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 Abstract 

The complex palaeogeographic history of the Mediterranean Basin lead to the high 

levels of diversity and endemisms in the area, as of that, this region is now included in 

the 25 global hotspots of biodiversity. For instance, the Milankovitch climatic 

oscillations induced range retractions to the Southern European Peninsulas and the 

Maghreb, where temperate species found refuge, allowing them to survive the colder 

periods. This process also induced allopatric diversification in some species as 

different populations took refuge in different regions and so became isolated. 

Ectothermic species depend on climate induced temperatures to survive, making them 

more susceptible to suffer retraction/expansion events during those times of climatic 

instability.  

The Mediterranean pond turtle, Mauremys leprosa, occurs widely throughout the 

Iberian Peninsula and most of the Maghreb region. Currently, two subspecies are 

recognized: M. l. saharica (ranging from southern of the Atlas Mountains to Tunisia) 

and M. l. leprosa (northern of the Atlas Mountains and in the Iberian Peninsula). For 

this work, we aim to explore the effect that past climatic oscillations and landscape 

barriers produced in the current patterns of genetic diversity and structure of M. 

leprosa, to do so, we used two fragments of mitochondrial DNA. Also, we intend to 

assess population genetic patterns and structure within this species at a more recent-

scale. As of that, microsatellite loci were here optimized for the first time for Mauremys 

leprosa by cross-amplification of two closely related species.  

Mitochondrial DNA (cyt-b and D-loop), retrieved from 163 specimens, showed deep 

genetic structure and higher levels of genetic diversity in North Africa, reinforcing the 

hypothesis of an African origin of the Iberian populations. Moreover, a secondary 

contact zone within the species was found in the Rif and Middle Atlas region. 

Microsatellite loci (genotyped in 556 individuals) revealed lower genetic structure in 

Morocco than in the Iberian Peninsula. However, for the latter, no geographical 

patterns were found. Furthermore, the high levels of genetic diversity found in southern 

populations of Iberian Peninsula might indicate a late Pleistocene refugia in the area, 

however, further studies are needed to clarify the role of this area during climatic 

oscillations. Regarding the secondary contact zone, this fast evolving marker revealed 

gene flow between the subspecies. 
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Overall, this study sheds new light into the role of both geographical and climatic 

features on the genetic diversity and structure patterns of Mauremys leprosa, 

complementing the current knowledge on the importance of North Africa as a refugia. 

Keywords: Biogeography, Climatic Oscillations, Glacial Refugia, Iberian Peninsula, 

Maghreb, Mauremys leprosa, Microsatellites, mtDNA, Phylogeography, Secondary 

contact zones. 
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 Resumo 

A bacia do Mediterrâneo alberga um elevado número de endemismos e 

diversidade, em resultado da sua complexa história paleogeográfica, valendo-lhe um 

lugar entre os 25 hotspots de biodiversidade. Por exemplo, as oscilações climáticas 

induziram contrações na distribuição de espécies temperadas, levando a que estas se 

refugiassem nas penínsulas do sul da Europa, permitiu-lhes persistir durante os 

períodos glaciares. Algumas populações refugiaram-se em diferentes locais 

geográficos, levando assim ao seu isolamento, tendo como consequência a ocorrência 

de divergência alopátrica. As espécies ectotérmicas são altamente dependentes das 

temperaturas induzidas pelo clima para a sua sobrevivência, tornando-as 

extremamente suscetíveis a eventos de retração/expansão durante o período de 

instabilidade climática. 

O cágado-mediterrânico, Mauremys leprosa, encontra-se distribuído pela Península 

Ibérica e na maioria da região Magrebina. Atualmente, duas subespécies são 

reconhecidas: M. l. saharica (distribuindo-se do sul das montanhas do Atlas até à 

Tunísia) e M. l. leprosa (distribuindo-se do norte das montanhas do Atlas até à 

Península Ibérica). O nosso objetivo neste trabalho foi, não só avaliar o efeito que as 

oscilações climáticas e barreiras geográficas à dispersão produziram nos atuais 

padrões de diversidade genética e de estrutura em M. leprosa, através de ADN 

mitocondrial, mas também, avaliar os mesmos padrões a uma escala mais recente. 

Para tal, otimizámos, pela primeira vez, microssatélites para M. leprosa através de 

amplificação-cruzada, utilizando marcadores previamente desenvolvidos para duas 

espécies próximas. 

ADN mitocondrial (cyt-b e D-loop) de 163 indivíduos revelou níveis profundos de 

estrutura genética e elevada diversidade no Norte de África, reforçando assim a 

hipótese de que os indivíduos da Península Ibérica têm origem africana. Além disso, 

foi possível identificar uma possível zona de contacto entre as duas subespécies no 

Rif e Médio Atlas. Os dados obtidos através da genotipagem de 556 indivíduos revelou 

uma menor estrutura genética em Marrocos, em comparação com a Península Ibérica. 

No entanto, nesta última, não foi encontrado nenhum padrão geográfico. Ainda assim, 

a ocorrência de populações com elevados valores de diversidade no sudoeste da 

Península Ibérica, leva-nos a ponderar sobre a existência de um refúgio glaciar na 

área durante o Pleistoceno Superior, no entanto, uma análise mais detalhada será 

necessária para determinar qual o papel desta região durante as oscilações climáticas. 
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Tendo em conta a zona de contato, quando esta é analisada com marcadores de 

elevada taxa mutacional, aparenta fluxo génico entre as subespécies. 

Em suma, este estudo enriquece o conhecimento sobre o papel que as 

características geográficas e climáticas tiveram nos padrões de estrutura e diversidade 

genética observados em Mauremys leprosa. Para além disso, foi possível 

complementar o conhecimento atual em torno da importância do Norte de África como 

refúgio. 

Palavras-chave: Biogeografia, Oscilações climáticas, Refúgios glaciares, 

Península Ibérica, Magrebe, Mauremys leprosa, Microssatélites, mtDNA, Filogeografia, 

Zona de Contato. 
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1.1 Biodiversity loss and Climate Change 

Biodiversity can be defined as all the variety present in genes, species and 

ecosystems along with all the services that are provided to society (Wilson 1988; 

Rands et al. 2010). These services are extremely valuable to all species, however, we 

are losing biodiversity at an alarming pace (Global Biodiversity Outlook 2). For 

instance, in the Millennium Ecosystem Assessment (2005), it was concluded that 

roughly 60% of the provided ecosystems services were being unsustainably used and 

ultimately degraded. Thus, several nations signed agreements to preserve biodiversity 

in an attempt to halt biodiversity loss (Rands et al. 2010), such as the 2010 Biodiversity 

Target, signed in 2002. However, the several objectives set were not achieved (Global 

Biodiversity Outlook 3). This mass extinction, called by some as the sixth extinction 

(Wake & Vredenburg 2008), is being mainly provoked by five factors – habitat change, 

alien species, overexploitation, pollution, and climate change – which can all be linked 

to human activities (Global Biodiversity Outlook 3). However, a recent study considers 

that calling it the sixth mass extinction may be currently overestimating it, but they also 

point that we are moving faster towards it (Barnosky et al. 2011).  

From all the factors harming biodiversity, climate change and habitat destruction 

and/or degradation are considered to be the most nefarious of all, with some estimates 

predicting up to 37% of species going extinct by 2050 (based on climate change) 

(Thomas et al. 2004). The magnitude of the climate change we are facing is intensified 

by the industrial era we have been going through for the past decades, and it is very 

important to establish both long (e.g. reducing greenhouse gases) and short-term 

actions (e.g. designing reserves) to prevent global warming (Botkin et al. 2007). 

Despite all attempts, we are still losing biodiversity (Rands et al. 2010). So, current 

laws should be improved by trying to include sustainable use and the economic value 

of biodiversity in ecosystems, as well as monitoring their response once they are 

implemented, so their efficiency can be assessed (Butchart et al. 2010).  

Studies show that these major threats are also greatly impacting reptile populations 

which, are declining at an alarming rate on a global scale (Gibbons et al. 2000). In 

particular aquatic or semi-aquatic freshwater turtle species are particular vulnerable to 

wetland destruction or pollution, terrestrial habitat degradation and to changes of 

hydrological patterns due to climate change. 



FCUP 
Phylogeography and current patterns of genetic diversity and structure of the Mediterranean pond turtle 

19 

 

1.2 Testudines: The genus Mauremys 

Turtles are considered one of the most peculiar groups based on both anatomic and 

physiological characters. They have one of the highest lifespan among tetrapods, are 

able to survive a variety of environmental conditions (e.g. severe cold and hypoxia), 

and some have temperature-dependent sex determination (Gilbert & Corfe 2013). The 

order Testudines comprises all species of terrestrial, marine, and freshwater turtles, 

which are ca. 331 recognized species (Dijk et al. 2012). Testudines are divided into two 

major monophyletic extant clades – Cryptodira and Pleurodira – which initially were 

assumed to have diverged ca. 210 million years ago (Near et al. 2005, 2008; Hugall et 

al. 2007). However, recent studies infer this divergence to have occurred later, ca. 170 

million years (Chiari et al. 2012; Lourenço et al. 2012). One of the most important 

characteristic that differentiates the specimens contained in these clades is how they 

retract the head. If the individuals retract their neck accordingly to a horizontal plane 

into the shell they belong to Pleurodira, and by contrast, individuals belonging to 

Cryptodira retract the neck accordingly to a vertical plane lodging the head between the 

shoulders girdles (Shaffer 2009).  

The Geoemydidae family, formerly known as Bataguridae (Bour & Dubois 1986), is 

composed by 69 species of freshwater and semi-aquatic turtles and is part of the 

Testudinoidea superfamily (within Cryptodira) (Dijk et al. 2012). The majority of the 

species in this family can only be found in the Indo-Malayan region (Bour 2008). 

Phylogenetic relationships between all Geoemydidae genera were studied by Spinks et 

al. (2004), where the genus Cuora and Mauremys were revealed as sister groups, and 

Mauremys was paraphyletic with Chynemis and Ocadia.  

The genus Mauremys contains nine species (Dijk et al. 2012), however, two of them 

have hybrid origin – Mauremys pritchardii and Mauremys iversoni (Parham et al. 2001). 

Mauremys reevesii, only recent was included in the Mauremys genus and its 

distributed throughout East Asia (including China, Korean Penisula, Taiwan, and 

Japan) (Fritz & Havaš 2007; Dijk et al. 2012). Regarding the remaining Mauremys 

species, they currently present a patchy distribution. Mauremys mutica, M. japonica, 

and M. annamensis are distributed through eastern Palaearctic and M. leprosa, M. 

caspica, and M. rivulata are distributed to western Palaearctic (Fritz & Havaš 2007) 

(Fig 1.1). This type of distribution pattern is usually associated with different refugia 

during glaciations periods which eventually lead to allopatric speciation (Gómez & Lunt 

2007; Stewart et al. 2010; Hewitt 2011a). However, a study based on cytochrome-b 

(cyt-b) revealed enough genetic differentiation within Mauremys that lead the authors to 
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assume the current distribution of the species was the result of numerous radiation 

events prior to the allegedly Pleistocene extinctions (Barth et al. 2004). In 2012, Guillon 

et al. (2012) attempted to clarify turtles phylogeny through nuclear and mitochondrial 

DNA of 230 individuals. Regarding Geomydidae, they mostly achieved the same 

conclusions as Spinks et al. (2004), specifically the inclusion of Chinemys and Ocadia 

as Mauremys species. Moreover, given the higher number of genes (mtDNA and 

nuDNA) used they were able to clarify the Mauremys phylogeny, recovering M. mutica 

and M. annamensis as the basal clades for the remaining Mauremys species (Guillon 

et al. 2012), contradicting the previous results that portrayed M. leprosa as the most 

basal taxon of Mauremys + Chinemys + Ocadia (Barth et al. 2004). The different 

results achieved in these two studies may be connected to the different genes used to 

re-construct the phylogeny. When solely using mtDNA the conflict between gene tree 

vs. species tree arises (Pamilo & Nei 1988; Avise 1989; Maddison 1997). 

1.3 Mauremys leprosa 

The Mediterranean pond turtle, Mauremys leprosa (Schweigger, 1812), also known 

as the stripe-necked terrapin, is a small size freshwater turtle (maximum carapace 

length can be up to 23 cm (Andreu et al. 1998), with a life expectancy of 30 years (Da 

Silva 2002). Males achieve sexual maturity ca. 7 years old, while in females only 

happens between 8 and 9 years old (Keller 1997). This species has high plasticity 

regarding carapace coloration, it can range from olive tones to brownish coloration. 

Neck and forelimbs in juveniles have orange or yellow strips, losing them with age, and 

presenting only a green tone when older. It is an omnivorous species, however, their 

primarily choice are aquatic invertebrates (Ernst & Barbour 1989). It shows sexual 

dimorphism, with females being bigger than males (when adults), with a flat or convex 

Fig. 1.1: Distribution map of six Mauremys species. Withdrawn from (Barth et al. 2004). 
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plastron (concave in males), and a short tail with the cloaca next to the plastron (long 

tail in males) (Muñoz & Nicolau 2006). Accordingly to Muñoz and Nicolau (2006) the 

bigger female size would help maximizing the number of carried eggs. Even under 

favourable conditions (thermal regulated environment and enhanced diet), and contrary 

to expected, females do not mature earlier. Instead, the maturation process is delayed 

so the individual can grow bigger to be able to carry an higher number of eggs (Lovich 

et al. 2010). 

1.3.1 Mauremys leprosa ssp. 

When described for the first time, in 1812 by August F. Schweigger, it was 

denominated Emys leprosa (Bour & Maran 1999), and since then has been evaluated 

in several taxonomic revisions. Mauremys leprosa was split into eight subspecies – M. 

l. leprosa; M. l. atlantica; M. l. erhardi; M. l. marokkensis; M. l. saharica; M. l. 

vanmeerhaeghei; M. l. wernerkaestlei; and M. l. zizi (Schleich 1996; Bour & Maran 

1999). This division was based on several morphological characters, such as the type 

of dorsal ornamentation, the plastron pattern, and the tympanic spot (Schleich 1996; 

Bour & Maran 1999). Seven of the described subspecies occurred in Morocco: M. l. 

atlantica, M. l. erhardii, M. l. marokkensis, M. l. wernerkaestlei were distributed through 

patchy areas north of the Atlas Mountains, while M. l. saharica, M. l. vanmeerhaghei, 

and M. l. zizi occurred south of the Atlas Mountains. Regarding M. l. leprosa, it was 

thought to only occur in Europe (Schleich 1996; Bour & Maran 1999). However, in 

2005, a study based on mitochondrial DNA (cytochrome b) revealed that this diversity 

was overestimated (Fritz et al. 2005). The following year, this study was enhanced by 

adding more samples and since then, only M. l. leprosa and M. l. saharica are 

considered as subspecies, with the Atlas Mountains identified as a barrier, not the 

Strait of Gibraltar (Fritz et al. 2006). Therefore, M. l. leprosa is described to occur 

northern of the Atlas Mountains to France, while M. l. saharica is described to occur 

southern of the Atlas Mountains to Tunisia. The Atlas Mountains has been described 

as a barrier to, at least, two other species - Agama impalearis (Brown et al. 2002) and 

Tarentola sp. (Rato et al. 2012). This comes from suitable environmental conditions 

during the colder periods near the mountains, which allows species to shelter, although 

in some cases being the motor force for allopatric divergence (Brown et al. 2002; Fritz 

et al. 2006; Rato et al. 2012).  
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1.3.1 Habitat and Distribution 

The species is distributed throughout most of the Iberian Peninsula, with some 

populations in southern France, and it is also present in the Mediterranean Maghreb 

region (Morocco, Algeria, Tunisia and Libya) (see Fig. 1.2). There are also some old 

reports of populations in the Aïr Mountains (Niger) and Libya (pink mark in Fig.1.2) 

(Papenfuss 1969; Busack & Ernst 1980; Schleich 1996); however, those reports are 

old and there is the possibility of a misidentification with Pelomedusa subrufa olivacea 

(see Fig. 1.3 for comparison). The isolated population in Fderîck (Mauritania), which 

could be the result of human introductions, (red mark in Fig.1.2), is considered extinct 

since the 1996 (Schleich 1996). Mauremys leprosa can inhabit different freshwater 

habitats, such as dams, rivers and ponds, (Ernst & Barbour 1989), and it is known to 

be able to inhabit locations with a high degree of pollution (Keller 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig. 1.2: Distribution map of Mauremys leprosa. Currently distribution of the species (green), the 
extinct population in Fderîck (red) and the dubious populations (pink). 
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1.3.1 Conservation 

In 2012, 58.8% of the listed turtle species were considered as globally threatened 

according to IUCN (Dijk et al. 2012). Most turtles‘ populations are decreasing in 

numbers, especially due to anthropogenic effects, such as habitat fragmentation, pet 

trade, the use of some species in traditional medicine, and as food (Parham & Shi 

2001; Spinks & Shaffer 2006; TURTLE CONSERVATION COALITION, 2011; Natusch 

& Lyons 2012). The conservation of freshwater habitats and water dependent species 

is particularly threatened by overexploitation, water pollution, destruction and/or 

degradation of habitat and invasive species (Sala et al. 2000). Mauremys leprosa is 

known to be locally abundant at certain parts of its range. Yet, is considered Vulnerable 

by the IUCN and is listed in the Appendix II of the Berne Convention and in Appendix II 

and IV of Habitat Directive due to decreasing numbers in several populations 

(92/43/CEE) (Cox & Temple 2009). 

1.4 The Mediterranean basin: a biodiversity hotspot 

The Mediterranean Basin has been identified as one of the 25 world biodiversity 

hotspots, which are defined mainly on the number of endemisms and threats (Myers et 

al. 2000). The amount of diversity that can be found in the Mediterranean basin has its 

origin in the heterogeneous palaeogeographic history. Tectonic movements in the 

basin during the Miocene completely rearranged the topology of the area, for instance 

with the uplift of the Iberian and Moroccan plates connecting the Rif-Betic mountain 

range, the Mediterranean and the Atlantic got separated inducing the dissecation of the 

basin (Krijgsman et al. 1999; Duggen et al. 2003). This event, known as the Messinian 

Fig. 1.3: Morphological comparison between Pelomedusa subrufa olivacea (left picture) and 
Mauremys leprosa (right picture). Pictures of carapaces, plastrons and heads (in P. s. olivacea can be 
seen the parallel retraction of the head characteristic of pleurodirians) 
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Salinity Crisis, allowed for several taxa to cross between the two continents due to the 

emergence of land bridges (Krijgsman et al. 1999; Duggen et al. 2003; Hewitt 2011a). 

The Zanclean flood is thought to be the event responsible for the refilling of the 

Mediterranean Basin (Garcia-Castellanos et al. 2009), and therefore inducing 

divergence through vicariance between European and North African species (Veith et 

al. 2004; Sousa et al. 2012; Velo-Antón et al. 2012).  

During the Pliocene and the Quaternary, divergence within and/or between species 

was induced by Milankovitch climatic oscillations, even though they were more frequent 

and intense during the Pleistocene, inducing several ice ages (Hewitt 2000; Dynesius & 

Jansson 2000). During these periods, when the temperatures reached the lowest 

values, the ice sheets spread and covered large geographic areas, forcing some 

species to retreat ranges into small areas currently known as refugia, usually located in 

the southern European peninsulas (Taberlet et al. 1998; Hewitt 1999, 2000). A recent 

review brought attention to the similar species composition between the Maghreb 

region and the European peninsulas, which is an evidence of very similar ecological 

and climatic conditions during the Pleistocene and Pliocene (Husemann et al. 2014). 

When temperatures started to rise, some species expanded to nearby territories in 

search for suitable habitats, some of the times originating complex phylogeographic 

patterns (Taberlet et al. 1998; Hewitt 1999, 2004). Even though, the Strait of Gibraltar 

appears to be one of the major barriers to dispersion in the Mediterranean, several taxa 

has crossed it after its re-opening and in different directions (Griswold & Baker 2002; 

Paulo et al. 2002; Carranza et al. 2004; Cosson et al. 2005; Recuero et al. 2007; 

Kaliontzopoulou et al. 2011; Habel et al. 2012; Rato et al. 2012; Santos et al. 2012; 

Stuckas et al. 2014; see Husemann et al. 2014 for more references therein).  

1.5 Objectives 

A northern African origin for Mauremys leprosa is currently accepted (Fritz et al. 

2006), however, fossil records in the Iberian Peninsula can be dated back to the 

Pliocene and Holocene (Fèlix et al. 2006; Soler et al. 2012). This discordance implies 

that climatic oscillations induced a major retraction of this species to the surrounding 

areas of the Atlas Mountains in Morocco, which in itself acts as a barrier to gene flow. 

Moreover, one specimen belonging to M. l. saharica was found in sympatry with M. l. 

leprosa in northern Morocco, which at the time was attributed to human-mediated 

translocation (Fritz et al. 2006).  
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For this study we significantly increased the number of samples, in comparison to 

the previous phylogeographic study by Fritz et al. (2006), and also the number of 

molecular markers. In here, we will be using two mtDNA fragments and more recent 

demographic processes will be inferred through microsatellite loci. Thus, the main 

objectives for this thesis are as follows: 

→ Assess how past climatic oscillations and landscape barriers (Strait of 

Gibraltar and Atlas Mountains in Morocco) have shaped current genetic 

diversity and structure in M. leprosa Manuscript I (Chapter 3); 

→ Test and optimize a set of 16 microsatellite markers for M. leprosa that were 

initially developed for two closely related species (M. caspica and M. rivulata) 

Manuscript II (Chapter 4); 

→ Obtain a more recent and fine-scale genetic pattern across Morocco and the 

Iberian Peninsula to infer spatial population structure and diversity 

Manuscript III (Chapter 5). 

At the end of this thesis, we expect to fully understand if the Strait of Gibraltar is 

indeed a permeable barrier, as it is for many other reptiles, and if the gene flow barrier 

induced by the Atlas Mountains has became more permeable through time. Also, 

taking into account the recent expansion process in the Iberian Peninsula, we expect a 

decline of diversity towards north. Regarding the M. l. saharica individual found in 

northern Morocco we expect to be able to discern if it is a human-mediated 

translocation or a natural colonization of the area indicating the presence of a contact 

zone within this species.  
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Chapter 2: Common Methodologies 
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This section describes common methods used for the remaining chapters of this 

thesis. 

2.1 Study Area and Sampling 

Given the species distribution range and the goals proposed, the study area covers 

the majority of Mauremys leprosa distribution. Thus, our sample collection comprises 

populations from the Iberian Peninsula and part of the Maghreb region. The majority of 

samples used in this study were provided by Dr. Guillermo Velo-Antón, who collected 

them throughout the past years, while others were collected by me and other 

LIFE:Trachemys team members. The final dataset includes a total of 653 samples, 

including 37 individuals belonging to Recovery Centres. All of the sampled animals 

were individually marked by making small notches on the carapace following a code 

based on Ernst et al. (1974) (see Fig. 2.1), in doing so, it made possible to be aware of 

re-captures during field-work and prevent drawing blood from the same individual 

twice. Blood was drawn from the jugular vein, occipital venous sinus or subcarapacial 

vein (see Fig 2.2).  

 

 

  

 

 

 

 

 

 

Fig. 2.1: Illustration explaining carapace 
notching scheme used when sampling 
for this thesis. 

 

Fig. 2.2: Examples of blood withdrawn from a) jugular vein, b) subcarapacial vein, and c) from occipital venous 

sinus in freshwater turtles (the three photographs portraiting Emys orbicularis specimens). 
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2.2 DNA extraction 

DNA extraction were performed for the majority of the samples (blood and tissue) 

using EasySpin® (Citomed) following manufactures‘ protocol, except for a minor 

modification in which the lyses step was extended from 2 hours to overnight. In the 

case of M. rivulata and M. caspica samples, the Quiagen DNeasy Blood & Tissue Kit 

was used since it can achieve better results for small amounts of sample. For this 

extraction kit manufactures‘ protocol was followed. Mauremys rivulata and Mauremys 

caspica were used as positive controls, which were kindly provided by Doctor Uwe 

Fritz. 

Electrophoresis of 0.8% agarose gels stained with GelRed™ (Biotium) was used to 

assess the quality and quantity of DNA extracted, to visualise the gels through UV 

radiation it was used the BioRad Universal Hood II Quantity One 4.4.0. A roughly 

estimation was made and, if necessary, DNA was diluted with ultra-pure water. DNA 

was storage at -20ºC till further use. 

All procedures performed after DNA extraction will be detailed described in the 

corresponding chapter. 

2.3 Molecular Markers 

In order to obtain a more clear picture on the processes that shaped the 

evolutionary history of a given taxa, the combined use of slower evolving markers (e.g. 

mtDNA genes) with hyper-variable markers (e.g. microsatellites) allows to address both 

contemporary and historical events (Zhang & Hewitt 1996, 2003; Selkoe & Toonen 

2006).  

Mitochondrial DNA has been widely used in taxonomic, phylogenetic, biogeographic 

and population studies. It has a limited repair capability and lack of histones, which 

enables the higher mutation rate found when compared with nuclear DNA (Jansen 

2000). Moreover, different mitochondrial genes have distinct mutation rates so, we can 

question different taxonomic levels and assess different time scales (Wan et al. 2004). 

However, all conclusions drawn based on this marker alone may be biased since this 

marker is maternally inherited (Jansen 2000) and thus, we are only assessing the 

maternal history (Wan et al. 2004).  

Microsatellites are tandemly repeated sequences, of up to six bases, which occur 

throughout the euchromatic part of the genome, usually in non-coding regions. They 
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are co-dominantly inherited and have very high mutation rates as a result of its 

mutation mechanism (DNA-replication slippage), turning them into a highly polymorphic 

marker (Schlötterer 2000; Wan et al. 2004). Also, the number of bases composing the 

repeat motif influences the mutation rate. Microsatellite loci can be under different 

selection pressures associated with its location, thus the need to perform equilibrium 

tests analyses to discriminate which are under neutral selection in order to perform 

further analysis (Wan et al. 2004). Allelic dropout and null alleles are two problems that 

microsatellite loci should be tested for (Wan et al. 2004; Selkoe & Toonen 2006). 

Nonetheless, this type of fast evolving marker have become a helpful tool to infer 

demographic patterns, due to several characteristic, like the high mutation rate, co-

dominant inheritance and the possibility existence of several alleles in a population, 

which provides them high degree of polymorphism that cannot be found in more stable 

parts of the genome (Angers & Bernatchez 1998; Schlötterer 2004; Ellegren 2004; 

Wan et al. 2004). Microsatellite markers constitute a valuable genetic tool to infer 

recent evolutionary histories, demographic processes, current patterns of gene flow 

and kinship.  
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Abstract 

The Mediterranean basin harbours a high degree of endemisms and species 

richness as a result of its complex palaeogeographic history. Events such as the 

Messinian Salinity Crisis, the formation and/or transformation of orographic features, 

and the Quaternary climatic oscillations have strongly influenced the distribution and 

genetic diversification of species occurring in the area. 

We aim to evaluate the effect of climatic oscillations and main geographic barriers in 

the current diversity patterns of the Mediterranean pond turtle, Mauremys leprosa. This 

species occurs widely throughout the Iberian Peninsula and most of the Maghreb 

region. Two M. leprosa subspecies are recognized: M. l. saharica (ranging from 

southern of the Atlas Mountains to Tunisia) and M. l. leprosa (northern of the 

mountains and in Iberian Peninsula). We used 164 individuals from the entire range to 

amplify two mitochondrial fragments: cyt-b and D-loop. Phylogenetic relationships and 

the most common recent ancestor were assessed under Bayesian inferences. 

Furthermore, we tested for demographic expansions through three tests of selective 
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neutrality. Also, genetic distances and nucleotide diversity were interpolated under the 

kriging method to assess spatially the genetic structure and variability patterns. We 

successfully identify three sublineages for M. l. leprosa and four to M. l. saharica. The 

lack of genetic diversity and structure of the species in the Iberian Peninsula points for 

an African origin, despite several fossil records dated from the Pliocene in Europe. As 

in for several other taxa, the Strait of Gibraltar acted as a crossing point between the 

two continents, even after its re-opening. In Morocco, several individuals of M. l. 

saharica were found in the Riff and Middle Atlas, which in conjunction with higher 

nucleotide diversity point for a secondary contact zone.  

Keywords: phylogeography, mitochondrial DNA, Mauremys leprosa, secondary 

contact zone. 

3.1 Introduction 

The Mediterranean basin harbors a high degree of species richness and endemism 

(Myers et al. 2000), which has been mostly associated to a combination of geologic 

and climatic events. The palaeogeographic history of the western Mediterranean 

occurred during the Miocene, such as the tectonic movements that originated the 

Mediterranean islands (Balearic Islands, Sardinia and Corsica) and the split of the Rif-

Betic mountain range, can be matched with diversification events in different taxonomic 

groups (e.g. Martínez-Solano et al. 2004; Magri et al. 2007; Bidegaray-Batista & 

Arnedo 2011; Miraldo et al. 2011). Furthermore, at the end of this epoch, the Strait of 

Gibraltar closed leading to the desiccation of the Mediterranean basin (Krijgsman et al. 

1999; Duggen et al. 2003), which produced land bridges connecting the European and 

African continents facilitating migration through these corridors for terrestrial organisms 

that used them to expand their ranges. The refilling of the Mediterranean sea ca. 5.3 

Ma, induced again divergence between European and North African taxa (Veith et al. 

2004; Sousa et al. 2012; Velo-Antón et al. 2012). Then, diversification events continued 

during the Pliocene-Pleistocene when the effects of the Milankovitch climatic 

oscillations became more frequent and intense, especially during the Pleistocene 

(Hewitt 2000; Dynesius & Jansson 2000). Glacial periods forced Mediterranean 

species to move southwards in search for suitable habitats where to shelter until 

climate amelioration, usually at the southern European peninsulas (Taberlet et al. 

1998; Hewitt 1999, 2000) and North Africa (Husemann et al. 2014). Then, during 

subsequent range expansions, species could encounter barriers to dispersal 

hampering species to colonize further areas (Taberlet et al. 1998; Hewitt 1999, 2000). 

The combination of palaeogeographic and climatic events has rendered distinct 
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phylogeographic patterns for Mediterranean species whose response to the above 

events could differ due to their ecological constrains, such as their dispersal abilities 

and ectothermal physiology. 

Ectothermic species, which are extremely dependent on climate induced 

temperatures to regulate body temperature and perform normal physiological functions 

(Huey & Kingsolver 1993), are highly prompt to suffer retraction/expansion events 

during climatic oscillations. Low temperatures like those experienced during the glacial 

periods have a high impact on a species‘ thermoregulation processes, easily inducing 

migration events perhaps contracting the species range to microrefugia, where it was 

possible to experience slightly warmer temperatures. The Mediterranean pond turtle, 

Mauremys leprosa (Schweigger, 1812), is one of most wide and abundant reptiles in 

the Iberian Peninsula (with a few and scattered populations in the south-western 

France) and Northern Maghreb (from Western Morocco to Tunisia). The species 

occurrence in the Iberian Peninsula dates back from Pliocene and Holocene based on 

fossil records (Fèlix et al. 2006; Soler et al. 2012). Altogether, make it a good model to 

understand the effects of glaciations and consequent range expansions and/or 

contractions in the Western Mediterranean basin. Two main lineages have been 

identified: Mauremys leprosa leprosa inhabits the Iberian Peninsula and northern 

Morocco, and M. l. saharica occurs in southern Morocco, easternmost Algeria and 

Tunisia (Fritz et al. 2006). 

In this work we aim to investigate how past climatic oscillations and landscape 

barriers (Strait of Gibraltar and Atlas Mountains in Morocco) have shaped current 

genetic diversity and structure in M. leprosa. By increasing the available genetic 

information (cytochrome b and control region mitochondrial fragments) and expanding 

the sample size and studied localities, we infer phylogenetic relationships and spatially 

interpolate the genetic diversity and divergence within M. leprosa to: 1) identify the 

geographic origin of diversification within the species; 2) determine the genetic 

structure within each subspecies and estimate the origin of major lineages; 3) evaluate 

the effect of climatic oscillations and main geographic barriers, the Atlas Mountains in 

Morocco and the Strait of Gibraltar, in shaping current diversity patterns of M. leprosa; 

and 4) identify potential contact zones of both subspecies as a result of recent 

population expansions. 
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3.2 Material and Methods 

3.2.1 Sampling and sequencing 

Blood or tissue (tail tips) samples of 163 Mauremys leprosa were collected across 

the Iberian Peninsula and the Maghreb region and preserved in absolute ethanol 

(Figure 1, and Supplementary Material Table S. M. 1). Genomic DNA was extracted 

with a commercial kit (Easyspin), following manufacturer‘s protocol, and extending the 

lyses period to enhance the extraction. 

Fig. 3.1: Present distribution of Mauremys leprosa in the Iberian Peninsula and Morocco. Sampling locations are 

marked as black circles. Main mountain chains in Morocco are identified on the map. 

Two mitochondrial fragments were targeted in this study: the cytochrome b (cytb) 

and the control region (D-loop). The former gene was selected in order to increase the 

available sequences produced in previous works (see Fritz et al. 2006), and to better 

unveil the spatial distribution of genetic diversity within M. leprosa, which yielded in a 

total of 163 sequences (Table S. M. 1). These samples were also amplified with D-loop 

to increase the genetic information that is needed to fully resolve the phylogenetic 

relationships within M. leprosa. Cyt-b was amplified using the primers mt-a-neu (Lenk & 

Wink 1997) and H-15909 (Lenk et al. 1999). D-loop was amplified with specific primers 

designed with OLIGOEXPLORER 1.2 (http://www.genelink.com/tools/gl-oe.asp): 

MauMut_tThr.for (forward, 5‘- ACT CTA GTA GCT TAA CCC AT-3‘) and 

MauMut_Dloop_2.rev (reverse, 5‘- TCA GTT TAG TTG CTC TCG GA-3‘). PCR 

reactions were conducted in a final volume of 10 μL from which 5 μL corresponded to 
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MyTaq™ Mix (Bioline), 0.4µM of each primer, 3.2μL of ultra-pure water, and 1μL of 

DNA. PCRs were carried out on a BioRad T100 Thermal Cycler with the following 

procedure: initial denaturation at 95 ºC for 10 min (minutes); 10 cycles at 95 ºC for 30 s 

(seconds), 55 ºC (57 ºC for D-loop) decreasing 0.5 ºC per cycle for 20 s; 72 ºC for 1 

min; 30 cycles at 95 ºC for 30 s, 50 ºC for 20 s; 72 ºC for 1 min; and a final elongation 

step at 72 ºC for 10 min. Both reactions were cleaned for removal of non-used primers 

and nucleotides with ExoSap (USB® ExoSAP-IT® PCR Product Cleanup, Affymetrix) 

following manufactures instructions. Four independent sequencing reactions (one for 

each primer) were performed on a BioRad T100 Thermal Cycler with BigDye® 

Terminator v3.1 Cycle Sequencing Kits (AB Applied Biosystems) following 

manufactures protocol. Finally, the four strands were sequenced on an ABI 3130xl 

genetic analyzer (Applied Biosystems, Foster City, Ca, USA). All the obtained 

chromatograms were verified, aligned, and corrected by eye using Geneious Pro v4.8.5 

(http://www.geneious.com/). MUSCLE algorithm was used for the alignments that were 

later manually checked. 

3.2.2 Phylogenetic analyses 

Sequences were collapsed into haplotypes using DnaSP v5.10 (Librado & Rozas 

2009) and phylogenetic relationships were assessed using a Bayesian inference (BI) 

approach. jMODELTEST v.2.1.4 (Darriba et al. 2012) was used to test for the best 

fitting model of nucleotide substitution for our dataset, under Akaike information criteria 

correction (AICc; TIM+I+G for both markers). The dataset was partitioned by gene to 

be run under the corresponding evolutionary model. BIs were conducted using BEAST 

v1.7.5 (Drummond et al. 2012). Markov Chain Monte Carlo (MCMC) analyses were run 

in three independent runs of 10 million generations with four chains, with a sampling 

frequency of 100 generations, and discarding 25% trees as burn-in. Parameter 

convergence was verified by examining the effective sample sizes (ESSs) using 

TRACER v1.6 (all parameter values of ESS were above 300), and used the remaining 

trees to obtain the subsequent maximum clade credibility summary tree with posterior 

probabilities for each node using TREEANNOTATOR. A substitution rate of 0.00626 

substitutions/site/million years suggested for the mitochondrial DNA in turtles 

(Lourenço et al. 2013) was used to estimate time to most recent common ancestor 

(TMRCA) of supported mtDNA lineages, with a standard deviation of 0.0002. A 

lognormal relaxed clock and a coalescence constant size model were used as tree 

priors. 
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3.2.3 Genetic diversity and demographic analyses 

DnaSP v5.10 was used to assess the number of segregating sites (S), and the 

nucleotide (π) and haplotype diversity (Hd). Three tests of selective neutrality (Tajima‘s 

D, R2, and Fu‘s FS) were performed in DnaSP v5.10 to infer signatures of 

demographic expansion in each sublineage, using 10,000 bootstrap replicates.  

Two haplotype networks were constructed to visualize haplotypes relationships 

within M. leprosa: a haplotype network using statistical parsimony implemented in TCS 

v1.21 (Clement et al. 2000); and a neighbour-net network based on uncorrected 

patristic distances and bootstrap analysis with 1,000 replicates, using SPLITSTREE 

v4.6 (Huson & Bryant 2006). Uncorrected p-distances were calculated for the 

concatenated dataset in MEGA v5.1 (Tamura et al. 2011) to estimate genetic 

divergence between main lineages and sublineages. 

3.2.4 Spatial analyses 

To visualize geographical patterns of genetic structure and variability, both genetic 

distances (uncorrected p-distances) and nucleotide diversity (π) were spatially 

interpolated following a kriging interpolation method. Samples from Tunisia and Algeria 

were excluded in order to avoid the sampling gap across this region that would induce 

artefacts on the analysis. To identify potential barriers to gene flow, pairwise 

uncorrected p-distances (Nei & Kumar 2000) were calculated between each pair of 

sequences (see Supplementary Material R code 3 for methodology). From the resulting 

pairwise uncorrected p-distances matrix, we treated each column as a different 

variable, as each column corresponds to the distances from one point to all the others, 

which we interpolated using the kriging interpolation method (Oliver & Webster 1990). 

A Principal Components Analysis was then used to summarize the results, using the 

Principal Components tool found in the ―Spatial Analyst Tools‖ extension of GIS 

ArcMap 9.3 (ESRI 2008). In order to identify areas that present sharp changes in the 

values of uncorrected p-distances, which correspond to potential barriers to gene flow, 

we have used the function slope, located in the ―Spatial Analyst‖ extension of GIS 

ArcMap 9.3 (ESRI 2008). To identify the spatial distribution of genetic diversity, 

nucleotide diversity values were calculated by pooling samples contained in a buffer 

with a radius of 0.449 decimal degrees (approximately 50km), which represent the 

potential genetic diversity of the original point (see Supplementary Material R code 1 

and 2 for methodology). Nucleotide diversity values were then interpolated by 

generating a continuous surface with a kriging interpolation method (Oliver & Webster 
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1990), implemented in the ―Geostatistical Analyst‖ extension of GIS ArcMap 9.3. The 

resulting raster was then reclassified into five classes, using Natural Jenks as the 

division criteria. 

3.3 Results 

3.3.1 Phylogenetic analyses 

We obtained 75 unique haplotypes from 1769 bp concatenated mtDNA dataset 

(933bp of cytb and 862 of D-loop) in 163 samples. Bayesian inferences show a 

resolved phylogeny with two major clades (BPP > 0.95), which corresponds to the 

known subspecies, Mauremys leprosa leprosa and Mauremys leprosa saharica (Fig. 

3.2). M. l. leprosa haplotypes are distributed in North Africa (north of the Atlas 

Mountains) and the Iberian Peninsula, while M. l. saharica haplotypes occur in Morocco 

(north and south of the Atlas Mountains), easternmost Algeria and Tunisia. 

We also identified three and four well supported sublineages in M. l. leprosa and M. 

l. saharica respectively (BPP > 0.95; Fig. 3.2). Two sublineages (A1 and A2) of M. l. 

leprosa occur in southwestern and central Morocco, respectively, and north of the Atlas 

Mountains, while the third sublineage (A3) is distributed throughout the Iberian 

Peninsula and the Rif, with two haplotypes (A3-9 and A3-15) occurring at both sides of 

the strait of Gibraltar (see Table SM1). For M. l. saharica, two sublineages (B1 and B2) 

are admixed across the south of the Atlas Mountains, a third sublineage (B3) ranges 

from the Rif and Middle Atlas to Tunisia and a fourth sublineage (B4) occurs in the Rif. 

Average sequence divergence (uncorrected p-distance) between M. l. leprosa and M. l. 

saharica is 1.5% (range: 0.1-2.2%), and high genetic divergence values are also found 

between sublineages (Table 3.1). 
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Fig. 3.2: A: Spatial distribution of the sublineages based on the phylogenetic tree. Circles correspond to M. l. leprosa, 

while squares correspond to M. l. saharica. B: Bayesian consensus phylogram based on mtDNA data (D-loop and Cyt-b) 

for M. leprosa. Times to most recent common ancestor for the split between and within lineages are written in red 

(TMRCA; 95% highest posterior density interval).Both symbol shapes and colours are concordant with Figure 3.3. 
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Table 3.1: Genetic distances between sublineages. Bellow the diagonal mean uncorrected p-distances and 

standard deviations in percentages. In bold on the diagonal the mean uncorrected p-distance within each sublineage. 

Group A1 A2 A3 B1 B2 B3 B4 

A1 0.002 
      

A2 0.9 (±0.2) 0.003 
     

A3 1 (±0.2) 0.5 (±0.2) 0.001 
    

B1 2 (±0.3) 2.3 (±0.3) 2.1 (±0.3) 0.002 
   

B2 1.9 (±0.3) 2 (±0.3) 1.9 (±0.3) 1.4 (±0.3) 0.001 
  

B3 1.7 (±0.3) 1.9 (±0.3) 1.8 (±0.3) 1.1 (±0.3) 0.9 (±0.2) 0.001 
 

B4 1.5 (±0.3) 1.8 (±0.3) 1.7 (±0.3) 1 (±0.2) 0.7 (±0.2) 0.3 (±0.1) 0 

 

 

Assessment of divergence times using BEAST estimates the time to the MRCA for 

M. l. leprosa and M. l. saharica at the upper Pliocene (mean = 2.2; 95% HPD = 1.25-3 

Myr), and the time to the MRCA for each subspecies at the Middle Pleistocene (M. l. 

leprosa, mean = 1; 95% HPD = 0.5-1.7 Myr; M. l. saharica, mean = 1.13; 95% HPD = 

0.6-1.8 Myr) (Fig. 3.2). Sublineages within each subspecies diverged during the Upper 

and Middle Pleistocene (Fig. 3.2). We should bear in mind that these dates represent 

the coalescence time of the different mtDNA haplotypes, and thus the above lineages 

could have diverged at a much more recent time.  

 

Table 3.2: Summary table of all genetic diversity and demographic parameters measured for the different 

haplogroups of Mauremys leprosa. N, sample size; S, polymorphic sites; π, nucleotide diversity; Hn, number of 

haplotypes; Hd, haplotype diversity; R2, Ramos-Osins and Rosas; D, Tajima´s D; Fs, Fu´ s Fs. Significant results for D 

and Fs shown in bold (P < 0.01). When unable to calculate demographic measures due to low sampling size 

represented as NA (Not Available). 

Group N π S Hn Hd R2 D FS 

A1 13 0.0023 13 11 0.92 0.13 -0.13 -3.81 

A2 3 0.0030 8 3 1 NA NA NA 

A3 67 0.001 29 21 0.75 0.03 -21.44 -15.48 

A 83 0.0036 52 35 0.83 0.09 -11.36 -9.77 

B1 6 0.0022 9 6 1 0.14 -0.11 -2.69 

B2 11 0.0016 9 6 0.69 0.15 -0.28 1.34 

B3 57 0.0007 24 19 0.46 0.03 -23.14 -12.28 

B4 6 0.0003 1 2 0.53 0.26 0.85 0.62 

B 80 0.0043 58 33 0.71 0.06 -12.27 -4.80 

ALL 163 0.0115 106 68 0.87 
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3.3.2 Genetic diversity and demographic analyses 

Both subspecies showed similar values of genetic diversity, although nucleotide 

diversity (π) was higher in Mauremys leprosa saharica (Table 3.2). Within M. l. 

saharica, the two sublineages distributed south of the Atlas Mountains (B1 and B2) 

show higher genetic diversity (π and Hd) than the ones distributed across the Middle 

Atlas, Rif and northeastern Maghreb (B3 and B4). Within M. l. leprosa, the highest 

genetic diversity is found in the two sublineages on the north slope of the Atlas 

Mountains (A1 and A2), with a much less variation in the sublineage distributed in both 

continents (A3). When this sublineage A3 was divided into two groups (North Africa 

and Iberian Peninsula) we found higher genetic diversity in North Africa (π = 0.00099) 

than in the Iberian Peninsula (π = 0.00083), even though the higher number of samples 

analyzed from the Iberian Peninsula. The most widely distributed sublineages, A3 and 

B3, showed negative and significant values of Tajima‘s; R2 and Fu‘s statistics (Table 

3.2).  

Parsimony analyses in TCS yielded independent haplotype networks for M. l. 

leprosa and M. l. saharica, which can be manually connected with 26 mutational 

positions (Fig. 3.3). Within each subspecies, all sublineages are also well separated 

from each other by 7-15 mutational positions, except for the sublineage B4 that differs 

from B3 in only 3 positions. Sublineages A3 and B3 clearly show a star-like network 

which are characteristic from demographic expansion scenarios, with A3-1 widely 

spread across the Iberian Peninsula and B3-1 widely distributed in Tunisia. Splitstree 

network shows identical relations to the above described for all lineages and 

sublineages. 

3.3.3 Spatial analyses 

The kriging interpolation produced a continuous surface of nucleotide diversity that 

clearly shows the highest genetic diversity in North Africa, particularly in the Rif 

Mountains (π ranges from ~0.0056 to ~0.0086; Fig. 4). We observe a latitudinal pattern 

of genetic diversity loss across the Iberian Peninsula, where the southern region 

presents moderate levels of genetic diversity that is reduced in the Northwest and 

Central Iberian Peninsula (π ranges from ~0.0001 to ~0.0004). 
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The interpolated genetic distances surface detected an abrupt change in North 

Africa, ranging from the High to the Middle Atlas and the Rif mountains (Fig. 3.5). As 

for the genetic diversity, the Iberian Peninsula shows a homogeneous surface 

reflecting the lack of genetic divergence across these populations (Fig. 3.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3: A: Haplotype networks inferred by TCS under the 95% criterion. Circles correspond to M. l. leprosa and 

squares to M. l. saharica. The size of each haplotype symbol is proportional to its frequency and lines represent 

mutational steps separating observed haplotypes. Bold haplotype outline corresponds to haplotypes only found in 

Morocco, while dashed outline correspond to haplotypes found in Morocco and Iberian Peninsula (for sublineages A3, in 

green, and B3, in blue). B: Mitochondrial neighbour-net networking inferred by SplitsTree. Scale bar represents 1% 

sequence divergence while numbers correspond to bootstrap values. Both symbol shapes and colours are concordant 

with Fig. 3.2. 
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Fig. 3.5: Geographic genetic variation in M. leprosa. Surface of interpolated genetic diversity based on 
nucleotide diversity, resulting raster file was reclassified into 5 different classes using natural breaks. The 
white circles correspond to samples used for the interpolation, darker green colors correspond to areas with 
the lowest nucleotide diversity while darker red areas are assigned to areas with high nucleotide diversity. 

Fig. 3.4: Geographic genetic differentiation in M. leprosa. First axis of the spatial principal component 

analysis applied to the interpolations of the uncorrected p-distances matrix. The white circles correspond to 

samples used for the interpolation. 
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3.4 Discussion 

3.4.1 North African diversification 

A wide distribution gap in the central Mediterranean region separates M. leprosa 

from its closest relatives: two western Paleartic species, M. caspica and M. rivulata, 

which are distributed in the south-eastern Balkans, the Near and the Middle East (Fritz 

et al. 2008). This distribution suggests and old and allopatric divergence between M. 

leprosa and their relatives. A previous phylogeographic study by Fritz et al. (2006), 

identified two distinct phylogenetic clades of M. leprosa in Morocco (M. l. leprosa and 

M. l. saharica), suggesting a North African origin for the species. However, the scarce 

spatial distribution of the samples and the use of one single mtDNA marker precluded a 

thorough evaluation of the lineage diversification in M. leprosa. Our study 

approximately doubled both the number of samples and the number of nucleotide 

positions that were used in a previous study, which allowed a better support on the 

monophyly of both subspecies. Our study also shows a deep genetic structuration and 

high levels of genetic diversity within each subspecies in Morocco. The fact that all 

sublineages found in M. l. leprosa and M. l. saharica occur in Morocco, as well as the 

highest genetic diversity present in this country, reinforce the hypothesis of a north-

western Maghreb origin (Fritz et al. 2006). 

When comparing the genetic divergence of M. leprosa with other chelonians 

populations inhabiting North Maghreb, which shares low evolutionary rate and long 

generation times (Avise et al. 1992), is higher than in Emys orbicularis occidentalis 

(0.66 %, Stuckas et al. 2014) and identical to Testudo graeca (up to 2.3 % Fritz et al. 

2009). Deep levels of genetic structuration and high genetic diversity have also been 

observed in other taxa (e.g. Cosson et al. 2005; Habel et al. 2011; Barata et al. 2012; 

Sousa et al. 2012; Rato et al. 2012; Velo-Antón et al. 2012; Coelho et al. 2014), for 

which the combination of topographic heterogeneity and climatic factors are thought to 

be the main drivers promoting speciation events and genetic differentiation during long 

periods of allopatric populations (Husemann et al. 2014).  

3.4.2 The role of climate and geographic barriers 

The high elevation (up to 4167 m) and large extent (2500 km) of the Atlas Mountains 

in Morocco has served as a major barrier to dispersal for North African species. This 

was previously evaluated in M. leprosa by Fritz et al. (2006) and concluded that these 

mountains are a strong barrier to dispersal in M. leprosa, separating M. l. leprosa and 
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M. l. saharica to northern and southern regions of the mountain chain, respectively. 

Likewise, the Atlas Mountains was described as a barrier to other reptiles, for instance 

it separates the two lineages of Agama impalearis (Brown et al. 2002), and its 

formation is thought to have been the vicariant event responsible for the Tarentola 

diversification (Rato et al. 2012). Our study allowed us to observe that these mountains 

clearly acted as a barrier since the old split between the two major lineages (late 

Pliocene), but could not prevent individuals‘ dispersal, and subsequent contact, along 

the eastern part of these mountains. The most widespread sublineage of M. l. saharica 

(B3) is distributed from Moroccan Rif and Middle Atlas to Tunisia, showing a pattern of 

recent population expansion (in the last two hundred thousand years). Moroccan 

populations of this lineage show higher diversity than Tunisian populations, suggesting 

a west-east expansion from a glacial refugium located between Middle and High Atlas, 

although further work is needed in Algeria to fill in the sampling gap on this region and 

to accurately investigate the population expansion and directionality within this lineage. 

Further genetic sub-structuration is present in the north (sublineages A1, A2, A3, B3, 

B4) and south of the High-Middle Atlas (sublineages B1, B2, B3). The spatial 

distribution of some of these sublineages are partially similar to the ones described in 

other taxa (e.g. Buthus, Sousa et al. 2012; Tarentola, Rato et al. 2012), which could 

emerged during the Pleistocene through population isolation when river valleys 

temporally transgressed by the sea, or due to other orographic structures at both sides 

of the Altas Mountains. 

The Strait of Gibraltar was previously considered one of the major barriers to 

disperse for the Mediterranean taxa, however, for the past decades, several studies 

revealed that many species managed to cross it, regardless of the expansion direction 

(see Husemann et al. 2014 and references therein). Our study also supports previous 

findings in M. leprosa (Fritz et al. 2006), suggesting the strait of Gibraltar as a 

permeable barrier to dispersal and gene flow between African and Iberian populations. 

The lack of genetic differentiation between Iberian and north African populations and 

the recent origin of linage A3 suggest a very recent re-colonization in Europe (upper 

Pleistocene or post-glacial period). Moreover, a series of evidences suggest a recent 

expansion throughout Iberia: the genetic homogeneity and low genetic diversity in 

Iberian populations, as well as the network position of highly frequent haplotypes such 

as A3-1, supports the hypothesis of a rapid expansion throughout the Iberian 

Peninsula. This recent colonization in Europe might be associated to the drops of the 

sea water level along the Strait of Gibraltar (the separation between continents could 

reach only 5km; Brandt et al. 1996; Zazo 1999), following a stepping-stone model of 
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colonization. Mauremys leprosa is known to be able to survive in brackish waters 

(Keller & Busack 2001), facilitating the crossing of the Strait, and a recent study on 

Mauremys caspica has shown the ability of this species for transoceanic dispersal on 

much higher distances (Vamberger et al. 2014). Other taxa have crossed the Strait of 

Gibraltar since the re-opening till more recent times, evidencing a migration pathway in 

this region (e.g. scorpions, Habel et al. 2012; birds, Griswold & Baker 2002; 

amphibians, Recuero et al. 2007; reptiles, Paulo et al. 2002; Carranza et al. 2004, 

2006; Kaliontzopoulou et al. 2011; Rato et al. 2012; Santos et al. 2012; Stuckas et al. 

2014; mammals, Cosson et al. 2005; see Husemann et al. 2014 for more references 

therein). Yet, since the Iberian haplotype (A3-15) occurs in Ceuta (northernmost 

African population), and that a second haplotype (A3-9), shared also between 

continents, is only present in Tetouan (North Morocco) and Cádiz (South Spain), we 

could not rule out the hypothesis of human mediated transportation of the species 

between both sides of the strait, as it could happened for chamaleons (Paulo et al. 

2002) and hylids (Recuero et al. 2007), although dating very recent divergence events 

is a difficult challenge that complicate to distinguish late Pleistocene colonizations from 

anthropogenic introductions (e.g. Graciá et al. 2013). 

Several fossil records of M. leprosa have been found in the Iberia Peninsula, dated 

from Pliocene (Soler et al. 2012) and Holocene (Fèlix et al. 2006). Therefore, the most 

parsimonious scenario to explain the mismatch of old fossil records and extremely low 

genetic diversity and shallow population differentiation would be an ancient (Pliocene 

or earlier) invasion of Europe, followed by a massive extinction of the species in this 

region due to Pleistocene climatic oscillations, and a later re-colonization from North 

Africa and rapid population expansion throughout Iberia. Interestingly, the co-

distributed terrapin, Emys orbicularis, in the Iberian Peninsula and northern Maghreb 

(E. o. occidentalis) shows a similar pattern of re-colonization from North Africa (Stuckas 

et al. 2014), and a rapid population expansion throughout the Iberian Peninsula (Velo-

Antón et al. 2008) that likely caused present carapace scute anomalies through a 

series of bottlenecks effects (Velo-Antón et al. 2011a). On the contrary, the eastern 

Algerian and Tunisian Emys populations (identified as a new subspecies, see Stuckas 

et al. 2014) are genetically different from the Moroccan Emys populations, in contrast 

to the pattern here observed for M. leprosa. Thus, it appears that climatic conditions 

occurred in the Iberian Peninsula during glacial phases were too harsh for both 

terrapins, which likely caused large extinctions of Emys and Mauremys populations. 

However, the paleaocological similarities of southern Europe and North Africa would 

point to other unidentified factors that would better explain the vanishing of these 
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thermophilic species in the Iberian Peninsula, where many other reptiles remained in 

suitable refugia during Pleistocene climatic fluctuations. 

3.4.3 Contact zones within Mauremys leprosa 

The presence of a single specimen of M. l. saharica in north Morocco (Fritz et al. 

2006) led to these authors to suggest a likely anthropogenic introduction as reptile 

trade and capture collection has commonly occurred in Morocco. However, in this 

study we show that the area with highest genetic diversity for M. leprosa is located in 

the Rif and Middle Atlas as a result of the presence of several sublineages of both 

subspecies (A2 and A3, M. l. leprosa; B3 and B4, M. l. saharica). The high number of 

M. l. saharica samples widely distributed in this region point to a natural colonization 

from a potential refugium in the Rif and the Middle Atlas, leading to a secondary 

contact zone with M. l. leprosa populations that also remained in north Morocco during 

past climatic oscillations. We found both species occurring in syntopy in several 

Moroccan localities of the Rif (Tazia, Tetouan, Fifi, Zoumi) and Middle Atlas (Sidi 

Mimoun), allowing us to identify populations that should be further evaluated with 

nuclear markers to study whether potential natural hybridization occurs between 

sublineages or if they evolved isolation mechanisms (prezygotic or postzygotic barriers) 

that still maintain the distinctiveness generated through past allopatric isolation during 

Pleistocene climatic oscillations. 
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Abstract 

To accurately infer population structuring and manage species, it is advised to 

combine data obtained from mitochondrial DNA (mtDNA) with data from fast evolving 

markers such as microsatellites. To date, the evolutionary history of a threatened 

Mediterranean species, Mauremys leprosa, was inferred based solely on mtDNA data, 

which may lead to an incomplete, or partially explained, population structuring. We 

tested the cross-amplification of 16 microsatellite loci in 190individuals of M. leprosa 

from six Iberian and two African populations. We obtained a successful set of 11 

polymorphic loci with 2-18 alleles and observed heterozygosity ranging from 0.007-

0.783. This panel of loci can be used for future research in M. leprosa, such as 

population structuring, analysis of gene flow in secondary contact zones, paternity 

analyses, changes in phenotypic traits and to assemble a comprehensive genetic 

dataset (mtDNA and nuDNA) that will allow the geographic assignment of individuals of 

unknown origin. These tools will help managing M. leprosa populations throughout the 

species‘ range. 

Keywords: conservation genetics, cross-amplification, Mauremys leprosa, 

microsatellites, phylogeography, population genetics. 

 

4.1 Introduction 

Inferring genetic structuring patterns based on molecular analysis of mitochondrial 

DNA usually produces an incomplete picture of the species‘ biogeographic processes 
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due to its maternal heritability. These patterns are even more incomplete when 

studying species, such as turtles, with lower mtDNA mutation rate than other 

vertebrates, which is partially explained by their long life-span and average long 

generation time (Avise et al. 1992; Bromham 2002; Lourenço et al. 2013). Therefore, 

the development and optimization of fast evolving nuclear markers such as 

microsatellite loci is crucial to unveil genetic diversity and structure patterns in this 

taxonomic group. 

The range of the Mediterranean stripe-necked terrapin Mauremys leprosa 

(Schweigger, 1812) embraces the Northwestern Africa and the Iberian Peninsula, with 

a few populations located in southwestern France (Keller & Busack 2001). This species 

is currently threatened by habitat fragmentation and/or destruction, pet trade, alien 

species (Polo-Cavia et al. 2011) and pathogens (Hidalgo-Vila et al. 2008; Verneau et 

al. 2011). Mauremys leprosa is considered vulnerable by the IUCN and is listed in 

Appendix II of the Berne Convention and in Appendix II and IV of Habitat Directive 

(92/43/CEE) (Cox & Temple 2009). A phylogeographic study of M. leprosa identified 

two major mitochondrial lineages (Fritz et al. 2006) classified in two subspecies: M. l. 

saharica (southern Morocco, eastern Algeria and Tunisia) and M. l. leprosa (Iberian 

Peninsula and northern Morocco). However, genetic differentiation was inferred solely 

from mtDNA data and population structuring within the two subspecies was not well 

resolved by the use of this marker. For developing conservation strategies and 

identification of management units, genetic population structure and diversity needs to 

be analysed in more detail. In this study, we tested and optimized a set of 16 

microsatellite markers for M. leprosa that were developed for two closely related 

species (M. caspica and M. rivulata). 

4.2 Material and Methods 

We tested 13 microsatellite loci developed for M. caspica (Vamberger et al. 2011) 

and three microsatellite loci developed for M. rivulata (Mantziou et al. 2005) for cross-

amplification in 190 Mauremys leprosa belonging to six Iberian (Algarve, Castro Verde, 

Castelo Branco, Caldas da Rainha, Madrid, Murcia) and two African populations 

(Ceuta and Tazia). Genomic DNA was extracted from blood using EasySpin (for M. 

leprosa) or Quiagen (for M. caspica and M. rivulata) extraction kits, following the 

manufacturer‘s protocol. In order to ensure that primers were amplifying correctly in M. 

leprosa, we used samples from M. caspica and M. rivulata as a positive control. We 

divided the PCR reaction in two multiplexes (see table 4.1); forward primers were 

labelled with fluorescent dye markers (FAM, NED, VIC and PET; Oetting et al. 1995). 
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PCR amplifications were performed on 10 μl final volume containing 2 μl of DNA, 5 μl 

of Quiagen Multiplex PCR Kit and 0.14 μl-0.32 μl at 10 μM of each primer (table 4.1). 

Touchdown PCR conditions started with an initial denaturation for 95°C for 15 min 

(minutes) followed by 7 cycles of 95°C for 30 s (seconds), 58°C for 1 min (decreasing 

0.5°C per cycle to 55°C), 72°C for 30 s; 24 cycles of 95°C for 30 s, 55°C for 1 min, 

72°C for 30 s; 8 cycles of 95°C for 30 s, 53°C for 1 min, 72°C for 30 s, and a final 

elongation step at 60°C for 30 min. PCRs were performed on BioRad C1000 

Thermocycler and genotyped on an ABI 3130xl genetic analyzer (Applied Biosystems, 

FosterCity, CA, USA). GeneScan™-500 Liz was used as fragment size standard to 

score amplicons sizes on GeneMapperv4.0 (Applied Biosystems). GENEPOP v4.2 

(Rousset 2008) was used to assess deviations from Hardy-Weinberg equilibrium (H-

WE) for each locus and population and linkage disequilibrium (LD) between loci at 

each population using the Markov chain method with 1000 batches and 10000 

iterations per batch. Bonferroni correction for multiple comparisons was applied for 

both cases. Observed and expected heterozygosities were calculated using 

GenAlExv6.4 (Peakall & Smouse 2006) and the possible existence of null alleles at 

each locus for all populations was assessed with MICROCHECKER v2.2.3 (Van 

Oosterhout et al. 2004). 

4.3 Results and Discussion 

All loci were in H-WE in all populations except for three cases that showed a 

deviation caused by heterozygote deficit (MC18 and MR-1 in Murcia, and MC20 in 

Tazia). Nevertheless, this pattern was not observed across all populations and 

therefore the loci were not discarded. The fact that we observed this pattern in only two 

populations might suggest that they could be inbred or that they are non-panmictic 

populations. Another explanation might be the presence of null alleles in MR1. This 

marker, together with MC21 showed signs of null alleles, since they have a low number 

of alleles sampled (MR1 – 4 alleles and MC21 – 6 alleles) and appeared as 

homozygotes in the majority of populations. No cases of linkage disequilibrium were 

found. None of the tested primers failed to amplify. However, three loci turned out to be 

monomorphic (MR-3, MC8 and MC25). Allele variation ranged from 2 (MC1, MC17) to 

18 (MC3) (table 4.1).  
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Table 4.1: Characteristics of 16 microsatellite loci tested in M. leprosa. Loci whose codes begin with MR were 
designed for Mauremys rivulata and the ones that begin with MC were designed for Mauremyscaspica. GenBank 
accession numbers arein brackets below each locus name abbreviation. Microsatellite repeat motif; Ta (C°) = PCR 
annealing temperature; Primer (μl) = quantity of primer (μl) of a 10 μM Primer solution; N = number of sampled 
individuals; Na = number of alleles; HO = observed heterozygosity; HE = expected heterozygosity; P-value (H-WE) = 
Hardy-Weinberg probability test (Fisher‘s exact test). 

 

Overall, we successfully optimized for cross-amplification 11 polymorphic 

microsatellites in M. leprosa, which allow estimating fine scale genetic diversity and 

structuring across the species‘ distribution. In addition, past demographic events can 

also be assessed with these markers, allowing to draw a more detailed picture on the 

biogeographic history of the species. Mauremys leprosa shares its range with another 

freshwater terrapin, the European pond turtle (Emys orbicularis), across the Iberian 

Peninsula and northwestern Africa. The two species inhabit similar water bodies, 

although the latter is thought to be more sensitive against pollution. While the 

evolutionary history and contemporary genetic structure is well-studied in Iberian 

populations of E. orbicularis using evidence from mtDNA and microsatellites (Velo-

Antón et al. 2008), fast-evolving biparentally inherited microsatellites have never been 

used before for M. leprosa, which would be promising for a comparative 

phylogeographic study of both species. Moreover, the use of microsatellites and a 

comprehensive sampling would be particularly important for conservation studies 

because turtles are amongst the most common vertebrates associated to pet trade and 

Multi 
plex Locus Repeat Motif Ta 

Primer 
(µL) N Na 

Allele size 
range (bp)** Ho He 

P 
(HWE)*** 

1 Mr-1 [AY934859] (AC)11 56 0.2 117 4 205-213 0.019 0.124 Highsig. 

1 * MC5 [HQ010418] (ATCT)12 56 0.32 156 15 184-244 0.773 0.805 0.6213 

1 * MC6 [HQ010407] (ATCT)21 56 0.2 186 12 114-186 0.770 0.764 0.0063 

1 MC8 [HQ010411] (AC)15 56 0.12 186 1 192 0 0 - 

1 * MC12 [HQ010410] (TG)14 56 0.14 187 3 84-92 0.166 0.154 1 

1 * MC17 [HQ010417] (TAGA)8 56 0.12 189 2 106-114 0.007 0.006 - 

1 * MC22 [HQ010413] (CT)6…(ATCT)8 56 0.14 189 6 100-112 0.562 0.542 0.2687 

1 * MC24 [HQ010412] (AGAT)8 56 0.24 176 13 104-152 0.767 0.794 0.4777 

2 MR-3 [AY934861] (GT)8 56 0.2 47 1 182 0 0 - 

2 * MR-9 [AY934864] (CT)
16 

55.5 0.14 186 13 93-123 0.611 0.615 0.0185 

2 * MC1 [HQ010420] (AGAT)12 56 0.14 189 2 89-105 0.02 0.018 - 

2 * MC3 [HQ010419] (TAGA)14 56 0.24 175 18 195-263 0.783 0.8 0.2282 

2 * MC18 [HQ010416] (ATCT)10 56 0.16 157 17 219-287 0.627 0.769 0.0158 

2 * MC20 [HQ010415] (TATC)14 56 0.2 184 13 160-212 0.483 0.547 0.0099 

2 MC21 [HQ010414] (TC)12 56 0.2 189 6 111-125 0.467 0.486 0.1821 

2 MC25 [HQ010409] (AG)18 56 0.16 123 1 168 0 0 - 

* Informative polymorphic microsatellite markers in M. leprosa; 
**We‘ve corrected the allele sizes by discounting the fluorescent tail size to the allele size. 
***‗-‗correspond to cases where the marker showed to be monomorphic or with only two alleles, but one only 
had one copy. 
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illegal translocations (Dijk et al. 2000; Moll & Moll 2004), which has an important effect 

on specie‘s genetic structure and genetic variability within populations (Gong et al. 

2009; Velo-Antón et al. 2011b). For instance, genetic characterization of Iberian 

populations of E. orbicularis allowed the allocation of unknown samples from Recovery 

Centres to the most likely region of origin (Velo-Antón et al. 2007) and we expect that 

this will be possible for M. leprosa as well using the cross amplified microsatellite 

markers. For M. leprosa, many individuals are thought to be translocated to areas 

distant from their home populations across its entire distribution range, including 

terrapins from Morocco that were introduced to Iberian populations. Therefore, an 

accurate genetic characterization of M. leprosa populations will allow building a feasible 

tool to assign individuals of unknown origin to their natural populations, and help to 

better manage this species. Furthermore, we expect that these microsatellite markers 

will contribute to a better understanding of potential gene flow in the contact zone of the 

two subspecies in North Africa (e.g. Pedall et al. 2011 for E. orbicularis), paternity 

analyses (e.g. Roques et al. 2006) and changes in phenotypic traits (e.g. Velo-Antón et 

al. 2011a). 
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Abstract 

During the climatic oscillations in the Quaternary, several taxa suffered range 

contractions, using the southern European peninsulas as refugia. Only recently, the 

Maghreb region was included as another refugium in the Mediterranean basin. When 

multiple refugia within species occurred, the resulting isolation of populations could 

lead to allopatric divergence. During post-glacial times, ranges expansions could 

promote secondary contact between divergent units. Given the recent findings of a 

secondary contact zone within Mauremys leprosa in northern Morocco, we hope to 

assess the possibility of gene flow between subspecies. Moreover, the effects of the 

recent European colonization on genetic diversity and structure are here analysed. A 

group of 11 microsatellite loci was used in 556 individuals, distributed through the 

majority of the species range (Morocco and Iberian Peninsula). We did not find any 

considerable differences of genetic diversity between the two continents. In North 

Africa the genetic structure has geographic concordance and the contact zone suggest 

gene flow between the subspecies. For the Iberian Peninsula, genetic structure does 

not show a geographic pattern, however, the high values of diversity indices suggests 

the possibility of a glacial refugia in SW Iberian Peninsula. 

Keywords: Glacial refugia, Secondary contact zones, Mauremys leprosa, 

microsatellites.  
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5.1 Introduction 

The Mediterranean Basin is considered one of the world biodiversity hotspots 

(Myers et al. 2000). Its three peninsulas – Iberian, Italian, and the Balkan – harbour a 

diverse group of species, mostly resulting from complex evolutionary histories as a 

response to climatic oscillations during the Quaternary (Hewitt 2011a). More recently, 

the Maghreb region was pointed as another refugium area in the Mediterranean basin, 

since it could be the source of genetic diversity for many species present in Europe 

(Husemann et al. 2014). Moreover, these areas have complex topographic features 

allowing for divergence and/or speciation processes due to population isolation in 

suitable climate refugia during the Quaternary climatic oscillations (see Hewitt 2004, 

2011a; Husemann et al. 2014 and references therein). 

After climate amelioration, larger areas of suitable habitat became available allowing 

species to expand (Hewitt 2011b). During these range expansions, populations could 

suffer repeated bottlenecks and founder effects leading to a decrease of genetic 

diversity in the northern populations (Hewitt 2004). However, multiple refugia within a 

species could also occur enabling allopatric divergence (Gómez & Lunt 2007; Stewart 

et al. 2010; Hewitt 2011a), with subsequent population expansions that may lead to the 

occurrence of secondary contact between or within species (Taberlet et al. 1998; 

Sequeira et al. 2005; Babik et al. 2005; Martínez-Solano et al. 2006; Gonçalves et al. 

2009; Miraldo et al. 2013).  

The Mediterranean pond turtle, Mauremys leprosa (Schwieegger, 1812), is a small 

terrapin endemic to the Iberian Peninsula (with a few and scattered population in south-

western France), is also present in northern Africa, from Morocco to Tunisia (Keller & 

Busack 2001). Two subspecies are known: Mauremys leprosa leprosa (north of the 

Atlas Mountains in Morocco till the northern species range) and Mauremys leprosa 

saharica (south of the Atlas Mountains in Morocco, Algeria and Tunisia). Moreover, it 

was recently found the two subspecies became in contact in the Middle Atlas and the 

Rif in Morocco (see Chapter 3), however only mtDNA was used in previous 

phylogeographic studies and information from a bi-parentally inherited marker should 

be added in order to assess gene flow dynamics between both lineages. 

Given the recent findings (see Chapter 3) we aim to obtain a more recent and fine-

scale genetic pattern across Moroccan and the Iberian Peninsula populations. By using 

a set of microsatellites polymorphic loci we infer spatial genetic structure and diversity 

to 1) verify the current impact of the Atlas Mountains as a landscape barrier; 2) 
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determine gene flow possibility between subspecies on the contact zone, and 3) 

assess the resulting genetic pattern of the recent population expansion across the 

Iberian Peninsula.  

5.2 Material and Methods 

5.2.1 Sampling and Microsatellite Genotyping  

Genomic DNA was extracted from 556 individuals sampled along 51 different 

locations across the Iberian Peninsula and Morocco (see Supplementary Material 

Table S. M. 2) covering the species distribution in this area (Fig. 5.1). A set of 11 

polymorphic microsatellites previously tested were used (See chapter 4, Veríssimo et 

al., 2013).  

Fig. 5.1: Current species distribution of Mauremys leprosa across the study area (species 
presence in pale green) and sampling locations (marked as black dots). 
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5.2.2 Genetic diversity analysis 

These analyses were performed in populations with 10 or more individuals. 

Deviations from Hardy-Weinberger equilibrium and linkage disequilibrium were 

assessed through GENEPOP v4.2 (Rousset 2008), using 1000 batches and 10000 

iterations per batch. In both cases, Bonferroni correction for multiple comparisons was 

applied (Rice 1989). Observed (Ho) and expected (He) heterozygosities and mean 

number of alleles per locus (Na) were calculated using GENALEX v6.5.1 (Peakall & 

Smouse 2006). This software was also used to conduct a Principal Coordinate Analysis 

(PCA). HP-Rare (Kalinowski 2005) was used to calculate allelic richness (Ar) through a 

rarefaction method in order to eliminate the effect of different sample sizes. ARLEQUIN 

v3.5 (Excoffier & Lischer 2010) was used to calculate pairwise FST distances using 

1000 permutations between all the selected populations.  

5.2.3 Genetic structure analysis 

 From all successfully genotyped samples, we eliminated from further analysis each 

specimen that failed to amplify less than 75% of markers, to avoid erroneous results 

(Amos 2006). We assess population structure within the microsatellite dataset using 

STRUCTURE v2.3.4 (Pritchard et al. 2000) without providing a prior information about 

sampling location. The model implemented in this software assumes the existence of K 

populations, where K may be unknown, and each K is composed by a set of alleles‘ 

frequencies at each locus. A total of 500000 MCMC iterations preceded by 50000 of 

burn-in were performed in four independent runs for each K (1 ≤ K ≥ 20). Then, we 

used STRUCTURE HARVESTER Web v0.6.93 (Earl & vonHoldt 2011) to identify the 

number of K that would better explain our data. The K was chosen based on the 

posterior probabilities (highest lnP(D)) and ∆K method (Evanno et al. 2005). To better 

infer the genetic structure within Iberian and Moroccan populations we split the data by 

continent and run STRUCTURE v2.3.4 using the same parameters. 
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Table 5.1: Summary table of the dataset divided into sampling locality. ID: identification number of each sampling 
locality; Area: assigned area for graphical STRUCTURE outputs; Lat: latitude; Long: longitude; Locality: sampling 
locality or its description; n: number of samples per locality. 

ID Area Lat Long Locality n 

1 S of Atlas Mountains 28.4969667 -10.8856 Tan-Tan, Guelta Ez Zerga 11 

2 S of Atlas Mountains 28.53154952 -10.9504 Tan Tan, Draa river 5 

3 S of Atlas Mountains 29.8233417 -7.1991 Tata, Oued Tissint 1 

4 S of Atlas Mountains 30.968611 -6.72389 Embalse Ouarzzazate 6 

5 N of Atlas Mountains 30.99038333 -9.03982 12km N of Timezgadiouine 1 

6 N of Atlas Mountains 31.529717 -7.56338 Douer Targa 26 

7 N of Atlas Mountains 31.6892 -7.98978 Marrakech (Palmeral) River Ouad Tansift 2 

8 N of Atlas Mountains 31.74957833 -8.73844 Near Sidi-Chikér 1 

9 N of Atlas Mountains 32.199494 -6.30223 Sidi Mimoun 2 

10 N of Atlas Mountains 32.474118 -5.99285 Sidi Mimoun 4 

11 Contact Zone 32.893142 -5.25043 Sidi Mimoun 1 

12 Contact Zone 33.1187583 -4.32936 Boulemane, Oued Sebb Ousfa 2 

13 Contact Zone 33.548236 -5.09752 Sidi Mimoun 1 

14 Contact Zone 33.649233 -4.96812 Sidi Mimoun 3 

15 Contact Zone 33.650625 -4.96812 Sidi Mimoun 1 

16 Contact Zone 34.57302 -2.73322 near Douira 1 

17 Contact Zone 34.69665 -6.02587 road to Moulay Bousselhaim 1 

18 Contact Zone 34.696982 -5.57259 Sidi Mimoun 1 

19 Contact Zone 34.745983 -5.42282 5km before Zoumi 1 

20 Contact Zone 35.022558 -5.20518 Fifi 18 

21 Contact Zone 35.21 -6.13 Agadir, Loukkos 1 

22 Contact Zone 35.247357 -5.282 Sidi Mimoun 1 

23 Contact Zone 35.299448 -5.2187 Sidi Mimoun 1 

24 Contact Zone 35.341814 -5.55192 Tazia 17 

25 Contact Zone 35.89036 -5.34878 Ceuta_Embalse Renegado 29 

26 Iberian Peninsula 36.75649 -5.29005 Málaga 3 

27 Iberian Peninsula 37.020458 -7.88625 Algarve 21 

28 Iberian Peninsula 37.049271 -6.59136 Doñana 14 

29 Iberian Peninsula 37.217609 -3.95261 Granada, Brácana 1 

30 Iberian Peninsula 37.406293 -5.4519 Sevilla, Fuentes de Andalucia 1 

31 Iberian Peninsula 37.581687 -1.40875 Murcia: Las Moreras Mazarron 2 

32 Iberian Peninsula 37.652608 -8.79358 Almograve 16 

33 Iberian Peninsula 37.693791 -8.0863 Castro Verde 16 

34 Iberian Peninsula 38.152175 -4.01453 Andújar, arroyo de la Cabrera 13 

35 Iberian Peninsula 38.258223 -4.32406 Cardeña, centro de información 15 

36 Iberian Peninsula 38.266715 -4.27808 Cardeña, embalse Tejoneras 6 

37 Iberian Peninsula 38.293806 -1.43219 Murcia: Cieza (Embalse del Judío) 28 

38 Iberian Peninsula 38.907735 -4.4721 Ciudade Real 11 

39 Iberian Peninsula 39.4447 -9.13751 Caldas da Rainha 31 

40 Iberian Peninsula 39.470222 -0.37714 Valencia - Peñíscola 16 

41 Iberian Peninsula 39.70255 -7.30815 Castelo Branco 30 
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ID Area Lat Long Locality n 

42 Iberian Peninsula 40.010028 -5.7425 Cáceres: Jaraiz de la Vera 29 

43 Iberian Peninsula 40.158179 -5.16166 Ávila: Poyales del Hoyo 25 

44 Iberian Peninsula 40.48825 -4.12439 Madrid: Fresnedillas de la Oliva 28 

45 Iberian Peninsula 40.548417 -3.25661 Guadalajara 16 

46 Iberian Peninsula 41.125028 -6.71611 Salamanca: Vilvestre 32 

47 Iberian Peninsula 41.287028 2.016194 Barcelona: Delta del Llobregat 30 

48 Iberian Peninsula 41.824222 2.781694 Girona: Caldes de Malabella 3 

49 Iberian Peninsula 42.081165 -8.39662 As neves 3 

50 Iberian Peninsula 42.287553 -8.1435 Ribadavia 9 

51 Iberian Peninsula 42.377583 3.030556 Girona: Albera 19 
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Fig. 5.2: On top: Population structure pattern of Mauremys leprosa across the study area for K=2 (most 
probable K; see Supplementary Material S.M. Fig.1 for Structure Harvester output). Each pie chart corresponds to a 
sample location and the size is proportional to the number of samples. Below: STRUCTURE output for K=2 (on top; 
most probable K) and K=5 (below). Samples are distributed from right to left following an orientation from south to 
north. The red lines represent spatial areas divisions, with SAM corresponding to South of the Atlas Mountains, 
NAM corresponding to North of the Atlas Mountains, the Contact Zone and the Iberian Peninsula. Each line 
corresponds to a single individual. For more information regarding samples, localities and areas see Table 5.1. 
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Table 5.2: Summary table of the African dataset divided into sampling locality. ID: identification number of each 
sampling locality; Area: assigned area for graphical STRUCTURE outputs; Lat: latitude; Long: longitude; Locality: 
sampling locality or its description; n: number of samples per locality. 

ID Area Lat Long Locality n 

1 S of Atlas Montains 28.49697 -10.8856 Tan-Tan, Guelta Ez Zerga 11 

2 S of Atlas Montains 28.53155 -10.9504 Tan Tan, Draa river 5 

3 S of Atlas Montains 29.82334 -7.1991 Tata, Oued Tissint 1 

4 S of Atlas Montains 30.96861 -6.72389 Embalse Ouarzzazate 6 

5 N of Atlas Mountains 30.99038 -9.03982 12km N of Timezgadiouine 1 

6 N of Atlas Mountains 31.52972 -7.56338 Douer Targa 26 

7 N of Atlas Mountains 31.6892 -7.98978 
Marrakech (Palmeral) River Ouad 

Tansift 
2 

8 N of Atlas Mountains 31.74958 -8.73844 Near Sidi-Chikér 1 

9 N of Atlas Mountains 32.19949 -6.30223 Sidi Mimoun 2 

10 N of Atlas Mountains 32.47412 -5.99285 Sidi Mimoun 4 

11 Contact Zone 32.89314 -5.25043 Sidi Mimoun 1 

12 Contact Zone 33.11876 -4.32936 Boulemane, Oued Sebb Ousfa 2 

13 Contact Zone 33.54824 -5.09752 Sidi Mimoun 1 

14 Contact Zone 33.64923 -4.96812 Sidi Mimoun 3 

15 Contact Zone 33.65063 -4.96812 Sidi Mimoun 1 

16 Contact Zone 34.57302 -2.73322 near Douira 1 

17 Contact Zone 34.69665 -6.02587 road to Moulay Bousselhaim 1 

18 Contact Zone 34.69698 -5.57259 Sidi Mimoun 1 

19 Contact Zone 34.74598 -5.42282 5km before Zoumi 1 

20 Contact Zone 35.02256 -5.20518 Fifi 18 

21 Contact Zone 35.21 -6.13 Agadir, Loukkos 1 

22 Contact Zone 35.24736 -5.282 Sidi Mimoun 1 

23 Contact Zone 35.29945 -5.2187 Sidi Mimoun 1 

24 Contact Zone 35.34181 -5.55192 Tazia 17 

25 Contact Zone 35.89036 -5.34878 Ceuta_Embalse Renegado 29 
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Fig. 5.3: On top: Population structure pattern of Mauremys leprosa in Africa for K=3 (most probable K; see Supplementary 
Material S.M. Fig.1 for Structure Harvester output). Each pie chart corresponds to a sample location and the size is proportional 
to the number of samples. Below: STRUCTURE output for K=2 (on top), K=3 (middle) and K=4 (below). Samples are 
distributed from right to left following an orientation from south to north. The black lines represent spatial areas divisions. Each 
line corresponds to a single individual. For more information regarding samples, localities and areas see Table 5.2. 
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Table 5.3: Summary table of the Iberian Peninsula dataset divided into sampling locality. ID: identification number of 
each sampling locality; Lat: latitude; Long: longitude; Locality: sampling locality or its description; n: number of samples 
per locality. 

ID Lat Long Locality n 

1 36.75649 -5.29005 Málaga 3 

2 37.02046 -7.88625 Algarve 21 

3 37.04927 -6.59136 Doñana 14 

4 37.21761 -3.95261 Granada, Brácana 1 

5 37.40629 -5.4519 Sevilla, Fuentes de Andalucia 1 

6 37.58169 -1.40875 Murcia: Las Moreras Mazarron 2 

7 37.65261 -8.79358 Almograve 16 

8 37.69379 -8.0863 Castro Verde 16 

9 38.15218 -4.01453 Andújar, arroyo de la Cabrera 13 

10 38.25822 -4.32406 Cardeña, centro de información 15 

11 38.26672 -4.27808 Cardeña, embalse Tejoneras 6 

12 38.29381 -1.43219 Murcia: Cieza (Embalse del Judío) 28 

13 38.90774 -4.4721 Ciudade Real 11 

14 39.4447 -9.13751 Caldas da Rainha 31 

15 39.47022 -0.37714 Valencia - Peñíscola 16 

16 39.70255 -7.30815 Castelo Branco 30 

17 40.01003 -5.7425 Cáceres: Jaraiz de la Vera 29 

18 40.15818 -5.16166 Ávila: Poyales del Hoyo 25 

19 40.48825 -4.12439 Madrid: Fresnedillas de la Oliva 28 

20 40.54842 -3.25661 Guadalajara 16 

21 41.12503 -6.71611 Salamanca: Vilvestre 32 

22 41.28703 2.016194 Barcelona: Delta del Llobregat 30 

23 41.82422 2.781694 Girona: Caldes de Malabella 3 

24 42.08117 -8.39662 As neves 3 

25 42.28755 -8.1435 Ribadavia 9 

26 42.37758 3.030556 Girona: Albera 19 
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Fig. 5.4: On top: Population structure pattern of Mauremys leprosa in the Iberian Peninsula for K=5 (most probable 
K; see Supplementary Material S.M. Fig.1 for Structure Harvester output). Each pie chart corresponds to a sample 
location and the size is proportional to the number of samples. Below: STRUCTURE output for K=2 (on top) and K=5 
(below). Samples are distributed from right to left following an orientation from south to north. The black lines represent 
spatial areas divisions. Each line corresponds to a single individual. For more information regarding samples, localities 
and areas see Table 5.3. 

 

5.3 Results 

Number of alleles range from 4 (MC1) to 21 (MC5), with an average of 13.9. 

Regarding further representation of the sampling sites, for easier graphical 

representation, Moroccan localities were pooled into three groups: South of the Atlas 

Mountains, North of the Atlas Mountains, and the Contact zone region (See Table 5.1 

for details). 



FCUP 
Phylogeography and current patterns of genetic diversity and structure of the Mediterranean pond turtle 

67 

 

Table 5.4: Summary table of the dataset used for population analysis. ID: original identification number of each 
sampling locality; New_ID: defined identification number to be used for population analysis; Area: assigned area for 
graphical STRUCTURE outputs; Population: sampling locality or its description; n: number of samples per population. 

5.3.1 Genetic diversity analysis 

After analysing populations sample size, we discarded 65 individuals (corresponding 

to populations with less than 10 individuals) obtaining a total of 491 samples divided 

into 23 populations (Table 5.4). From those 65 individuals, 37 have African origin, 

diminishing the African dataset when comparing it with the European (Morocco dataset: 

N= 101; Iberian Peninsula: N =390). Tan-Tan (ID=1, Morocco) and Ciudad Real 

(ID=38, Spain) are our smallest sampled populations (N=11), and Salamanca (ID=46, 

Spain) is the largest sampled population with 32 individuals. All populations were under 

Hardy-Weinberg equilibrium (HW-E), except for Ceuta (Maucas 6), Tazia (Maucas 20), 

and Douer Targa (Maucas 12), which showed signs of heterozygosity deficiency. Signs 

of linkage disequilibrium (LD) were found in Barcelona (Maucas 18 and Maucas 3) and 

Almograve (Maucas 18 and Maucas 3; Maucas 18 and Maucas 5). Given that no 

geographical pattern of LD was detected across all studied populations we may 

assume that there is no physical linkage since it only occurs in two populations and 

thus none of the loci were removed from further analysis.  

ID New_ID Area Population n 

1 1 S of Atlas Mountains Tan-Tan, Guelta Ez Zerga 11 

6 2 N of Atlas Mountains Douer Targa 26 

20 3 Contact Zone Fifi 18 

24 4 Contact Zone Tazia 17 

25 5 Contact Zone Ceuta_Embalse Renegado 29 

27 6 Iberian Peninsula Algarve 21 

28 7 Iberian Peninsula Doñana 14 

32 8 Iberian Peninsula Almograve 16 

33 9 Iberian Peninsula Castro Verde 16 

34 10 Iberian Peninsula Andújar, arroyo de la Cabrera 13 

35 11 Iberian Peninsula Cardeña, centro de información 15 

37 12 Iberian Peninsula Murcia: Cieza (Embalse del Judío) 28 

38 13 Iberian Peninsula Ciudade Real 11 

39 14 Iberian Peninsula Caldas da Rainha 31 

40 15 Iberian Peninsula Valencia - Peñíscola 16 

41 16 Iberian Peninsula Castelo Branco 30 

42 17 Iberian Peninsula Cáceres: Jaraiz de la Vera 29 

43 18 Iberian Peninsula Ávila: Poyales del Hoyo 25 

44 19 Iberian Peninsula Madrid: Fresnedillas de la Oliva 28 

45 20 Iberian Peninsula Guadalajara 16 

46 21 Iberian Peninsula Salamanca: Vilvestre 32 

47 22 Iberian Peninsula Barcelona: Delta del Llobregat 30 

51 23 Iberian Peninsula Girona: Albera 19 
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Table 5.5: Summary table of diversity indices for Mauremys leprosa populations. ID: identification number to be 
used for population diversity analysis; n: number of samples per location; Na: number of alleles; Ne: number of effective 
alleles; He: expected heterozygosity; uHe: unbiased expected heterozygosity; PA: number of private alleles; Ar: allelic 
richness. Columns with * the value represent the population average. 

 

In general, observed (HO) and expected (HE) heterozygosity showed similar values 

throughout the study area, ranging between ca. 0.3 and 0.6. The north easternmost 

population, Girona, presented the lowest values across all measured diversity indices 

(HO =0.294 and HE =0.315; Ar=2.63; Table 5.5). While Douer Targa and Ceuta (both in 

Morocco), presented the highest diversity indices (Douer Targa: HO =0.525 and HE 

=0.568; Ar=5.03; Ceuta: HO =0.535 and HE =0.610; Ar=4.77; Table 5.5). In central and 

southern Iberian Peninsula, three populations showed diversity values as high as 

Moroccan populations (Andújar: HO = 0.601, Ar = 4.64; Ávila: HO =0.584, Ar = 4.44, and 

Castro Verde: HO = 0.575, Ar = 5). All Moroccan populations presented private alleles, 

with the populations near the Atlas Mountains scoring the higher values (Douer Targa, 

PA = 14, and Tan-Tan (Guelta Ez Zerga, PA = 7). The exception was found in Tazia 

ID Population n Na* Ne* Ho* He* uHe* PA Ar 

1 
Tan-Tan, 
Guelta Ez 

Zerga 
11 4.636 3.214 0.534 0.533 0.559 7 4.14 

2 
Douer 
Targa 

26 7.818 5.121 0.525 0.568 0.579 14 5.03 

3 Fifi 18 5.545 3.659 0.528 0.553 0.569 3 4.31 

4 Tazia 17 4.727 3.184 0.475 0.554 0.575 - 3.92 

5 Ceuta 29 6.909 4.074 0.535 0.610 0.623 4 4.77 

6 Algarve 21 4.818 3.143 0.483 0.488 0.500 - 3.74 

7 Doñana 14 5.727 3.678 0.550 0.543 0.564 1 4.48 

8 Almograve 16 5.182 3.463 0.506 0.545 0.563 - 4.15 

9 
Castro 
Verde 

16 6.455 3.904 0.575 0.592 0.614 4 5 

10 Andújar 13 5.545 4.109 0.601 0.576 0.599 1 4.64 

11 Cardeña 15 4.909 3.548 0.559 0.557 0.577 - 4.18 

12 Murcia 28 4.909 2.778 0.482 0.507 0.516 - 3.6 

13 
Ciudade 

Real 
11 5.182 3.180 0.466 0.509 0.538 - 4.54 

14 
Caldas da 

Rainha 
31 5.364 3.125 0.462 0.450 0.457 - 3.67 

15 Valencia  16 6.000 3.972 0.498 0.562 0.581 - 4.66 

16 
Castelo 
Branco 

30 6.636 3.911 0.539 0.553 0.563 1 4.48 

17 Cáceres 29 6.636 3.900 0.559 0.550 0.560 - 4.47 

18 Ávila 25 6.273 4.082 0.584 0.559 0.570 1 4.44 

19 Madrid 28 4.818 3.027 0.552 0.524 0.535 - 3.57 

20 Guadalajara 16 5.273 3.326 0.544 0.531 0.551 2 4.28 

21 Salamanca 32 5.727 3.153 0.482 0.518 0.527 - 3.84 

22 Barcelona 30 6.182 3.508 0.568 0.564 0.574 - 4.14 

23 Gerona 19 3.455 1.890 0.294 0.315 0.325 - 2.63 



FCUP 
Phylogeography and current patterns of genetic diversity and structure of the Mediterranean pond turtle 

69 

 

with no private alleles. As expected, the majority of Iberian Peninsula populations did 

not present private alleles.  

5.3.2 Genetic structure analysis 

When analysing genetic structure for the complete dataset the most probable 

number of genetic clusters was K=2. All populations in the Iberian Peninsula were 

assigned to the same cluster, with the exception of individuals from Malaga which show 

admixture. In northern Morocco, the majority of populations also showed admixture, 

while the more southern populations were assigned to a single cluster (Fig 5.2). It is 

interesting to note that in the Atlas Mountains, where the two subspecies exist 

(geographically separated by the Anti and High Atlas), both subspecies were assigned 

to the same cluster. When solely analysing the African dataset, the best number of 

genetic clusters was K=3 (see Supplementary Material S.M. Fig.1 for Structure 

Harvester output) and thus, the nuclear pattern became more similar to the one found 

for mtDNA, with the clear separation of the subspecies (Fig. 5.3). The Iberian 

Peninsula (when analysed solely) shows higher structure than Morocco, with five 

clusters being found (see Supplementary Material S.M. Fig.1 for Structure Harvester 

output). However, there is a high degree of admixture between populations across the 

area, with more than half of populations having three or more assigned clusters. 

Generally, microsatellites recovered little geographic structure since no locality or 

group of localities had a unique cluster assigned. Nonetheless, the majority of the 

individuals from Doñana, Murcia, Caldas da Rainha, Madrid, and Salamanca were 

each assigned to single clusters, denoting a unique ancestry and less admixture with 

other populations (Fig. 5.4). 

FST pairwise comparisons revealed the highest value between the most distant 

populations, Tan-Tan and Gerona (FST = 0.576). The lowest value was found between 

Guadalajara and Ávila (FST = 0.015; geographic distance between these populations is 

ca.170 km), however, five pairwise FST comparisons revealed to be non-significant 

(Table 5.6). Furthermore, when only comparing populations from Morocco the higher 

FST value is between Tan-Tan and Douer Targa (FST = 0.528) and between European 

population the value drops to FST = 0.268 between Doñana and Gerona. The PCA 

results were congruent with the previously obtained STRUCTURE and mitochondrial 

results, where the Iberian Peninsula populations were pooled together almost 

overlapping with each other. The first axis was able to explain 37.77% of the genetic 

diversity found and the second 21.11% (Fig. 5.5).  
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Table 5.6: Pairwise FST values calculated through Arlequin based on allele frequencies. Light red highlights the highest values, while light blue highlights the lowest value. Values in bold are non-
significant after 10000 permutations. 
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Douer Targa 0.528 
                     

Fifi 0.495 0.406 
                    

Tazia 0.460 0.347 0.167 
                   

Ceuta 0.437 0.304 0.114 0.079 
                  

Algarve 0.494 0.424 0.322 0.288 0.160 
                 

Doñana 0.469 0.419 0.263 0.255 0.144 0.098 
                

Almograve 0.462 0.404 0.238 0.222 0.078 0.106 0.125 
               

Castro Verde 0.435 0.369 0.178 0.155 0.060 0.073 0.044 0.038 
              

Andújar 0.448 0.375 0.248 0.179 0.074 0.036 0.096 0.021* 0.023 
             

Cardeña 0.471 0.396 0.298 0.221 0.109 0.101 0.148 0.078 0.075 0.026 
            

Murcia 0.489 0.408 0.336 0.289 0.154 0.130 0.173 0.098 0.126 0.072 0.104 
           

Ciudade Real 0.482 0.407 0.288 0.180 0.090 0.123 0.123 0.045 0.028 0.034 0.062 0.137 
          

Caldas da Rainha 0.539 0.465 0.235 0.279 0.162 0.178 0.126 0.106 0.059 0.139 0.170 0.210 0.122 
         

Valencia 0.466 0.360 0.235 0.141 0.055 0.110 0.132 0.059 0.042 0.022 0.061 0.080 0.029 0.144 
        

Castelo Branco 0.490 0.399 0.239 0.196 0.084 0.088 0.119 0.036 0.027 0.049 0.103 0.166 0.021 0.095 0.049 
       

Cáceres 0.447 0.387 0.260 0.199 0.095 0.130 0.145 0.024 0.046 0.043 0.069 0.125 0.003 0.133 0.044 0.044 
      

Ávila 0.474 0.392 0.257 0.218 0.100 0.096 0.115 0.031 0.028 0.044 0.092 0.114 0.026 0.100 0.029 0.024 0.017 
     

Madrid 0.474 0.415 0.260 0.273 0.123 0.067 0.117 0.051 0.057 0.051 0.115 0.105 0.107 0.115 0.088 0.072 0.077 0.059 
    

Guadalajara 0.494 0.389 0.238 0.173 0.066 0.135 0.158 0.034 0.038 0.038 0.079 0.100 0.023 0.130 0 0.024 0.022 0.015 0.057 
   

Salamanca 0.517 0.431 0.292 0.254 0.133 0.056 0.111 0.071 0.049 0.068 0.128 0.139 0.075 0.101 0.076 0.020 0.091 0.041 0.060 0.061 
  

Barcelona 0.445 0.371 0.226 0.184 0.089 0.082 0.044 0.067 0.038 0.038 0.086 0.093 0.063 0.078 0.051 0.075 0.091 0.063 0.085 0.078 0.059 
 

Girona 0.576 0.485 0.406 0.287 0.199 0.194 0.268 0.195 0.143 0.167 0.202 0.215 0.086 0.250 0.128 0.107 0.149 0.131 0.216 0.140 0.117 0.191 
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5.4 Discussion 

5.4.1 Genetic structure and gene flow across the contact zone  

In 2006, Fritz et al. pointed the north-western Maghreb as the origin of the species. 

This hypothesis was later reinforced, and high levels of genetic structuring within each 

subspecies – M. l. leprosa and M. l. saharica - were assessed through two 

mitochondrial markers (see Chapter 3), showing that the current genetic diversity and 

structure of the species has been shaped by the climate-induced expansions. 

Therefore, and as expected, we found higher genetic diversity in Morocco than in the 

Iberian Peninsula, although the latter presents higher genetic structure.  

Regarding FST pairwise comparisons within each continent, Iberian Peninsula 

populations are more similar between them presenting a maximum FST value two times 

lower than the maximum found in Morocco (Morocco: FST=0.528, Iberian Peninsula: FST 

= 0.268). Namely, this high FST value found between African populations (Tan-Tan and 

Douer Targa) corresponds to the divergence resulting of these populations 

representing the two M. leprosa subspecies. Nonetheless, the barrier effect of the Atlas 

Mountains seems to have diminished, allowing for gene flow across the southwestern 

mountain chain. Individuals from the Anti-Atlas area and north of the Middle Atlas were 

clustered together indicating recent and mild gene flow in the area between both 

Fig. 5.5: PCA based on populations‘ genetic distances of 11 microsatellite loci. All populations are 
represented, but grouped by previously defined areas. For details see table 5.4. 
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subspecies. However, for higher clustering divisions (in K=5 for the complete dataset, 

see Fig.5.2; and in K=3 for the African dataset, see Fig.5.3) this group appears divided 

accordingly to subspecies, which also occurs in the PCA analysis.  

A secondary contact between M. leprosa subspecies was recently reported, when 

several M. l. saharica individuals were found in syntopy with M. l. leprosa in the Rif and 

Middle Atlas (see Chapter 3). Regarding mtDNA results, this area presented the 

highest diversity across the species range and the same occurs for nuDNA. In fact, 

Ceuta is the population carrying more genetic diversity (HE), which can be the effect of 

the sublineages contact (since this population has individuals assigned to both 

lineages). It is important to note that the genetic structure here inferred shows a larger 

contact zone than with mtDNA. In the latter, this contact zone was restricted to the 

northernmost part of Morocco, while here we found that admixture between the two 

subspecies extends further and reaches the Middle Atlas (Fig. 3.2 in Chapter 3 and 

Fig.5.2). The presence of the Oued Ouergha between the Rif and the Middle Atlas 

might have been the corridor used by M. l. saharica individuals towards the Tetouan 

region.  

While in the Iberian Peninsula the vicariant effect produced by the Inner Plateau and 

post-glacial expansions followed by possible secondary contact has already been 

reviewed (Hewitt 1999, 2001; Gómez & Lunt 2007), the information regarding 

secondary contact in northern Morocco are scarce (e.g. Buteo buteo buteo x Buteo 

rufinus cirtensis in northern Morocco (Elorriaga & Muñoz 2013)). Given the observable 

pattern of genetic structure in the contact zone, one can assume that the two 

subspecies are admixed in terms on nDNA, allowing us to conclude that no 

reproductive barrier exists between them. 

5.4.2 Population expansion in the Iberian Peninsula  

During the upper-Pleistocene the Strait of Gibraltar might act as a permeable 

barrier, allowing for a single M. leprosa mitochondrial lineage to colonize the Iberian 

Peninsula. This event resulted in a lack of diversity (in comparison with Morocco) and 

an overall genetic homogeneity (see Chapter 3). Other studies in the area have shown 

a decrease of genetic diversity northwards (Carranza & Arnold 2004; Carranza et al. 

2004, 2006a; Pinho et al. 2007; Recuero et al. 2007; Velo-Antón et al. 2008) as the 

result of the different migration waves reducing population variability along a 

colonization route (Hewitt 1999, 2000). However, this is not the case of M. leprosa, 

which presents similar values of diversity across the Peninsula (HO; HE; see table 5.5). 
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Moreover, some populations in south and central Iberia presented diversity values as 

high as in some Morocco populations (e.g.: Douer Targa Ar = 5.03 and Castro Verde 

Ar=5; Andújar HO = 0.601 and Tan-Tan HO =0.534). This high diversity areas in the 

Iberian Peninsula were unexpected based on previously inferences where the species 

showed very low nucleotide diversity along the area pointing for a current African origin 

of the individuals (see Chapter 3; Fritz et al. 2006) and the weak genetic differentiation 

between populations based on nuDNA. These highly diverse localities may be 

explained by a glacial refuge during the late Pleistocene in south-western Iberia, where 

temperatures could be more suitable for an ecthotermic species. Also, the most distant 

mtDNA haplotype found within the A3 lineage also occurs in this area (see chapter 3). 

The occurrence of a glacial refuge, or genetic isolation, in this area has already been 

reported to other species (e.g. cyprinid (Mesquita et al. 2005), Iberian newt (Martínez-

Solano et al. 2006), Blanus sp. (Albert et al. 2007), Iberian emerald lizard (Godinho et 

al. 2008), midwife toads (Gonçalves et al. 2009), and southern smooth snake (Santos 

et al. 2012)). Nonetheless, the role of the Iberian Peninsula as a refugia for Mauremys 

leprosa needs more attention and further analysis should be performed to test this 

hypothesis. 

It is interesting to note that for Emys orbicularis (a co-distributed terrapin in the 

Iberian Peninsula) genetic pattern shows higher geographical concordance with each 

population being assigned to a single cluster, denoting very low values of admixture 

(Velo-Antón et al. 2008), which indicates very different life histories and historical 

biogeographies for these two species. Even though, both E. orbicularis and M. leprosa 

had their origin in Africa with posterior re-colonization of the Iberian Peninsula, no 

evidence of possible refugia for E. orbicularis was found (Stuckas et al. 2014). In fact, 

the little genetic divergence observed between E. orbicularis lineages is very weak, 

indicating that this species suffered a very recent range expansion from Africa to the 

Iberian Peninsula, with clear signs of heterozygosity loss in the south-north axis (Velo-

Antón et al. 2008; Stuckas et al. 2014). 

Another interesting case appeared in south-eastern Spain. There is one cluster 

(presented in Fig. 5.4 in green) that only appears in a few populations, with a moderate 

probability of assignment, while appearing as the only cluster for Murcia. This pattern 

could be produced by the Betic system, which has been described to induce lineage 

differentiation in some reptile taxa (Fromhage et al. 2004; Velo-Antón et al. 2008; 

Fonseca et al. 2009; Miraldo et al. 2011, 2013; Kaliontzopoulou et al. 2011; Santos et 

al. 2012). Nonetheless, the effect induced by those mountains in Mauremys leprosa 

occurred much later than for the above cited examples, which might be explained by a 
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more contemporary barrier effect of this mountain, instead of vicariance induced by the 

Rif-Betic system separation. 

Overall, this study contributed to fill the knowledge gap regarding the population 

structure of Mauremys leprosa across the Iberian Peninsula and Morocco. Also, these 

results give us a new perspective regarding gene flow across the subspecies, shedding 

new light into the contact zone dynamics. By using a set of bi-parentally inherited and 

highly polymorphic markers, we have access to a more detailed picture given the 

higher mutation rate of microsatellite loci allowing us to detect more recent 

demographic events, such as the possibility of a refugium later in the Pleistocene in the 

Iberian Peninsula. 
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Chapter 6: Final Remarks 
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The complex palaeogeographic history of the Mediterranean basin allied with the 

Milankovitch climatic oscillations have shaped the phylogeographic patterns of Western 

Palearctic species (Taberlet et al. 1998; Hewitt 1999, 2000; Martínez-Solano 2004; 

Veith et al. 2004; Magri et al. 2007; Miraldo et al. 2011; Sousa et al. 2012; Velo-Antón 

et al. 2012; Husemann et al. 2014). However, together with historical events, individual 

species‘ biology and ecological constraints plays key roles in the determination of 

actual biogeographical ranges and populations‘ genetic structure. So, each species 

depicts a unique interplay of these factors and consequent evolutionary history. With 

this study we were able to increase the knowledge regarding this matter by clarifying 

the phylogeography of Mauremys leprosa.  

Regarding the phylogeography of this species, we were able to uncover deep 

divergent and highly structured sublineages in the Maghreb, when compared with the 

Iberian Peninsula, where only one sublineage is found. The genetic homogeneity and 

low genetic diversity in Iberian populations, as well as the network position of highly 

frequent haplotypes such as A3-1, supports the hypothesis of a recent re-colonization 

and rapid expansion of this species throughout the Iberian Peninsula, suggesting that 

the Strait of Gibraltar act as a permeable barrier to dispersal and gene flow between 

the Iberian and Moroccan populations. Moreover, we found that the Atlas Mountains 

acted as an important barrier for the M. leprosa since it is associated with the old split 

(late Pliocene) between the two major mitochondrial lineages (chapter 3). We were 

also able to detect a secondary contact zone between subspecies in northern Morocco, 

unknown until now.  

Within this work we also successfully optimized by cross-amplification 11 

polymorphic microsatellites in M. leprosa (chapter 4), which constitutes an important 

new genetic tool to allow the estimation of fine scale genetic diversity and structuring 

across the species‘ distribution.  

The use of these highly polymorphic and bi-parentally inherited genetic markers 

allowed us to assess current gene flow between populations and to detect more recent 

demographic events, such as the possibility of a refugium in the later Pleistocene in the 

Iberian Peninsula (chapter 5). For the Iberian Penisula, microsatellites showed little 

geographic structure since no locality or group of localities had a unique cluster 

assigned. Given these observable patterns, we were unable to effectively establish a 

genetic tool capable to detect the origin of individuals present in Recovery Centers (see 

S. M. Fig. 8.2 in Supplementary Material), with the purpose of reallocating them to 

natural populations. In contrast, this type of genetic assignment tool was successfully 
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established for Emys orbicularis, with assignment probabilities achieving values over 

90%, and never below 60% (Velo-Antón et al. 2007).  

It was interesting to note vastly different genetic structure patterns and evolutionary 

histories between Mauremys leprosa and a co-distributed terrapin – Emys orbicularis – 

in the Iberian Peninsula, despite the colonization event of the area being considered 

recent and rapid in both cases (Velo-Antón et al. 2008; Stuckas et al. 2014).  

After this thesis, the nuDNA and mtDNA available information for this species was 

largely increased, with 136 individuals sequenced for cyt-b and D-loop and 556 

individuals screened for the microsatellite dataset optimized by us. 

The currently available data for the Maghreb suggest that the sublineage B3 (found 

from Morocco to Tunisia) underwent a recent demographic or range expansion. 

However, the direction of expansion of this sublineage is still unclear, due to the 

sampling gap in Algeria. And so, regarding future prospects, Algerian samples should 

be added to recover in more detail the demographic history of M. l. saharica 

subspecies. Furthermore, both Tunisian and Algerian specimens should be screened 

for the microsatellite loci in order to assess the genetic diversity and structure patterns 

in the eastern part of the species range. It would also be interesting to ally this genetic 

data with ecological niche-based models, following a landscape approach. 
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Table S. M. 1: Summary table of the Mauremys leprosa’ samples used for Chapter 3 (Manuscript I). Lineage and haplotype outcome resulted from the analysis of the concatenated dataset. 

Country Locality Samples Latitude Longitude Ref Lineage Haplotype 

Algeria Skikda Wilayat: Hadjar Ediss, 20 km SSW Annaba MTD T 1222 36.797 7.608 MVZ Herp 235704 M. l. saharica B3-2 

Algeria El Kala MTD T 3249 36.886 8.455 This study M. l. saharica B3-1 

Morocco Tan Tan (Guelta Ez Zerga) GVA3168 28.497 -10.886 This study M. l. saharica B2-3 

Morocco Tan Tan (Guelta Ez Zerga) GVA3169 28.497 -10.886 This study M. l. saharica B2-4 

Morocco Agadir: Loukkos GVA3525 35.210 -6.130 This study M. l. leprosa A2-1 

Morocco 15km N fo Tan Tan (Draa) MTD T 6869 28.567 -11.067 This study M. l. saharica B2-2 

Morocco Agadir: 17km E Guelmine MTD T 784 28.974 -9.904 (Fritz et al., 2006) M. l. saharica B1-4 

Morocco Agadir: 17km E Guelmine MTD T 780 28.974 -9.904 (Fritz et al., 2006) M. l. saharica B1-6 

Morocco Agadir: N Tiliouine (Oued Noun Canyon) MTD T 785 29.085 -10.252 (Fritz et al., 2006) M. l. saharica B1-5 

Morocco Agadir: 18km S Tata, Oued Tata near El-Khemis MTD T 774 29.592 -8.000 (Fritz et al., 2006) M. l. saharica B2-6 

Morocco Sidi El Mehadou,i 13km S of Tata MTD T 6876 29.617 -7.983 This study M. l. saharica B2-6 

Morocco Agadir: SE Tissint (Oued Tissint) MTD T 773 29.852 -7.255 (Fritz et al., 2006) M. l. saharica B2-6 

Morocco Agadir: 3km SW Taroundannt (Oued Souss Valley) MTD T 1204 30.440 -8.899 (Fritz et al., 2006) M. l. saharica B1-1 

Morocco Ouarzazate: Tamnougalt (Oued Drâa) MTD T 770 30.670 -6.381 (Fritz et al., 2006) M. l. saharica B2-6 

Morocco Ouarzzazate GVA457 30.969 -6.724 This study M. l. saharica B1-2 

Morocco Ouarzzazate GVA455 30.969 -6.724 This study M. l. saharica B1-3 

Morocco Ouarzzazate GVA456 30.969 -6.724 This study M. l. saharica B2-3 

Morocco Ouarzzazate GVA453 30.969 -6.724 This study M. l. saharica B2-5 

Morocco 12km N of Timezgadiouine GVA2707 30.990 -9.040 This study M. l. leprosa A1-7 

Morocco Marrakech: near Aït-Ourir MTD T 765 31.468 -7.766 (Fritz et al., 2006) M. l. leprosa A1-10 

Morocco Marrakech: near Aït-Ourir MTD T 764 31.468 -7.766 (Fritz et al., 2006) M. l. leprosa A1-11 

Morocco Marrakech Province (Oued Zat) GVA462 31.530 -7.563 This study M. l. leprosa A1-1 

Morocco Marrakech Province (Oued Zat) GVA460 31.530 -7.563 This study M. l. leprosa A1-2 

Morocco Douer Targa GVA1327 31.530 -7.563 This study M. l. leprosa A1-3 

Morocco Douer Targa GVA1326 31.530 -7.563 This study M. l. leprosa A1-4 

Morocco Douer Targa GVA1325 31.530 -7.563 This study M. l. leprosa A1-6 
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Morocco Marrakech Province (Oued Zat) GVA459 31.530 -7.563 This study M. l. leprosa A1-6 

Morocco Marrakech Province (Oued Zat) GVA461 31.530 -7.563 This study M. l. leprosa A1-6 

Morocco Douer Targa GVA1323 31.530 -7.563 This study M. l. leprosa A1-9 

Morocco Ksar-es-Souk: Aoufous (Oued Ziz) MTD T 1908 31.682 -4.183 (Fritz et al., 2006) M. l. saharica B2-1 

Morocco Ksar-es-Souk: Aoufous (Oued Ziz) MTD T 1909 31.682 -4.183 (Fritz et al., 2006) M. l. saharica B2-1 

Morocco Marrakech (Ouad Tansift) GVA451 31.689 -7.990 This study M. l. leprosa A1-5 

Morocco Marrakech (Ouad Tansift) GVA452 31.689 -7.990 This study M. l. leprosa A1-8 

Morocco Sidi Mimoun GVA1351 32.199 -6.302 This study M. l. leprosa A2-3 

Morocco Sidi Mimoun GVA1349 33.001 -5.648 This study M. l. leprosa A2-2 

Morocco Boulemane (Oued Sebb Ousfa) GVA3179 33.119 -4.329 This study M. l. saharica B3-17 

Morocco Boulemane (Oued Sebb Ousfa) GVA3180 33.119 -4.329 This study M. l. saharica B3-18 

Morocco Sidi Mimoun GVA1350 33.548 -5.098 This study M. l. saharica B3-10 

Morocco Sidi Mimoun GVA1343 33.649 -4.968 This study M. l. saharica B3-8 

Morocco Sidi Mimoun GVA1344 33.649 -4.968 This study M. l. saharica B3-9 

Morocco Douira GVA2713 34.573 -2.733 This study M. l. saharica B3-4 

Morocco Zoumi GVA2710 34.746 -5.423 This study M. l. leprosa A3-6 

Morocco Zoumi GVA2711 34.746 -5.423 This study M. l. saharica B4-2 

Morocco Fifi GVA1307 35.023 -5.205 This study M. l. leprosa A3-14 

Morocco Fifi GVA1306 35.023 -5.205 This study M. l. saharica B4-1 

Morocco Fifi GVA1308 35.023 -5.205 This study M. l. saharica B4-1 

Morocco Tétouan: 11km E Chefchaouene MTD T 1211 35.074 -5.215 (Fritz et al., 2006) M. l. leprosa A3-10 

Morocco Tétouan: NW Chefchaouene MTD T 1210 35.278 -5.459 (Fritz et al., 2006) M. l. leprosa A3-10 

Morocco Sidi Mimoun GVA1348 35.299 -5.219 This study M. l. leprosa A3-14 

Morocco Tazia GVA2520 35.342 -5.552 This study M. l. leprosa A3-18 

Morocco Tazia GVA2523 35.342 -5.552 This study M. l. saharica B4-2 

Morocco Tazia GVA2544 35.342 -5.552 This study M. l. saharica B4-2 

Morocco Tétouan: 14.7km S Asilah MTD T 1205 35.370 -6.060 (Fritz et al., 2006) M. l. leprosa A3-10 

Morocco Tétouan: 14.7km S Asilah MTD T 1206 35.370 -6.060 (Fritz et al., 2006) M. l. leprosa A3-10 
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Morocco Tétouan: 14.7km S Asilah MTD T 1209 35.370 -6.060 (Fritz et al., 2006) M. l. saharica B4-2 

Morocco Tétouan: 9.9km E Ksar-es-Srhir MTD T 1213 35.848 -5.453 (Fritz et al., 2006) M. l. leprosa A3-9 

Portugal Algarve Ml0104 37.020 -7.886 This study M. l. leprosa A3-1 

Portugal Algarve Ml0114 37.020 -7.886 This study M. l. leprosa A3-15 

Portugal Vilamoura MTD T 1286 37.093 -8.129 (Fritz et al., 2006) M. l. leprosa A3-8 

Portugal Aljezur Aljezur 4 37.324 -8.801 (Fritz et al., 2006) M. l. leprosa A3-8 

Portugal Almograve GVA2106 37.653 -8.794 This study M. l. leprosa A3-1 

Portugal Almograve GVA2105 37.653 -8.794 This study M. l. leprosa A3-5 

Portugal Castroverde GVA2179 37.694 -8.086 This study M. l. leprosa A3-1 

Portugal Castroverde GVA2187 37.694 -8.086 This study M. l. leprosa A3-1 

Portugal Paul da Tornada Ml0312 39.445 -9.138 This study M. l. leprosa A3-1 

Portugal Paul da Tornada Ml0313 39.445 -9.138 This study M. l. leprosa A3-1 

Portugal Castelo Branco Ml0230 39.703 -7.308 This study M. l. leprosa A3-1 

Portugal Castelo Branco: M. Galisteu Ml0219 39.703 -7.308 This study M. l. leprosa A3-23 

Portugal Castelo Branco: Monte Barata Ml0224 39.703 -7.308 This study M. l. leprosa A3-8 

Portugal Vila Flôr MTD T 1597 41.295 -7.173 (Fritz et al., 2006) M. l. leprosa A3-11 

Spain Ceuta MTD T 1299 35.890 -5.349 (Fritz et al., 2006) M. l. leprosa A3-13 

Spain Ceuta GVA2481 35.897 -5.349 This study M. l. leprosa A3-15 

Spain Ceuta GVA2480 35.897 -5.349 This study M. l. leprosa A3-17 

Spain Ceuta GVA2498 35.897 -5.349 This study M. l. leprosa A3-3 

Spain Cádiz: Facinas MTD T 1217 36.133 -5.700 (Fritz et al., 2006) M. l. leprosa A3-9 

Spain Cádiz: Facinas MTD T 1218 36.133 -5.617 (Fritz et al., 2006) M. l. leprosa A3-9 

Spain Málaga GVA3521 36.756 -5.290 This study M. l. leprosa A3-15 

Spain Málaga GVA3520 36.756 -5.290 This study M. l. leprosa A3-16 

Spain Huelva: Doñana National Park GVA2120 37.049 -6.591 This study M. l. leprosa A3-20 

Spain Huelva: Doñana National Park GVA2129 37.049 -6.591 This study M. l. leprosa A3-20 

Spain Granada: Brácana GVA3527 37.218 -3.953 This study M. l. leprosa A3-1 

Spain Sevilla: Fuentes de Andalucia GVA3526 37.406 -5.452 This study M. l. leprosa A3-15 



FCUP 
Phylogeography and current patterns of genetic diversity and structure of the Mediterranean pond turtle 

97 

 

Spain Murcia: Mazarrón GVA2714 37.582 -1.409 This study M. l. leprosa A3-1 

Spain Murcia: Mazarrón GVA2715 37.582 -1.409 This study M. l. leprosa A3-28 

Spain Jaén: Andújar GVA3144 38.152 -4.015 This study M. l. leprosa A3-27 

Spain Córdoba: Cardeña GVA3111 38.258 -4.324 This study M. l. leprosa A3-1 

Spain Córdoba: Cardeña GVA3112 38.258 -4.324 This study M. l. leprosa A3-1 

Spain Murcia GVA2026 38.294 -1.432 This study M. l. leprosa A3-1 

Spain Ciudad Real GVA2142 38.908 -4.472 This study M. l. leprosa A3-1 

Spain Ciudad Real GVA2138 38.908 -4.472 This study M. l. leprosa A3-21 

Spain Valencia: Chiva MTD T 1435 39.467 -0.717 (Fritz et al., 2006) M. l. leprosa A3-8 

Spain Valencia: Serpis Ml0714 39.470 -0.377 This study M. l. leprosa A3-19 

Spain Valencia: Peñíscola Ml0701 39.470 -0.377 This study M. l. leprosa A3-25 

Spain Ávila: Poyales del Hoyo GVA2265 40.158 -5.162 This study M. l. leprosa A3-27 

Spain Madrid GVA2033 40.488 -4.124 This study M. l. leprosa A3-24 

Spain Madrid GVA2043 40.488 -4.124 This study M. l. leprosa A3-24 

Spain Guadalajara GVA2063 40.548 -3.257 This study M. l. leprosa A3-22 

Spain Guadalajara GVA2062 40.548 -3.257 This study M. l. leprosa A3-26 

Spain Salamanca: Vilvestre GVA2226 41.125 -6.716 This study M. l. leprosa A3-1 

Spain Salamanca: Vilvestre GVA2227 41.125 -6.716 This study M. l. leprosa A3-1 

Spain Barcelona: Delta del Llobregat GVA2296 41.287 2.016 This study M. l. leprosa A3-1 

Spain Barcelona: Delta del Llobregat GVA2297 41.287 2.016 This study M. l. leprosa A3-12 

Spain Ourense: As Neves GVA2084 42.081 -8.397 This study M. l. leprosa A3-1 

Spain Ourense: Arnoia river GVA2092 42.240 -7.699 This study M. l. leprosa A3-2 

Spain Ourense: Ribadavia GVA2082 42.288 -8.143 This study M. l. leprosa A3-1 

Spain Ourense: Ribadavia GVA2096 42.288 -8.143 This study M. l. leprosa A3-1 

Spain Ourense: Ribadavia GVA2097 42.288 -8.143 This study M. l. leprosa A3-1 

Spain Girona: Albera GVA2320 42.378 3.031 This study M. l. leprosa A3-1 

Spain Girona: Albera GVA2321 42.378 3.031 This study M. l. leprosa A3-1 

Spain Gerona: Orlina river, Rabos d'Empordà MTD T 1571 42.379 3.028 (Fritz et al., 2006) M. l. leprosa A3-7 



98  FCUP 
Phylogeography and current patterns of genetic diversity and structure of the Mediterranean pond turtle 

 

Spain Gerona: Orlina river, Rabos d'Empordà MTD T 1577 42.379 3.028 (Fritz et al., 2006) M. l. leprosa A3-7 

Spain Araba: Poza Tertanga GVA3554 42.982 -3.018 This study M. l. leprosa A3-1 

Spain Bizkaia: Humedal Bolue GVA3553 43.346 -2.995 This study M. l. leprosa A3-4 

Spain Lugo: Ribadeo GVA2091 43.638 -7.615 This study M. l. leprosa A3-1 

Tunisia Al Watan al Quibli: Hammamet MTD T 1360 36.401 10.583 (Fritz et al., 2006) M. l. saharica B3-19 

Tunisia Firnanah, Djebel Rmila MTD T 8442 36.593 8.640 This study M. l. saharica B3-1 

Tunisia Firnanah, Djebel Rmila MTD T 8443 36.593 8.640 This study M. l. saharica B3-1 

Tunisia Firnanah, Djebel Rmila MTD T 8444 36.593 8.640 This study M. l. saharica B3-1 

Tunisia Firnanah, Djebel Rmila MTD T 8445 36.593 8.640 This study M. l. saharica B3-1 

Tunisia Firnanah, Djebel Rmila MTD T 8446 36.593 8.640 This study M. l. saharica B3-1 

Tunisia Firnanah, Oued Ghrib MTD T 8450 36.616 8.686 This study M. l. saharica B3-1 

Tunisia Firnanah, Oued Ghrib MTD T 8453 36.616 8.686 This study M. l. saharica B3-1 

Tunisia Firnanah, Oued Ghrib MTD T 8455 36.616 8.686 This study M. l. saharica B3-1 

Tunisia Firnanah, Oued Ghrib MTD T 8452 36.616 8.686 This study M. l. saharica B3-2 

Tunisia Firnanah, Oued Ghrib MTD T 8451 36.616 8.686 This study M. l. saharica B3-6 

Tunisia Firnanah, Oued Ghrib MTD T 8454 36.616 8.686 This study M. l. saharica B3-6 

Tunisia Firnanah, Oued Ghezala MTD T 8447 36.643 8.700 This study M. l. saharica B3-1 

Tunisia Firnanah, Oued Ghezala MTD T 8448 36.643 8.700 This study M. l. saharica B3-1 

Tunisia Firnanah, Oued Ghezala MTD T 8449 36.643 8.700 This study M. l. saharica B3-1 

Tunisia Douaar Zaaba, Oued Bzhig MTD T 8435 36.720 10.621 This study M. l. saharica B3-1 

Tunisia Douaar Zaaba, Oued Bzhig MTD T 8436 36.720 10.621 This study M. l. saharica B3-1 

Tunisia Douaar Zaaba, Oued Bzhig MTD T 8437 36.720 10.621 This study M. l. saharica B3-1 

Tunisia Douaar Zaaba, Oued Bzhig MTD T 8438 36.720 10.621 This study M. l. saharica B3-1 

Tunisia Douaar Zaaba, Oued Bzhig MTD T 8439 36.720 10.621 This study M. l. saharica B3-1 

Tunisia Douaar Zaaba, Oued Bzhig MTD T 8440 36.720 10.621 This study M. l. saharica B3-1 

Tunisia Douaar Zaaba, Oued Bzhig MTD T 8441 36.720 10.621 This study M. l. saharica B3-1 

Tunisia Manzil Hurr, Barrage Lebna MTD T 8420 36.740 10.922 This study M. l. saharica B3-1 

Tunisia Manzil Hurr, Barrage Lebna MTD T 8421 36.740 10.922 This study M. l. saharica B3-1 
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Tunisia Manzil Hurr, Barrage Lebna MTD T 8422 36.740 10.922 This study M. l. saharica B3-1 

Tunisia Manzil Hurr, Barrage Lebna MTD T 8423 36.740 10.922 This study M. l. saharica B3-1 

Tunisia Manzil Hurr, Barrage Lebna MTD T 8426 36.740 10.922 This study M. l. saharica B3-1 

Tunisia Manzil Hurr, Barrage Lebna MTD T 8427 36.740 10.922 This study M. l. saharica B3-1 

Tunisia Manzil Hurr, Barrage Lebna MTD T 8419 36.740 10.922 This study M. l. saharica B3-5 

Tunisia Manzil Hurr, Barrage Lebna MTD T 8424 36.740 10.922 This study M. l. saharica B3-7 

Tunisia Aïn Draham (Oued Sidi Youssef) MTD T 4177 36.777 8.687 This study M. l. saharica B3-1 

Tunisia Aïn Draham (Oued Sidi Youssef) MTD T 4179 36.777 8.687 This study M. l. saharica B3-1 

Tunisia Aïn Draham (Oued Sidi Youssef) MTD T 4180 36.777 8.687 This study M. l. saharica B3-1 

Tunisia Douaar Zaaba, Barrage El Abid MTD T 8434 36.811 10.699 This study M. l. saharica B3-1 

Tunisia Al Makhzan (Oued El Abid) MTD T 8428 36.867 10.725 This study M. l. saharica B3-1 

Tunisia Al Makhzan (Oued El Abid) MTD T 8429 36.867 10.725 This study M. l. saharica B3-1 

Tunisia Al Makhzan (Oued El Abid) MTD T 8430 36.867 10.725 This study M. l. saharica B3-1 

Tunisia Al Makhzan (Oued El Abid) MTD T 8431 36.867 10.725 This study M. l. saharica B3-1 

Tunisia Al Makhzan (Oued El Abid) MTD T 8432 36.867 10.725 This study M. l. saharica B3-11 

Tunisia Al Makhzan (Oued El Abid) MTD T 8433 36.867 10.725 This study M. l. saharica B3-15 

Tunisia Tunisia (Oued Ordha) MTD T 4178 36.903 9.110 This study M. l. saharica B3-3 

Tunisia Dawwar Mraf (Oued Sejenane) MTD T 8459 37.121 9.263 This study M. l. saharica B3-1 

Tunisia Dawwar Mraf (Oued Sejenane) MTD T 8456 37.121 9.263 This study M. l. saharica B3-12 

Tunisia Dawwar Mraf (Oued Sejenane) MTD T 8457 37.121 9.263 This study M. l. saharica B3-12 

Tunisia Dawwar Mraf (Oued Sejenane) MTD T 8458 37.121 9.263 This study M. l. saharica B3-12 

Tunisia Sidi Ferdjani (Oued Serrat) MTD T 8460 37.206 9.232 This study M. l. saharica B3-13 

Tunisia Sidi Ferdjani (Oued Serrat) MTD T 8461 37.206 9.232 This study M. l. saharica B3-13 

Tunisia Sidi Ferdjani (Oued Serrat) MTD T 8462 37.206 9.232 This study M. l. saharica B3-14 

Tunisia Sidi Ferdjani (Oued Serrat) MTD T 8463 37.206 9.232 This study M. l. saharica B3-16 
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R code 1: Pairwise Euclidean Distances for Chapter 3 interpolations 

distances <- function (dataTemplate) { 
  data <- dataTemplate 
  #Transform both Lat and Long variables into numeric  
  data$Lat <- as.numeric(data$Lat) 
  data$Long <- as.numeric(data$Long) 
   
  #Creates a vector with the row names to be used 
  rNames <- c('distance', data$Sample) 
   
  #Creates a matrix with the required size to receive all pairwise 
euclidean distances  
  distance <- matrix(  nrow= length(data$Sample)+1, 
ncol=length(data$Sample)+1) 
   
  #"Simultaneously" name both rows and columns 
  distance[,1] <-rNames 
  distance[1,] <-rNames 
   
  #Loop all pairs of points and calculates the Euclidean distance 
between them in the Euclidean plane, the distance is given by the same 
formula as the Pythagorean theorem as in fact, here, we are using 
triangulation to determine the direct distance  
  for (i in 1 : length(data$Sample) ) { 
     
    for ( j in 1 : length(data$Sample ) ) { 
      if (i == j) { 
        distance[i+1,j+1] = 0 
         
      } 
       
      y = sqrt(  (abs(data$Lat[i] - data$Lat[j])^2) + (abs(data$Long[i] 
- data$Long[j])^2)    ) 
       
       
      distance[i+1,j+1] = y 
      distance[j+1,i+1] = y 
       
       
    } 
     
  } 
  dist <- return (distance) 
} 
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R code 2: π diversity calculation and group compilation for Chapter 3 

interpolations 

#This function requires several parameters, a datafile, a pairwise 
distance matrix, the distance threshold to group individuals, and the 
output directory and file name to save the results  
nDiversity <- function (dataTemp, distanceTemp, distThereshold, outDir) 
{ 
  #Prepare the starting variables 
  data <- dataTemp   
  distance <- distanceTemp 
  dist <- distThereshold 
  #A first loop through all lines of the pairwise euclidean distance 
with a inner loop covering all columns  
  for (iter in 2:(dim(distance)[1])) { 
    where = iter - 1 
    i = 1 
    group = list() 
    Seq <- data.frame() 
     
    #Here we pool the sample corresponding to the line in the pairwise 
distance matrix and all samples that have a euclidean distance to it 
below the threshold  
    while (i <= dim(distance)[2]) { 
      #Here the first individual is included in the group 
      if (i < 2){ 
         
        group <- append(group, as.character(distance[iter,i])) 
         
         
      }  
      #All individuals whose distance to the individual of the 
correspondent line is below the threshold are here added to the group 
      else if (as.numeric(distance[iter,i])<= dist & 
!(as.character(distance[1,i]) %in% group)) { 
         
        group <- append(group, as.character(distance[1,i]))     
         
      } 
       
       
       
      i=i+1 
       
       
       
    } 
    #If the group has only one sequence in it, we do not consider it for 
further analysis 
    if (length(group)< 2){ 
      next 
    } 
    ################################################ 
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    ##Create the Sample Sequence Dataframe 
    #Here we prepare the dataset for each group by looping through all 
available samples and adding the sequence data of only the samples in 
the group   
    for (i in 1: length(data$Sample)){ 
      if (as.character(data$Sample[i]) %in% group){ 
         
         
        rbind(Seq,data.frame(Sample = (as.character(data$Sample[i])), 
Sequence = (as.character(data$Sequence[i])))) -> Seq 
         
         
      } 
       
    } 
     
    ################################################ 
    ##Calculates each haplotype frequency 
    Seq["Freq"]<-as.numeric(0) 
    #To calculate the haplotype frequency, for each sequence we match it 
against all sequences (including itself) in order to calculate the 
number of times that an haplotype occurs in one group 
    for (m in 1:length(Seq$Sequence)){ 
      ntimes = 0 
       
      for (n in 1:length(Seq$Sequence)){ 
        if (Seq$Sequence[m] == Seq$Sequence[n]) {       
           
          ntimes = ntimes + 1       
           
        }     
         
      } 
      #For each sequence the haplotype frequency is then added (it will 
include duplicates in this phase) 
      Seq$Freq[m] <- ntimes/(length(Seq$Sequence))   
    } 
    ################################################ 
     
    ################################################   
    ##Creates a new dataframe with unique haplotypes 
    Seqs = data.frame() 
    #Unique haplotypes are extracted from the total list by creating a 
new empty dataset which is only fed with a new sequence if this sequence 
is different from previously added ones 
    for (s in 1:length(Seq$Sequence)) { 
      if (Seq$Sequence[s] %in% Seqs$Sequence) { 
         
        next 
         
      } 
      else  { 
         
        rbind(Seqs,data.frame(Sample = (Seq$Sample[s]), Sequence = 



FCUP 
Phylogeography and current patterns of genetic diversity and structure of the Mediterranean pond turtle 

103 

 

(Seq$Sequence[s]),Freq= (Seq$Freq[s]))) -> Seqs 
         
      }  
       
    }     
     
    Seqs$Freq = as.numeric(Seqs$Freq) 
    Seqs$Sequence = as.character(Seqs$Sequence) 
    Seqs$Sample = as.character(Seqs$Sample) 
    ################################################ 
    ## If less than two unique haplotypes were sampled in a group, its 
nucleotide diversity was 0 
    if (length (Seqs$Sequence)< 2){ 
      data$Ndiversity[where]<-0 
    } 
    ## If more than two unique haplotypes were found we calculated the 
nucleotide diversity by following Nei & Kumar (2000) formula 
     
    else if (length(Seqs$Sequence) >= 2) { 
       
       
      ##Calculates the ndiversity 
       
      n = as.numeric(length(Seq$Sequence)) 
       
      nDiversity = 0 
       
       
      for (i in 1:(length(Seqs$Sequence)-1)){ 
         
        for (j in i+1:(length(Seqs$Sequence)-i)){ 
           
          s1=strsplit(Seqs$Sequence[i], "")[[1]] 
          s2=strsplit(Seqs$Sequence[j], "")[[1]] 
           
          diff = 0 
          total = 0     
           
          for (k in 1:length(s1)) { 
             
            if (s1[k] == "-" | s2[k]== "-" | s1[k] == "N" | s2[k] == 
"N") { 
               
              next 
            }  
            else if(s1[k]!=s2[k]){ 
               
              diff = diff + 1 
              total = total +1 
               
            } 
            else if(s1[k]==s2[k]){ 
               
              total = total +1 
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            } 
             
          } 
           
          nDiversity = nDiversity + ((2*(n/(n-
1)))*((Seqs$Freq[i])*(Seqs$Freq[j])*(diff/total))) 
           
        } 
      }   
       
       
      #Data is then added to a data.frame and saved in the output 
directory 
      data$Ndiversity[where]<-nDiversity 
    } 
     
  } 
  write.csv (data, file=outDir) 
   
   
} 
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R code 3: Pairwise uncorrected p-distances for Chapter 3 interpolations 

uncorpDist <- function(file,printevery){ 

  #Choose to print every n loops 

  printeveryN <- printevery 

  #Reads the data into a data.frame 

  data <- read.csv(file, sep=";", header = TRUE, colClasses= 

"character") 

   

  #Creates an empty matrix with the necessary dimensions 

  n <- matrix(nrow=length(data$Sample), ncol = length(data$Sample)) 

   

  #A simple loop Tracker allowing us to know the stage of the loop  

  where = 0 

   

  #Calculates the number of iterations necessary to complete the matrix 

  itotal = length(n)  

   

  #A double loop is here created to compare differences between 

sequences 

  for (i in 1:length(data$Sequence)) {                                                                       

    for (j in 1:length(data$Sequence))  { 

       

      #Splits the string of the sequence into single nucleotide strings 

allowing for individual nucleotide comparisons 

      s1=strsplit(data$Sequence[i], "")[[1]]                                                             

      s2=strsplit(data$Sequence[j], "")[[1]] 

       

      #The diff variable keeps track of the counted differences between 

two sequences 

      diff = 0                                                                                           

      #while the total will be equal to the length of the analysed 

sequences minus any ambiguous area 

      total = 0                                                                                          

       

      #This inner loop will compare each nucleotide of the two sequences 

      for (l in 1:length(s1)) {                                                                          

        #Our method discards regions between two sequences where missing 

data is present                                                                                                                 

        if (s1[l] == "-" | s2[l]== "-" | s1[l] == "N" | s2[l] == "N" 

|s1[l] == "?" | s2[l]== "?") {      

          next 

        }  

         

         

        #When two different nucleotides are encountered, the diff 

variable is raised by one 
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        else if(s1[l]!=s2[l]){                                                                           

           

          diff = diff + 1 

          total = total +1 

           

        } 

         

        #If the two nucleotides are the same, only the total amount of 

sampled nucleotides is increased 

        else if(s1[l]==s2[l]){                                                                           

           

          total = total +1 

           

        } 

         

      } 

      #The uncorrected p-distance  (Nei & Kumar 2000) are given by 

p=nd/n where nd corresponds to the number of sites with different 

nucleotides (variable diff) and n corresponds to the number of sampled 

sites (in this case n may vary between pairs of sequences as missing 

date is discarded 

      p = diff/total                                                                                     

       

       

       

      #This statement evaluate if the current loop is located on the 

matrix diagonal. If it is, the cell will be filled with a 0 and the next 

iteration will start  

      if (i == j) {                                                                                      

        n[i,j]= 0                                                                                        

        where = where + 1 

        next 

         

      } 

      #This condition checks for non-diagonal cells that have already be 

filled as this function fills the matrix by mirroring the cells (e.g. if 

we are calculating the differences between the first and second samples, 

both first row second column and second row first column cells would be 

filled 

      else if (i!= j && !is.na(n[i,j])) {                                                                

        where = where + 1                                                                                

        next                                                                                             

      } 

       

      n[i,j] = p 

      n[j,i] = p 
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      where = where + 1                                                                          

      #The cat serves only to inform the used on how many interactions 

are left! 

      #Note that repetitive printing of data to the console considerably 

slows the process, for this reason in very large datasets the printevery 

should have an high value 

       

       

      if (where%%printeveryN == 0) { 

        cat ("iteration ", where, " of ", itotal," ",  

((where*100)/itotal)," % completed",sep="" , fill=TRUE      ) 

      } 

       

    }   

  } 

  return(n) 

} 
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Table S. M. 2: Summary table of the complete dataset used in Chapter 5 (Manuscript III). ID: identification number of 
each sampling locality; Locality: sampling locality or its description; Lat: latitude; Long: longitude; Sample: sample 
identification. 

ID Locality Lat Long Sample 

1 Tan-Tan, Guelta Ez Zerga 28.496967 -10.885570 GVA3167 

1 Tan-Tan, Guelta Ez Zerga 28.496967 -10.885570 GVA3168 

1 Tan-Tan, Guelta Ez Zerga 28.496967 -10.885570 GVA3169 

1 Tan-Tan, Guelta Ez Zerga 28.496967 -10.885570 GVA3170 

1 Tan-Tan, Guelta Ez Zerga 28.496967 -10.885570 GVA3171 

1 Tan-Tan, Guelta Ez Zerga 28.496967 -10.885570 GVA3172 

1 Tan-Tan, Guelta Ez Zerga 28.496967 -10.885570 GVA3173 

1 Tan-Tan, Guelta Ez Zerga 28.496967 -10.885570 GVA3174 

1 Tan-Tan, Guelta Ez Zerga 28.496967 -10.885570 GVA3175 

1 Tan-Tan, Guelta Ez Zerga 28.496967 -10.885570 GVA3176 

1 Tan-Tan, Guelta Ez Zerga 28.496967 -10.885570 GVA3177 

2 Tan Tan, Draa river 28.531550 -10.950410 GVA3185 

2 Tan Tan, Draa river 28.531550 -10.950410 GVA3186 

2 Tan Tan, Draa river 28.531550 -10.950410 GVA3187 

2 Tan Tan, Draa river 28.531550 -10.950410 GVA3188 

2 Tan Tan, Draa river 28.531550 -10.950410 GVA3189 

3 Tata, Oued Tissint 29.823342 -7.199100 GVA3178 

4 Embalse Ouarzzazate 30.968611 -6.723889 GVA453 

4 Embalse Ouarzzazate 30.968611 -6.723889 GVA454 

4 Embalse Ouarzzazate 30.968611 -6.723889 GVA455 

4 Embalse Ouarzzazate 30.968611 -6.723889 GVA456 

4 Embalse Ouarzzazate 30.968611 -6.723889 GVA457 

4 Embalse Ouarzzazate 30.968611 -6.723889 GVA458 

5 12km N of Timezgadiouine 30.990383 -9.039817 GVA2707 

6 Douer Targa 31.529717 -7.563383 GVA1320 

6 Douer Targa 31.529717 -7.563383 GVA1321 

6 Douer Targa 31.529717 -7.563383 GVA1322 

6 Douer Targa 31.529717 -7.563383 GVA1323 

6 Douer Targa 31.529717 -7.563383 GVA1324 

6 Douer Targa 31.529717 -7.563383 GVA1325 

6 Douer Targa 31.529717 -7.563383 GVA1326 

6 Douer Targa 31.529717 -7.563383 GVA1327 

6 Douer Targa 31.529717 -7.563383 GVA1328 

6 Douer Targa 31.529717 -7.563383 GVA1329 

6 Douer Targa 31.529717 -7.563383 GVA1330 

6 Douer Targa 31.529717 -7.563383 GVA1332 

6 Douer Targa 31.529717 -7.563383 GVA1333 
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ID Locality Lat Long Sample 

6 Douer Targa 31.529717 -7.563383 GVA1334 

6 Douer Targa 31.529717 -7.563383 GVA1335 

6 Douer Targa 31.529717 -7.563383 GVA1336 

6 Douer Targa 31.529717 -7.563383 GVA1337 

6 Douer Targa 31.529717 -7.563383 GVA1338 

6 Douer Targa 31.529717 -7.563383 GVA1339 

6 Douer Targa 31.529717 -7.563383 GVA1340 

6 Douer Targa 31.529717 -7.563383 GVA1341 

6 Douer Targa 31.529717 -7.563383 GVA1342 

6 Río Zat 31.529717 -7.563383 GVA459 

6 Río Zat 31.529717 -7.563383 GVA460 

6 Río Zat 31.529717 -7.563383 GVA461 

6 Río Zat 31.529717 -7.563383 GVA462 

7 Marrakech (Palmeral) River Ouad Tansift 31.689200 -7.989780 GVA451 

7 Marrakech (Palmeral) River Ouad Tansift 31.689200 -7.989780 GVA452 

8 Near Sidi-Chikér 31.749578 -8.738442 GVA2709 

9 Sidi Mimoun 32.19949 -6.302234 GVA1351 

9 Sidi Mimoun 32.19949 -6.302234 GVA1352 

10 Sidi Mimoun 32.47412 -5.992854 GVA1353 

10 Sidi Mimoun 32.47412 -5.992854 GVA1354 

10 Sidi Mimoun 32.47412 -5.992854 GVA1355 

10 Sidi Mimoun 32.47412 -5.992854 GVA1356 

11 Sidi Mimoun 32.89314 -5.250433 GVA1357 

12 Boulemane, Oued Sebb Ousfa 33.118758 -4.329360 GVA3179 

12 Boulemane, Oued Sebb Ousfa 33.118758 -4.329360 GVA3180 

13 Sidi Mimoun 33.54824 -5.097517 GVA1350 

14 Sidi Mimoun 33.649233 -4.968117 GVA1343 

14 Sidi Mimoun 33.649233 -4.968117 GVA1345 

14 Sidi Mimoun 33.649233 -4.968117 GVA1346 

15 Sidi Mimoun 33.65063 -4.968117 GVA1359 

16 near Douira 34.573020 -2.733220 GVA2713 

17 road to Moulay Bousselhaim 34.696650 -6.025867 GVA2712 

18 Sidi Mimoun 34.69698 -5.572592 GVA1358 

19 5km before Zoumi 34.745983 -5.422817 GVA2711 

20 Fifi 35.022558 -5.205183 GVA1301 

20 Fifi 35.022558 -5.205183 GVA1302 

20 Fifi 35.022558 -5.205183 GVA1303 

20 Fifi 35.022558 -5.205183 GVA1304 

20 Fifi 35.022558 -5.205183 GVA1305 

20 Fifi 35.022558 -5.205183 GVA1306 
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ID Locality Lat Long Sample 

20 Fifi 35.022558 -5.205183 GVA1307 

20 Fifi 35.022558 -5.205183 GVA1308 

20 Fifi 35.022558 -5.205183 GVA1309 

20 Fifi 35.022558 -5.205183 GVA1310 

20 Fifi 35.022558 -5.205183 GVA1311 

20 Fifi 35.022558 -5.205183 GVA1312 

20 Fifi 35.022558 -5.205183 GVA1313 

20 Fifi 35.022558 -5.205183 GVA1314 

20 Fifi 35.022558 -5.205183 GVA1315 

20 Fifi 35.022558 -5.205183 GVA1317 

20 Fifi 35.022558 -5.205183 GVA1318 

20 Fifi 35.022558 -5.205183 GVA1319 

21 Agadir, Loukkos 35.210 -6.130 GVA3525 

22 Sidi Mimoun 35.247357 -5.282003 GVA1347 

23 Sidi Mimoun 35.299448 -5.218703 GVA1348 

24 Tazia 35.341814 -5.551915 GVA2519 

24 Tazia 35.341814 -5.551915 GVA2522 

24 Tazia 35.341814 -5.551915 GVA2523 

24 Tazia 35.341814 -5.551915 GVA2535 

24 Tazia 35.341814 -5.551915 GVA2538 

24 Tazia 35.341814 -5.551915 GVA2539 

24 Tazia 35.341814 -5.551915 GVA2540 

24 Tazia 35.341814 -5.551915 GVA2541 

24 Tazia 35.341814 -5.551915 GVA2542 

24 Tazia 35.341814 -5.551915 GVA2543 

24 Tazia 35.341814 -5.551915 GVA2544 

24 Tazia 35.341814 -5.551915 GVA2545 

24 Tazia 35.341814 -5.551915 GVA2547 

24 Tazia 35.341814 -5.551915 GVA2549 

24 Tazia 35.341814 -5.551915 GVA2550 

24 Tazia 35.341814 -5.551915 GVA2551 

24 Tazia 35.341814 -5.551915 GVA2552 

25 Ceuta_Embalse Renegado 35.890360 -5.348775 GVA2478 

25 Ceuta_Embalse Renegado 35.890360 -5.348775 GVA2480 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2482 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2483 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2486 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2488 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2489 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2490 
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ID Locality Lat Long Sample 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2491 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2492 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2493 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2494 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2495 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2496 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2497 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2502 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2503 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2505 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2506 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2507 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2508 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2509 

25 Ceuta_Embalse Infierno 35.890360 -5.348775 GVA2511 

25 Ceuta_Embalse Renegado 35.890360 -5.348775 GVA2515 

25 Ceuta_Embalse Renegado 35.890360 -5.348775 GVA2516 

25 Ceuta_Embalse Renegado 35.896885 -5.349489 GVA2481 

25 Ceuta_Embalse Renegado 35.896885 -5.349489 GVA2500 

25 Ceuta_Embalse Renegado 35.896885 -5.349489 GVA2513 

25 Ceuta_Embalse Renegado 35.896885 -5.349489 GVA2517 

26 Málaga 36.756490 -5.290048 GVA3520 

26 Málaga 36.756490 -5.290048 GVA3521 

26 Málaga 36.756490 -5.290048 GVA3522 

27 Algarve 37.020 -7.886 Ml0109 

27 Algarve 37.020 -7.886 Ml0111 

27 Algarve 37.020 -7.886 Ml0110 

27 Algarve 37.020 -7.886 Ml0118 

27 Algarve 37.020 -7.886 Ml0117 

27 Algarve 37.020 -7.886 Ml0119 

27 Algarve 37.020 -7.886 Ml0121 

27 Algarve 37.020 -7.886 Ml0120 

27 Algarve 37.020 -7.886 Ml0101 

27 Algarve 37.020 -7.886 Ml0102 

27 Algarve 37.020 -7.886 Ml0103 

27 Algarve 37.020 -7.886 Ml0104 

27 Algarve 37.020 -7.886 Ml0105 

27 Algarve 37.020 -7.886 Ml0106 

27 Algarve 37.020 -7.886 Ml0107 

27 Algarve 37.020 -7.886 Ml0108 
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27 Algarve 37.020 -7.886 Ml0114 

27 Algarve 37.020 -7.886 Ml0115 

27 Algarve 37.020 -7.886 Ml0116 

27 Algarve 37.020 -7.886 Ml0112 

27 Algarve 37.020 -7.886 Ml0113 

28 Doñana 37.049271 -6.591358 gone 

28 Doñana 37.049271 -6.591358 GVA2120 

28 Doñana 37.049271 -6.591358 GVA2121 

28 Doñana 37.049271 -6.591358 GVA2123 

28 Doñana 37.049271 -6.591358 GVA2126 

28 Doñana 37.049271 -6.591358 GVA2127 

28 Doñana 37.049271 -6.591358 GVA2128 

28 Doñana 37.049271 -6.591358 GVA2129 

28 Doñana 37.049271 -6.591358 GVA2130 

28 Doñana 37.049271 -6.591358 GVA2131 

28 Doñana 37.049271 -6.591358 GVA2133 

28 Doñana 37.049271 -6.591358 GVA2134 

28 Doñana 37.049271 -6.591358 GVA2135 

28 Doñana 37.049271 -6.591358 GVA2136 

29 Granada, Brácana 37.217609 -3.952606 GVA3527 

30 Sevilla, Fuentes de Andalucia 37.406293 -5.451904 GVA3526 

31 Murcia: Las Moreras Mazarron 37.581687 -1.408753 GVA2714 

31 Murcia: Las Moreras Mazarron 37.581687 -1.408753 GVA2715 

32 Almograve 37.652608 -8.793578 GVA2100 

32 Almograve 37.652608 -8.793578 GVA2101 

32 Almograve 37.652608 -8.793578 GVA2102 

32 Almograve 37.652608 -8.793578 GVA2103 

32 Almograve 37.652608 -8.793578 GVA2104 

32 Almograve 37.652608 -8.793578 GVA2105 

32 Almograve 37.652608 -8.793578 GVA2106 

32 Almograve 37.652608 -8.793578 GVA2107 

32 Almograve 37.652608 -8.793578 GVA2108 

32 Almograve 37.652608 -8.793578 GVA2109 

32 Almograve 37.652608 -8.793578 GVA2110 

32 Almograve 37.652608 -8.793578 GVA2111 

32 Almograve 37.652608 -8.793578 GVA2112 

32 Almograve 37.652608 -8.793578 GVA2113 

32 Almograve 37.652608 -8.793578 GVA2114 

32 Almograve 37.652608 -8.793578 GVA2115 

33 Castro Verde 37.693791 -8.086303 GVA2170 
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33 Castro Verde 37.693791 -8.086303 GVA2171 

33 Castro Verde 37.693791 -8.086303 GVA2172 

33 Castro Verde 37.693791 -8.086303 GVA2173 

33 Castro Verde 37.693791 -8.086303 GVA2174 

33 Castro Verde 37.693791 -8.086303 GVA2175 

33 Castro Verde 37.693791 -8.086303 GVA2178 

33 Castro Verde 37.693791 -8.086303 GVA2179 

33 Castro Verde 37.693791 -8.086303 GVA2180 

33 Castro Verde 37.693791 -8.086303 GVA2182 

33 Castro Verde 37.693791 -8.086303 GVA2183 

33 Castro Verde 37.693791 -8.086303 GVA2184 

33 Castro Verde 37.693791 -8.086303 GVA2185 

33 Castro Verde 37.693791 -8.086303 GVA2186 

33 Castro Verde 37.693791 -8.086303 GVA2187 

33 Castro Verde 37.693791 -8.086303 GVA2188 

34 Andújar, arroyo de la Cabrera 38.152175 -4.014532 GVA3142 

34 Andújar, arroyo de la Cabrera 38.152175 -4.014532 GVA3143 

34 Andújar, río Jándula 38.152175 -4.014532 GVA3144 

34 Andújar, río Jándula 38.152175 -4.014532 GVA3145 

34 Andújar, río Jándula 38.152175 -4.014532 GVA3146 

34 Andújar, río Jándula 38.152175 -4.014532 GVA3147 

34 Andújar, río Jándula 38.152175 -4.014532 GVA3148 

34 Andújar, río Jándula 38.152175 -4.014532 GVA3149 

34 Andújar, río Jándula 38.152175 -4.014532 GVA3150 

34 Andújar, río Jándula 38.152175 -4.014532 GVA3151 

34 Andújar, río Jándula 38.152175 -4.014532 GVA3152 

34 Andújar, río Jándula 38.152175 -4.014532 GVA3153 

34 Andújar, río Jándula 38.152175 -4.014532 GVA3154 

35 Cardeña, centro de información 38.258223 -4.324061 GVA3107 

35 Cardeña, centro de información 38.258223 -4.324061 GVA3108 

35 Cardeña, centro de información 38.258223 -4.324061 GVA3109 

35 Cardeña, centro de información 38.258223 -4.324061 GVA3110 

35 Cardeña, centro de información 38.258223 -4.324061 GVA3111 

35 Cardeña, centro de información 38.258223 -4.324061 GVA3112 

35 Cardeña, centro de información 38.258223 -4.324061 GVA3113 

35 Cardeña, centro de información 38.258223 -4.324061 GVA3114 

35 Cardeña, centro de información 38.258223 -4.324061 GVA3115 

35 Cardeña, centro de información 38.258223 -4.324061 GVA3116 

35 Cardeña, centro de información 38.258223 -4.324061 GVA3131 

35 Cardeña, centro de información 38.258223 -4.324061 GVA3132 
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35 Cardeña, centro de información 38.258223 -4.324061 GVA3133 

35 Cardeña, centro de información 38.258223 -4.324061 GVA3134 

35 Cardeña, centro de información 38.258223 -4.324061 GVA3135 

36 Cardeña, embalse Tejoneras 38.266715 -4.278076 GVA3120 

36 Cardeña, embalse Tejoneras 38.266715 -4.278076 GVA3121 

36 Cardeña, embalse Tejoneras 38.266715 -4.278076 GVA3122 

36 Cardeña, embalse Tejoneras 38.266715 -4.278076 GVA3123 

36 Cardeña, embalse Tejoneras 38.266715 -4.278076 GVA3125 

36 Cardeña, embalse Tejoneras 38.266715 -4.278076 GVA3126 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2001 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2002 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2003 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2004 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2005 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2006 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2008 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2009 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2010 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2011 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2012 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2013 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2014 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2015 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2016 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2017 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2018 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2019 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2020 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2021 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2022 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2023 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2024 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2025 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2026 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2027 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2028 

37 Murcia: Cieza (Embalse del Judío) 38.293806 -1.432194 GVA2029 

38 Ciudade Real 38.907735 -4.472099 GVA2138 

38 Ciudade Real 38.907735 -4.472099 GVA2139 

38 Ciudade Real 38.907735 -4.472099 GVA2141 
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38 Ciudade Real 38.907735 -4.472099 GVA2142 

38 Ciudade Real 38.907735 -4.472099 GVA2143 

38 Ciudade Real 38.907735 -4.472099 GVA2144 

38 Ciudade Real 38.907735 -4.472099 GVA2145 

38 Ciudade Real 38.907735 -4.472099 GVA2151 

38 Ciudade Real 38.907735 -4.472099 GVA2160 

38 Ciudade Real 38.907735 -4.472099 GVA2161 

38 Ciudade Real 38.907735 -4.472099 GVA2163 

39 Caldas da Rainha 39.444700 -9.137514 Ml0301 

39 Caldas da Rainha 39.444700 -9.137514 Ml0303 

39 Caldas da Rainha 39.444700 -9.137514 Ml0304 

39 Caldas da Rainha 39.444700 -9.137514 Ml0305 

39 Caldas da Rainha 39.444700 -9.137514 Ml0306 

39 Caldas da Rainha 39.444700 -9.137514 Ml0307 

39 Caldas da Rainha 39.444700 -9.137514 Ml0308 

39 Caldas da Rainha 39.444700 -9.137514 Ml0309 

39 Caldas da Rainha 39.444700 -9.137514 Ml0310 

39 Caldas da Rainha 39.444700 -9.137514 Ml0311 

39 Caldas da Rainha 39.444700 -9.137514 Ml0312 

39 Caldas da Rainha 39.444700 -9.137514 Ml0313 

39 Caldas da Rainha 39.444700 -9.137514 Ml0314 

39 Caldas da Rainha 39.444700 -9.137514 Ml0315 

39 Caldas da Rainha 39.444700 -9.137514 Ml0318 

39 Caldas da Rainha 39.444700 -9.137514 Ml0319 

39 Caldas da Rainha 39.444700 -9.137514 Ml0320 

39 Caldas da Rainha 39.444700 -9.137514 Ml0321 

39 Caldas da Rainha 39.444700 -9.137514 Ml0322 

39 Caldas da Rainha 39.444700 -9.137514 Ml0323 

39 Caldas da Rainha 39.444700 -9.137514 Ml0324 

39 Caldas da Rainha 39.444700 -9.137514 Ml0325 

39 Caldas da Rainha 39.444700 -9.137514 Ml0326 

39 Caldas da Rainha 39.444700 -9.137514 Ml0327 

39 Caldas da Rainha 39.444700 -9.137514 Ml0328 

39 Caldas da Rainha 39.444700 -9.137514 Ml0329 

39 Caldas da Rainha 39.444700 -9.137514 Ml0330 

39 Caldas da Rainha 39.444700 -9.137514 Ml0331 

39 Caldas da Rainha 39.444700 -9.137514 Ml0332 

39 Caldas da Rainha 39.444700 -9.137514 Ml0333 

39 Caldas da Rainha 39.444700 -9.137514 Ml0335 

40 Valencia - Peñíscola 39.470 -0.377 Ml0701 
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40 Valencia - Peñíscola 39.470 -0.377 Ml0710 

40 Valencia - Peñíscola 39.470 -0.377 Ml0702 

40 Valencia - Peñíscola 39.470 -0.377 Ml0704 

40 Valencia - Peñíscola 39.470 -0.377 Ml0705 

40 Valencia - Peñíscola 39.470 -0.377 Ml0706 

40 Valencia - Peñíscola 39.470 -0.377 Ml0707 

40 Valencia - Peñíscola 39.470 -0.377 Ml0708 

40 Valencia - Serpis 39.470 -0.377 Ml0711 

40 Valencia - Serpis 39.470 -0.377 Ml0720 

40 Valencia - Serpis 39.470 -0.377 Ml0713 

40 Valencia - Serpis 39.470 -0.377 Ml0714 

40 Valencia - Serpis 39.470 -0.377 Ml0716 

40 Valencia - Serpis 39.470 -0.377 Ml0717 

40 Valencia - Serpis 39.470 -0.377 Ml0718 

40 Valencia - Serpis 39.470 -0.377 Ml0719 

41 Castelo Branco 39.702550 -7.308150 Ml0230 

41 Castelo Branco 39.702550 -7.308150 Ml0231 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0201 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0207 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0219 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0220 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0221 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0223 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0208 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0209 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0210 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0211 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0212 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0213 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0202 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0214 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0215 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0216 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0217 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0218 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0203 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0204 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0205 

41 Castelo Branco - Monte Galisteu 39.702550 -7.308150 Ml0206 

41 Castelo Branco - Monte Barata 39.702550 -7.308150 Ml0224 
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41 Castelo Branco - Monte Barata 39.702550 -7.308150 Ml0225 

41 Castelo Branco - Monte Barata 39.702550 -7.308150 Ml0226 

41 Castelo Branco - Monte Barata 39.702550 -7.308150 Ml0229 

41 Castelo Branco - Monte Barata 39.702550 -7.308150 Ml0227 

41 Castelo Branco - Monte Barata 39.702550 -7.308150 Ml0228 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2189 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2190 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2191 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2192 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2193 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2194 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2195 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2196 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2197 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2198 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2199 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2200 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2201 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2202 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2203 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2205 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2206 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2207 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2208 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2209 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2211 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2212 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2213 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2214 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2215 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2216 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2217 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2218 

42 Cáceres: Jaraiz de la Vera 40.010028 -5.742500 GVA2219 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2256 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2257 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2258 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2259 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2261 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2262 
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43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2263 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2264 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2265 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2266 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2267 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2268 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2269 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2270 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2271 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2272 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2273 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2274 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2275 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2276 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2277 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2278 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2279 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2280 

43 Ávila: Poyales del Hoyo 40.158179 -5.161660 GVA2281 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2030 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2031 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2032 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2033 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2034 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2035 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2036 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2037 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2038 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2039 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2040 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2041 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2042 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2043 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2044 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2045 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2046 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2047 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2048 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2049 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2050 



FCUP 
Phylogeography and current patterns of genetic diversity and structure of the Mediterranean pond turtle 

119 

 

ID Locality Lat Long Sample 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2051 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2052 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2053 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2054 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2055 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2056 

44 Madrid: Fresnedillas de la Oliva 40.488250 -4.124389 GVA2057 

45 Guadalajara 40.548417 -3.256611 GVA2058 

45 Guadalajara 40.548417 -3.256611 GVA2059 

45 Guadalajara 40.548417 -3.256611 GVA2061 

45 Guadalajara 40.548417 -3.256611 GVA2062 

45 Guadalajara 40.548417 -3.256611 GVA2063 

45 Guadalajara 40.548417 -3.256611 GVA2064 

45 Guadalajara 40.548417 -3.256611 GVA2065 

45 Guadalajara 40.548417 -3.256611 GVA2066 

45 Guadalajara 40.548417 -3.256611 GVA2067 

45 Guadalajara 40.548417 -3.256611 GVA2068 

45 Guadalajara 40.548417 -3.256611 GVA2069 

45 Guadalajara 40.548417 -3.256611 GVA2070 

45 Guadalajara 40.548417 -3.256611 GVA2071 

45 Guadalajara 40.548417 -3.256611 GVA2072 

45 Guadalajara 40.548417 -3.256611 GVA2073 

45 Guadalajara 40.548417 -3.256611 GVA2074 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2226 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2227 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2228 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2229 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2230 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2231 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2232 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2233 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2234 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2235 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2236 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2237 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2238 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2239 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2240 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2241 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2242 
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ID Locality Lat Long Sample 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2243 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2244 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2245 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2246 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2247 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2248 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2249 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2250 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2251 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2252 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA2254 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA650 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA651 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA652 

46 Salamanca: Vilvestre 41.125028 -6.716111 GVA653 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2286 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2287 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2288 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2289 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2290 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2291 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2292 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2293 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2294 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2295 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2296 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2297 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2298 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2299 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2300 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2301 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2302 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2303 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2304 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2305 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2306 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2307 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2308 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2309 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2310 
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ID Locality Lat Long Sample 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2311 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2312 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2313 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2314 

47 Barcelona: Delta del Llobregat 41.287028 2.016194 GVA2315 

48 Girona: Caldes de Malabella 41.824222 2.781694 GVA2316 

48 Girona: Caldes de Malabella 41.824222 2.781694 GVA2317 

48 Girona: Caldes de Malabella 41.824222 2.781694 GVA2318 

49 As neves 42.081165 -8.396621 GVA2083 

49 As neves 42.081165 -8.396621 GVA2084 

49 As neves 42.081165 -8.396621 GVA2085 

50 Ribadavia 42.287553 -8.143496 GVA2093 

50 Ribadavia 42.287553 -8.143496 GVA2094 

50 Ribadavia 42.287553 -8.143496 GVA2095 

50 Ribadavia 42.287553 -8.143496 GVA2096 

50 Ribadavia 42.287553 -8.143496 GVA2097 

50 Ribadavia 42.287553 -8.143496 GVA2098 

50 Ribadavia 42.287553 -8.143496 GVA2099 

50 Ribadavia (L.C.) 42.287553 -8.143496 GVA2081 

50 Ribadavia (L.C.) 42.287553 -8.143496 GVA2082 

51 Girona: Albera 42.377583 3.030556 GVA2320 

51 Girona: Albera 42.377583 3.030556 GVA2321 

51 Girona: Albera 42.377583 3.030556 GVA2322 

51 Girona: Albera 42.377583 3.030556 GVA2324 

51 Girona: Albera 42.377583 3.030556 GVA2325 

51 Girona: Albera 42.377583 3.030556 GVA2326 

51 Girona: Albera 42.377583 3.030556 GVA2327 

51 Girona: Albera 42.377583 3.030556 GVA2328 

51 Girona: Albera 42.377583 3.030556 GVA2330 

51 Girona: Albera 42.377583 3.030556 GVA2331 

51 Girona: Albera 42.377583 3.030556 GVA2332 

51 Girona: Albera 42.377583 3.030556 GVA2333 

51 Girona: Albera 42.377583 3.030556 GVA2334 

51 Girona: Albera 42.377583 3.030556 GVA2335 

51 Girona: Albera 42.377583 3.030556 GVA2336 

51 Girona: Albera 42.377583 3.030556 GVA2337 

51 Girona: Albera 42.377583 3.030556 GVA2339 

51 Girona: Albera 42.377583 3.030556 GVA2341 

51 Girona: Albera 42.377583 3.030556 GVA2342 
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S.M. Fig. 1: Structure Harvester graphic output of Delta K and Mean L(K). Top: Outputs for the complete dataset; Middle: 
Outputs for the African dataset; Bottom: Outputs for the Iberian Peninsula dataset; 
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S.M. Fig. 2: Structure output of the assignment tool results for samples collected from Iberian 
Recovery Centers and Basque Country (introduced population). For more details on the parameters 
used in STRUCTURE see Chapter (5) Methods. Above:  Individuals with unknown origin output for K=2 
when analysed in conjunction with the complete dataset. Down:  Individuals with unknown origin output 
for K=5 when analysed in conjunction with solely the Iberian dataset. 


