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ABSTRACT 

 

Introduction: Breast cancer development and progression are associated with a 

deregulation of iron homeostasis, as revealed by differences in the expression of several 

iron-related proteins. One of such proteins is ferritin, whose increased tissue levels have 

been consistently associated with breast cancer risk, severity and recurrence. Previous 

studies demonstrated that breast cancer infiltrating macrophages secrete mitogenic ferritin 

that stimulates the proliferation of breast cancer epithelial cells independently of its iron 

content. Our group has demonstrated that ferritin synthesis is also increased in breast 

cancer infiltrating lymphocytes. Accumulating evidence suggested that ferritin secretion 

could also be associated with the HLA-A*03 allele and HFE polymorphisms. The main 

objective of this project was to verify if a certain immune-profile was associated with an 

increased expression of ferritin in breast cancer infiltrating lymphocytes. Additionally, we 

analyzed if ferritin expression in breast cancer epithelial cells and lymphocytes was 

associated with clinicopathological variables of breast cancer progression and behaviour. 

Methodology: Ferritin expression in breast epithelial cells and lymphocytes, and 

total CD4, CD8 and CD4+FoxP3+ T-cell numbers were assessed by immunohistochemistry 

in a total of 134 samples from tissue microarray blocks. The median ferritin expression in 

the epithelium and lymphocytic infiltrate was evaluated by a semi-quantitative method, 

considering the stained area and its intensity. The median number of total lymphocytes 

was assessed in 5 High-Power Fields (400x). Hemosiderin deposits in epithelial and 

stromal inflammatory cells were detected with the DAB-enhanced Perls’ staining method. 

DNA extraction was performed from Formalin Fixed, Paraffin-embedded (FFPE) blocks 

and/or peripheral blood. HFE polymorphisms (C282Y and H63D) and HLA-A*03 

genotyping were evaluated by Polymerase Chain Reaction (PCR). 

Results:  We confirmed that median ferritin expression was decreased in epithelial cells 

from carcinoma samples, but increased in infiltrating lymphocytes. These carcinoma 

samples were characterized by higher median numbers of CD4+, CD8+ and 

CD4+FoxP3+T-cells. Surprisingly the proportion of CD4/CD8 T-cells was not associated 

with an increased ferritin expression in lymphocytes. However, the FoxP3/CD4 ratio was 

positively correlated with the median ferritin expression in lymphocytes. In stromal 

inflammatory cells, the presence of hemosiderin deposits was associated with the median 

ferritin expression in epithelial cells and not in lymphocytes. In relation to 

clinicopathological variables, invasive ductal carcinoma (IDC) estrogen receptor (ER) 
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positive cases presented a significantly higher median ferritin. In ductal carcinoma in situ 

(DCIS) samples, the median number of total lymphocytes was significantly higher in 

hormone receptor negative cases. CD4+ T-lymphocyte median numbers were significantly 

higher in ER negative, progesterone receptor (PR) negative and Human Epidermal 

Growth Factor 2 (HER-2) positive cases, in DCIS samples. A higher median number of 

CD8+ and CD4+FoxP3+T-cells was observed in ER negative DCIS cases. 

Conclusions: Our group has previously demonstrated that macrophages and 

lymphocytes present an “iron-donor” phenotype, as observed by its higher ferroportin 1 

(Fpn1) expression in breast cancer tissue. However, evidences from other studies 

suggest that ferritin secretion, particularly by macrophages, may constitute an alternative 

route of iron delivery. The fact that ferritin expression in lymphocytes was not correlated 

with iron accumulation in stromal inflammatory cells may indicate a similar mechanism, 

not associated with ferritin’s classical role as an iron storage protein. In fact, the “iron-

donor” phenotype of tumor-infiltrating lymphocytes may play an important role in the tumor 

microenvironment, through the local regulation of iron homeostasis and potentially 

contributing to tumor nutrition. 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Breast cancer; ferritin; stromal inflammatory cells; lymphocytes; 

regulatory T-cells; HLA-A*03 allele; HFE polymorphisms. 
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RESUMO 

 

Introdução: O desenvolvimento e progressão do cancro da mama estão 

associados com uma desregulada homeostasia do ferro, visível pela expressão alterada 

de proteínas associadas ao ferro. Uma dessas proteínas é a ferritina, cujos níveis 

aumentados têm sido consistentemente associados ao risco, severidade e recorrência do 

cancro da mama. Estudos anteriores demonstraram que os macrófagos presentes no 

microambiente tumoral da mama secretam ferritina mitogénica, estimulando a 

proliferação das células tumorais da mama independentemente do seu conteúdo em 

ferro. O nosso grupo demonstrou que em contexto de carcinoma da mama, a síntese de 

ferritina também se encontra elevada no infiltrado linfocitário. Está também documentado 

que a secreção de ferritina pode estar associada à presença do alelo HLA-A*03 e aos 

polimorfismos do gene do HFE. O principal objetivo deste projeto foi verificar se um certo 

“perfil imunológico” estaria associado com uma expressão aumentada de ferritina no 

infiltrado linfocitário do cancro da mama. Mais ainda, analisamos se a expressão de 

ferritina nas células epiteliais e nos linfócitos estava associada com variáveis 

clinicopatológicas referentes à progressão do cancro da mama. 

Metodologia: A expressão de ferritina nas células epiteliais da mama e nos 

linfócitos, bem como número total de células T (CD4+, CD8+ e CD4+FoxP3+) foram 

quantificados por imunohistoquímica num total de 134 amostras de blocos de tissue 

microarrays. A expressão mediana de ferritina no epitélio e no infiltrado linfocitário foi 

avaliada através de um método semi-quantitativo, considerando a área com marcação e 

a sua intensidade. O número total mediano de linfócitos foi avaliado em 5 High-Power 

Fields (400x). A presença de depósitos de hemosiderina nas células epiteliais e do 

estroma foi detetada pelo método de coloração DAB-enhanced Perls. A extração de DNA 

foi realizada a partir de blocos de parafina e/ou sangue periférico. Os polimorfismos do 

gene HFE (C282Y e H63D) e a genotipagem do HLA-A*03 foram avaliados por 

Polymerase Chain Reaction. 

Resultados: No nosso estudo, confirmou-se uma diminuída expressão mediana 

de ferritina nas células epiteliais em amostras de carcinoma, mas aumentada no infiltrado 

linfocitário. As amostras de carcinoma foram caracterizadas por um elevado número 

mediano de células T (CD4+, CD8+ e CD4+FoxP3+). Surpreendentemente, a proporção de 

linfócitos CD4/CD8 não foi associada com uma aumentada expressão de ferritina nos 

linfócitos. No entanto, o ratio FoxP3/CD4 foi positivamente correlacionado com a 
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expressão mediana de ferritina nos linfócitos. Nas células inflamatórias do estroma, a 

presença de depósitos de hemosiderina foi associada com a expressão mediana de 

ferritina nas células epiteliais, mas não nos linfócitos. Relativamente às variáveis 

clinicopatológicas, a expressão mediana de ferritina foi significativamente elevada em 

amostras de carcinomas ductais invasores positivas para os recetores de estrogénio. Nas 

amostras de carcinomas ductais in situ, o número mediano total de linfócitos foi 

significativamente elevado em casos que apresentaram negatividade para os recetores 

hormonais. Por sua vez, o número mediano de linfócitos T CD4+ foi significativamente 

elevado em lesões in situ que apresentaram amplificação do HER-2 e negatividade para 

os recetores hormonais. O número mediado de células T (CD8+ e CD4+FoxP3+) foi 

significativamente elevado em lesões in situ com negatividade para o recetores de 

estrogénio. 

Conclusões: Anteriormente, o nosso grupo demonstrou que, no tecido de 

carcinoma da mama, os macrófagos e os linfócitos apresentam um fenótipo de 

exportação de ferro, visível pela expressão aumentada de ferroportina 1. No entanto, 

evidências provenientes de outros estudos sugerem que a secreção de ferritina, 

particularmente pelos macrófagos, pode constituir um papel alternativo de entrega de 

ferro. O facto da expressão de ferritina nos linfócitos não estar correlacionada com a 

acumulação de ferro nas células do estroma inflamatório sugere um mecanismo similar, 

não associado com o papel clássico da ferritina como armazenadora de ferro. De facto, o 

fenótipo de exportação de ferro do infiltrado linfocitário pode desempenhar um papel 

importante no microambiente tumoral, através da regulação da homeostasia do ferro, 

potencialmente contribuindo para a nutrição tumoral. 

 

 

 

 

 

 

Palavras-chave: Cancro da mama; ferritina; células inflamatórias do estroma; 
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I. INTRODUCTION 

 

1. Iron Homeostasis 

Iron is the most abundant transition metal in the human body and it is the fourth most 

abundant element in the Earth’s crust [1, 2]. This element is essential for life as it plays an 

important role in normal cell growth, cell function and proliferation [3, 4]. 

Iron acts as a cofactor within the active site of key enzymes involved in important 

biochemical pathways [5], allowing it to act as an electron donor and acceptor during its 

conversion amid ferric (Fe3+) and ferrous (Fe2+) oxidation states [2]. 

Iron is also vital for the regulation of DNA synthesis and consequently cell cycle 

control, given that the enzyme accountable for the synthesis of desoxyribonucleotides, 

ribonucleotide reductase (RR), is iron dependent [6-8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Body iron distribution in human adults. Adapted from: [7]. 

However, iron in excess is toxic [5], due to the deleterious effects of reactive oxygen 

species (ROS), like the hydroxyl radical (OH-) which is produced via the Fenton and 

Haber-Weiss reactions [2, 5]. Free iron is able to react with unsaturated lipids, enhancing 

the lipid peroxidation process [9]. All of these oxidative reactions may result in the 

impairment of cellular functions and lead to damaged cells, tissues, and organs [10]. 
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Although the majority of organisms have mechanisms to control iron acquisition, 

storage and export, there has been growing body of evidence relating a deregulation of 

iron homeostasis and a variety of diseases, including cancer, inflammatory and 

neurodegenerative diseases [11]. 

1.1. Systemic Iron Homeostasis 

Once iron is vital for a variety of cellular processes, its stability must be 

maintained to prevent toxicity [5, 8, 12]. The regulation of iron is achieved through its 

absorption, utilization, storage and export [13], since there humans have no 

physiologic pathway for iron excretion [7]. 

The majority of iron is acquired from the diet (approximately 1-2 milligram per 

day), in the form of non-heme or heme iron [2, 7]. Dietary iron is absorbed by 

duodenal enterocytes through passage by their apical and basolateral membranes [7]. 

The divalent metal transporter 1 (DMT1) is responsible for the transport of inorganic 

iron across the apical enterocyte membrane [5], after reduction of its ferric (Fe3+) form 

[2]. Following iron entrance in the enterocyte, it may be stored inside ferritin (Ft), an 

iron storage protein, or it may be transferred across the basolateral membrane by 

ferroportin 1 (FPN1) [2, 5]. 

Systemic iron homeostasis requires controlled intestinal iron absorption, utilization 

of iron for erythropoiesis and storage of iron by hepatocytes and reticuloendothelial 

macrophages [7, 14]. Systemic iron fluxes are regulated by the hepatic peptide 

hormone hepcidin [15]. Hepcidin is mostly produced by hepatocytes and disseminated 

in the blood bound to α2-macroglobulin [16]. Other cell types and organs also 

synthesize it, although to a much lesser extent [17]. Hepcidin was shown to have 

ability to down-modulate the cellular expression of FPN1 in enterocytes, macrophages 

and hepatocytes, which express high levels of FPN1 [15, 17]. This hormone binds 

FPN1, causing its internalization, ubiquitination and degradation [18, 19]. As a result, 

less iron is exported from enterocytes and from iron stores in hepatocytes and 

macrophages into the bloodstream  [20]. The expression of hepcidin is regulated by a 

range of stimuli, like iron availability, inflammation, erythropoietic demand, hypoxia and 

endocrine signals [17]. 
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Figure 2 – Regulation of systemic iron homeostasis by hepcidin. Adapted from: [8]. 

 

 

1.2. Cellular Iron Homeostasis 

Once in circulation, iron is included in transferrin (Tf) [2]. Tf transports iron in the 

bloodstream, keeping it in a soluble, non-toxic, form, and delivers iron to the required 

organs [5, 21, 22]. 

On the cell surface, Tf binds to the transferrin receptor 1 (TfR1) and this complex 

is then internalized into an endosome, via receptor-mediated endocytosis [5, 21]. 

Then, a pH proton pump-mediated reduction happens (pH ~ 5,5), enhancing iron 

release due to conformational changes in the Tf-TfR1 complex [23, 24]. Following iron 

release, the metal enters on the labile iron pool (LIP), which behaves as a metabolic 

source of iron [25]. LIP is a generic term used to describe labile iron in the cell as a 

whole [25]. Iron from the cytoplasmatic LIP that is not utilized for metalation reactions 

or exported can be targeted to ferritin [8, 26]. 

A finely control of iron uptake, storage and export is obtained by the regulation of 

proteins at the post-transcriptional level via the intracellular iron concentration [8]. Iron-

regulatory proteins 1 and 2 (IRP1 and IRP2) are mRNA binding molecules identified 

as key iron sensors, forming a post-transcriptional regulatory network through which 

iron homeostasis is controlled [3, 12]. These two IRPs binds to iron-responsive 

elements (IREs) located in the 5’- or 3’-untranslated regions (UTR) of their mRNAs 

[27]. These IRE-containing mRNAs include TfR1, Ft and FPN1 [12]. The binding 
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between IRPs and IREs is regulated by intracellular iron levels and enables cells to 

quickly adjust concentrations of available cytosolic iron [27, 28]. 

In iron-depleted cells, IRPs binds to their target IREs [28]. When an IRP binds to 

the IRE located in the 5’-UTR of Ft mRNA, it leads to the blockade of its translation, for 

example, decreasing Ft abundance, in order to promote iron availability [29]. 

Conversely, the interaction between IRPs and the five IREs in TfR1 3’-UTR mRNA 

stabilizes it, favoring its translation [30]. In cells that are iron replete, IRPs do not have 

affinity for the IREs, leading to TfR1 mRNA degradation and Ft mRNA translation [28]. 

In these circumstances, cells inhibit further iron uptake by the transferrin receptor and, 

at the same time, promote storage of excess cellular iron in ferritin [2]. 

1.2.1. Ferritin 

Approximately 25-30% of the iron in the adult human body is found bound 

to ferritin, which incorporates iron in a non-toxic and bioavailable form [1, 31, 32]. 

Ferritin is a protein, mainly localized in the cytoplasm, which is expressed in 

all cells [12, 14, 33], and composed by 24 subunits of 21kDa H- (heavy) and 

19kDa L- (light) types [14, 34]. The expression of both functionally and genetically 

distinct ferritin subunits vary, depending on the cell type and in response to stimuli, 

including inflammation or infection [32-35]. H-ferritin possesses enzymatic activity: 

oxidizes ferrous iron (Fe2+)  into ferric iron (Fe3+), required for the incorporation of 

iron into holo-ferritin [36, 37]; L-ferritin lacks enzymatic activity, not contributing to 

iron uptake, but to the stable storage of iron in the ferritin core [8, 14, 37, 38]. 

Additionally to its intracellular form, ferritin is also an abundant protein in 

circulation, termed serum ferritin [37]. Its immunologic reactivity and molecular size 

are similar to the ferritin extracted from the liver, but it shows low levels of iron 

even in patients with iron overload [37, 39]. Serum ferritin level is a decisive 

indicator of the body’s iron stores, wherein patients with an iron overload disease 

presented higher levels of it [40, 41]. However, previous data proposed that 

intracellular ferritin would be a more valuable diagnostic marker than serum ferritin 

[42]. 

The storage of iron within ferritin prevents ROS formation, protecting the 

cell from oxidative damage [5], and defends cancer cells from cell death [35]. So, 

cells can lock up their excess iron in a redox inactive form to avoid iron-mediated 

cell and tissue damage [8, 12]. 
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1.2.1.1. Ferritin Synthesis by T-lymphocytes 

Stromal inflammatory cells from breast tissue can induce variations 

in the breast microenvironment, during malignant transformation [43]. 

Particularly, earlier results by Maria de Sousa’s group showed that human 

T-lymphocytes synthesize and secrete ferritin [44]. 

Another study performed by Pollack and colleagues observed that 

individual variation in ferritin secretion by activated mononuclear cells is 

associated with the HLA-A locus [45]. Their study constituted the first 

evidence demonstrating that cells from individuals expressing HLA-A*03 

antigen presented a reduced ferritin secretion in vitro, compared to those 

without A3 [45]. 

 

1.2.2. HFE 

The HFE gene was discovered in 1996 by Feder and coworkers [46]. This 

gene is located on the short arm of chromosome 6 (6p21.3) [46, 47]. HFE is a 

major histocompatibility class I-like (MHC-I) molecule and associates with the class 

I light chain β2-microglobulin [46]. 

HFE was shown to interact with transferrin receptor 1 (TfR1) at a site that 

overlaps the transferrin binding domain, and to act as a negative regulator of iron 

absorption and uptake, through regulation of its binding partner – the TfR1 [8, 48, 

49]. 

Previous studies have shown that HFE is the gene mutated in the large 

majority of Hereditary Hemochromatosis (HH) patients [14, 50, 51], a common 

genetic disorder of iron overload [51, 52]. Two polymorphisms, C282Y (the 

substitution of tyrosine for cysteine at position 282) and H63D (the substitution of 

aspartate for histidine at position 63), are particularly common among patients with 

HH [46]. The majority of HH patients are homozygous for the C282Y polymorphism 

in HFE [2, 53-55]. The C282Y polymorphism disrupts the correct folding of the α3 

domain of the protein, interfering with its interaction with β2-microglobulin, and, 

consequently, abolishing the cell surface expression of the molecule [53]. The 

second missense polymorphism associated with hemochromatosis, H63D, does 

reach the cell surface and forms a stable complex with transferrin, being 

responsible for the loss of the ability of the HFE protein to increase the Kcell association 

for transferrin [49, 56]. 

 

 



8 
 

2. Breast Cancer 

Breast cancer is the second most common cancer in the world and the most frequent 

in women [57]. Its incidence has been increasing over the years, especially in older 

women [58]. However, with a better and more efficient diagnostic method and improved 

therapies, the death rate associated to breast cancer has been diminishing over the 

decades [59, 60]. 

The majority of breast cancers are carcinomas once they occur from breast epithelial 

elements [59]. Non-carcinomatous breast cancers are uncommon and are originated in 

the connective tissue of the breast [58]. 

Ductal carcinomas can be divided in two major types: in situ and invasive carcinomas 

[59]. When the tumor remains confined to their ductal epithelium, without invasion, it is 

considered an in situ carcinoma [59]. In contrast, when the tumor invades the epithelial 

border it is called an invasive ductal or lobular carcinoma, with a higher metastatic 

potential [59]. 

Breast cancer can also be classified into sporadic or hereditary type, according to its 

origin  [61]. The sporadic type is the most common malignancy of the breast and is 

associated with somatic genetic alterations [62]. On the other hand, the hereditary type is 

associated with germline mutations [63]. 

The aetiology of breast cancer is multifactorial: the breast tumor type and degree of 

aggressiveness can be affected by age, gender, family and personal history, radiation, 

microenvironment and diet factors [58]. The incidence of this malignancy increases with 

age, doubling about 10 years until menopause when the rate of increase slows 

significantly [64]. However, the curve decreases by the ages 75 to 80 [64]. The gender is 

considered the greatest risk factor: breast cancer is 100 times more frequent in women 

than in men [59]. In breast malignancy, obesity is related with an increased risk of 

recurrence and decreased survival [65]. Data about the smoking status is inconsistent, but 

a recent report has suggested an important role of active smoking in breast cancer 

development, predominantly with long-term heavy smoking and smoking initiation at an 

early age [66]. Alcohol consumption has also been linked to increased blood levels of 

estrogen, improving the risk of breast cancer development [67]. On the other hand, 

physical activity diminished its risk of development [65]. A diet low in folate, but rich in red 

or well-done meat, dairy and soy products are described as a potential cause of increased 

risk for breast cancer development [58, 68]. 
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2.1. Immune System and Breast Cancer 

Previous studies have shown that the immune response may play an important 

role in cancer progression [69-73]. The immune system may improve the emergence 

of primary tumors by reducing its immunogenicity and allowing tumor cells to escape 

immune recognition and destruction [74-76]. Despite tumor immunosurveillance, tumor 

cells must circumvent both innate and adaptive immunologic defenses in order to 

proliferate [71, 75]. So, the immune microenvironment in which the tumor develops 

may influence multiple parameters of the carcinogenic process [77]. 

Heterotypic interactions between diverse leukocyte populations often determine 

the outcome of immune responses in tissues [78], which were correlated with tumor 

grade, lymph node metastasis and overall survival (OS) of patients [79]. Particularly, in 

breast cancer, the immune microenvironment is also considered as a predictor of 

relapse free survival (RFS) and overall survival (OS) of patients [77], emphasizing the 

functional significance of specific leukocytes [80]. A variety of leukocytes have been 

found in breast cancer tissue, including CD4+ and CD8+ T-cells [80]. CD4+ and CD8+ 

T-lymphocytes recognize tumor antigens in the context of MHC class II and class I 

proteins, respectively [75]. 

CD8+ T-lymphocytes are considered a crucial component of tumor specific 

cellular-adaptive immunity [70, 71, 81], exerting their antitumor activity [69]. CD8+ T-

cells produce interferon-gamma (IFN-γ) through interaction with tumor related 

antigens, potentially leading to tumoricidal activity by induction of apoptosis, or 

macrophage tumor killing activity, or both [82]. A variety of studies have reported that 

inflammation and CD8+ T-lymphocyte infiltration in breast cancer are related with 

better survival of patients [35, 69, 71, 77, 83-85]. 

CD4+ T-lymphocytes are vital controllers of immune responses and inflammatory 

diseases [86]. Earlier studies reported that these lymphocytes require interleukin-10 

for their antitumor activity [87]. Human breast cancers containing leukocytic infiltrates 

dominated by CD4+ T-lymphocytes, without significant CD8+ T-cell infiltration, have a 

higher relative risk for metastasis and therefore, reduced overall survival (OS) [77, 88]. 

It was demonstrated that CD4+ T-lymphocytes can promote metastasis by activating 

the Epidermal Growth Factor Receptor (EGFR) signaling pathway [88]. 

Regulatory T-cells (Tregs) have a key role in the maintenance of immune 

tolerance to both self- and harmless foreign antigens [89]. Tregs comprise a 

subpopulation of CD4+ T-lymphocytes which play an essential role in inhibiting 

protective immune responses against tumors [75, 81, 90-93], including their ability to 

suppress a variety of immune cells (including CD4 and CD8 lymphocytes, dendritic 

cells, B cells and macrophages) and cytokine production [81, 91, 94-96]. Tumors may 



10 
 

facilitate the generation, activation, or function of immunosuppressive T-cell 

populations, such as Tregs [70, 75, 81, 93]. Their recruitment in the tumor 

microenvironment may enable malignant cells to escape from immunosurveillance [71, 

90, 92-94]. 

The transcription factor forkhead box P3 (FoxP3) has been previously used to 

quantify Tregs, once it is known as the most specific marker of Treg [81, 90, 92, 96]. 

This transcription factor was also found to be localized in the nucleus of breast cancer 

cells [70, 90, 92, 93]. The identification of human Tregs is achieved through analysis of 

co-expression of CD4 and FoxP3, together with high expression of CD25, resulting in 

a CD4+/CD25+/FoxP3+ activated phenotype [90, 92, 96]. 

The number of these tumor-associated Tregs was considered as a significant 

parameter for disease prognosis [94]. Elevated levels of Tregs were found in a variety 

of human cancers, including breast cancer [75, 90, 93, 94, 96], which was correlated 

with a poorer prognosis [70, 90, 92-94]. In invasive ductal carcinomas, Tregs are more 

frequently present, than in normal breast tissue, reinforcing that accumulation of Tregs 

represents a marker of breast cancer disease progression [94]. 

 

2.2. Iron Metabolism and Breast Cancer 

The proliferation of normal cells is not feasible without the supply of adequate 

nutrients and oxygen to sustain cellular growth [97, 98]. The high levels of iron, 

required for the fast proliferation of neoplastic cells, have been recognized as a risk 

factor for cancer development [5, 12, 99]. In fact, several studies have found an 

association between the deregulation of mechanisms responsible to control iron 

homeostasis in the body and tumor growth, metastasis and high disease recurrence of 

a variety of cancers [1, 12, 38, 100, 101]. 

Breast cancer is no exception [100, 101]. Numerous studies showed that 

alterations in the expression of iron-associated proteins may clarify breast cancer 

cells’ iron-deficient phenotype, characterized by an increased expression of iron 

importers and decreased expression of iron exporters [2, 4, 12, 102-104]. 

One of the most well known alterations in the iron metabolism of tumor cells is the 

up-regulation of TfR1 expression at the cell surface [105]. Cancer cells commonly 

express higher numbers of TfR1, than its normal counterparts, favoring iron uptake 

and consequently conferring a growth advantage to these cells [12, 102, 105-109]. It 

was proposed as a marker of poor prognosis in breast cancer [110]. 

The major Fe-transport protein in the plasma is Tf, as described above [101]. Tf 

behaves as a growth factor due to its iron-binding properties, making Tf crucial to cell 

proliferation and tumor growth in poorly vascularized areas [21, 111]. A previous study 
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described that Tf  was produced by myoepithelial cells in normal ducts and around 

neoplastic ducts in carcinomas in situ [112]. 

Pinnix and colleagues highlighted the crucial role played by ferroportin 1 and 

hepcidin in the deregulation of iron homeostasis in breast cancer cells [4]. Their study 

revealed that ferroportin 1 protein levels were decreased in breast cancer epithelial 

cells compared to normal epithelial cells [4]. Regarding hepcidin expression, Zhang 

and colleagues observed an increase of its expression in breast cancer tissue [15]. 

These findings suggested that the breast cancer cells’ “iron-deficient” phenotype is 

compatible with their proliferation status. 

2.2.1. Ferritin and Breast Cancer 

A link between ferritin and inflammatory conditions, as infections and 

cancer, has also been reported [2, 8, 12, 35, 101, 113]. 

In contrast with healthy individuals, several studies have reported a higher 

serum ferritin expression in patients with solid tumors, including breast cancer [42, 

114-116]. These high levels of serum ferritin and also, an increased ferritin 

expression within breast tumors, were correlated with a poor clinical outcome, due 

to higher degrees of inflammation [12, 42, 114, 117-119]. 

The histological examination of expression and distribution of ferritin 

demonstrated a strong ferritin expression in epithelial ductal cells from normal 

breast tissue, a moderate to weak staining in breast cancer cells and a relatively 

strong staining in the tumor stroma [112, 119, 120]. 

Some reports have described an alteration in the subcellular distribution of 

ferritin [35, 121]. H-ferritin can be translocated to the nucleus to protect DNA from 

iron-mediated toxicity, once it is able to sequester iron in excess, favoring cancer 

cells survival [34, 35, 122]. In this way, Liu and colleagues emphasized the 

potential importance of subcellular localization of H-ferritin in breast cancer 

progression [35]. 

As described above, T-lymphocytes are able to synthesize ferritin [44, 45, 

123]; however, recent in vivo studies have argued that serum ferritin is primarily 

derived from macrophages [124, 125]. In line with this information, Alkhateeb and 

colleagues not only proved that breast cancer-associated macrophages were 

capable of ferritin secretion, but also, extracellular ferritin enhances the 

proliferation of breast cancer cells lines, independently of its iron content [120]. 

Hence, Alkhateeb and colleagues speculated that the increase of serum ferritin in 

breast cancer patients, which was correlated with tumor stage [126, 127], could 

reflect an inflammatory state involving tumor-associated macrophages [120]. 
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Thus, ferritin could act not only as the major iron storage protein, but also as an 

important regulator of the immune system playing a role in epithelial carcinogenic 

transformations, potentially enhancing an effective anti-tumor immune response 

[33, 35, 113, 128]. 

 

2.2.2. HFE and Breast Cancer 

HFE gene is located in one of the most frequently amplified regions of 

chromosome 6p, which are involved in tumor development and progression [47, 

129, 130]. 

HFE polymorphisms are able to modify iron stores by triggering overload of 

iron [2, 130, 131]. Moreover, the altered iron homeostasis that may cause iron 

accumulation, potentially contributed to tumor progression, behaviour and 

aggressiveness and was associated with an elevated risk for cancer development 

[132-135]. 

Beckman and colleagues performed the first study in order to investigate 

the association between HFE gene polymorphisms and breast cancer risk [136]. 

Their analysis was based on statistical evidence and suggested the existence of 

an interaction between HFE and Tfr alleles, which increased the cancer risk [136]. 

Subsequent investigations confirm that HFE gene polymorphisms might be 

associated with breast cancer risk [137]. 

Osborne and colleagues reported that the majority of C282Y homozygous 

eventually could develop an iron overload-related disease, once they presented 

higher serum ferritin [130]. These individuals have an elevated risk for breast 

cancer development compared with those who had no C282Y polymorphism [130]. 

Although C282Y heterozygous present an elevated serum ferritin and transferrin 

saturation level, compared to individuals without HFE polymorphisms, they had not 

an improved risk for breast cancer development [104, 138]. Nevertheless, Hunt 

and colleagues observed that most C282Y heterozygous did not exhibit 

abnormalities in body iron parameters [139]. 

Regarding the H63D polymorphism, some studies demonstrated that it was 

associated with breast cancer [140-142]. 

Actually, studies concerning the association of HFE polymorphisms and 

breast cancer risk have led to contradictory and inconclusive results [143], once 

there are studies that did not report an association [140, 144]. This suggests the 

existence of a population variability concerning HFE gene polymorphisms [145]. 
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2.2.2.1. HFE and The Immune System 

Growing evidence suggests a role for HFE in the immune system [51, 53]. 

HFE gene has been showed to be localized in a short region around the 

Human Leukocyte Antigen (HLA-A) locus [146]. In spite of the large physical 

distance between HFE and HLA, a linkage disequilibrium has been 

demonstrated between HLA-A and HFE gene polymorphisms [147]. The 

strong linkage disequilibrium between C282Y polymorphism and the extended 

haplotype containing the HLA-A*03 allele was a posteriori confirmed [46, 148]. 

As described above, HFE gene is mutated in the majority of patients with 

hereditary hemochromatosis [51]. These patients, with HFE polymorphisms, 

contain an irregular expression of MHC-I molecules and an altered class I 

antigen presentation pathway [149]. In addition, they present an altered 

peripheral CD8+ T-cell pool and CD4-CD8 ratio [150, 151]. According to this 

information, a report suggested an important role of HLA-A*03 on the 

correlation between CD4-CD8 ratio and the severity of iron overload [52]. In 

fact, Porto and coworkers demonstrated that in the context of HLA-A*03, the 

relative proportions of CD4+ and CD8+ T-cells were significantly correlated 

with the amount of iron stores accumulated at the time of diagnosis, 

predisposing patients to a more severe illness [52]. A subsequent study 

performed by Maria de Sousa’s group also suggested that the relative 

proportion of CD4/CD8 lymphocytes may be considered as a significant 

predictor and modifier of iron overload development [152]. As the HFE was 

described as a nonclassical MHC protein, they assumed that immunological 

system and iron metabolism are inseparable [152]. 
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II. AIMS 

 

The major goal of this project is to verify if a certain immune profile is related with a 

higher expression of ferritin in breast cancer infiltrating lymphocytes, and analyze if this is 

correlated with patient clinicopathological variables. 

Others objectives: 

1. To assess if the number of lymphocytes is correlated with ferritin expression; 

2. To evaluate if the presence of nuclear ferritin is associated with ferritin 

expression; 

3. To verify if hemosiderin deposits are associated with the type of lymphocytic 

profile and ferritin expression; 

4. To investigate if ferritin expression by T-lymphocytes in breast tumors is 

associated with HLA-A and HFE genotypes; 

5. To estimate if these relationships are associated to established 

clinicopathological variables, such as, hormone receptor status, tumor size and 

lymph node involvement. 

  

  

  

  

  

  

  



 
 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



 
 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

CCHHAAPPTTEERR  IIIIII  

MATERIAL AND METHODS



 
 



21 
 

III. MATERIAL AND METHODS 

 

 

1. Breast Cancer Tissue Samples 

A total of 120 cases, including 34 ductal carcinomas in situ (DCIS) and 54 invasive 

ductal carcinomas (IDC) from formalin fixed, paraffin-embedded (FFPE) breast samples 

were collected from the archives of the Pathology Service, at Centro Hospitalar do Porto 

(Porto, Hospital Centre, Porto). All of them were previously gathered for the PhD project in 

which this study is integrated and approved by the Centro Hospitalar do Porto Ethics 

Committee (Porto, Hospital Centre, Porto, Portugal). 32 reduction mammoplasty samples 

were also included, accounting as normal breast tissue. 

All samples were considered as representative of primary breast tumors, 

assembled from women who were diagnosed between 2004 and 2009, and who weren’t 

submitted to any neoadjuvant treatment. 

The areas, diagnosis and classification of tumors were performed by a board 

certified pathologist according to the tumor classification criteria. He analyzed slides of 88 

samples of primary tumors and 32 samples of reduction mammoplasty, with the purpose 

of selecting normal, in situ and invasive areas, whenever possible. 

2. Construction of Tissue Microarrays 

In 1998, Kononen and colleagues developed the tissue microarray (TMA) 

technology that allows researchers to sample up to 1000 tumors on one glass slide, which 

can be evaluated by fluorescence in situ hybridization or immunohistochemistry [153]. 

Small cylindrical cores are removed from formalin-fixed, paraffin-embedded tissue and 

placed in a matrix within a recipient paraffin block, according to a previous designed map. 

This high-throughput technique makes a fast examination of hundreds of patient samples 

by a pathologist feasible [154]. 

Comparing to whole sections, the staining of a few TMA sections reveals an 

advantage with respect to the reduction of laboratory reagents and technician time. 

Additionally, there is the benefit of reduced technical variability during the staining and 

interpretation process [154]. 

The most common disadvantage of TMA use is the short size of each tissue core – 

there is hesitation that due to tumor heterogeneity, biomarker scores obtained from small 

TMA cores will not exactly reflect scores obtained from whole tissue sections. There also 

exists a technical problem related with TMA studies, which is the tissue loss during 

sectioning, transfer and staining. The mixture of sampling errors during core extraction, 
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core loss during slide preparation and non-reactive cores leads to loss of biomarker data 

and an underestimation of the right incidence of a molecular indicator. This difficulty can 

be reduced by the extraction of several cores per source block [153, 154]. 

 

 

 

 

 

 

 

Figure 3 – Representative image of a TMA block construction. (Adapted from: 
http://www.nature.com/nrclinonc/journal/v1/n2/fig_tab/ncponc0046_F1.html). 

  So, we constructed tissue microarrays for screening a large number of tissue 

samples under similar experimental conditions. From the original paraffin blocks, a 

pathologist selected areas of interest. After this, we used an extractor to remove those 

areas of interest in paraffin-embedded tissues of normal and tumor samples, according to 

a previously stipulated map. After this, we placed it into a TMA receiver block. 

  Normal liver and lymph node samples were also inserted, for correct slide 

orientation of cores and internal positive controls for stainings. 

 

3. Hematoxylin & Eosin Staining 

Formalin-fixed, paraffin-embedded tissues used were sectioned with a microtome 

into 2 μm sections. Slides were de-waxed by placing them in xylene twice for 5 minutes 

each. Then, they were hydrated in a series of decreasing alcohol concentrations (100% - 

90% - 75%) for at least 1 minute each, and finally washed under running water for 2 

minutes. 

Slides were stained with hematoxylin (Mayer’s Hemalum Solution, Merck Millipore, 

Billevica, MA, USA) and then rinsed in running tap water for 5 minutes. 

Slides were stained with eosin for at least 1 minute and were placed rapidly under 

water. 

After a fast differentiation in absolute alcohol, they were sequentially dehydrated in 

70%, 90% and absolute alcohol and 2 changes of xylene. Slides were then mounted with 

Entellan (Merck Millipore, Billerica, MA, USA). 



23 
 

A pathologist evaluated Hematoxylin & Eosin (H&E) staining slides under the light 

microscope in order to classify the lesion of each spot. The pathologist was blinded of 

diagnostic and clinical information regarding the original donor tissue when evaluating the 

lesion in each spot. 

 

4. Perls’ Prussian Blue Stainin 

Perls’ Prussian Blue staining was performed to evaluate hemosiderin deposits in 

breast samples. Hemosiderin is a degradation product of ferritin, which is an iron storage 

complex [155]. This information provides a qualitative estimative, based on the evaluation 

of the presence of iron deposits in epithelial and stromal inflammatory cells. An iron 

loaded liver was used as a positive control section to ensure that the reaction has 

occurred. 

TMA blocks were sectioned with a microtome into 2 μm sections. Slides were left 

at 70ºC for 5 minutes and then, at 37ºC until further techniques. Slides were then 

dewaxed, deparaffinized and hydrated as described for the H&E protocol. 

We mixed equal parts of hydrochloric acid (2%) and potassium ferrocyanide (2%) 

prepared immediately before use. Slides were immersed in this Butting’s solution for 20 

minutes, at 70ºC. Then, they were washed in distilled water and counterstained with 

nuclear fast red, for 4 minutes. Slides were dehydrated through 100% alcohol and were 

cleared in xylene. Finally, slides were mounted with Entellan (Merck Millipore, Billerica, 

MA, USA) mounting medium. 

After this, Perls’ staining slides were assessed under the light microscope to detect 

hemosiderin deposits, in the epithelial and stromal compartments. A score of 1 was 

attributed when at least one cell presented hemosiderin deposits and a score of 0 when 

no hemosiderin deposits were observed. 

 

4.1 DAB-enhanced Perls’ Prussian Blue Staining 

Knowing that in a majority of tissues iron is present in a low concentration 

and the threshold of its detection using the Perls’ method is hardly reached in 

epithelial cells [156], intensification with DAB can be executed to augment 

sensitivity [157]. All samples were stained with an increase in incubation times 

of 25%, as Van Duijn and colleagues explained [158]. 

TMA blocks were cut with a microtome into 4 μm sections and mounted in 

adhesive slides with 3-aminopropyltriethoxysilane (APES). Slides were left at 

70ºC, for 5 minutes, to increase tissue adherence to the glass surface, and 

then, placed at 37ºC until further techniques. Slides were dewaxed, 

deparaffinized and hydrated as described for the H&E protocol. After this, 
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slides were stained with “freshly” prepared 1% potassium cyanide, in distilled 

water (pH inferior to 5,5), for 40 minutes. Slides were washed in distilled water. 

Subsequently, samples were treated in methanol containing 0,01 M NaN3 and 

0,3% hydrogen peroxide (H2O2) for 75 minutes and washed with 0,1 M 

phosphate buffer. For the intensification reaction, slides were incubated with a 

solution containing 0,025% 3,3'-diaminobenzidine tetrahydrochloride (3,3’-

DAB-4HCl) and 0,005% H2O2, in a 0,1 M phosphate buffer, for 40 minutes. The 

reaction was stopped by rinsing in distilled water. 

After this, tissues were counterstained with nuclear red, for 4 minutes, and 

slides were differentiated in absolute alcohol until a pink contrasting color was 

achieved. Slides with the stained samples were mounted with Entellan (Merck 

Millipore, Billerica, MA, USA). 

As reported in Roschzttardz’s work [156], we used a negative control, by 

omitting the incubation with potassium ferrocyanide. No staining was observed 

in these samples, showing that staining was hemosiderin dependent and not 

due to peroxidase-catalyzed degradation of H2O2, inducing the polymerization 

of DAB. As performed in routine Perls’ staining, a positive control tissue was 

also added to the experiment. 

5. Immunohistochemistry (IHC) 

Immunohistochemistry was performed with ferritin, in order to evaluate its 

expression at the cellular and nuclear level in breast epithelial cells and in resident and 

infiltrating breast tissue lymphocytes. For ferritin, immunohistochemistry was performed 

on tissue microarrays sections with a rabbit polyclonal anti-human ferritin antibody (FT – 

1/1000, Sigma-Aldrich, MO, USA). After testing dilutions in 5% TBS.BSA solution, we 

decided that 1:1000 dilution provided the best results. 

Immunohistochemistry was also performed in order to characterize the lymphocytic 

infiltrate, using CD4, CD8 and FoxP3 markers. 

This technique was conducted according to manufacturer’s details using the 

Novocastra Novolink Detection System (Leica Biosystems). This detection system is 

systematically used in the Department and has been giving consistent results over a 

range of antibodies. For each antibody, we used a positive control recommended by the 

antibody’s manufacter and a negative control, by omission of primary antibody. 

Tissue microarrays were sectioned with a microtome into 2 μm sections. 

For CD8, single-immunohistochemistry was performed on tissue microarray 

sections with the mouse monoclonal anti-human CD8 antibody (C8/144B, Cell Marque, 

CA, USA). First, we tested three different dilution factors (1:25, 1:50 and 1:100), as initially 
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recommended by the manufacturer. All dilutions were performed with 5% TBS.BSA 

solution. We opted on the 1:100 dilution as the optimum dilution factor to this antibody. 

For CD4 and FoxP3, double-immunohistochemistry was performed on tissue 

microarray sections with a mouse monoclonal anti-human CD4 antibody (BC/1F6, Biocare 

Medical, Concord, USA), and a mouse monoclonal anti-human FoxP3 antibody (236A/E7, 

eBioscience, San Diego, USA). 

First, we performed a single immunohistochemistry for each antibody (CD4 and 

FoxP3) to decide the optimum dilution factor and the best chromogen reaction. For the 

monoclonal CD4 antibody, we tested 1:25, 1:50 and 1:100 dilution factors. All dilutions 

were performed in Van Gogh Yellow solution, a diluent provided by the manufacturer. We 

decided 1:50 dilution as the optimum dilution factor for this antibody. Subsequently, we 

tested which would be the best chromogen reaction for the observation of CD4+ T-

lymphocytes. We used as chromogens DAB and permanent red (PR) (Permanent Red 

Chromogen Kit, Cell Marque, California, US). We chose DAB as the best chromogen to 

visualize CD4+ T-lymphocyte numbers. 

For the FoxP3 antibody, we tested 1:50, 1:100 and 1:200 dilution factors. All 

dilutions were performed in 5% TBS.BSA solution, as suggested by the manufacturer. We 

chose the 1:200 dilution as the best dilution factor. As for CD4, we also tested the most 

suitable chromogens to observe FoxP3 immunoreaction, and opted for PR. 

After optimizing antibody dilutions, we tested the CD4 and FoxP3 double-

immunohistochemistry protocol. We performed this technique in different slides including 

positive controls, ductal carcinomas in situ and invasive ductal carcinomas. With the 

double-immunohistochemistry protocol, this CD4 antibody did not allow obvious 

identification of lymphocytes, so, we decided to purchase a new rabbit polyclonal anti-

human CD4 antibody (H-370, Santa Cruz Biotechnology, TX, USA). 

Once again, we executed single immunohistochemistry in positive control slides to 

decide which would be the best dilution factor between 1:100, 1:250 and 1:500 for this 

new antibody. All dilutions were performed in 5% TBS.BSA solution, as suggested by the 

manufacturer. We opted for the 1:250 dilution factor. 

After optimization of the dilution factor, we performed CD4 and FoxP3 double-

immunohistochemistry protocol in different slides, including positive control, ductal 

carcinomas in situ and invasive ductal carcinomas to test the protocol. Given that, double 

immunohistochemistry with these antibodies did not allow a clear discrimination of CD4+ 

and CD4+FoxP3+ T-cells. Considering this, we decided to perform simultaneous labeling 

for both antibodies, since CD4 is a membrane surface glycoprotein and FoxP3 a nuclear 

transcription factor. 
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5.1  Immunohistochemistry Protocol 

TMA blocks were cut at 2 μm and mounted in adhesive slides with APES. 

Slides were left at 70ºC, for 5 minutes, and then, at 37ºC until further 

techniques. 

 

5.1.1 Deparaffinization and Rehydratation 

Slides were deparaffinized and hydrated as described in H&E 

protocol. 

5.1.2 Antigen Retrieval 

Antigen retrieval was then performed using Dako Target Retrieval 

Solution, at 10%, in distilled water. 

Slides were placed in the plastic staining jar containing the 

previously prepared solution. Staining jar was then allocated in a water 

bath, at 100ºC, for 25 minutes. After this, slides were taken out of the water 

bath and allowed to cool at room temperature. 

When the slides were in the water bath, the immunohistochemistry 

chamber was prepared. For this, absorbent paper was cut and placed in 

the bottom of the chamber and impregnated with TBS. 

 

5.1.3 Endogenous Peroxidase Blockade 

We delimited the TMA section in the slide with a hydrophobic pen 

(NovoPen, Novocastra, Leica Systems) to prevent waste of reagents by 

keeping liquids in tension. 

In the immunohistochemistry chamber, slides were incubated with 3 

drops of peroxidase block (Peroxidase Block, Novocastra Novolink 

Detection System, Leica Systems) for 5 minutes, at room temperature. 

Slides were rinsed twice in TBS, 5 minutes each. 

 

5.1.4 Protein Block 

We eliminated the excess of TBS from slides by placing them in 

absorbent paper. Slides were incubated with 3 drops of protein block 

(Protein Block, Novocastra Novolink Detection System) for 5 minutes, at 

room temperature. This was done to block any unspecific antigen-antibody 

reaction that may lead to background staining. 

 

 



27 
 

5.1.5 Incubation of Primary Antibody 

We removed the excess of protein block reagent and we incubated 

each glass slide with 150 μL of primary antibody, at the respective dilutions. 

Slides were kept in the immunohistochemistry chamber, overnight, at 4ºC. 

 

5.1.6 Incubation of Secondary Antibody 

In the following day, slides were washed twice in TBS for 5 minutes 

each. 3 drops of secondary antibody (Post-primary, Novocastra Novolink 

Detection System) were placed on each slide for 30 minutes, in the 

immunohistochemistry chamber, at room temperature. They were washed 

in TBS twice for 5 minutes each. 

 

5.1.7 Polymer 

In order to eliminate the excess of the secondary antibody, slides 

were placed in the absorbent paper. 

Slides were incubated with 3 drops of the polymer (Polymer, 

Novocastra Novolink Detection System), for 30 minutes, in the 

immunohistochemistry chamber, at room temperature. After this, slides 

were rinsed twice in TBS, 5 minutes each. 

 

5.1.8 Chromogen Reaction/ Revelation 

3,3-diaminobenzidinetrahydrochloride (DAB) is an example of a 

chromogen. DAB is an electron donor which upon being oxidized produces 

an insoluble colored product (brown end color). We prepared 50 μL of DAB 

for each 1000 μL of substrate buffer.  

Each slide was incubated with 150 μL of DAB solution, until visible 

revelation occurred. After this, slides were placed in a container with water 

and placed under running water, for 10 minutes. 

 

5.1.9 Counterstaining 

Slides were counterstained with hematoxylin and placed under 

running water for 10 minutes. 

 

5.1.10 Dehydration and Clearing 

Slides were sequentially dehydrated in 70%, 90% and absolute 

alcohol, and 2 changes of xylene. 
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5.1.11 Mounting of Slides 

Slides were removed from the xylene and they were mounted with 

Entellan. We pressed each slide carefully after placing the cover slip to get 

rid of any bubbles present. 

They were quickly passed through xylene and cleaned, after which 

they were allowed to dry for microscopic examination. 

5.2  Analysis of TMA Slides 

The IHC analysis was performed by an experienced pathologist who was 

blinded to the clinico-pathologic data. 

5.2.1 CD8 Scoring 

TMA spots were analyzed in order to evaluate the number of T-

cytotoxic lymphocytes, as assessed by the expression of CD8 marker in 

breast tissue leukocytic infiltrates. 

To perform CD8 T-cell count in each spot, CD8 positive cells were 

calculated in 5 High-Power Fields (HFP) (400x), under the light microscope 

taking into account CD8 immunoreactivity, to distinguish T-cytotoxic 

lymphocytes of other cells. The values obtained from the 5 HPFs were 

added, in order to obtain the total spot count of CD8+ T-lymphocytes. 

 

5.2.2 CD4 and FoxP3 Scoring 

TMA spots were analyzed in order to evaluate the number of T-

helper lymphocytes and regulatory T-cells (a subpopulation of CD4+ T-

lymphocytes [81]), assessed by the expression of CD4 and/or FoxP3 

markers. Correspondingly, TMA sections were evaluated for the presence 

of CD4 and FoxP3. For this, 5 HPFs (400x) were visualized and counted 

under the light microscope. Lymphocytes presenting single 

immunoreactivity for CD4 antibody, at the cell or cytoplasm, were 

considered CD4+ T-cells, while lymphocytes presenting double 

immunoreactivity for CD4 and FoxP3 antibodies were considered 

regulatory T-cells (Figure 4). 
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Figure 4 – Representative image of CD4 and regulatory T-cell identification (example of a double 
immunoreactivity for CD4 and FoxP3 antibodies signaled with an arrow), in an Invasive Ductal Carcinoma 

(IDC) sample (Magnification 1000x). 

 

5.2.3 Ferritin Scoring 

Regarding ferritin, we evaluated the localization (cytoplasm and/or 

nuclear), the immunostaining intensity and the area of epithelial and 

lymphocyte staining. 

Nuclear ferritin expression was considered when more than 10% of 

the epithelial cells presented it. 

 

6. DNA Extraction and PCR-RFLP 

 

6.1 Biologic Samples 

We selected one paraffin block from each patient, in order to perform HFE 

and HLA genotyping. All FFPE blocks used from Centro Hospitalar do Porto 

were the same collected for the PhD project in which this study is integrated. 

The extraction of DNA was performed using the Ultraprep Tissue DNA kit 

(AHN Biotechnologie, Nordhausen, Germany). Using a clean, sharp microtome 

blade, we cut two 10 μm sections from each block. First cuts weren’t used to 

avoid degraded DNA and contamination. The steel knife was cleaned between 

blocks with absolute ethanol to avoid DNA contamination. 

When we performed HFE and HLA genotyping, this technique did not yield 

satisfactory results. Not only DNA was highly degraded in some blocks, not 

allowing HFE genotyping, nor HLA genotyping, given the high molecular weight 

of its PCR products. Hereupon, DNA extraction from peripheral blood was also 

performed. 
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As the blood collection was not inserted in the PhD project, we solicited an 

extended approval by the Centro Hospitalar do Porto Ethics Committee (Porto, 

Hospital Centre, Porto, Portugal) (2015.026(026-DEFI/024-CES)). 

Peripheral blood was collected from women with breast cancer (diagnosis 

between 2004 and 2009), who were followed by the Oncology Service, at 

Centro Hospitalar do Porto. Blood was collected by venipuncture into tubes 

already prepared with EDTA. 

 

6.2  Protocol of DNA Extraction from FFPE Blocks 

TMA blocks were cut at 10 μm and slides were then left at 70ºC, for 5 

minutes, and then, at 37ºC, until further techniques. Sections were 

deparaffinized 3 times in Ottix (DiaPath, Martinengo, Italy) (10 minutes each), 

and then, they were rehydrated through a descending series of alcohol (100%, 

90% and 70%) to distilled water – 10 minutes each. 

We used a 1,5 mL microcentrifuge tube for 2 slides of each case. To the 

1,5 mL microcentrifuge tube, we added 250 μL of Pre-elution buffer (PB) and 

20μL of proteinase K (both from Ultraprep Tissue DNA kit, AHN 

Biotechnologie, Nordhausen, Germany). Samples were scraped from the glass 

slides with the help of a pipette tip and placed in the corresponding eppendorf. 

We added the tissue sample and incubated, overnight, at 55ºC, in a 

thermomixer (300 rpm) with slight agitation. 

In the next day, we removed all microcentrifuge tubes from the thermomixer 

and added 250 μL of Alcohol buffer (AB) to each tube and mix thoroughly by 

vortexing, for 15 seconds. 

Samples were transferred to a new eppendorf with the kit column (500 μL). 

Tubes were then centrifuged for 1 minute, at 14500 rpm. The flow-through 

was discarded, without discarding the spin cup. 

After adding 400 μL of Washing buffer (WB) solution, all microcentrifuge 

tubes were placed in a thermomixer for 1 minute, at 14500 rpm. The flow-

through was discarded, without discarding the spin cup. 

Columns were washed twice with 400 μL of 70% ethanol by centrifugation, 

at 14500 rpm, for 3 minutes. The flow-through was discarded without 

discarding the spin cup. After this, columns were transferred to a different 

eppendorf. 40 μL of Elution buffer (EB) solution, previously preheated at 70ºC, 

was added into each microcentrifuge tube and was incubated at room 

temperature, for 2 minutes. Tubes were centrifuged for 1 minute, at 14500 rpm, 

and columns were discarded. 
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6.3  Protocol of DNA Extraction from Peripheral Blood  

Genomic DNA was isolated from leukocytes of peripheral blood using an 

altered “Salting Out” protocol, described in 1988, by Miller and colleagues 

[159]. This method, based on low solubility of proteins in the presence of high 

salt concentrations, allows for DNA extraction of high quality and quantity. 

First, mononuclear cells (leukocytes) were separated by centrifuging blood 

samples, collected in EDTA tubes, at 3000 rpm, during 20 minutes. After this, 

we got two phases: one with erythrocytes, and a buffy coat – ring of leukocytes 

and a liquid phase (serum). We withdraw the plasma and the buffy coat (with 

some erythrocytes) to one Falcon tube of 50 mL, to which we added 50 mL of 

red cell lysis buffer (RCLB). The solution was homogenized and was incubated 

for 10 minutes, at room temperature. Subsequently, it was centrifuged at 2000 

rpm, for 10 minutes, at 4ºC. 

The supernatant (red blood cells and other cellular components) 

was discarded and the pellet of lymphocytes was washed with cold RCLB 

(4ºC), until we achieved a completely white pellet. 

After this, we added 3,5 mL of  Tris-EDTA 2X (TE-2) buffer, 200 μL of 

Sodium Dodecyl Sulfate (SDS) at 10% and 10 μL of proteinase K to the pellet. 

SDS solution is a detergent able to solubilize membrane proteins and, amongst 

with TE-2, enhance membrane lysis, promoting release of DNA by the 

precipitation of proteins [160]. 

After agitation, samples were incubated overnight, at 42ºC, allowing full cell 

digestion. After enzyme digestion, samples were transferred to a conical tube 

of 15 mL, to which was added 1 mL of sodium chloride (NaCl) (6M). This saline 

buffer leads to the precipitation of proteins and release of DNA. 

Samples were vortexed and were slowly agitated by magnetic stirring, for 

10 minutes, resulting in a white solution due to precipitation of proteins. After 

this, samples were centrifuged at 3000 rpm for 30 minutes, at 23ºC. 

Disregarding the protein content, the supernatant was transferred to a Falcon 

tube of 50 mL, to which we have added 20 mL of cold absolute ethanol (-

20ºC). The ethanol solution removes water from the DNA molecule, forcing it to 

leave solution and precipitate. 

Subsequently, DNA coils were washed with 5 mL of cold 70% ethanol (-

20ºC), and were ressuspended in TE buffer solution, in an eppendorf tube of 2 

mL. The volume of TE utilized to ressuspend the DNA was determined by 

empiric observation. 
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In the final step, tubes with DNA were disposed on a rotary shaker for, at 

least, 12 hours. 

 

6.4  DNA Quantification 

The DNA extracted from paraffin blocks and peripheral blood was 

quantified using a NanoDrop spectrophotometer (Saveen Werner, Malmö, 

Uppsala). Values of DNA concentration and the ratios between absorbances at 

280 nm and 260 nm - that informs about DNA contamination of proteins 

(A260/280) - and 260 nm and 230 nm (A260/230) –, that indicates other 

contaminations (including salts or phenols) - were considered. 

DNA was stored in a freezer, at -20ºC, until further usage. 

 

6.5  Polymerase Chain Reaction (PCR) 

PCR, first introduced by Mullins in 1986 [161], allows enzymatic de novo 

synthesis of a specific target DNA sequence. During repetitive cycles of 

denaturation, annealing of specific oligonucleotide primers and polymerase 

extension, the DNA sequence limited by the two primers is doubled in each 

cycle, mimicking the in vivo process of DNA replication. 

The PCR reaction happens in three major phases [161]: 

 

 1st Phase - DNA denaturation: this step involves high temperatures, around 

95ºC, which separates the strands of the double helical DNA by breaking 

the hydrogen bonds forming single stranded DNA; 

 2nd Phase – Annealing of specific primers: temperature is lowered, to 

facilitate the annealing of primers to the DNA template. The perfect 

temperature depends on the sequence of the oligonucleotide primers and 

their Guanine/Cytosine content; 

 3rd Phase – Extension of DNA: it occurs at 72ºC, the ideal temperature for 

the polymerase activity. In this step, Taq polymerase extends the primers 

by adding the respectives deoxy nucleotide triphosphates (dNTPs). 

 

6.5.1 HLA-A*03 Genotyping 

  Although we have tried to optimize the protocol of DNA 

extraction from FFPE blocks, it wasn’t possible to perform because 

the DNA from FFPE blocks was highly degraded. Hence, we 

decided to perform DNA extraction from peripheral blood to detect 
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the presence of the HLA-A*03 allele. We prepared the mix for PCR 

reaction as described in Table 1. 

  Homemade-primers are optimized mixes of primers which 

are systematically used in the Immunogenetics Laboratory, 

Department of Pathology and Molecular Immunology, wherein, 

mixture 4 amplifies specifically HLA-A*0301 and HLA-A*0302, and 

the mixture 26 amplifies all HLA-A locus, except for the alleles 0201-

19, 2301, 2402-12, 6801-3 and 6901. 

Table 1 – Description of PCR reagents used for detection of HLA-A*03 allele. 

Component 
Initial 

Concentration 
Final 

Concentration 

Template DNA Variable ≤ 1 μg DNA/50 μL 

Green Bull Buffer 
1 

(Promega, Madison, WI USA) 
1000x 1x 

GoTaq DNA Polymerase 
(Promega, Madison, WI USA) 

5 U/μL 5 U 

MgCl2 
(Bioline, London, UK) 

50 mM 1,45 mM 

Forward/Reverse Primer 10 μM 5 μM 

Bi-distilled Water 
(B. Braun Medical, Portugal) 

Added to obtain the volume of 10 μL 

1 
Green Bull Buffer: 5x Green Buffer (final concentration: 1x); Bi-distilled water; MgCl2 (25 mM) (final concentration: 2 mM), Mix dNTP’s (25 

mM) (final concentration: 200 μM). 

The PCR program used for HLA-A amplification was the 

following: 2 minutes at 95ºC followed by 5 cycles of 10 seconds at 

96ºC and 1 minute at 70ºC, followed by 15 cycles of 10 seconds at 

96ºC, 30 seconds at 65ºC and 30 seconds at 72ºC, followed by 10 

cycles of 10 seconds at 96ºC, 30 seconds at 60ºC and 30 seconds 

at 72ºC. At last, reaction was extended at 72ºC, for 10 minutes. 

 

6.5.2 PCR-Restriction Fragment Length Polymorphism (PCR-

RFLP) 

Restriction fragment length polymorphism analysis of PCR-

RFLP was performed to detect the C282Y (exon 4) and H63D (exon 

2) polymorphisms in the HFE gene [46]. We prepared the mix for 

PCR reaction as described in Table 2. 
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Table 2 – Description of Multiplex PCR reagents used for amplification of the C282Y and H63D variant alleles. 

Component Volume/Reaction 
Final 

Concentration 

Template DNA Variable ≤ 1 μg DNA/50 μL 

2x Multiplex PCR Mastermix 25 μL 1x 

Q-solution, 5x 5 μL 0,5x 

HFE C282Y/H63D Forward Primer 100 μM 10 μM 

HFE C282Y/H63D Reverse Primer 100 μM 10 μM 

Bi-distilled Water Variable 

 

For the HFE H63D polymorphism, the following forward and 

reverse primers’ sequences were used, according to Feder’s work 

[46]: 5’-ACA TGG TTA AGG CCT GTT GC-3’ and 5’-GCC ACA TCT 

GGC TTA AAA TT-3’, amplifying a 294 bp fragment. Sequences of 

primers used for detection of C282Y polymorphism were: forward 

primer, 5'-CAAGTGCCTCCTTTGGTGAAGGTGACACAT-3', and 

reverse primer, 5’-CTCAGGCACTCCTCTCAACC-3’, amplifying a 

343 bp fragment. 

The PCR program used for H63D and C282Y amplification 

was the following: DNA suffered an initial activation step at 95ºC for 

10 minutes. For 36 cycles, it was denatured at 94ºC for 30 seconds, 

annealed at 58ºC for 90 seconds, and extended for 90 seconds, at 

72ºC. At last, reaction was extended at 72ºC, for 10 minutes. 

6.6  Electrophoresis 

Electrophoresis is supported by the principle that applying an electric field 

which force negative molecules, such as DNA, to migrate into the positive pole, 

through an agarose or polyacrylamide matrix [162]. This separates molecules 

by size, where smaller molecules move faster and migrate further through the 

gel [162]. 

First, we prepared an agarose medium gel, at 1,5%. In the erlenmeyer 

flask, we mixed 4,5 g of agarose with 300 mL of 1X TAE. Then, it was placed 

for 4 minutes, in a microwave, at full power. 

After this, we added 25 µL of ethidium bromide (Sigma-Aldrich, MO, USA) 

to the erlenmeyer flask, and it was cautiously agitated, avoiding air bubbles in 

the agarose (GeneOn, Germany) solution. After the agarose solution cooled 

down, it was poured over a gel mold with the well combs in place. The agarose 

gel was completely solidified after 25-30 minutes. It was placed in the 

electrophoresis unit and was covered with 1xTAE, and the combs removed. 
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We added 5 µL of the amplicon to 2 µL of loading buffer, and this mix was 

loaded to the wells of the gel. In the first well of the gel, we placed a molecular 

weight ladder, with 100 bp, and then, the samples. The gel was run for 

approximately 1 hour, at approximately150 V. We transferred the 

electrophoresis gel to a chamber with ultraviolet light to analyze it. 

For HFE gene polymorphisms (C282Y and H63D), we considered a 

successful amplification when a band with 294 bp and 343 bp, respectively, 

was identified in the gel. 

For the HLA-A*03 allele, DNA was amplified by PCR with sequence-

specific primers based on methods described previously [163]. Each reaction 

included an internal control, specific for the Adenomatous Polyposis Coli (APC) 

gene, which gives a 246 bp band indicating that the reaction works properly. 

For the HLA-A*03 locus tissue type, we considered that amplification occurs 

when two bands with 446 bp and 636 bp appear in the gel, for each specific 

reaction (Figure 5). 

 

 

 

 

 

 

 

 

 

 

Figure 5 – HLA-A*03 allele identification through appropriate-sized bands on the gel. 

 

The identification of the HLA-A*03 allele was performed only in 33 patients, 

since some patients had passed away, others remained unreachable and 

others simply refused to participate in this study. 

6.7  Polymorphism Restriction 

For the C282Y polymorphism of the HFE gene, 1 µL of RsaI enzyme (10 

U/µL) was added to 1 µL of enzyme buffer. For the H63D polymorphism of the 

HFE gene, we added to each PCR product 0,5 μL of MboI enzyme (10 U/μL) 

and 2 µL of enzyme buffer. 
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Enzyme buffer solutions and restriction enzymes were placed and 

preserved on ice during the preparation of restriction mix and during 

distribution into the samples. Subsequently, we placed PCR tubes with the 

amplicons and the restriction mixes in a heated chamber, at 37ºC, overnight. 

The proceedings for the production of the agarose gel were the same as 

previously reported, but including 9 g of agarose instead of 4,5 g (agarose gel 

at 3%). 

The resulting solutions were placed with 2 μL of loading buffer and loaded it 

into the wells. In the first well of the gel, we placed a molecular weight ladder 

with 100 bp. 

The agarose gel was visualized under a UV light and photographed. The 

digested products were analyzed to identify the different genotypes. 

For H63D, MboI identifies and cleaves the -GATC sequence in three 

different sequence sites. In the absence of the polymorphism, MboI restriction 

creates three fragments (138, 99 and 57 bp), whereas its presence abolishes 

one restriction site, creating 237 and 57 bp fragments. When the three bands 

are visualized, the individual is considered to be homozygous-dominant (HH). 

Individuals are considered to be homozygous-recessive (DD), when MboI 

restriction creates two fragments (237 and 57 bp), because the polymorphism 

eliminates one site of MboI restriction. The individual is considered 

heterozygous (HD), if one of the alleles harbors the single nucleotide 

polymorphism, while the other is considered “normal”, resulting in four different 

fragments: 237, 137, 99 and 57 bp. 

To recognize the C282Y polymorphism, we used the endonuclease RsaI, 

which identifies the restriction site GT’AC. This polymorphism creates a new 

restriction site. If the individual is homozygous dominant (CC), two fragments 

are observed with 203 and 140 bp length. If the individual has the 

polymorphism, which means he is heterozygous (CY), one additional binding 

site is present, thus producing four fragments (203, 111, 140 and 29 bp). If the 

individual harbors the single nucleotide polymorphism (SNP) in the two alleles 

(YY), the endonuclease cuts the fragment, producing three fragments with 203, 

111 and 29 bp. 

 

7. Statistical Analysis 

In order to verify the normality of all variables, we used the Shapiro-Wilk Test. 

Statistical significance was calculated using Kruskal-Wallis or Mann-Whitney tests 
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to compare sample distribution. Person’s Chi-Square was used to evaluate the 

differences between categorical variables and the Spearman’s rank correlation 

coefficient to evaluate their relationship. 

All analyses were undertaken using SPSS version 20 software (SPSS, 

Chicago, Illinois, USA). Statistical significance was accepted at p<0,05. 
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IV. RESULTS 

 

1. Lesion Frequencies 

Apart from the normal liver and lymph node tissues inserted as controls, TMA 

blocks contained 452 spots from breast samples, of which 159 disappeared during 

alignment, sectioning or were lost during practical procedures. 

For statistical purposes, same lesions from the same case were grouped and the 

mean value of each parameter analyzed was taken into account. In total, 134 samples 

from TMA blocks were analyzed, including: 25 reduction breast reduction aesthetic 

surgery samples (accounted as control normal samples), 13 histologically “normal” 

lesions from DCIS samples, 27 pure DCIS samples, 24 histologically “normal” lesions 

from IDC samples, 11 DCIS lesions from IDC samples and 34 pure IDC samples. 

Tissue sample and core frequencies were summarized in Table 3. 

 

 Table 3 – Tissue sample and core frequencies. 

 

 

 

 

 

 

 

 

 

Abbreviations: No., Number; DCIS, Ductal Carcinoma in situ; IDC, Invasive Ductal Carcinoma. 

 

 

2. Lymphocyte Frequencies 

 The immunolocalization of CD4+, CD8+ and CD4+FoxP3+ T-cells was observed in 

breast tissue samples of control normal, DCIS and IDC samples. Distinct staining 

patterns were apparent among samples type, as seen in the representative images 

illustrated in Figure 6. In general, CD4+ T-lymphocytes presented a cytoplasmic 

TTiissssuuee  SSaammppllee  TTyyppee  ooff  CCoorree  
NNoo..  ooff  SSaammpplleess  

iinn  TTMMAA  BBlloocckkss  
 

Control Normal Samples 

(n=25) 

Normal 25 

DCIS 

(n=27) 

Histologically 

“Normal” Lesions in 
DCIS 

13 

Pure DCIS 27 

IDC 

(n=34) 

Histologically 

“Normal” Lesions in 
IDC 

24 

DCIS in IDC 11 

Pure IDC 34 

TOTAL 134 
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expression, CD8+ T-lymphocytes a membranar expression and FoxP3+ T-cells a 

nuclear expression. 

Figure 6 – Representative images of CD4
+
 and CD8

+
 T-lymphocytes and CD4

+
FoxP3

+ 
Regulatory T-cells 

immunostaining in normal breast, ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) 
samples. Images A1, B1, C1, D1, E1 and F1: magnification 100x; images A2, B2, C2, D2, E2 and F2: 

magnification 400x. 

 

 The total number of lymphocytes analyzed in this study (assessed by positivity to 

CD8, CD4 and FoxP3 markers) was much more pronounced in carcinoma (DCIS and 

IDC) than in control normal samples (p<0,001, p=0,002 and p=0,049, respectively). 

 For the purpose of this analysis, the proportion between CD4+ and CD8+ T-cells 

was evaluated by the CD4/CD8 ratio. The CD4/CD8 ratio presented a tendency to 

decrease from normal to IDC samples, but the differences were not statistically 

significant (p=0,348). 

 These results are illustrated in Figures 7, 8 and 9 (cf. Supplementary Material, 

Table 11). 
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Figure 7 – Lymphocyte frequencies in breast tissue samples. Median infiltration of CD8
+
 T-lymphocytes, CD4

+
 

T-lymphocytes, CD4
+
FoxP3

+
 T-lymphocytes and the median number of total lymphocytes in control normal 

(n=25, n=17, n=17 and n=17, respectively), DCIS (ductal carcinoma in situ) (n=26, n=25, n=25 and n=24, 
respectively) and in IDC (invasive ductal carcinoma) (n=34, n=30, n=30 and n=30, respectively) samples. Graph 

shows Median and 95% Confidence Intervals (CI). Significant differences are shown for comparison with the 
precedent group *p< 0,05, **p< 0,01, ***p< 0,001, Mann-Whitney test. 

 

 

 

 

 

 

 

 

 

Figure 8 – CD4/CD8 ratio in breast tissue samples. Median CD4/CD8 ratio in control normal (n=16), DCIS 
(ductal carcinoma in situ) (n=24) and in IDC (invasive ductal carcinoma) (n=30) samples. Graph shows 

Median and 95% Confidence Intervals (CI). 
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Figure 9 – FoxP3/CD4 ratio in breast tissue samples. Median FoxP3/CD4 ratio in control normal (n=17), DCIS 
(ductal carcinoma in situ) (n=25) and in IDC (invasive ductal carcinoma) (n=30) samples. Graph shows 
Median and 95% Confidence Intervals (CI). Significant differences are shown for comparison with the 

precedent group *p< 0,05, **p< 0,01, ***p< 0,001, Mann-Whitney test. 

 

 

3. Ferritin Expression in Breast Tissue 

  Ferritin expression was mainly observed in the cytoplasm of epithelial cells and 

lymphocytes (Figure 10). 

Figure 10 – Representative images of ferritin expression in normal, ductal carcinoma in situ (DCIS) and 
invasive ductal carcinoma (IDC) samples. Images A1, B1 and C1: magnification 200x; images A2, B2 and C2: 

magnification 400x. 

 Considering that the ferritin expression in epithelial cells and lymphocytes do not 

follow a normal distribution, non-parametric tests were performed and the median 

value of expression and interquartile range (IQ) were presented. 

 The median ferritin expression in epithelial cells in control normal samples was 

15,00 (15,00-15,01), 10,00 (8,00-12,50) in DCIS samples and 10,00 (10,00-10,83) in 

IDC samples. 

 Breast cancer epithelial cells from DCIS and IDC samples presented a 

significantly lower median expression of ferritin than normal samples (p<0,001) 
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(Figure 11). There were no statistically significant differences for median ferritin 

expression in epithelial cells between DCIS and IDC samples (p>0,05) (Figure 11). 

 On the other hand, median ferritin expression in breast cancer infiltrating 

lymphocytes was significantly higher than in normal samples (p<0,001) (Figure 11). 

There were no statistically significant differences for median ferritin expression in 

lymphocytes between DCIS and IDC samples (p>0,05) (Figure 11). 

 

 

 

 

 

 

 

 

 

 

Figure 11 – Median ferritin expression in epithelial cells (EC) and lymphocytes (Ly) from control normal (n=25 
and n=15, respectively), DCIS (ductal carcinoma in situ) (n=22 and n=17, respectively) and IDC (invasive 

ductal carcinoma) (n=33 and n=32, respectively) samples. Graph shows Median and 95% Confidence 
Intervals (CI). Significant differences are shown for comparison with the precedent group *p< 0,05, **p< 0,01, 

***p< 0,001, Mann-Whitney test. 

 

4. Nuclear Ferritin Expression 

 In this project, we considered the presence of nuclear ferritin in more than 10% of the 

epithelial cells. So, as shown in Table 4, over half of all cases presented nuclear ferritin 

expression, independently of sample diagnosis. 

 Chi-square test was performed to verify the percentage of cases with more than 10% of 

epithelial cells was presenting nuclear ferritin expression in breast tissue samples. We noted 

that the presence of nuclear ferritin had a slight tendency to increase in DCIS samples than 

normal or IDC samples (p>0,05). However, as the percentage of DCIS and IDC samples 

presenting nuclear ferritin expression was similar, we decided to group these lesions. 

Comparing normal to breast ductal carcinoma samples, we observed that the presence of 

nuclear ferritin was not associated with the sample diagnosis (p=0,392).  

Results are illustrated in Table 4. 
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Table 4 – Percentage of breast tissue samples presenting nuclear ferritin in epithelial cells. 

 

Nuclear Ferritin Expression 
 

Absence Presence 

Tissue Sample n % n % p 

Normal 11 44% 14 56% 
p=0,392 

Carcinoma 18 34% 35 66% 

Abbreviations: %, Percentage. 

 

5.   Ferritin in Breast Tissue and Nuclear Ferritin Expression 

 Considering that the ferritin expression in breast tissue does not follow a normal 

distribution, non-parametric tests were performed and the median value of expression and 

interquartile range (IQ) were presented. Mann-Whitney non-parametric test was applied to verify 

if the median ferritin expression in epithelial cells and lymphocytes was significantly different 

between samples which presenting or not nuclear ferritin in more than 10% of its epithelial cells. 

 No statistically significant differences were found for median ferritin expression in epithelial 

cells or lymphocytes, according to the presence or absence of nuclear ferritin expression (p>0,05) 

(Table 5). 

 

Table 5 – Median ferritin expression in breast tissue depending on the presence of nuclear ferritin. 

 

 

Nuclear Ferritin Expression 

Absence Presence 

Ferritin 
Expression 

n Median (IQ) n Median (IQ) 

Epithelial 
Cells 

29 10,0 (10,0-12,5) 49 11,7 (10,0-15,0) 

p p=0,474 

Lymphocytes 23 8,0 (8,0-10,0) 39 8,0 (7,3-10,0) 

p p=0,412 

Abbreviations: IQ, Interquartile Range. 

  

6. Lymphocytic Profile and Ferritin Expression 

 The lymphocytic profile was assessed through analysis of CD4/CD8 and FoxP3/CD4 

median ratios. The Spearman correlation coefficient was used to determine if the CD4/CD8 ratio 

and FoxP3/CD4 ratio were linearly correlated with median ferritin expression in lymphocytes. 

 The CD4/CD8 ratio was not correlated with the median ferritin expression in lymphocytes 

(n=57; p=0,663; r=0,059) (Figure 12). However, the FoxP3/CD4 ratio was positively correlated 

with the median ferritin expression in lymphocytes (n=57; p=0,002; r=0,408) (Figure 13). 
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Figure 12 – Scatter diagram of Spearman’s correlation coefficient between CD4/CD8 ratio and median ferritin 

expression in lymphocytes. 

 

 

 

 

  

 

 

 

 

Figure 13 – Scatter diagram of Spearman’s correlation coefficient between FoxP3/CD4 ratio and median 
ferritin expression in lymphocytes. 

 

7. Hemosiderin Deposits, Lymphocytic Profile and Ferritin Expression 

 Considering that the ferritin expression and the lymphocytic profile do not follow a normal 

distribution, non-parametric tests were performed and the median value of expression and 

interquartile range (IQ) were presented. Mann-Whitney test was applied to verify if the median 

ferritin expression and the lymphocytic profile were associated with the presence of hemosiderin 

deposits in breast tissue. The lymphocytic profile was evaluated through analysis of CD4/CD8 

ratio and FoxP3/CD4 ratio. 

 Regarding the type of lymphocytic profile, no statistically significant differences were 

observed, concluding that hemosiderin deposits in epithelial cells did not have effect on 

lymphocytic profile (p>0,05) (Table 6). 

 It was investigated if the median ferritin expression in epithelial cells and lymphocytes was 

associated with the presence of hemosiderin deposits in epithelial cells. No statistically significant 
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differences were observed regarding the accumulation of hemosiderin in epithelial cells on 

median ferritin expression in epithelial cells (p=0,091) and lymphocytes (p=0,611) (Table 6). 

 

Table 6 – Lymphocytic profile and median ferritin expression according to the hemosiderin deposition in 
epithelial cells. 

  

Hemosiderin Deposits 

in Epithelial Cells 

Absence Presence 

n Median (IQ) n Median (IQ) 

Lymphocytic 

Profile 

Ratio 

CD4/CD8 
41 1,34 (1,00-1,87) 28 1,63 (1,00-2,00) 

p p=0,608 

Ratio 

FoxP3/CD4 
42 0,01 (0,00-0,05) 28 0,02 (0,00-0,05) 

p p=0,591 

Ferritin 

Expression 

Epithelial 

Cells 
46 11,25 (10,00-15,00) 29 10,00 (7,50-12,50) 

p p=0,091 

Lymphocytes 37 8,00 (7,25-10,00) 26 8,00 (8,00-10,00) 

p p=0,611 

Abbreviations: IQ, Interquartile Range. 

 

8. Hemosiderin Deposits and Ferritin Expression 

As ferritin expression in breast tissue does not follow a normal distribution, non-parametric 

tests were performed and the median value of expression and interquartile range (IQ) were 

presented. Mann-Whitney non-parametric test was applied to examine if median ferritin 

expression in epithelial cells and lymphocytes was associated with hemosiderin deposition in 

stromal inflammatory cells. 

The median ferritin expression in epithelial cells was associated with hemosiderin 

deposition in stromal inflammatory cells (p=0,018). However, no statistically significant 

differences were observed for the median ferritin expression in lymphocytes, regarding the 

accumulation of hemosiderin in stromal inflammatory cells (p=0,958).  

Results are shown in Table 7. 
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Table 7 – Median ferritin expression according to the hemosiderin deposition in stromal inflammatory cells. 

 

 

Hemosiderin Deposits 
in Stromal Inflammatory Cells 

Absence Presence 

Ferritin 
Expression 

n Median (IQ) n Median (IQ) 

Epithelial 
Cells 

29 10,00 (10,00-15,00) 37 10,00 (7,50-12,50) 

p p=0,018 

Lymphocytes 22 9,25 (7,33-10,00) 33 8,00 (8,00-10,00) 

p p=0,958 

Abbreviations: IQ, Interquartile Range. 

 

9. HLA-A*03 Allele and Ferritin Expression 

HLA-A*03 allele was performed in 22 of the 33 peripheral blood samples. In ductal 

carcinoma in situ (DCIS) samples, 14,3% patients presented the HLA-A*03 allele and 

85,7% not. Regarding patients with invasive ductal carcinomas (IDC), the presence of 

HLA-A*03 allele was demonstrated in 13,3% of all cases. These results were shown in 

Figure 14. 

 

 

 

 

   

 

Figure 14 – Frequencies of human leukocyte antigen (HLA) HLA-A*03 allele in breast tumor samples (ductal 
carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC)). 

 

 Considering that the ferritin expression does not follow a normal distribution, non-

parametric tests were performed and the median value of expression and interquartile 

range (IQ) were presented. Mann-Whitney non-parametric test was used to determine if 

the median ferritin expression in epithelial cells and lymphocytes was associated with the 

presence or absence of the HLA-A*03 allele. 
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 No statistically significant differences were observed regarding median ferritin 

expression in epithelial cells or lymphocytes, according to the presence or absence of 

HLA-A*03 allele (p=0,796 and p=0,071, respectively) (Table 8). 

 

Table 8 – Median ferritin expression according to the HLA-A*03 allele. 

 

 

HLA-A*03 Allele 

Absence Presence 

Ferritin 
Expression 

n Median (IQ) n Median (IQ) 

Epithelial 

Cells 
18 10,0 (10,0-11,7) 3 10,0 (9,0-10,6) 

p p=0,796 

Lymphocytes 17 10,0 (8,0-10,0) 2 7,3 (6,7-8,0) 

p p=0,071 

Abbreviations: IQ, Interquartile Range. 

In epithelial cells, independently of the absence or presence of the HLA-A*03 allele 

the median ferritin expression was the same (p>0,05). Nevertheless, when HLA-A*03 is 

present, a tendency for a lower median ferritin expression in lymphocytes was observed 

(p=0,071). 

 

10.  HFE Polymorphisms and Ferritin Expression 

 As described above, ferritin expression in epithelial cells and lymphocytes does not 

follow a normal distribution, hereupon, the median value of expression and interquartile 

range (IQ) were presented. Mann-Whitney non-parametric test was used to demonstrate if 

the median ferritin expression in epithelial cells and lymphocytes was associated with HFE 

polymorphisms. 

 

C282Y Polymorphism 

In order to reduce bias, this analysis was restricted to breast carcinoma samples, 

once heterozygous individuals were not identified in control samples.  

 No statistically significant differences were observed for median ferritin expression in 

epithelial cells or lymphocytes, according to the presence of the HFE C282Y 

polymorphism (p=0,822 and p=0,369, respectively) (Table 9). 
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Table 9 – Median ferritin expression according to the C282Y polymorphism. 

 

HFE C282Y Polymorphism 

CC CY 

Ferritin 
Expression 

n Median (IQ) n Median (IQ) 

Epithelial 

Cells 
44 10,00 (7,88-11,72) 8 10,00 (9,25-10,00) 

p p=0,822 

Lymphocytes 38 10,00 (8,00-10,00) 8 8,00 (7,63-9,88) 

p p=0,369 

Abbreviations: CC, Homozygous-dominant; CY, Heterozygous; IQ, Interquartile Range. 

 

H63D Polymorphism 

Even though the number of control normal population carrying the HD or DD 

genotype was lower than number of carcinoma samples carrying the HD or DD genotype, 

we verified that differences were not statistically significant for the median ferritin 

expression in epithelial cells and lymphocytes between normal and carcinoma samples 

(p>0,05) (Data not shown). We decided to use the whole population for the analysis. 

No statistically significant differences were found for the median ferritin expression 

in epithelial cells or lymphocytes, according to the HFE H63D polymorphism (p=0,550 and 

p=0,885, respectively) (Table 10). 

 

Table 10 – Median ferritin expression according to the H63D polymorphism. 

 

HFE H63D Polymorphism 

HH DD + HD 

Ferritin 
Expression 

n Median (IQ) n Median (IQ) 

Epithelial 

Cells 
41 10,0 (10,0-15,0) 34 10,4 (10,0-12,5) 

p p=0,550 

Lymphocytes 30 8,0 (7,3-10,0) 30 8,0 (7,5-10,0) 

p p=0,885 

Abbreviations: HH, Homozygous-dominant; DD, Homozygous-recessive; HD, Heterozygous; IQ, Interquartile Range. 
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11.  Ferritin Expression, Lymphocyte Infiltration and Clinicopathological 

Variables of Breast Cancer Behaviour 

Hormone Receptors and HER-2 Status 

We extended the observation to estrogen and progesterone receptors (ER and 

PR, respectively) and to human epidermal growth factor 2 (HER-2) status in DCIS and 

IDC samples. These clinico-biological markers are associated with breast cancer behavior 

[69, 164]. All associations were calculated using the Mann-Whitney non-parametric test 

(cf. Supplementary Material, Table 12). 

IDC ER positive cases presented significantly higher median ferritin expression 

(p=0,028). 

In DCIS samples, the median number of total lymphocytes was significantly higher 

in ER and PR negative cases (p=0,003 and p=0,008, respectively). 

CD4+ T-lymphocyte median numbers were significantly higher in ER negative 

(p=0,002), PR negative (p=0,006) and HER-2 positive (p=0,042) cases in DCIS samples. 

A higher median number of CD8+ and CD4+FoxP3+ T-cells was observed in ER 

negative DCIS cases (p=0,009 and p=0,019, respectively). 

All other comparisons were not statistically significant (p>0,05). 

 

Tumor Size and Lymph Node Involvement 

  We next analyzed if the median number of lymphocytes and the median ferritin 

expression were associated with the local and metastatic tumor growth in invasive tumors. 

  No statistically significant associations were found for tumor size and lymph node 

involvement, according to the median numbers of CD4+, CD8+ and CD4+FoxP3+ T-cells, 

the median number of total lymphocytes and the median ferritin expression in epithelial 

cells and lymphocytes (p>0,05) (cf. Supplementary Material, Table 13). 
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V. DISCUSSION 

 

1. Lymphocyte Population 

The immune system has an important role in breast cancer progression [77]. CD4+ 

and CD8+ T-cells are considered the main types of lymphocytes in cell-mediated immunity 

and participate in anti-tumor immune responses [165]. Therefore, we compared numbers 

of CD4+ and CD8+ T-lymphocytes and the CD4/CD8 ratio between normal and carcinoma 

breast tissue samples (DCIS and IDC). The median numbers of CD4+ and CD8+ T-cells 

were significantly higher in tumor tissues, when compared with normal breast tissues 

(p=0,002 and p<0,001, respectively). Our observations are in concordance with the higher 

numbers of lymphocytes (CD4+ and CD8+ T-cells) in breast tumor samples reported in 

different studies [77, 166-168]. Relatively to CD4/CD8 ratio, we did not find any significant 

differences between normal and breast cancer samples (p=0,348). This finding in breast 

tissue is in line with a study of Schroder and colleagues [169], who did not report any 

significant differences in systemic CD4/CD8 ratio between controls and breast cancer 

samples. 

Regarding regulatory T-cell numbers, assessed by the co-expression of CD4+ and 

FoxP3+ in lymphocytes, we verified an increment from normal to breast cancer samples 

(p=0,049), in agreement with other studies [94, 170-172]. Additionally, we observed that 

the FoxP3/CD4 ratio increases with malignancy (p=0,018). These results suggest the 

existence of a close relationship between the number of regulatory T-cells and 

development of cancer, suggesting that Tregs could be an important strategy for tumor 

escaping from anti-tumor immunity during tumor development. This is in agreement with 

Wang and colleagues’ research, who observed that higher numbers of Tregs are 

associated with a poor prognosis [173]. 

Therefore, with our results, we can hypothesize that tumor cells are able to enhance 

tumor-infiltrating lymphocyte numbers, by activating anti-tumoral immune cells (CD8+ 

cytotoxic T-cells and CD4+ T-helper) or recruiting and reactivating immunosuppressive 

subtypes capable of tumor growth promotion, such as regulatory T-cells. Nevertheless, we 

cannot disregard the fact that Tregs detection was achieved through co-expression of 

CD4+ and FoxP3+ markers, not evaluating the CD25+ expression [92, 173, 174], which 

could be argued as not reflecting activated Tregs detection. 
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2. Ferritin Expression  

In our study, we evaluated median ferritin expression in epithelial cells in normal, DCIS 

and IDC samples. Breast ductal carcinoma epithelial cells presented a lower median 

ferritin expression (p<0,001) than normal samples, which confirms a previous study that 

they exhibit an “iron-deficiency phenotype”, illustrated by the downregulation of ferritin 

[120]. We may consider that the control of iron homeostasis, at post-transcriptional level, 

is achieved through the key iron sensors, namely, iron regulatory proteins (IRPs) [3, 12]. 

As described above, IRPs binds to the iron-responsive elements (IREs), such as ferritin, 

and this ligation is regulated by intracellular iron levels, allowing cells to promptly regulate 

concentrations of accessible cytosolic iron [8, 27]. So, as breast cancer epithelial cells 

presented an “iron-utilization phenotype”, IRPs are, in fact, able to interact with their target 

IREs which leads to the blockade of its translation and the decrease of ferritin expression 

[29]. Consequently, iron availability can be enhanced, dealing to an increase of 

hemosiderin deposits in epithelial cells. In fact, we demonstrated that a higher percentage 

of breast ductal carcinoma samples showed hemosiderin deposition, compared to normal 

controls (p=0,022). Munro and colleagues previously described that hemosiderin consists 

in a degradation product of ferritin [155]; hereupon, we hypothesized that when ferritin 

was downregulated, hemosiderin deposition could be enhanced. Richter and colleagues’ 

study indicated that in individuals with hereditary hemochromatosis much of the inorganic 

storage iron was derived from degraded ferritin [175]. In fact, this supports our hypothesis 

that the majority of iron necessary for cancer cells’ survival can be derived from the 

degradation product of ferritin. 

It is well established that ferritin is a cytoplasmic iron storage protein [176]; however, 

several studies have reported the translocation of ferritin to the nucleus, specifically H-

ferritin, which protects DNA from iron-mediated toxicity, enhancing cancer cells survival 

[34, 35, 122]. In view of this, we hypothesized that a higher nuclear ferritin expression 

could be observed in IDC samples, promoting the survival of malignant epithelial cells. 

Nevertheless, this hypothesis was not confirmed, once the presence of nuclear ferritin 

expression was not associated with sample diagnosis (p>0,05). We also reported no 

statistically significant differences for median ferritin expression in epithelial cells or 

lymphocytes, in line with the presence or absence of nuclear ferritin expression (p>0,05). 

At the systemic level, the lymphocyte population represents an essential iron storage 

compartment, which is involved in non-transferrin-bound iron uptake [177, 178] and in a 

tumor supported growth, through the iron nutrition [179]. In fact, regarding hemosiderin 

deposits in stromal inflammatory cells, we observed an increase from normal to breast 

ductal carcinoma samples (p<0,001), bringing evidence to our hypothesis that 
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lymphocytes may act as an iron reservoir that assists tumor nutrition. Lymphocytes are 

also capable of synthesizing ferritin [44]. Alkhateeb and colleagues [120] showed, with cell 

lines, that extracellular ferritin stimulates breast cancer progression, independently of its 

iron content. In line with this information, our study revealed that, in fact, infiltrating 

lymphocytes display an “iron-donor” phenotype with increased median expression of 

ferritin in breast ductal carcinoma samples, compared with control normal samples 

(p<0,001). 

We decided to identify which T-lymphocyte population(s) was/were expressing ferritin. 

There are consistent data concerning the association between CD4/CD8 ratio and iron 

stores. An example is a study performed by Porto and colleagues with hereditary 

hemochromatosis patients, showing that individuals with high CD4/CD8 ratios had 

significantly higher iron stores, compared to those with normal ratios [52]. Their study also 

revealed differences between individuals who were expressing the HLA-A*03 allele and 

those who did not expressing this allele [52]. Surprisingly, in our study, the CD4/CD8 ratio 

was not correlated with median ferritin expression in lymphocytes (p=0,663). The 

differences found in the present study can be explained by the reduced number of 

samples or the indirect method we have used to verify which T-lymphocyte population(s) 

was/were secreting ferritin. An alternative method for this could be the confocal 

immunofluorescence technique [80]. Furthermore, we cannot ignore the fact that the 

evaluation of ferritin expression was achieved with a polyclonal antibody, which did not 

discriminate the heavy and light subunits and may not considered reflect iron 

accumulation in these cells. 

We verified that FoxP3/CD4 ratio was positively correlated with median ferritin 

expression in lymphocytes (p=0,002), which is in agreement with a study done in patients 

with melanoma, performed by Gray and colleagues [180]. In the same study, Gray and 

colleagues evidenced the importance of H-ferritin in the induction of regulatory T-cells and 

provided an additional insight into the suppression of immune responses in certain 

individuals [180]. 

3. HFE Gene 

Advances in iron metabolism field have led to the identification of genes involved in 

increased cellular iron levels, such as the HFE gene [46]. Even though clinical evidence 

exists to support a relationship between breast cancer and HFE polymorphisms, the 

nature of this relationship and the mechanisms by which HFE function alters tumor 

progression are still unclear [181]. HFE polymorphisms have the capacity to modulate iron 

homeostasis by triggering serum iron overload [137]. It is already described that 

alterations in iron homeostasis affects tumor progression [1, 12, 38]. Neoplastic tissue 
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needs high levels of iron and has increased ferritin expression when compared with 

normal tissues [5, 12]. Individuals with hereditary hemochromatosis (C282Y homozygosity 

representing over 80% of HH patients found in European-derived populations [46, 182]) 

also present increased serum iron and ferritin concentrations, compared to those with the 

wild-type HFE genotype [130]. Furthermore, an earlier study, in hereditary 

hemochromatosis, indicated that cells from individuals expressing the HLA-A*03 antigen 

had a reduced ferritin secretion in vitro, compared to others without A3 [45]. Thus, we 

approached the question if HFE polymorphisms were associated with median ferritin 

expression in epithelial breast cancer cells and lymphocytes. Our results showed that 

presence of HFE, C282Y and H63D, polymorphisms are not associated with the median 

ferritin expression in epithelial cells and lymphocytes. These results can reflect the fact 

that the majority of the individuals in our cohort did not present were HFE wild-type. 

However, the discrepancy found with previous reports also might be due to our limited 

number of samples, or to the fact that our samples were histologically homogeneous (they 

were all from breast ductal carcinomas). 

In addition to its role on iron regulation, HFE is also involved in immune system 

modulation [51]. In a recent work, Reuben and colleagues proposed that HFE played, in 

fact, a role in antigen processing and presentation leading to an inhibition of CD8+ T-

lymphocyte activation [51]. In fact, previous studies by Cruz and colleagues reported that 

the majority of hereditary hemochromatosis patients being homozygous for the C282Y 

polymorphism showed low CD8+ T-lymphocyte numbers [183]. A recent study suggested 

that this abnormality of CD8+ T-cell numbers in hereditary hemochromatosis could be 

considered a consequence of iron overload condition or a direct effect of HFE gene on the 

regulation of this cell population homeostasis [184]. In the present study, performed in 

breast cancer samples, we sought to test the hypothesis that HFE genotype could modify 

CD8+ T-cell numbers. Our results indicated that C282Y heterozygote individuals 

presented an increase in CD8+ T-lymphocyte median numbers in breast tissue (Data not 

shown). This approach contrasts with the majority of existing work. However, most 

available models include C282Y homozygous, and in our cohort individuals were C282Y 

heterozygous. The most attractive hypothesis to explain this result is the existence of a 

different behavior between C282Y homozygous and heterozygous individuals in a 

carcinogenesis context, or the existence of certain conditions showing compensatory 

phenotypes, suggesting that in the presence of one allele a compensating favourable 

effect could be observed [185]. 
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4. HLA-A*03 Allele 

Pollack and colleagues concluded that the altered ferritin secretion was associated with 

the HLA-A locus, by showing that individuals with the HLA-A*03 allele had a lower ferritin 

secretion than those without [45]. Regarding this information, we decided to examine if 

HLA-A*03 allele was associated with the median ferritin expression in breast cancer 

epithelial cells and lymphocytes. The median ferritin expression in epithelial cells and 

lymphocytes was not associated with the presence of the HLA-A*03 allele (p=0,796 and 

p=0,071, respectively). However, when the HLA-A*03 allele was present, a tendency for a 

median lower ferritin expression in lymphocytes was observed (p=0,071), which is in 

agreement with a previous referred study [45]. This tendency does not reach significance, 

probably due to the small number of individuals enrolled in our study. 

5. Clinicopathological Variables 

In the current study, we tested if the median ferritin expression and T-lymphocyte 

numbers were associated with established clinicopathological markers of breast cancer 

progression and behaviour. 

To our knowledge, few studies have described an association between iron-related 

proteins and clinicopathological variables of breast cancer behaviour. One of these 

studies was performed by Jezequel and colleagues, and showed that ferritin light chain, in 

stromal cells, may be considered as a prognostic marker in node-negative breast cancer 

patients [119]. Another recent report demonstrated, for the first time, an association 

between the expression of iron-related proteins and the negative hormone receptor status 

in DCIS and tumor size [186]. These significant associations reinforce the contribution of 

stromal inflammatory cells for tumor progression. Regarding our results, IDC ER positive 

cases presented a significantly higher median ferritin expression (p<0,05). 

Some studies had already focused on the establishment of associations between the 

immune profile in the tumor and recognized clinicopathological markers of breast cancer 

outcome [164, 187]. In DCIS samples, our results demonstrated that the median number 

of total lymphocytes was significantly higher in hormone receptor negative cases (p<0,05). 

Also in DCIS samples, CD4+ T-lymphocyte median numbers were significantly higher in 

ER negative, PR negative and HER-2 positive cases (p<0,05). A higher median number of 

CD8+ and CD4+FoxP3+ T-cells was observed in ER negative DCIS cases (p<0,05).
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VI. CONCLUSIONS  

 

Recent findings suggest that iron imbalances may play a critical role in the 

development, behaviour and progression of breast carcinogenesis. In fact, iron 

metabolism is emerging as a new axis of the research in breast cancer, dealing with the 

identification of prognostic and possibly predictive markers for therapies targeting this one. 

Knowing that breast cancer development and progression are influenced by epithelial 

cells and its microenvironment, the main goal of this study was to comprehend if a certain 

T-lymphocyte immune profile was associated to a higher ferritin expression, and explore if 

this was associated with clinicopathological markers of breast cancer progression and 

behaviour. 

Our group has previously showed that macrophages and lymphocytes present an 

“iron-donor” phenotype in breast cancer tissue. However, evidences from other studies 

suggest that ferritin secretion by macrophages may represent a different route of iron 

deliver. We also demonstrated that ferritin expression in lymphocytes was not correlated 

with iron deposition in stromal inflammatory cells which may suggest the existence of 

another role for ferritin, independent of its classical function. This study supports the idea 

that tumor-infiltrating lymphocytes display an “iron-donor” phenotype favoring the supply 

of iron to proliferating breast tumor cells. These cells may control local iron homeostasis in 

the tumor microenvironment, being important in the regulation of tumor iron nutrition and 

progression. 

With these results, we hope to contribute to a better understanding of breast cancer 

progression and behaviour. 
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Table 11 – Median lymphocyte frequencies in breast tissue samples. 

   
Tissue Sample 

   
Normal DCIS IDC 

T
y
p

e
 o

f 
L

y
m

p
h

o
c
y
ti

c
 P

ro
fi

le
 

CD8
+
 

n 25 26 34 

Median (IQ) 12,67 (4,50-26,50) 41,66 (23,00-99,75) 87,82 (36,25-159,56) 

p p<0,001 

CD4
+
 

n 17 25 30 

Median (IQ) 23,75 (12,50-36,56) 89,00 (35,00-133,00) 87,57 (56,42-174,50) 

p p=0,002 

Ratio 

CD4/CD8 

n 16 24 30 

Median (IQ) 1,78 (0,74-3,07) 1,67 (1,15-2,10) 1,27 (0,99-1,78) 

p p=0,348 

 n 17 25 30 

CD4
+
FoxP3

+
 Median (IQ) 0,00 (0,00-0,50) 1,04 (0,00-3,33) 2,50 (0,57-7,50) 

 
p p=0,049 

 
n 17 25 30 

Ratio 

FoxP3/CD4 
Median (IQ) 0,00 (0,00-0,01) 0,01 (0,00-0,03) 0,02 (0,01-0,06) 

 
p p=0,018 

 
n 17 24 30 

Total of Ly Median (IQ) 41,05 (25,17-99,14) 129,94 (86,63-276,10) 206,68 (97,92-283,96) 

 
p p=0,001 

Abbreviations: Ly, Lymphocytes; IQ, Interquartile Range; DCIS, Ductal Carcinoma in situ; 

IDC, Invasive Ductal Carcinoma. 
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Table 12 – Median ferritin expression and lymphocytic infiltration according to the hormone receptor status. 

 
Clinicopathological 

Variable 

ER status PR status HER-2 status 

 
ER

-
 ER

+
 PR

-
 PR

+
 HER-2

-
 HER-2

+
 

D
C

IS
 

CD4
+
 T-ly 

Median (IQ) 
148,04 

(113,71-211,37) 
62,50 

(28,83-89,00) 
148,04 

(101,67-211,00) 
62,50 

(31,92-81,97) 
38,10 

(23,33-97,50) 
102,50 

(86,13-146,07) 

n 8 13 10 11 13 9 

p p=0,002 p=0,006 p=0,042 

CD8
+
 T-ly 

Median (IQ) 
110,96 

(65,72-138,88) 
33,67 

(23,00-51,32) 
94,31 

(33,67-144,00) 
37,53 

(24,42-66,91) 
37,53 

(20,00-122,17) 
51,32  

(33,67-99,75) 

n 8 13 10 11 13 9 

p p=0,009 p=0,067 p=0,483 

Ratio CD4/CD8 
Median (IQ) 

1,41 
(1,21-1,92) 

1,82 
(1,24-2,55) 

1,67 
(1,23-2,00) 

1,68 
(1,02-2,21) 

1,21 
(0,63-1,88) 

1,87  
(1,49-2,70) 

n 8 12 10 10 12 9 

p p=0,512 p=0,910 p=0,060 

CD4
+
FoxP3

+
 Ly 

Median (IQ) 
3,42 

(2,53-6,85) 
0,00 

(0,00-1,04) 
3,42 

(0,00-8,00) 
0,17 

(0,00-1,42) 
0,00 

(0,00-5,00) 
2,25 

 (0,83-3,33) 

n 8 13 10 11 13 9 

p p=0,019 p=0,055 p=0,452 

Ratio FoxP3/CD4 
Median (IQ) 

0,02 
(0,01-0,06) 

0,00 
(0,00-0,01) 

0,02 
(0,00-0,07) 

0,00 
(0,00-0,02) 

0,00 
(0,00-0,05) 

0,01 
 (0,01-0,02) 

n 8 13 10 11 13 9 

p p=0,109 p=0,294 p=0,784 

Total of Ly 
Median (IQ) 

285,11 
(197,21-323,59) 

105,41 
(67,71-127,00) 

285,11 
(136,17-329,50) 

105,41 
(77,43-117,83) 

102,42 
(44,94-281,08) 

147,24 
(123,71-280,13) 

n 8 12 10 10 12 9 

p p=0,003 p=0,008 p=0,118 

Ft Expression in EC 
Median (IQ) 

10,00 
(10,00-11,79) 

10,00 
(8,00-11,25) 

10,00 
(10,00-11,07) 

10,00 
(8,00-12,50) 

10,00 
(8,00-11,25) 

10,00  
(9,00-12,50) 

n 7 11 9 9 11 9 

p p=0,403 p=0,928 p=0,726 

Ft Expression in Ly 
Median (IQ) 

10,00 
(9,75-10,00) 

9,00 
(7,00-10,00) 

10,00 
(9,75-10,00) 

8,13 
(7,00-10,00) 

9,25 
(8,50-10,00) 

10,00  
(8,63-10,00) 

n 7 6 7 6 8 7 

p p=0,185 p=0,122 p=0,473 

ID
C

 

CD4
+
 T-ly 

Median (IQ) 
154,42 

(49,36-172,89) 
79,82 

(58,58-178,90) 
56,41 

(33,53-175,28) 
93,75 

(69,53-156,92) 
78,25 

(55,05-154,07) 
169,50 

(97,88-208,30) 

n 6 24 11 19 23 7 

p p=0,876 p=0,451 p=0,211 

CD8
+
 T-ly 

Median (IQ) 
83,17 

(33,42-94,54) 
90,30 

(36,29-183,00) 
78,67 

(27,71-115,89) 
87,87 

(40,48-165,44) 
68,00 

(33,42-155,13) 
112,46 

(78,67-194,67) 

n 6 28 11 23 25 9 

p p=0,470 p=0,519 p=0,250 

Ratio CD4/CD8 
Median (IQ) 

1,55 
(1,48-1,72) 

1,12 
(0,91-1,78) 

1,48 
(0,92-1,70) 

1,23 
(1,00-1,78) 

1,31 
(1,00-1,78) 

1,23  
(0,97-1,55) 

n 6 24 11 19 23 7 

p p=0,300 p=0,983 p=0,825 

CD4
+
FoxP3

+
 Ly 

Median (IQ) 
2,67 

(0,00-4,00) 
2,33 

(0,60-8,85) 
3,34 

(0,45-6,17) 
1,67 

(0,65-7,60) 
3,00 

(0,65-7,25) 
2,00  

(0,25-15,00) 

n 6 24 11 19 23 7 

p p=0,500 p=0,829 p=1,000 

Ratio FoxP3/CD4 
Median (IQ) 

0,01 
(0,00-0,03) 

0,03 
(0,01-0,06) 

0,03 
(0,01-0,06) 

0,02 
(0,01-0,06) 

0,03 
(0,01-0,06) 

0,01  
(0,01-0,07) 

n 6 24 11 19 23 7 

p p=0,233 p=0,605 p=0,731 

Total of Ly 
Median (IQ) 

244,08 
(86,11-271,43) 

200,44 
(100,24-322,55) 

175,90 
(66,57-277,70) 

209,47 
(115,63-284,69) 

197,00 
(97,27-274,03) 

261,17 
(201,45-371,36) 

n 6 24 11 19 23 7 

p p=0,717 p=0,355 p=0,230 

Ft Expression in EC 
Median (IQ) 

7,50 
(6,67-10,00) 

10,00 
(10,00-11,46) 

10,00 
(6,67-10,00) 

10,00 
(10,00-11,46) 

10,00 
(10,00-11,46) 

10,00  
(7,50-10,00) 

n 5 28 10 23 24 9 

p p=0,028 p=0,055 p=0,074 

Ft Expression in Ly 
Median (IQ) 

8,00 

(7,99-8,00) 

9,00 

(8,00-10,00) 

10,00 

(8,00-10,00) 

8,00 

(8,00-10,00) 

8,00 

(7,75-10,00) 

10,00  

(8,00-12,00) 
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n 5 27 10 22 23 9 

p p=0,363 p=0,543 p=0,194 

Abbreviations: IDC, Invasive Ductal Carcinoma; DCIS, Ductal Carcinoma in situ; ER, Estrogen Receptor; PR, Progesterone Receptor;  

HER-2, Human Epidermal Growth Factor 2; IQ, Interquartile Range; Ly, Lymphocytes; Ft, Ferritin; EC, Epithelial Cells. 

 

Table 13 – Median ferritin expression and lymphocytic infiltration according to the clinicopathological variables for local 

and metastatic tumor growth in the invasive compartment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
: The Spearman’s rank correlation coefficient was used to evaluate the relationship between variables. 

b
: Mann-Whitney test was applied to evaluate the association between categorical variables. 

Abbreviations: Correlation coefficient, Corr coeff.; IDC, Invasive Ductal Carcinoma; IQ, Interquartile Range; Ly, Lymphocytes; Ft, 
Ferritin; EC, Epithelial Cells. 

 

 
IDC 

Clinicopathological 
Variable 

Tumor Size
 a Lymph  

Node Involvement 
b 

T1 T2 > T3 Negative Positive 

CD4
+
 T-Ly 

Median (IQ) 
137,29  

(65,25-245,91) 
65,11  

(30,17-93,75) 
142,00  

(114,50-169,50) 
97,95  

(52,89-171,20) 
93,75 

 (73,80-183,29) 

Corr coeff. and p r=-0,314; p=0,090; n=30 p=0,539; n=30 

CD8
+
 T-Ly 

Median (IQ) 
90,96  

(55,38-213,38) 
40,48  

(20,33-97,27) 
133,79 

(112,46-155,13) 
78,67  

(36,71-137,22) 
93,29  

(36,25-171,33) 

Corr coeff. and p r=-0,224; p=0,205; n=34 p=0,560; n=33 

Ratio CD4/CD8 
Median (IQ) 

1,23 (1,01-1,78) 
1,35  

(0,61-1,80) 
1,12 

(0,74-1,51) 
1,35  

(0,87-1,70) 
1,09 

 (0,99-1,78) 

Corr coeff. and p r=-0,094; p=0,610; n=30 p=0,861; n=29 

CD4
+
FoxP3

+  
Ly  

Median (IQ) 
2,33 (0,63-15,10) 

2,13  
(0,33-4,83) 

4,80  
(2,00-7,00) 

1,75  
(0,60-5,92) 

3,25 
 (0,33-9,50) 

Corr coeff. and p r=-0,067; p=0,733; n=30 p=0,809; n=29 

Ratio FoxP3/CD4 
Median (IQ) 

0,02 (0,00-0,06) 
0,02  

(0,01-0,07) 
0,04  

(0,01-0,06) 
0,02 

(0,01-0,06) 
0,03  

(0,01-0,06) 

Corr coeff. and p r=0,005; p=0,967; n=30 p=0,982; n=29 

Total of Ly 
Median (IQ) 

239,16 
 (131,25-488,92) 

110,43  
(66,75-261,17) 

280,29  
276,63-283,96) 

206,68  
(97,21-280,29) 

227,00  
(97,92-352,35) 

Corr coeff. and p r=-0,244; p=0,193; n=30 p=0,661; n=29 

Ft Expression in EC 
Median (IQ) 

10,00 
(10,00-10,83) 

10,00  
(7,50-11,04) 

constant 
10,00 

 (7,50-10,83) 
10,00  

(10,00-11,25) 

Corr coeff. and p r=-0,072; p=0,693; n=33 p=0,748; n=32 

Ft Expression in Ly 
Median (IQ) 

9,00 (8,00-10,00) 
8,00  

(7,67-10,00) 
9,00  

(8,00-10,00) 
8,00 

(7,33-10,00) 
8,50  

(8,00-10,00) 

Corr coeff. and p r=-0,069; p=0,699; n=32 p=0,597; n=32 
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