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Preface 

An enormous number of challenges, thrown out by rapid development in science and 

technology, have made me choose engineering profession. I take this opportunity to increase 

my educational background and career objectives that motivated me to pursue a research 

career in Mechanical Engineering. I completed my Bachelor`s degree in Mechanical 

Engineering. My graduate education has provided a thorough exposure to the various 

specialties available in Computational Mechanics, thus stimulating interests in advanced 

research.  

To be able to achieve my goals it is likely that the engineer will need to consider the recent 

academic criterion. Currently, analysis involves computer simulation of the structural 

behavior with non-linear characteristics, because of the availability and development of the 

commercial computer software. 

The Meshless Method has been chosen as the fundamental part of my current R&D interest 

due to its unique nature and potential applications in Computational Mechanics. On the 

other hand, since the state-of-art lacks a detailed study on RPIM meshless method combined 

with the axisymmetric deformation theory and continuum damage mechanics, it motivated 

me to put my focus on this field in order to conduct my Master`s research.  

However, the current work has been structured as my Master`s Thesis in Computational 

Mechanics course, providing great opportunities for my future work either in the academic 

word or the industrial areas.  

It attempts to describe all the aspects in the simplest way to be easily understandable by 

other students and researchers who are enthusiastic in meshless method and continuum 

damage mechanics. 

Behzad Vasheghani Farahani 

July 2015   Porto, Portugal 
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Abstract 

In this work an advanced discretization meshless technique, the radial point interpolation 

method (RPIM), is extended to the elasto-static analysis of circular plates using the 2D 

axisymmetric deformation theory. Both concepts are revised and more adequate parameters 

are found for the 2D axisymmetric RPIM approach. Here, several benchmark circular plate 

examples are solved and the results are compared with finite element solutions and 

analytical solutions, showing that RPIM is capable to obtain accurate and smooth variable 

fields. 

In addition, RPIM is applied to analyse concrete structures using an elastic rate-independent 

continuum damage constitutive model. Here, the theoretical basis of the material model and 

the computational procedure are fully presented. The plane stress meshless formulation is 

extended to a rate-independent damage criteria where both compressive and tensile damage 

evolution are established based on a Helmholtz free energy function. Within the return-

mapping damage algorithm, the required variable fields, such as the damage variables, 

localized damage parameters and the displacement field, are obtained. This study uses the 

Newton-Raphson non-linear solution algorithm to achieve the non-linear damage solution. 

The verification, where the performance is assessed, of the proposed non-local and localized 

models is demonstrated by relevant numerical examples available in the literature.  

Keywords. Radial Point Interpolation Method, Finite Element Method, Axisymmetric 
Plates, Rate-independent Continuum Damage Mechanics, Non-local Damage, Localized 
Damage, Linear Elastic Fracture Mechanics. 
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Chapter	1	
 

 

 

 

1 Introduction  

Currently, the industrial structural design relies mainly on the finite element method (FEM) 

(O. C. Zienkiewicz and R. L. Taylor, 1994) analysis to obtain efficiently accurate solutions. 

This status quo can be explained with the vast number of commercial FEM software 

packages available in the market and with the robustness and reliability of the FEM. 

However, this fact cannot hide some of the FEM drawbacks, such as the dependency on 

the element mesh discretization (due to the mesh-based interpolation) or the reduced 

continuity of its shape functions. 

Several industrial components, such as pressure vessels, turbo-alternator group and circular 

plate and shell structures, are frequently designed considering an axisymmetric 

configuration, i.e. the three-dimensional solid is obtained with the rotation of a two-

dimensional cross section around an axis of symmetry. Additionally, all the mentioned 

industrial components are commonly subjected to axisymmetric loads during operation. 

Thus, since axial symmetry can be found in the solid geometry and in its boundary 

conditions, instead of using a full three-dimensional deformation theory, generally the 

structural analysis of those components is performed using a two-dimensional 

simplification – the axisymmetric deformation theory – which permits to reduce the 

computational cost of the analysis.  

In addition, numerous challenging fields in computational mechanics involve the study of 

the numerical non-linear damage solution of concrete materials using finite element 

method (FEM) formulations (Voyiadjis & Taqieddin, 2009)(R. Faria, Oliver, & Cervera, 

1998)(Cervera, Oliver, & Faria, 1995; Cervera, Oliver, & Manzoli, 1996; He, Wu, Liew, 



Chapter	1:	Introduction			

 

2 
 

& Wu, 2006; Lee & Fenves, 2001; Oliver, Cervera, Oller, & Lubliner, 1990; Yu, Ruiz, & 

Chaves, 2008). Distinct aspects of the continuum damage mechanics field have been 

investigated by researchers to obtain the experimental solution (Tao & Phillips, 2005)(J. 

Y. Wu, Li, & Faria, 2006).  

The first works combining the FEM and the axisymmetric formulation were published back 

in the 1970’s (Klie, Lung, & Mahrenholtz, 1974); (Pedersen & Megahed, 1975); (Hinton, 

1976) . Then, other FEM formulations were suggested to solve efficiently the axisymmetric 

problems, such as the nonconforming element method and the hybrid element method 

(Wanji & Cheung, 1996), which were able to obtain respectively nonconforming variable 

fields. 

The axisymmetric formulation possesses a well-known singularity, which occurs when the 

element or its nodes are near to the revolution axis. Thus, in order to increase the accuracy 

of the element stiffness matrix when a discretization entity (node or element) is close to 

the symmetry axis, or coincident with it, Clayton and Rencis (Clayton & Rencis, 2000) 

proposed two numerical integration schemes based on cubic transformations and high-

order Gauss quadrature schemes. Even nowadays the scientific community devotes some 

effort into the numerical improvement of classic finite element formulations in order to 

enhance the FEM behaviour in the axisymmetric formulation, such as the work of Sze and 

Wu (Sze & Wu, 2011) on several transition element families or the research developed by 

Puccio and Celi (Di Puccio & Celi, 2012) regarding the comparison between the several 

versions of the quadrilateral element available in the commercial FE software. 

Indeed, several demanding non-linear solid mechanics problems were analysed with the 

axisymmetric formulation, such as elastoplasticity (Klie et al., 1974), the dynamic transient 

analysis of circular plates (Hinton, 1976) and, more recently, the large strain analysis 

considering elastoplastic materials (Castelló & Flores, 2008) and hyperelastic materials (G. 

H. Liu & Sze, 2010). 
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Generally, in damage models, the degradation of the constitutive model under tensile and 

compressive enforced displacement states include various principal stress terms (Lee & 

Fenves, 2001). 

The return-mapping algorithm permits to obtain the non-linear damage solution (Lee & 

Fenves, 2001). The most inconvenient feature of this approach is the repetitive calculations 

of principal terms in a pseudo-time stepping scheme, which appears due to the usage of the 

general stress tensor (J. Simo & Taylor, 1986).  

However, the most recent approach of the return-mapping stage relies on the 

decomposition of the trial stress, which leads to the separation of the return-mapping 

algorithm proposed by Simo (J.C. Simo, 1992). This study focuses on the enhancement of 

a return-mapping algorithm for a rate-independent elastic damage model to simulate 

concrete materials, adapted to the unique characteristics of the meshless method here 

considered. 

Alternatively to the FEM, advanced methods of discretization (commonly known as 

meshless techniques) have been developed since the middle 1990`s (J. Belinha, 2014) (V. 

P. Nguyen, Rabczuk, Bordas, & Duflot, 2008). The field functions are determined through 

an approximation within an adaptable influence domain surrounding an interest point 

(generally an integration point), instead a fixed element. Hence, the nodes have the 

potential to discretize the problem domain in a random distribution. A detailed description 

of the advantages of meshless method techniques compared to FEM can be found in the 

literature (Liew, Zhao, & Ferreira, 2011) (J. Belinha, 2014) (Belinha, Dinis, & Natal Jorge, 

2013b). 

Meshless methods are capable to analyse complex structural models; the high-order 

continuity of the constructed test functions permits to achieve smoother internal variables, 

such as the strain/stress fields; can be efficiently used to solve large deformation problems 

and; permit to insert locally more nodes where the mesh refinement is required, without 

any extra computational cost (J. Belinha, 2014).  

Generally, the system of equations is developed from the strong or weak formations. The 

majority of meshless methods adopt the weak formulations, particularly the Galerkin weak 
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form as in FEM. Commonly, meshless methods using the weak formulation are classified 

in two categories: meshless methods using approximation functions to produce the shape 

functions (Nayroles, Touzot, & Villon, 1992) (Belytschko, Lu, & Gu, 1994) (W. K. Liu, 

Jun, & Zhang, 1995) (Randles & Libersky, 1996) (Atluri & Zhu, 1998) and; meshless 

methods that construct the shape functions using interpolation functions (Oñate, Idelsohn, 

Zienkiewicz, & Taylor, 1996) (Wang, Liu, & Wu, 2001)(Liew et al., 2011)(Belinha, Dinis, 

& Natal Jorge, 2013b) (G. R. Liu, 2001)(Wang & Liu, 2002a) (Wang & Liu, 2002b) 

(Idelsohn & Pin, 2003) (Belinha, Dinis, & Natal Jorge, 2013b). 

Although approximate meshless methods have been successfully applied in computational 

mechanics, there were several problems not completely solved. One of those problems, and 

perhaps the most important unsolved issue, was the lack of the Kronecker delta property 

on the approximation functions, which increases the computational complexity on the 

imposition of essential and natural boundary conditions (J. Belinha, 2014). 

This work uses the radial point interpolation method (RPIM)  (Wang & Liu, 2002a, 2002b) 

to analyse circular plates using the axisymmetric formulation. Besides, RPIM is extended 

to a rate-independent damage constitutive model for concrete structures (Cervera et al., 

1996) (Voyiadjis & Taqieddin, 2009) (Malvar & Warren, 1988). Here, the damage process 

is controlled by the elastic strain term. 

The RPIM started with the Point Interpolation Method (PIM) (G. R. Liu & Gu, 2001), 

which involve the construction of polynomial interpolants based only on a group of 

arbitrarily distributed points. Later, the PIM evolved and the RPIM (Wang & Liu, 2002a) 

was fully developed. The main difference between the PIM and the RPIM is the inclusion 

of a Radial Basis Function (RBF) to obtain the interpolation function, which permits to 

stabilize the construction procedure. The RPIM’s first works concluded that the 

multiquadric RBF is the most efficient RBF for the RPIM formulation (Wang & Liu, 

2002a, 2002b). The RBF was firstly applied to solve partial differential equations in the 

work of Kansa (Kansa, 1990a, 1990b). However the RPIM uses, unlike Kansa’s algorithm, 

the concept of “influence-domain” instead of “global-domain”, which permits to generate 

sparse and banded stiffness matrices, more adequate to complex geometry problems 
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Presently, it is possible to find in the literature several versions of the original RPIM, such 

as the Natural Neighbour RPIM ( L.M.J.S. Dinis, Jorge, & Belinha, 2007; L. M J S Dinis, 

Jorge, & Belinha, 2010; L. M. J. S. Dinis, Natal Jorge, & Belinha, 2011;), the nodal 

integration RPIM (G. R. Liu et al., 2007), the linearly conforming RPIM (Zhao et al., 2008, 

2009), the cell-based smoothed RPIM (G. R. Liu, Jiang, Chen, Zhang, & Zhang, 2011) and 

the Natural Radial Element Method (Belinha, Dinis, & Jorge, 2013; Belinha, Dinis, & 

Natal Jorge, 2013a, 2013b). 

Several works are available using the RPIM (G. R. Liu, 2009), however the state-of-art 

lacks a detailed study on the RPIM combined with the axisymmetric deformation theory. 

Other meshless methods were extended to this topic with success. Raju and Chen (I S Raju 

& Chen, 2003; I.S. Raju & Chen, 2001) extended the Meshless Local Petrov-Galerkin 

Method (MLPG) to the elasto-static analysis of axisymmetric structures and Ferronato et 

al (Ferronato, Mazzia, Pini, & Gambolati, 2007) applied the MLPG to the analysis of poro-

elastic materials. More recently, Sladek (Sladek, Sladek, & Zhang, 2008), assuming the 

local integral equations, compared the performance of three numerical approaches in the 

analysis of the two-dimensional axisymmetric problems: the FEM, the PIM and the 

element-free Galerkin method (EFGM). Regarding the EFGM, Hayati (Hayati, Ahmadi, & 

Sadrnejad, 2012) presented in 2012 a short communication on the topic. 

It is possible to find some experimental tests reporting the behaviour of concrete materials, 

such as softening response of concrete under monotonic uniaxial tension test 

(Gopalaratnam & Shah, 1985), the behaviour of concrete under compressive enforced 

displacement (Karsan & Jirsan, 1969), the response of concrete under biaxial stress states 

(Kupfer, Hilsdorf, & Rusch, 1969) and the three point bending tests on single-edge notched 

beams (Malvar & Warren, 1988).  

Various demanding isotropic non-linear damage models for concrete structures were 

analysed with the FEM formulations, such as linear elastic models (Khan, Al-Gadhib, & 

Baluch, 2007) (Mazars & Pijaudier-Cabot, 1989) (Tao & Phillips, 2005) (Willam, Rhee, & 

Beylkin, 2001) (Comi & Perego, 2001) (Labadi & Hannachi, 2005), rate-dependent models 

(Cervera et al., 1996) (Cervera et al., 1995), viscous-damage models (R. Faria et al., 1998) 
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and, more recently, elasto-plastic damage models for crack propagation using Extended 

Finite Element Method( XFEM) formulations (Roth, Léger, & Soulaïmani, 2015).  

However the state-of-the-art lacks a study on meshless methods combined with a non-

linear damage constitutive model.  

 

Thus, this work aims to fulfil a gap in the RPIM state-of-art, presenting an extensive and 

complete numerical study of the RPIM regarding the analysis of axisymmetric plate 

structures and continuum damage mechanics theory. All the important features of the 

RPIM are addressed and verified for the two-dimensional axisymmetric approach and rate-

independent elastic damage model: the size of the influence-domain; the optimal 

integration scheme; the tolerance to the irregularity of the mesh; the convergence trend; the 

global efficiency; the internal fields and damage variables.  

 

1.1 Thesis Organization 
 

To facilitate the comprehension, it is outlined how this thesis is structured. 

 

Chapter 2: Meshless Method 

The Radial Point Interpolation Method (RPIM) numerical characteristics are presented, 

such as the integration scheme, the nodal connectivity, radial point interpolators and others.  

 

Chapter 3: Solid Mechanics 

The elastic plane stress formulations according to the variational fields are introduced. 

Furthermore, the corresponding solid mechanics theory is defined for the RPIM technique 

in both 2D plane stress and axisymmetric discrete systems. Besides the principal stress and 

directions are reviewed due to their importance in the damage mechanics. The Equivalent 

von Mises criteria is also presented in addition to the octahedral shear and normal stresses. 
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Chapter 4: Rate-independent Elastic damage Formulations 

The rate-independent elastic damage formulations based on a Helmholtz free energy 

function connected to the damage energy release are represented. Moreover, the non-linear 

return-mapping stage of the numerical implementation is also introduced here. 

Subsequently the former formalism is extended to the localized damage theory which will 

be implemented after.  

 

Chapter 5: Numerical Applications on Axisymmetric Plates 

Several distinct benchmarks for axisymmetric plates are solved. A series of convergence 

studies is figured out to evaluate the performance of RPIM formulations extended with the 

axisymmetric deformation theory. 

 

Chapter 6: Validation of the Proposed Nonlocal Damage Model 

Concrete structures are studied in the scope of various monotonic tests and particularly 

three point bending beam test. They are solved with the proposed numerical approach in 

non-local damage criteria. The results are compared to the experimental and finite element 

solutions available in the literature.  

 

Chapter 7: Numerical Benchmarks on the Localized Damage Formalism 

This chapter is devoted to the applications of localized damage mechanics with regard to 

the rate-independent elastic damage theory. Two distinct relevant examples are studied 

here; three point bending beam and compact tension tests. In the former one, several 

optimization studies are done in order to obtain the optimum localized damage parameters. 

Subsequently, these values are applicable for the second benchmark and the obtained 

results are verified with the experimental solution.  
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Chapter 8: Discussion and Conclusion 

Consequently, the final remarks and conclusions are emphasized.  

 

 

1.2 Related Publications 
 

The research conducted on the scope of this thesis permitted to publish scientific 
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2 Meshless Method 

The Radial Point Interpolation Method –RPIM– is a meshless method (J. Belinha, 2014) 

(Wang & Liu, 2002a) (Wang & Liu, 2002b) . In order to force the nodal connectivity, the 

RPIM uses the concept of the “influence-domain”. The Gauss Legendre quadrature 

principle and integration cells are applied to numerically integrate the integro-differential 

equations governing the physical phenomenon. 

Meshless methods discretize the problem domain and respective boundaries with a nodal 

set. This nodal set cannot be considered a mesh, because no previous information regarding 

the relation between each node is required to build the interpolation functions for the 

unknown variational fields.  

2.1 Nodal connectivity and Numerical Integration 

Several meshless methods use the concept of influence-domain due to its simplicity. 

The meshless methods are discrete numerical methods, as the Finite Element Method 

(FEM). However, instead of discretizing the problem domain in elements and nodes, 

meshless methods discretize the problem domain only using nodes or points. 

The predefined finite element mesh assures the nodal connectivity in the FEM. The nodes 

belonging to the same element interact directly between each other and with the boundary 

nodes of neighbour finite elements. In opposition, since there is no predefined nodal 



The	RPIM	Extended	to	Axisymmetric	Plates	and	Non‐Linear	Continuum	Damage	Mechanics	

11	

interdependency, in meshless methods the nodal connectivity is determined after the nodal 

discretization (J. Belinha, 2014) , being obtained by the overlap of the influence-domain of 

each node. These influence-domains can be determined by searching radially enough nodes 

inside a fixed area or a fixed volume, respectively for the 2D problems and for the 3D 

problems. Because of its simplicity many meshless methods use this concept (Belytschko 

et al., 1994) (W. K. Liu et al., 1995) (Atluri & Zhu, 1998) (Wang & Liu, 2002a) (V. P. 

Nguyen et al., 2008) (J. Belinha, 2014). However, the size or shape variation of these 

influence-domains along the problem domain affects the performance and the final solution 

of the meshless method. It is important that all the influence domains in the problem contain 

approximately the same number of nodes. Irregular domain boundaries or node clusters in 

the nodal mesh can lead to unbalanced influence-domains (J. Belinha, 2014). Regardless 

the used meshless technique, previous works suggest that each 2D influence-domain 

should possess between [9,16]n    nodes (Belytschko et al., 1994) (W. K. Liu et al., 1995) 

(Atluri & Zhu, 1998) (Wang & Liu, 2002a) (V. P. Nguyen et al., 2008) (J. Belinha, 2014). 

Figure 1 shows the influence domain with regard to the interest point. 

Figure 1: The schematic view of the Influence domain with regard to the interest point 

In discrete numerical methods using a variational formulation, such as the Galerkin weak 

formulation, the numerical integration process, required to determine the system of 

equations based on the integro-differential equations ruling the studied physical 

phenomenon, represents a significant percentage of the total computational cost of the 
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analysis. In the FEM the integration mesh is coincident with the element mesh. Since the 

FEM shape functions are known polynomial functions, the number of integration points 

per integration cell can be pre-determined using accurate well-known relations (O. C. 

Zienkiewicz and R. L. Taylor, 1994) (Bathe, 1982). In meshless methods the shape 

function degree is generally unknown, thus it is not possible to accurately define a priori 

the background integration mesh. 

The numerical integration scheme used in this work follows the suggestion of previous 

RPIM works (Wang & Liu, 2002a, 2002b).  The solid domain is divided in a regular grid 

forming quadrilateral integration cells. Then, each grid-cell is filled with integration points, 

respecting the Gauss-Legendre quadrature rule (J. Belinha, 2014). 

In the literature it is possible to find several works using the RPIM, however the state-of-

art lacks a detailed study on the RPIM combined with the axisymmetric deformation 

theory. Thus, in this work a complete axisymmetric-RPIM calibration study is performed 

in order to determine: the optimal number of nodes forming each influence-domain and; 

the most accurate spatial disposition of the integration cells, and respective integration 

order. 

2.2 Radial Point Interpolators 

The RPIM shape functions are obtained using the Radial Point Interpolators (RPI), which 

combine radial basis functions with polynomial basis functions. Thus, consider a function 

space T  defined in the analysed domain d . The finite dimensional space hT T  

discretising the domain   is defined by: )(:)(: xpNiixxrT mih  , where 

 dr :  is at least a 1C  function and  d
mp :  is defined in the space of 

polynomials of degree less than m . In this work only simplified two-dimensional domains 

2  are studied, therefore it is considered an interpolation function ( )hu x  defined in 

an influence-domain I    of an interest point 2Ix  and discretised by a set of N  

arbitrarily distributed nodes 1 2{ , ,..., }I Nn n nN . The nodal set is defined in the two-
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dimensional space by   2
21 ,...,,  iN xxxxX , being n  the number of nodes in the 

influence-domain of Ix . The density of X  is identified by h , 

݄ ൌ ݉݅݊ฮ࢞௝ െ ,௜ฮ࢞ ∀	ሼ݅, ݆ሽ ∈ ߋ ∶ 	 ሼ݅, ݆ሽ 	൑ ܰ	 ∧ ݅ ് ݆																								(1) 

Being  || ||  the Euclidean norm. 

The RPI constructs the interpolation function ( )hu Tx  capable to pass through all nodes 

within the influence-domain, meaning that since the nodal function value is assumed to be 

iu  at the node ix , ( )i iu u x , consequently ( ) ( )h
i iu ux x . Using a radial basis function 

( )r x  and polynomial basis function ( )p x , the interpolation function  ( )hu Tx  can be 

defined at the interest point d
Ix   (not necessarily coincident with any i x X ) by, 

T T

1 1

( ) ( ) ( ) ( ) ( ) ( )
n m

h
I i I i j I j I I I

i j

u r a p b u
 

    x x x r x a p x b = x              (2) 

where ia  is the non-constant coefficient of ( )i Ir x  and jb  the non-constant coefficient for 

( )j Ip x . The integers n  and m are the number of nodes inside the influence-domain of the 

interest point Ix . The vectors are defined as,  

T
1 2{ , ,..., }na a aa                                                      (3) 

 T
1 2{ , , ..., }mb b bb                                                      (4) 

T
1 2( ) { ( ), ( ), ..., ( )}nr r rr x x x x                                   (5) 

T
1 2( ) { ( ), ( ),..., ( )}mp p pp x x x x                               (6) 

being { , }i i ix yx . This work uses the Multiquadrics Radial Basis Function (MQ-RBF) 

(Belinha, Dinis, & Jorge, 2013; Belinha, Dinis, & Natal Jorge, 2013a) (J. Belinha, 2014), 

which can be defined by  2 2( ) ( )
p

i I iI iId d c  r x s , where iId  is a distance between the 

interest point { , }I I Ix yx  and the node { , }i i ix yx , being    2 2

iI i I i Id x x y y    . 

The c  and p  variables are the MQ-RBF shape parameters, which are fixed values 
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determined in previous works (Wang & Liu, 2002a, 2002b) . The variation of these 

parameters can affect the performance of the MQ-RBFs. In the work of Wang and Liu 

(Wang & Liu, 2002a) (Wang & Liu, 2002b), it was shown that the optimal values are 

1.42c   and 1.03p  , which are the values used in this work. The original RPI formulation 

requires a complete polynomial basis function, which for the two-dimensional space can 

be defined by, 

T 2 2( ) {1, , , , , , ...}i i i i i i ix y x x y yp x                                  (7) 

However, it was shown in previous RPI research works (J. Belinha, 2014) (L.M.J.S. Dinis 

et al., 2007) (L. M J S Dinis, Natal Jorge, & Belinha, 2008) that using a simple constant 

basis increases the RPI formulation efficiency. Thus, in this work only the constant basis 

is considered ( ) {1}i p x , for which the number of monomial terms is defined by 1m  . 

The coefficients ia  and jb  in equation (2) are determined by enforcing the interpolation 

to pass through all n  nodes within the influence-domain (J. Belinha, 2014). The 

interpolation at the thk  node is defined by, 

1 1

( , ) ( , ) ( , ) ,     1, 2, ,
n m

h
k k i k k i j k k j k

i j

u x y r x y a p x y b u k n
 

                 (8) 

The inclusion of the following polynomial term is an extra-requirement that guarantees 

unique approximation (J. Belinha, 2014) (L. M J S Dinis et al., 2008),  

1

( , ) 0,     1, 2, ,
n

j i i i
i

p x y a j m


                                   (9) 

The computation of the shape functions is written in a matrix form as 

T

         
          

         

R P a u a u
G

P Z b z b z
                                  (10) 

where G  is the complete moment matrix, Z  is a null matrix defined by 

    mjijiZij  ,:,,0  and the null vector z  can be represented by 

 miizi  :,0 . The vector for function values is defined as  niixuu ii  :),( . 

The radial moment matrix R  is represented as, 
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1 1 1 1 2 2 1

2 1 1 2 2 2 2

[ ]

1 1 2 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

n n

n n

n n

n n n n n

r x y r x y r x y

r x y r x y r x y

r x y r x y r x y



 
 
 
 
 
 





   



R                           (11) 

and polynomial moment matrix P  is defined as, 

1 1 1 2 1 1 1 1

1 2 2 2 2 2 2 2

[ ]

1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

m

m

n m

n n n n m n n

p x y p x y p x y

p x y p x y p x y

p x y p x y p x y



 
 
 
 
 
 





   



P                      (12) 

Since the distance is directionless, ( , ) ( , )i j j j i ir x y r x y , i.e. ij jiR R , matrix R  is 

symmetric. A unique solution is obtained if the inverse of the radial moment matrix R  

exists, 

1   
   

   

a u
G

b z
                                                      (13) 

The solvability of this system is usually guaranteed by the requirements ( )rank p m n   

(Wang et al., 2001).  

In this work, the influence-domain will always possess enough nodes to largely satisfy the 

previously mentioned condition. It is possible to obtain the interpolation with 

   1( ) ( ) ; ( ) ( ) ; ( )h T T T T
I I I I Iu     
      

   

u u
x r x p x G x x

z z
          (14) 

where the interpolation function vector ( )I x  is defined by 

 1 2( ) ( ) ( ) ( )I I I n I    x x x x                                          (15) 

and the residual vector ( )I x , with no relevant physical meaning, is expressed as follows, 

 1 2( ) ( ) ( ) ( )I I I m I    x x x x                                        (16) 

Since  
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 ( ) ( ) ( ) ; ( )h T T T
I I I Iu

 
      

 

u
x x u x x

z
                                  (17) 

It is possible to obtain the partial derivatives of the interpolated field variable, with respect 

to a generic variable   which can be x   or y  , with the following expression, 

( ) ( ) ( ) ( )
;

T T Th
I I I Iu

   
                

ux x x x
u

z
                 (18) 

From Equation (14) it is possible to write  

  1( ) ; ( )( ) ( )
;

T TT T
I II I

  

   
     

r x p x Gx x
=                     (19) 

Since the moment matrix G  does not depend on the variable Ix , Equation (19) can be 

rewritten as, 

1( ) ( ) ( ) ( )
; ;

T T T T
I I I I

   
         

            

x x r x p x
= G                    (20) 

The partial derivatives of the MQ-RBF vector ( )Ir x , with respect to a generic variable 

, can be obtained for each component ( ) /i Ir  x  with the expression, 

2 2 1( )
2 ( )( ) pi I

i I iI

r
p d c 




  


x
                                       (21) 

The RPI test functions ( )I x  depend uniquely on the distribution of scattered nodes (J. 

Belinha, 2014). Previous works (Wang & Liu, 2002a) (L.M.J.S. Dinis et al., 2007) (J. 

Belinha, 2014) show that RPI test functions possess the Kronecker delta property. Since 

the obtained RPI test functions have a local compact support it is possible to assemble a 

well-conditioned and a banded stiffness matrix. If a polynomial basis is included, the RPI 

test functions have reproducing properties and possess the partition of unity property (J. 

Belinha, 2014). 
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Chapter	3	

3  Solid Mechanics  

The current study is based on the elasticity theory. Hence it is necessary to introduce the 

corresponding formulations, such as deformation theory and internal variable fields. Thus, 

it is prepared as follows: in Section 3.1, deformation theory for 2D case with regard to the 

variational fields are introduced. The Galerkin weak formalism is also presented in this 

Section. It covers the equations relevant to strain and stress fields, stiffness matrix and 

force vectors existing in the model. In Subsection 3.1.2, principal stress and principal 

direction are represented for the 2D and 3D cases. Subsection 3.1.3 is devoted to the 

equivalent von Mises stress and strain formulation for 2D and 3D cases. This part plays a 

significant role in the theory of damage mechanics discussed later. At the end, the 

formulation of octahedral shear and normal stress tensors are expressed in Subsection 3.1.4. 

The pattern is repeated for the axisymmetric discrete equation system in Section 3.2. 

3.1 Deformation Theory for 2D Case 

In this work, only 2D examples are solved. Therefore, the plane stress deformation theory 

is assumed. Figure 2 shows a 2D plate in the Cartesian coordinate system and the non-null 

components of the stress tensor are indicated. The 2D displacement field can be represented 

as follows: 

,ݔሺ࢛ ሻݕ ൌ ൜
,ݔ௫ሺݑ ሻݕ
,ݔ௬ሺݑ ሻݕ

ൠ (22)
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Figure 2: Left, 2D solid plate in Cartesian coordinate system, right stress components in plane stress 
state

The corresponding deformation field is computed with the following equation (23): 

ࢿ ൌ ൝
௫௫ߝ
௬௬ߝ
௫௬ߛ

ൡ ൌ ࢛ࡸ ൌ

ۏ
ێ
ێ
ێ
ۍ
డ

డ௫
0

0
డ

డ௬
డ

డ௬

డ

డ௫ے
ۑ
ۑ
ۑ
ې

൜
,ݔ௫ሺݑ ሻݕ
,ݔ௬ሺݑ ሻݕ

ൠ ൌ

ە
ۖ
۔

ۖ
ۓ

డ௨ೣ
డ௫
డ௨೤
డ௬

డ௨ೣ
డ௬

൅
డ௨೤
డ௫ ۙ
ۖ
ۘ

ۖ
ۗ

	(23) 

According to the Hooke’s law, it is possible to determine the stress field with the 

expression: 

࣌ ൌ ࢿ࡯ ൌ ൝
௫௫ߪ
௬௬ߪ
߬௫௬

ൡ ൌ ࡯ ൝
௫௫ߝ
௬௬ߝ
௫௬ߛ

ൡ   (24) 

Being C the material constitutive matrix for plane stress case defined as follows: 

࡯ ൌ ݁
ா

ሺଵାఔሻሺଵିఔሻ
቎

1	 ߥ 0
ߥ 1 0
0 0

ଵିఔ

ଶ

቏    (25) 

with E and ߥ being Young’s modulus and the Poisson’s ratio respectively and e the 

thickness of the plate. 
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3.1.1 Galerkin Weak-form 

The discrete equation system is obtained using the Galerkin weak-form. The Lagrangian 

functional is defined by: 

ܮ ൌ ܶ െ ܷ ൅ ௙ܹ   (26) 

In the above relation, T and U are the kinetic and strain energy values respectively while 

௙ܹ is known as the work produced by external forces. Afterwards, based on Hamilton`s 

principle and neglecting the dynamic effect, the minimization of the Lagrangian functional 

leads to the Galerkin weak form of the equilibrium equation: 

ܮߜ ൌ ׬ Λ݀	ߪ்ߝߜ െ ׬ Λ݀	்ܾݑߜ െ
	
ஃ

	
ஃ ׬ S݀	ݐ்ݑߜ െ

	
ୗ೟

׬ C݀	ݍ்ݑߜ ൌ 0
	
େ೜

	 	(27) 

As seen in Figure 2, ࢈ is the body force vector, ࢚ is the external traction force vector applied 

on a close surface ࢚ࡿ and q represents the external force vector applied on a close curve ࢗ࡯. 

Besides, it is valuable to mention that		݀Λ ൌ .ݔ݀ .ݕ݀  Afterwards, the energy equation .ݖ݀

could be written as follows: 

׬ Ω݀	ߪ்ߝߜ	݁ ൌ
	
ஐ ׬ Ω݀	்ܾݑߜ	݁ ൅ ׬ Γ݀	ݐ்ݑߜ	݁ ൅ 	ݍ்ݑߜ	݁ 	

	
୻

	
ஐ (28) 

In the RPIM, the weak form has local support, which means that the discrete system of 

equations is developed firstly for every influence-domain. Then, the local system of 

equations is assembled to form the global system of equations, which is solved afterwards. 

The RPIM trial function is given by equation (14), thus for each degree of freedom it is 

possible to write: 

ሻࡵ࢞௫௛ሺݑ ൌ ∑ ߮௜
௡
௜ୀଵ ሺࡵ࢞ሻݑ௫ሺݔ௜ሻ	  (29) 

ሻࡵ࢞௬௛ሺݑ ൌ ∑ ߮௜
௡
௜ୀଵ ሺࡵ࢞ሻݑ௬ሺݔ௜ሻ	 	(30) 

In the abovementioned equations, ߮ ௜ሺࡵ࢞ሻ represents the RPIM interpolation function while 

 ௜ሻ are the nodal parameters of the ݅௧௛ node belonging to the nodal setݔ௬ሺݑ ௜ሻ andݔ௫ሺݑ

defined in the influence domain of the interest node of		ࡵ࢞. 

Subsequently, it is possible to generate a more general equation: 
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ሻࡵ࢞௛ሺ࢛ ൌ 	 ൜
	௜ሻݔ௫ሺݑ
	௜ሻݔ௬ሺݑ

ൠ ൌ ∑ ൤
߮௜ሺࡵ࢞ሻ 0
0 ߮௜ሺࡵ࢞ሻ

൨ ൜
௜ሻݔሺݑ
௜ሻݔሺݒ

ൠ௡
௜ୀଵ ൌ ∑ ௜ࡴ

௡
௜ୀଵ ሺࡵ࢞ሻ࢛ሺݔ௜ሻ						(31) 

Furthermore, as a result of Equation (31), it is possible to present developed form equation 

of the strain field: 

ሻࡵ࢞ሺࢿ ൌ ሻࡵ࢞௛ሺݑࡸ	 ൌ ∑ࡸ ௜ࡴ
௡
௜ୀଵ ሺࡵ࢞ሻ࢛ሺݔ௜ሻ	 	(32-a) 

ሻࡵ࢞ሺࢿ ൌ ∑ ௜࡮
௡
௜ୀଵ ሺࡵ࢞ሻ࢛ሺݔ௜ሻ ൌ

ۏ
ێ
ێ
ێ
ۍ
డఝ೔ሺࡵ࢞ሻ

డ௫
0

0 డఝ೔ሺࡵ࢞ሻ

డ௬
డఝ೔ሺࡵ࢞ሻ

డ௬

డఝ೔ሺࡵ࢞ሻ

డ௫ ے
ۑ
ۑ
ۑ
ې

൜
	௜ሻݔ௫ሺݑ
	௜ሻݔ௬ሺݑ

ൠ 	(32-b) 

It should be clarified that	࡮ is the deformation matrix equal to		࡮ ൌ  .ࡴࡸ

As mentioned before, the stress field is a function of the strain vector. Thus, the developed 

relation of the stress vector for an interest point ሺࡵ࢞ሻ	could be written as follows: 

ሻࡵ࢞ሺ࣌ ൌ 	ሻࡵ࢞ሺࢿ	࡯ 	(33) 

In order to compute the stiffness matrix, first it is necessary to present the general 

integration of the weak formulation for any interest pointሺࡵ࢞ሻ: 

்ݑߜ ׬ ࢛	Ω݀	࡮࡯்࡮݁ ൌ
	
ஐ ்࢛ߜ	 ׬ ்ࡴ݁ ൜

ܾ௫
ܾ௬
ൠ 	݀Ω	 ൅ ்࢛ߜ ׬ ்ࡴ݁ ൜

௫ݐ
௬ݐ
ൠ 	݀Γ	 ൅ ݁	்࢛ߜ ቄ

௫ݍ
௬ቅݍ

	
୻

	
ஐ 	(34) 

The linear system of equations based on Equation (34) is represented below. 

࢛ࡷ൫்ݑߜ െ ௕ࢌ െ ௧ࢌ െ ௤൯ࢌ ൌ 0	 	(35) 

Then; 

࢛ ൌ ௕ࢌ૚൫ିࡷ ൅ ௧ࢌ ൅ 	௤൯ࢌ 	(36) 

Since the RPI test functions possess the delta Kronecker property, the essential boundary 

conditions are directly imposed in the global stiffness matrix. 



The	RPIM	Extended	to	Axisymmetric	Plates	and	Non‐Linear	Continuum	Damage	Mechanics	
	 	
 

21	
 

3.1.2 Principal Stress and Principal Directions 
 

In this section, it is focused on the principal stress and its direction in 3D state due to its 

application for the further parts. First of all, it should be mentioned that the principal stress 

and direction are derived from second order stress tensor at the specific point in the problem 

(Bonet & Wood, 2008) (Michael Anthony Crisfield, 1991). So, if a multidimensional 

vector of stress is considered as follows:	 

 Txzyzxyzzyyxx                                       (37) 

After mapping to the second order tensor, it will be: 

࣌ ൌ ൥
௫௫ߪ ߬௫௬ ߬௫௭
߬௬௫ ௬௬ߪ ߬௬௭
߬௭௫ ߬௭௬ ௭௭ߪ

൩																																																										(38) 

Since, the stress tensor is symmetric, the stress invariants should be driven based on the 

following relations: 

ଵܫ ൌ ௫௫ߪ ൅ ௬௬ߪ ൅  ௭௭                                               (39-a)ߪ

ଶܫ ൌ ௬௬ߪ௫௫ߪ ൅ ௭௭ߪ௬௬ߪ ൅ ௫௫ߪ௭௭ߪ െ ߬௫௬ଶ െ ߬௬௭ଶ െ ߬௫௭ଶ                        (39-b) 

ଷܫ ൌ ௭௭ߪ௬௬ߪ௫௫ߪ ൅ 2߬௫௬߬௬௭߬௫௭ െ ௫௫߬௬௭ଶߪ ൅ ௬௬߬௫௭ଶߪ െ  ௭௭߬௫௬ଶ              (39-c)ߪ

In order to obtain the principal stress components, the following cubic equation should be 

solved. 

ଷߪ െ ଶߪଵܫ ൅ ଶߪଶܫ െ ଷܫ ൌ 0                                              (40) 

Then, the principal stress tensor is in the following form: 

௣࣌ ൌ ൥
ଵߪ 0 0
0 ଶߪ 0
0 0 ଷߪ

൩ ଵߪ						݈݄݁݅ݓ					 ൒ ଶߪ	 ൒  ଷ                          (41)ߪ

Since the three principal components are different, there are only three principal directions 

that are mutually perpendicular to each other. 

ො݊ଵ ൌ ො݊ଶ ൈ ො݊ଷ																 ො݊ଶ ൌ ො݊ଷ ൈ ො݊ଵ																	 ො݊ଷ ൌ ො݊ଵ ൈ ො݊ଷ																		 (42) 
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Remember that the unit vectors ො݊ଵ, ො݊ଶ, ො݊ଷ		corresponding to the principal direction must 

form a right-handed system. First, it is going to obtain the principal direction		 ො݊ଵ. So, the 

governing equations are presented below. 

													 ො݊ଵ ൌ ݊௫ଵଓ̂ ൅ ݊௬ଵଔ̂ ൅ ݊௭ଵ ෠݇																																																						(43) 

݊௫ଵଶ ൅ ݊௬ଵଶ ൅ ݊௭ଵଶ ൌ 0																																																					(44) 

൥
௫௫ߪ െ ଵߪ ߬௫௬ ߬௫௭
߬௬௫ ௬௬ߪ െ ଵߪ ߬௬௭
߬௭௫ ߬௭௬ ௭௭ߪ െ ଵߪ

൩ ൝
݊௫ଵ
݊௬ଵ
݊௭ଵ

ൡ ൌ ൝
0
0
0
ൡ																												(45) 

The above system of equation is a kind of non-linear one. In order to avoid having to solve 

a system of equation involving a non-linear equation, the following procedure is applied. 

Let consider ࡺሬሬԦ૚ as a vector parallel to the unit vector		 ො݊ଵ: 

ሬሬԦଵࡺ ൌ ଵܰ ො݊ଵ ൌ ଵܰ൫݊௫ଵ	ଓ̂ ൅ ݊௬ଵ	ଔ̂ ൅ ݊௭ଵ	 ෠݇൯
																	
ሳልልልልሰ ሬሬԦ૚ࡺ ൌ ௫ܰଵ	ଓ̂ ൅ ௬ܰଵ	ଔ̂ ൅ ௭ܰଵ	 ෠݇                (46) 

 

ଵܰ ൌ หࡺሬሬԦ૚ห ൌ ට ௫ܰଵ
ଶ ൅ ௬ܰଵ

ଶ ൅ ௭ܰଵ
ଶ               Magnitude of ሬܰሬԦଵ                                     (47) 

௫ܰଵ ൌ ଵܰ݊௫ଵ														݊௫ଵ ൌ
ேೣభ
ேభ

                                          (48-a) 

௬ܰଵ ൌ ଵܰ݊௬ଵ														݊௬ଵ ൌ
ே೤భ
ேభ
																																															(48-b) 

௭ܰଵ ൌ ଵܰ݊௭ଵ														݊௭ଵ ൌ
ே೥భ
ேభ
																																																	(48-c) 

Substituting in equation (45); 

൥
௫௫ߪ െ ଵߪ ߬௫௬ ߬௫௭
߬௬௫ ௬௬ߪ െ ଵߪ ߬௬௭
߬௭௫ ߬௭௬ ௭௭ߪ െ ଵߪ

൩ ቐ
௫ܰଵ

௬ܰଵ

௭ܰଵ

ቑ ൌ ൝
0
0
0
ൡ                        (49) 

Considering		 ௫ܰଵ ൌ 1, the other components are calculated through solving the above 

system of equation. The obtained values are replaced in Equation (48) and finally the first 

principal direction is calculated from Equation (43). This procedure is the same to 

compute		 ො݊ଶ	ܽ݊݀	 ො݊ଷ. 
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It is worth nothing that the principal stress and principal direction could be also known as 

eigenvalues and eigenvectors in another definition respectively. In the 2D case, the stress 

components in z direction are assumed as zero but the pattern is equal to the 3D one 

(Michael Anthony Crisfield, 1991). 

 

3.1.3  Equivalent von Mises Stress and Strain 
 

It is helpful to present the equivalent von Mises relations for stress and strain fields, as  

extracted from (Ford, 1963) (Kazimi, 1982), due to their applications. In the 3D case, the 

multidimensional vectors and the second order tensor of strain and stress are considered as 

follows: 

































zx

yz

xy

zz

yy

xx









ெ௔௣௣௜௡௚	௧௢	௧௛௘	௧௘௡௦௢௥		
ሳልልልልልልልልልልልልልልልልሰࢿ ൌ

ۏ
ێ
ێ
ێ
ۍ ௫௫ߝ

ଵ

ଶ
௫௬ߛ

ଵ

ଶ
௫௭ߛ

ଵ

ଶ
௫௬ߛ ௬௬ߝ

ଵ

ଶ
௬௭ߛ

ଵ

ଶ
௫௭ߛ

ଵ

ଶ
௭௬ߛ ௭௭ߝ ے

ۑ
ۑ
ۑ
ې

࣌   ,    ൌ൥
௫௫ߪ ߬௫௬ ߬௫௭
߬௫௬ ௬௬ߪ ߬௬௭
߬௫௭ ߬௭௬ ௭௭ߪ

൩       (50)                           

According to equation (50), it is possible to apply the von Mises rule to compute the 

equivalent stress and strain without any restrictions in the following terms: 

෤ߪ ൌ ටଵ

ଶ
ቂ൫ߪ௫௫ െ ௬௬൯ߪ

ଶ
൅ ൫ߪ௬௬ െ ௭௭൯ߪ

ଶ
൅ ሺߪ௭௭ െ ௫௫ሻଶߪ ൅ 6൫߬௫௬ଶ ൅ ߬௫௭ଶ ൅ ߬௭௬ଶ൯ቃ     (51) 

̃ߝ ൌ ටଶ

ଷ
ቂߝ௫௫ߝ௫௫ ൅ ௬௬ߝ௬௬ߝ ൅ ௭௭ߝ௭௭ߝ ൅

ଵ

ଶ
൫ߛ௫௬ߛ௫௬ ൅ ௬௭ߛ௬௭ߛ ൅  ௭௫൯ቃ                            (52)ߛ௭௫ߛ

There is also another relation in the literature for computation of ̃ߝ	in the 2D state as: 

̃ߝ ൌ :்ߝ√ :ଵିܥ  (53)                                             ߪ

where C is the second order constitutive matrix in plane stress presented in Equation (25). 

Indeed Figure 3 demonstrates a bounding surface in the 3D and 2D principal stress 

coordinate systems where the von Mises accounted for a constant value so called “High-

Westergard Space”. It is based on the fact that any stress state can be converted into its 

principal values and compared to this sketch. If the resulting principal stress point in the 
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coordinate system is within the cylinder, then the material has not yielded. If it is on the 

surface, then the material has yielded and if it is outside the cylinder, it means that there 

was an elastic analysis of a situation that cannot in fact be correct because yielding would 

have long since taken place. 

 

      

Figure 3: A bounding surface in the principal stress coordinate system; left, 3D and right, 2D case  

(http://en.wikipedia.org/wiki/File:Yield_surfaces.svg) 

 

3.1.4 Octahedral Shear and Normal Stress 
 

Here it is presented a brief description in order to calculate the octahedral stress 

components based on the formulation presented by (Fung, Tong, & Bechtel, 2003) (Chen 

& Han, 1988). 

Considering the principal directions as the coordinate axes, a plane whose normal vector 

makes equal angles with each of the principal axes, for example having direction cosines 

equal to ቚ
ଵ

√ଷ
ቚ, is called an octahedral plane. As seen in Figure 4, there are eight various 

octahedral planes. 
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Figure 4: Octahedral stress planes 

(https://commons.wikimedia.org/wiki/File:Octahedral_stress_planes.svg) 

The normal and shear components of the stress tensor on these planes are called octahedral 

normal stress and octahedral shear stress. Thus, the stress tensor of a desirable point in the 

principal axes is in the following form: 

௜௝࣌ ൌ ൥
ଵߪ 0 0
0 ଶߪ 0
0 0 ଷߪ

൩                                                     (54) 

The stress vector on the octahedral plane could be defined as follows: 

௢௖௧ࢀ
ሺ௡ሻ ൌ ௜௝݊௜ߪ ௝݁ ൌ ଵ݊ଵ݁ଵߪ ൅ ଶ݊ଶ݁ଶߪ ൅ ଷ݊ଷ݁ଷߪ ൌ

ଵ

√ଷ
ሺߪଵ݁ଵ ൅ ଶ݁ଶߪ ൅  (55)																				ଷ݁ଷሻߪ

Thus, the normal component of the stress vector at the corresponding point on the 

octahedral plane is: 

௢௖௧ߪ ൌ ௜ܶ
ሺ௡ሻ݊௜ ൌ ௜௝݊௜ߪ ௝݊ ൌ ଵ݊ଵ݊ଵߪ ൅ ଶ݊ଶ݊ଶߪ ൅  ଷ݊ଷ݊ଷ                (56)ߪ

௢௖௧ߪ ൌ
ଵ

ଷ
ሺߪଵ ൅ ଶߪ ൅ ଷሻߪ ൌ

ଵ

ଷ
 (57)																																												ଵܫ

The above relation presents the mean normal stress or hydrostatic stress. The procedure of 

calculation is the same for all the eight octahedral planes. In addition, the shear stress on 

the octahedral plane could be derived as follows:  

߬௢௖௧ ൌ ට
௜ܶ
ሺ௡ሻ

௜ܶ
ሺ௡ሻ െ ௡ଶߪ ൌ ටଵ

ଷ
ሺߪଵ

ଶ ൅ ଶߪ
ଶ ൅ ଷߪ

ଶሻ െ
ଵ

ଽ
ሺߪଵ ൅ ଶߪ ൅  (58)																																ଷሻଶߪ
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߬௢௖௧ ൌ
ଵ

ଷ
ඥሺߪଵ െ ଶሻଶߪ ൅ ሺߪଶ െ ଷߪଷሻଶ൅ሺߪ െ ଵሻଶߪ ൌ

ଵ

ଷ
ඥ2ܫଵ

ଶ െ  (59)																																					ଶܫ6

 

According to Equations (39-a) and (39-b), it is needed to rewrite the first and second stress 

invariants; 

ଵܫ ൌ ሻߪሺݎݐ ൌ ௞௞ߪ ൌ ଵߪ ൅ ଶߪ ൅  (60)																																														ଷߪ

ଶܫ ൌ
ଵ

ଶ
ሻଶߪሺݎݐ ൌ ଶߪଵߪ ൅ ଷߪଶߪ ൅  (61)																																																									ଵߪଷߪ

 

 

3.2 Axisymmetric Discrete Equation System 
 

In this work, since the complete three-dimensional domain 3  of the studied circular 

plates can be obtained by the revolution of a two-dimensional domain section 2  and 

all the natural and essential boundaries show radial symmetry, it is used the axisymmetric 

deformation theory. In Figure 5(a) a general example of a revolution solid is demonstrated. 

Therefore, it is assumed a body described by the domain 2  and bounded by  , where 

: u t u t        , being u  the essential boundary and t  the natural 

boundary. 

 
 

(a)     (b)    (c) 
 

Figure 5 : (a) Axisymmetric solid. (b) Axisymmetric deformation. (c) Stress components in circular 
coordinates 
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3.2.1 Variable Fields 

Using the cylindrical coordinate system, Figure 5(a), the complete 3D displacement field 

can be defined as,  

( , )

( , ) ( , )

( , )

r

z

u r z

r z u r z

u r z

 
   
 
 

u  (62) 

The deformation field is determined with,  

0 0

0 0

( , )0 0
( , )

0 ( , )

0

0

r

z

rr

zz
r

z
rz r z

z

zr

r

u

rr
u

zz
uu r z

u r z
u u

u r z
z r z r

uu

z z
uu

r r














 




 

 

  
    

 
             
                             
             

   
     

L u





 
 
 
 
 


 
 
 
 
 
 
 
 

. (63) 

However, due to the circumferential symmetry of all problems studied in this work, the 

circumferential coordinate is in fact dependent on the other two coordinates,  

( , ) ( , )r zu r z f u u  , (64) 

which is one of the assumptions of the axisymmetric deformation theory. Thus, it is 

considered that the deformation only occurs in the Orz  plane, being the displacement field 

described by,  

( , )
( , )

( , )
r

z

u r z
r z

u r z

 
  
 

u . (65) 

Considering Figure 5(b), due to the axisymmetric conditions, the angle   between points 

AB  on an initial configuration is the same as the angle between A'B'  for a deformed 

configuration. Additionally, the arch A'B'  is a homothetic arch of initial arch AB , 

indicating that in the circumferential direction   there will be only volume changes                          

( 0  ) and no distortions will occur ( 0z   and 0r  ). 
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Therefore, the deformation components for the axisymmetric deformation theory are the 

following,  

0

0 ( , )

( , )1
0

r

rr
z

zz r

z r

rz

r z

u

rr
u

u r zz z=
u r z u

r r
u u

z r z r










   
                            

     
             

      

L u . (66) 

In order to determine the deformation in the circumferential direction  ,   presented in 

Equation(66), consider point BAP


   represented in Figure 5(b). The deformation of P  

occurs along the Or  axis, leading to point 'P  and showing a radial displacement: 

( , )r P Pu r z . Notice that, due to the axisymmetric assumptions, the displacement field does 

not depend on the circumferential direction : ( , ) ( , ) ( , )r P P r A A r B Bu r z u r z u r z  . Thus, the 

deformation on the circumferential direction can be obtained with,  

 
r

u

r

rur

BA

BABA rr 








 



. (67) 

The generalized Hooke’s law permits to correlate the strain field with the stress field,  

 

࣌ ൌ ࢿ࡯ ൌ ቐ

௥௥ߪ
௭௭ߪ
ఏఏߪ
߬௥௭

ቑ ൌ ቐ࡯

௥௥ߝ
௭௭ߝ
ఏఏߝ
௥௭ߛ

ቑ																																																	(68) 

being C the material constitutive matrix, defined for the isotropic case as,  

C   




























2

21
000

01

01

01

211 






E

                                 (69) 

The Young’s modulus is represented by E  and the Poisson’s coefficient by  . 
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3.2.2 Galerkin Weak-form  

This part is almost similar to the one presented in Section 3.1.1 for the 2D solid cases. The 

differences are related to the coordinate system. Hence revising the previous equations and 

with regard to the cylindrical coordinate system, the discrete equation system is obtained 

using the Galerkin weak-form. The Lagrangian functional is defined by 

fWUTL  . (70) 

where T  is the kinetic energy, U  is the strain energy and fW  is the work produced by 

external forces. Neglecting the dynamic term, the minimization of the Lagrangian 

functional leads to the Galerkin weak form of the equilibrium equation, 

    0
t q

T T T T

S C
L d d dS dC    

 
         ε σ u b u t u q . (71) 

As represented in Figure 5(a), b  is the body force, t  an external force applied along a 

close surface tS  and iq  are external forces applied along a close curve tC . Notice that 

from Figure 5(c), the infinitesimal volume d  is defined as, *d dr dz d    , being 

* sin( )d r d r d       since 1d , which leads to d r d dr dz r d d          . 

Similarly, it is possible to obtain: *dS dz d r d dz r d d            and 

*dC d r d    . 

 

Thus, Equation (71) can be represented as,  

f

i

f f f

i i i

T

T T T

r d d

r d d r d d r d





  

  

 

     



 

   

         

 

    

ε σ

u b u t u q
. (72) 

The integral along the circumferential direction   is a defined integral, and since all 

analysed problems in this work present a full revolution: 0i   and 2f  ,  

       2 2 2 2T T T Tr d r d r d r       
  

      ε σ u b u t u q . (73) 

or 

       T T T Tr d r d r d r   
  

      ε σ u b u t u q . (74) 
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In the RPIM, the weak form has local support, which means that the discrete system of 

equations is developed firstly for every influence-domain. Then, the local systems of 

equations are assembled to form the global system of equations, which is solved afterwards. 

The RPIM trial function is given by Equation (14), thus for each degree of freedom it is 

possible to write, 

1

( ) ( ) ( )
n

h
r I i I r i

i

u u


x x x  and 
1

( ) ( ) ( )
n

h
z I i I z i

i

u u


x x x  (75) 

where ( )i I x  is the RPIM interpolation function, ( )r iu x  and ( )z iu x  are the nodal 

parameters of the thi  node belonging to the nodal set defining the influence-domain of 

interest node Ix . Both expressions in Equation (75) can be combined in one single 

equation,  

1 1

( ) 0 ( )( )
( ) ( ) ( )

0 ( ) ( )( )

h n n
i I ih r I

I i I ih
i ii I iz I

uu

vu


 

     
      

    
 

x xx
u x H x u x

x xx
. (76) 

Consequently, using Equation (66) and Equation (75), it is possible to develop the strain 

vector to the following expression,  

1

1 1
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( )
0
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( ) ( )
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i
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i I i

i i z ii I

i I i I
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z r







 



 

  

 
  

 
       

  
 
   

  



 

x L u x L H x u x

x

x
x

B x u x
xx

x x



,  (77) 

being =B LH  the deformation matrix. Using the relation between the stress state and the 

strain state in Equation (68), it is possible to obtain for an interest point			࢞ூ:                              

ூሻ࢞ሺ࣌ ൌ ) ூሻ Substituting the strain vector࢞ሺࢿ	࡯ )Ix  and the stress vector ( )Ix  in the 

first term of Equation (74) and the approximation function on Equation (76) in the other 

terms, it is possible to rewrite Equation (64) for an interest point Ix , 
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		(78) 

 

In the end, after assembling the stiffness matrices IK  obtained for each interest point Ix , 

Equation (78) can be represented as the following linear system of equations, 

0T
b t q b t q          u K u f f f K u f f f . (79) 

Since the RPI test functions possess the delta Kronecker property, the essential boundary 

conditions are directly imposed in the global stiffness matrix, K . 
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Chapter	4	

4  Rate-independent Elastic Damage Formulation 

The continuum damage mechanics theory has the potential to link continuum mechanics 

with fracture mechanics in an elegant way allowing the analysis of several problems as 

firstly introduced by Kachanov (Kachanov, 1986) for creep-related problems. Furthermore, 

it is applicable to different materials such as steel, concrete, ceramics and others. [See e.g. 

Krajcinovic Fonseka (Krajcinovic & Fonseka, 1981)(Krajcinovic & Fonseka, 1983); 

Resende and Martin (Resende & Martin, 1984); Cervera et. al. (Cervera et al., 1995, 1996; 

R. Faria et al., 1998; Oliver et al., 1990); Voyiadjis et. al. (Voyiadjis & Taqieddin, 2009)].

Basically, the last abovementioned articles have been focused on the damage mechanics in

concrete materials. The corresponding authors have presented the mathematical relations

of rate-independent damage mechanics connected to the subject studied in this work.

Crisfield (M.A. Crisfield, 1996), Cervera et.al. (Cervera et al., 1995, 1996; R. Faria et al.,

1998; Oliver et al., 1990) adopted the suitable continuum rate-independent damage

equations used in this study.

The theory of the continuum damage mechanic relies on the definition of the effective 

stress concept connected to the equivalent strain. This means that the strain value related 

to the damage state when the stress 	࣌		applied, is equivalent to the strain obtained from the 

undamaged state under the effective stress	࣌ഥ. Considering this principle, the effective stress 

tensor is expressed as follows: 

ഥ࣌ ൌ :࡯ 	ࢿ (80)
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where ࡯ is the initial or undamaged second order linear elastic constitutive tensor, ࣌ഥ and ࢿ 

are the second order tensor of the effective stress and strain respectively. Indeed, it is 

necessary to split the effective stress tensor into tensile and compressive components due 

to the application of the scalar damage model for the separation of the tensile and 

compressive damage parameters. So as for splitting the effective stress tensor, the 

following relations are applicable (Cervera et al., 1995, 1996; R. Faria et al., 1998; Oliver 

et al., 1990): 

ഥା࣌ ൌ 〈തߪ〉 ൌ ∑ ௜݌	〈ത௜ߪ〉 ⊗
ଷ
௜ୀଵ  (81-a)																																											௜݌	

ഥି࣌ ൌ 	ۦതߪۧ	 ൌ ∑ ௜݌		ۦത௜ߪۧ	 ⊗
ଷ
௜ୀଵ  (81-b)																																							௜݌	

It should be clarified that ⊗ operates as the dyadic product and the sign of (+) and (-) 

indicates the tensile and compressive entities respectively. The Macaulay brackets 〈ߪത〉 

indicates that the expression is equal to the enclosed value when positive and zero if it is 

negative. Besides 	ۧߪതۦ	can be determined as follows: 

ഥ࣌	=	ۦഥ࣌ۧ	 െ  (82)                                                        〈ഥ࣌〉

It must be remarked that the split form of the stress is obtained through using the principal 

stress and directions referring to Section 3.1.2. The methodology will be discussed later.  

Considering the split relations for the effective stress tensor, it is necessary to present the 

Cauchy stress tensor ࣌ as the final relation characterizing the full stress tensor for the 

isotropic model. So; 

ഥ࣌ ൌ ഥା࣌ ൅  (83-a)																																																																ഥି࣌

࣌ ൌ 	 ሺ1 െ ݀ାሻ࣌ഥା ൅ ሺ1 െ ݀ିሻ࣌ഥି																																															(83-b) 

In Equation (83-a), the damage parameters in tension and compression are called  ݀ା 

and	݀ି. As mentioned before, both values are scalars and they should be limited as follows: 

0 ൑ ݀ା, ݀ି ൑ 1																																																												(84) 

Thermomechanical consideration related to the non-negativeness of the dissipation might 

be expressed by the following expression (Cervera et al., 1996): 
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ሶ݀ା, ሶ݀ି ൒ 0																																																																	(85) 

It is valuable to mention that both damage parameters have the potential to control the 

degradation of all the elastic material properties such as Young`s modulus, Poisson`s ratio, 

shear modulus and other relevant properties. Considering the damage parameters, it is 

possible to infer that the corresponding model could predict the mixed failure of modes I 

and II in addition to mode I failure. Consequently, the equivalent effective tensile and 

compressive norms are obtained after splitting the stress as follows:  

߬̅ା ൌ :ഥା࣌√ :૚ି࡯  (86-a)																																																								ഥା࣌

߬̅ି ൌ ට√3ሺߪܭത௢௖௧
ି ൅ ߬̅௢௖௧

	ି ሻ																																													(86-b) 

where : operates as the tensor multiplication, ߪത௢௖௧
ି 	and	߬௢̅௖௧

ି  are the octahedral normal and 

shear stresses that should be obtained from ߪതି tensor (see Section 3.1.4). Furthermore, K 

is a material property depending on the ratio between the biaxial and uniaxial compressive 

strengths for the concrete materials. It is obtained in the following form (Cervera et al., 

1995): 

ܭ ൌ	√2ሺߚ െ 1ሻሺ2ߚ െ 1ሻ																																															(87) 

Being ߚ the plasticity parameter which is typically assumed as	ߚ ൌ 1.16 for concrete 

material (Cervera et al., 1995). The damage criteria for tensile and compressive states are 

expressed as (J C Simo & Ju, 1987):  

݃ାሺ߬̅ା, ାሻݎ ൌ ߬̅ା െ ାݎ ൑ 0                                          (88-a) 

݃ିሺ߬̅ି, ሻିݎ ൌ ߬̅ି െ ିݎ ൑ 0                                          (88-b) 

Equation (88-b) is known as Drucker-Prager cone for compression. The current damage 

thresholds are defined as ݎା and ିݎ for tension and compression. They can control the 

expansion of the damaged surface. In the beginning of the damage routine, ݎ଴
ା	and ݎ଴

ି	are 

assumed as material properties connected to the uniaxial maximum strengths. In 

accordance with equations, it is concluded that  ߪതଵ, ,തଶߪ തଷߪ 	൒ 0 being the 3D effective 

stresses corresponding to the same norm ߬̅ା identified as a quarter of an ellipsoid centered 
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at the origin of the principal effective stresses presenting the damage bounding surface 

(Oliver et al., 1990). Subsequently, Figure 6 refers to the damage bounding surface 

if	ߪതଵ, തଷߪ 	൒ തଶߪ , 0 ൌ 0	 and		߬̅ା ൌ 	 ଴ݎ
ା in the 2D case reported by Kupfer (Kupfer et al., 

1969) as the experimental solution; while Cervera and his colleagues obtained the 

computational FEM solution (Cervera et al., 1996) also represented in the same figure.  

 

Figure 6: Initial damage bounding surface in a biaxial effective principal stress space (Cervera et al., 
1996) compared with the experimental results in concrete (Kupfer et al., 1969). 

Consider that ݂ ଴
ା	and ݂ ଴

ି are the uniaxial tensile and compressive strengths respectively (R. 

Faria et al., 1998). 

଴ݎ
ା ൌ ට ଴݂

ା ଵ

ா ଴݂
ା ൌ

௙బ
శ

√ா
																																																												(89-a) 

଴ݎ
ି ൌ ට√ଷ

ଷ
൫ܭ െ √2൯ ଴݂

ି																																																							(89-b) 

As a result, damage experiences an increasing trend if		߬̅ା ൌ ି̅߬			ݎ݋			ାݎ ൌ  It will be .ିݎ

initiated for the first time if			ݎ଴
ା ൌ ߬̅ା		ܽ݊݀		ݎ଴

ି ൌ ߬̅ି. Subsequently, in the case of 

compressive damage, the octahedral stress components could be rewritten as (R. Faria et 

al., 1998): 

௢௖௧ߪ ൌ
ଵ

ଷ ଴݂
ି																																																																						(90-a) 

߬௢௖௧ ൌ െ√ଶ

ଷ ଴݂
ି																																																																(90-b) 
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The kinematic of the tensile and compressive internal variables are defined based on the 

consistency conditions for loading through Kuhn-Tucker equations as follows (J C Simo 

& Ju, 1987): 

ሶାݎ ൌ ߬̅ሶା ൒ 0,					 ሶ݀ା ൌ ሶାݎ
డீశ൫௥శ൯

డ௥శ
ൌ ሶܩ ାሺݎାሻ ൒ 0																						(91-a) 

ሶିݎ ൌ ߬̅ሶି ൒ 0,					 ሶ݀ି ൌ ሶିݎ డீషሺ௥షሻ

డ௥ష
ൌ ሶܩ ିሺିݎሻ ൒ 0                   (91-b) 

where ܩାand ିܩ present the proper monotone increasing function captured from 

experience could determine the damage evolutions (Cervera et al., 1996). So; 

ାݎ ൌ max൫ݎ଴
ା,݉ܽݔሺ߬̅ାሻ൯,			 	݀ା ൌ  (92-a)																															ାሻݎାሺܩ

ିݎ ൌ max൫ݎ଴
			,ሺ߬̅ିሻ൯ݔܽ݉,ି 	݀ି ൌ  ሻ                           (92-b)ିݎሺିܩ

Recent equations prove that the model is rate-independent and the strain is obtained in a 

closed form. Then, damage variables are computed within the following relations (Cervera 

et al., 1996): 

݀ା ൌ ାሻݎାሺܩ ൌ 1 െ ௥బ
శ

௥శ
exp	൫ܣାሺ1 െ ାݎ ଴ݎ

ା⁄ ሻ൯     if        ݎା ൒ ଴ݎ
ା																																										(93-a) 

݀ି ൌ ሻିݎሺିܩ ൌ 1 െ
௥బ
ష

௥ష
ሺ1 െ ሻିܣ െ ሺ1ିܤ൫	expିܣ െ ିݎ ଴ݎ

ି⁄ ሻ൯      if   	ିݎ ൒ ଴ݎ
ି							(93-b) 

The damage coefficients ିܣ and ିܤ in compression and	ܣା in tension will be explained 

later for each specific benchmark. 

4.1 Assessment of the Characteristic Length 

In addition to the above mentioned equations, there are some other variables and relations 

involved in the algorithm of damage criteria. One of the most important parameters is 

called Characteristic Length. Cervera and his colleagues (R. Faria et al., 1998) 

investigated that it is known as a geometrical factor depending on the spatial discretization, 

and that the conservation of the energy dissipated by the material is also guaranteed by this 

factor. In the usual applications of the finite element, the control area (or volume) coincide 

with the area	∆ܣ (or volume	∆ܸ) associated with the integration points of each finite 

element in plane stress (or Gauss points). So, the definition is adopted as follows: 

݈௖௛ ൌ  for 2D problems                           (94-a)     ܣ∆√
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݈௖௛ ൌ √∆ܸ
య       for 3D problems                           (94-b) 

Furthermore, other researchers in meshless method formulations presented different 

definitions of characteristic length. Ferreira et.al. (Ferreira, Kansa, Fasshauer, & Leitao, 

2009) defined that the characteristic length is a parameter related to the nodal spacing in 

the local support domain of the interest point ሺ࢞ூሻ and it is usually the average nodal 

spacing for all the nodes in the local support domain.  

Moreover, Bazant (Bažant & Pijaudier-Cabot, 1989) proposed that the characteristic length 

of a heterogeneous brittle material such as concrete represents a material property that 

governs the minimum possible width of a zone of strain-softening damage in non-local 

continuum formulations or the minimum possible spacing of cracks in discrete fracture 

models. They calculated the amount of ݈௖௛ from test results approximately as follows: 

݈௖௛ ൌ
ீ೑
ௐೞ

                                            (94-c) 

Consider fracture energy as  ܩ௙ ൌ
௎ೞ
஺బ

  where energy ௦ܷ	dissipated due to fracturing in the 

specimen which is equal to the area below the load-displacement diagram and ܣ଴ is related 

to the area of the net cross section of the specimen, so, ௦ܹ ,called deformation energy prior 

to fracture, is evaluated from the area below the stress-starin curve as seen in Figure 7. 

 

(a)                                                                       (b) 

Figure 7: (a): Stress-strain curve for restrained specimens; (b) Load-displacement curve for 
unrestrained specimens (Bažant & Pijaudier-Cabot, 1989) 

Indeed, there are more scientific works focused on this definition of available in the 

literature reporting the different equations for the characteristic length (Ghaffarzadeh & 

Mansouri, 2013; Ghaffarzadeh, 2014; C. T. Wu, Hu, & Guo, 2014). 
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After that, it is possible to introduce the other parameters dependent on the characteristic 

length as proposed by Faria and coworkers (Cervera et al., 1995; R. Faria et al., 1998; R. 

Faria & Oliver, 1993). 

ഥାܪ ൌ
൫௥బ

శ൯
మ

ଶீ೑
శ ൌ

൫௙బ
శ൯

మ

ଶாீ೑
శ                                           (95-a) 

݈௖௛ 	൑ 	
ଵ

ுഥశ
																																																												 (95-b) 

where ܩ௙		
ା represents the tensile fracture energy per unit area and ଴݂

ା is defined as the 

uniaxial tensile strength which are available for concrete material in the literature. 

Subsequently, there is another tensile variable depending on the material property recalled 

 :which is computed as follows	ାܣ

	ାܣ ൌ 	 ଶு
ഥశ௟೎೓

ଵିுഥశ௟೎೓
																																																								(96-a) 

There is a simplified relation of ܣା	proposed by Oliver and his colleagues (Oliver et al., 

1990) as follows: 

	ାܣ ൌ 	 ൬
ீ೑
శா

௟೎೓൫௙బ
శ൯

మ െ
ଵ

ଶ
൰
ିଵ

																																															(96-b) 

There are some conditions that should be satisfied in accordance with Equations (95-a,b): 

	ାܣ ൒ 	0																																																															(96-c) 

Indeed, the characteristic length controls the maximum size of the finite elements or 

influence domain in the mesh. It means that if the size of elements in FEM or discretization 

in meshless method increases, the softening branch of the response experiences an almost 

vertical slope and perhaps the fracture procedure is more brittle.   

It is noticeable to mention that the corresponding variables are calculated at the integration 

points (Gauss points) in terms of local stress and strain in the field of local models, finite 

element analysis and meshless method. 

Finally, Faria (R. M. C. M. de Faria, 1994) reported that the compressive damage 

parameters ିܣ	and ିܤ	may be defined by imposing the unidimensional experimental  ሺߪ െ

 ሻ curve to achieve the two selected points on the curve extracted from a 1D compressiveߝ

test. Considering that: 
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࣌ ൌ ሺ1 െ ݀ିሻ࣌ഥ ൌ ቆ
௥బ
ష

ఛതష
ሺ1 െ ሻିܣ ൅ ݁ିܣ

஻ష൬ଵି
ഓതభ
ష

ೝబ
ష൰ቇ࣌ഥ																													(97) 

Equation (97) has to be satisfied at two particular points ሺߝଵ, ,ଶߝଵሻ and ሺߪ  ଶሻ of the curveߪ

ሺߪ െ  ሻ obtained in a 1D compression test. Well, considering these two assumed pointsߝ

with the following characteristics: 

Point 1:   

ଵሻߝതଵሺߪ	ݏݏ݁ݎݐݏ	݁ݒ݅ݐ݂݂ܿ݁݁				,		ଵߪ					ݏݏ݁ݎݐݏ	ݕ݄ܿݑܽܥ 		
௦௢				
ሳልሰ ଵ̅߬				ݏݏ݁ݎݐݏ	ݐ݈݊݁ܽݒ݅ݑݍܧ		

ି	. 

Point 2:   

ଶሻߝതଶሺߪ	ݏݏ݁ݎݐݏ	݁ݒ݅ݐ݂݂ܿ݁݁				,		ଶߪ					ݏݏ݁ݎݐݏ	ݕ݄ܿݑܽܥ 		
௦௢				
ሳልሰ ଶ̅߬				ݏݏ݁ݎݐݏ	ݐ݈݊݁ܽݒ݅ݑݍܧ		

ି	. 

Substituting in Equation (97): 

ଵߪ ൌ
௥బ
ష

ఛതభ
ష തଵߪ ൅ ିܣ ቈ݁

஻ష൬ଵି
ഓതభ
ష

ೝబ
ష൰ െ

௥బ
ష

ఛതభ
ష቉                                           (98-a)						തଵߪ

ଶߪ ൌ
௥బ
ష

ఛതమ
ష തଶߪ ൅ ିܣ ቈ݁

஻ష൬ଵି
ഓതమ
ష

ೝబ
ష൰ െ ௥బ

ష

ఛതమ
ష቉  (98-b)																																																				തଶߪ

Therefore; 

ିܣ ൌ
ଵߪ െ

଴ݎ
ି

߬̅ଵ
ି തଵߪ

ቆ݁
஻ష൬ଵି

ఛതభ
ష

௥బ
ష൰ െ

଴ݎ
ି

߬ଵ̅
ିቇ തଵߪ

																																																		ሺ99ሻ 

Combining the equations: 

ଶߪ െ
଴ݎ
ି

߬̅ଶ
ି തଶߪ ൌ

ቈ݁
஻ష൬ଵି

ఛതమ
ష

௥బ
ష൰ െ

଴ݎ
ି

߬̅ଶ
ି቉ തଶߪ

ቈ݁
஻ష൬ଵି

ఛതభ
ష

௥బ
ష൰ െ

଴ݎ
ି

߬̅ଵ
ି቉ തଵߪ

ቆߪଵ െ
଴ݎ
ି

߬̅ଵ
ି  ሺ100ሻ																																ቇ	തଵߪ

ܽଵ ൌ ቆߪଶ െ
଴ݎ
ି

߬̅ଶ
ି ቇ	തଶߪ ሺ101																																																		തଵߪ െ ܽሻ 
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ܽଶ ൌ ቆߪଵ െ
଴ݎ
ି

߬̅ଵ
ି ቇ	തଵߪ ሺ101																																																			തଶߪ െ ܾሻ 

݂ሺିܤሻ ൌ ܽଵ ቈ݁
஻ష൬ଵି

ఛതభ
ష

௥బ
ష൰ െ

଴ݎ
ି

߬ଵ̅
ି቉ െ ܽଶ ቈ݁

஻ష൬ଵି
ఛതమ
ష

௥బ
ష൰ െ

଴ݎ
ି

߬̅ଶ
ି቉																												ሺ102ሻ 

This non-linear equation which contains a single variable determination	ିܤ,	can be 

performed based on the iterative Newton-Raphson Method according to the recursive 

expression: 

ሺିܤሻ௜ାଵ ൌ ሺିܤሻ௜ െ
௙൫ሺ஻షሻ೔൯

௙ᇲ൫ሺ஻షሻ೔൯
                                              (103) 

So; 

݂ᇱ൫ሺିܤሻ௜൯ ൌ ቀ
డ௙

డ஻ష
ቁ
ᇱ
ൌ ܽଵ ቂ1 െ

ఛതభ
ష

௥బ
షቃ ݁

஻ష൬ଵି
ഓതభ
ష

ೝబ
ష൰ െ ܽଶ ቂ1 െ

ఛതమ
ష

௥బ
షቃ ݁

஻ష൬ଵି
ഓതమ
ష

ೝబ
ష൰												(104) 

Afterwards, it is needed to compute the vector of unique damage parameter in the material 

which is a combination of tensile and compressive damage values obtained from the end 

of algorithm. If it is considered as a vector ࢊ௡ାଵ	with the size of number of integration 

points, it should be updated for each integration point at the end of each displacement 

enforcement increment based on the following equations: 

ା૚࢔࣌ ൌ ሺ1 െ ݀௡ାଵሻሾ࡯ሿሼ࢔ࢿା૚ሽ ൌ ሺ1 െ ݀௡ାଵሻሾ࣌ഥ࢔ା૚ሿ																																								(104) 

Since the unique damage parameter (d) is a scalar value, it should be calculated in 

accordance with the equivalent von Mises stress in each integration point. In 

Subsection 3.1.3, considering Equation (51), it is possible to rewrite the last equation in the 

following form: 

݀௡ାଵ ൌ 1 െ
ఙ෥೙శభ
ఙഥ෩೙శభ

																																																															 (105) 

Through application of the above relation at the end of the damage stage, the scalar damage 

vector is updated for each integration point. 

It must be remarked that the characteristic length will be modified within convergence 

studies in this work based on the different presented examples since it is a demanding 
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variable. Indeed the tensile parameters ܣା and ܪഥା are also changed due to their dependency 

on the characteristic length.  

It is worth to mention that the abovementioned equations are relevant to the non-local 

damage formulations. They will be extended to the localized damage one discussed in 

Subsection 4.3.  

4.2 Helmholtz Free Energy Relations 

Since the continuum damage mechanics is an irreversible process in the sense of 

thermodynamics, the defined constitutive model should be related to a free energy potential 

such as Helmholtz free energy. The Helmholtz free energy potential is known as a function 

of the internal variables indicating the compressive and tensile behaviour of concrete 

materials as reported by Lubliner (Lubliner, 1972), Salari et. al.(Salari, Saeb, Willam, 

Patchet, & Carrasco, 2004), Shao et. al. (Shao, Jia, Kondo, & Chiarelli, 2006)and Faria et. 

al. (R. Faria & Oliver, 1993). 

The current damage model is based on the uncoupled elasticity theory proposed by Faria 

and Oliver (R. Faria & Oliver, 1993). The total free energy is split into the elastic and 

plastic parts in the process. Since the elastic damage model is used here, regardless the 

plasticity effects, the form of Helmholtz energy relation is presented as follows: 

߰ሺߝ, ݀ା, ݀ିሻ ൌ ሺ1 െ ݀ାሻ߰଴
ାሺߝሻ ൅ ሺ1 െ ݀ିሻ߰଴

ିሺߝሻ																														(106) 

If ߰଴
ା and ߰଴

ି represent the free elastic energies in tension and compression states, 

respectively, Equations (107-a) and (107-b), the tensor multiplications, are proposed: 

߰଴
ା൫ߪതሺߝሻ൯ ൌ

ଵ

ଶ
:ഥା࣌ :૚ି࡯  (107-a)																																																					ഥ࣌

߰଴
ି൫ߪതሺߝሻ൯ ൌ

ଵ

ଶ
:ഥି࣌ :૚ି࡯  (107-b)																																																					ഥ࣌

According to Equation (107-a), it is obvious that the damage phenomenon influences only 

the elastic behaviour and does not have any influences on the plastic properties. It means 

that the internal variables are constituted by the elastic strain tensor with regard to damage 

variables in tension and compression in the rate-independent elastic damage model. Indeed, 
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 represents the (undamaged) linear elasticity second order tensor and could be defined	ଵି࡯

based on the Kronecker delta property as follows: 

௜௝௞௟࡯
ିଵ ൌ ௞௟௜௝࡯

ିଵ ൌ
ଵ

ா
ቂ
ଵାఔ

ଶ
൫ߜ௜௞ߜ௝௟ ൅ ௝௞൯ߜ௜௟ߜ െ  (108)																														௞௟ቃߜ௜௝ߜߥ

where E and ߥ are the undamaged Young’s modulus and Poisson’s ratio.  

In another definition, if the damage and plasticity effects are neglected, the free Helmholtz 

energy should be fulfilled the elastic free energy		߰଴. This decomposition is derived from 

Equations (106) and (107) with regard to	݀ା ൌ ݀ି ൌ 0 and		࣌ഥ ൌ  ,La Borderie)	ࢿ	:࡯

Berthaud, & Pijaudier-Cabot, 1990; Mazars & Pijaudier-Cabot, 1989). 

		߰଴ ൌ ߰଴
ା ൅ ߰଴

ି ൌ
ଵ

ଶ
ሺ࣌ഥା ൅ :ഥିሻ࣌ ഥ࣌	:૚ି࡯ ൌ

ଵ

ଶ
:ࢿ  (109)																																ࢿ	:࡯

Faria et. al. (R. Faria & Oliver, 1993) extended the free energy equation based on the 

effective stress tensor, in the following form: 

߰଴
ା ൌ

ଵାఔ

ଶா
:ഥା࣌ ഥ࣌ െ

ఔ

ଶா
 (110)																																										തାሻߪሺݎݐതሻߪሺݎݐ

Where ࣌ഥ is split in the tensile and compressive components, then ݎݐሺ࣌ഥሻ ൌ ഥାሻ࣌ሺݎݐ ൅

:ഥା࣌							 :and afterwards, the following condition must be satisfied	ഥିሻ࣌ሺݎݐ ഥି࣌ ൌ 0 

It is also possible to rewrite the recent equation of tensile elastic free energy in terms of the 

total energy and compressive one. 

߰଴
ା ൌ

ଵାఔ

ଶா
:ഥା࣌ ഥା࣌ െ

ఔ

ଶா
ഥାሻ࣌ଶሺݎݐ െ

ఔ

ଶா
 (111-a)																				ഥାሻ࣌ሺݎݐഥିሻ࣌ሺݎݐ

߰଴
ା ൌ

ଵ

ଶ
:ഥା࣌ :૚ି࡯ ഥା࣌ ൅ ൬െ

ఔ

ଶா
 (111-b)																																ഥାሻ൰࣌ሺݎݐഥିሻ࣌ሺݎݐ

It is visible that ࣌ഥାand ࣌ഥିaccounted for the positive and negative values due to their split 

form effective stress tensor in tension and compression respectively. So, the multiplication 

of ݎݐሺ࣌ഥିሻݎݐሺ࣌ഥାሻ is certainly negative leading to achieve the positive form in the second 

term of the right-hand side. Furthermore, the first double product of the tensile split 

effective stress component is obviously positive. Overall, the computation of the recent 

equation proves that	߰଴
ା ൒ 0. Moreover, the same procedure and relations are applied to 

show that	߰଴
ି ൒ 0.  
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All the aforementioned relations of the Helmholtz free energy equations demonstrate that 

if the damage variables are placed in the range of		0 ൑ ݀ାܽ݊݀	݀ି ൑ 1, the final expression 

of the Helmholtz free energy could be presented as follows: 

߰ ൌ ሺ1 െ ݀ାሻ߰଴
ା ൅ ሺ1 െ ݀ିሻ߰଴

ି																																										(112) 

As a result of Equation (112), it is shown that ߰ ൒ 0 since all the corresponding terms are 

non-negative as mentioned before. 

Based on the work conducted by Murakami (Murakami, 1983) and Ju (Ju, 1990), it is 

possible to establish the damage tensor for  the process of damage mechanics; but due to 

the nature of the rate-independent elastic damage model in this study, the scalar damage 

variables are considered an adequate approximation.  

Furthermore, in the case of elastic damage model, the Helmholtz free energy potential is 

defined as a function of the effective stress tensor ࣌ഥ in the concept of explicit scheme when 

the material experiences no plastic strain. But there are some studies conducted by Mazars 

et. al. (Mazars & Pijaudier-Cabot, 1989)and La Borderie et. al. (La Borderie et al., 1990) 

referring to the presence of the Cauchy stress tensor instead of the effective stress that it is 

usually obtained as a consequence of the algorithm.  

Subsequently, it is rational to represent the simplified Equations for Helmholtz free energy 

potential in terms of damage variables as Faria et. al. (R. Faria & Oliver, 1993)reported as 

follows: 

െ
డట

డௗశ
ൌ ߰଴

ା    for tension state 

െ
డట

డௗష
ൌ ߰଴

ି    for compression state 

In accordance with the concept of damage mechanics (R. Faria & Oliver, 1993), it is 

noticeable to mention that ߰଴
ା and ߰଴

ି might be identified as the thermodynamic forces 

subjected to the tensile and compressive damage variables with the specific amount of 

elastic strain energy respectively.   
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4.3 Damage Localization Formalism  

The non-local constitutive model has been formalized so far. This part is devoted to the 

process of localized damage mechanics. The standard local constitutive models are 

inappropriate for materials that exhibit strong strain softening (Jirásek, 1998). There are 

several ways to proceed the localization aspect. The simplest remedy is to adjust post peak 

slope of stress-strain curve as a function of the element size (Jirásek, 1998). More refined 

approaches ensuring the targets are known as localization limiters including the higher 

order gradient models  

So, The methodology adopted in this work is as follows: 

First, the non-local tensile and compressive damage values are calculated within the rate-

independent continuum damage mechanics formulations. After that, a circle with a certain 

radius should be defined. This circle covers the integration points (neighbour points) that 

are going to participate in damage localization process. It is centred in the interest 

integration point which is being analysed.  

ܲܩܴ ൌ ݊௣݄																																																										(113-a) 

The radius of this circle is so-called “RGP” dependent on the average distance between 

nodes, h. Consider the nodes discretised in specific divisions along x and y directions, h is 

computed based on the following relation: 

݄ ൌ
௅

ௗ௜௩௜௦௜௢௡௦	௔௟௢௡௚	௫
ൌ

஽

ௗ௜௩௜௦௜௢௡௦	௔௟௢௡௚	௬
                               (113-b) 

where ܮ and D are the dimensions of the specimen along x and y directions. 

Equation (113-b) shows that the nodal discretization could affect RGP.  Indeed, ݊௣ is a 

constant value depended on the order of the weight function discussed later. 

Any Gauss point locating at each integration cell is identified by the following vector: 

࢏࢏࢖ࢍ ൌ ൞

௜௜ݔ
௚௣

௜௜ݕ
௚௣

௜ܹ௜
௚௣
ൢ                                                (114) 
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where	ݔ௜௜
௚௣ and	ݕ௜௜

௚௣  are defined as the dimensions in x and y directions respectively; and 

௜ܹ௜
௚௣ is related to the weight of the corresponding Gauss point. It should be noted that the 

size of the above mentioned vector is 3 by the total number of the integration points 

discretized on the geometry.  

Afterwards, in order to detect the distance between the interest point and its neighbours, it 

is mandatory to define a condition as follows: 

݀௜௝ ൌ ට൫݃݌ሺ1, ݅݅ሻ െ ,ሺ1݌݃ ݆݆ሻ൯
ଶ
൅ ൫݃݌ሺ2, ݅݅ሻ െ ,ሺ2݌݃ ݆݆ሻ൯

ଶ
                 (115-a) 

 
Where d is the distance between two integration point (the interest and neighbour ones), 

the terms with ii and jj are relevant to the interest and neighbour integration points. The 

corresponding neighbour points are selected if: 

݀௜௝ ൏  (b-115)																																																														ܲܩܴ

Figure 8 clarifies the abovementioned explanation. 

 

Figure 8: The schematic view of the interest and neighbor integration points in three point bending 
beam 

 

Subsequently, after detecting the points satisfied the above conditions, it is necessary to 

define the weight function leading to sharing the damage value on the interest point with 
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the neighbours. There are some weight functions identified in different orders. The ones 

used in this analysis are presented on Table 1. 

Table 1: Weight function for localization process 

Order Weight function 

ݓ 0 ൌ 1 
2nd 

ݓ ൌ െ
൫݀௜௝൯

ଶ

ଶܲܩܴ
൅ 1 

3rd 
ݓ ൌ 2

൫݀௜௝൯
ଷ

ଷܲܩܴ
െ 3

൫݀௜௝൯
ଶ

ଶܲܩܴ
൅ 1 

 

Afterwards, the collected neighbour points participate in the damage localization so that 

the damage value of the interest point is distributed between them in accordance with their 

weights and it should be summed for all the points. It means that the summation is obtained 

within an iterative process. The weight of integration points resulted from Table 1 is 

updated for each acceptable neighbour points (satisfied Equation (115-b)) in tensile and 

compressive states based on the below summation:  

௧௢௧௔௟ݓ
ା/ି ൌ 	෍ݓሺ݆݆ሻ

௝௝

௡ୀଵ

																																														ሺ116ሻ 

Subsequently, another function should be defined which is the weighted damage parameter 

on the neighbour points. This is the step that the damage sharing process starts. The 

following relation is adopted within the below summation: 

ௗݓ
ା/ି ൌ 	෍݀ା/ିሺ݆݆ሻ ∗

௝௝

௡ୀଵ

 ሺ117ሻ																																				ሺ݆݆ሻݓ

Where ݀ା and	݀ି are the non-local tensile and compressive damage parameters belonging 

to the jjth integration point and ݓାand  ିݓ are the tensile and compressive weight 

functions.  

At the end, the new damage value of the interest point is obtained based on the divided 

product of the total summation of damage over the total weights. So, the damage is 

localized for that specific interest point as: 
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݀௟௢௖௔௟௜௭௘ௗ
ା ൌ

ௗݓ
ା

௧௢௧௔௟ݓ
ା 																																												ሺ118 െ ܽሻ 

݀௟௢௖௔௟௜௭௘ௗ
ି ൌ

ௗݓ
ି

௧௢௧௔௟ݓ
ି 																																											ሺ118 െ ܾሻ 

The numerical algorithm of the damage localization is presented in Box 1. 

 

 

Step n = 0 

(i) Set ݓ௧௢௧௔௟
ା ൌ 0					and     ݓ௧௢௧௔௟

ି ൌ 0                                  

(ii) Set ݓௗ
ା ൌ 0  and   ݓௗ

ି ൌ 0	                                               

(iii)   Defining RGP                                                                        Equation (113-a) 

Step  n+1,   loop over all integration points 

         For the iith interest point  

(iv)   Loop over all the other integration points (neighbours) 

Check the distance    ݀௜௝ < RGP                                                Equation (115) 

     If yes, it is the acceptable neighbour point 

         Use the weight function (W) based on table 1  

         Update  ݓ௧௢௧௔௟
ା  and ݓ௧௢௧௔௟

ି                                              Equation (116) 

        Update ݓௗ
ା	and ݓௗ

ି                                                         Equation (117) 

           If no, the neighbour integration point is outside the circle, go for the next integration point. 

(v)  Calculation of the localized damage 

       ሺ݀௟௢௖௔௟௜௭௘ௗ
ା ሻ௜௜ ൌ

௪೏
శ

௪೟೚೟ೌ೗
శ                                   For tension, Equation (118-a) 

       ሺ݀௟௢௖௔௟௜௭௘ௗ
ି ሻ௜௜ ൌ

௪೏
ష

௪೟೚೟ೌ೗
ష                                  For compression, Equation (118-b) 

(vi) Updating the vector of localized tensile and compressive damage for all the interest points 

End of test 

Box 1: The numerical algorithm to obtain localized damage parameters 
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After the damage localization stage, it is possible to calculate the Cauchy stress tensor 

based on the following relation developed form of Equation (83-b) (M.A. Crisfield, 1996): 

࣌ ൌ 	 ሺ1 െ ݀௟௢௖௔௟௜௭௘ௗ
ା ሻ࣌ഥା ൅ ሺ1 െ ݀௟௢௖௔௟௜௭௘ௗ

ି ሻ࣌ഥି																					(119) 

Where ࣌ഥା and ࣌ഥି are the effective stress tensor in tension and compression respectively. 

To calculate the total damage parameter, it is required to use the equivalent von Mises 

stress since the damage is a scalar parameter. Thus, Equation (51) is applicable here. 

෩ߪ ൌ ሺ1 െ ݀ሻߪ෤                                                  (120) 

݀ ൌ 1 െ
ఙ෩

ఙ෥
																																																																(121) 

Where d is the total damage value calculated for each integration point and ߪ෩ and ߪ෤ are the 

equivalent von Mises stress in effective and total (Cauchy stress) terms (M.A. Crisfield, 

1996). It is noticeable that the obtained total damage is a result of localized tensile and 

compressive damage parameters.  

At the end of the procedure, the vector of total damage ሺ݀ሻis updated for each interest 

point, to be used in the further calculations. 

4.4 Computational Implementation of the Constitutive Law 

The strain field is determined when the routine performs for each step of displacement 

enforcement, then the internal variables are updated directly as the outcome of the 

algorithm. This mechanism relies on the strain-driven formalism of the corresponding 

constitutive model. Box 2 presents the return-mapping algorithm of rate-independent 

elastic damage for evaluation of Cauchy Stress Tensor with regard to a given strain tensor 

for any pseudo-time stepping scheme in the enforcement of displacement using RPIM 

meshless formulations. Indeed this algorithm is based on the mathematical relations for 

non-local damage mechanics presented in previous sections.  

It should be noted that return-mapping algorithm is applied with the non-linear Newton-

Raphson method to acquire the non-linear damage solution. The principal effective stress 

tensor is adopted instead of the general form. 
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Box 2: Algorithm to evaluate the stress tensor for the elastic damage model – non-local state 

 

As mentioned before, it is possible to present the return-mapping algorithm with regard to 

the damage localization formalism (Section 4.3). Box 3 represents the return mapping 

algorithm to calculate the localized damage parameters with regard to the damage 

localization concept.  

 

 

 

 

 

 

Step       ݊ ൌ 0 
(i)  Set    ݎ௡ା ൌ ଴ݎ

ା , ݎ௡ି ൌ  ଴ି                                Stress normsݎ

          ݀௡ା ൌ 0   , 	݀௡ି ൌ 0                        Scalar damage variables 

Step      ݊ ൅ 1 

(ii) Evaluate 			࢔ࢿା૚			                                              Trial strain, Eq. (23) 

Then, compute ࣌ഥ࢔ା૚ ൌ ࡯ ∶  ା૚              Effective stress of damage routine, Eq. (80)࢔ࢿ

Principal stress and directions                  refer to Section 3.1.2 

(iii) Split  ࣌ഥ࢔ା૚   into    ࣌ഥ࢔ା૚
ା     and   ࣌ഥ࢔ା૚

ି              Effective tensile and compressive stress, Eq. (81) 

                      Obtain  ߪ௢௖௧ି , ߬௢௖௧ି                                       Referring to Section 3.1.4, Equations (57) and (59) 

(iv) Calculate      ߬௡̅ାଵ
ା     and   ߬௡̅ାଵି                         Tensile and compressive equivalent stress, Eq. (86) 

      Test for tensile and compressive damage 

(v) If  ߬̅௡ାଵ
ା ൐ ௡ାଵݎ   ௡ା    ,setݎ

ା ൌ ,௡ାݎሼݔܽ݉ ߬௡̅ାଵ
ା ሽ       Update tensile damage threshold, Eq. (92-a) 

If  ߬̅௡ାଵି ൐ ௡ାଵିݎ   ௡ି   , setݎ ൌ ,௡ିݎሼݔܽ݉ ߬௡̅ାଵି ሽ       Update compressive damage threshold, Eq. (92-b) 

      Update of damage variables 

(vi) ݀௡ାଵ
ା ൌ ௡ାଵݎାሺܩ

ା ሻ                                                Tensile damage parameter, Eq. (93-a) 

									݀௡ାଵି ൌ ௡ାଵିݎሺିܩ ሻ                                                Compressive damage parameter, Eq. (93-b) 

      Compute the final Cauchy stress tensor 

(vii) ࢔࣌ା૚ ൌ ሺ1 െ ݀௡ାଵ
ା ሻ࣌ഥ࢔ା૚

ା ൅	ሺ1 െ ݀௡ାଵି ሻ࣌ഥ࢔ା૚
ି                   Based on Eq. (83-b) 

End of test. 
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Box 3: Algorithm to evaluate the damage parameter for the elastic localized rate-independent 
damage model 

 

The differences between the algorithms presented in Box 2 and Box 3 are related to the 

stage where the tensile and compressive damage terms are updated in. Then, the Cauchy 

stress tensor is computed based on the localized tensile and compressive damage variables 

and finally the total damage is obtained.  

 

 

 

Step       ݊ ൌ 0 
(i)  Set    ݎ௡ା ൌ ଴ݎ

ା , ݎ௡ି ൌ ଴ݎ
ି                                Stress norms 

          ݀௡ା ൌ 0   , 	݀௡ି ൌ 0                        Scalar damage variables 

Step      ݊ ൅ 1 

(ii) Evaluate 			࢔ࢿା૚			                                              Trial strain, Eq. (23) 

Then, compute ࣌ഥ࢔ା૚ ൌ ࡯ ∶  ା૚             Effective stress of damage routine, Eq. (80)࢔ࢿ

Principal stress and directions                  Refer to Section 3.1.2 

(iii) Split  ࣌ഥ࢔ା૚   into    ࣌ഥ࢔ା૚
ା     and   ࣌ഥ࢔ା૚

ି              Effective tensile and compressive stress, Eq. (81) 

                      Obtain  ߪ௢௖௧ି , ߬௢௖௧ି                                       Referring to Section 3.1.4, Equations (57) and (59) 

(iv) Calculate      ߬௡̅ାଵ
ା     and   ߬௡̅ାଵି                         Tensile and compressive equivalent stress, Eq. (86) 

      Test for tensile and compressive damage 

(v) If  ߬௡̅ାଵ
ା ൐ ௡ାଵݎ   ௡ା    ,setݎ

ା ൌ ,௡ାݎሼݔܽ݉ ߬௡̅ାଵ
ା ሽ       Update tensile damage threshold, Eq. (92-a) 

If  ߬௡̅ାଵି ൐ ௡ାଵିݎ   ௡ି   , setݎ ൌ ,௡ିݎሼݔܽ݉ ߬௡̅ାଵି ሽ       Update compressive damage threshold, Eq. (92-b) 

      Update of damage variables 

(vi) ݀௡ାଵ
ା ൌ ௡ାଵݎାሺܩ

ା ሻ                                                Tensile damage parameter, Eq. (93-a) 

									݀௡ାଵି ൌ ௡ାଵିݎሺିܩ ሻ                                                Compressive damage parameter, Eq. (93-b) 

(vii) Go to Box 1, obtain the localized tensile and compressive damage parameters 

(viii) Compute the final Cauchy stress tensor 

                        ોܖା૚ ൌ ൫1 െ 	ሺ݀௡ାଵ
ା ሻ௅௢௖௔௟௜௭௘ௗ൯ોഥܖା૚

ା ൅ 	൫1 െ 	ሺ݀௡ାଵି ሻ௅௢௖௔௟௜௭௘ௗ൯ોഥܖା૚
ି     Equation (119) 

(ix) Computation of total damage parameter 

                      ݀ ൌ 1 െ ఙ෩

ఙ෥
                                                                                                            Equation (121) 

End of test. 
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Chapter	5	

5 Numerical Applications on Axisymmetric Deformation 
Theory 

In this chapter, first the RPIM is calibrated and validated for the axisymmetric deformation 

theory using the Galerkin weak formulation. Afterwards, three distinct examples of circular 

plates with different boundary conditions are analysed. All the examples are compared with 

the FEM solution obtained with the commercial FEM software ANSYS. In the FEM 

analysis it was used the PLANE182 element, which is a linear four-node axisymmetric 

element. 

In this work the transversal centre displacement of the circular plate in full magnitude is 

chosen, ( 0)zu r   and the normalized value, ( 0)zu r   which can be determined with: 

3

4
(0) 100 (0)z z

E H
u u

R q

 
   

 
 (122) 

where q  is the magnitude of external force applied on the circular plate and E  the material 

elasticity modulus. The scalars R  and H  represent the radius and the thickness of the 

plate respectively. 

Additionally, the first order local error on the centre of the plate is presented in all tables,    

( 0) ( 0)

( 0)

RPIM exact
z z

exact
z

u r u r
error

u r

  



, (123) 

being ( 0)RPIM
zu r   the solution obtained with the meshless method and ( 0)exact

zu r   the 

solution obtained with the considered exact solution. 
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Regarding the material properties, in all examples are considered: Elasticity modulus 

610E Pa  and Poisson’s coefficient 0.3  . 

5.1 Circular Plate under Uniform Distributed Load 

In this section it is studied a circular plate under a uniform distributed load (UDL) with 

magnitude: 2100 /q N m . Two distinct boundary conditions are studied, which include 

simply supported (SSSS) and clamped (CCCC) contours. The analytical solution of the 

circular plate for the displacement of the circular SSSS plate under an UDL is obtained 

from the following expression (Timoshenko & Woinowsky-Krieger) 

 

 

2 2 2 2

3

2

5
1

( )
64

12 1

z

q R r R r

u r
E H






        



. (124) 

The analytical solution of the circular CCCC plate submitted to a UDL is obtained with,  

 

 

22 2

3

2

( )
64

12 1

z

q R r
u r

E H








. 
(125) 

where r  is defined as the distance between the interest point P  and the centre of the plate, 

Figure 9. 

 
Figure 9 : Circular plate under circular uniform distributed load 
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5.1.1 Convergence Study 

In this subsection the convergence rate of the RPIM is studied. Consider the two-

dimensional domain presented in Figure 9. In this study it is considered the following 

dimensions: 20R m  and 1H m . The problem domain is discretized in a regular mesh 

of r zn n  nodes, being rn  the number of nodes along the direction r  and zn  the number 

of nodes on direction z . The problem was analysed using the RPIM and the FEM. Both 

numerical solutions are compared with the analytical exact solution for the SSSS circular 

plate, Equation (124), and for the CCCC circular plate, Equation (125). 

The results regarding the convergence study are shown in Table 2 and Table 3 respectively 

for the SSSS and the CCCC cases. The results show that the final converged values of the 

RPIM solutions and the FEM solutions are very close to each other, Figure 10. 

Additionally, it is visible that using more than 123 nodes permits to obtain errors below 

1%.  

Table 2 : Transversal displacement values of exact solution, RPIM and FEM, with the variation of 
the number of nodes in each direction for the SSSS case. 

 
 

              

nodes 
 

zu  (m) – transversal 

displacement 

 

zu  – normalized displacement 
 Error 

(%) 
Error 
(%) 

zn  rn  total  exact RPIM FEM  exact RPIM FEM 
 RPIM-

exact 
FEM-
exact 

              
              
3 41 123  11.1300 10.9613 11.1570  69.5625 68.5079 69.7313  1.5160 0.2426 
5 81 405  11.1300 11.0887 11.1560  69.5625 69.3041 69.7250  0.3714 0.2336 
9 161 1449  11.1300 11.1452 11.1560  69.5625 69.6575 69.7250  0.1366 0.2336 
17 321 5457  11.1300 11.1602 11.1560  69.5625 69.7512 69.7250  0.2713 0.2336 
              

 

Table 3 : Transversal displacement values of exact solution, RPIM and FEM, with the variation of 
the number of nodes in each direction for the CCCC case. 

 
 

              
nodes  

zu  (m) – transversal displacement  
zu  – normalized displacement  Error (%) Error (%) 

zn
 

rn  total  exact RPIM FEM  exact RPIM FEM  RPIM-exact FEM-
Exact 

              
3 41 123  2.7300 2.5823 2.7480  17.0625 16.1392 17.1750  5.4111 0.6593 
5 81 405  2.7300 2.7086 2.7518  17.0625 16.9291 17.1988  0.7821 0.7985 
9 161 1449  2.7300 2.7432 2.7539  17.0625 17.1449 17.2119  0.4830 0.8755 
17 321 5457  2.7300 2.7521 2.7548  17.0625 17.2009 17.2175  0.8111 0.9084 
`              
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                                               (a)                                                                     (b) 

Figure 10 : Transversal displacement values obtained from exact, RPIM and FEM methods 
regarding of number of nodes for (a) SSSS, (b) CCCC. 

 

5.1.2 Numerical Integration Scheme 

In order to determine the optimal number of integration points inside every integration cell, 

it is required to perform a transversal study on the several quadrature schemes of Gaussian 

points inside the integration cell. 

Consider Figure 11 , in which a general example of an integration cell is presented. Inside 

the integration cell are inserted 3 3  integration points respecting the Gauss-Legendre 

quadrature scheme. In this study all the integration cells respect the geometric disposition 

shown in Figure 11, i.e. all integration cells contain 9 nodes and Q Qn n  integration points 

respecting the Gauss-Legendre quadrature scheme. Aiming to determine the optimal 

number of integration points inside each integration cell, the value Qn  was varied between 

2  and 10 . All the material, geometrical and loading conditions considered in 

Subsection 5.1.1 are assumed. The results for the SSSS and the CCCC cases are shown 

respectively in Table 4 and Table 5. 
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The values on the tables indicate that the solution starts to stabilize to integration schemes 

using 5Qn  . However, the increase of Qn  increases the computational cost of the RPIM 

analysis. Thus, in this work, in all further examples it is used 3 3  integration points inside 

each integration cell (see Figure 11), since with this integration scheme it is possible to 

obtain solutions showing acceptable errors (below 0.8%) without increasing significantly 

the computational cost of the analysis. 

 

Figure 11: An integration cell with 3x3 integration points in the discrete model 

 

Table 4 : Transversal displacement values obtained for each integration scheme for the exact 
solution, RPIM and FEM methods for the SSSS case. 

 
              

discretization  
zu  (m) – transversal displacement  

zu  – normalized displacement  Error (%) Error (%) 

Integration 
scheme zn  rn  

 
exact RPIM FEM  exact RPIM FEM 

 RPIM-
exact 

FEM-
exact 

              
              

2x2 5 81  11.1300 11.0987 11.1560  69.5625 69.3669 69.7250  0.0028 0.2336 
3x3 5 81  11.1300 11.0887 11.1560  69.5625 69.3041 69.7250  0.0037 0.2336 
4x4 5 81  11.1300 11.0863 11.1560  69.5625 69.2895 69.7250  0.0039 0.2336 
5x5 5 81  11.1300 11.0781 11.1560  69.5625 69.2379 69.7250  0.0047 0.2336 
6x6 5 81  11.1300 11.0900 11.1560  69.5625 69.3123 69.7250  0.0036 0.2336 
7x7 5 81  11.1300 11.0901 11.1560  69.5625 69.3130 69.7250  0.0036 0.2336 
8x8 5 81  11.1300 11.0903 11.1560  69.5625 69.3144 69.7250  0.0036 0.2336 
9x9 5 81  11.1300 11.0874 11.1560  69.5625 69.2960 69.7250  0.0038 0.2336 

10x10 5 81  11.1300 11.0899 11.1560  69.5625 69.3119 69.7250  0.0036 0.2336 
              

 
 

 

 

 



Chapter	5:	Numerical	Applications	on	Axisymmetric	Deformation	Theory		

 

56 
 

Table 5 : Transversal displacement values obtained for each integration scheme for the exact 
solution, RPIM and FEM methods for the CCCC case. 

 
              

discretization 
 

zu  (m) – transversal 

displacement 

 

zu  – normalized displacement 
 Error 

(%) 
Error 
(%) 

Integration 
scheme zn  rn  

 
exact RPIM FEM  exact RPIM FEM 

 RPIM-
exact 

FEM-
exact 

              
              

2x2 5 81  2.7300 2.6881 2.7539  17.0625 16.8006 17.2119  1.5347 0.8755 
3x3 5 81  2.7300 2.7086 2.7539  17.0625 16.9291 17.2119  0.7821 0.8755 
4x4 5 81  2.7300 2.7018 2.7539  17.0625 16.8861 17.2119  1.0337 0.8755 
5x5 5 81  2.7300 2.7005 2.7539  17.0625 16.8780 17.2119  1.0816 0.8755 
6x6 5 81  2.7300 2.7038 2.7539  17.0625 16.8985 17.2119  0.9610 0.8755 
7x7 5 81  2.7300 2.7056 2.7539  17.0625 16.9098 17.2119  0.8952 0.8755 
8x8 5 81  2.7300 2.7044 2.7539  17.0625 16.9027 17.2119  0.9365 0.8755 
9x9 5 81  2.7300 2.7041 2.7539  17.0625 16.9004 17.2119  0.9498 0.8755 

10x10 5 81  2.7300 2.7043 2.7539  17.0625 16.9021 17.2119  0.9401 0.8755 
              

 

5.1.3 Influence-domain 

This part purposes to determine the optimal number of nodes inside the influence-domains. 

Thus, first it is assumed a circular plate showing the same geometrical properties of 

previous parts. The material properties and the external load conditions are coincident as 

well. The problem domain is then discretized in a regular mesh of 81x5 nodes and an 

integration background mesh is constructed, as described in Subsection 5.1.2, Figure 11. 

Afterwards each integration point Ix  searches for the closest IN  nodes. These IN  nodes:

1 2{ , , ... , }
II NN n n n , form the influence-domain of interest point Ix . In order to obtain the 

optimal value for IN , the described example was studied considering 34 integer values for

{8,9,..., 40, 41}IN   (see Figure 1 referring to the influence domain definition). 

The transversal centre displacements of each study is presented in Figure 12(a) for the 

SSSS circular plate and in Figure 12(b) for the CCCC circular plate. For comparison 

purposes it is presented also the FEM solution and the analytical solution (which are 

constant since both do not depend on IN ). To both graphs it was added an adjustment 

curve using the moving-least squares with a cubic polynomial basis – “cubic 

approximation”. These curves are adjusted to the RPIM values, and show the solution 

trend. In Figure 12(a) and (b), it is visible that the minimum of the cubic approximation 
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function is obtained on the vicinity of 20IN  . Thus, future examples in this work are 

analysed considering 20IN   nodes inside each influence-domain. 

 
(a) 
 

 
(b) 
 
 

Figure 12 : Transversal displacement values obtained from RPIM, exact and FEM regarding the 
number of nodes inside the influence-domain for (a) SSSS case and (b) CCCC cases. 
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5.1.4 RPIM Behavior with Irregular Meshes 

It is important to determine the influence of the mesh irregularity on the RPIM 

performance. Thus, this part studies the behaviour of the RPIM when random irregular 

nodal meshes are used in the analysis. 

In order to generate an irregular mesh the following procedure is considered. First, a regular 

mesh is constructed, with all nodes equally spaced and aligned as the mesh example in 

Figure 13(a), afterwards all the nodes \ x  are affected with,  

 

 

1
2

2
2

2

2

new
i i

new
i i

r h
x x cos r

r h
y y sin r


  




  








, (126) 

being ix  the initial coordinates of node in , new
ix  the new coordinates obtained for node 

in  and h  is the inter-nodal distance shown in Figure 13(a). The random coefficient is 

defined by )1,0(~ Nr   and   is a parameter that controls the irregularity level of the mesh. 

The effect of the irregularity parameter   is shown in Figure 13. Notice that if     the 

mesh is perfectly regular, Figure 13(a), and with the decrease of   the mesh becomes more 

and more irregular, Figure 13(b) and (c). 

The same circular plate described in the previous section was analysed considering several 

irregular nodal meshes with 81 5r zn n    nodes, varying the irregularity parameter from 

100   to 2  . Each constructed irregular mesh was used to analyse the problem 

considering the RPIM. The obtained results are presented in Figure 14(a) for the SSSS 

circular plate case and in Figure 14(b) for the CCCC circular plate case. 

The results show that the SSSS and CCCC solutions only start to show significant 

instabilities for meshes constructed with 4  , which are in fact extremely irregular 

meshes. For 4   the results are stable and accurate. This example shows that, for the 

axisymmetric formulation, the RPIM permits to obtain accurate results using highly 

irregular meshes, therefore showing robustness. 
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(a)                                           (b)                                               (c) 
 
Figure 13 : (a) 7×4 regular mesh, (b) irregular mesh with λ=2 and (c) irregular mesh with λ=5. 
 
 

  
 
 (a) (b) 
 

Figure 14 : Transversal centre displacements obtained from RPIM varying the irregularity 
parameter for the (a) SSSS and (b) CCCC case. 
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5.1.5 Variation of R/H 

In this section several R/H ratios are considered and analysed. Consider the generic circular 

plate under the UDL 2100 /q N m  presented in Figure 9. Four distinct circular plates are 

considered, each one with a distinct radius {10, 20,50,100}R m  and all of them with the 

same thickness 1.0H m . Thus, each of the four circular plates is analysed considering 

the RPIM and the FEM with axisymmetric formulation. 

The results regarding the SSSS circular plate are presented in Table 6 and the results 

obtained for the CCCC circular plate are shown in Table 7. 

Both tables show that the RPIM solution is very close with the exact analytical solution 

and the FEM solution, permitting to demonstrate the RPIM accuracy. 

 

Table 6 : Transversal displacement values obtained with the variation of the R/H ratio for the SSSS 
case. 
 
 

               

discretization  zu  (m) – transversal displacement  zu   – normalized 

displacement 
 

Error 
(%) 

Error 
(%) 

Error 
(%) 

R/H zn  rn   exact RPIM FEM  exact RPIM FEM  
RPIM-
exact 

RPIM-
FEM 

FEM-
exact 

               
               

10 9 81  0.6956 0.7037 0.7023  69.5625 70.3718 70.2290  1.1635 0.2034 0.9581 
20 9 161  11.1300 11.1537 11.1560  69.5625 69.7107 69.7250  0.2131 0.0205 0.2336 
50 9 401  434.7656 434.5531 434.9200  69.5625 69.5285 69.5872  0.0489 0.0844 0.0355 

100 9 801  6956.2500 6946.8230 6956.9000  69.5625 69.4682 69.5690  0.1355 0.1448 0.0093 
               

 
 
 

 
Table 7 : Transversal displacement values obtained with the variation of the R/H ratio for the CCCC 
case. 
 
 

               

discretization  zu  (m) – transversal displacement  zu  – normalized 

displacement 
 

Error 
(%) 

Error 
(%) 

Error 
(%) 

R/H zn  rn   exact RPIM FEM  exact RPIM FEM  
RPIM-
exact 

RPIM-
FEM 

FEM-
exact 

               
               

10 9 81  0.1770 0.1706 0.1775  17.0625 17.6962 17.7470  3.7137 0.2865 4.0117 
20 9 161  2.7471 2.7300 2.7539  17.0625 17.1695 17.2119  0.6273 0.2460 0.8755 
50 9 401  106.4844 106.6406 106.7200  17.0625 17.0375 17.0752  0.1465 0.2208 0.0745 

100 9 801  1702.2440 1706.2500 1706.1000  17.0625 17.0224 17.0610  0.2348 0.2260 0.0088 
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5.2 Circular Plate under Circular Punctual Load 

In this part, the circular plate submitted to a circular punctual load (CPL) 100 /q N m  

presented in Figure 15(a) is studied. The circle in which the punctual load is applied 

presents a radius b . In this study three distinct analyses, with three different radius b , are 

considered: {0.25 , 0.5 ,0.75 }b R R R . 

Regarding the essential boundary conditions, in the present example two distinct cases are 

once more considered: the complete contour of the plate simply supported (SSSS), Figure 

15(b), and the full plate’s contour clamped (CCCC), Figure 15(c). 

The exact analytical solution for the SSSS plate with a CPL can be found in (S. Timoshenko 

& Woinowsky-Krieger, n.d.).  
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. (127) 

The analytical solution of the circular CCCC plate submitted to a CPL is obtained with 

(Stephen Timoshenko & Woinowsky-Krieger, n.d.),  
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. (128) 

First a convergence study is performed. For this purpose, the plate geometry is considered 

with 20R m  and 1H m . The results regarding the convergence study are presented in 

Table 8 for the SSSS case and in Table 9 for the CCCC case. 
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Analysing the obtained results, it is possible to conclude that the RPIM presents a fast 

convergence rate and that the last converged solution, for the transversal displacement in 

the centre of the plate, is very close with the exact analytical solution and the FEM solution, 

for both SSSS and CCCC cases. 

 

   
(a)    (b)    (c) 

 
Figure 15 : (a) Circular plate under circular punctual load. (b) Simply supported boundary condition. 
(b) Clamped boundary condition. 
 

Table 8 : Transversal displacement and error values for R/H=20 of the SSSS circular plate under 
circular punctual load. 

 
               

 discretization  zu  (m) – transversal 

displacement 
 zu  – normalized displacement Error (%) 

Error 
(%) 

b zn  rn  total  exact RPIM FEM  exact RPIM FEM 
RPIM-
exact 

RPIM-
FEM 

              
              

R/4 

3 41 123  0.6024 0.5928 0.6049  3.7649 3.7051 3.7804 1.5881 1.9932 
5 81 405  0.6024 0.6020 0.6048  3.7649 3.7625 3.7799 0.0620 0.4602 
9 161 1449  0.6024 0.6042 0.6048  3.7649 3.7761 3.7797 0.2983 0.0947 
17 321 5457  0.6024 0.6046 0.6047  3.7649 3.7790 3.7796 0.3761 0.0155 

              
              

R/2 

3 41 123  0.8503 0.8342 0.8528  5.3142 5.2137 5.3300 1.8914 2.1824 
5 81 405  0.8503 0.8486 0.8527  5.3142 5.3036 5.3294 0.1996 0.4839 
9 161 1449  0.8503 0.8518 0.8527  5.3142 5.3238 5.3292 0.1809 0.1010 
17 321 5457  0.8503 0.8525 0.8527  5.3142 5.3283 5.3292 0.2645 0.0176 

              
              

3R/4 

3 41 123  0.6445 0.6317 0.6461  4.0281 3.9482 4.0382 1.9834 2.2277 
5 81 405  0.6445 0.6429 0.6461  4.0281 4.0180 4.0378 0.2521 0.4915 
9 161 1449  0.6445 0.6454 0.6460  4.0281 4.0336 4.0377 0.1351 0.1021 
17 321 5457  0.6445 0.6459 0.6461  4.0281 4.0371 4.0378 0.2224 0.0182 
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Table 9 : Transversal displacement and error values for R/H=20 of the CCCC circular plate under 
circular punctual load. 

 
               

 discretization  zu  (m) – transversal displacement  zu  – normalized displacement  
Error 
(%) 

Error (%) 

b zn  rn  total  exact RPIM FEM  exact RPIM FEM  
RPIM-
exact 

RPIM-FEM 

               
               

R/4 

3 41 123  0.2086 0.1985 0.2103  1.3039 1.2406 1.3141  4.8583 5.5913 
5 81 405  0.2086 0.2083 0.2105  1.3039 1.3017 1.3153  0.1705 1.0338 
9 161 1449  0.2086 0.2101 0.2105  1.3039 1.3129 1.3159  0.6907 0.2227 
17 321 5457  0.2086 0.2105 0.2106  1.3039 1.3155 1.3161  0.8890 0.0452 

               
               

R/2 

3 41 123  0.2203 0.2071 0.2214  1.3767 1.2945 1.3838  5.9710 6.4506 
5 81 405  0.2203 0.2192 0.2218  1.3767 1.3699 1.3859  0.4972 1.1564 
9 161 1449  0.2203 0.2214 0.2219  1.3767 1.3835 1.3869  0.4912 0.2511 
17 321 5457  0.2203 0.2219 0.2220  1.3767 1.3866 1.3874  0.7226 0.0529 

               
               

3R/4 

3 41 123  0.0933 0.0864 0.0936  0.5828 0.5398 0.5848  7.3888 7.6962 
5 81 405  0.0933 0.0926 0.0939  0.5828 0.5790 0.5868  0.6654 1.3326 
9 161 1449  0.0933 0.0938 0.0940  0.5828 0.5861 0.5878  0.5576 0.2877 
17 321 5457  0.0933 0.0941 0.0941  0.5828 0.5878 0.5882  0.8546 0.0676 

               
 

 

Additionally, it was obtained the transversal displacement in the centre of the plate 

considering several /R H  ratios. Thus, four distinct circular plate geometries were 

considered: 10R m  and 1H m ; 20R m  and 1H m ; 50R m  and 1H m ; and 

100R m  and 1H m . The results are presented in Table 10 and Table 11, respectively 

for the SSSS and CCCC cases. 

In the tables it is possible to visualize that the RPIM error with respect to the analytical 

solution is always very low. Considering only the results for the thin plates / 20R H  , for 

the SSSS case the error is about 0.1%  to 0.2%  and for the CCCC case the error fluctuates 

around 0.2% . The RPIM’s error with respect to the analytical solution for the circular 

plates with / 20R H   (thick plate) is always higher. This phenomenon can be explained 

with the fact that the exact solutions presented in Equation (127) and Equation (128) are 

thin plate solutions. Nevertheless, from Table 10 and Table 11 it is possible to confirm that 

the RPIM solution is accurate, since the difference between the RPIM solution and the 

FEM solution is around 0.1%  in the SSSS case and 0.2% ~ 0.3%  in the CCCC, regardless 

the analysed /R H  ratio. 
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Table 10 : Transversal displacement for distinct b and R/H values regarding the SSSS circular plate 
under circular punctual load. 
 
 

               

 discretization  zu  (m) – transversal displacement  zu  – normalized displacement  
Error 
(%) 

Error 
(%) 

b R/H zn
 

rn   exact RPIM FEM  exact RPIM FEM  
RPIM-
exact 

RPIM-
FEM 

               
               

R/4 

10 9 81  0.0753 0.0764 0.0765  7.5298 7.6407 7.6493  1.4738 0.1121 
20 9 161  0.6024 0.6042 0.6048  3.7649 3.7761 3.7797  0.2983 0.0947 
50 9 401  9.4122 9.4093 9.4181  1.5060 1.5055 1.5069  0.0306 0.0933 

100 9 801  75.2975 75.2039 75.3090  0.7530 0.7520 0.7531  0.1243 0.1395 
               
               

R/2 

10 9 81  0.1063 0.1074 0.1075  10.6284 10.7379 10.750  1.0304 0.1126 
20 9 161  0.8503 0.8518 0.8527  5.3142 5.3238 5.3292  0.1809 0.1010 
50 9 401  13.2855 13.2781 13.2910  2.1257 2.1245 2.1266  0.0555 0.0970 

100 9 801  106.2839 106.1363 106.3000  1.0628 1.0614 1.0630  0.1388 0.1540 
               
               

3R/4 

10 9 81  0.0806 0.0813 0.0814  8.0562 8.1264 8.1364  0.8708 0.1229 
20 9 161  0.6445 0.6454 0.6460  4.0281 4.0336 4.0377  0.1351 0.1021 
50 9 401  10.0703 10.0638 10.0740  1.6112 1.6102 1.6118  0.0646 0.1014 

100 9 801  80.5624 80.4459 80.5700  0.8056 0.8045 0.8057  0.1447 0.1541 
               

 

 

 

Table 11 : Transversal displacement for distinct b and R/H values regarding the CCCC circular 
plate under circular punctual load. 
 
 

               

 discretization  zu  (m) – transversal displacement  zu –normalized 

displacement 
 

Error 
(%) 

Error (%) 

b R/H zn

 
rn   exact RPIM FEM  exact RPIM FEM  

RPIM-
exact 

RPIM-
FEM 

               
               

R/4 

10 9 81  0.0261 0.0270 0.0271  2.6079 2.7044 2.7117  3.7022 0.2682 
20 9 161  0.2086 0.2101 0.2105  1.3039 1.3129 1.3159  0.6906 0.2227 
50 9 401  3.2598 3.2567 3.2634  0.5216 0.5211 0.5221  0.0976 0.2063 
100 9 801  26.0788 26.0267 26.0820  0.2608 0.2603 0.2608  0.1998 0.2121 

               
               

R/2 

10 9 81  0.0275 0.0284 0.0285  2.7534 2.8401 2.8486  3.1494 0.2984 
20 9 161  0.2203 0.2214 0.2219  1.3767 1.3835 1.3869  0.4912 0.2511 
50 9 401  3.4417 3.4359 3.4438  0.5507 0.5497 0.5510  0.1695 0.2294 
100 9 801  27.5339 27.4666 27.5310  0.2753 0.2747 0.2753  0.2442 0.2339 

               
               

3R/4 

10 9 81  0.0117 0.0121 0.0122  1.1656 1.2126 1.2168  4.0284 0.3473 
20 9 161  0.0932 0.0938 0.0940  0.5828 0.5861 0.5878  0.5576 0.2909 
50 9 401  1.4570 1.4535 1.4573  0.2331 0.2326 0.2332  0.2423 0.2614 
100 9 801  11.6562 11.6206 11.6510  0.1166 0.1162 0.1165  0.3054 0.2611 
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To end this study, a circular plate with 5R m  and 1H m  is considered. The circular 

plate is submitted to the same CPL previously described: 100 /q N m  and 

{0.25 , 0.5 , 0.75 }b R R R , and the same essential boundary conditions cases: SSSS and 

CCCC. The two-dimensional section domains described in Figure 15(b) and (c) are 

discretized in a regular mesh of 81 5  nodes. For each of the analyses the following stress 

fields were obtained: rr , zz  and rz . The results obtained with the RPIM regarding the 

SSSS case are presented in Figure 16. The stress fields for the CCCC case are presented in 

Figure 17. 

The results show that the stress fields obtained with the RPIM are smooth. 

 

 
(a)                                      (b)                                            (c) 

 
Figure 16 : Stress field distribution of the simply supported circular plate under circular punctual 

load obtained for (a) b=R/4, (b) b=R/2 and (c) b=3R/4. 
 
 

 

 
(a) (b) (c) 

 
Figure 17 : Stress field distribution of the clamped circular plate under circular punctual load 

obtained for (a) b=R/4, (b) b=R/2 and (c) b=3R/4. 
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5.3 Circular Plate under Localized Uniform Distributed Load 

The present example analyses the elasto-static behaviour of a simply supported circular 

plate submitted to a localized uniform distributed load 2100 /q N m  (LUDL), as 

represented in Figure 18. The LUDL actuates on a circular area with radiusb . As in the 

previous example, three distinct radius b  are considered: {0.25 , 0.5 , 0.75 }b R R R . 

It is possible to find in the literature (S. Timoshenko & Woinowsky-Krieger, n.d.), the 

exact analytical solution for the plate’s centre of the present example,  

2
2 2 2

3

2

3 7 3
( 0) log

1 4 416
12(1 )

z

qb b
u r R b b

REH

  
 



                          
  

. 
(129) 

The analysis of this example begins with a convergence study. Therefore, the circular plate 

geometry is considered with 20R m  and 1H m . The obtained results for the transversal 

displacement in the centre of the plate are presented in Table 12. The obtained results 

demonstrate once more that the RPIM presents a high convergence rate. It is also 

perceptible that the last converged solution is very close with the exact analytical and FEM 

solutions. Comparing just the final converged values, the error of the RPIM solution 

regarding the exact solution fluctuates between 0.3% ~ 0.5% . The difference between the 

RPIM final converged solution and the FEM final converged solution is about 

0.06% ~ 0.08% . 

 
 

Figure 18 : Simply supported circular plate under local circular uniform distributed load. 
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Table 12 : Transversal displacement and error values for R/H=20 of the SSSS circular plate under 
circular uniform distributed load. 
 
 

               

 discretization  zu  (m) – transversal 

displacement 
 zu  – normalized displacement  

Error 
(%) 

Error 
(%) 

b 

 

zn
 

rn  total  exact RPIM FEM  exact RPIM FEM  
RPIM-
exact 

RPIM-
FEM 

               
               

R/4 

3 41 123  1.6086 1.5863 1.6152  10.0535 9.9146 10.0950  1.3816 1.7869 
5 81 405  1.6086 1.6095 1.6151  10.0535 10.0593 10.0944  0.0573 0.3478 
9 161 1449  1.6086 1.6151 1.6150  10.0535 10.0944 10.0938  0.4071 0.0068 
17 321 5457  1.6086 1.6163 1.6150  10.0535 10.1021 10.0938  0.4832 0.0825 

               
               

R/2 

3 41 123  5.4201 5.3305 5.4368  33.8753 33.3156 33.9800  1.6523 1.9553 
5 81 405  5.4201 5.4155 5.4364  33.8753 33.8465 33.9775  0.0850 0.3854 
9 161 1449  5.4201 5.4352 5.4362  33.8753 33.9702 33.9763  0.2801 0.0178 
17 321 5457  5.4201 5.4396 5.4362  33.8753 33.9974 33.9763  0.3604 0.0623 

               
               

3R/4 

3 41 123  9.3493 9.1832 9.3739  58.4333 57.3952 58.5869  1.7766 2.0340 
5 81 405  9.3493 9.3357 9.3732  58.4333 58.3484 58.5825  0.1454 0.3996 
9 161 1449  9.3493 9.3706 9.3729  58.4333 58.5663 58.5806  0.2275 0.0245 
17 321 5457  9.3493 9.3784 9.3729  58.4333 58.6147 58.5806  0.3103 0.0581 

               
 
 

 
Next, another study was performed using the same benchmark example. 

Considering several /R H  ratios, it was obtained the transversal displacement in the centre 

of the plate with the RPIM and the FEM. Therefore, maintaining the circular plate thickness 

constant, 1H m , four distinct plate radius were considered: {10, 20,50,100}R  . The 

obtained results are presented in Table 13.  

Once more from the results show that the RPIM error with respect to the analytical solution 

is always very low. Considering only the results for the thin plates / 20R H   the error 

with respect to the analytical solution is around 0.1% ~ 0.4% . Similar to the previous 

examples, the RPIM’s error with respect to the analytical solution for the thick circular 

plates ( / 20R H  ) is always higher, which can be explained with the same argument as 

before. However, the results obtained with the RPIM are in accordance with the FEM 

solution. Table 13 shows that the difference between the RPIM solution and the FEM 

solution is around 0.02% ~ 0.2% , regardless the analysed /R H  ratio. 
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Table 13 : Transversal displacement for distinct b and R/H values regarding the SSSS circular plate 
under circular uniform distributed load. 
 
 

               

 discretization  zu  (m) – transversal displacement  zu  – normalized displacement  
Error 
(%) 

Error 
(%) 

b R/H 
zn  rn   exact RPIM FEM  exact RPIM FEM  

RPIM
-exact 

RPIM-
FEM 

               
               

R/4 

10 9 81  0.1005 0.1025 0.1022  10.0535 10.2445 10.2150  1.8998 0.2889 
20 9 161  1.6086 1.6151 1.6150  10.0535 10.0944 10.0938  0.4071 0.0068 
50 9 401  62.8344 62.8275 62.8750  10.0535 10.0524 10.0600  0.0110 0.0755 

100 9 801  1005.3510 1004.1450 1005.5000  10.0535 10.0415 10.0550  0.1200 0.1348 
               
               

R/2 

10 9 81  0.3388 0.3435 0.3428  33.8753 34.3528 34.2830  1.4094 0.2035 
20 9 161  5.4201 5.4352 5.4362  33.8753 33.9702 33.9763  0.2801 0.0178 
50 9 401  211.7208 211.6447 211.8200  33.8753 33.8635 33.8912  0.0359 0.0828 

100 9 801  3387.5330 3383.0520 3387.9000  33.8753 33.8305 33.8790  0.1323 0.1431 
               
               

3R/4 

10 9 81  0.5843 0.5914 0.5903  58.4333 59.1412 59.0340  1.2114 0.1816 
20 9 161  9.3493 9.3706 9.3729  58.4333 58.5663 58.5806  0.2275 0.0245 
50 9 401  365.2084 365.0377 365.3500  58.4333 58.4060 58.4560  0.0467 0.0855 

100 9 801  5843.3340 5835.2440 5843.9000  58.4333 58.3524 58.4390  0.1385 0.1481 
               

 
 

 

In order to show that the RPIM is capable to produce smooth stress fields, a simply 

supported circular plate with 5R m  and 1H m  is submitted to the same LUDL 

previously described: 2100 /q N m  and {0.25 ,0.5 ,0.75 }b R R R . The two-dimensional 

section domain described in Figure 18 are discretized in a regular mesh of 81 5  nodes. 

For each analyses the following stress fields were obtained: rr , zz  and rz . The obtained 

RPIM results are presented in Figure 19. 

 

 
 (a) (b) (c) 
 

Figure 19 : Stress field distribution of the simply supported circular plate under local circular 
uniform distributed load obtained for (a) b=R/4, (b) b=R/2 and (c) b=3R/4. 
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Chapter	6	

6 Validation of the Proposed Non-local Damage Model  

In this chapter, several numerical benchmarks associated with the concrete structures are 

analysed using the proposed rate-independent damage model combined with the RPIM 

formulations (Chapter 4). The results are compared to the experimental solution from the 

literature ((Gopalaratnam & Shah, 1985); (Karsan & Jirsan, 1969); (Kupfer et al., 1969) 

and  (Malvar & Warren, 1988)) and FEM solutions (Voyiadjis & Taqieddin, 2009). 

6.1 Identification of the Model`s Parameters 

The considered non-local damage model depends on specific material properties and 

damage coefficients, such as: Young’s modulus and Poisson’s ratio for undamaged 

material ሺܧ	and	ߥ); parameters for damage characterisation including characteristic 

length	ሺ݈௖௛ሻ, compressive and tensile coefficients	ሺܣേ, ,ߚሻ; plasticity parameter ሺିܤ  ሻܭ

and; fracture energy in tensile and compressive states	൫ܩ௙
േ൯. The corresponding parameters 

are determined by a series of experimental tests on concrete under tensile and compressive 

enforcements (Cervera et al., 1996) (He et al., 2006). The proposed rate-independent elastic 

damage model is based on the effective elastic constitutive model presented by M. Cervera 

et.al (Cervera et al., 1996). Hence, it is possible to use the parameters and coefficients 

values suggested by Cervera and co-workers (Cervera et al., 1996). Nevertheless, here, the 

characteristic length assumes another definition, due to the meshless method concept.  
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6.2 Monotonic Uniaxial Tensile Test 

The monotonic uniaxial tensile test is studied as the first example. The arrangement of the 

nodes and boundary conditions are shown in Figure 20-a. The damage coefficients and 

material properties of concrete are defined according to the work presented by (Lee & 

Fenves, 1998) (Tao & Phillips, 2005)(He et al., 2006) (G. D. Nguyen & Houlsby, 2008) 

(Cervera et al., 1996): ܧ ൌ 31	ሺܽܲܩሻ, ߥ ൌ 0.2, ଴݂
ା ൌ 3.48	ሺܽܲܯሻ and ܩ௙

ା ൌ 40	ሺܰ ݉⁄ ሻ. 

As discussed in Subsection 4.1, the characteristic length ሺ݈௖௛ሻ variable, which is associated 

with the element size and affects the degradation of the damage phenomenon, is fully 

defined for the FEM formulation (Cervera et al., 1996) expressed in Equations (94-a) and 

(94-b) for 2D and 3D respectively. Thus, since in this work it is considered a meshless 

method, this variable has to be adapted for the meshless method concept. In this work, the 

characteristic length is obtained for each integration point with the following expression, 

݈௖௛ ൌ ඥ ௚ܰ௣. ௚ܹ௣																																																									(130) 

Where ௚ܰ௣	is the total number of integration points defining the problem domain and ௚ܹ௣ 

represents the weight of the integration point (Equation (114)).  

Afterwards, in order to determine the tensile damage coefficient,	ܣା, Equation (96-a) is 

considered for the rate-independent damage model (Cervera et al., 1996).  

ାܣ ൌ
ା݈௖௛ܪ2
1 െ ା݈௖௛ܪ

൒ 0			 

where (referring to Equation (95-a)), 

ାܪ ൌ
ሺ ଴݂

ାሻଶ

௙ܩܧ2
ା 

Being 	ܪା dependent on the material properties mentioned above. It is important to 

mention that the characteristic length restricts the maximum size of the each integration 

cell with the condition of	݈௖௛ ൑ 1 ⁄ାܪ (Equation (95-b)). 
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(a)                                                                   (b) 

Figure 20: Quadrilateral geometry of uniaxial test under (a) tension and (b) compression 

 

                   

                               (a) (b)   

Figure 21: Regular discretization for monotonic test (a) 9 nodes and (b) 9 integration points 

 

 

 

(a)                                                                                          (b)   

Figure 22: Regular discretization for monotonic test (a) 25 nodes and (b) 36 integration points 
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(a)                                                                                          (b)   

Figure 23: Regular discretization for monotonic test (a) 49 nodes and (b) 81 integration points 

 

(a)                                                                                          (b)   

Figure 24: Regular discretization for monotonic test (a) 81 nodes and (b) 144 integration points 

 

(a)                                                                                (b)   

Figure 25: Regular discretization for monotonic test (a) 289 nodes and (b) 576 integration points 
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To evaluate the performance of the constitutive damage model, the present analysis is 

performed using several nodal discretizations shown in Figure 21, Figure 22, Figure 23, 

Figure 24 and Figure 25. All the obtained results are compared with the experimental 

solution (Gopalaratnam & Shah, 1985) for stress-strain curve. Moreover, the behaviour of 

the damage variable versus strain is compared to the FEM results of Voyiadjis et.al 

(Voyiadjis & Taqieddin, 2009).  The iterative process of pseudo-time stepping scheme is 

applied using a tolerance of 1݁ି଻ and 50 incremental enforced displacement steps. The 

results obtained from the corresponding study are presented for the equivalent stress versus 

the equivalent strain in Figure 26 and the variation of the damage parameter versus the 

equivalent strain at integration point A is presented in Figure 27. 

 

 

Figure 26: Effective stress-strain response for uniaxial tensile test compared to experimental result 
(Gopalaratnam & Shah, 1985) 
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Figure 27: Damage versus effective strain at integration point A for uniaxial tensile test compared to 
FEM results (Voyiadjis & Taqieddin, 2009) 

 

It is possible to infer that the stress versus strain curve obtained with the meshless method 

shows a good agreement with the experimental curve, particularly for the peak value of the 

stress in which the damage initiates. The behaviour of the damage variable-strain curve 

proves that the result is the same for the different mesh size and fixed material properties 

and very close with the finite element solution.  

The graphical representations of the internal variables performed on the RPIM with 289 

nodes are presented in Figure 28 and Figure 29. The former one is related to the first stage 

when half of the total displacement enforced on the geometry and the latter one is the 

second stage in the presence of the full enforced displacement. Moreover the profile of the 

compressive damage is illustrated in Figure 30. It accounted for the zero value during the 

full displacement enforcement. 
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Figure 28: The profile of the internal variables for monotonic uniaxial tensile test with 289 nodes in 

the first displacement enforcement stage. (a) Damage, (b) tensile damage, (c) equivalent effective 
damaged stress and (d) equivalent effective total stress 

 
Figure 29: The profile of the internal variables for monotonic uniaxial tensile test with 289 nodes in 
the second displacement enforcement stage. (a) Damage, (b) tensile damage, (c) equivalent effective 

damaged stress and (d) equivalent effective total stress 
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Figure 30: Compressive damage profile in monotonic uniaxial tensile test for RPIM with 289 nodes 

 

 

6.3 Monotonic Uniaxial Compressive Test 

The verification of the proposed model for the uniaxial compressive test is presented as the 

second benchmark. Figure 20-b schematically shows the discretization of the model and 

boundary conditions of the current analysis. The material properties used in this analysis 

are based on the work presented by Lee et.al. (Lee & Fenves, 1998):	ܧ ൌ 31	ሺܽܲܩሻ,	ߥ ൌ

0.2, ଴݂
ି ൌ 10.2	ሺܽܲܯሻ and ܩ௙

ି ൌ 5690	ሺܰ ݉⁄ ሻ. By conducting a convergence study, the 

corresponding compressive parameters defining the compressive damage behaviour of 

concrete used in Equation (93-b) are: ିܣ ൌ 2.14 and	ିܤ ൌ 0.58.  

The analysis of the uniaxial test in compression is performed for several nodal 

discretizations (demonstrated in Figure 21, Figure 22, Figure 23, Figure 24 and Figure 25) 

and considering 50 enforced displacement increments (with a tolerance equal to 1݁ି଼ ). 

The obtained results are plotted in Figure 31 and compared to the experimental solution 

(Karsan & Jirsan, 1969). 

According to the similar numerical work using the FEM (Voyiadjis & Taqieddin, 2009), it 

is possible to present the curve of damage variable versus the effective strain at integration 

point A for uniaxial compressive test, which is shown in Figure 32. 
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Figure 31: Effective stress-strain response for uniaxial compressive test compared to experimental 
result (Karsan & Jirsan, 1969) 

 

Figure 32: Damage versus effective strain at integration point A for uniaxial compressive test 
compared to FEM results (Voyiadjis & Taqieddin, 2009) 
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The obtained curves related to the uniaxial compressive test shown in Figure 31 and Figure 

32, indicate that the RPIM results agree with the FEM solution and the experimental one, 

regardless the nodal discretizations used in the analysis. 

The progress of the current analysis is demonstrated for the internal and damage variables 

in Figure 33 and Figure 34. The RPIM discretization with the total number of 289 nodes is 

considered here. The former figure is captured when half of the total displacement enforced 

on the material (first stage) while the latter figure is related to the stage with the full 

displacement enforcement (second stage). 

 

 

 

Figure 33: The profile of the variables for monotonic uniaxial compressive test with 289 nodes in the 
first displacement enforcement stage. (a) Compressive damage, (b) tensile damage, (c) damage (d) 

equivalent effective damaged stress and (e) equivalent effective total stress 
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Figure 34: The profile of the variables for monotonic uniaxial compressive test with 289 nodes in the 
second displacement enforcement stage. (a) Compressive damage, (b) tensile damage, (c) damage (d) 

equivalent effective damaged stress and (e) equivalent effective total stress 

 

6.4 Monotonic Biaxial Tensile Test 

Consider now the test problem illustrated in Figure 35-a for a biaxial tensile test. The 

analysis is performed by enforcing a compressive displacement on the right and top edges 

of the body. The material properties and the damage characteristics, such as ܣା and ݈௖௛, 

are the same as uniaxial test in tension. In the case of stress-strain response, the 

computational results derived from meshless method are compared to the experimental 

solution presented by Kupfer et. al. (Kupfer et al., 1969).  
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 (a) (b) 

Figure 35: Quadrilateral meshless discretization of biaxial test under (a) tension and (b) compression 

 

Figure 36 shows the behaviour of the proposed rate-independent elastic damage model in 

a biaxial tensile test performed with the RPIM formulation for various discretizations (refer 

to Figure 21, Figure 22, Figure 23, Figure 24 and Figure 25). The figure is graphed in a 

non-dimensional mapped stress form derived from dividing the normalized stress ߪଵଵby 

the compressive strength		 ௖݂ᇱ ൌ 27.6	ሺܽܲܯሻ with regard to		ܴ ൌ ଵଵߪ ଶଶߪ ൌ 1⁄ . The 

experimental results of Kupfer et. al. (Kupfer et al., 1969) are valid within the following 

range: 	0 ൑ ଵଵߪ ௖݂
ᇱ⁄ ൑ 0.09. The RPIM solutions are compared with the FEM results 

(Voyiadjis & Taqieddin, 2009). 

Figure 37 shows that the results obtained with proposed elastic damage model using RPIM 

formulation agree with both experimental and FEM solution. 
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Figure 36: Effective stress-strain response for biaxial tensile test compared to experimental (Kupfer 
et al., 1969) and FEM (Voyiadjis & Taqieddin, 2009) results ሺ࣌૚૚ ൌ  ૛૛ሻ࣌

 

Figure 37: Damage versus effective strain at integration point A for biaxial tensile test compared to 
FEM result (Voyiadjis & Taqieddin, 2009) 
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It must be remarked that the enforced displacement has the same value in both directions 

and it is imposed incrementally during the analysis. The RPIM curves are very close to the 

FEM and experimental results. 

Consider the discretization with 289 number of nodes under biaxial tensile test, the 

distribution of the internal variables such as equivalent effective stress in total and damaged 

states, in addition to the damage variables, are plotted in Figure 38, Figure 39 and Figure 

40. It must be noted that the first stage is subjected to the half of total enforced displacement 

and the second stage is connected to the end of the analysis when the full displacement 

enforcement is applied on the material.  

 

 

Figure 38: The profile of the internal variables for monotonic biaxial tensile test with 289 nodes in 
the first displacement enforcement stage. (a) Damage, (b) tensile damage, (c) equivalent effective 

damaged stress and (d) equivalent effective total stress 
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Figure 39: The profile of the internal variables for monotonic biaxial tensile test with 289 nodes in 
the second displacement enforcement stage. (a) Damage, (b) tensile damage, (c) equivalent effective 

damaged stress and (d) equivalent effective total stress 

 

 

Figure 40: Compressive damage profile in monotonic biaxial tensile test for RPIM with 289 nodes 
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6.5 Monotonic Biaxial Compressive Test 

The computational model described in the previous benchmark is now applied to the 

analysis of the biaxial compressive test. The RPIM geometry model for this study is shown 

in Figure 35-b. The material properties are the same used for uniaxial test in compression. 

In this example it is considered  ଴݂
ି ൌ 15.2ሺܽܲܯሻ , as recommended by Wu et.al.(J. Y. 

Wu et al., 2006). Within Equation (93-b), the corresponding compressive damage 

coefficients are adopted based on a damage study of the material: ିܣ ൌ 2.50 and	ିܤ ൌ

0.67. In order to evaluate the accuracy of the proposed non-linear return-mapping damage 

stage, in this study 200 displacement increments are considered. The assumed tolerance 

is:	1݁ି଻.  

The RPIM result regarding the response of effective stress-strain for various number of 

nodes (see Figure 21, Figure 22, Figure 23, Figure 24 and Figure 25) compared to 

experimental observation (Kupfer et al., 1969) is plotted in Figure 41. Additionally, the 

values obtained for the damage variable versus the effective strain at integration point A 

are presented in Figure 42. 

 
Figure 41: Effective stress-strain response for biaxial compressive test compared to experimental 

result (Kupfer et al., 1969) 
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Figure 42: Damage versus effective strain integration point A for biaxial compressive test obtained 
from RPIM 

 

As can be noticed, the stress-strain curve exhibits a satisfactory agreement with the 

experimental result. Additionally, it is possible to visualize, in Figure 41 and Figure 42 that 

the RPIM solution does not significantly vary with the level of the nodal discretizations. 

There are some valuable observations captured in two different displacement enforcement 

stages. The first is related to the one that the half of total displacement enforcement governs 

on the material while the second stage is related to the one that full displacement enforced 

on the material. The discretization is assumed the one with 289 total number of nodes (the 

densest one). Following that the profiles of internal and damage variables are indicated in 

Figure 43 and Figure 44 correspond to the biaxial compressive test.  
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Figure 43: The profile of the variables for monotonic biaxial compressive test with 289 nodes in the 
first displacement enforcement stage. (a) Compressive damage, (b) tensile damage, (c) damage (d) 

equivalent effective damaged stress and (e) equivalent effective total stress 

 

 

Figure 44: The profile of the variables for monotonic biaxial compressive test with 289 nodes in the 
second displacement enforcement stage. (a) Compressive damage, (b) tensile damage, (c) damage (d) 

equivalent effective damaged stress and (e) equivalent effective total stress 
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Furthermore, the results of the effective stress-strain and damage-effective strain for the 

uniaxial and biaxial tests in tension obtained with the RPIM formulation are illustrated in 

Figure 45 and Figure 46, respectively. The RPIM solutions are compared to the FEM one 

reported by Voyiadjis et.al. (Voyiadjis & Taqieddin, 2009). The RPIM results were 

obtained with a nodal distribution possessing 289 nodes.   

 

 

Figure 45: Comparison of the effective stress-strain response of the uniaxial and biaxial tensile tests 

 

As can be noticed, the resistance of the material against damage phenomenon is greater in 

the uniaxial test compared to the biaxial test, it means that the stress reaches its peak sooner 

in the biaxial test.  

Similarity, the response of damage variable–effective strain at integration point A of both 

tests are indicated in Figure 46. The results of the RPIM technique are compared to the 

FEM solution (Voyiadjis & Taqieddin, 2009). 
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Figure 46: Comparison of damage versus effective strain integration point A for uniaxial and biaxial 
tensile tests (Voyiadjis & Taqieddin, 2009) 

 

An important aspect of the proposed model under biaxial tension can be observed in Figure 

46, the damage initiates at a sooner step and it increases rapidly to reach the maximum 

damage value.  

Considering Figure 45 and Figure 46, it is visible that the RPIM curves exhibit an 

acceptable agreement with FEM curves. Indicating that the present formulation is suitable 

to study the damage behaviour of more demanding concrete structures. 
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6.6 Three Point Bending Beam  

In this benchmark example a single-edge-notched concrete beam is studied using both 

regular and irregular nodal discretizations. The analyses are based on the experimental data 

from Malvar et.al. (Malvar & Warren, 1988).  

Figure 47-a shows the geometry of the beam. It is possible to visualize an initial crack in 

the middle of the beam with the initial length of ܽ ଴ ൌ 51	ሺ݉݉ሻ submitted to the three point 

bending enforcement. The material properties and damage characteristics adopted for the 

damage model are: Young`s Modulus	ܧ ൌ 21.7	ሺܽܲܩሻ, Poisson’s ratio ߥ ൌ 0.2 and a 

maximum uniaxial tensile and compressive strength: ଴݂
ା ൌ 2.4	ሺܽܲܯሻ	and  ଴݂

ି ൌ

29	ሺܽܲܯሻ , respectively. Moreover, the fracture energy is equal to ܩ௧ ൌ 30	ሺܰ ݉⁄ ሻ	for the 

current analysis. Considering Equations (93-a) and (93-b), the damage parameters for both 

regular and irregular discretizations are adopted as ܣା ൌ 0.001 for tension (based on a 

convergence study performed for this work) and ିܣ ൌ 1 and ିܤ ൌ 0.89 in compression 

(Cervera et al., 1996). Here, the following characteristic length is considered: 	݈௖௛ ൌ

12.6	ሺ݉݉ሻ(Voyiadjis & Taqieddin, 2009). Taking advantage of the symmetry of the beam, 

only half of the problem was analysed. Thus, the regular nodal distribution discretizing half 

of the problem domain is presented in Figure 47-b, corresponding to  25 ൈ 19 nodes. 

Indeed, the total number of nodes and integration points are 475 and 972 respectively. 

 
Figure 47: Three point bending test of the single-edge-notched beam; (a) the geometry of the model; 

and (b) 2D regular discretization of the nodes 
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In order to evaluate the capability of the non-linear damage algorithm for this example, it 

was considered a tolerance value of 1݁ିଵଶ and the total number of 50 incremental steps.  

The load-displacement graph for distinct nodal distributions is presented in Figure 48. The 

plotted load corresponds to load P and the displacement regards to the vertical 

displacement of point A. The obtained result is compared with the experimental solution 

(Malvar & Warren, 1988). 

 

 

Figure 48: Load P in terms of deflection on point A for three point bending test obtained from 
regular RPIM mesh compared to experimental result (Malvar & Warren, 1988) 

 

6.6.1 Irregular Mesh  
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distribution. The theory of RPIM irregular analysis is introduced in Subsection 5.1.4 for 

axisymmetric plates where Equation (126) is used with regard to Figure 13.  

Additionally, in this study, the material properties and damage characteristics are the same 

as the analysis of the previous regular nodal distribution. Referring to Equation (126), the 

irregularity parameter is chosen as ߣ ൌ 30. 

 
 (a) (b) 

Figure 49: Three point bending test of the single-edge-notched beam; (a) the geometry of the model; 
and (b) example of a 2D irregular mesh. 

The analysis of the irregular mesh is studied for 6 random analyses. The basic results 

obtained for each analysis are presented in Figure 50. In Figure 51, it is presented the 

average RPIM solution obtained with the irregular nodal distributions and the RPIM result 

using a regular nodal distribution. The experimental solution indicated in Figure 51 was 

obtained from the literature (Malvar & Warren, 1988). 
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Figure 50: Study of the mesh irregularity obtained for the response of load P – deflection of point A 

 

Figure 51: The response of load- deflection of point A in three point bending test obtained from 
RPIM regular and irregular mesh compared to experimental results  (Malvar & Warren, 1988) 
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It should be mentioned that the non-mild behaviour of the curve, after reaching the peak 

load value, is due to the non-linear solution of the damage mechanics formulation for 

concrete materials (Voyiadjis & Taqieddin, 2009) (Feenstra, 1993) (Fichant, La Borderie, 

& Pijaudier-Cabot, 1998)(Lowes, 1999)(Jankowiak & Lodygowski, 2005)(Sumarac, 

Sekulovic, & Krajcinovic, 2003). 

 

6.6.1.1 Graphical Representations of the Internal and Damage Variables 

The following figures show the obtained distribution of the internal and damage variables 

for regular analysis of the concrete beam submitted to a vertical displacement enforcement 

in the particular displacement enforcement stages presented on Table 14.  

 

Table 14: The corresponding displacement enforcement for three point bending beam 

 First stage Second stage Third stage 

Displacement 
enforcement (mm) 

1.764479E-01 3.881854E-01 4.940541E-01 

 

 

Figure 52: The graphical representations at the first displacement stage for (a) damage, (b) tensile 
damage, (c) equivalent effective damaged stress and (d) equivalent effective total stress 
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Figure 53: The graphical representations at the second displacement stage for (a) damage, (b) tensile 
damage, (c) equivalent effective damaged stress and (d) equivalent effective total stress 

 

 

 

Figure 54: The graphical representations at the third displacement stage for (a) damage, (b) tensile 
damage, (c) equivalent effective damaged stress and (d) equivalent effective total stress 
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Figure 55: Distribution of compressive damage variable along the beam for all displacement 
enforcement stages 

The damage profiles show that it is possible to predict the damaged region, near the crack 

tip, with the proposed algorithm. The compressive damage accounted for the zero value 

during all the enforced displacement stages. It is visible that the tensile damage and damage 

distribution possess the same profile due to the absence of the compressive one.  

Additionally, it is noticeable that the crack tip zone presents higher damage values, as 

expected. 

It must be remarked that the graphical representations for irregular mesh are the same as 

the regular ones, hence it is not necessary to repeat them. 
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Chapter	7	

7 Numerical Benchmarks on the Localized Damage 
Formalism 

This chapter is focused on the damage localization formulations. Two different benchmark 

examples are studied here, both addressing the regular and the irregular discretization 

patterns. 

The basic equations regarding damage mechanics have been introduced in chapter 4 and 

the damage localization formalism was expressed in Section 4.3. Here, the algorithm 

presented in Box 3 is used. In this work there exist some convergence studies for the 

damage localization parameters.  

This part is structured as the following: the three point bending beam in the normal regular 

discretization (the one presented in Section 6.6) is studied in Section 7.1. After that the 

obtained numerical results will be compared to the experimental solution reported by 

(Malvar & Warren, 1988) and (Voyiadjis & Taqieddin, 2009). This example has been 

studied before for the non-local damage formalism presented in Section 6.6. Then, a refined 

discretization pattern is proposed for three point bending beam .After that, in Section 7.2 , 

particular localized damage parameters are optimized and they will be used for the second 

benchmark. The graphical representations of the internal and damage variables are 

presented in all the case studies.  Subsequently, in Section 7.3, the compact tension test is 

solved with regard to the optimized coefficients proposed in Section 7.2, then, the RPIM 

solution is compared to the experimental result extracted from the work done by 

(Legendre, 1984) and (Mazars & Pijaudier-Cabot, 1996). Some graphical representations 

of the internal fields such as stress and damage variables will be presented in details. To 

end this study, irregular discretizations will be analysed in Sections 7.3.3 and 7.3.4.  
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7.1 Three Point Bending Beam, Normal Discretization 

As mentioned before, in this analysis there are some parameters that have to be optimized 

in order to permit to be applicable for the further examples. In order to start the analysis, it 

is interesting to perform the program based on the nodal distribution called “Normal 

Discretization” introduced in Section 6.6. So, the geometry and discretization are the same 

as Figure 47. All the formulations and configurations introduced in Section 6.6 are also 

used here. The target of this analysis is to observe the results of this example with no 

changes in the material and geometric properties, but in the presence of the localized 

damage formalism. Hence it is a trial study and we might obtain some unexpected results.   

First of all, it is better to describe the whole procedure briefly. The algorithm of elasto-

damage mechanics is strain driven based on the displacement enforcement at point A (see 

Box 3). According to Table 1, a trial weight function must be chosen (it is the 2nd order 

weight function here) for regular discretization. Afterwards, the response of load P versus 

the deflection of point A is compared to the experimental solution (Malvar & Warren, 1988)  

is plotted. The geometric properties suggested by (Malvar & Warren, 1988) are presented 

on Table 15. Moreover, the material properties are shown on Table 16 (Lowes, 1999) and 

(Lee & Fenves, 2001). In addition, the algorithm configurations and damage characteristics 

are shown on Table 17 and Table 18. The only parameter varying here is related to the 

radius of the circle containing the points to smooth their damage, which is known as RGP. 

Regarding the characteristic length and ܣା in this analysis, it should be remarked that the 

latter one is assumed as its typical value here,		ܣା ൌ 0.001. Hence the characteristic length 

is computed within rewriting Equation (96-a) proposed by (Cervera et al., 1995), so, the 

following relation is valid: 

݈௖௛ ൌ
ାܣ

ሺ2ܪ ൅ ାሻܣ
ൌ 1.1296 ൈ 10ିସሺ݉ሻ 

 

 



Chapter	7:	Numerical	Benchmarks	on	the	Localized	Damage	Formalism		

 

98 
 

Table 15: Geometric properties of three point bending beam 

Parameter Value 

Length ܮ ൌ 788 ൈ 10ିଷሺ݉ሻ 
Width ܦ ൌ 102 ൈ 10ିଷሺ݉ሻ 

Thickness ݁ ൌ 102 ൈ 10ିଷሺ݉ሻ 
Crack length ܽ଴ ൌ 51 ൈ 10ିଷሺ݉ሻ 

 

Table 16: Material properties of the three point bending beam  

Property Value 

Young`s modulus ܧ ൌ 21.7 ൈ 10ଽሺܲܽሻ 

Poisson’s ratio ߥ ൌ 0.2 

Maximum uniaxial tensile strength ଴݂
ା ൌ 2.4 ൈ 10଺ሺܲܽሻ 

Maximum uniaxial compressive strength ଴݂
ି ൌ 29 ൈ 10଺ሺܲܽሻ 

Fracture energy ܩ௧ ൌ 30	ሺܰ ݉⁄ ሻ 

 

Table 17: Damage characteristics  

Parameter Value 

In tension ܣା ൌ 	0.001 
In compression (Cervera et 

al., 1996)  
ିܣ ൌ 1 

In compression (Cervera et 
al., 1996) 

ିܤ ൌ 0.89 

Characteristic length ݈௖௛ ൌ 	1.1296 ൈ 10ିସሺ݉ሻ 
 

The amounts of ܣା and also characteristic length are assumed here, they will be optimized 

in the next analyses.  

Table 18: Algorithm configuration  

Description 

Total displacement enforcement  ݑ	 ൌ 0.5 ൈ 10ିଷ	ሺ݉ሻ 

Average displacement increment = 2.11474 ൈ 10ିହ	ሺ݉ሻ 
 Tolerance = 10ିଵଶ 

Total increment = 20 
Maximum number of iteration in each increment = 500  
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As mentioned in Section 6.6, the nodes are discretised as 25 ൈ 19 divisions along x and y 

directions leading to have 475 and 972 nodes and integrations points respectively. 

According to Equation (102-a), some trial values for ݊௣ are chosen randomly to obtain 

different amounts of RGP which are presented on Table 19. In addition, based on Equation 

(102-b), the value of h corresponds to the average distance between nodes is equal to: 

݄ ൌ 0.0164	ሺ݉ሻ 

Where half of the total length is considered due to its symmetric geometry. 

Table 19: Variation of RGP based on different ࢖࢔ for 2nd order weight function in localized damage, three 
point bending beam 

݊௣ 0.2 0.3 0.5 0.55 0.6 0.7 

RGP 0.0033 (m) 0.0049 (m) 0.0082 (m) 0.0090 (m) 0.0098 (m) 0.0115 (m) 

 

 
Figure 56: Response of load P vs. load deflection of point A for three point bending beam with 

normal discretization in localized damage with 2nd order weight function 
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Figure 57: Integration cells and Gauss points for three point bending beam with normal 

discretization to detect ࢉ࢖ࢍ 

 

In order to measure the damage variables, it is necessary to select a particular integration 

point and then plot the damage variations for all the incremental displacement 

enforcements. As shown in Figure 57, this integration point is situated near the crack tip 

(yellow highlighted area). It is better to call it as	݃݌௖. It should be noted that each 

integration cell contains 9 Gauss points. 

 

 
Figure 58: Tensile damage for three point bending example for different ࢖࢔values in the normal 

discretization at ࢉ࢖ࢍ 
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Consider different values for ݊௣,	the tensile damage curves in the both non-local and 

localized states at ݃݌௖ are demonstrated in Figure 58. It should be mentioned that there is 

no observation regarding the compressive damage, hence the total damage remains for the 

same values of the tensile one.  

Another point resulted from this analysis is relevant to the value of	݊௣. It is visible that the 

curve of damage experiences sharper slope when the smaller n୮value is chosen. It is normal 

because choosing smaller ݊௣value produces smaller RGP as well. This phenomenon leads 

to collect lower number of integration points to damage localization process.  

As a remark of this analysis, the RPIM results shown in Figure 56 do not agree well with 

the experimental solution. The used discretization does not permit to obtain the same 

spatial distribution of nodes inside the influence domain in the directions x and y (this kind 

of discretization leads to influence domains possessing a much higher number of nodes 

along the y direction than x direction). 

7.2 Three Point Bending Beam, Refined Discretization  

Here the nodal discretization changed in a different way. The strategy is to divide the length 

of the beam into two various space as [0, 3L/8] and [3L/8, L/2]. Then, different nodal 

meshes are studied to obtain the more accurate results compared to the experimental 

solution (Malvar & Warren, 1988). Figure 59 illustrates the refined discretization for three 

point bending beam with the essential boundary conditions. As it is visible in Figure 59-b, 

the nodal mesh represented will permit to obtain much more balanced influence domain. 

 
   (a) (b) 

Figure 59: Three point bending beam (a) geometry and (b) the refined discretization with the 
essential boundary conditions 
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7.2.1  Convergence Study on ࢖࢔ 

First of all, in order to check the performance of the program with the RPIM meshless 

formulations extended for the localized damage mechanics, it is rational to study different 

discretization patterns in the format shown in Figure 59. Different discretization properties 

are chosen to study presented on Table 20: 

Table 20: Different discretization types for three point bending beam in the refined discretization 

Division along 
x direction 

Division along  
y direction 

Total number of 
nodes 

Total number of 
Gauss points 

25 7 295 567 
33 9 505 1008 
41 11 771 1575 
81 21 2941 6300 

It should be mentioned that all the material and geometric properties are the same as Table 

15 and Table 16 while the damage characteristics are used as Table 17. But regarding the 

algorithm configuration presented on Table 18, the total displacement enforcement is 

chosen as u = 0.26 (mm) in this study.  

7.2.1.1 First Refined Disceritization 
 

A regular mesh containing 295 and 567 nodes and integration points respectively is 

considered here as seen in Figure 60. It is possible to make a convergence study on 

݊௣	values differing in a range of [0.5, 2.1]. Since this part is devoted to the localized 

damage concept, it is necessary to obtain the response of load P versus the deflection on 

point A for different weight function orders such as 0, 2nd and 3rd orders (see Table 1). 

 

 
 
Figure 60: First refined discretization for three point bending beam: (a) 295 nodes and (b) 567 Gauss 

points 
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Consider the divisions along x direction equal to 25, According to Equation (109-b), the 

parameter h is computed as:	݄ ൌ 0.0164	ሺ݉ሻ. Furthermore, considering Equation (109-a), 

the variation of RGP based on the various 	݊௣	amounts for this study is presented on Table 

21.  

Table 21: Variation of RGP based on different ࢖࢔ in localized damage, first refined discretization 
pattern 

݊௣ 0.5 0.7 0.8 1.1 1.6 2.1 

RGP 0.0082 (m) 0.0115 (m) 0.0131 (m) 0.0181 (m) 0.0263 (m) 0.0345 (m) 

Considering 0-order weight function, the graph correlating the load P with the 

correspondent deflection on point A, for different ݊௣	values, is presented in Figure 61. It is 

also interesting to capture the damage variation obtained for non-local and localized tensile 

states. Indeed the curves of total damage in terms of effective strain for this analysis are 

the same as the tensile cases. 

 
Figure 61: Response of load P- deflection on point A for the first refined discretization with regard to 

0-order weight function 
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Figure 62: The detection of ࢉ࢖ࢍ for the first refined discretization in three point bending beam 

 

 

Figure 63: Variation of tensile damage vs. effective strain at ࢉ࢖ࢍ for the first refined discretization 
with regard to 0-order weight function 

 

Subsequently, considering 2nd-order weight function (see Table 1), the new analysis is 

performed and the response of load P in terms of the deflection on point A for different 

݊௣	values is presented in Figure 64.  
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Figure 64: Response of load P- deflection on point A for the first refined discretization with regard to 
2nd-order weight function 

 

Figure 65: Variation of tensile damage vs. effective strain at ࢉ࢖ࢍ for the first refined discretization 
with regard to 2nd-order weight function 
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The damage variation obtained for non-local and localized tensile states at integration point 

 ௖ represented in Figure 65. In addition to that, it should be remarked that the total damage݌݃

in terms of effective strain is the same as the tensile one. It should be noted that the damage 

diagrams are plotted at the particular integration point ݃݌௖ as shown in Figure 62. 

To end the analysis related to the first refined discretization, the 3rd order weight function 

extracted from Table 1 is considered. The variation of non-local tensile damage and 

localized tensile damage at integration point ݃݌௖  is presented in Figure 67. In addition, the 

response of load P versus the deflection on point A is plotted in Figure 66. 

 

 

Figure 66: Response of load P- deflection on point A for the first refined discretization with regard to 
3rd-order weight function 
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Figure 67: Variation of tensile damage vs. effective strain at ࢉ࢖ࢍ for the first refined discretization 
with regard to 3rd - order weight function 

 

7.2.1.2 Second Refined Disceritization 

The same convergence study is conducted on another refined discretization including 505 

and 1008 nodes and integration points respectively as shown in Figure 68. 

 

 

Figure 68: Second refined discretization for three point bending beam: (a) 505 nodes and (b) 1008 
Gauss points 
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Consider the divisions along x direction being 33, regarding Equation (113-b), the 

parameter h is calculated as:	݄ ൌ 0.0123	ሺ݉ሻ. Moreover, considering Equation (113-a), 

the variation of RGP based on the various 	݊௣	amounts for this work is illustrated on Table 

22.  

Table 22: Variation of RGP based on different ࢖࢔ in localized damage, second refined discretization 
pattern 

݊௣ 0.5 0.7 0.8 1.1 1.6 2.1 

RGP 0.0062 (m) 0.0086 (m) 0.0099 (m) 0.0135 (m) 0.0197 (m) 0.0259 (m) 

 

Same as the first discretization analysis, considering 0-order weight function, the response 

of load P in terms of the deflection of point A for different ݊௣	values for the second 

discretization pattern is presented in Figure 69 . It is also interesting to capture the damage 

variation obtained for non-local and localized tensile states represented in Figure 71 . 

Indeed the graph related to the total damage variation in terms of effective strain for this 

analysis is the same as Figure 71. It should be noted that the damage diagrams are plotted 

at a particular integration point ݃݌௖ as demonstrated in Figure 70.  
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Figure 69: Response of load P- deflection on point A for the second refined discretization with regard 
to 0-order weight function 

 

 

 

Figure 70: The detection of ࢉ࢖ࢍ for the second refined discretization in three point bending beam 
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Figure 71: Variation of tensile damage vs. effective strain at ࢉ࢖ࢍ for the second refined discretization 
with regard to 0 -order weight function 

 

 

The same scenario is repeated for the 2nd order weight function in order to capture the 

variations of tensile damage at ݃݌௖ (see Figure 70) for the second RPIM refined 

discretization shown in Figure 73. The response of P-A for different ݊௣	is also 

demonstrated in Figure 72. 
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Figure 72: Response of load P-deflection on point A for the second refined discretization with regard 
to 2nd -order weight function 

 

 

Figure 73: Variation of tensile damage vs. effective strain at ࢉ࢖ࢍ for the second refined discretization 
with regard to 2nd -order weight function 
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To finish the analysis on the second refined discretization for three point bending beam, it 

is possible to obtain the results for the 3rd order weight function introduced on Table 1. 

Consider a particular integration point at ݃݌௖ as seen in Figure 70, it is possible to figure 

the variation of tensile damage (which is the same as total damage variation) as illustrated 

in Figure 75. Besides the response of load in terms of the point deflection for distinct ݊௣ 

related to this analysis is presented in Figure 74 . 

 

 

Figure 74: Response of load P- deflection on point A for the second refined discretization with regard 
to 3rd -order weight function 

 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.05 0.1 0.15 0.2 0.25 0.3

L
oa

d
 P

 [
N

]

Deflection on point A [mm]

Experimental test
RPIM, n_p = 0.5
RPIM, n_p = 0.7
RPIM, n_p = 0.8
RPIM, n_p = 1.1
RPIM, n_p = 1.6
RPIM, n_p = 2.1



The	RPIM	Extended	to	Axisymmetric	Plates	and	Non‐Linear	Continuum	Damage	Mechanics	
	 	
 

113	
 

 

Figure 75: Variation of tensile damage vs. effective strain at ࢉ࢖ࢍ for the second refined discretization 
with regard to 3rd -order weight function 

 

7.2.1.3 Third Refined Disceritization 

To end the convergence study on damage localization concept in the case of ݊௣	values, the 

third refined discretization is analyzed using 771 nodes and 1575 integration points (see 

Figure 76)   

 

 

Figure 76: Third refined regular discretization for three point bending beam: (a) 771 nodes and (b) 
1575 Gauss points 
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Consider the divisions along x direction being 41, regarding Equation (113-b), the 

parameter h is calculated as:	݄ ൌ 0.0099	ሺ݉ሻ. Moreover, considering Equation (113-a), 

the variation of RGP based on the various 	݊௣	amounts for this work is illustrated on Table 

23.  

Table 23: Variation of RGP based on different ࢖࢔ in localized damage, the third refined 
discretization pattern 

݊௣ 0.5 0.7 0.8 1.1 1.6 2.1 

RGP 0.0049 (m) 0.0069 (m) 0.0079 (m) 0.0108 (m) 0.0158 (m) 0.0207 (m) 

 

The current analysis starts with the 0-order weight function (as seen on Table 1). Then, the 

load response in terms of deflection is obtained for different ݊௣values. Then, the obtained 

solution is graphed in Figure 77. In order to plot the variation of damage parameters, a 

particular integration point is required. This point is selected on the crack tip known as 

 illustrated in Figure 78. After that, the corresponding curves correspond to the damage	௖݌݃

variation are plotted in Figure 79 for tensile damage (same as the total damage).  
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Figure 77: Response of load P- deflection on point A for the third refined RPIM discretization with 
regard to 0 -order weight function 

 

 

 

Figure 78: The detection of ࢉ࢖ࢍ for the third refined discretization in three point bending beam 
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Figure 79: Variation of tensile damage vs. effective strain at ࢉ࢖ࢍ for the third refined discretization 
with regard to 0 -order weight function 
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Figure 80: Response of load P-deflection on point A for the third refined discretization with regard to 
2nd-order weight function 

 

Figure 81: Variation of tensile damage vs. effective strain at ࢉ࢖ࢍ for the third refined discretization 
with regard to 2nd-order weight function 
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At the end, the study on the third refined discretization for three point bending beam, the 

3rd order weight function is considered to obtain the response of P-A as shown in Figure 

82. Furthermore, consider Figure 78 in the sense of ݃  the variation of tensile damage for	௖,݌

non-local and several localized states is indicated in Figure 83.  

 

 

Figure 82: Response of load P- deflection on point A for the third refined discretization with regard 
to 3rd-order weight function 
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Figure 83: Variation of tensile damage vs. effective strain at ࢉ࢖ࢍ for the third refined discretization 
with regard to 3rd-order weight function 
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Table 24: Optimum	࢖࢔ and RGP values of damage localization concept for all refined discretizations 

Case study Number of 

nodes 

Number of 

integration points 

 Optimum RGP ࢖࢔

(m) 

1st refined discretization 295 567 0.8 0.0131 
2nd refined discretization 505 1008 0.8 0.0099 
3rd refined  discretization 771 1575 0.8 0.0079 

 

7.2.2 Convergence Study on the Weight Function Order 

Consider	݊௣ ൌ 0.8 as the optimal value, it is possible to make a convergence study on the 

weight function order for all the refined RPIM nodal distributions. Different weight 

function orders are extracted from Table 1.  

The obtained results for the response of load P in terms of the deflection on point A for 0, 

2nd and 3rd orders weight function are plotted in Figure 84, Figure 85 and Figure 86 

respectively.  

 

Figure 84: The response of load P versus the deflection of point A on all refined discretizations, 
0 -order weight function with ࢖࢔ ൌ ૙. ૡ 
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Figure 85: The response of load P versus the deflection of point A on all refined discretizations, 
2nd-order weight function with ࢖࢔ ൌ ૙. ૡ 

 

Figure 86: The response of load P versus the deflection of point A on all refined discretizations, 
3rd-order weight function with ࢖࢔ ൌ ૙. ૡ 
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It is observable from the figures that the results are getting far away from the experimental 

solution when the 0-order weight function is performed which is not the purpose of the 

study. On the other hand, the RPIM solution is closer to the experimental solution when 

the 2nd and 3rd orders are used. However, both mentioned orders have a good agreement 

with the experimental curve. So, it is better to keep both of them and in the next 

convergence study, we might determine the best solution. Hence we discard the 0- weight 

function order. 

 

7.2.3 Convergence Study on ࡭ା 

Considering the optimum value of	݊௣ ൌ 0.8, it is possible to make a convergence study on 

the tensile parameter	ܣା. So far, this value has been assumed as	ܣା ൌ 0.001. In this section 

the corresponding value will be optimized for refined discretizations with regard to the 

damage localization formalism. Since the characteristic length is depended on ܣା 

according to Equation (96-a), hence it will be possible to present the optimal value of 

characteristic length as well. 

Indeed, the best weight function order must be determined here since it was not specified 

in the previous Section 7.2.2. 

First the analysis starts with the 2nd-order weight function for all three refined 

discretizations with the properties demonstrated on Table 24.  

Consider various values of ܣା,	the response of load versus deflection for three refined 

nodal distributions with regard to the 2nd order weight function is plotted in Figure 87, 

Figure 88 and Figure 89. 
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Figure 87: Study of ࡭ା	for the response of load P versus the deflection of point A on the first refined 
discretization, the 2nd-order weight function with ࢖࢔ ൌ ૙. ૡ 

 

Figure 88: Study of ࡭ା	for the response of load P versus the deflection of point A on the second 
refined discretization, the 2nd -order weight function with ࢖࢔ ൌ ૙. ૡ 
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Figure 89: Study of ࡭ା	for the response of load P versus the deflection of point A on the third refined 
discretization, the 2nd -order weight function with ࢖࢔ ൌ ૙. ૡ 

The same procedure is conducted on the 3rd order weight function taking account into the 

various values of ܣା for all the refined discretizations shown in Figure 90, Figure 91 and 

Figure 92. 
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Figure 90: Study of ࡭ା	for the response of load P versus the deflection of point A on the first refined 
discretization, the 3rd -order weight function with ࢖࢔ ൌ ૙. ૡ 

 

 

Figure 91: Study of ࡭ା	for the response of load P versus the deflection of point A on the second 
refined discretization, the 3rd -order weight function with ࢖࢔ ൌ ૙. ૡ 
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Figure 92: Study of ࡭ା	for the response of load P versus the deflection of point A on the third refined 
discretization, the 3rd -order weight function with ࢖࢔ ൌ ૙. ૡ 

The variation of the characteristic length and ܪഥା variable are computed based on Equations 

(96-a) and (95-a) repetitively reported on Table 25. 

Table 25: variation of the characteristic length and H variable 

ሺ݉ିଵሻ 1	ഥାܪ ା ݈௖௛ሺ݉ሻܣ
ഥାܪ

	ሺ݉ሻ 

1 ൈ 10ିଵ 1.08 ൈ 10ିଶ 4.244 0.226 

1 ൈ 10ିଶ 1.1 ൈ 10ିଷ 4.244 0.226 

1 ൈ 10ିଷ 1.1296 ൈ 10ିସ 4.244 0.226 

1 ൈ 10ିସ 1.1302 ൈ 10ିହ 4.244 0.226 

 

The results represented on Table 25 present the acceptable values for all variables 

according to the damage mechanics criteria. They satisfy the corresponding conditions 

expressed in Equations (95-b) and (96-c) in which: 
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ାܣ ൒ 0				ܽ݊݀	
1
ഥାܪ

	൒ 	 ݈௖௛ 

In all analyses, the curve related to 	ܣା ൌ 0.1 behaves differently compared to the other 

ones. Somehow it experiences some unexpected fluctuations during the process. Hence it 

is recommended not to consider that.  

Although the results related to the other values 	ܣା ൌ 0.01, 0.001	ܽ݊݀	0.0001 vary 

similarly and they have a good agreement with the experimental curve, there must be one 

value optimized here. However, the optimized value could be selected the middle one 

which is	ܣା ൌ 0.001. 

Regarding the behavior of weigh function order, it is visible that the 2nd order weight 

function increases the peak load point leading to delay the damage phenomenon. Because 

the damage initiates after reaching the ultimate elastic value where the concavity of the 

curves changed. Hence it is rational to discard the 2nd order weight function.  

Considering all the convergence studies, it is possible to represent all the optimized values 

for localized damage formalism as seen on Table 26. 

Table 26: The optimum values of damage localization in three point bending beam 

݊௣ ൌ 0.8 3rd order weight function 	ܣା ൌ 0.001 ݈௖௛ ൌ 1.1296 ൈ 10ିସ	ሺ݉ሻ 

 

According to the results presented on Table 24 and Table 26, it is important to mention that 

RGP value is affected by the discretization size meaning that it is a function of the number 

of nodes. 

 Considering all, it is possible to analyze a denser refined mesh of three point bending beam 

so-called “the final one” with regard to the optimum localized damage values. 
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7.2.4 The Final Refined Discretization  
 

In order to finalize the refinement study, within the scope of the localized damage for three 

point bending beam, a denser mesh so-called “Final Discretization” with the total number 

of 2941 nodes and 6300 integration points is considered, as represented in Figure 93. 

The main goal of this study is to observe the efficiency and performance of the numerical 

algorithm in the presence of the optimum values reported from the previous studies.  

 

 

Figure 93: Final refined discretization for three point bending beam: (a) 2941 nodes and (b) 6300 
Gauss points 

It is necessary to mention that the total displacement enforcement is considered as    

u = 0.32 (mm) to capture better performance of the localized damage algorithm. The 

divisions along x and y directions are 81 and 21 respectively. So, it is possible to compute 

the average distance between nodes within Equation (113-b) as follows: 

݄ ൌ 0.0049	ሺ݉ሻ 

Consequently, consider	݊௣ ൌ 0.8, RGP is calculated from Equation (113-a) as: 

ܲܩܴ ൌ ݊௣	݄ ൌ 0.8 ∗ 0.0049 ൌ 0.0039	ሺ݉ሻ 

Consider the 3rd order weight function and the other optimum variables for damage 

localization aspect, the response of load P - deflection on point A is captured for this 

analysis shown in Figure 95. The variation of damage versus effective strain in the case of 

non-local and localized tensile damage in addition to total damage at ݃݌௖ is presented in 

Figure 96. The corresponding integration point is introduced in Figure 94. 
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Figure 94: The detection of ࢉ࢖ࢍ for the final refined discretization in three point bending beam 

 

 

 

 

 

Figure 95: Load P in terms of deflection on point A for final refined discretization with 2941 nodes, 
3rd order weight function if 	࢖࢔ ൌ ૙. ૡ 
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Figure 96: Variation of damage at ࢉ࢖ࢍ	obtained for final refined with 3rd order weight function if 
࢖࢔	 ൌ ૙. ૡ 

Referring to Figure 95, it is observable that the RPIM solution agrees very well with the 

experimental one and it satisfies the target of this work. Thus, this agreement proves the 

efficiency of the convergence study and most importantly the optimization procedure. To 

clarify this notification, all the curves with regard to the optimum 	݊௣	value for the four 

refined discretizations are shown in Figure 97.  

In fact, this figure is the complete version of Figure 86. 
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Figure 97: Load P in terms of deflection on point A for all refined discretizations for 3rd order weight 
function and 	࢖࢔ ൌ ૙. ૡ 

 

7.2.4.1 Graphical Representations of the Internal and Damage Variables 
 

In this part, profiles of the tensile, compressive and total damage contours are presented to 

catch the progress of the analysis related to three point bending test when the final RPIM 

discretization is considered. They are captured in each increment of displacement 

enforcement. In addition, the profile of total equivalent von Mises effective stress in total 

and damaged states are demonstrated.  

7.2.4.1.1 Damage Contours 
 

The corresponding contours are captured in the following displacement enforcement stages 

as shown on Table 27. 
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Table 27: The corresponding displacement enforcement for graphical representations 

 First stage Second stage Third stage 
Displacement 

enforcement (mm) 
1.2841E-01 1.7526E-01 3.1581E-01 

 

The obtained contours, related to the damage profiles based on the particular displacement 

enforcement stages (see Table 27), are presented in Figure 98.  

 

(a) 

 

(b) 
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(c) 

Figure 98: The damage contour on three point bending beam for (a) first stage, (b) second stage and 
(c) third stage of enforced displacement 

 

It is important to mention that the tensile damage contours are the same as the damage 

ones. Thus, it is not necessary to repeat them. 

7.2.4.1.2 Compressive Damage Contour 
 

The compressive damage profile for this three point bending is presented in Figure 99. This 

profile remains as zero value during all the displacement enforcement stages.   

 

Figure 99: Compressive damage contour on the three point bending beam 
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7.2.4.1.3 Equivalent Von Mises Total Stress 
 

The profile of equivalent von Mises effective stress in total elastic state is shown in Figure 

100. This figure shows an increasing trend of the total effective stress value when the 

enforced displacement grows. 

 
(a) 

 

 
(b) 
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(c) 

Figure 100: The total stress profile on three point bending beam for (a) first stage, (b) second stage 
and (c) third stage of enforced displacement 

As seen in Figure 100, it is visible that the stress is increasing in the crack area. It already 

exceeds the maximum uniaxial tensile strength causing the tensile damage happens in the 

material (Figure 100-c). 

 

7.2.4.1.4 Equivalent Von Mises Damaged Stress 
 

The equivalent effective von Mises stress map in damaged state for three point bending 

test is presented in Figure 101. 

 
(a) 
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(b) 

 
(c) 

Figure 101:  The damaged stress profile on three point bending beam for (a) first stage, (b) second 
stage and (c) third stage of enforced displacement  

 

It is nothing worth to mention that the damaged stress accounted for very low values. This 

has a good agreement with the literature. Once the material starts to be damaged, the 

stiffness matrix is decreasing significantly. Hence the material becomes softer leading to 

decrease the internal force. Consequently, the stress in damaged state declines. Besides, 

the damaged stress is concentrated on the crack tip where it initiates to propagate (the non-

dark blue area in the profiles) 
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7.2.4.2 Study of Irregular Mesh  
 

Based on the analysis presented in Section 7.2.4, it is possible to perform the algorithm on 

the irregular discretization using RPIM formulation extended to the rate-independent 

damage mechanics with localized damage parameters. First of all, the geometry and 

essential boundary conditions are shown in Figure 102. 

 

Figure 102: The single-edge-notched beam subjected to three point bending (a) geometry, (b) the 
refined irregular mesh with the essential boundary conditions and (c) integration points 

 

In this part we can benefit from the previous work where the theory of RPIM irregularity 

was introduced in Section 5.1.4 for axisymmetric plates. With regard to Equation (126), 

the irregularity parameter for this analysis is chosen as	ߣ ൌ 10. The material properties, 

geometric and damage characteristics are the same as the similar regular case.  

As done before, so as for obtaining the more accurate results in the irregular nodal 

distribution, the analysis should be performed for several times while the coefficients and 

parameters are the same for all of them. Then, the average value is driven to compare with 

the experimental solution (Malvar & Warren, 1988). Thus, there are 7 basic results 

obtained for this irregular study as demonstrated in Figure 103. 
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Figure 103:  Basic responses of load P- deflection on point A obtained for irregular discretization 
with 2941 number of nodes in the case of damage localization 

 

Considering all the 7 irregular results for this example, it is possible to calculate their 

average and then compare to the experimental solution and also the similar regular result 

as well (the regular result relevant to this study was presented in Figure 95), subsequently 

the outcome is shown in Figure 104.  

It is nothing worth to mention that the optimum parameters of localized damage perform 

very well with the irregular nodal distribution as well as the regular case (݊௣ ൌ 0.8 and 3rd 

order weight function). 
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Figure 104: Response of load P in terms of deflection on point A for three point bending test within 
localized RPIM damage formalism obtained for the regular and average irregular discretizations 

 

Figure 104 certifies that the average irregular result has a good agreement with the regular 

one and both of them are validated with the experimental curve of the load P- the deflection 

on point A response.  

 

7.2.4.3 Modified Irregular Mesh  

To end the analysis of three point bending beam, this section is devoted to the specific 

rearrangement of the irregular nodal distribution. The procedure is described briefly here, 

in order to obtain a milder curve of the load P- the deflection on point A, a small change in 

the arrangement of the node is applied.  

Thus, the RPIM algorithm is ordered to rearrange these three nodes close to the regular 

nodal distribution. This change is not significant in the discretization, since only 3 nodes 

are affected by this rearrangement, but it might influence the solution dramatically.  
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Subsequently, the corresponding change is defined in the part of irregular discretization by 

forcing the mentioned 3 nodes to be arranged regularly. Figure 105 clarifies the 

abovementioned description.  

 

Figure 105: The rearrangement on the critical nodes situated at the crack tip for the modified 
irregular mesh in three point bending beam 

 

For this specific analysis (with 2941 nodes and 6300 integration points), it should be 

remarked that the mesh routine, defined to change the arrangement of the nodes, never 

rearranges the discretization in the critical zone for more than 3 single nodes. Because it is 

controlled within the specific conditions in advance. But it would be distinct for the other 

discretization patterns.  However, the nodes located at the border are forced to be regularly 

discretized, which is not relevant to this stage (see Figure 105). 

With regard to the mentioned aspect, using the rearranged irregular mesh it is possible to 

obtain the response of load in terms of the deflection. 

So, the analysis has been repeated for 7 times with the same property for the irregular 

discretization ሺߣ ൌ 10ሻ with the optimum localized parameters mentioned before. The 

outcome of this work is shown in Figure 106. 
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Figure 106: Basic responses of load P- deflection on point A obtained for the modified irregular mesh 
with regard to the optimum localized parameters 

 

Comparing the basic irregular results presented in Figure 103 and the modified ones shown 

in Figure 106, it is visible that the current curves of load - deflection are milder and closer 

to the experimental solution (Malvar & Warren, 1988). There is an expected variation after 

reaching the peak load point in the former results. 

Consequently, in order to finish this research task, the average modified results are 

compared to the experimental solution (Malvar & Warren, 1988) and similar regular result 

(Figure 95). Therefore, Figure 107 demonstrates the final graphical representation. 
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Figure 107: Response of load P – deflection on point A for three point bending test within localized 
damage formalism obtained for regular and average irregular mesh with refinement 

 

Figure 107 indicates the behavior of load P versus deflection on point A for three point 

bending beam obtained from regular and modified irregular meshes in the sense of the 

localized damage. It is observable that the curve of average irregular is getting a bit far 

away from the experimental result after reaching the peak load compared to the similar 

graph presented in Figure 104 (where the irregular and regular curves are almost matched 

together). 

Figure 108 indicates a resume of all the analyses done for regular, irregular and modified 

irregular meshes. Considering this figure, it is rational to conclude that, the main targets of 

this work have been satisfied.  
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Figure 108: The comparison between regular, irregular and modified irregular meshes obtained for 
three point bending beam 

 

The importance of performing modified irregular mesh is referred to the basic irregular 

analyses shown in Figure 103. As it is observable, the corresponding curves are satisfactory 

till reaching the peak load, after that they start to diverge significantly from the 

experimental result. This behavior is not very convenient for the analyses. Thus, in order 

to eliminate this variation, the rearrangement of the nodes in the critical zone (which seems 

to affect the solution) has been proposed. Consequently, the suitable basic results of the 

irregular analyses have been obtained Figure 106 with regard to the modified irregular 

discretization.  

The observation of Figure 108, including all the results together, permits to verify that the 

regular mesh of three point bending beam agreeing very well with the experimental 

solution (Malvar & Warren, 1988). Besides, the average irregular solution has a good 

agreement with the experiment regardless the non-mild variations of the 7 basic solutions 

for that Figure 103. Although the average modified irregular result overlaps the 
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experimental curve a bit after reaching the peak load point, the 7 basic results (Figure 106) 

match the experimental results acceptably. Hence the objective of the modified analysis is 

relevant to the basic irregular solution and verify them with the experiment. 

Overall, all the obtained results are valid with the experimental solution with regard to the 

optimum parameters for damage localization formalism in RPIM meshless method.  

 

7.3 Compact Tension Test 

The last benchmark studied here is a compact tension specimen as seen in Figure 109, it 

was tested for the first time at LMT Cachan (Legendre, 1984). There are some observations 

and experimental results reported by (Legendre, 1984) and (Mazars & Pijaudier-Cabot, 

1996) showing the global behaviour of the structure during linear elastic damage 

mechanics (LEDM) and linear elastic fracture mechanics (LEFM). This study has been 

categorized as a combination of damage and fracture mechanics because micro cracks 

evolve to a macro crack. It means that the analysis starts with damage mechanics and ends 

with the fracture phenomenon (Mazars & Pijaudier-Cabot, 1996).  

 

                                                   (a)                                                              (b) 

Figure 109: Compact tension specimen: (a) Geometry and (b) Regular mesh and essential boundary 
conditions 
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Figure 109-a indicates the geometry of the specimen containing an empty space so-called 

“hole” in the middle bottom with the specific dimensions. As seen in Figure 109-b, it is 

noticeable that only half of the specimen will is considered due to its symmetry. This 

assumption reduces the computational costs and increases the efficiency of the RPIM 

formulations. Furthermore, this figure illustrates the essential boundary conditions applied 

on the specimen. Like the other studies, here, a displacement controlled analysis is 

performed, where the displacement is enforced at point q shown as Q. Moreover, the nodes 

located on the right border are not allowed to move along x direction.  

This study performs with the different nodal distributions for the compact tension specimen 

considering the localized damage formalism.  

In order to start the analysis through RPIM formulation, it is necessary to predefine some 

properties and coefficients presented on Table 28.  

Table 28: Geometric properties of compact tension specimen (Mazars & Pijaudier-Cabot, 1996) 

Parameter Value 

Length ܮ ൌ 60 ൈ 10ିଶሺ݉ሻ 
Width ܦ ൌ 75 ൈ 10ିଶሺ݉ሻ 

Thickness ݁ ൌ 10 ൈ 10ିଶሺ݉ሻ 
Hole length ܾ ൌ 10 ൈ 10ିଶሺ݉ሻ 
Hole width ݃ ൌ 25 ൈ 10ିଶሺ݉ሻ 

The material properties and damage characteristics of concrete used in this example are 

represented on the following Table 29 and Table 30. 

Table 29: Material properties of the model (Mazars & Pijaudier-Cabot, 1996) 

Property Value 

Young`s modulus ܧ ൌ 34.5 ൈ 10ଽሺܲܽሻ 

Poisson’s ratio ߥ ൌ 0.2 

Maximum uniaxial tensile strength ଴݂
ା ൌ 4.2435 ൈ 10଺ሺܲܽሻ 

Maximum uniaxial compressive strength ଴݂
ି ൌ 29 ൈ 10଺ሺܲܽሻ 

Maximum uniaxial tensile strain ߝ଴
ା ൌ 1.23 ൈ 10ିସ 

Maximum uniaxial compressive strain ߝ଴
ି ൌ 8.4058 ൈ 10ିସ 

Fracture energy ܩ௧ ൌ 102	ሺܰ ݉⁄ ሻ 
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Table 30: Damage characteristics for compact tension test 

Parameter Value 

In tension ܣା ൌ 	0.1663 
In compression (Cervera et al., 1996)  ିܣ ൌ 1 
In compression (Cervera et al., 1996) ିܤ ൌ 0.89 

Characteristic length (Mazars & Pijaudier-Cabot, 1996) ݈௖௛ ൌ 3 ൈ 10ିଶሺ݉ሻ 
 

Regarding the characteristic length and ܣା,	it must be noted that the scenario varies here 

compared to the previous examples. In this study, the characteristic length is chosen as 

݈௖௛ ൌ 3 ൈ 10ିଶሺ݉ሻ based on the fixed value for the FEM analysis proposed by (Mazars & 

Pijaudier-Cabot, 1996). Hence the tensile coefficient is adopted in accordance with 

Equation (96-a) as follows:  

ഥାܪ ൌ 2.5586	ሺ݉ିଵሻ 

ାܣ ൌ 0.1663	 ൒ 0 

1
ഥାܪ

ൌ 0.3908	ሺ݉ሻ 		൒ 		 ݈௖௛ ൌ 0.03	ሺ݉ሻ		 

The abovementioned relations prove that all the corresponding variables have an agreement 

with the damage mechanics concept. 

Moreover, there exist some important configurations relevant to the non-linear elastic 

damage algorithm presented on Table 31. A displacement controlled based on the rate-

independent elastic damage routine as introduced in the previous examples (see Box 1, Box 

2 and Box 3.) 

Table 31: Algorithm configuration  

Description 

Total displacement enforcement  ݑ	 ൌ 2.25 ൈ 10ିସ	ሺ݉ሻ 

Average displacement increment = 1.3543 ൈ 10ିହ	ሺ݉ሻ 
 Tolerance = 10ି଺ 

Total increment = 15 
Maximum number of iteration in each increment = 500  

 

In addition to the afore-mentioned information relevant to the LEDM procedure, it is 

necessary to indicate the features of the localized damage model used in the LEFM process. 
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The optimized values demonstrated on Table 26 are also useful here. Hence the 3rd -order 

weight function with regard to ݊௣ ൌ 0.8	are considered here, as well as for proceeding the 

localized damage concept, based on the theory and equations introduced in Section 4.3. 

In this study, distinct regular discretizations are considered as shown in Figure 110. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 110: Different regular discretizations used in the compact tension test (a) 1st pattern, (b) 2nd 
pattern, (c) 3rd pattern and (d) 4th pattern 
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Consider Figure 110, the properties relevant to each discretization pattern is represented 

on Table 32. In addition to that all RGP values used in this analysis are introduced on the 

mentioned table. 

Table 32: Properties for the discretizations in the compact tension specimen analysis 

Discretization  Divisions 

along x 

Divisions 

along y 

Number of 

nodes 

Number of 
integration 

points 

RGP 

1st pattern 11 25 259 517 0.0240 (m) 
2nd pattern 17 31 498 1025 0.0150 (m) 
3rd pattern 21 51 1009 2138 0.0120 (m) 
4th pattern 30 76 2165 4887 0.0083 (m) 

 

In accordance with Table 32, to obtain the localized damage parameters (RGP and h) for 

this study, Equations (113-a, b) are adopted as follows: 

݄ ൌ
ܮ
2ൗ

ݔ	݃݊݋݈ܽ	ݏ݊݋݅ݏ݅ݒ݅݀
 

ܲܩܴ ൌ 	݊௣݄ ൌ 0.8 ∗ ݄ 

where only half of the total length is considered due to the symmetric geometry. Therefore, 

the computed results are demonstrated on Table 33. 

Table 33: Variation of h and RGP for compact tension specimen 

Discretization  Divisions 

along x 

Divisions 

along y 

 ࢎ ࢖࢔
 (m) 

RGP 
 (m) 

1st pattern 11 25 0.8 0.0300 0.0240 
2nd pattern 17 31 0.8 0.0187 0.0150  
3rdpattern 21 51 0.8 0.0150 0.0120  
4th pattern 30 76 0.8 0.0103 0.0083  

Until here, all the initial information required for the analysis has been introduced, now it 

will be briefly described the objectives: 

1- Verify the experimental curve of load Q versus hole mouth opening q reported by 

(Legendre, 1984) and (Mazars & Pijaudier-Cabot, 1996) in Figure 111 ; 
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2- Measure of the equivalent crack length (a) at a certain point B discussed next with 

regard to the numerical solution presented by (Mazars & Pijaudier-Cabot, 1996).  

 
Figure 111: The global behavior of the compact tension test performed from damage to fracture 

(Mazars & Pijaudier-Cabot, 1996) 

It is possible to perform the analysis of various regular meshes shown in Figure 110 based 

on the geometry and essential boundary conditions indicated in Figure 109. First, a 

convergence study should be conducted on these distinct discretization patterns to observe 

the global behaviour of the material in the elastic, damage (LEDM) and fracture mechanics 

(LEFM). 

The response of horizontal force (Q) correlated with of the mouth opening of the hole (q) 

for different regular nodal distributions on compact tension test compared to the 

experimental solution is presented in Figure 112. 
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Figure 112: Response of load versus mouth opening obtained for different meshes compared to 
experimental curve (Mazars & Pijaudier-Cabot, 1996) 

 

Figure 112 indicates that the accuracy of the RPIM increases when the denser discretization 

is considered. Thus, as a resume, the suitable solution is obtained where the mesh includes 

2165 nodes in RPIM formulations (the divisions are 30 and 76 along x and y directions 

respectively).  

As shown in Figure 112, the global behaviour of the compact tension test under 

compressive displacement enforcement is divided in the following stages: 

First of all, the material experiences a linear elastic behaviour (OA line). After that, the 

material initiates to get softer so that the stiffness is decreasing. It means that the material 

is encountering linear damage mechanics with micro cracks while the macro cracks have 

not been yet created, AB curve. At the end, the material undergoes to the linear fracture 

mechanics, where the micro cracks evolve to the macro cracks (BC curve). 
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In the last stage, some parts of material have been already damaged and probably the 

existing cracks initiate to propagate along the Oy direction. Hence the failure of the 

structure might be predicated after.  

It is important to mention that the non-local damage algorithm is applied on LEDM (see 

Box 2) while the localized damage routine (Box 3) is used to evaluate LEFM in the 

material, which are as OB and BC curves, respectively. 

 

7.3.1 Assessment on Point B 

Based on the observation reported by (Legendre, 1984) and (Mazars & Pijaudier-Cabot, 

1996), there is an interface point between LEDM and LEFM known as point B (see Figure 

112). It is possible to infer that the damage parameter accounted for the maximum value at 

this point (d=1). This point provides some important information and features related to 

the damage and fracture phenomena. It is visible from Figure 112 that point B is identified 

in the numerical curve with the following components: 

ܤ ൌ	 ሺݍ஻, ܳ஻ሻ 	≅ ሺ0.195	ሺ݉݉ሻ,18ሺ݇ܰሻሻ 

The obtained results from RPIM analyses regarding the value of horizontal force at point 

B is shown on Table 34. 

Table 34: The RPIM result of force at point B obtained for different discretization patterns 
compared to the experimental one  

Number of 
nodes 

Number of 
integration points 

Experimental 
value [kN] 

RPIM value 
 [kN] 

Error 
% 

259 517 18 24.7783 37.66 
498 1025 18 23.2946 29.41 
1009 2138 18 21.6282 20.16 
2165 4887 18 18.7602 4.22 

 

Since point B is located between damage and fracture states meaning that the material has 

already had some micro cracks, so it is possible to measure the equivalent crack length (a). 

Hence it is required to obtain this value for the RPIM analyses as presented on Table 35. 

Numerical value (a = 0.13 m) has been reported by (Mazars & Pijaudier-Cabot, 1996). 
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Table 35: The equivalent crack length (a) obtained from damage profile for different discretization 
patterns at point B 

Number of 
Nodes 

Number of 
integration points 

Experimental value 
[m] 

RPIM value 
 [m] 

Error 
% 

259 517 0.13 0.0573 55.92 

498 1025 0.13 0.0847 34.85 

1009 2138 0.13 0.1048 19.38 

2165 4887 0.13 0.1331 2.38 
 

According to the results presented on Table 35, it is important to mention that the more 

accurate value, belonging to the equivalent crack length, is achieved when the 

discretization contains 2165 number of nodes. Indeed, Figure 113 demonstrates the 

variation of the equivalent crack length in terms of the mesh size compared to the 

experimental solution (Legendre, 1984). This diagram clarifies the concept of equivalent 

crack length in relation with the number of nodes in RPIM formulations. 

 

Figure 113: The variation of equivalent crack length at point B obtained for all regular patterns 

 

It is observable form the above figure that the solution is converging when the number of 
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parameters on the specimen at point B. Hence, the profiles of the tensile, compressive and 

total damage variables for all the regular RPIM studies are demonstrated in the next plots. 

 

                 (a)                                                     (b)                                                     (c) 

Figure 114:  Distribution of damage for 259 nodes at point B; (a) total damage, (b) tensile damage 
and (c) compressive damage 

 
               (a)                                                     (b)                                                        (c) 

Figure 115 : Distribution of damage for 498 nodes at point B; (a) total damage, (b) tensile damage 
and (c) compressive damage 
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               (a)                                                     (b)                                                        (c) 

Figure 116: Distribution of damage for 1009 nodes at point B; (a) total damage, (b) tensile damage 
and (c) compressive damage 

 

 
               (a)                                                     (b)                                                        (c) 

Figure 117: Distribution of damage for 2165 nodes at point B; (a) total damage, (b) tensile damage 
and (c) compressive damage 

 

Figure 114, Figure 115, Figure 116 and Figure 117 were obtained for the damage 

parameters for different regular discretizations at point B.  
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It must be remarked that there is no compressive damage in all discretization patterns. This 

matter is related to the high value of the maximum uniaxial compressive strength.              

This high value permits the material to resist against the compressive effect strongly.  

Therefore, the material is only influenced by the tensile damage. So, the total damage is 

the same as the tensile one. 

7.3.2 Graphical Representations of Internal Variables 

It is possible to present the variation of the internal variables such as effective total stress 

and damaged stress. The latter one is also identified as the Cauchy elastic stress tensor. 

However, only the results related to the densest discretization with 2165 node 

corresponding to the regular study (corresponds to the discretization presented in Figure 

110-d).  

It is also essential to mention that all the values are computed in the form of equivalent 

Von mises stress based on Equation (51). 

In fact, the program is enable to produce all the stress profiles at the end of each increment 

of displacement enforcement. Since there are 15 increments considered here, it is extra 

details if we present all of them, hence only some essential profiles of stress (in some 

displacement enforcement increments shown on Table 36) will be presented in the 

following Figure 118, Figure 119 and Figure 120. These figures have the potential to 

indicate the progress of the process in pseud time stepping scheme.  

It is important to mention that all the stress profiles are mapped on the integration points 

(Gauss Points) due to the nature of the RPIM formulation.  

Table 36: The displacement enforcement value in relation with the increments 

Increment 2nd 8th 14th 

Displacement 

enforcement (mm) 

5.3182E-02 
 

1.32831E-01 
 

2.12529E-01 
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                            (a) (b) 

Figure 118: Equivalent Von-mises Stress profile on compact tension specimen for 2165 nodes at the 
2nd increment (a): damaged state and (b) total state 

 

                            (a) (b) 

Figure 119 : Equivalent Von-mises Stress profile on compact tension specimen for 2165 nodes at the 
8th increment (a): damaged state and (b) total state 
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                          (a) (b) 

Figure 120: Equivalent Von-mises Stress profile on compact tension specimen for 2165 nodes at the 
14th increment (a): damaged state and (b) total state 

The stress maps indicate that the damage initiates from the tip of the hole, where the crack 

is propagated from. 

On the other hand, the value of the total elastic stress (see the legend bar on Figure 120-b) 

reaches the maximum amount of		ߪത෨ ൌ 18	ሺܲܽሻ which is located between the maximum 

uniaxial tensile and compressive strengths, therefore; 

଴݂
ା ൏ ߪത෨ ൏ ଴݂

ି 	
௦௢	௧௛௔௧
ሱۛ ۛۛ ሮ 		4.2435 ൈ 10଺	ሺܲܽሻ ൏ 18 ൈ 10଺	ሺܲܽሻ	൏ 29 ൈ 10଺	ሺܲܽሻ 

Meaning that the material does not reach the maximum uniaxial compressive. That is why 

no compressive effects are observed in this analysis and the compressive damage remains 

for zero value during all the increments.  

Taking account into the theory of continuum damage mechanics, the aforementioned issue 

is typically normal in concrete structures, because they are known due to their high 

compressive resistance.  
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Regarding the localized damage parameters as introduced previously, it is possible to 

produce the damage parameters in terms of effective strain (should be computed on 

equivalent von Mises state, Equation (53)) to distinguish the difference between non-local 

damage and localized one. Therefore, it is necessary to choose a specific Gauss point 

(integration point) in the critical zone and then plot the damage variables on in the both 

non-local and localized states.  

Considering the results obtained for this study, it has been proved that the crack is forming 

in the material during the displacement enforcement stages. Thus, the best position is near 

crack tip zone (yellow highlighted area in Figure 121). Indeed the corresponding critical 

Gauss point has been selected as ݃݌௖	(see Figure 121). 

 

Figure 121: Detection of the critical integration point ࢉ࢖ࢍ in the compact tension test 

As shown in Figure 121, the yellow highlighted area is related to the place that the crack 

is almost situated at. If the yellow area is magnified, it is possible to observe the 

corresponding integration point that the damage variation is going to be measured on. 

Selecting this point as the studied one for damage parameters in terms of effective strain 

allows us to observe the evaluation of damage from the beginning of the process.  
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Following the afore-mentioned description, the variation of damage parameter in terms of 

equivalent strain is plotted in Figure 122. 

It is nothing worth to mention that the compressive damage does not appear in the 

evaluation since it is equal to zero during the procedure. 

 

 

Figure 122: the damage evolution on ࢉ࢖ࢍobtained for non-local tensile, localized tensile and total 
damage when the RPIM discretization contains 2165 nodes  

 

Figure 122 demonstrates the damage evolution in terms of effective strain with regard to 

the non-local and localized aspects.  

It is essential to indicate that the objective of the localization is to smooth the damage by 

sharing the damage value of an interest point with the other points around (they are located 

inside the circle with the radius of RGP). Hence the localized damage trend must be 

smoother than the non-local behavior. According to Figure 122, this phenomenon is almost 

satisfied. Although the variation is not that much high, the curve related to the local tensile 

damage accounted for the slower slope compared to the sharp slope of the non-local curve 
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(the black and blue curves respectively). As a final remark, the curve indicated with the red 

circles is relevant to the total damage which is the same as the localized tensile damage. It 

has a good agreement with the target of the damage localization. Since tensile damage 

variable has been smoothed with regard to the zero value of the compressive one, the total 

damage is derived only form the tensile one and they should be the same. So, the localized 

damage algorithm was successfully applied, showing a very good agreement.  

7.3.3 First Study on the Irregular Mesh 

This part is devoted to the random arrangement of the nodes. As it was mentioned before 

(Sections 5.1.4 and 7.2.4.2), there are some aspects that should be described in advance. 

First of all, the specimen is discretized into divisions along each direction (x and y) 

accounted for the same values as it was finalized for the regular study (30 by 76). So, the 

regular discretization is formed containing 2165 nodes and 4887 integration points. 

Afterwards the nodes are arranged randomly in accordance with the chosen irregularity 

parameter (ߣ) as introduced in Equation (126). This parameter controls the irregularity and 

affects the solution significantly. Thus it should be chosen carefully. 

So, it is better to start with a small value of ߣ	to achieve a proper irregular mesh (see Figure 

13). The irregularity parameter is chosen as ߣ ൌ 10 .Indeed, the geometry of the compact 

tension test with the irregular discretization is shown in Figure 123. 
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(a)                                                                         (b) 

Figure 123: Compact tension specimen: (a) Geometry and (b) Irregular mesh when  ࣅ ൌ ૚૙ and 
essential boundary conditions 

Figure 123-a demonstrates the geometry of the compact tension specimen. Figure 123-b 

shows the irregular discretization with regard to 	ߣ ൌ 10. It is visible from the figure that 

the irregular effect is only applied on the right side of the specimen due to the prediction 

of the crack propagation in this zone. In fact, this area could be called the critical location 

in the perspective of the presence of micro and macro cracks after. Hence the critical area 

covers all the nodes situated along the hole directions from its tip to the top edge of the 

specimen. Indeed the geometric and material properties are presented on Table 28 and 

Table 29, respectively. Moreover, the damage characteristics and algorithm configurations 

are introduced on Table 30 and Table 31. 

In accordance with Table 33, the amount of RGP in the case of localized damage state is 

RGP = 0.0083 (m). 

The results regarding the horizontal load (Q) in terms of mouth opening of the hole (q) are 

obtained. Since the more accurate results of irregular study is obtained when several 

analyses studies, it will be done for 11 times with the fixed properties as shown in Figure 

124. 
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Figure 124: Study of the irregular mesh obtained for the response of load Q- mouth opening q in 
RPIM for compact tension specimen - localized damage formulation 

Figure 124 indicates that the RPIM curves agree in an acceptable way with the 

experimental solution which proves the proper performance of the localized elastic damage 

algorithm within RPIM formalism.  

Consequently, it is possible to take the average from the 11 irregular results and then 

compare to the similar regular solution and most importantly with the experimental result 

as illustrated in Figure 125. 
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Figure 125: The response of load- mouth opening in compact tension test obtained for regular and 
average irregular results compared to experimental one, ࣅ ൌ ૚૙ 

 

As seen in Figure 125, the regular and irregular curves undergo almost the same trend and 

they agree well with the experimental result particularly from damage to fracture 

mechanics.  

It must be remarked that the regular curve has been extracted from Figure 112. 

In order to verify the functionality of irregular study in the RPIM formalism extended to 

elastic damage and fracture mechanics for a particular case of localized damaged 

parameter, it is possible to study another irregular case of compact tension test. 

7.3.4 Second Study on the Irregular Mesh 

To finish the irregular study, another analysis is considered here with a change in 

irregularity parameter. It is noticeable to mention that all the parameters and properties are 

the same as previous example (Section 7.3.3) while the irregularity parameter is decreased 

to	λ ൌ 5.  Hence more irregular arrangement of the nodes should be obtained. The 
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geometry and the nodal discretization with the essential boundary conditions of this 

example are illustrated in Figure 126. 

 
                                                               (a) (b) 

Figure 126: Compact tension specimen: (a) Geometry and (b) Irregular discretization when ࣅ ൌ ૞  

As it is visible in Figure 126-b, a more irregular nodal arrangement is obtained due to 

decrease of the irregularity parameter. The analysis is performed and the obtained response 

of Q-q for the new irregular case is captured. Then, there will be a comparison between the 

current result and all the others (previous irregular, regular and experimental test) shown 

in Figure 127. 

Regarding Figure 127, it should be noted that curves related to irregular 1 and 2 are 

associated with the analyses if λ ൌ 10 and λ ൌ 5	respectively. Consequently, changing in 

the irregularity parameter does not affect the final solution significantly and the obtained 

results for both irregular cases have a good agreement with the regular and experimental 

solution (Mazars & Pijaudier-Cabot, 1996).  
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Figure 127: Results of load vs. mouth opening for irregular mesh obtained for different irregularity 
parameters compared to the regular result and experimental test 

 

 

Figure 128: Damage evolution at ࢉ࢖ࢍ	obtained for non-local tensile, localized tensile and total 
damage in the second irregular mesh ss 
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Considering all irregular analyses, it is rational to conclude that this RPIM study is not 

significantly sensitive to the irregularity parameter. 

It is possible to put the attention to the evolution of damage variables at the critical 

integration point 	݃݌௖(as shown in Figure 121) in terms of effective strain, Figure 128.  

Figure 128 demonstrates the diagram of damage parameter in terms of equivalent strain  

(Computed from von Mises equivalent strain presented in Equation (53)) when the 

irregular mesh with λ ൌ 5 is considered. The observation and clarification of this plot is 

the same as the one for Figure 122.  

As a resume of the irregular studies, it is possible to conclude that the RPIM solution is not 

significantly sensitive to the irregularity parameter and both obtained results for Q-q agree 

well with the experimental solution (Legendre, 1984). 
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Chapter	8	

8.1 General Conclusions  

In this work the Radial Point Interpolation Method (RPIM) was presented and developed. 

First the RPIM formulations were extended to the analysis of circular plates using a 2D 

axisymmetric deformation theory. It was found that the construction of the background 

integration cell should respect the construction 33 integration points inside each 

integration cell. This construction allows to obtain solutions showing acceptable errors 

(below 0.8%) without increasing significantly the computational cost of the analysis. 

Concerning the influence-domain size, the obtained results indicate that the influence-

domain of each interest point Ix  should be formed with the closest 20IN   nodes, 

following a radial search. 

Additionally, this present work shows that the RPIM axisymmetric formulation possesses 

the final converged value which is consistently accurate. The distinct relevant benchmarks 

were analysed. It was verified that the RPIM provides precise results regardless the 

thickness of the studied plate or the kind of the applied load or displacement constrains in 

the plate edge. The obtained stress profiles indicate that the RPIM, despite the lack of the 

compatibility property, is capable of producing smooth stress fields. 

Second, the RPIM formalism was extended with a non-local damage mechanics theory 

which the non-linear analysis of damage in concrete structures are formulated within a rate-

independent constitutive elastic damage model. The return-mapping damage stage permits 

to obtain the required internal variable fields such as damage variables, stress and strain 

tensors and, most importantly, the displacement field. The enforced displacement is 

applicable for both compressive and tensile states and the algorithm evolves through a 
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pseudo-time stepping scheme. Furthermore, the damage criteria relies on a Helmholtz free 

energy function connected to the fracture energy release. Some of the advantages of the 

proposed methodology are: (a) it uses the principal effective stress instead of general stress 

tensor which permits to eliminate the repetitive computations; (b) the non-linear behaviour 

of concrete structures can be studied using the isotropic damage model here implemented, 

in both tensile and compressive loadings separately (c) Since the proposed approach is 

explicit, it seems suitable for micro-scale study of concrete structures; (d) the methodology 

is not sensitive to the nodal discretization and it is capable to produce accurate and stable 

results with irregular nodal distributions.  

8.2 Discussion of the Obtained Results 

Considering the numerical benchmarks, it is concluded that the proposed return-mapping 

damage algorithm has the potential to provide results very close to FEM and experimental 

solutions; it was enhanced the higher accuracy of RPIM with regard to FEM for the 

different discretizations.  

Additionally, this work studied some parameters characterising the damage phenomenon 

under tensile and compressive enforced displacement, which control the stress-strain 

response and particularly the load P- deflection on point A trend. As introduced before, 

they are known as  ܣା in tension and	ିܤ ,ିܣ in compression. According to the captured 

results, these parameters influence significantly the results. The variation of these 

parameters modify the peak value of the stress and the load. Furthermore, they have the 

potential to change the damage behaviour after reaching the mentioned peak values. Some 

particular values of ܣା , ିܤ ,ିܣ   could force the solution to reach the failure sharply. On 

the other hand, changing the values of these parameters permit to smooth the stress-strain 

curve, which was observed in the biaxial and uniaxial tests. In this work, the optimum 

values of these parameters were considered based on the literature. Additionally, this work 

provided a simple equation to calculate efficiently the characteristic length in meshless 

methods.  

Also, the return-mapping non-linear elastic damage algorithm is developed to the localized 

damage formalism. The analysis of three point bending beam subjected to the compressive 
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enforced displacement was done using the RPIM formulations, to implement the rate-

independent elastic damage mechanics for concrete material for the normal RPIM 

discretization as presented with regard to the damage localization formalism. Since the 

obtained results were far away from the experimental one (Malvar & Warren, 1988), a 

refined nodal distribution has been proposed for three point bending beam. Consider three 

different refined discretizations patterns, it purposed to obtain: (1) the optimum values of 

damage localization parameters such as	݊௣, the weight function order and ܣାand (2) the 

more accurate result in the presence of the irregular nodal distribution. Following the 

objectives, the convergence studies have been performed on the three RPIM discretization 

patterns. Consequently, the optimum values of damage localization variables have been 

determined as ݊௣ ൌ ାܣ , 0.8 ൌ 0.001	and the 3rd order weight function.  

After that, consider the optimized localized damage parameters, a denser discretization is 

analyzed to evaluate the performance and efficiency of the algorithm. It was discretized for 

81 by 21divisons long x and y including 2941 and 6300 number of nodes and integration 

points respectively where the obtained results possess a good agreement with the 

experimental solution proposed by (Malvar & Warren, 1988).  

Subsequently, the variation of non-local tensile, localized tensile and total damage at the 

specific integration point known as ݃݌௖ agreeing very well with the theory of localization 

phenomenon (Jirásek, 1998). Afterwards, several graphical representations of the internal 

variables such as total and damaged stress fields in addition to the damage contours have 

been captured for various enforced displacement stages. 

Considering the optimum values of the localized damage parameters obtained for the 

regular discretization, the RPIM irregular analysis has been performed to observe the 

behavior of the algorithm in the presence of the random nodal distribution. Subsequently, 

the results have been obtained for 7 basic responses of load versus deflection. In the next 

step, the average of irregular results has been compared to the similar regular and 

experimental solution. Since the 7 basic irregular results overlap the experimental one after 

peak load, it was recommended to rearrange the nodal discretization for three nodes 

situated at the crack tip. Hence the irregular analysis has been performed again for the 

modified nodal discretization. Other 7 basic responses of the load-deflection have been 
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obtained. Consequently, the variation of the curve around the peak load has been eliminated 

significantly. Thus, the last irregular results agree in an acceptable way with the 

experimental curve. Therefore, the objectives of the study have been gained and the three 

point bending beam test with regard to the localized damage formalism finished here.  

As a final remark, it must be noted that the RPIM formulations extended to the continuum 

damage algorithm performs very well in the presence of the localized damage formalism 

and it gains accurate results for both regular and irregular discretizations. In addition, the 

profile of stress and damage variable experience smooth trends.   

Finally, with regard to the localized damage formalism, another benchmark has been 

studied known as compact tension test. It was required to obtain (1) the horizontal force in 

terms of hole mouth opening in the presence of the compressive displacement enforcement 

and (b) the equivalent crack length where the macro cracks are formed in the interface 

between damage and fracture states. In order to gain the objectives, several distinct RPIM 

regular discretizations have been used to evaluate the performance and efficiency of the 

algorithm to obtain the more accurate results. 

Within the convergence studies on the discretization size, the response of load-opening has 

been verified though using the densest discretization with 2165 nodes. After that, it was 

focused on a certain point locating at the interface between damage and fracture 

phenomena known as point B. The equivalent crack length is converging in the presence 

the densest mesh and the result was obtained with a low error (2.38 %) compared to the 

experimental value reported by (Mazars & Pijaudier-Cabot, 1996). Following that, the 

main objectives of the study have been satisfied.  

Therefore, consider point B, the graphical representations of the damage variables in the 

case of non-local and localized states have been indicated. The profiles experience a 

smooth behaviour while the crack area accounted for the higher values. In the same way, 

the profiles of effective total stress and damaged stress were indicated.  

To end this analysis, the RPIM irregular discretizations with 2165 nodes have been 

performed in order to observe the result when random nodal distribution is considered. It 

was done with regard to two different irregularity parameter	ሺߣ ൌ 10, ߣ ൌ 5ሻ. Afterwards, 
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the 11 basic irregular results have been gained if ߣ ൌ 10 and the average solution has been 

compared to the similar regular discretization and experimental solutions. After that the 

analysis performs for the second irregularity parameter	ሺ	ߣ ൌ 5ሻ. All the results have been 

shown in a single figure to measure the differences. The non-local tensile, localized tensile 

and total damage have been plotted at the certain gauss point ݃݌௖ to observe the variation 

of damage phenomenon. 

It must remarked that the compressive damage remains for zero value for all the analyses, 

since the total stress has not yet reached the maximum uniaxial compressive strength. 

This study was conducted from damage to fracture mechanics. It means that the micro 

cracks are created in the damage phase first, once the fracture occurs, the micro cracks 

transform to the macro cracks. Hence at the end of the procedure, there might be failure of 

the material. 

The irregular results show that the RPIM solution is not significantly sensitive to the 

irregularity parameter ሺߣሻ due to obtaining almost the same results for two different 

irregular studies. 

8.3 Suggestions for Further Research 

The present work would be helpful for those who are interested in numerical methods such 

as Finite Element Method and Meshless Method and most importantly in the field of 

continuum damage mechanics. In addition, it would be useful to study fracture mechanics 

since the continuum damage mechanics theory was linked to the fracture mechanics in an 

elegant way.  

Precisely, the current job has the potential to be developed for the following topics: 

1- Large deformation analysis useful for the concrete dams, bridges and reinforced 
concrete beams; 

2- Composite materials; for example applicable for the aircrafts; 
3- Damage in cellular materials particularly appropriate for the trabecular bones, (brittle 

material behavior); 
4-  Ductile damage material behavior for mostly metallic components such as rails, 

structural steel bridges. 
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