammary gland development 

Having shown that HSP90β and MMP3 act together to regulate mammary 

epithelial invasion and morphogenesis, we asked whether these two pro-

teins are developmentally regulated in the murine mammary gland. We 

measured the levels of Hsp90ab1 and Mmp3 in different stages of mam-

mary gland development (Figure 3.18). 

 
Figure 3.18 The levels of expression of Hsp90ab1 and Mmp3 are significantly corre-

lated during mouse post-natal mammary gland development. 

(A,B) qPCR analysis of Hsp90ab1 and Mmp3 expression during distinct stages of mouse 

post-natal mammary gland development: virgin (3-, 4-, 5-, 8- and 12-weeks), mid-pregnant 

(8-12 days gestation), late-pregnant (16-19 days gestation), lactating, and involuting (1 and 

3 days after weaning). Transcript levels of Hsp90ab1 and Mmp3 are normalized to 18S rRNA. 

Results are indicated as mean ± s.d. from three different animals. (C) Hsp90ab1 and Mmp3 

are positively correlated in mammary glands from pubertal females (Spearman correlation R 

= 0.74, P = 0.0027). (D) Hsp90ab1 and Mmp3 are inversely correlated during pregnancy, 

lactation and involution (Spearman correlation R = -0.58, P = 0.0376). Dot colors correspond 

to the different developmental stages plotted in (A,B). ** P < 0.001, * P < 0.05 by Student’s 

t-test. 
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We observed that the expression levels of both Hsp90ab1 and Mmp3 in-

creased during puberty (Figure 3.18A,B, virgin 3, 4, 5 and 8) and were sig-

nificantly correlated (Figure 3.18C). However, Mmp3 levels dropped to 

nearly zero at the onset of pregnancy, remained minimal until the end of 

lactation, and peaked during involution (Figure 3.18B, purple, yellow and 

grey bars, respectively). In sharp contrast, Hsp90ab1 expression peaked in 

pregnant and lactating glands, and subsided again at involution (Figure 

3.18A, mid- and late-preg, lactating and inv 1 and 3). Nevertheless, the 

transcript concentration of the two genes was significantly correlated also 

during this period, but in an inverse manner (Figure 3.18D). Additionally 

and importantly, we found that Hsp90ab1 and Mmp3 exhibited an unusual 

pattern of expression across different stages of mammary gland develop-

ment: Mmp3 expression was only observed in a certain concentration range 

of Hsp90ab1 (between 1.2 and 3.2 AU; Figure 3.19). This pattern resembles 

the performance of an electronic band-pass filter, which passes frequencies 

within a certain range and attenuates frequencies outside that range. These 

data suggest that Hsp90ab1 and Mmp3 may belong to the same regulatory 

module, and their temporal expression serves different functions during 

mammary gland development. 

 
Figure 3.19 The expression pattern of Hsp90ab1 and Mmp3 resembles the performance 

of a band-pass filter. 

Dots represent the transcript levels of Hsp90ab1 and Mmp3 normalized to 18S rRNA, and 

correspond to the different developmental stages plotted in Figure 3.18. 

We then asked whether the developmental regulation of HSP90β and MMP3 

is defined also by differential localization in the mammary gland. Immu-

nostaining on mammary gland sections from different post-natal develop-

mental stages revealed that both proteins were located in the epithelial and 
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stromal compartments, but HSP90β appeared preferentially in the epithe-

lium (Figure 3.20). 

 
Figure 3.20 HSP90β is predominantly located in mammary epithelium, and shifts local-

ization from the myoepithelial cells (MEPs) during puberty to the luminal epithelial cells 

(LEPs) in the mature female. 

Immunostaining of HSP90β and MMP3 performed on mammary gland sections from different 

post-natal developmental stages: virgin (4-, 8- and 12-weeks), mid-pregnant (8-12 days ges-
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tation), lactating, and involuting (3 days after weaning). Insets show a magnification of the 

bilayered mammary duct. Images show α-SMA (red) and nuclei (DAPI; blue). α-SMA was used 

to recognize MEPs, as well as delineate the boundary between the stromal and epithelial 

compartments. Scale bars: 10µm. 

Importantly, the localization of HSP90β shifted from the myoepithelial cells 

(MEPs) in the pubertal mammary gland to the luminal epithelial cells (LEPs) 

in the mature female, as illustrated by the loss of co-localization with alpha 

smooth muscle actin (α-SMA) at age 12-weeks (Figure 3.20). The strong 

HSP90β immunostaining in LEPs persisted throughout the pregnancy cycle. 

These observations suggest that a combination of spatial and temporal 

regulation of HSP90β and MMP3 may determine epithelial function during 

post-natal mammary gland development. 
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Chapter 4 

4 Discussion 

The importance of MMPs for sculpting the architecture of branched organs 

is well accepted. This statement is demonstrated in particular in the mam-

mary gland. Others and we showed that overexpression of MMP3 in mam-

mary epithelia enhanced lateral branching and precocious alveolar devel-

opment in virgin mice (Sympson et al. 1994; Witty et al. 1995). These mice 

eventually developed tumors that exhibited chromosomal aberrations 

(Sternlicht et al. 1999) through a mechanism dependent on ROS and RAC1B, 

a spliced variant of RAC1 (Radisky et al. 2005). Conversely, we showed that 

MMP3 controls lateral branching in vivo (Wiseman et al. 2003) and in Col-1 

gels (Simian et al. 2001). 

In many of these experiments, others and we had assumed that the 

catalytic domain of MMP3 was responsible for these functions. More re-

cently, there has been some biochemical evidence that the hemopexin do-

main of some MMPs has a role in the non-proteolytic function. Mori et al. 

(2002) and Dufour et al. (2008) examined the role of the hemopexin do-

main of MMP14 and MMP9 in cancer cells and fibroblasts, respectively, and 

showed that it is necessary for cell migration (Mori et al. 2002; Dufour et al. 

2008). Likewise, the hemopexin domain, but not the catalytic activity, of 

MMP12 was shown to be required for the antimicrobial function of this en-

zyme (Houghton et al. 2006). The only clear evidence for the physiological 

relevance of hemopexin domain in vivo came from a report by Glasheen et 

al. in Drosophila (Glasheen et al. 2009); these investigations showed that 
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whereas the catalytic domain was still required for all MMP functions, the 

hemopexin domain was specifically implicated in invasion during metamor-

phosis. 

Neither the requirement for the hemopexin domain of MMP3 nor the 

surprising interaction with extracellular HSP90β were known or reported 

previously. Here we show that cells and tissues that overexpress MMP3 but 

lack catalytic activity can invade and branch easily in 3D Col-1 gels. Addi-

tionally and importantly, we show that the functional activity of the he-

mopexin domain of MMP3 requires extracellular interaction with HSP90β. 

The previous literature on functions of HSP90 place its activity essen-

tially within the cell, where it works as a “hub of protein homeostasis” by 

facilitating the maturation of a wide range of proteins (Taipale et al. 2010). 

It is only with regard to HSP90α that the extracellular function has been 

mentioned. A number of investigators has shown that the α isoform of 

HSP90 is present in CM of either cancer cells or ‘wounded cultures’ (Eustace 

et al. 2004; Li et al. 2007; Cheng et al. 2008). Our discovery that the ex-

tracellular HSP90β is essential for MMP3-driven invasion and branching adds 

a new dimension to this chaperone’s functions. Despite the fact that 

HSP90α and HSP70, which was shown previously to increase the association 

between MMP2 and HSP90α in vitro (Sims et al. 2011), are present intracel-

lularly in our model, they are not found in the extracellular milieu. That 

HSP90β has a crucial extracellular function was shown by addition of spe-

cific inhibitory antibodies to the medium, resulting in complete inhibition of 

branching. These data indicate that the presence of HSP90β in the medium 

is a selective process and it is not due to cell lysis or apoptosis. 

Mice deficient for HSP90β fail to develop a placental labyrinth and die 

around mid-gestation (Voss et al. 2000). This fact prevented us from char-

acterizing their mammary gland development in vivo. Additionally, despite 

the fact that Mmp3-null mice are viable and fertile, they compensate the re-

duced secondary and tertiary branching phenotype by day 70 (Wiseman et 

al. 2003). The use of ECM gels, however, has allowed us to elucidate the 

role of different domains of MMP3, as well as prove that extracellular 

HSP90β regulates MMP3 function in invasion and branching through interac-

tion with the hemopexin domain. The primary organoids develop into hun-
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dreds of mini mammary epithelial trees, thus offering a model of mammary 

epithelial development in a robust and manipulable format. 

The signaling pathways and regulatory mechanisms that drive branch-

ing in mammalian organs have been described by a number of laboratories 

including ours, and involve multiple members of the receptor tyrosine 

kinase (RTK) family (reviewed in (Lu and Werb 2008)). Sustained activation 

of MAPK ERK-1,2, in response to HGF, was shown to be required for kidney 

epithelial morphogenesis in Col-1 gels (Maroun et al. 2000). We showed 

that the MAPK ERK-1,2 pathway also integrates distinct and antagonistic sig-

nals from TGFα and FGF7 to determine the final morphogenetic response of 

mammary organoids cultured in lrECM; sustained MAPK activation down-

stream of TGFα and EGFR induces branching whereas its transient activation 

downstream of FGF7 and FGFR2 stimulates proliferation but not branching 

(Fata et al. 2007). FGF7 acts in part by suppressing the expression of 

MMP3, and inhibition of the latter reduces branching significantly both in 

culture and in vivo (Simian et al. 2001; Wiseman et al. 2003). Our discovery 

that extracellular HSP90β is critical for MMP3 function in invasion and 

branching, places HSP90β as an important player in the signaling pathways 

that determine the final mammary morphogenetic fate. 

The presence of HSP90 in murine mammary gland was reported in 

1989 (Catelli et al. 1989), therefore it is surprising that its role in functional 

and morphogenetic aspects of the mammary gland is still poorly under-

stood. The fact that HSP proteins have been postulated as molecular chap-

erones that mitigate the life-threatening effects of heat and other stresses 

on the proteome (Taipale et al. 2010), poses the question of whether 

HSP90β may also play a role in stabilization and maturation of MMP3. We 

are now beginning to understand that HSP90 functions extend well beyond 

stress tolerance, and associated changes in its clients can then exert 

marked effects on the relationship between genotype and phenotype, influ-

encing human health, disease and evolutionary processes (Rutherford and 

Lindquist 1998; Queitsch et al. 2002; Cowen and Lindquist 2005). The 

presence of HSP90β in the medium and the functional significance of its in-

teraction with MMP3 is further proof that HSP90-mediated events are above 

and beyond the heat shock response. Our preliminary data indicate that the 
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extracellular source of HSP90β for luminal epithelial branching most proba-

bly is the myoepithelial cells in vivo. These data combined with some evi-

dence that MMP3 is mainly produced by stromal fibroblasts (Witty et al. 

1995; Kouros-Mehr et al. 2006) raise the exciting possibility that extracellu-

lar interaction of HSP90β with MMP3 may be a way for different cell types to 

communicate in coordination of the normal processes of invasion and 

branching. 

The fact that the levels of expression of Hsp90ab1 and Mmp3 are posi-

tively correlated in pubertal mammary glands reaffirms their importance in 

sculpting the epithelial tree during branching morphogenesis. We show also 

that the developmental regulation of these two genes extends to the ma-

ture female, albeit in an inverse manner: Hsp90ab1 is positively related 

with mammary functional differentiation, being remarkably increased in 

pregnancy and lactation, whereas Mmp3 peaks at involution, initiating a 

remodeling program that results in loss of the differentiated lactational 

phenotype. These observations are consistent with the previously identified 

role of MMP3 in stage two of mammary involution (Talhouk et al. 1992), 

and the highest concentration of HSP90 found in lactating mammary glands 

(Catelli et al. 1989). The regulatory mechanisms underlying the transcrip-

tion and expression of Hsp90ab1 and Mmp3 during mammary gland devel-

opment remain to be explored. Nevertheless, we found that Mmp3 is only 

expressed in a certain concentration range of Hsp90ab1, which points to an 

expression pattern analogous to the performance of an electronic band-

pass filter. These data suggest also that Hsp90ab1 and Mmp3 may belong 

to the same regulatory module, and their temporal expression serves dif-

ferent functions during mammary gland development. 

In the initial mass spectrometry data we found many additional mole-

cules that appear to be interacting with MMP3. In particular, we show that 

ANXA2 and MARCKS were co-immunoprecipitated with MMP3, with binding 

occurring in the presence of the hemopexin domain. Our preliminary data 

showed also that depletion of each of these proteins reduced invasiveness 

in SCp2 cells. Unlike the interaction between HSP90β and MMP3 that hap-

pened in both directions, the reverse Co-IP of ANXA2 and MARCKS with 

HSP90β could not be confirmed under these conditions. In addition, our 
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proteomic screen identified other proteases such as ADAM10, ADAMTS15 

and Cathepsins A and L as possible proteins that may interact extracellu-

larly with MMP3. The functional significance of these latter proteins remains 

to be determined. Our data from the mass spectrometry however, tenta-

tively suggest that a cascade of proteases might function collectively to or-

chestrate epithelial invasion. 

Finally, we have shown most recently that the signaling module for 

MMP14, a membrane bound MMP, in branching of the end bud of the 

mammary gland of virgin mice is its transmembrane/cytoplasmic domain in 

conjunction with integrin-β1 (Mori et al. 2013). Thus the findings presented 

here along with the above work may provide a compelling explanation for 

why inhibitors of MMPs failed so dramatically in the clinic (Overall and 

Kleifeld 2006). Targeting non-catalytic sites of MMPs as well as the interact-

ing partners, with agents such as small inhibitors or antibodies for the 

binding sites of integrin-β1 and HSP90β, may yield more effective and tis-

sue-specific inhibitors. 
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Chapter 5 

5 Conclusion and Future Perspectives 

The main conclusions of the present study are the following: 

• Overexpression of MMP3 constructs without catalytic activity is suffi-

cient to direct mammary epithelial invasion in Col-1 gels. 

• The signaling module for MMP3 in invasion and branching is its he-

mopexin domain. 

• The functional activity of MMP3 hemopexin domain requires the sur-

prising interaction with HSP90β in the extracellular milieu. 

• The interaction of MMP3 with HSP90β is necessary for invasion and 

branching, not only in cultured cells, but also in primary organoids 

where the mammary architecture remains intact. 

• Blocking HSP90β with inhibitory antibodies added to the medium 

abolished invasion and branching. 

• The levels of expression of Hsp90ab1 and Mmp3 are positively corre-

lated in pubertal mammary glands, reaffirming their importance in 

sculpting the epithelial tree during branching morphogenesis. How-

ever, Hsp90ab1 and Mmp3 are inversely correlated during preg-

nancy, lactation and involution, indicating that their temporal ex-
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pression serves different functions during mammary gland develop-

ment. 

• The localization of HSP90β shifts from the myoepithelial cells in the 

pubertal mammary gland to the luminal epithelial cells in the mature 

female, suggesting that spatial regulation of HSP90β and MMP3 may 

determine epithelial cell function during post-natal mammary gland 

development. 

These findings introduce an alternative to the classic paradigm of MMP3 

activity and point to an HSP90β-mediated regulation of MMP3 function es-

sential for epithelial invasion and mammary morphogenesis (Figure 5.1). 

 
Figure 5.1 Scheme of the essential role of extracellular HSP90β in the modulation of 

MMP3-driven invasion and branching in mammary organoids. 

When organoids from the mammary gland are embedded within 3D gels of Col-1, they un-

dergo invasion and branching morphogenesis upon addition of growth factors. The small 

endogenous MMP3 activity present in the organoids provides them a baseline of branching 

to which we could compare the exogenous constructs. The insertion of exogenous MMP3 

induces a hyper-branched phenotype only when the hemopexin domain is present. This re-

gion mediates the extracellular interaction with HSP90β and is critical for the invasive func-

tion of MMP3. Recombinant HSP90β added extracellularly enables the secreted MMP3 to in-

duce the most exuberant branched structures. Conversely, blocking of extracellular HSP90β 
with inhibitory antibodies added to the medium abolishes branching ability. 
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This work raises additional questions that should be addressed in future 

studies: 

• The interaction between HSP90β and MMP3 will be fascinating to ex-

plore in detail. Solving the structure of this regulatory complex and 

mapping the binding site of HSP90β to MMP3 would be extremely 

valuable for designing specific inhibitors of that interaction. 

• Given that HSP90α and HSP90β are closely related isoforms of HSP90, 

showing 86.3% identity in human homologues, it is quite intriguing 

that only HSP90β appears in the medium of mammary epithelial cells. 

Why HSP90α is not found extracellularly in this model could be a very 

interesting subject for a future publication. 

• The fact that HSP90β does not have a signal peptide poses the ques-

tion of how is it secreted outside the cell. We have some evidence 

suggesting that HSP90β may be exported by a non-classical secretory 

pathway in exosomes (data not shown), and we intend to explore 

this more in detail in the future. 

• Since MMP3 upregulation seems to be associated with several patho-

logical situations, it would be interesting to study the role of 

HSP90β-mediated signaling in the processes of MMP3-dependent 

cancer cell invasion and arthritis. 

• The regulatory mechanisms underlying the transcription and expres-

sion of Hsp90ab1 and Mmp3 during mammary gland development 

remain also to be explored. Based on our preliminary data suggest-

ing that these two genes belong to the same regulatory module, it 

would be important to elucidate whether they are regulated by a 

common upstream gene, or Hsp90ab1 regulates Mmp3 directly. 
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Matrix metalloproteinases (MMPs) are crucial mediators in sculpting tissue architecture, and are required for many physiological and 
pathological processes. MMP3 has been shown to regulate branching morphogenesis in mammary gland. Ectopic expression of proteo-
lytically active MMP3 in mouse mammary epithelia triggers supernumerary lateral branching and eventually tumors. Using a 3D colla-
gen-1 (Col-1) gel assay that simulates epithelial invasion and branching, we show that it is the hemopexin domain that directs these pro-
cesses. Using three different engineered constructs containing a variation on MMP3 structural domains, we confirm the importance of 
the hemopexin domain also in primary organoids of the mammary gland. A proteomic screen of MMP3 binding partners surprisingly 
revealed that the intracellular chaperone, HSP90β, is present extracellularly, and its interaction with the hemopexin domain of MMP3 is 
critical for invasion. Blocking of HSP90β with inhibitory antibodies added to the medium abolished invasion and branching. These find-
ings shift the focus from the proteolytic activity of MMP3 as the central player to its hemopexin domain, and add a new dimension to 
HSP90β’s functions by revealing a hitherto undescribed mechanism of MMP3 regulation. Our data also may shed light on the failure of 
strategies to use MMP inhibitors in cancer treatment and other related disorders. 
 
Keywords: Mammary morphogenesis, epithelial invasion and branching, MMP3, hemopexin domain, HSP90β 
 
 
Prior to the defining functions of the mammary gland, i.e. pregnan-
cy and lactation, the female mammal develops an epithelial tree 
through branching morphogenesis. During this process, epithelial 
cells have to mobilize the necessary machinery for invasion of the 
growing ducts into the fat pad and formation of secondary and 
tertiary branches to complete the eventual adult mammary architec-
ture. It has been shown that the success of this process relies on 
activities of a number of MMPs (Fata et al. 2004; Khokha and Werb 
2011). Paradoxically, the loss of mammary structure also is depend-
ent on MMPs. Indeed, we showed two decades ago that during the 
process of involution, up regulation of MMP3 is responsible for the 
collapse and remodeling of the alveoli of lactating mice, indicating 
the intimate connection between functional differentiation and 
tissue structure (Talhouk et al. 1991; Talhouk et al. 1992). Condi-
tional activation of MMP3 in functionally normal mouse mammary 
epithelial cells led to cleavage of E-cadherin and epithelial-to-
mesenchymal transitions (EMT) (Lochter et al. 1997a). We showed 
also that ectopic expression of constitutively active MMP3 in 
mammary epithelia enhanced lateral branching and induced preco-
cious alveolar development in virgin mice (Sympson et al. 1994). 
As these animals aged, the stroma was profoundly altered in both 
structure and function (Thomasset et al. 1998) and mice eventually 
developed mammary tumors that exhibited chromosomal aberra-
tions (Sternlicht et al. 1999). The mechanism involved a change in 
the cytoskeleton and cell shape through induction of RAC1B, a 
spliced isoform of RAC1 found in human breast tumors (Schnelzer 
et al. 2000). Addition of MMP3 or the expression of RAC1B also 
led to formation of reactive oxygen species (ROS) and genomic 
instability (Radisky et al. 2005). 

Because the proteolytic activity of MMPs resides within the cata-
lytic domain, it has been generally assumed that this domain is 
responsible for all the functions of MMPs. More recently some 
biochemical literature has indicated that the non-catalytic domains 
of certain MMPs, such as MMP-9, -12 and -14, may also have ac-
tivities in mammalian cell lines (Mori et al. 2002; Wang et al. 2004; 

Dufour et al. 2008; Sakamoto and Seiki 2009). The failure of clini-
cal trials based on inhibitors of MMP catalytic domains (Overall 
and Kleifeld 2006) suggested to us that the other domains of MMP3 
may have functions in invasion and possibly cancer. 

Here we show that overexpression of MMP3 constructs without 
catalytic activity is sufficient to direct mammary epithelial invasion 
in Col-1 gels. Additionally, the functional activity requires the sur-
prising interaction of HSP90β with MMP3 in the extracellular mi-
lieu. This interaction is necessary for invasion and branching, not 
only in cultured cells, but also in primary organoids where the 
mammary architecture remains intact. We believe these findings 
introduce an alternative to the classic paradigm of MMP3 activity 
and point to an HSP90β-mediated regulation of MMP3 function 
essential for epithelial invasion and mammary morphogenesis. 

 
Results 
 
The hemopexin domain of MMP3 is required for a change in cell 
shape in 2D substrata and invasion in Boyden chambers 
 
To investigate the function of different domains of MMP3, we 
engineered three FLAG-tagged constructs containing different 
domains of the MMP3 molecule: a wild type (FL) MMP3, a mutant 
lacking the hemopexin-like domain (dPEX) and a construct contain-
ing a point mutation E219A (EA) at the catalytic core (Figure 1A). 
We overexpressed the distinct MMP3 constructs in SCp2 (Figure 
1B), a mammary cell line shown to undergo EMT upon expression 
of MMP3 (Lochter et al. 1997a; Radisky et al. 2005). SCp2 cells 
have a low level of endogenous MMP3 activity that resembles that 
found in vivo in mammary epithelia; we chose to maintain this 
activity advisedly to have a positive control for the overexpression 
of the human homologues in murine cells. This was additionally 
useful because we observed that the concurrent knockdown of en-
dogenous MMP3 and the introduction of the exogenous levels of the 
human constructs would lead to aberrant cell behavior. To compare 



the cultures transduced with different constructs to each other and to 
the control, we ensured that the endogenous as well as the exoge-
nous levels of MMP3 were comparable in all engineered cell lines 
(Figure S1). Overexpression of the exogenous constructs in SCp2 
showed that the proteolytic activity (measured by casein-quenched 
degradation) in dPEX was similar to FL and they both were higher 
than EA-SCp2 or control cells (Figure 1C). 

Cell scattering is a functional consequence of EMT (Vincent-
Salomon and Thiery 2003); overexpression of FL-MMP3 induced 
scattering in 2D cultures (Figure 1D, first and second rows). The 
EA mutant also stimulated a spindle-shaped morphology and scat-
tered phenotype, albeit to a lower extent (Figure 1D, third row). In 
contrast, dPEX-SCp2 did not scatter and resembled the control 
cultures (Figure 1D, fourth row). Others and we have shown that E-
cadherin is a substrate for MMP3 and its loss is associated with 
scattering (Lochter et al. 1997a; Noe et al. 2001). Consistent with 
these observations, we found that FL and dPEX-MMP3 both re-
duced the expression of E-cadherin (Figure 1E, second and fourth 
rows) by shedding its extracellular domain (Figure S2A). Surpris-
ingly, however, EA-SCp2 cells (which lack the proteolytic activity) 
still exhibited a stretched phenotype even in the presence of E-
cadherin levels similar to control cultures (Figure 1E, third row), 
suggesting that the ability of MMP3 to disrupt epithelial morpholo-
gy was due to activities residing in its other domains. 

Using changes in cell morphology and reorganization of filamen-
tous actin (F-actin) as additional endpoints, we observed that in 
dPEX-SCp2 and control cultures, F-actin was predominantly orga-
nized in cortical bundles and cells had a classical epithelial mor-

phology in 2D (Figure 1F, first and last rows). In sharp contrast, 
actin filaments were extended in FL and EA-SCp2 cultures and cells 
were elongated (Figure 1F, second and third rows). We quantified 
these morphological changes by calculating the ratio of the longest 
(length) to the shortest (width) axis of the cell that we refer to as 
cellular elliptical factor (Figure 1G). Whereas FL and EA-SCp2 
displayed elliptical factor >2, cells expressing control vector or 
dPEX had elliptical factors close to 1. These observations show a 
critical role for MMP3 hemopexin domain in altering epithelial cell 
shape. 

Despite the small amount of proteolytic activity of SCp2 cells, 
these exhibit little invasive behavior (Lochter et al. 1997b); the 
same is true in SCp2 cells transduced with control vector (Figure 
1H, control). SCp2 transduced with FL-MMP3 had the highest 
invasive rate, followed by EA and dPEX-SCp2, respectively (Figure 
1H). These data indicate that despite the background proteolytic 
activity, MMP3 requires the hemopexin domain to induce invasion 
in SCp2 cells. A similar trend was obtained with EpH4, another 
mouse mammary epithelial cell line (Figure S2B-E). 
 
Proteomic screen identifies HSP90β as interacting with the 
hemopexin domain of MMP3 

 
Because MMP3 is a secreted protein, we asked whether the se-

creted form of this enzyme and its mutants were required to induce 
the morphological and functional changes observed (Figure S3). 
Conditioned-medium (CM) from FL-SCp2 was sufficient to induce 
scattering, elongated shape and a substantial increase in invasion in 

Figure 1. MMP3 hemopexin domain induces altered morphology and invasion in mammary epithelial cells. (A) Schematic representation of engineered con-
structs: the full length MMP3 (FL) and two mutants (EA and dPEX). (B) Overexpression of MMP3 and its mutants in SCp2 cells assessed by western blotting 
(WB). Conditioned-medium (CM) was isolated from cells transduced with each of the MMP3 constructs and the control vector. FLAG epitope tag was detected 
with anti-FLAG antibody. Both latent (lat) and activated (act) forms of MMP3 were recognized. (C) MMP3 proteolytic activity of SCp2 cells overexpressing 
each construct assayed by casein degradation. CM was incubated with a dye-quenching casein substrate (BODIPY TR-X casein). MMP3-mediated degradation 
of casein generated fluorescent dye-labeled peptides that were monitored over time. Fluorescence intensity is indicated as arbitrary units (AU). (D) Overexpres-
sion of MMP3 containing the hemopexin domain induces scattering in SCp2 cells. Scattering ability was evaluated in cells transduced with each construct upon 
stimulation with epidermal growth factor (EGF). Scale bars: 20µm. (E) The presence of the hemopexin domain of MMP3 is required to disrupt adherens-
junctions. Immunofluorescence images show E-cadherin distribution (green) in cells expressing each construct. Arrows depict areas of cell-cell contact. Nuclei 
stained with DAPI (blue). Scale bars: 10µm. (F) MMP3 hemopexin domain induces reorganization of filamentous actin (F-actin). Images show F-actin (magen-
ta) and nuclei (DAPI; blue) in each culture. Scale bars: 10µm. (G) Quantification of morphological changes in each culture by calculation of the cellular elliptical 
factor. This is defined as the ratio of the longest (length) to the shortest (width) axis of the cell. The box plot shows the median and the interquartile range, and 
the whiskers show the extreme values (n = 100 cells for each stable cell line. *** P < 0.0001 by Student’s t-test). (H) MMP3 hemopexin domain is required for 
invasion. Invasiveness in each condition was assayed in Boyden chambers. Results are indicated as mean ± s.d. from three independent experiments (10 bright 
field images in x20 magnification were counted. *** P < 0.0001, * P < 0.05 by Student’s t-test). 



parental SCp2 cells. Whereas dPEX-SCp2 CM did not trigger scat-
tering or enhance the elliptical factor, there was a small but signifi-
cant increase in invasion. However when the proteolytic activity of 
the MMP3 construct was ablated (CM from EA-SCp2) there was 
still a considerable increase in invasion and cells were elongated. 
This finding additionally supports the fact that the hemopexin do-
main is required for invasion in SCp2 cells, and raises the question 
of whether MMP3 functions alone or depends on other factors being 
present in CM. The hemopexin domain of MMPs is known to inter-
act with other proteins. MMP14 hemopexin domain was reported to 
be required for invasion through Col-1 (Tam et al. 2002; Wang et al. 
2004) and for binding to the adhesion receptor CD44 and integrin-
β1 (Mori et al. 2002; Mori et al. 2013). 

To explore what other factors may be required for the functional 
activities of MMP3, we isolated FLAG-tagged-FL or -dPEX protein 
complexes from CM and performed a proteomic analysis to identify 
proteins that interact with MMP3 hemopexin domain (Figure 2A). 
Based on spectra counts, we selected proteins with abundances 
greater than 1.5-fold change in FL compared to dPEX (Figure 2B, 
left; Figure S4). Amongst the 75 proteins that passed the selection 
criteria, we selected myristoylated alanine-rich C-kinase substrate 
(MARCKS) and annexin A2 (ANXA2), which were previously 
implicated in regulation of cell shape, motility and invasion in 
Xenopus embryos and canine kidney cells (Iioka et al. 2004; de 
Graauw et al. 2008). Additionally we selected heat shock protein 90 

beta (HSP90β) detected in both FL and dPEX but much higher in 
FL (Figure 2B, right). We validated the interaction of the hemopex-
in domain of MMP3 with these three proteins by co-
immunoprecipitation (Co-IP) (Figure 2C). 

We then asked whether this interaction is functionally significant 
and required for MMP3-induced invasion. We generated SCp2 cell 
lines co-expressing each of the MMP3 constructs and either non-
targeting short hairpin RNA (shRNA; negative control) or shRNA 
selectively targeting each of the three proteins (Figure 2D-F). We 
treated parental SCp2 with CM from each engineered cell line and 
screened for invasion using Boyden chambers (Figure 2G-I). 
Whereas the knockdown did not affect invasion of cells treated with 
CM from control or dPEX-SCp2, it significantly reduced invasive-
ness of cells treated with FL or EA-SCp2 CM. These results indi-
cate that binding of each one of these three proteins to the hemopex-
in domain of MMP3 has functional significance, but the inhibition 
was much more dramatic when HSP90β was inhibited (Figure 2G). 
The nature of the complexes containing MMP3 and HSP90β was 
clarified further by reverse Co-IP of HSP90β protein complexes 
from CM of control SCp2 cells (Figure S6). Whereas the associa-
tion of MMP3 and HSP90β was confirmed in reverse, ANXA2 and 
MARCKS could not be recovered in the immunoprecipitated frac-
tion under these conditions. This suggests that either these proteins 
do not exist in a single complex at a given time, but may instead 
represent a network of proteins interacting with one another at dif-

Figure 2. Proteomic screen of MMP3 binding partners reveals an extracellular role for HSP90β, ANXA2 and MARCKS in MMP3-driven invasion via hemopex-
in domain. (A) Strategy for screening MMP3 binding partners through the hemopexin domain. (B) Selection of MARCKS, ANXA2 and HSP90β from proteomic 
analysis. Left: Venn diagram showing the spectrum of proteins detected in FL and/or dPEX FLAG-immunoprecipitated samples. Right: Heat map illustrating the 
relative difference in abundance of proteins detected both in FL and dPEX but much higher in FL. Proteins were sorted by the highest ratio between FL and 
dPEX. (C) Co-IP of each mutant shows the association between MMP3 and the selected targets via hemopexin domain. FLAG-tagged MMP3 FL, EA and dPEX 
were immunoprecipitated from CM with an anti-FLAG antibody, and blotted with antibodies for its binding partners. (D-F) Blots showing shRNA-mediated 
silencing of HSP90β (D), ANXA2 (E) and MARCKS (F) in SCp2 cells overexpressing each of the MMP3 constructs and the control vector. Knockdowns were 
reproduced using two other shRNAs for each one of the targets (Figure S5A-C, G-I). Non-targeting shRNA was used as negative control. Knockdowns were 
verified by western blotting of whole cell lysates with antibodies specific for each target protein. α-Tubulin was used as loading control. (G-I) Silencing of 
HSP90β, ANXA2 and MARCKS reduces MMP3-driven invasion in SCp2 cells when the hemopexin domain of MMP3 is present. SCp2 cells were co-
transduced with each of the MMP3 constructs and either non-targeting shRNA or shRNAs selectively targeting HSP90β (G), ANXA2 (H) or MARCKS (I). 
SCp2 parental cells were treated with CM from each engineered cell line and assayed for invasiveness in Boyden chambers. Parental cells treated with CM from 
SCp2 cells expressing each of the MMP3 constructs and the control vector (untreated CM) were used as control. Results are expressed as mean ± s.d. from three 
independent experiments (10 bright field images in x20 magnification were counted in each experiment. ** P < 0.001, * P < 0.05 by Student’s t-test). The bio-
logical effects of shRNA-mediated knockdowns were reproduced with two other shRNAs for each of the three interacting proteins (Figure S5D-F, J-L). 



ferent times for different purposes, or the interaction of the other 
two proteins is weak and thus cannot be detected easily by the re-
verse Co-IP. These data also justify the importance of HSP90β as 
the major player in regulation of MMP3 function. 

 
The levels of extracellular HSP90β determine MMP3-induced inva-
sion 
 
Given the significance of HSP90β in cellular and tissue function, we 
concentrated on understanding the role of this molecule in regulat-
ing MMP3. The levels of HSP90β in each engineered cell line were 
tuned by adding either a recombinant protein or a specific inhibitor 
(CCT018159; (Sharp et al. 2007)). Increasing HSP90β levels en-
hanced invasion significantly in FL and EA-SCp2 (Figure S7A, 
second and third panels), but did not raise the invasive potential of 
dPEX-SCp2 or control cells significantly (Figure S7A, first and last 
panels). Conversely, inhibition of HSP90β reduced invasion in FL 
and EA-SCp2 (Figure S7B, second and third panels) and had no 
significant effect on dPEX-SCp2 or control cells (Figure S7B, first 
and last panels). The above pattern was reproduced when we used a 
function-blocking antibody against HSP90β and demonstrated that 
inhibition of extracellular HSP90β was sufficient to reduce inva-
siveness of FL and EA-SCp2 (Figure S7C). These data show that 
MMP3 is unable to perform much of its invasive functions without 
interacting with HSP90β in the extracellular milieu. 

 
The hemopexin domain is required for the invasive function of 
MMP3 during branching morphogenesis 

 
The finding of the critical role of the hemopexin domain in the 
invasion function of MMP3 in cell lines needed to be confirmed in a 
more physiological context. We used two culture models that simu-
late the normal processes of mammary invasion and branching: 
primary mammary organoids (Figure 3A; (Simian et al. 2001)) and 
cell clusters of a functionally normal mouse mammary epithelial 
cell line (EpH4) (Figure S8A;(Hirai et al. 1998; Mori et al. 2013)), 
embedded in Col-1 gels. The physiological relevance of this model 
is illustrated by the presence of copious amounts of Col-1 in the 
stroma surrounding epithelial ducts in the murine mammary gland 
(Williams and Daniel 1983). 

 
There are a number of advantages of using the versatile assay 

employing organoids from the mammary gland. Cell-cell and cell-
matrix interactions remain intact, and the architecture of the tissue is 
not disrupted. Additionally, we can prepare enough mammary or-
ganoids from a single mouse (≈1200) and infect with the four dis-
tinct constructs. Even inbred mice are known to change biochemical 
and morphological characteristics at different stages of estrogen 
cycle as well as in response to handling and context. In this way we 
could control for all variations and avoid the excessive use of ani-
mals, but also achieve statistical significance. Lastly we could mark 
them: the presence of the GFP in the constructs indicated that more 
than 80% of the cells were infected. These cultures allow us not 
only to create a physiological condition where the organoids regen-
erate an epithelial tree-like structure, but also to observe and control 
extracellular events much more robustly. 

The functional significance of the hemopexin domain was repro-
duced in our 3D assays with clustered EpH4 cells (Figure S8B) and 
most importantly with primary organoids (Figure 3B). We used two 
different criteria to quantify invasion and branching of organoids: 
the number of extended sprouts and processes developed from each 
structure (Figure 3C), and the ‘spatial network’ per organoid (Figure 
3D). As expected, organoids overexpressing FL-MMP3 had the 
highest number of extending processes and longest spatial network, 
indicating that the proteolytic activity would be still necessary if the 
path is obstructed. 

For the purpose of the current experiments, we did not distin-
guish between branches that were more than one cell layer thick and 
demonstrated basal and apical polarity, and strands that grew as a 
single file. However, there were very few of the latter in dPEX-
overexpressing and control cultures. As mentioned above we advis-
edly decided against inhibiting the endogenous MMP3 activity 
using multiple genetic manipulations because both cells and organ-
oids were sensitive to more than one set of viral infections. We 
therefore used a peptide that has been shown to inhibit MMP3 pro-
teolytic activity effectively and specifically (Fotouhi et al. 1994; 
Farina et al. 2002). Inhibition of both endogenous as well as exoge-
nous MMP3 proteolytic activity decreased branches in a dose-
dependent manner in all organoids (Figure S9). Nevertheless, there 
still was invasion of cells individually or in a single file, with less 
branching than untreated cultures (Figure S9A). These data indicate 
that the hemopexin domain of MMP3 allows epithelial invasion, but 
that in the presence of proteolytic activity there are more multi-
layered branches. Additionally, when we knocked down MMP3 in 
control organoids there was a significant decrease in invasion and 
branching (Figure S10). This reaffirms the requirement for MMP3 
for mammary branching morphogenesis, and provides additional 
reason for our choice of preserving the endogenous MMP3 intact. 

 
The interaction of HSP90β with MMP3 is required for invasion 
 
Having shown the relevance of the distinct domains for invasion 
and branching also in organoids, we examined the requirement of 
HSP90β in organoids transduced with different constructs receiving 
either recombinant protein (Figure 4A) or a function-blocking anti-
body against HSP90β (Figure 4B). The recombinant HSP90β added 
extracellularly enabled the secreted MMP3 to induce the most exu-
berant branched structures (Figure 4A, bottom right) and the longest 
spatial network observed so far (Figure 4C, right). Importantly, 
blocking the extracellular HSP90β with inhibitory antibodies added 
to the medium abolished branching ability in all organoids including 
controls (Figure 4B, bottom; 4D). Organoids receiving the construct 
with deleted hemopexin domain were essentially identical to the 
controls. Additionally, there was very little Co-IP of MMP3 with 
HSP90β in the absence of exogenous HSP90β (data not shown). 
These findings identify the crucial role of extracellular HSP90β in 

Figure 3. The hemopexin domain of MMP3 is necessary to direct epithelial 
invasion of mammary organoids in 3D Col-1 gels even without the proteo-
lytic activity. (A) Schematic representation of primary mammary organoid 
preparation and culture in 3D Col-1 gels. (B) Overexpression of MMP3 
containing the hemopexin domain enhances invasion of mammary organoids 
in Col-1. Images of maximum-intensity projection of mammary organoids 
transduced with each of the MMP3 constructs as well as the control vector, 
and cultured in 3 mg/mL Col-1 gels for 3 days. Organoids invaded and 
branched only in the presence of the growth factor (TGFα). Structures were 
stained for F-actin (red) and nuclei (DAPI; blue). Image background was 
pseudo-colored in grey. Scale bars: 100µm. (C) The presence of the 
hemopexin domain of MMP3 increases the number of extending processes 
developed from each organoid invading through Col-1 (150 organoids were 
counted per culture. *** P < 0.0001, ** P < 0.001, * P < 0.05 by Student’s 
t-test). (D) The size of the ‘spatial network’ per organoid is increased by 
overexpression of MMP3 containing the hemopexin domain. The ‘spatial 
network’ per organoid is defined as the sum of the length of all the extend-
ing processes of an organoid (50 organoids were counted per culture. *** P 
< 0.0001, * P < 0.05 by Student’s t-test). 



mammary epithelial invasion and branching with binding occurring 
in the presence of the hemopexin domain of MMP3. 

 
 
Discussion 
 
The importance of MMPs for sculpting the architecture of 
branched organs is well accepted. This statement is demonstrated in 
particular in the mammary gland. Others and we showed that over-
expression of MMP3 in mammary epithelia enhanced lateral 
branching and precocious alveolar development in virgin mice 
(Sympson et al. 1994; Witty et al. 1995). These mice eventually 
developed tumors that exhibited chromosomal aberrations 
(Sternlicht et al. 1999) through a mechanism dependent on ROS and 
RAC1B, a spliced variant of RAC1 (Radisky et al. 2005). Converse-
ly, we showed that MMP3 controls lateral branching in vivo 
(Wiseman et al. 2003) and in Col-1 gels (Simian et al. 2001). 

In many of these experiments, others and we had assumed that 
the catalytic domain of MMP3 was responsible for these functions. 
More recently, there has been some biochemical evidence that the 
hemopexin domain of some MMPs has a role in the non-proteolytic 
function. Mori et al. (2002) and Dufour et al. (2008) examined the 
role of the hemopexin domain of MMP14 and MMP9 in cancer 
cells and fibroblasts, respectively, and showed that it is necessary 
for cell migration (Mori et al. 2002; Dufour et al. 2008). Likewise, 
the hemopexin domain, but not the catalytic activity, of MMP12 
was shown to be required for the antimicrobial function of this 
enzyme (Houghton et al. 2009). The only clear evidence for the 
physiological relevance of hemopexin domain in vivo came from a 
report by Glasheen et al. in Drosophila (Glasheen et al. 2009); these 
investigations showed that whereas the catalytic domain was still 
required for all MMP functions, the hemopexin domain was specifi-
cally implicated in invasion during metamorphosis. 

Neither the requirement for the hemopexin domain of MMP3 nor 
the surprising interaction with extracellular HSP90β were known or 

reported previously. Here we show that cells and tissues that over-
express MMP3 but lack catalytic activity can invade and branch 
easily in 3D Col-1 gels. Additionally and importantly, we show that 
the functional activity of the hemopexin domain of MMP3 requires 
extracellular interaction with HSP90β (Figure 5). 

The previous literature on functions of HSP90 place its activity 
essentially within the cell, where it works as a “hub of protein ho-
meostasis” by facilitating the maturation of a wide range of proteins 
(Taipale et al. 2010). It is only with regard to HSP90α that the ex-
tracellular function has been mentioned. A number of investigators 
has shown that the α isoform of HSP90 is present in CM of either 
cancer cells or ‘wounded cultures’ (Eustace et al. 2004; Li et al. 
2007; Cheng et al. 2008). Our discovery that the extracellular 
HSP90β is essential for MMP3-driven invasion and branching adds 
a new dimension to this chaperone’s functions. Despite the fact that 
HSP90α and HSP70, which was shown previously to increase the 
association between MMP2 and HSP90α in vitro (Sims et al. 2011), 
are present intracellularly in our model, they are not found in the 
extracellular milieu (data not shown). That HSP90β has a crucial 
extracellular function was shown by addition of specific inhibitory 
antibodies to the medium, resulting in complete inhibition of 
branching (Figure 4B,D). These data indicate that the presence of 
HSP90β in the medium is a selective process and it is not due to cell 
lysis or apoptosis. 

Mice deficient for HSP90β fail to develop a placental labyrinth 
and die around mid-gestation (Voss et al. 2000). This fact prevented 
us from characterizing their mammary gland development in vivo. 
Additionally, despite the fact that Mmp3-null mice are viable and 
fertile, they compensate the reduced secondary and tertiary branch-
ing phenotype by day 70 (Wiseman et al. 2003). The use of ECM 
gels, however, has allowed us to elucidate the role of different do-
mains of MMP3, as well as prove that extracellular HSP90β regu-
lates MMP3 function in invasion and branching through interaction 
with the hemopexin domain. The primary organoids develop into 
hundreds of mini mammary epithelial trees, thus offering a model of 
mammary epithelial development in a robust and manipulable for-
mat.  

Figure 4. HSP90β enables MMP3 to modulate epithelial invasion and branch-
ing in mammary organoids. (A) Extracellular HSP90β is required for the 
invasiveness of mammary organoids expressing MMP3. Images of maximum 
intensity projection from confocal z-stacks of mammary organoids overex-
pressing FL-MMP3 or control vector embedded in 3 mg/mL Col-1 gels. 
Organoids were cultured for 3 days in the presence or absence of a recombi-
nant HSP90β. Structures were stained for F-actin (red) and nuclei (DAPI; 
blue). Image background was pseudo-colored in grey. Scale bars: 100µm. (B) 
Inhibition of extracellular HSP90β abolishes branching ability of mammary 
organoids. Images of maximum intensity projection from confocal z-stacks of 
mammary organoids overexpressing FL MMP3 or control vector embedded in 
3 mg/mL Col-1 gels. Organoids were cultured for 3 days with a function-
blocking antibody against HSP90β or a control IgG. Structures were stained 
for F-actin (red) and nuclei (DAPI; blue). Image background was pseudo-
colored in grey. Scale bars: 100µm. (C,D) Quantification of invasion and 
branching by measuring the ‘spatial network’ per organoid (50 organoids 
were counted per culture. *** P < 0.0001, * P < 0.05 by Student’s t-test). 
 

Figure 5. Scheme of the essential role of extracellular HSP90β in the modu-
lation of MMP3-driven invasion and branching in mammary organoids. 
When organoids from the mammary gland are embedded within 3D gels of 
Col-1, they undergo invasion and branching morphogenesis upon addition of 
growth factors. The small endogenous MMP3 activity present in the organ-
oids provides them a baseline of branching to which we could compare the 
exogenous constructs. The insertion of exogenous MMP3 induces a hyper-
branched phenotype only when the hemopexin domain is present. This 
region mediates the extracellular interaction with HSP90β and is critical for 
the invasive function of MMP3. Recombinant HSP90β added extracellularly 
enables the secreted MMP3 to induce the most exuberant branched struc-
tures. Conversely, blocking of extracellular HSP90β with inhibitory antibod-
ies added to the medium abolishes branching ability. 



The signaling pathways and regulatory mechanisms that drive 
branching in mammalian organs have been described by a number 
of laboratories including ours, and involve multiple members of the 
receptor tyrosine kinase (RTK) family (reviewed in (Lu and Werb 
2008)). Sustained activation of MAPK ERK-1,2, in response to hepato-
cyte growth factor, was shown to be required for kidney epithelial 
morphogenesis in Col-1 gels (Maroun et al. 2000). We showed that 
the MAPK ERK-1,2 pathway also integrates distinct and antagonistic 
signals from TGFα and FGF7 to determine the final morphogenetic 
response of mammary organoids cultured in lrECM; sustained 
MAPK activation downstream of TGFα and EGFR induces branch-
ing whereas its transient activation downstream of FGF7 and 
FGFR2 stimulates proliferation but not branching (Fata et al. 2007). 
FGF7 acts in part by suppressing the expression of MMP3, and 
inhibition of the latter reduces branching significantly both in cul-
ture and in vivo (Simian et al. 2001; Wiseman et al. 2003). Our 
discovery that extracellular HSP90β is critical for MMP3 function 
in invasion and branching, places HSP90β as an important player in 
the signaling pathways that determine the final mammary morpho-
genetic fate. 

The presence of HSP90 in murine mammary gland was reported 
in 1989 (Catelli et al. 1989), therefore it is surprising that its role in 
functional and morphogenetic aspects of the mammary gland is still 
poorly understood. The fact that HSP proteins have been postulated 
as molecular chaperones that mitigate the life-threatening effects of 
heat and other stresses on the proteome (Taipale et al. 2010), poses 
the question of whether HSP90β may also play a role in stabiliza-
tion and maturation of MMP3. We are now beginning to understand 
that HSP90 functions extend well beyond stress tolerance, and 
associated changes in its clients can then exert marked effects on the 
relationship between genotype and phenotype, influencing human 
health, disease and evolutionary processes (Rutherford and Lind-
quist 1998; Queitsch et al. 2002; Cowen and Lindquist 2005). The 
presence of HSP90β in the medium and the functional significance 
of its interaction with MMP3 is further proof that HSP90-mediated 
events are above and beyond the heat shock response. Our prelimi-
nary data indicate that the extracellular source of HSP90β for lu-
minal epithelial branching most probably is the myoepithelial cells 
in vivo (data not shown). These data combined with some evidence 
that MMP3 is mainly produced by stromal fibroblasts (Witty et al. 
1995; Kouros-Mehr and Werb 2006) raise the exciting possibility 
that extracellular interaction of HSP90β with MMP3 may be a way 
for different cell types to communicate in coordination of the nor-
mal processes of invasion and branching. 

In the initial mass spectrometry data we found many additional 
molecules that appear to be interacting with MMP3. In particular, 
we show that ANXA2 and MARCKS were co-immunoprecipitated 
with MMP3, with binding occurring in the presence of the 
hemopexin domain. Our preliminary data showed also that deple-
tion of each of these proteins reduced invasiveness in SCp2 cells. 
Unlike the interaction between HSP90β and MMP3 that happened 
in both directions, the reverse Co-IP of ANXA2 and MARCKS with 
HSP90β could not be confirmed under these conditions. In addition, 
our proteomic screen identified other proteases such as ADAM10, 
ADAMTS15 and Cathepsins A and L as possible proteins that may 
interact extracellularly with MMP3 (Figure S4). The functional 
significance of these latter proteins remains to be determined. Our 
data from the mass spectrometry however, tentatively suggest that a 
cascade of proteases might function collectively to orchestrate epi-
thelial invasion. 

Finally, we have shown most recently that the signaling module 
for MMP14, a membrane bound MMP, in branching of the end bud 
of the mammary gland of virgin mice is its transmem-
brane/cytoplasmic domain in conjunction with integrin-β1 (Mori et 
al. 2013). Thus the findings presented here along with the above 
work may provide a compelling explanation for why inhibitors of 
MMPs failed so dramatically in the clinic (Overall and Kleifeld 

2006). Targeting non-catalytic sites of MMPs as well as the inter-
acting partners, with agents such as small inhibitors or antibodies 
for the binding sites of integrin-β1 and HSP90β, may yield more 
effective and tissue-specific inhibitors. 

 
Materials and Methods 
 
Restriction enzymes, antibodies, proteins and chemical reagents 
All restriction enzymes were acquired from New England BioLabs. Bovine 
dermis acid-solubilized Col-1 solution (IAC-50) was purchased from Koken. 
Antibodies against the following proteins were obtained as indicated: FLAG 
(F1804, M2, Sigma, 1:500 for WB), E-cadherin (13-1900, clone ECCD-2, 
Invitrogen, 1:1,000 for WB, 1:200 for IF), HSP90β (5087, Cell Signaling, 
1:1,000 for WB), HSP90β (NBP1-61773, Novus Biologicals, 40 µg/mL for 
function-blocking experiments, 10 µg for Co-IP experiments), MARCKS 
(P0370, Sigma, 1:1,000 for WB), ANXA2 (AF3928, R&D Systems, 1:1,000 
for WB), α-tubulin (T6074, clone B-5-1-2, Sigma, 1:5,000 for WB) and 
rabbit IgG (2729, Cell Signaling, 40 µg/mL for function-blocking experi-
ments). Alexa Fluor 594 Phalloidin (A12381, Molecular Probes, 1:400) was 
used to stain F-actin. DAPI (Sigma) was used to stain nuclei. HSP90β inhibi-
tor CCT018159 (385920), MMP3-specific peptide-based inhibitor (444218) 
and recombinant HSP90β (385903) were purchased from Calbiochem/EMD 
Millipore. 
 
Construction of expression plasmids 
All MMP3 mutants were constructed using a polymerase chain reaction 
(PCR)-based method (details in Supplemental Experimental Procedures). The 
cDNA sequence used as template was cloned from a human breast cell line 
and sequence confirmed by comparison with gene accession number 
NM_002422.3. FL contains the full-length MMP3 cDNA. EA is a catalytical-
ly inactive mutant, holding a point mutation E219A at the catalytic core. 
dPEX is a hemopexin-like domain–deleted mutant (ΔN289-C477). A mam-
malian expression vector, pCDH-EF1-MCS-T2A-copGFP (System Biosci-
ences), was used to express the gene products. To detect MMP3 protein, the 
FLAG epitope (Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys) was inserted at the C-
terminus of every construct generated. All cDNA constructs were confirmed 
by DNA sequencing. 
 
shRNA-mediated knockdowns 
shRNA constructs selectively targeting HSP90β, ANXA2, MARCKS or 
MMP3 were purchased from MISSION shRNA library (Sigma) (sequences 
detailed in Table S1). Control cells were infected with non-targeting shRNA 
(SHC002, Sigma). Knockdown efficiency was verified by western blotting 
with appropriate antibodies. 
 
Cell culture and transduction 
SCp2 cells were cultured in Dulbecco’s Modified Eagle’s Medium/Ham’s F-
12 Nutrient Mixture (DMEM/F-12) supplemented with 5% fetal bovine 
serum, 5 µg/mL insulin and 50 µg/mL gentamicin, and maintained as previ-
ously described (Desprez et al. 1993). EpH4 cells were cultured in DMEM/F-
12 medium supplemented with 2% fetal bovine serum, 5 µg/mL insulin and 
50 µg/mL gentamicin, and maintained as previously described (Reichmann et 
al. 1989). For transduction, cells were seeded in 24-well plates (1x105 
cells/well) and infected with lentiviral particles carrying different expression 
plasmids using MISSION ExpressMag Beads (Sigma), according to the 
manufacturer's instructions. Cells transduced with lentivirus carrying shRNA 
constructs were additionally selected with 2 µg/mL puromycin. 
 
Preparation of primary mammary organoids and transduction 
Primary epithelial organoids were isolated from 8-week-old, virgin FVB mice 
as previously described (Fata et al. 2007). Briefly, inguinal glands were 
removed, minced with two parallel razor blades and gently shaken for 30 min 
at 37 °C in a 50 mL collagenase/trypsin mixture (0.2% trypsin, 0.2% type-IV 
collagenase, 5% fetal bovine serum and 5 µg/mL Insulin in DMEM/F-12). 
After centrifugation at 80 g for 10 min, supernant was discarded and cell 
pellet was re-suspended in DMEM/F-12. The suspension was pelleted again, 
re-suspended in 4 mL DMEM/F-12 containing 80 U of DNase I (Sigma) and 
incubated for 5 min at room temperature with occasional shaking. After the 
suspension was spun at 80 g for 10 min, a series of differential centrifugations 
in DMEM/F-12 was implemented to separate the epithelial organoids from 
single cells, fibroblasts and fibrillar extracellular matrices. The final pellet 
was re-suspended in the desired amount of medium. For transduction, organ-
oids were seeded in 24-well polyhema-coated plates (1,000 organoids/well) 
and infected with lentivirus in the presence of 8 µg/mL polybrene for 24 h. 

 



Preparation of cell clusters and transduction 
EpH4 cells suspended in growth medium were plated in 6-well polyhema-
coated plates (1x105 cells/well) and incubated at 37 °C overnight, yielding 
rounded clusters. Single cells were removed by differential centrifugation, 
and the final pellet was re-suspended in the desired amount of medium. 
 
Branching morphogenesis assay 
Primary organoids or clustered EpH4 cells were embedded in 3D Col-1 gels 
as previously published (Simian et al. 2001; Mori et al. 2013). In brief, acid-
solubilized Col-1 solution was mixed gently on ice with 1 volume of 10x 
DMEM/F-12, pH adjusted to 7.4 with 0.1M NaOH, and concentration adjust-
ed to 3 mg/mL with DMEM/F-12. A basal layer of 80 µL Col-1 was poured 
into each well of an 8-well chambered coverglass (155409, Thermo Scien-
tific) and allowed to gel for 5 min at 37 °C. A second layer of 200 µL Col-1 
containing 150 organoids or EpH4 clusters was added to each well and placed 
immediately at 37 °C. After gelation, 400µL of chemically defined medium 
(DMEM/F-12 containing 1% insulin/transferrin/selenium and 1% peni-
cilin/streptomycin) with 9 nM TGFα (Sigma) or 9 nM bFGF (Sigma) was 
added to each well (unless stated otherwise) and replaced every other day. 

After 3 days of culture, gels were fixed with 4% formalin for 30 min, and 
stained with phalloidin and DAPI for 1h. Structures were imaged with an 
upright Zeiss LSM710, using a 0.8 NA 20× air objective. An organoid or cell 
cluster was defined as invading and branching when it had at least three 
independent extending processes that were at least half the diameter of the 
center of the organoid or cell cluster. The number of extending processes and 
their average length were determined using the Imaris software (Bitplane). 
We defined a new metric of invasion and branching, which we refer to as the 
‘spatial network’ per organoid. This is defined as the sum of the length of all 
the extending processes developed from each organoid. 50 structures were 
counted per condition and the experiments were executed at least 3 times. 
 
Caseinase activity assay 
CM was incubated with a casein derivative quenching red-fluorescent dye 
(BODIPY TR-X Casein, E6639, Invitrogen). Protease-catalyzed hydrolysis 
released highly fluorescent BODIPY TR-X dye-labeled peptides. The accom-
panying increase in fluorescence is proportional to MMP3 proteolytic activity 
and was monitored with a microplate reader. A control without BODIPY 
casein was used to subtract residual fluorescence background. 

 
Cell scatter assay 
SCp2 cells were seeded in 6-well plates at low density (1x105 cells/well), 
allowed to form colonies (≈ 48 h) and serum-starved for 24 h. Epithelial cell 
islets were then stimulated with 9 nM epidermal growth factor (EGF) (Sigma) 
and imaged at 48 h with a Zeiss Imager Z1 microscope, using a 10x objective. 
 
Immunofluorescence 
SCp2 cells were cultured for 72 h on glass coverslips, fixed with 4% para-
formaldehyde/PBS for 10 min, washed with PBS and permeabilized in 0.25% 
Triton X-100/PBS for 10 min. Samples were blocked with 1% BSA and 5% 
goat serum/PBS for 1 h, followed by incubation with the primary antibody in 
blocking buffer overnight at 4 °C and the secondary antibody for 1 h at room 
temperature. Images were acquired with an upright Zeiss LSM710, using a 
1.4 NA 63× oil-immersion. 
 
Morphometry analysis 
Cell edges were outlined in F-actin stained cells using an “Object Identifica-
tion Module” from CellProfiler software (Carpenter et al. 2006). Cellular 
elliptical factors, defined as the ratio of the longest (length) to the shortest 
(width) axis of the cell, were calculated for 100 random cells per culture. 
 
Invasion assay 
Cell culture inserts (8 µm, 24-well format, BD Biosciences) were evenly 
coated with 20 µL diluted (1:5 in DMEM/F-12 medium) Matrigel (BD Bio-
sciences). 1x105 cells in 200 µL of DMEM/F-12 medium or different CM (as 
indicated in each experiment) were added to the upper compartment of the 
chamber. The lower compartment of the chamber was filled with 300 µL 
medium containing 10% FBS as a chemoattractant. After 48 h of incubation 
at 37 °C, the topside of the insert was cleared from non-invasive cells with a 
cotton swab and washed with serum-free DMEM/F-12. The remaining (inva-
sive) cells at the lower surface of the filter were fixed and stained with a 
solution of Coomassie Blue 0.125% in methanol:acetic acid:H2O (45:10:45, 
v/v/v) for 15 min. Invasive cells were scored by counting 10 x20 magnifica-
tion fields per filter with a Zeiss Imager Z1 microscope, using a 20x objec-
tive. Mouse embryo fibroblast NIH/3T3 cells were routinely included as a 
positive control. Results are expressed as mean ± s.d. from three independent 
experiments. 

 
Western blotting 
Cells were lysed with a buffer containing 1% Triton X-100, 1% NP-40 and 
protease and phosphatase inhibitor cocktails (Calbiochem/EMD Millipore) in 
PBS, and the lysates were clarified by centrifugation at 16,000 g for 15 min. 
Protein concentration was determined using the BCA Protein Assay kit 
(Thermo Scientific) according to the manufacturer’s instructions. Protein 
samples were mixed with electrophoresis sample buffer containing 5% (v/v) 
2-β-mercaptoethanol and 5% (v/v) bromophenol blue and boiled for 5 min at 
95 °C. Samples were loaded in equal amounts into pre-cast 4-20% gradient 
polyacrylamide gels (Invitrogen) and separated by SDS–PAGE. Resolved 
proteins were transferred to a nitrocellulose membrane (Whatman) at 130 V 
for 90 min, followed by blocking of non-specific binding with 5% BSA in 
0.05% Tween-20/PBS for 1 h at room temperature. The membranes were 
probed with primary antibodies specific to each protein overnight at 4 °C, and 
then with HRP-conjugated secondary antibodies (Thermo Scientific and Santa 
Cruz Biotechnology). Blots were visualized with an ECL detection system 
(Thermo Scientific) according to the manufacturer’s instructions, and chemi-
luminescent signal was captured with a FluorChem IS-8900 (Alpha Innotech). 
Each western blot was done at least three times, and here we show representa-
tive experiments. 
 
Co-Immunoprecipitation (Co-IP). 
For Co-IP of FLAG-tagged MMP3 protein complexes, CM was incubated 
with anti-FLAG M2 antibody-conjugated agarose beads (F2426, Sigma) for 
16 h at 4 °C. The beads were then washed three times with 0.05% Tween/PBS 
and the immune complexes were directly eluted with electrophoresis sample 
buffer and analyzed by western blotting. For LC-MS/MS analysis, beads were 
washed with 0.05% Tween/PBS and protein complexes were eluted with a 
FLAG peptide (F3290, Sigma) in 0.05% Tween/PBS. Samples were then 
precipitated with trichloroacetic acid and reconstituted with a buffer (Invitro-
sol, MS10007, Invitrogen) suitable for mass spectrometry analysis. 

For Co-IP of HSP90β protein complexes, CM was incubated with 10 µg of 
control rabbit-IgG or anti-HSP90β antibody for 16 h at 4 °C. Precipitation 
was performed with protein G sepharose beads (17-0618-01, GE Healthcare) 
for 4 h at 4 °C. The beads were then washed three times with 0.05% 
Tween/PBS and the immune complexes were directly eluted with electropho-
resis sample buffer and analyzed by western blotting. 
 
Mass spectrometry analysis  
Described in Supplementary Methods. Scaled signal intensities were log2-
transformed and analyzed by R software. 
 
Statistical Analysis 
Statistical analyses were performed using GraphPad Prism 5.0 software. 
Student’s t-test (unpaired with Welch’s correction, two-tailed, 95% confi-
dence interval) was used to determine statistical significance. Statistical 
analyses were always performed in relation to vector control cells (unless 
stated otherwise). 
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“In the days of seemingly unlimited funding and personnel, the shotgun approach to biology 
yielded substantial knowledge. Today more taste must be displayed. Because a question can 
be asked at the molecular level does not mean it is worth asking, any more than just another 
histological or electron microscopic study of developing tissue or cell is justifiable…Our 
knowledge of tissue interactions [e.g., cell-extracellular matrix interactions] in embryos [and 
in adults] is still so primitive that investigations at all levels are necessary if we are to fully 
explain these processes and their consequences in mechanistic terms.” – Norman K. Wessels, 
19771  
 
The discovery in the 1970s of proto-oncogenes, genes that become oncogenic (“cancer 
causing”) either through genetic modifications or increased expression, and tumor suppressor 
genes, those that if expressed at the right levels, would suppress progression to malignancy, 
spurred a revolution. Given the excitement and the implication of these discoveries, it may 
not be surprising that most cancer researchers have not looked back.  As such, much of the 
work of the early cancer research pioneers such as Paget, Rous, Warburg and Berenblum (see 
below), which drew attention to other aspects of cancer, became unpopular and considered 
beside the point.  

The subsequent decade brought technologies that enabled automated sequencing of DNA, 
which eventually made the dream of sequencing whole organismal and tumor genomes a 
reality. The hope was that pinpointing aberrations in genetic sequence would allow one to 
understand the origins of cancer (1). Dealing with the mutations by fixing the genes through 
gene therapy or neutralizing the gene products would thus provide a viable cure. The picture 
that emerges forty years later is much more complex (2). For breast cancer, we know now that 

                                                               
1 Bracketed statements added by Bissell, M. J. and Hall, H. G. (1987). Form and function in the 
mammary gland: the role of extracellular matrix. In The Mammary Gland (eds M. C. Neville and C. W. 
Daniel), pp. 97-146. New York: Plenum Press. 



the frequency of somatic mutations exceeds one per one million DNA base pairs (3). We also 
know that a single tumor may have hundreds of mutations (3), that some mutations (TP53, 
PIK3CA, GATA3) are more prevalent than others (4), but that even these are not present in the 
majority of patients (4).  Perhaps most significantly, breast cancer patients have been 
classified based on their tumor gene expression profiles, which can predict their survival (5) 
and response to specific treatments (6). 

But this approach has also taught us a lot about what the genome may not be able to tell 
us. For instance, autopsy studies have revealed that the fraction of individuals harboring 
neoplastic lesions within their breast or prostate is 27- to 142-fold higher than the actual 
incidence rates of breast and prostate cancer (7, 8). If the initial mutation would be sufficient 
to cause cancer, why do such a small fraction of these neoplasms progress to frank 
carcinomas in the general population? Another aspect of tumor progression that cannot be 
explained by genomic aberrations is why tumors metastasize when they do. The prevailing 
hypothesis had been that metastases reflect the pinnacle of tumor evolution: tumor cells 
would have to acquire a set of mutations in order to disseminate from the primary tumor to 
another tissue (9). Now, it is clear that tumor cells disseminate very early during tumor 
progression despite few genetic abnormalities (10-12), and that these tumors may emerge 
even faster than the primary tumor itself (this is referred to as cancer of unknown primary). 
So, if metastatic outgrowth does not require additional mutations from the primary tumor, 
what drives the metastatic program? And there are other questions outlined elsewhere (13).  

The need to answer such questions has spawned a newfound appreciation that the 
complexity that governs tumor phenotype cannot be explained only at the genetic level. As a 
result, and also because a handful of investigators began to probe the role of the 
microenvironment more deeply at the mechanistic level, the focus has slowly begun to shift 
to the study of the tumor’s microenvironment. Whereas this appreciation may be newfound, 
the concept of the microenvironment’s importance is not (see Figure 16-1 for a timeline). 
 

Half of the secret of the cell is outside the cell: a historical perspective 
on the role of the microenvironment 
 

In 1889, Stephen Paget published results of an autopsy study he conducted on 735 breast 
cancer patients. His study revealed that these patients tended to have metastases within 4 
tissues: lung, liver, uterus and bone. Empowered by these observations, as well as those of 
peers like Langenbeck and Fuchs, Paget formulated his now-famous seed and soil 
hypothesis: “… every single cancer cell must be regarded as an organism, alive and capable 
of development. When a plant goes to seed, its seeds are carried in all directions; but they can 
only live and grow if they fall on congenial soil (14).” Perhaps this is where an earnest 
appreciation for the microenvironment began. Remarkably, the enduring interpretation of 
Paget’s hypothesis is that certain soils are favorable for tumor growth. This has indeed 



dominated the landscape of metastasis research, and is the subject of the following subsection 
(“Promoting Microenvironments”). But inherent in his message was that certain soils are 
inhospitable to a tumor’s seed. In the same article, Paget remarks on a colleague’s 
interpretation that instead of a predisposition to receive a seed, certain organs exhibit 
“diminished resistance (14).” Thus, the second sub-section (“Suppressive 
Microenvironments”) will deal with this idea. 

 

Figure 16-1. A historical perspective on the role of the microenvironment in cancer. A timeline detailing 
landmark discoveries that showed the dominance of microenvironment over genotype. Space-permitting, a number 
of other important experiments could have been included, such as Emerman and Pitelka’s demonstration that 
normal mammary epithelial cells on floating collagen gels recapitulate their in vivo phenotype (102), Folkman’s 
demonstration that cell shape regulates DNA synthesis (197), and experiments demonstrating that reconstituted 3-
D BM gels act as a “blotter” to distinguish the normal from malignant phenotype (38, 198). 
 

Promoting Microenvironments 
 
What makes a given microenvironment favorable for the growth of a tumor cell is a topic that 
is germane to all tumors, disseminated or not. For instance, the probability of harboring an 
occult (i.e., hidden) neoplasm increases with age to nearly 100% in an organ like the thyroid 
gland, yet only 0.1% of individuals are ever diagnosed with thyroid cancer (15). What allows 
the emergence of these tumors in some, but not others, is a question that has been pursued 
since the turn of the 20th century. Peyton Rous and others concluded that a transplanted tumor 
would not take unless there was a stromal reaction and immediate vascularization of the 
implant (16). These properties are common to both inflammation and wounding, and each 
has long been suspected of creating a tumor promoting microenvironment. As early as 1863, 
Virchow noted that chronic irritation and prior injury could precondition tissue for tumor 
formation (17).  Rous was amongst the first to show this conclusively by demonstrating that 
wounding the peritoneal cavity of mice inoculated with tumor cells accelerated the growth of 
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tumors within their visceral organs (18). Further evidence for the tumor promoting power of 
the wounding microenvironment comes from the vast literature on chemical carcinogens. An 
extensive body of work established that chemicals within coal tar such as benzo(a)pyrene 
derivatives, despite being known mutagens, were not sufficient to cause skin cancer on their 
own. Despite ‘initiation’ due to chemical exposure taking place, normal skin guards against 
progression unless the carcinogen dose is so excessive that it damages the tissue in addition to 
causing mutagenesis (19, 20). This second step, called ‘promotion’, is required and is 
generally caused by wounding or by other toxic agents, many of which are associated with 
aberrant tissue repair and fibrosis (21-23). The discovery of the first ‘onco’-virus, referred to 
as Rous Sarcoma Virus (RSV) (24), would later provide some of the most conclusive 
evidence that wounding promotes tumor formation. In discovering RSV, Rous took the 
filtrate of a chicken tumor and noted that this cell-free filtrate would induce sarcomas in 
recipient chickens (24)2, thus proving Koch’s postulate3. Decades later, when experimenting 
with RSV, Dolberg et al. noted that the injected virus circulated throughout the bird, but 
tumors tended to arise only at the injection site (25). Was the wound created by the injection 
needle the key factor? Nicking the contralateral wing of infected chickens caused tumors to 
arise also at the sites of abrasions (25). This phenomenon was mediated by transforming 
growth factor (TGF)-β1, which was expressed in tissue shortly after wounding and shown to 
induce tumors on its own even in the absence of wounding (26). Hence, the tumor promoting 
power of the wounding microenvironment (reviewed more extensively in (27)) was proven.   
Of course, processes like wounding and fibrosis are inextricably linked with the formation of 
new vasculature (e.g., through angiogenesis), but it was not until Judah Folkman’s work in 
the early 1970s that a causal relationship between tumor growth and angiogenesis was 
established. Tumor fragments or tumor cells grafted onto the rabbit cornea were observed to 
induce sprouting from existing vasculature as they grew (28). Physically preventing 
microvasculature from reaching the implant resulted in a latent mass where tumor cell 
proliferation was countered by apoptosis. Folkman’s work specified experimentally, for the 
first time, a non-tumor cell— the endothelial cell— that was critical to the growth of a tumor. 
His work also started a new field focused on “anti-angiogenesis” based on Folkman’s 
hypothesis that, “Solid tumors can grow to visibility only if they can vascularize themselves. 
Therefore, the mechanism by which tumor implants stimulate neovascularization must be 
well understood before therapy based upon interference with angiogenesis can be devised 
(29).” The angiogenesis inhibitor bevacizumab (Avastin) would become the first therapy 
explicitly targeting the microenvironment approved by the United States FDA (2004)4.  
 
                                                               
2 Ironically, despite all of Rous’ seminal work establishing the importance of the microenvironment, 
this discovery perhaps did more to spur the genetic revolution than anything else, since the first 
oncogene (Src) was cloned from RSV and was shown  to cause tumors in chicks.  
3 German physician Heinrich Hermann Robert Koch formulated 4 postulates necessary to prove a 
causal relationship between a microbe and a disease, one of which was that the isolated agent should 
cause disease when introduced into a healthy organism.   
4 For further detail, please see Chapter 17 on Angiogenesis 



Suppressive Microenvironments 
 
The studies described above established key roles for the microenvironment in promoting 
tumor growth, which will be the primary focus of this chapter. But it is worth mentioning that 
much of the milestone research in demonstrating the importance of the microenvironment did 
so by showing that context could override tumorigenicity; that is, tumor cells could be tricked 
into thinking they are normal if provided the right cues. The observation that the embryo 
comprises such a suppressive microenvironment is one that was first made over 100 years 
ago, when Askanazy showed that ovarian teratomas could form ‘normal’ tissues composed of 
the correct embryonic germinal layers when injected into embryos (30). Decades later, a 
series of studies from different laboratories provided further evidence that the embryonic 
microenvironment could induce tumors to function normally in development. Mintz and 
Illmensee injected embryonic teratoma core cells from mice with a steel coat genotype into 
blastocysts from C57-b/b mice (which have black coats). The blastocysts gave rise to 
functionally ‘normal’ offspring (31). The next paper by Illmensee and Mintz (32) reported 
that the mice born from the initial experiments produced an offspring that was completely 
normal and had a mosaic (i.e., striped) coat, implying that the teratocarcinoma could pass 
through the germ line.  While it is true that this work has not been confirmed in other 
laboratories, there are some dramatic variations on the theme. For instance, Brinster injected 
2-4 teratocarcinoma cells from agouti brown mice into 4 day old blastocysts of Swiss albino 
mice. One out of the 60 injected mice retained the teratocarcinoma cells (based on the 
presence of brown hair patches on the white mouse), and proceeded to develop normally as 
well (33). Pierce later essentially quantified the balance of power between the embryonic 
microenvironment and the malignant cell by demonstrating that the embryonic 
microenvironment could suppress the malignant phenotype of one to a few implanted tumor 
cells, but that this ability diminished as the number of injected tumor cells increased (34). 
Perhaps this offers a hint that our bodies are only able to successfully suppress only so many 
initiated cells, and that this power diminishes with age.  

The suppressive effect of the embryonic microenvironment has been demonstrated in 
species other than mice, as well. Using RSV, Bissell and Dolberg showed that cells within 
injected chick embryos expressed the virus, but that early embryos failed to form tumors (35). 
Maintaining embryonic architecture was key, however, as dissociating the embryos and 
placing the PP60src-marked cells (using LacZ) in culture resulted in rapid transformation of 
the blue-labeled cells (36). Hendrix and colleagues more recently reported similar findings for 
aggressive melanoma cells injected into zebrafish embryos (37).  The lasting impact of these 
studies is that tissue architecture is dominant to the powerful oncogene in embryos, thus 
overriding tumorigenicity of malignant cells. These studies offered also the clue that the 
malignant genotype could be suppressed if the interactions between a tumor and its 
microenvironment could somehow be normalized.  



Taking advantage of this insight required an assay that would allow normal and malignant 
cells to recapitulate their in vivo phenotypes in culture. This was achieved by culturing cells 
in a three-dimensional (3-D) reconstituted basement membrane (BM) gel. In 3-D, but not 2-
D conditions, non-malignant mammary epithelial cells formed growth-arrested, polarized 
acini resembling terminal ductal lobular units of the breast, whereas malignant cells formed 
disorganized masses that continued to grow (38). By examining the expression profiles of 
integrins, heterodimeric receptors on the cellular surface that transduce signals from the 
extracellular matrix (ECM) through traditional and non-traditional pathways to alter gene 
expression, Weaver, Bissell and colleagues noted aberrant overexpression of integrins and a 
number of other receptors such as EGFR on malignant cells (39). Suspecting that these 
receptors were key nodes that integrated signals from the microenvironment to direct cell 
behavior, the authors began to restore levels of aberrant receptors to normal levels, starting by 
applying inhibitory antibodies targeting integrin β1 in malignant cells cultured in 3-D gels. 
The result was a dramatic ‘phenotypic reversion’ of malignant breast epithelial cells to 
structures that looked and behaved like their normal counterparts (39). To show that this 
treatment was not somehow selecting for a non-malignant subpopulation of cells, Weaver et 
al. dissociated tumor cell clusters from 3-D gels, replated them onto plastic, and then 
passaged them back into 3-D gels in the absence of blocking antibody. Tumor cells once 
again formed malignant clusters (Figure 16-2) (39). This strategy led to the discovery of a 
host of signaling molecules that act in concert to regulate/integrate epithelial phenotype. 
Many of these molecules effect interactions between a cell and its microenvironment, and 
include ECM molecules (40), growth/ECM receptors (41, 42), or matrix metalloproteinases 
(MMPs) that digest ECM components (43). Remarkably, targeting only one of these 
aberrantly expressed molecules restores the levels of all the others back to normal (again, 
only in 3-D), demonstrating the potential of normalizing aberrant microenvironmental 
signaling to redirect entire signaling webs and impair manifestation of the malignant genotype 
(13, 44). Even metastatic cells can be reverted by using any one of these inhibitors, or more 
completely by using two (45). 
 

The Tumor Organ 
 
The historical studies detailed above demonstrate that a tumor cell is a product of its aberrant 
genome interacting with its surrounding microenvironment. This concept is easier to 
appreciate if one considers the tumor as a dysfunctional organ, as suggested by Bissell and 
Radisky (46). On a basic level, an organ has the following properties:  

1. Organs are multicellular and are composed of multiple tissue layers. Functional tissue 
layers consist of epithelia, which are tube-like structures that carry fluid, and epithelia 
are separated from surrounding stroma by a specialized ECM called the basement 
membrane.  



2. Organs are governed by properties that emerge as a result of the interactions between 
the cells, ECM molecules, and soluble factors composing the organ, and the result of 
these interactions is greater than any one of the individual parts.  

3. Organs have unique signatures of functional differentiation; for instance, the 
mammary gland produces milk, the pancreas produces insulin, and bone marrow is 
responsible for maintaining homeostasis of the hematopoietic and lymphatic systems.  

While tumors lack proper function, they do have the first two of these traits in common 
with organs. The focus of this section is on the second of these traits: the properties that 
emerge as a result of a tumor’s interactions with its microenvironment. There are two ways to 
illustrate this concept. The first would be to consider the parallels between a developing organ 
and a developing tumor. The scope of this discussion would extend well beyond this chapter, 
however, since just as organs develop differently, tumors of these organs develop distinctly as 
well. Instead, a more general way to illustrate the concept of the tumor organ is to consider 
what happens when an organ is injured— it attempts to heal. The wounding 
microenvironment shares a great deal in common with the tumor microenvironment 
(illustrated in Figure 16-3), the difference being that wounds eventually stop healing, whereas 
a tumor’s microenvironment persists. This is why tumors have been called, “wounds that do 
not heal (47).”  

 

Figure 16-2. Serial passaging from 3D to 2D cultures (and back) demonstrates phenotypic reversion as 
opposed to selection. Phase contrast micrographs of T4-2 cells grown in the presence of mock antibody (IgG) or 
anti–β1-integrin function blocking antibody (Itgb1 Ab) within 3-D reconstituted BM gels. Despite two rounds of 
treatment, reverted cells were able to resume their original tumorigenic phenotypes after being passaged and re-
cultured in the absence of antibody. Note that despite displaying a non-malignant phenotype, reverted tumor cells 
retain an aberrant genome (genomic amplifications (A) shown in red, deletions (D) shown in green). Figure 
adapted from ref. (39). 
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The wounding microenvironment 
 
Upon wounding, the goal is to restore function of injured tissue, which means that damaged 
epithelia must be resealed. Damaged blood vessels leak plasma and platelets into the wound 
site (or simply hemorrhage blood due to more serious injury) (46, 48). Tissue procoagulants 
such as tissue factor initiate a cascade that results in a clot rich in ECM molecules fibrin and 
fibronectin that entraps platelets and blood cells. Platelets are a rich initial source of clotting 
factors, mitogens and chemoattracting cues that lure cells into the wound site. Inflammatory 
cells are amongst these cells, releasing extracellular proteinases such as MMPs and cysteine 
cathepsins that cleave the provisional ECM to facilitate migration. Fibroblasts follow, and 
become activated by TGF-β and fibronectin splice variants within the clot to become 
myofibroblasts—muscle-like cells with an enhanced ability to exert contractile force (49, 
50). These cells are charged with cinching the wound, and in doing so deposit copious 
amounts of ECM, consisting primarily of type I collagen (Col-1), to provide scaffold to the 
tissue in its contracted state (49). Endothelial cells are stimulated to invade from nearby 
microvasculature by angiogenic factors (e.g., VEGF, FGF-2) secreted by platelets, immune 
cells and fibroblasts, and also released from the provisional ECM by MMPs (e.g., MMP-9), to 
rapidly vascularize and feed the new tissue (51). Meanwhile, this complex cascade of events 
reduces adhesiveness of adjacent epithelial cells, which undergo an epithelial-mesenchymal 
transition (EMT) in order to migrate to reseal the epithelium, and later revert back to their 
normal state by re-depositing BM, reengaging each other through cell-cell junctions, growth-
arresting, and functionally differentiating (46).  

Thus, much as the tumor microenvironment (see below), the wounding microenvironment 
is populated by circulating cell types such as immune cells and platelets, and resident tissue 
cells like fibroblasts and endothelial cells. These cellular constituents engage in a dynamic 
and reciprocal chorus via secreted factors and ECM molecules to activate nearby epithelial 
cells to close the wound via proliferation and migration. The biggest difference between a 
tumor and the healing wound is what happens next. In the proper wounding context, not only 
does the epithelium differentiate, but activated cell types do not persist, the provisional ECM 
is remodeled, and secretion of stimulatory growth factors and cytokines is dampened. There is 
still much to be learned about what comprises the ‘homeostatic switch,’ that is, the cues that 
tell a tissue to stop remodeling presumably because it is now fully functional. For instance, 
what exactly happens to all of the activated myofibroblasts is not known. They may 
deactivate, transdifferentiate or undergo apoptosis (this fails to occur in individuals with 
chronic wounding disorders, and it should not surprise the reader that these individuals are 
also more susceptible to cancer(27)). The stimuli that cause myofibroblasts to undergo any of 
these programs are also unknown. Perhaps uncovering these cues will offer insight as to how 
the tumor microenvironment itself can be phenotypically reverted so that it does not persist. 



 

Figure 16-3. Tumors: “Wounds that do not Heal.” (A) Immediately after injury, damaged blood vessels leak 
plasma and platelets, which form a hemostatic plug and release vasoactive mediators to increase vascular 
permeability and enable the influx of serum fibrinogen to generate a fibrin and fibronectin-rich clot. Platelets 
produce chemotactic factors such as TGF-β and PDGF, which lure inflammatory cells and fibroblasts into the 
wound site. These cells produce extracellular proteases, including MMPs and cathepsins, which remodel ECM to 
facilitate cell migration. Recruited cells also secrete a number of growth factors, such as FGF-2, which promote 
the development of new blood vessels. Many of the fibroblasts take on a myofibroblast phenotype to facilitate 
wound contraction. (B) In order for the wound to close, myofibroblasts deposit and align abundant amounts of 
ECM, mainly Col-1. The intricate reaction to wounding reduces epithelial adhesiveness and increases epithelial-
cell mobility to re-form an intact sheet of tissue over the wound. Production of MMPs, uroplasminogen activator 
(uPA) and tissue plasminogen activator (tPA) facilitates the re-epithelialization. Blood vessels can then enter the 
fibrin and fibronectin-rich clot to rapidly vascularize and feed the new tissue. The lateral migration of the 
epidermal cells is followed by a reversion to their normal state by re-depositing basement membrane (BM), 
reengaging intercellular adhesions, growth-arresting and functionally differentiating. (C) Similarly, the tumor 
microenvironment is populated by immune cells, fibroblasts and endothelial cells, and tumor cells produce many 
of the same growth factors that activate the adjacent stromal tissues in wounding in order to create a reactive 
stroma. (D) Tumor cells, cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) 
increase production of MMPs and uPA at the invasive tumor front to stimulate angiogenesis and proliferation. 
CAFs exert also contractile forces to generate tracks within the ECM that epithelial cells subsequently invade 
through in a collective fashion.  
 

The tumor microenvironment 
 

Whether a tumor creates its own microenvironment or the aberrant microenvironment causes 
a tumor is a conundrum of tumor biology. There is, in fact, evidence for both. Regardless, 
what manifests is a dynamic interplay between a tumor and its surroundings that ultimately 
results in loss of organ structure and architecture. Indeed, this is how oncologists and 
pathologists diagnose tumors and determine their stage or grade (52-54). Loss of architecture 
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is a hallmark of cancer that reflects behaviors such as deregulated growth, enhanced survival, 
new blood vessel formation, stromal activation, and inappropriate migratory and invasive 
behavior of cells (55). The microenvironment becomes a runaway train of sorts, and 
activation is heightened as entropy (loss of cell and tissue architecture) increases. As the 
reader goes through the remainder of this chapter, keep the following questions in mind: at 
what stage of progression do tumor cells or cells in the vicinity of tumors begin to secrete and 
deposit factors that cause aberrant growth and invasion? At what stage of progression do 
epithelial cells (transformed or not) respond? Once a tumor disseminates, what type of 
microenvironment is necessary for it to grow? And finally, once a reactive stroma has formed, 
can it be reversed?  
 

Initiation 
 
Perhaps the most convincing demonstration of the microenvironment’s influence is that its 
disruption causes not just aberrant growth, but de novo genetic lesions and full blown 
malignancy (Figure 16-4A).  This has been shown in mouse models in which ECM 
remodeling enzymes MMP-3 and MMP-14 are overexpressed in the murine mammary gland 
(56, 57). Both of these proteases are expressed normally during mammary epithelial 
morphogenesis, and function in part to execute the branching program (58, 59). However, 
sustained ectopic expression of MMP-3 in luminal epithelial cells (via a MMP-3 transgene 
driven by a milk protein promoter (WAP), which is primarily active in the murine mammary 
gland (59)), led to a dramatic upregulation in murine MMP-3 expression in the mammary 
stroma. This was sufficient to cause formation of a reactive stroma characterized by 
increased blood vessel density, accumulation of collagen, and expression of ECM molecules 
typically observed only during development or wounding (e.g., Tenascin-C) (60). By six 
months, these mice exhibited substantially more epithelial hyperplasia than their wild-type 
counterparts, and a small percentage of these mice eventually formed full-blown carcinomas 
(56) (Figure 16-5A). Amazingly, MMP-3 does not act only on the stroma; epithelial cells are 
affected directly as well. Exogenous MMP-3 causes oxidative DNA damage through 
production of reactive oxygen species (ROS), resulting in oxidative damage which causes 
genetic instability and aneuploidy in epithelial cells (61) (Figure 16-5B). Additionally, ROS 
stimulate expression of Snail, which negatively regulates E-Cadherin, causing loss of cell-cell 
adhesion and EMT (61). In sum, forcing the overexpression of a single ECM remodeling 
enzyme— without addition of an oncogene or knockdown of a tumor suppressor gene in the 
mammary gland—results in manifestation of all of the putative hallmarks of cancer (55).  

More sophisticated transgenic models allow tissue-specific recombination events to 
facilitate genetic deletion in specific tissue compartments (62). This strategy was utilized to 
demonstrate that introducing a genetic aberration to fibroblasts is sufficient to cause cancer in 
adjacent epithelium. For instance, driving TGF-β receptor type II (TGF-βRII) deletion by the 
fibroblast-specific protein 1 (FSP1) promoter (which is expressed ubiquitously by fibroblasts) 



renders fibroblasts unresponsive to TGF-β signaling, and results in a three- to four-fold 
increase in hepatocyte growth factor (HGF) secretion in the prostate and forestomach of these 
mice (63). The ultimate consequence is the induction of proliferative, intraepithelial 
neoplasms within the prostates of young mice, and of invasive squamous cell carcinomas in 
the forestomachs of these mice. Similarly, engineering human fibroblasts to overexpress 
either HGF or TGF-β is sufficient to induce tumorigenic growths from ostensibly normal co-
implanted human epithelial tissue (64).  

 
Figure 16-4. The microenvironment is a dominant force in tumor initiation, promotion and metastasis. (A) 
Forcing the expression of a single ECM remodeling enzyme, MMP3, in mammary epithelial cells in the absence of 
any additional mutations initiates genetic lesions and full-blown malignancy. Activation of MMP3 leads to 
epithelial-to-mesenchymal transitions (EMT), as well as genomic instability through formation of reactive oxygen 
species (ROS). In addition, ROS stimulate the expression of Snail, which negatively regulates E-cadherin, 
loosening cell-cell adhesion and facilitating invasion. (B) The microenvironment unleashes initiated epithelium. 
An increase in the interstitial flow combined with TGF-β1 released by the tumor and by TAMs induces dermal 
fibroblasts to differentiate into CAFs. These cells secrete several growth factors and cytokines that enhance 
proliferation of nearby tumor cells. In addition, CAFs produce proteases to remodel and align the ECM, thus 
creating tracks that epithelial cells subsequently invade through in a collective fashion. (C) The microenvironment 
is also a potent enhancer of distant metastatic spread. Invasive cancer cells enter local microvasculature and travel 
through hematogenous and/or lymphatic routes to distant organ sites. Formation of a metastatic niche, 
characterized by elevated expression of ECM molecules such as fibronectin, tenascin-C or periostin may be 
required in order for disseminated tumor cells to colonize distant tissue. 
 

Of course, fibroblasts also play key roles during tissue development by producing ECM 
and other molecules that induce growth, branching and tissue-specific gene expression of 
resident epithelia. Thus it stands to reason that transforming fibroblasts to re-express a 
developmental marker in the mature gland could severely impact epithelial homeostasis. This 
was tested by co-implanting urogenital sinus mesenchymal cells overexpressing the global 
epigenetic regulator Hmga2, which is expressed primarily during embryonic development, in 
a sustained fashion. When implanted with adult prostate cells, Hmga2-overexpressing 
mesenchyme fostered formation of frank carcinomas primarily by acting on the basal stem 
cell population of prostate epithelia  (65).  

These studies demonstrate that inducing aberrations within the stromal compartment is 
sufficient— in and of itself— to induce genomic instability, sustained growth, and the 
transition to an invasive phenotype by uninitiated and untransformed (i.e., normal) epithelia. 
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However, even when the epithelia has been initiated (e.g., mutation or radiation), the 
activated microenvironment is sufficient (and perhaps necessary) to accelerate progression of 
transformed epithelia into frank carcinomas (66, 67).  

 
Figure 5. Forced overexpression of MMP-3 in the murine mammary gland results in tumor formation in 
part by causing genomic instability in mammary epithelial cells.  (A) As opposed to non-transgenic control 
mice (a; left), WAP-MMP3 mice (b; right) exhibit multifocal hyperplasia (Hp) by 16 months of age. MMP-3 
functions to induce tumorigenesis via reciprocal overexpression of MMP-3 in the mammary stroma to induce a 
reactive stroma (not shown), and by acting directly on mammary epithelial cells to induce reactive oxygen species, 
which cause genomic instability. This is shown by (B) amplification of the CAD locus (red), which confers 
resistance to N-(phosphonacetyl)-L-aspartate (PALA) treatment, in MMP-3 treated mammary epithelial cells and 
by (C) comparative genomic hybridization analysis (green, amplifications; red, deletions) of MMP-3 treated cells 
(vs. control (PALA)-treated cells). Figure adapted from refs. (56, 61). 
 

Progression  
 
The previously described wounding studies performed by Bissell and colleagues with RSV-
injected chickens (25, 26) were amongst the first to show conclusively that the wounding 
microenvironment is sufficient to push transformed cells (in this case, those expressing the 
Src oncogene) to form full-blown tumors. More recent works have pinpointed precise roles 
for specific cell types, growth factors, cytokines, ECM molecules, and associated 
physicochemical properties in creating a biochemical and mechanical signaling milieu that 
unleashes initiated/transformed epithelium (Figure 16-4B).  

Before delving into all of the ways that the microenvironment conspires to promote loss 
of architecture, growth and invasion, it is important to note that we likely harbor initiated 
cells throughout our body, which accumulate over the course of our lives due to diet, 
radiation, etc (13, 15). Yet on a per cell level, progression to malignancy is actually a rare 
event. The reason is that normal tissue architecture supersedes an aberrant genome, as 
detailed above. For epithelial tissues, the BM is the principle biochemical and physical 
scaffold that must be compromised for in situ disease to become invasive. This specialized, 
layered ECM typically consists of at least one member of the laminin family, type IV 
collagen, nidogens, and heparin sulfate proteoglycans, which signal in a tissue-specific 
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fashion to confer architecture and function to the epithelium (68, 69). Depriving normal cells 
of BM can have drastic consequences. Not only does adhesion to BM protect epithelial cells 
from apoptosis (70), it confers proper tissue polarity to epithelium. For instance, luminal 
epithelial cells from the mammary gland “reverse polarize” when removed from BM and 
cultured in Col-1 (which is found mainly in the stroma); that is, they express apical proteins 
basally, and vice versa (71). Addition of myoepithelial cells, which lie basal to the luminal 
epithelium and secrete laminin-111 in vivo, restores proper polarity to luminal epithelial cells 
(71).  Laminin-111 is critical also to tissue-specific gene expression within the mammary 
gland (72-75), and its organized presence is quite important for preventing carcinoma 
progression.  Co-implantation of myoepithelial cells with a cell line that forms ductal 
carcinoma in situ-like lesions in vivo restrains progression of these cells even in the presence 
of tumor-associated fibroblasts or fibroblasts taken from a chronically inflamed 
microenvironment (76). Myoepithelial cells derived from cancer patients, which fail to 
express laminin-111 (71), cannot confer proper polarity to luminal epithelial cells in culture 
and fail to prevent fibroblast-mediated invasion of in situ lesions (76). This establishes a 
vicious cycle, as loss of epithelial polarity results in upregulated expression of MMP-9, which 
degrades remaining BM and effects of loss of tissue architecture (43). Thus, loss of laminin-
111, or inability to produce laminin-111, results in loss of tissue architecture, accelerated 
degradation of pre-existing laminin-111 and if additional necessary signals are present, 
progression to malignancy. Taken together, these data demonstrate how disruption of tumor 
suppressive components within tissues renders cells sensitive to the coercive elements of the 
tumor microenvironment. 
 
CAF-derived soluble factors promote tumor progression.  
 
Carcinoma-associated fibroblasts (CAFs) are one such element, accounting for up to 80% 
of the fibroblast population in a tumor (77). They arise from fibroblasts resident to the tissue, 
as well as vascular smooth muscle cells, pericytes (78), mesenchymal stem cells (79), and 
even epithelial (80) and endothelial cells (via mesenchymal transitions (81)). CAFs 
phenotypically resemble myofibroblasts—they express fibroblast activation protein, 
incorporate alpha smooth muscle actin within their actin stress fibers, and deposit copious 
amounts of fibronectin, including the extra domain (ED)-A-containing splice variant (49, 82). 
CAF phenotype is stimulated initially, at least in part, by tumor-derived TGF-β1 (83), and the 
soluble nature of this stimulation is reflected by the graded pattern of fibroblast activation 
observed in tumors (84). Fibroblasts closest to the tumor exhibit the highest level of 
activation, as judged by the expression of myofibroblast markers and the ability to induce 
increased MMP production and invasion of co-cultured breast tumor cells (78, 80, 84).  

The demonstration that fibroblasts associated with tumors actually promote tumor 
progression first was reported in prostate cancer. Recombinant tissues composed of CAFs 
isolated from prostate tumors and SV40-transformed prostate epithelial cells displayed loss of 



epithelial architecture, and formed masses more than 10-fold larger than those formed by 
recombinants composed of normal human prostate fibroblasts and initiated epithelial cells 
(85). CAFs from other tissues effect similar outcomes; there is evidence that CAFs play a role 
in accelerating tumor progression in breast (86), ovarian (87), pancreatic (88), and liver (89) 
cancers, as well as others. Sustained secretion of growth factors and cytokines such as TGF-β, 
HGF, SDF-1, and IL-1β by CAFs enhance proliferation and invasion of nearby tumor cells, 
promote angiogenesis (including recruitment of circulating endothelial progenitor cells), and 
stimulate a tumor-promoting inflammatory response (83, 86, 90, 91). However, it should be 
cautioned that fibroblasts from different organs are not the same, since fibroblasts exhibit 
substantial heterogeneity between organs (92). Hence, the mechanisms by which CAFs from 
a given tissue promote tumor progression are likely to differ as well. Case in point, analysis of 
CAFs from skin, cervical, mammary and pancreatic tumors revealed that each have unique 
expression signatures of a pro-inflammatory gene set (90). 

What is clear from these experiments, which by-in-large require the isolation and 
expansion of CAFs, is that the CAF phenotype persists in culture despite the absence of a 
tumor. What is unclear, however, is why. Interestingly, CAFs rarely exhibit somatic genetic 
alterations (93); however, on a population level, they do have reduced expression of the well-
known tumor suppressors p53 and PTEN. Deletion of PTEN in mammary fibroblasts is 
sufficient, all on its own, to steer these cells towards a desmoplastic, pro-inflammatory, pro-
angiogenic phenotype that drastically accelerates tumor growth in mice (94). Therefore, 
epigenetic changes, perhaps caused by sustained over-stimulation by TGF-β and SDF-1 (91), 
or even effected by direct transfer of genetic material from the tumor itself (95), may drive 
altered expression profiles in local fibroblasts that are sufficient to induce and sustain the 
CAF phenotype. Since CAFs persist in culture without the tumor (although the tissue culture 
plastic and milieu is analogous to wounding), the likelihood is that they persist also in vivo 
once the tumor has been removed. What role residual CAFs play in tumor recurrence has yet 
to be defined.    
 
CAF-mediated ECM remodeling promotes loss of tissue architecture and tumor 
invasion.  
 
In addition to soluble factor-mediated effects, CAFs influence tumor progression by 
remodeling the ECM. This remodeling can be constructive or destructive, force-mediated or 
not. Destructive remodeling refers to proteolytic breakdown of ECM. Using organotypic skin 
reconstructs, Gaggioli et al demonstrated that CAFs utilize a combination of MMP- and 
force-mediated remodeling of Col-1-rich ECM to promote invasion of squamous cell 
carcinoma (SCC) cells.  The authors reached this conclusion after first observing that SCC 
cells required a physical association with CAFs in order to invade subjacent ECM. 
Remarkably, pre-conditioning the underlying ECM with CAFs was still sufficient to induce 
SCC cell invasion. How? CAFs secrete MMPs and exert contractile forces to generate tracks 



within the ECM that epithelial cells subsequently invade through in a collective fashion (96).  
Once these tracks are generated, it is quite possible that trailing cells no longer require the 
proteolytic function of MMP molecules to invade the ECM (58, 97, 98). Thus, depending on 
the amount and type of ECM remodeling that has taken place, inhibiting the proteolytic 
function of MMPs (which was hailed as a promising strategy for targeting the 
microenvironment, but has failed to live up to that promise (99)) may prove inadequate to 
prevent invasion of tumor cells.  

Activated fibroblasts are the principle mediator of desmoplasia or excessive ECM 
deposition. Not only does the altered profile of deposited ECM molecules (e.g., Col-1, 
tenascin-C, fibronectin ED-A) alter cellular behavior, but increasing concentrations of these 
molecules results in stiffer tissue that drives integrin clustering and enhanced signaling 
potential. Tumors exhibit up to 10-fold increases in collagen concentration over physiologic 
conditions (100), corresponding to a 24-fold increase in tissue stiffness in a tissue like the 
mammary gland (101). Elevating stiffness out of physiological range is sufficient to alter the 
function of normal mammary epithelial cells by altering cell shape (102), increasing 
intracellular elasticity, inhibiting tissue-specific gene expression (103) and causing 
disorganization of non-malignant epithelia (101). Once epithelia are initiated by any means, 
pathological ECM stiffness drives integrin clustering, focal adhesion formation, ERK 
activation, and ROCK-mediated contractility, ultimately resulting in disrupted tissue 
architecture and an invasive phenotype (101, 104, 105). Blocking integrin clustering or Rho 
signaling in 3-D culture is sufficient to restore proper epithelial architecture, while inhibiting 
collagen cross-linking in MMTV-Neu mice through lysyl oxidase (LOX) blockade results in 
enhanced preservation of epithelial architecture and slowed tumor progression (101, 104).   

Cell-intrinsic and –extrinsic forces also have a significant effect on ECM alignment, 
which in turn profoundly influences tumor invasion. “Tumor-associated collagen 
signatures” were first described by Provenzano and Keely (106), and refer to three possible 
alignments of fibrillar collagen observed at the tumor-stroma interface: random, 
perpendicular/belt-like, or radially aligned. The latter is observed at invasive tumor fronts, 
and patients with radially aligned collagen at the tumor-stroma interface have significantly 
diminished disease-free and overall survival (107-109). One potential mediator of collagen 
alignment is the tumor itself, particularly in instances where stiffening of the stroma enhances 
contractility of tumor cells (104, 110). Physical stimulus from the microenvironment also 
triggers ECM alignment by fibroblasts. Hydrostatic pressure drives water out of capillaries 
into the interstitial (tissue) space to be collected, in part, by lymphatic vessels present within 
the tissue. This interstitial flow can increase by an order of magnitude in pathological 
conditions such as cancer (111). When subjected to pathological flow rates, dermal fibroblasts 
differentiate into myofibroblasts and align themselves and their surrounding ECM 
perpendicular to the direction of flow (112). Strain from the aligned ECM may potentiate 
TGF-β1 activation by allowing fibroblasts to physically pull apart the molecule from its 
ECM-bound latent complex (113), creating a feed-forward loop to sustain the activated 



phenotype. The aligned ECM, in conjunction with factors secreted by activated fibroblasts, 
can then direct tumor invasion.  

Recently, a molecular mediator of CAF-mediated ECM alignment was uncovered. This 
molecule, known as Caveolin-1 (Cav-1), is a scaffolding protein essential to the structure of 
caveolae, or “little caves” in cellular plasma membranes (113). Cav-1 assists with focal 
adhesion maturation (114) and promotes force-dependent remodeling of surrounding ECM 
(115) by embryonic fibroblasts. Whereas loss of Cav-1 in patient stroma is associated with 
increased breast tumor size (116, 117), Cav-1-mediated ECM remodeling by fibroblasts 
enhances tumor invasion and distant metastatic spread. In co-culture assays consisting of 
breast tumor cells and embryonic fibroblasts, Cav-1 expression within the fibroblast 
compartment potentiates directional alignment of Col-1 and fibronectin-rich ECM to facilitate 
tumor cell invasion (115). Cav-1-null fibroblasts are unable to align ECM in culture, and fail 
to promote distant metastasis of co-implanted breast cancer cells in vivo (115). These findings 
open the door for therapies that target both CAF-derived soluble factors that promote tumor 
growth, and molecules such as Cav-1 that promote disruption of tissue architecture to 
facilitate tumor invasion. However, while CAFs are representative of how non-tumor cells 
function in the tumor microenvironment, they are only part of the story. It is important to 
realize that other cell types can be induced to aid tumor cell survival, growth, and invasion as 
well.  
 
Other cell types contribute to the tumor microenvironment.   
 
Our bodies consist of roughly 300 different cell types, a subset of which constantly engage 
each other in any given organ to direct development and maintain homeostasis. One would 
expect that few, if any of the cells in an organ act as silent bystanders during tumor initiation, 
formation and progression. Thus, while we describe known roles for immune cells and 
endothelial cells below, the reader should not construe this to mean that those cell types not 
mentioned are not involved. Instead, the reader should consider these unknown interactions as 
potential avenues of exploration, and an opportunity to define new connections that shape the 
ecological landscape that is the tumor microenvironment.  

Because the immune system is known to protect the host, it was expected that immune 
cells would protected against cancer. But it is now clear that a subset of immune cells in fact 
promote tumor progression. No immune cell type embodies this paradigm shift better than the 
macrophage, which was long pigeon-holed as a phagocytic cell tasked with rejecting a tumor 
until its trophic functions in development and disease became clear (118, 119). Macrophages 
have been classified based on their mode of activation: classically activated/M1 macrophages 
respond to interferon-g by releasing pro-inflammatory cytokines and are involved in T helper 
1 cell-mediated resolution of acute infection, whereas alternatively activated/M2 
macrophages respond to cytokines from T helper 2 cells, and are involved in wounding and 
fibrosis (118). To some, this classification is overly restrictive, and ignores the phenotypic 



diversity displayed by macrophages as they maintain bone homeostasis (120), promote ductal 
branching or involution of the mammary gland (121, 122), function in different steps of the 
angiogenic cascade (123-127) and guide neural networking (128). These diverse functions are 
executed by a number of discrete macrophage subtypes in a tissue- and context-specific 
fashion, which aid these developmental processes by remodeling collagen and secreting a 
host of other factors, including VEGF, TGF-β1, TNF-a, and a number of MMPs (reviewed in 
(118, 119, 129)).  

Tumor-associated macrophages (TAMs) are M2-like in function, and their presence 
correlates with increased vascular density and worse clinical outcome for a number of human 
cancers, including breast, lung, and ovarian cancer (118).  A principle mediator of 
macrophage recruitment to the tumor microenvironment is colony stimulating factor (CSF)-1. 
Once there, CD4-positive (CD4+) and CD8+ T cells steer recruited macrophages towards an 
M2-like phenotype via IL-4. Diminishing CSF-1 levels (130) or neutralizing IL-4 (131) have 
similar effects on mammary tumor progression. Whereas neither inhibit tumor growth, tumor 
progression is slowed and mice have significantly fewer metastases (130, 131).  TAMs 
promote progression and metastasis through ECM remodeling and by secreting many of the 
same trophic factors released by M2-like macrophages during development, such as 
extracellular proteases that degrade BM, disrupt epithelial architecture, and enable invasion 
(130, 132), angiogenic factors that promote new blood vessel formation (133, 134) and 
epidermal growth factor (EGF) as part of a chemotactic EGF-CSF1 paracrine loop that 
mediates co-invasion of tumor cells and macrophages (131, 135).  

It is important to note also that there is a tissue-specificity to immune cell distributions 
that extends beyond macrophage subsets to a host of other leukocytes. The distribution of B 
cells, T cells, and other white blood cells changes change from tissue-to-tissue, and shift also 
in a tissue-specific fashion during tumor progression (136). Thus, it is likely as important to 
understand how leukocyte populations shift during tumor progression as it is to 
understand how phenotypic characteristics of different leukocytes change during tumor 
progression (e.g., the shift from M1- to M2-like macrophages) in order to design therapies 
that effectively target tumor-associated inflammation.  

Blood vessels are generally regarded as conduits for oxygen, nutrients, and hematopoietic 
cells, and as such regarded as passive participants in the tumor microenvironment (137). 
However, this is not correct. Endothelial cells are active participants in the dynamic 
interactions that occur between cells in any tissue. This was established first in development; 
endothelial cells secrete soluble factors that stimulate liver growth and tissue-specific gene 
expression from the pancreas in developing embryos (138, 139). More recently, endothelial-
derived ‘angiocrine factors’ have been shown to comprise niches that maintain stem cells in 
both brain (140, 141) and bone marrow (142-144). Increasing evidence suggests also that 
NOTCH ligands and specific BM molecules expressed in the brain perivasculature mediates 
the survival of glioma-initiating cells and disseminated tumor cells in the brain (145-148).  



Tumor-associated endothelial cells display a host of phenotypic abnormalities, including 
aneuploidy (149), BM irregularities (150), and disrupted mechanosensing due to 
hyperactivation of the Rho/ROCK pathway (150). Elevated MAPK signaling is a symptom of 
disrupted mechanosensing. Interestingly, the suite of factors secreted by endothelial cells 
shifts upon activation of MAPK signaling to a set that promotes proliferation (144), so 
angiocrine factors derived from tumor-associated endothelial cells may also promote 
proliferation of tumor cells. In addition to these direct influences on tumor growth, 
endothelial cells may also modulate tumor behavior indirectly by promoting the polarization 
of macrophages towards a M2-like phenotype (151).  

Significant tumor-promoting roles have been defined also for other immune cells (152), 
as well as endothelial progenitor cells (153), mesenchymal stem cells (79, 154), neurons 
(155), and adipocytes (156). We direct the reader to the references listed to learn more about 
the contributions that these cell types make to the tumor microenvironment. 

 

Metastasis 
 
The study of the microenvironment’s role in metastasis returns us to the beginning of the 
chapter, and harkens back to Paget’s observation regarding the spread of breast cancer that 
was the basis of his “seed and soil” hypothesis (14). The mechanistic underpinnings of this 
hypothesis are perhaps the hottest topic in metastasis research today (157). Whereas it has 
been postulated that tumor cells actively “home” to a given organ site, there is also evidence 
that tumor cells spread indiscriminately (158). In this latter case, certain secondary tissue 
microenvironments, or “soils”, must be particularly hospitable for growth of disseminated 
tumor cells (DTCs). This could happen in three ways: 1) Tumor cells preferentially remodel 
target organ sites before they get there (i.e., they form a pre-metastatic niche); 2) Tumor cells 
bring their own microenvironment with them; or 3) DTCs are dependent on formation of a 
niche that favors their survival and growth upon arriving to the secondary site. The dynamics 
of metastatic relapse displayed by cancer patients suggest that all three of these mechanisms 
are plausible (159), and experimental data from spontaneous and experimental metastasis 
assays in mice offer some insight. We discuss these three possibilities in more detail below: 

The concept of the pre-metastatic niche refers to the priming of distant organs by tumor-
derived factors. This was demonstrated first in immune-competent mice inoculated 
subcutaneously with either B16 melanoma or Lewis lung carcinoma cells. In these mice, 
VEGFR1+ bone marrow-derived progenitor cells (BMDCs) are recruited to future sites of 
metastasis before even the first tumor cells arrive (160). Upon arriving to target organs, 
BMDCs secrete the chemokine SDF-1 to recruit tumor cells (161), upregulate fibronectin 
expression in these tissues to promote engraftment and growth of the recruited tumor cells, 
and activate MMP-9 to destroy BM, disorganize epithelial tissues, and liberate VEGF from 
the ECM (43, 162). In addition to promoting angiogenesis within the tissue, VEGF functions 
also to enhance permeability of the microvasculature and to recruit VEGFR2+ BMDCs that 



contribute to new blood vessel formation. The ultimate result is more rapid activation of the 
angiogenic switch and hence accelerated metastatic outgrowth (160). Subsequent studies have 
pinpointed induction of MMP-2, S100A8 and S100A9 at secondary sites as other principle 
constituents of the pre-metastatic niche (163, 164).  

Tumor-derived agents that induce formation of the pre-metastatic niche continue to be 
uncovered. In the study by Kaplan et al. mentioned above, media conditioned by B16 
melanoma cells, which metastasize to the lung, liver, testis, spleen and kidney, primed Lewis 
lung carcinoma cells, which metastasize only to the lung and liver, to metastasize to a wider 
array of organs (160). What is it in the tumor conditioned medium causing this affect? 
Whereas tumor-derived factors such as VEGF-A, VEGF-C and LOX have been implicated in 
modulating distant microenvironments (163, 165, 166), secretion of soluble factors, which 
ostensibly circulate systemically and thus have the potential to modulate any organ site, does 
not account for the organ-specificity of pre-metastatic niche formation.  

A breakthrough study revealed that tumors execute tissue-specific remodeling of distant 
microenvironments through exosomes, small (30-100 nm) cell membrane-derived 
microvesicles packed with a selected number of molecules. Cargo carried by exosomes 
includes cytokines, growth factors, ECM proteins, mRNA, microRNAs and even 
phosphorylated signaling proteins (167). The exciting discovery that exosomes can be 
transferred from cell-to-cell would indicate that tumor-derived exosomes can activate or 
deactivate a number of signaling pathways in recipient cells to effect tissue remodeling and 
other processes from near or far (167).  

Specific exosome cargos evolve with tumor progression. For instance, a number of 
proteins are upregulated in exosomes from metastatic melanoma (compared to non-metastatic 
disease), including the oncoprotein MET (168). Pre-conditioning mice with exosomes from 
highly metastatic melanoma cells causes subsequently injected poorly metastatic melanoma 
cells to home to a greater number of organs and rapidly form lethal metastases (168). How? 
Melanoma exosomes home to target organs (possibly influenced by expression of specific 
integrins on their surface) and induce vascular permeability to promote entry of circulating 
tumor cells. Additionally, exosomes are taken up by BMDCs, resulting in a MET-directed 
education towards a pro-vasculogenic phenotype. Pro-vasculogenic BMDCs promotes 
metastatic outgrowth of disseminated cells upon arriving to target organs (168). Accordingly, 
exosomes derived from metastatic tumor cells can prime distant organ sites for tumor cell 
extravasation, adhesion, and growth. Thus inhibiting exosome production, engraftment or 
specific exosome contents could prove effective in blocking or disrupting formation of the 
pre-metastatic niche.  

Whereas tumor cells and tumor-derived exosomes have been observed in the blood, only 
recently has the possibility been raised that stromal cells from the tumor microenvironment 
may also wind up in the body’s circulation. Is it possible that tumor cells could be bringing 
their own fibroblasts (soil) to distant organs? A small-scale study (11 prostate cancer patients 
with metastatic disease and 10 with localized disease) revealed that non-epithelial, non-



lymphocytic, fibroblast-like cells were present in blood more than 50% of patients with 
metastatic disease, but absent in all participants with localized cancer (169). Experiments in 
mice have shown the potential significance of circulating fibroblasts, as tumor cells in 
heterotypic tumor-fibroblast fragments exhibit enhanced survival and enhanced efficiency of 
metastatic outgrowth upon reaching target organs (170, 171).   

Aside from pre-conditioning metastatic sites before their arrival or bringing activated 
stromal cells with them as they metastasize, tumor cells are also able to disrupt homeostasis in 
target organs and induce stromal cells to deposit factors that create a favorable metastatic 
niche (172) (Figure 16-4C). Metastatic tumor cell lines can be enriched for lung-, bone- and 
brain-tropism by serial passaging through mice, and these cells reveal distinct gene 
expression signatures that enable more efficient metastasis to these target organs (173-175). 
The products of a number of these genes mediate interactions between the tumor and its 
microenvironment. Follow-up studies have defined a number of ECM molecules and 
extracellular factors such as tenascin-C (176), periostin (177), versican (178), col-1 (179), 
interleukin-6 (180), and tissue factor (181) that comprise the metastatic niche5. From these 
studies, two themes emerge: 1) it is not necessary for both the tumor and the stromal cells to 
express these factors-- either will do, and induction could be reciprocal; and 2) these 
molecules are also commonly expressed during development or wounding in a temporally 
regulated fashion. As a result, the metastatic niche comprises a familiar, hospitable milieu that 
supports DTC survival and growth.  
 

The Frontiers of the Microenvironment: Where to from here? 
 
There are a number of conclusions that can be made from the newly found field of the 
microenvironment. One is that the microenvironment can have both positive and negative 
influences on aberrant cells. The second is that the normal microenvironment may indeed 
protect against tumor progression (for review, see (13)). In addition, two of the most crucial 
directions in this research are understanding how the microenvironment contributes to 
chemotherapeutic resistance, and how therapeutic regimens could be devised that 
simultaneously target tumor cells and their surrounding microenvironment.  
 
The tumor microenvironment promotes drug resistance.  
 
A popular theory about how tumors become chemoresistant is that a given chemotherapeutic 
kills all of the susceptible cells. The fraction that survives then clonally expands, and the 
genetic or epigenetic alterations that rendered these cells resistant largely remain, resulting in 
a tumor that may no longer respond to that given therapy (182). However, it is increasingly 
appreciated that the microenvironment can also significantly impact treatment response.  

                                                               
5 With the caveat that these studies were mostly focused on breast cancer metastasis to the lung. 



One way is by influencing the delivery and distribution of administered drugs. Blood 
vessels in tumors are highly heterogeneous in terms of blood flow and permeability (150, 
183). Thus, depending on its molecular weight, a drug be able to enter one portion of a tumor, 
but never reach another (183). Even if it exits the vasculature, drug transport through the bulk 
of the tumor is greatly influenced by the density of cells and the ECM molecules. Cell density 
impacts the effective concentration of drug taken up by tumor cells, while ECM molecules 
restrict the effective diffusion of a drug due to binding interactions and/or by physically 
restricting mobility through the proteinacious mesh (69, 183, 184). One may thus conclude 
that attenuating the stromal reaction and associated fibrosis and desmoplasia, is a promising 
approach to improve the distribution and efficacy of subsequently delivered 
chemotherapeutics. Indeed, initial attempts at this approach by pre-treating tumors with anti-
fibrotic agents prior to administrating chemotherapeutics appear promising (185, 186).   

Aside from directly impacting delivery of drugs, it is apparent also that privileged niches 
within the microenvironment protect tumor cells from the damaging effects of therapeutics. 
One such niche is the BM. It has long been established that β1 integrin-mediated binding of 
BM suppresses apoptosis of normal mammary epithelial cells (70, 187). Binding of a 
principle constituent of BM-- laminin-111-- via integrin-β1 has been shown also to mediate 
resistance of small cell lung carcinoma to cytotoxic agents (188). BM also directs formation 
of polarized acini that render mammary epithelial cells  resistant to a host of cytotoxic drugs 
and death receptor ligands independent of growth status. This laminin-induced resistance to 
apoptosis is transmitted via integrin α6β4 through formation of mature hemidesmosomes to 
direct cytoskeletal organization and polarity (189).  

Adhesion to other ECM molecules also plays a role in therapeutic resistance. For 
instance, engagement of the fibronectin ED-A splice variant via integrin α5β1 diminishes 
radioresponse of breast cancer cells (190), and association with type VI collagen renders 
ovarian cancer cells resistant to cisplatin (191). These molecules as well as others are likely to 
act by hyperactivating integrin-mediated survival pathways (e.g., integrin->focal adhesion 
kinase->Akt) (192), thus providing tumor cells with a survival advantage.  

It is also important to consider the effects that chemotherapeutics exert on non-tumor 
cells, and how their response alters the tumor microenvironment. For instance, normal 
epithelial cells and stromal fibroblasts respond to the chemotherapeutic mitoxantrone by 
shifting towards a senescence-associated secretory phenotype. This phenotype is 
characterized by secretion of a host of molecules associated with angiogenesis, immune cell 
recruitment, and EMT (193). Hence, a possible byproduct of treatment is that the reactive 
stroma secretes factors that stimulate nearby tumor cells to grow, invade, and spread. This 
applies not just to resident tissue cells, but to recruited myeloid cells also (194-196).  
From these studies, it is apparent that single therapies are highly unlikely to retain their 
efficacy long-term, as tumor cells are able to successfully seek refuge in a variety of 
protective niches.  An attractive solution is to devise therapeutic regimens that target the 



tumor and its microenvironment simultaneously or in step-wise fashion to deprive the tumor 
of the interactions that sustain it in the face of chemotherapy.  
Targeting the tumor microenvironment. In this chapter, we have provided a number of 
examples for how reciprocal interactions between cells and their microenvironment function 
to initiate tumors, force progression, facilitate metastatic outgrowth, and compose a privileged 
niche that confers therapeutic resistance. A logical extension of these findings is that 
inhibiting critical interactions between tumor cells and their microenvironmental constituents 
could slow tumor progression and render these cells more susceptible to treatment. The 
growing literature on the importance of microenvironment that spans now more than a 
century offers a blueprint as to how this can be accomplished, including:  

1. Targeting reactive elements of the tumor microenvironment. This notion has spurred 
a number of studies aimed at testing new therapies (and revisiting others) that target 
angiogenesis, fibrosis, inflammation, desmoplasia, and other aspects of the tumor 
microenvironment. A summary of these drugs is presented in Table I. 

2. Inhibiting signals that impart chemotherapeutic resistance, e.g., β1-integrin mediated 
signaling, prior to or coincident with administration of chemotherapeutics. 

3. Reverting the tumor microenvironment. By coming to a more complete 
understanding about the signals that cease the development of tissues, or those that 
deactivate wounding stroma, therapies based on these same cues will perhaps have 
the same effect on tumor stroma.  

In the end, it is important to remember that genes, ECM, forces, or other components of 
the tumor and the microenvironment do not function in a vacuum. They are constantly 
engaged in dynamic and reciprocal interactions, and it is the balance of signaling between all 
of these components that is key. When this balance is disrupted, so is tissue homeostasis, and 
we have provided examples above for how this can result in tumor initiation and accelerated 
progression. Remember also that there is likely no one way to restore the balance of signaling 
in a tumor.  Just as tumor types are different, tumor microenvironments differ from tumor-to-
tumor and patient-to-patient. Accordingly, one should investigate multiple therapeutic 
avenues, and remain open to how they can be applied concert, as this is likely to provide the 
best means to manage tumors and improve patient outcome.  
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a  b  s t r a  c t

The emergence of clinical drug  resistance  is still one  of the  most  challenging factors  in  cancer treatment

effectiveness.  Until more recently,  the  assumption  has  been  that random  genetic  lesions are  sufficient  to

explain  the  progression of malignancy  and escape  from  chemotherapy. Here we propose an  additional

perspective,  one  in which  the  tumor cells  despite  the  malignant genome  could  find  a  microenvironment

either  within  the  tumor  or  as  a dormant  cell to  remain polar  and  blend  into an organized  context.  Targeting

this  dynamic  interplay could be  considered a new avenue  to  prevent  therapeutic resistance,  and  may  even

provide a  promising effective  cancer  treatment.

Crown Copyright ©  2012 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Despite the large repertoire of therapies available and the con-

tinuing efforts to incorporate new drugs into clinical practice, it

is generally realized that we  still have a  long way to go to con-

trol cancer. This is  particularly evident in patients with metastatic

solid cancers, frequently resistant to  first-line chemotherapy, the

approach thus merely palliative, most often leading to progression

of the disease and ultimate demise. Many factors conspire to  limit

treatment effectiveness, including restrictions in  drug distribution

and penetration (Jain, 1989), and a  certain degree of selectivity for

the very cells drugs are designed to  eradicate. One of the most

challenging of these limiting factors is multidrug resistance (MDR),

reflected in our lack of clear understanding of how cells evolve to

ensure their survival and facilitate metastasis when challenged by

therapeutic intervention.

The conventional assumption, based on single cell studies of

drug-resistant clones selected after prolonged exposure to  cyto-

toxic agents, has been that multiple mutations are sufficient to

fuel both tumor growth and clinical MDR  (Vogelstein and Kinzler,

2004). Although this may  reflect dispersed tumor cell systems such

as leukemia, there is substantial data indicating that such unicel-

lular drug resistance mechanisms represent but one cause of the

effective clinical resistance expressed by multicellular solid can-

cers in vivo. These tumors are more than just a  clonal expansion

of mutant cells; they are organ-like structures (Bissell and Radisky,

2001; Radisky et al., 2001) and as such exist in  intimate relationship
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with other cells within the tumor and the surrounding microenvi-

ronment. It is  thus reasonable to hypothesize that the dynamics

of this rich and ever changing ecosystem encloses additional,

but crucial information for mutated genes to exert their influ-

ence, and can itself determine the overall sensitivity to anti-cancer

drugs. Here we briefly describe how the solid tumor microenvi-

ronment/architecture may  in  fact significantly contribute to the

emergence of therapeutic resistance, and discuss the possibility

of targeting and manipulating this complex symbiotic interplay to

overcome MDR.

2. Cells and their microenvironment: the reciprocal
communication that defines normal and malignant
contexts

Maintaining the status quo in  adult tissues requires that newly

generated cells adopt the appropriate fate and contribute to the

structure and function of the organ to which they belong. Two-way

communication therefore has emerged as the organizing principle

that enables “dynamic and reciprocal” exchanges of information

between cells and their surroundings (Bissell et al., 1982, 2002).

According to this model, tissues and organs are embedded in

extracellular matrix (ECM)/basement membrane (BM) that pro-

vide them structural support and contextual information together

with soluble factors. The model of Bissell et al. (1982) took the

bidirectional cross talk between the ECM and the cell membrane

(Bornstein et al., 1982), and extended it to the level of control of

gene expression, by connecting ECM–ECM receptor interactions to

the cytoskeleton and to the nuclear matrix and chromatin. Indeed

Bissell and Hall (1987) argued that in the last analysis the organ

(or indeed the organism) is the unit of function in all organisms.

Cells respond then to cocktails of soluble and insoluble signaling

molecules and, in turn, tune their microenvironment. It  is  the result

1368-7646/$ – see  front matter. Crown Copyright ©  2012 Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.drup.2012.01.006
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of this harmonious combination that governs tissue dynamics and

function.

The importance of ‘tissue interaction’ to formation of organs

was first hypothesized by  Pander (1817).  Over a century later,

seminal work of early developmental biologists demonstrated that

cells of distinct embryonic lineages engage in  a highly organized

cross talk that ensures proper cell sorting and directs tissue and

organ morphogenesis and differentiation (reviewed by  Nelson and

Bissell, 2006). It is important to mention that phenotypic plasticity

is implicit to this normal differentiation (Bissell, 1981), as within an

individual, genotype does not specify a  strictly defined phenotype,

but instead a range of phenotypic manifestations within a  norm of

reaction. In  an example of the dominance of the microenvironment

over even a  potent oncogene, Dolberg and Bissell injected Rous

sarcoma virus (RSV), encoding the oncogene v-src, into the wings

of chick embryos, and observed the initial normal development of

the embryos, despite the presence of the active oncogene (Dolberg

and Bissell, 1984; Howlett et al., 1988). However, when these same

embryonic wings were removed from the greater context of the

embryo, they quickly displayed a transformed phenotype in a  tissue

culture dish (Stoker et al., 1990), suggesting the embryonic environ-

ment or context was dominant over the pp60 Src. This suppression

was not absolute, and a  profound microenvironmental change, such

as the one occurring when the embryos got closer to hatching,

favors aberration and disintegration in  blood vessels and other tis-

sues as was seen also in experiments of Hochedlinger et al. (2004).

Subsequent experiments showed that the wound-healing response

is a critical event that creates a  permissive environment also for RSV

tumorigenesis in chickens (Dolberg et al., 1985). Together, these

studies demonstrated that oncogene expression was  compatible

with an apparently normal tissue morphogenesis in the embryo

presumably since the wound healing response is different in the

embryo, and that the tumorigenic phenotype could be revealed

after microenvironmental perturbations, such as those induced by

culturing cells on plastic with serum or wounding in the adult

chicken.

Evidence of the coexistence of normal and malignant cell pop-

ulations within the same tissue, without resulting in a  frank

malignant tumor, has been reported also in  human tissue spec-

imens. Studies of large autopsy series have revealed that the

majority of middle-aged and older people who die  from causes

other than cancer have frequent precancerous lesions throughout

their bodies (Rich, 1979; Nielsen et al., 1987; Harach et al., 1985;

Folkman and Kalluri, 2004). Analyses of ‘normal’ epithelial tissue

adjacent to tumors have shown that similar patterns of mutations

can be found in both, yet tumor growth is restrained by  normal

contextual cues (Deng et al., 1996; Washington et al., 2000). These

and other related findings led Bissell and Hines recently to propose

the microenvironment as the attenuator of both tumor onset and

malignant progression, providing a  rational framework to  explain

why the majority of people live cancer-free lives for decades, yet

harboring a  number of harmful mutations they accumulate over

time (Bissell and Hines, 2011). Another example is  that despite the

fact that people with familial BRCA or APC mutations have these

in all their cells yet they develop tumors only in a  few of cells in

specific organs.

If reciprocal communication between a normal context and

ECM defines the normal tissue homeostasis, the opposite should

also be true: abnormal context should lead to  abnormal conver-

sation allowing cells to disregard sorting rules and violate normal

tissue boundaries, setting the stage for cancer progression. That

this indeed is  the case has long been obvious to pathologists, as

judged by common reports of fibrotic tissue, ECM deposition, and

immune and inflammatory infiltration, collectively called ‘reactive’

tumor stroma. As early as 1938, Orr observed that morphological

changes in the microenvironment of the skin of carcinogen-treated

mice appear long before neoplastic alterations in epithelial cells

(Orr, 1938). Subsequently, Tarin showed that complex sequen-

tial changes occur at the epithelial–mesenchymal boundary during

mammary tumor progression (Tarin, 1969), and insights into the

nature of these reciprocal tumor–stromal interactions have grad-

ually accumulated. The presence of cancer-associated fibroblasts

(CAFs) has been reported in many cancer types, and bidirec-

tional CAF–epithelial interactions were shown to  precede invasion

and stimulate tumor growth and progression (Picard et al., 1986;

Camps et al., 1990; Hayashi et al., 1990; Skobe and Fusenig,

1998; Thomasset et al., 1998; Olumi et al., 1999; Cunha et al.,

2003; Bhowmick et al., 2004). Concomitantly, cancer cells overpro-

duce proteolytic enzymes, particularly metalloproteases (MMPs)

(Chambers and Matrisian, 1997), which generate fragments with

pro-migratory and pro-angiogenic functions (Folkman and Kalluri,

2002) as well as activate cell-surface and ECM-bound growth fac-

tors (Egeblad and Werb, 2002), reflecting the extensive crosstalk

between the microenvironment and the malignant cells. Other

examples include overexpression of an autoactivated form of

MMP3  in mouse mammary gland epithelium where the MMP  dis-

rupts the integrity of the BM,  leading to  the development of  a

reactive stroma and eventually genomically unstable mammary

tumors (Sympson et al., 1994; Thomasset et al., 1998; Sternlicht

et al., 1999). Recently, adipocytes have been recognized as impor-

tant mediators of normal context disruption as well, since they

produce a host of biologically active molecules that promote

the inflammatory process and angiogenesis (Iyengar et al.,  2005;

Motrescu and Rio, 2008; Cao et al., 2010; Dirat et al., 2011).

Preference for metastatic colonization is heavily influenced also

by  communication between circulating tumor cells and bone

marrow-derived cells (BMDCs), which home to  the tumor and pro-

mote progression, escape from the tumor, survival and ultimately

metastatic growth (reviewed in Joyce and Pollard, 2009).

3. Tumor microenvironment facilitates the emergence of
MDR

As  discussed above, tumors exist in intimate relationship with

the surrounding microenvironment, and it is the dynamics of  this

heterogeneous and ever changing ecosystem that provides addi-

tional but crucial information for mutated genes to exert their

function. In addition to initiating and supporting the tumorigenic

process, a permissive microenvironment can also affect the sen-

sitivity of tumor cells to drug treatment. The composition and

organization of the ECM and stromal components contribute to

marked gradients in  drug concentration, increased interstitial fluid

pressure and metabolic changes, all of which can strongly enhance

the resistance of tumor cells to drug agents (Dang and Semenza,

1999; Heldin et al., 2004; Di Paolo and Bocci, 2007). That the three-

dimensional structure of the tissue itself could also account for

tumor resistance to radiation and chemotherapy was first rec-

ognized by Sutherland and co-workers in  the early 1970s. Using

Chinese hamster lung fibroblasts and EMT-6 mammary tumor cells,

they showed that multicellular spheroids were markedly more

resistant to  radiation and distinct doses of adriamycin than the

same cells cultured in monolayer (Durand and Sutherland, 1972;

Sutherland et al., 1979). This finding led  Teicher and colleagues

to  hypothesize that resistance to anticancer drugs could develop

through mechanisms operative only in vivo. By deriving a  series of

alkylating agent-resistant variants of the EMT-6 mouse mammary

tumor, they surprisingly found that those cells plated on plastic

culture dishes were no more resistant than the parental EMT-6

cell  line, but they would reexpress their drug resistance properties

upon reinjection in mice or when grown in  three-dimensional con-

ditions (Teicher et al., 1990; Kobayashi et al., 1993). Further work

demonstrated that this rapid reappearance of resistance represents
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a physiological strategy of adaptation implicit to a  multicellular

tissue, involving cell-cell and cell-ECM interactions, and it may

be one reason to  explain the seemingly rapid development of

drug resistance in some patients who are initially responsive to

chemotherapy (Graham et al., 1994; Durand and Olive, 2001; Kerbel

et al., 1996).

3.1. Cell adhesion-mediated drug resistance (CAM-DR)

While adhesion is  essential for normal cells to grow and survive,

anchorage-independence for growth and survival is considered an

essential feature of malignant cells (Frisch and Francis, 1994). We

demonstrated in 1995, that loss of �1-integrin-mediated adhe-

sion in non-malignant mammary cells leads to  apoptosis and

that Laminin-111 specifically was needed for survival (Boudreau

et al., 1995). Some tumor cells lose �1-integrin altogether (Howlett

et al., 1995), others dramatically upregulate the level, but driving

the level down using inhibitory antibodies allows these cells to

reversibly ‘revert’ to a  ‘normal’ phenotype, and reduce tumor take

and size appreciably despite the malignant genome (Weaver et al.,

1997; Wang et al., 1998, 2002; Weaver and Bissell, 1999; Bissell

et al., 2005). Adhesion to  ECM via �1-integrins can also enhance the

tumorigenicity and resistance of multiple myeloma and small cell

lung cancer (SCLC) cells to chemotherapeutic agents doxorubicin

and melphalan (Fridman et al., 1990; Sethi et al., 1999). Conversely,

preventing tumor cell adhesion by  blocking integrin binding to ECM

and stromal cells results in a dramatic reduction in tumor burden

and increases considerably the overall survival in  a mouse model of

multiple myeloma (Mori et al., 2004). The combination of this anti-

adhesion approach with conventional cytotoxic melphalan proves

even greater efficiency, reducing tumor load substantially more

than either treatment alone. Similar observations by Park et al.

(2006, 2008) show that inhibition of �1-integrin allows also for a

significant reduction in tumor volume and increases sensitivity to

ionizing radiation (IR) in human breast cancer xenografts. Recent

work has also showed that inhibition of �1-integrin significantly

increases the sensitivity of HER2-amplified breast cancer cell lines

to Trastuzumab and Pertuzumab. This study has also reported dra-

matic differences in  response to therapeutic agents for cells grown

in monolayer as opposed to three-dimensional matrices, highlight-

ing again that cellular response to  drugs is context dependent

(Weigelt et al., 2010).

Simple culture models have been used to delineate specific

molecular mechanisms of cell adhesion-mediated drug resistance

(CAM-DR) – the term coined to describe a rapid form of drug resis-

tance mediated by adhesion. For example, allowing adhesion of

human SCLC to the ECM components fibronectin or laminin confers

those cells a  survival advantage under acute exposure to cytotoxic

drugs, by inhibiting drug-induced apoptosis (Sethi et al., 1999). Not

unique to SCLC, resistance-promoting effects by integrin-mediated

adhesion to ECM were also observed in  cancers of the pancreas

(Cordes and Meineke, 2003), ovary (Maubant et al., 2002; Sherman-

Baust et al., 2003), prostate (Miyamoto et al., 2004), breast (Aoudjit

and Vuori, 2001; Menendez et al., 2005), liver (Zhang et al., 2002),

brain (Uhm et al., 1999) and leukemia (Damiano et al., 1999; de la

Fuente et al., 2003). Further studies in  leukemia cell lines showed

that �1-integrin-mediated adhesion could modulate cellular local-

ization and availability of several apoptotic regulators (such as

CASP8, c-FLIPL and BIM), preventing tumor cells from apoptosis and

favoring MDR  (Shain et al., 2002; Hazlehurst et al., 2007). Interest-

ingly, this mechanism of CAM-DR identified in cell culture models is

consistent with patterns of low expression of apoptotic promoters

in patients with resistant acute lymphoblastic lymphoma or acute

myeloid leukemia (Flotho et al., 2006, 2007; van Stijn et al., 2005).

Integrin binding to  ECM and stromal cells can also con-

trol cell cycle progression in both hematological and epithelial

malignancies. Work by Hazlehurst et al. (2003) reported that

G1 arrest of myeloma cells induced by �1-integrin adhesion to

fibronectin correlates with upregulated levels of cell cycle regu-

lator p27, and enhanced resistance to etoposide (Hazlehurst et al.,

2003). Later studies showed that integrin-mediated adhesion could

also interfere with ubiquitin-proteasome proteolytic pathways.

For example, preventing p27 proteosomal degradation induces

cell cycle arrest in non-Hodgkin B cell lymphoma and hepato-

cellular carcinoma cell lines, leading to  extreme drug resistance

(Lwin et al., 2007; Fu et al., 2007). In addition to being signif-

icantly less chemosensitive, tumor cells grown on certain ECM

components show prolonged radiation-induced cell cycle arrest in

contrast to cells growing on non-specific substrates (Cordes and van

Beuningen, 2004; Kremer et al., 2006; Dimitrijevic-Bussod et  al.,

1999). This delay appears to provide more time for DNA dam-

age repair at distinct cell cycle checkpoints after genotoxic injury

(Bartek and Lukas, 2001). Experiments in non-tumorigenic lung

endothelial and hemopoietic cancer cell lines demonstrated that

integrin-ECM interactions can strongly affect the machinery of DNA

damage recognition and repair (Hoyt et al., 1997; Hazlehurst et al.,

2003; Jones et al., 2001). Activation of these pathways by adhesion

of  tumor cells to ECM is  likely to accelerate and optimize the effi-

cacy of DNA damage repair after irradiation, providing for a  more

stable genome and thus cell survival.

The absence of unit tissue architecture inherent in two-

dimensional (2D) cell culture systems used in the majority of  the

studies referred to above explains why so many of these cells do

not express tissue specific functions (for review see Bissell, 1981;

Bissell et al., 2005). When normal mammary cells were cultured

in a  laminin-rich ECM gel (3D lrECM) (Barcellos-Hoff et al.,  1989)

the cells reorganized, and both form and function were restored.

This concept was used to develop an assay that could distinguish

between non-malignant and malignant cells on the basis of their

structural integrity. Whereas non-malignant cells formed polar-

ized growth-arrested acini in  lrECM, primary breast tumor cells

or breast cancer cell lines formed highly disorganized and prolif-

erative colonies (Petersen et al., 1992; Weaver et al., 1995). Under

these conditions the balance of signaling pathways are deranged

in  tumor cells. Antagonizing one or more of the many signaling

pathways that are  deregulated in tumor cells causes them to func-

tionally revert to a  ‘normal’ phenotype, despite their malignant

genome (Howlett et al., 1995; Weaver et al., 1997; Wang et al., 1998,

2002; Kirshner et al., 2003; Weaver and Bissell, 1999; Muschler

et al., 2002; Liu et al., 2004; Weir et al., 2006; Itoh et al., 2007;

Kenny and Bissell, 2007; Beliveau et al., 2010). Interestingly, there

is  a reciprocal interaction between any oncogenic pathway and all

the rest in 3D and the changes do not occur in 2D (Anders et al.,

2003). Together, these data show that tissue architecture can over-

ride the proliferative and invasive malignant phenotype of  breast

tumor cells, but that reversion to a  ‘normal’ phenotype is depend-

ent upon sensing of the appropriate spatial and biochemical cues

from the microenvironment.

The same concepts were later used to demonstrate that sur-

vival and sensitivity to drugs used in the clinic of human breast

cells  is dependent on cell and tissue polarity as well as integrin-

mediated adhesion to BM and does not  correlate with the rate

of growth or quiescence (Weaver et al., 2002) (Fig. 1). Briefly,

when non-malignant and malignant cells were treated with three

immunomodulators (Trail peptide, anti-FAS antibody and tumor

necrosis factor TNF-�) and three chemical drugs (the topoiso-

merase II inhibitor etoposide, the microtubule modulator paclitaxol

and actin cytoskeleton disruptor cytochalasin B) on 2D,  the rate

of apoptosis was  equivalent in both cell types with high statis-

tical significance. However, when placed in  3D  lrECM, the cells

that become polarized (either non-malignant or reverted tumor

cells) were resistant to  all six agents, whereas disorganized cells
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Fig. 1. Polarized mammary structures are resistant to  apoptosis induced by chemotherapeutics. When cultured on  2D monolayer, both non-malignant (A) and malignant

(B)  human breast cells show a similar rate of apoptosis upon treatment with distinct immunomodulators and chemical agents. However, when placed in 3D lrECM, S-1

non-malignant cells form polarized growth-arrested acini resistant to  drug cytotoxic effects (C), whereas T4-2 malignant cells appear highly disorganized, proliferative and

sensitive to therapeutic drugs (D). Perturbing apical–basal polarity of S-1 acini, by  treatment with E-cadherin function-blocking antibody, results in a dramatic increase of

sensitivity to drug agents (E). Conversely, restoring cell  and tissue polarity in T4-2 structures, by treatment with �1  integrin inhibitory antibody, induces malignant cells

to  ‘revert’ and provides them resistance to chemotherapeutic agents (F). Polarized mammary epithelial cells are resistant to apoptosis induced by cytotoxic agents, either

growth-arrested (C) or proliferating (G). In contrast, growth-arrested but reversely polarized S-1 cells grown in collagen I ECM undergo apoptosis (H, upper panel); once

exposed to lrECM, these S-1 non-polar structures polarize and become resistant to apoptosis (H, lower panel).
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both normal and malignant were equally sensitive. It was shown

that the resistance to apoptosis depends upon the 3D  organiza-

tion of the acini and is functionally linked to �4-integrin-directed

hemidesmosome formation and NF�B  activation. Expression of a

�4-integrin that lacked the hemidesmosome-targeting domain dis-

rupted tissue polarity and triggered apoptosis by all drugs tested

(Weaver et al., 2002).

Aside from determining cell and tissue architecture, the way

cell surface adhesion molecules perceive ECM also affects nuclear

structure and chromatin organization. Experiments in  mammary

epithelial cells demonstrate that ECM can modulate the transcrip-

tion of the �-casein gene by activating an ECM/response element

inducing rapid histone modifications (Schmidhauser et al., 1992;

Myers et al., 1998). Studies by Maniotis et al. (1997) in fibrob-

lasts and endothelial cells have also confirmed that alterations in

surface-adhesion receptors are channeled along cytoskeletal fil-

aments and ultimately concentrate at the nucleus to  reorganize

chromatin structure and gene expression. The work that followed

brought the first demonstration that cells experience a complete

and global reorganization of chromatin in  response to a  certain

ECM composition and thickness (Maniotis et al., 2005; Sandal et al.,

2007). Laminin specifically, but not fibronectin or Type I  colla-

gen, greatly increased the resistance of chromatin digestion by AluI

restriction enzyme in breast cancer cells. This suggests chromatin

reorganization as another mechanism by  which cells develop CAM-

DR, particularly to drug agents that bind to or disrupt DNA.

3.2. ‘Forcing’ malignant progression and therapeutic resistance

Cells and ECM exert positive and negative tension on each other.

Cells sense force through mechanoreceptors and respond by gener-

ating mechanical tension in  their actin cytoskeleton and adhesions

to ECM (Ingber, 1991, 1997). This phenomenon of mechanore-

ciprocity maintains tensional homeostasis in the tissue and is

crucial for normal tissue-specific development (Krieg et al., 2008).

Each tissue has a particular ‘stiffness phenotype’ and each cell type

is finely tuned to the specific tissue in which it resides. An increase

in ECM protein concentration, matrix crosslinking or reorienta-

tion of matrix fibrils can stiffen a  tissue locally to alter cell growth

or direct cell migration (Discher et al., 2005). This has important

implications for development and frequently leads to disease pro-

gression, including cancer. For example, malignant transformation

of the breast has been associated with a  dramatic and chronic

increase in  mammary gland tension and ECM stiffening (Krouskop

et al., 1998; Plewes et al., 2000) (Fig. 2). Here we describe the variety

of physical stresses experienced by transformed mammary epithe-

lial cells (MECs) within a breast tumor, which can dramatically

enhance cell growth, survival, motility, invasion, and ultimately

compromise therapeutic response.

At the tissue level, actively proliferating transformed MECs exert

gradually increased compression stresses in the ductal tree. Once

the tension becomes large enough, the tumor mass compresses

intratumoral vessels, and prevents the blood flow, producing

regions of tissue hypoxia and compromising the efficacy of tumor

therapy (Roose et al., 2003; Shannon et al., 2003). Likewise, com-

pression stress also increases the interstitial pressure, blocking

tissue vasculature and lymphatic networks, and impairing drug

delivery and immune cell infiltration and clearance (Jain, 2001;

Padera et al., 2004). When a  tumor forms within a  breast, even non-

malignant cells within that breast experience fields of increased

resistance force (increased stiffness) in  their ECM microenviron-

ment that alternate with pockets of high compliancy (decreased

stiffness). Such fluctuations in the ECM elastic properties likely arise

from the activation of resident stromal fibroblasts and infiltrat-

ing immune cells, as well as the increased deposition, processing

and cross-linking of ECM proteins (Ebihara et al., 2000; Chiquet

et al., 2009). All these changes can strongly influence the behavior

of transformed MECs, either by directly activating mechanotrans-

duction pathways or by indirectly stimulating resident mammary

gland stromal fibroblasts to  release various cytokines, growth fac-

tors and ECM degrading enzymes (Decitre et al., 1998; Yeung et al.,

2005; Wozniak et al., 2003). For example, increases in  matrix stiff-

ness that enhance cell contractility have been found as sufficient to

induce transformation of mammary epithelial cells (Paszek et al.,

2005; Samuel et al., 2011). Conversely, a  decrease in  tissue stiffness

by inhibition of collagen crosslinking prevents malignant growth

and tumor progression in a murine model of breast cancer (Levental

et al., 2009). Increased matrix stiffness has been recently impli-

cated also in  the modulation of chemotherapeutic resistance in

hepatocarcinoma cells (Schrader et al., 2011). The relation of the

biomechanical properties of the microenvironment with the emer-

gence of therapeutic resistance is still in its infancy and requires

much more attention.

3.3. Plasticity of cell phenotype and the emergence of MDR

The tumor microenvironment is  extraordinarily heterogeneous:

different numbers and types of infiltrating normal cells, distinct

densities of blood and lymphatic vasculature, and singular compo-

sition of extracellular matrix. For  this reason, cells within a  given

tumor are  expected to experience an array of microenvironmental

cues, which will in  turn translate into several phenotypic manifes-

tations. In epithelial cancers, these adaptive changes may  involve,

at least in part, a  stepwise cycle of epithelial plasticity, governed by

epithelial to mesenchymal transitions (EMT) and the reverse mes-

enchymal to  epithelial transitions (MET). It  is  now believed that this

state is a  reversible change of cell phenotype (Petersen et al., 2003),

characterized by loose cell–cell adhesion, disruption of  apical–basal

polarity and cytoskeleton reorganization. Cells become isolated,

motile and resistant to apoptosis (Thiery et al., 2009). Although

EMT was  initially defined to support normal tissue remodeling

and diversification during development, an intermediate EMT-like

process, meaning transient plasticity, is also evoked during tumor

progression, metastasis and recently drug resistance (Lee et al.,

2006). For instance, an EMT-like signature was  identified as  a  deter-

minant of insensitivity of non-small cell lung carcinoma (NSCLC)

cell lines and xenografts to  the small molecule-EGFR-inhibitor

Erlotinib (Tarceva) (Yauch et al., 2005; Thomson et al., 2005). These

results were also confirmed in  other types of tumors, such as head

and neck squamous cell carcinoma (HNSCC) and hepatocellular

carcinoma, as well as for treatment with other EGFR inhibitors

such as Gefitinib (Iressa) (Frederick et al.,  2007) and Cetuximab

(Erbitux) (Fuchs et al., 2008). The implication of EMT  in  thera-

peutic drug resistance has been increasingly reported, for example

gemcitabine resistance in pancreatic tumor cell lines (Shah et  al.,

2007), Oxaliplatin resistance in  colorectal cancer cells (Yang et al.,

2006), Lapatinib resistance in breast cancer (Konecny et al., 2008)

and Paclitaxel resistance in  both breast (Cheng et al.,  2007) and

epithelial ovarian carcinoma (Kajiyama et al., 2007).

3.4. Microenvironment-induced protective quiescence

The selective pressure imposed by conventional chemotherapy

regimes eliminates certain cells within the tumor population. This

surviving population following chemotherapy is referred to as min-

imal residual disease; these cells either can stay within the tumor or

most likely have already found refuge in protective microenviron-

ments in specific organs, depending on the origin of the primary

tumor. These dormant cells remain in a state of quiescence until

they sense signals to start a  burst of growth. Failure of the ini-

tial therapy to  eradicate these cells to prevent tumor recurrence

is  clearly one of the main barriers to effective cancer treatment.
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Fig. 2. Mammary gland tissue becomes increasingly stiffer during tumor progression. Each tissue has a  particular ‘stiffness phenotype’ (stiffness measured in Pascals –  Pa)

and  each cell  type is finely tuned to the specific tissue in which it resides. For example, fat  tissue is much softer than cartilage. Thus, a highly compliant matrix favors

adipogenesis, whereas osteoblast differentiation is optimal on stiffer ECM. Similarly, normal mammary gland development is optimally supported by  interaction of epithelial

cells  with a soft matrix. During tumor progression, breast tissue becomes increasingly stiffer and tumor cells become significantly more contractile and hyper-responsive to

highly  compliance signals. Although breast tumors are much stiffer than the normal mammary gland, the material properties of a  breast tumor or any other physiological

environment remain significantly softer than those of glass or plastic culture dishes.

For example, the presence of bone marrow micrometastases in

about 30% of patients with breast cancer at the time of diag-

nosis is a  strong predictor of disease recurrence (Karrison et al.,

1999; Bidard et al., 2008). It  is  reported that  15–20% of patients

still have disseminated tumor cells in the bone marrow regardless

of the aggressiveness of the treatment (Wiedswang et al., 2004).

But how do some cells manage to become quiescent to survive

the selective pressure of therapeutics? We  suggest that, despite

the malignant genome, some tumor cells can find a microenvi-

ronment to allow them to remain polar, blend into an organized

context and survive in a  quiescent state similar to our studies

on reversion described above. Polar cells are quiescent. However,

cells with reverse polarity in 3D cultures are also quiescent, and

yet they die when treated with chemotherapeutic agents, whereas

the polar cells do not (Gudjonsson et al., 2002; Weaver et al.,

2002). Studies with metastatic hematopoietic, colon adenocarci-

noma and breast cancer cells show that tumor-ECM interactions

indeed determine a state of quiescence associated with CAM-DR

(Nefedova et al., 2003; Korah et al., 2004; Schmidt et al., 2001).

Similar observations in mouse models of breast cancer micrometas-

tasis confirmed that microenvironments that induce dormancy

harbor cells that become quiescent and tolerant to doxorubicin

(Naumov et al., 2003; Goodison et al., 2003). Further support

for the concept of microenvironmental-induced quiescence comes

from data from bone marrow specimens from breast, gastric and

colorectal cancers, in which micrometastasis with marked signs

of quiescence were found in  34% of the patient cohort (Pantel

et al., 1993). Whereas some cells interpret the microenvironment

as conducive to quiescence, others may  remodel and/or repro-

duce a microenvironment that would be permissive for growth

of dormant cells. Experiments in myeloma cells showed that a

dynamic interaction with their surrounding stroma allows tumor

cells to proliferate in  response to IL-6 stimulation while still

adhered to a  fibronectin matrix (Shain et al., 2009). In vivo studies

demonstrated that single mammary epithelial tumor cells can

remain dormant in metastatic sites for long periods of time, but

retain their ability to  proliferate when transplanted to their tissue of

origin (Naumov et al., 2002). A similar switch between proliferation

and growth arrest controlled by the tumor cell–microenvironment

crosstalk was  observed in head and neck carcinoma (Aguirre Ghiso

et al., 1999). In this model, the metastasis-associated urokinase

receptor (uPAR) drives tumor growth by interacting and activating

�5�1-integrins, whereas blocking this interaction results in tumor

suppression due to induction of dormancy. A more detailed anal-

ysis of the mechanisms and markers of dormant cancers will be

important for the choice of therapy when patients are known to

have minimal residual disease.

4. Treating the tumor microenvironment to overcome MDR

We believe that the same mechanisms that  help us not to

develop more cancers (Bissell and Hines, 2011) can also help

keeping dormant cells dormant (Fig. 3). The initial attempts

to reconstruct the correct microenvironment were based on

co-culture assays. Analyzing combinatorial products of  human

prostate epithelial and fibroblast cells, Olumi et al. (1999) showed

that normal stromal cells inhibit the progression to epithe-

lial malignancy. Similarly, Javaherian et al. (1998) were able

to  suppress early stages of neoplastic progression of malignant

keratinocytes by introducing an excess of normal keratinocytes.

However, it became evident that the 3D architecture and the com-

plex network of interactions that characterize both organs and

tumors were traits simply not possible to  recapitulate in traditional

2D cultures. In the last two decades, engineered animal models and

3D culture systems have become commonplace, making it possible

to start dissecting the plasticity of the tumor ecosystem and mech-

anisms by which microenvironmental signals could lead to tumor

cell reprogramming and ‘reversion’. In addition to the work from
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Fig. 3. Postulated steps in drug resistance and dormancy. Cancer cells exist in intimate relationship with other cells within the tumor and the surrounding microenvironment.

This  dynamic coalition ensures tumor survival and proliferation, but may  determine also the overall sensitivity to anti-cancer drugs. The selective pressure imposed by

conventional chemotherapy regimes eliminates certain cells within the tumor population. The surviving population following chemotherapy is referred to as minimal

residual disease; despite the malignant genome, these cells can  find a  microenvironment to allow them to  remain polar, blend into an organized context and survive

therapeutic insults. These protective microenvironments facilitate the development of drug resistance by  distinct molecular mechanisms, including: intercellular and cell-

ECM  adhesion; cell communication by various soluble factors and overproduction of proteolytic enzymes; alterations in mechanosensing that disrupt tensional homeostasis

in  the tissue; phenotypic transitions for cells to  become isolated, motile and resistant to  apoptosis; and a state of protective quiescence, either within the tumor or in specific

organs  depending on the origin of the primary tumor. Over time, drug resistant cells develop even more permanent mechanisms of resistance (acquired resistance), and

eventually cause disease recurrence and metastatic growth.

Bissell laboratory described above, Hendrix and colleagues con-

duced a  series of elegant studies elucidating the regulation of tumor

cell plasticity by an embryonic milieu of human stem cells (hESCs),

zebrafish or chick (Topczewska et al., 2006; Kulesa et al., 2006).

Her laboratory has also developed a  3D model to  demonstrate

that the microenvironment of hESCs can reprogramme aggressive

melanoma cells toward a less aggressive melanocytic-like phe-

notype (Postovit et al., 2006). Work from Gil Smith laboratory

has demonstrated that human carcinoma cells could be redirected

to produce progeny capable of typical mammary epithelial cell

function by interaction with the microenvironment of a  mouse

mammary gland developing in vivo (Bussard et al., 2010).

Collectively, the above observations reaffirm the dominance

of tissue microenvironment and architecture over the genotype,

and suggest that differentiation therapy, a  concept used in  treat-

ing some forms of leukemia by  administration of retinoic acid,

vitamin D compounds and PPAR� agonists (reviewed in Nowak

et al., 2009), may  also be a  powerful strategy for therapeutic

intervention in  solid cancers. This ‘microenvironmental ther-

apy’ might potentially reverse subtle, but critical, imbalances

in tumor–microenvironment interactions, and provide a higher

specificity that can help minimizing collateral toxicity to normal

adjacent tissues. Additionally, stromal cells are not as genetically

unstable as cancer cells, and are  therefore less likely to develop

drug resistance. There already have been several exciting reports

of success in the clinical targeting of tumor stroma. For  example,

inhibition of inflammatory cells and cytokines by  treatment with

non-steroidal anti-inflammatory drugs (NSAIDs) has been shown

to lower the risk for colon and breast cancer, and might help

preventing lung, oesophageal and stomach cancers (Ricchi et al.,

2003). Likewise, the angiogenesis inhibitor bevacizumab (Avastin)

has proven successful in  the treatment of colorectal (Salgaller,

2003) and kidney tumors (Mass et al., 2004). However, there

have been also some disappointments, such as the inefficacy and

severe intolerable side effects of MMP  inhibitors in  patients with

late-stage cancers (Stetler-Stevenson and Yu, 2001). This may

be due to the many contradictory roles that MMPs play in  mod-

ulating tumor microenvironment, and that were not taken into

account when the broad-spectrum MMP  inhibitors were designed

(Coussens et al., 2002; Morrison et al., 2009). In addition, select-

ing  patients in  advanced stage of the disease is not likely to be

successful.

In summary, normalizing tumor microenvironment represents

an important new direction for cancer therapy. Despite the fact that

the  microenvironment comprises many different components, it is

still possible to reduce the severity of malignant cells using a  single

effective agent. Of course it is best always to  combine drugs that

target distinct aspects of the reactive stroma with the conventional

cytotoxic drugs designed the kill tumor cells, thereby treating the

tumor as the organ we now recognize it to  be.

5. Concluding remarks

We now appreciate tumors as true ecosystems, harboring a

plethora of cells and stromal components that coexist and engage

in dynamic and reciprocal interactions. It  is the product of these

interactions from a very early stage of the disease that clearly deter-

mines the fate of the tumor as well as the patient. The data we  have

summarized here suggests that tumor microenvironment also is

a  prominent shelter for the population of surviving tumor cells

following initial chemotherapy. As such, the microenvironment

can facilitate the development of therapeutic resistance. Given

the increased knowledge of the signaling cues and components

that comprise the tumor and its microenvironment, it would be

important to incorporate this knowledge into organ-specific and

physiological culture models of human cells together with appro-

priate animal models for drug testing. These systems represent the

toolkit to  more successfully translate fundamental research find-

ings into therapies in  the clinic, and may  have great potential in

providing answers before proceeding into costly clinical trials. So
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far, most 3D models available allow co-culture of epithelial cells

only with one other cell type. Thus heterotypic culturing systems

that more closely mimic  the heterogeneity of the tumor microen-

vironment still need to be developed. Tailoring drugs to  target

the tumor microenvironment represents a  new direction for anti-

cancer drug development, and may  hold significant therapeutic

promise.
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