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Abstract

The Chromatic Art Gallery Problem (CAGP) is a recent problem in the area of

computational geometry with potential practical applications. It can be seen as a

variant of the classical Art Gallery Problem (AGP). Both problems involve stationing

guards in a (polygonal) environment P so that each point of P is seen by at least one

guard. In CAGP each guard is assigned a color and no two guards with the same color

have overlapping visibility regions. While AGP asks for the minimal number of guards,

CAGP asks for the minimum number of colors. Many variations of AGP have been

studied over the years to deal with various types of constraints on guards and different

notions of visibility.

In this thesis, we focused on the Chromatic Art Gallery Problem with α-guards (α-

CAGP), a variant of CAGP with guards whose range of vision is limited to some

angle α, for edge-aligned vertex guards. We restrict to orthogonal polygons and

α = π
2
, π, 2π. This problem has been studied in the area of AGP, but it is novel in

CAGP. We show combinatorial tight bounds for the chromatic α-guard number for

the Steiner path orthogonal polygons. In addition, we develop a prototype solver

for α-CAGP, for generic instances of orthogonal polygons. The solver performs a

discretization of the problem, using geometric software, finds a 0-1 Integer Linear

Programming (ILP) model for the discretized version, and makes use of optimization

software for finding an optimal solution.

In the first part, we address the generation of random orthogonal polygons, based on the

Inflate-Paste technique. We developed a C++ library for generic and specific families

of orthogonal polygons, that is compatible with the CGAL. Finally, we integrated the

α-CAGP solver with the generator to carry out an empirical study, with the goal of

iii



proving or disproving some conjectures about the chromatic α-guard number of the

path orthogonal polygons. We present some preliminary results from this study.

Keywords: orthogonal polygons, polygon generation, surveillance and visibility, chro-

matic art gallery problems, α-guards, geometric algorithms, optimization
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Resumo

O Problema Cromático da Galeria de Arte (CAGP) é um problema recente na área de

Geometria Computacional, com aplicações práticas. Pode ser visto como uma variante

do Problema da Galeria de Arte (AGP) clássico. Ambos requerem a colocação de

guardas numa região (poligonal) de modo que todos os pontos possam ser observados.

No CAGP, cada guarda tem uma cor e dois guardas têm cores distintas se as suas regiões

de visibilidade se sobrepuserem. Enquanto que AGP procura minimizar o número de

guardas, CAGP tem como objetivo minimizar o número de cores. De modo a modelar

vários tipos de restrições, foram introduzidas diversas variantes de AGP ao longo dos

anos.

Na tese, abordamos α-CAGP, o Problema Cromático da Galeria de Arte com guardas

com visão limitada a um ângulo α. Este problema foi considerado na área de AGP,

mas é novo em CAGP. Os guardas são colocados em vértices e o cone de visibilidade

destes está alinhado com uma das arestas incidentes. Neste trabalho, focamos apenas

em polígonos ortogonais e com α = π
2
, π, 2π.

Obtivemos limites exatos para o número cromático de α-guardas para os polígonos

ortogonais Steiner path. Desenvolvemos também um protótipo para resolução de α-

CAGP para instâncias genéricas de polígonos ortogonais, baseado na modelação de

α-CAGP como um problema de Programação Linear Inteira (ILP) com variáveis 0-1.

O processo de discretização é suportado por um software geométrico e a procura da

solução ótima por um software de otimização.

Na primeira parte da tese, abordamos a geração de polígonos ortogonais aleatórios,

usando a técnica Inflate-Paste. Desenvolvemos uma biblioteca em C++ para gerar

polígonos ortogonais e subfamílias, a qual é compatível com a biblioteca CGAL. Final-
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mente, integrámos o resolutor de α-CAGP com o gerador para proceder a um estudo

empírico, para análise de algumas conjeturas sobre o número cromático de α-guardas

em polígonos ortogonais da família path. Apresentamos alguns resultados preliminares

desse estudo.

Palavras-Chave: polígonos ortogonais, geração de polígonos, vigilância e visibilidade,

problema da galeria de arte cromático, α-guarda, algoritmos geométricos, otimização
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Chapter 1

Introduction

The Art Gallery Problem (AGP) is a well-studied problem in Computational Geometry,

modeling the problem of guarding paintings in an art gallery. The floorplan of the

gallery can be seen as a polygon with edges matching the room walls. The guards

stand at points inside the polygon.

According to Ross Honsberger [19], AGP was originally posed by Victor Klee in 1973,

as the problem of determining the minimum number of guards sufficient to cover the

walls on a n-wall art gallery. Nowadays, AGP refers to the problem of covering not

only the walls but also the interior of the gallery.

Some other real-world problems involving cost optimization can be modeled in terms

of AGP, such as the minimization of the number of security cameras in a shop or of

the number of lights needed to illuminate an environment.

Many variations of art gallery problems have been studied over the years to deal with

various types of constraints on guards and different notions of visibility. The primitive

AGP is defined assuming point guards with omnidirectional unlimited vision (i.e., 2π-

guards). Point guards are stationary guards that can be placed at any point in the

polygon, whereas edge guards and vertex guards can be placed at edges and vertices

only. The term edge-guard is often used to define a mobile guard that can move along

an edge. In this thesis, we consider vertex guards only. Variants of AGP with guards

whose range of vision is limited to some angle α were also studied (e.g., [32, 29, 18]).

1



2 CHAPTER 1. INTRODUCTION

In 2010, Erickson and LaValle introduced a colored variant of AGP, called the Chro-

matic Art Gallery Problem (CAGP) [8], in which guards are colored and no two

guards with the same color can have overlapping visibility regions. CAGP aims at

the minimization of the number of colors. For the discrete case, the guards to be used

to cover the polygon are selected from a given finite set.

CAGP serves as a model for a landmark-based navigation problem. In a closed

environment with landmarks spread inside it, a robot navigates while seeing a particular

landmark at the moment. The environment is represented by a polygon and the

landmarks by guards. This landmark system has to ensure that wherever the robot

is placed, it has at least one landmark to communicate with. Moreover, the robot

needs to distinguish the landmarks (different colors or transmission frequencies) that

it is seeing currently in order to avoid ambiguity. Thus, the landmark system has

also to guarantee that at any site that the robot can stay, all the landmarks capable

to communicate to it have different colors. This landmark-based navigation system

becomes more simple and less costly once we minimize the number of colors for the

landmarks.

The minimization of the number of colors and the minimization of the number of

guards are essentially distinct problems. Indeed, there exist polygons for which no

AGP-optimal guard set leads to an optimal solution of CAGP.

For wireless landmark-based navigation, landmarks with a more reduced wireless range

can be less expensive than the ones with a 2π-range. Such practical issue is a motivation

for this thesis. We define Chromatic Art Gallery Problem with α-guards (α-CAGP),

a variant of CAGP with guards whose range of vision is limited to some angle α, for

edge-aligned vertex guards. We restrict to orthogonal polygons and α = π
2
, π, 2π. This

problem has been studied in the area of AGP, but it is novel in CAGP.

We study α-CAGP in Steiner path orthogonal polygons, from a combinatorial point of

view, and derive combinatorial tight bounds. For 2π-CAGP, lower and upper bounds

on other families of orthogonal polygons are shown in [8, 9]. In addition, we developed

a prototype solver for α-CAGP, for generic instances of orthogonal polygons. The

solver performs a discretization of the problem, using geometric software, finds a 0-1



1.1. ORTHOGONAL POLYGONS AND POLYOMINOES 3

Integer Linear Programming (ILP) model for the discretized version, and makes use of

optimization software for finding an optimal solution.

In the first part of the thesis, we address the generation of random orthogonal polygons

based on the Inflate-Paste technique, proposed in [30]. We developed and implemented

a C++ library for generic and specific families of orthogonal polygons. We tried to make

this package consistent with the coding conventions of the Computational Geometric

Algorithms Library (CGAL)1, since we would like to share it to this library. To carry

out experimental work on α-CAGP that could support our theoretical studies, or to

obtain statistical data that help to predict the number of colors required, we integrated

the α-CAGP solver with the generator of polygons. We present some preliminary

results from empirical tests that aimed at proving or disproving our conjectures about

the chromatic α-guard number of the path orthogonal polygons.

The first part of the thesis (Chapters 2 and 3) describes in detail the implementation

of the generator of orthogonal polygons and its customization for particular classes

of orthogonal polygons. The second part (Chapters 4 and 5) presents our results for

α-CAGP on Steiner path orthogonal polygons and the development of the prototype

solver for α-CAGP.

In the next section we introduce some basic definitions used throughout the thesis,

namely about orthogonal polygons and polyominoes. Then, we present α-CAGP. In

the thesis, we focused on simple orthogonal polygons (that is, orthogonal polygons

without holes).

1.1 Orthogonal Polygons and Polyominoes

A polygon P in the plane is a closed subset of R2 delimited by finite chains of straight

line segments, that form a polygonal curve (see Figure 1.1). Non-adjacent segments

do not intersect and adjacent segments intersect only in their common endpoint. Such

endpoints are the vertices of P and the line segments are the edges of P . The boundary

of P , i.e., the polygonal curve is denoted by ∂P . In the sequel, n stands for number of

vertices of the polygon.

1http://www.cgal.org/

http://www.cgal.org/
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Figure 1.1: Three polygons.

A simple polygon contains no holes. In Figure 1.1, the polygon in the middle contains

three holes (which are simple polygons). Both the other ones are simple polygons.

A vertex is convex if the interior angle between its two incident edges is at most π and

is reflex (or concave) otherwise. In this thesis, r represents the number of the reflex

vertices, when we refer to the number of vertices of a polygon.

A polygon is orthogonal (or rectilinear) if its edges always meet orthogonally, with

internal angles of π
2
and 3π

2
radians (right angles). We assume that orthogonal polygons

have horizontal and vertical edges, aligned with a pair of orthogonally coordinate axis.

A n-vertex orthogonal polygon is also known as n-ogon, for short. The number of

vertices of an orthogonal polygon is even. O’Rourke [24] has shown that n = 2r + 4,

for every n-ogon with r reflex vertices.

Throughout the thesis, we use H and V as an abbreviation for horizontal and vertical.

Hence, a H-edge is an horizontal edge, a V -line is a vertical line, and so on. We

consider that the sequence of vertices of a polygon is given in counterclockwise (CCW)

orientation. For any given vertex v of an orthogonal polygon, we denote the horizontal

edge incident to v by eH(v) and the vertex that is adjacent to v in that edge by aH(v).

In a similar way, eV (v) stands for the V-edge incident to v and aV (v) is the vertex that

is adjacent to v in that edge. We use (px, py) to denote the coordinates of a point p.

The rectilinear partition ΠHV (P ) of an orthogonal polygon P is the one we obtain by

adding all the rectilinear (horizontal and vertical) cuts (or chords) incident to the reflex

vertices of P , that is, by extending the edges incident to a reflex vertex towards the

interior of P until they reach the boundary again (see Figure 1.2(a)). Every piece in

ΠHV (P ) is a rectangle, which we call a r-piece.
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(a) (b)

Figure 1.2: Orthogonal polygon with its: (a) rectilinear partition, (b) horizontal partition.

When we add the horizontal cuts only, we get the horizontal partition ΠH(P ) (see

Figure 1.2(b)). Similarly, we obtain the vertical partition ΠV (P ) if we add the vertical

cuts only.

By definition, the dual graph of a partition Π is the graph whose vertices correspond

to the pieces of Π and whose edges connect those pieces of Π that share an edge

(Figure 1.3).

(a) (b)

Figure 1.3: (a) Dual graph of the rectilinear partition of an orthogonal polygon. (b) Dual graph of

the horizontal partition of an orthogonal polygon.

A polyomino is a polyform constructed from unit squares joined edge-to-edge on a

regular two-dimensional Cartesian plane. We restrict to polyominoes that can be

viewed as a partition of a simple polygon (see Figure 1.4).

Therefore, we can map polyominoes to rectilinear polygons and any rectilinear polygon

whose vertices lie on a lattice (unit square grid) can be represented by a polyomino.
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Figure 1.4: Examples of polyominoes.

A polyomino is row-convex (or horizontally convex) if the set of cells in each horizontal

row is connected (i.e., consists of a single block of contiguous cells). This definition

can be rephrased in terms of the concept of y-monotonicity.

A polygon P is monotone with respect to a line L (or simply L-monotone) if the

intersection of P with any line L′ perpendicular to L has at most one connected

component, i.e., P ∩ L′ is a segment, a point or an empty set. In Figure 1.5, we

illustrate this notion, assuming that L is a vertical line.

L

(a)

L

(b)

Figure 1.5: (a) A polygon that is monotone with respect to L. (b) A polygon that is not monotone

w.r.t. to L because of the horizontal lines colored by •.

A polygon P is x-monotone when it is monotone with respect to an horizontal line.

Similarly, P is y-monotone when it is monotone with respect to a vertical line. We

can assume these lines to be the x-axis and the y-axis, which justifies the terminology

used.

Hence, a polyomino is row-convex if the associated orthogonal polygon is y-monotone.

The definition of column-convex polyomino (vertically convex polyomino) is similar.

Each column of a column-convex polyomino consists of a single block of contiguous

cells, meaning that the associated polygon is x-monotone. Figure 1.6 illustrates these

notions.
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(a) (b)

Figure 1.6: (a) Row-convex and not row-convex polyominoes. (b) Column-convex and not column-

convex polyominoes.

A convex polyomino is both horizontally and vertically convex (Figure 1.7).

Figure 1.7: A convex polyomino.

Here, convex stands for orthogonally convex. Actually, no orthogonal polygon with

n ≥ 6 vertex is convex in the usual sense, which requires that any straight line segment

that links two points in the polygon belongs to the polygon.

The convex polyominoes are the ones for which the perimeter of its minimum bounding

rectangle equals the perimeter of the corresponding orthogonal polygon [3].

If a convex polyomino contains two vertices as opposite corners of the minimum

bounding rectangle, it is called a staircase polyomino. Figure 1.8 exemplifies these

notions.

•

• •

•

Figure 1.8: Staircase polyominoes with the same minimum bounding rectangle.
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A spiral n-ogon is a n-vertex orthogonal polygon whose boundary can be divided into

two chains, a reflex and a convex vertex chain (see Figure 1.9).

(a) (b)

Figure 1.9: (a) A spiral 12-ogon. (b) A spiral 20-ogon. Reflex chains are hued by • and convex

chains by •.

1.2 The Chromatic Art Gallery Problem with α-Guards

In the general visibility model, two points p and q in a polygon P see each other if the

line segment pq contains no points of the exterior of P . Although most of the work

on AGP has focused on guards with 2π-range of vision, art gallery problems involving

angle guards (also known as floodlights) have been addressed also. In the α-Floodlight

Illumination Problem (FIP), the visibility from a point p is limited to a cone with

aperture α and apex p.

In this section, we give a formal description of α-CAGP, a variant of CAGP with α-

guards (we use the term α-guard instead of α-floodlight). Our definitions extend the

original ones for CAGP to cope with guards with a limited range of vision.

Given a point p in polygon P and a fixed cone Cp
α with aperture α, for α ∈]0, 2π], and

apex p, a point q is visible from p if pq ⊆ P ∩ Cp
α (see Figure 1.10).

The visibility region of p with range Cp
α is given by V(p, Cp

α) = {q | pq ⊆ P ∩Cp
α}. We

note that, for this notion, the visibility relation is not symmetric, i.e., p ∈ V(q, Cq
α)

does not imply q ∈ V(p, Cp
α).

LetG be a subset of P and CG
α be a set of cones with the same aperture α, for α ∈]0, 2π],

such that every g ∈ G is associated to exactly one fixed cone Cg
α ∈ CG

α . The region



1.2. THE CHROMATIC ART GALLERY PROBLEM WITH α-GUARDS 9

visible to (or covered by) G is given by

V(G,CG
α ) =

⋃
g∈G,Cgα∈CGα

V(g, Cg
α).

It consists of the set of all points that are visible to at least one point in G, for the

visibility cones defined by CG
α . When G is finite and V(G,CG

α ) = P , we say that

(G,CG
α ) is a α-guard set of P, i.e., it covers P . We call Gα a candidate α-guards set of

P if there is at least one pair (G,CG
α ) in Gα that is a α-guard set of P .

Cp
π


p

q

r

s

Figure 1.10: The visibility region of point p with a cone Cpπ
2
(color •). pq ⊆ P ∩ Cpπ

2
, but pr 6⊆ P

and ps 6⊆ Cpπ
2
.

Two guards (p, Cp
α) and (q, Cq

α) conflict if there is a point that is visible from both,

i.e., if V(p, Cp
α) ∩ V(q, Cq

α) 6= ∅. For (G,CG
α ) in Gα, the conflict graph of (G,CG

α ),

denoted by C(G,CG
α ), is the graph with vertex set G and edge set E = {(g1, g2) |

(g1, C
g1
α ) and (g2, C

g2
α ) conflict}. The chromatic number of this graph, denoted by

X (G,CG
α ), is the minimum number of colors required to color the vertices of the graph

in such a way that all adjacent vertices have distinct colors.

We can establish a natural relation between such a coloring and CAGP. The chromatic

α-guard number of P is given by

XGα(P ) = min
(G,CGα ) in Gα and V(G,CGα ) = P

X (G,CG
α ).

Then, α-CAGP aims at finding the chromatic α-guard number of a given polygon P

and a α-guard set of P , (G,CG
α ), that XGα(P ) = X (G,CG

α ).

Since the aperture of a visibility cone can be less than 2π, it could have uncountable

many inclinations (Figure 1.11).
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p

q

r

Figure 1.11: Three types of π-guards. The guard at point p is general, the one at q is inward-facing

and the other at r is edge-aligned.

A general α-guard (g, Cg
α) is one without any restrictions on the orientation of Cg

α.

Some works consider inward-facing and edge-aligned guards, for guards at vertices.

For an inward-facing α-guard, the cone Cg
α is turned towards the interior of P , i.e., the

edges of P incident to g are disjoint from the interior of Cg
α. An edge-aligned α-guard

is inward-facing and at least one of the bounding rays of its cone Cg
α is aligned with an

edge of P . We observe that a 2π-guard is always a general 2π-guard.

In this thesis, we focus on edge-aligned vertex α-guards, for α ∈ {π
2
, π, 2π}. So, G is

the set of vertices of P , for all (G,CG
α ), and the cone Cv

α is edge-aligned, for all v.

1.3 State of the Art

Over the years, research on AGP and CAGP has led to combinatorial bounds, algo-

rithms and hardness results for several variations of the problem, for either different

notions of visibility or types of constraints on guards (for surveys, we refer to e.g. [25,

32, 29, 7, 14]). In this section, we give a brief overview of some of these results.

In 1975, Chvátal [5] proved that bn
3
c point 2π-guards are always sufficient and some-

times necessary to cover any n-vertex simple polygon. This result is known as the

Art Gallery Theorem. In 1978, Fisk [15] gave a much simpler and elegant proof of

this upper bound, for vertex 2π-guards, by reducing the problem to the problem of

coloring the graph induced by a triangulation of the polygon. In 1983, Kahn, Klawe
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and Kleitman [21] showed that at most bn
4
c vertex 2π-guards are required to cover any

n-vertex simple orthogonal polygon and that this bound is tight, as well.

In 1986, Lee and Lin [22] proved some hardness results on the computational complexity

of AGP variants. They proved the NP-hardness of AGP with point 2π-guards and

vertex 2π-guards for simple polygons by a reduction from 3-SAT. In 1995, Schuchardt

and Hecker [28] showed the NP-hardness of AGP with point 2π-guards and vertex

2π-guards, for simple orthogonal polygons by a similar reduction from 3-SAT.

Guards with an aperture less than 2π have been also exploited. For an interesting

survey, although from 1995, we refer to a paper by Urrutia [32]. Estivill-Castro et

al. [12] showed that there exist simple polygons that cannot be guarded by general

vertex (π − ε)-guards, for every ε > 0. Estivill-Castro and Urrutia [11] proved that,

for simple n-vertex orthogonal polygons coverage, b3n−4
8
c edge-aligned vertex π

2
-guards

are sufficient and sometimes necessary. Abello et al. [1] proved that b3n+4(h−1)
8

c edge-

aligned vertex π
2
-guards are sufficient and sometimes necessary to cover n-vertex or-

thogonal polygons with h ≥ 1 holes. In addition, they proved that there are simple

orthogonal polygons that cannot be covered by general vertex (π
2
− ε)-guards, for all

ε > 0. This result is interesting for our work because it implies that, in general, it is

not possible to restrict the aperture α arbitrarily (i.e., we must fix α ≥ π
2
).

In 2003, Speckmann and Tóth [29] showed another interesting bound: any simple

polygon with k convex vertices can be monitored by at most b2n−k
3
c edge-aligned vertex

π-guards and this number is tight. From this result, we can conclude that n
2
− 1 edge-

aligned vertex π-guards are always sufficient to guard a simple n-vertex orthogonal

polygon. Nevertheless, this bound is not too interesting as, from the aforementioned

result by Abello et al., we deduce that b3n
8
c−1 edge-aligned vertex π-guards are already

sufficient for simple n-ogons.

Erickson and LaValle introduced CAGP in 2010 and obtained some combinatorial

bounds and complexity results [8, 9, 10]. In particular, they showed that XG2π(P ) ≤ 2,

for any spiral polygon P , assuming edge 2π-guards. For any staircase polygon P , they

showed that XG2π(P ) ≤ 3 if we use vertex 2π-guards. For generic simple polygons, they

constructed a family of polygons with 4k vertices requiring at least k colors, for point

2π-guards, for k ≥ 3. They showed also that, for every odd integer k ≥ 3, there is a
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monotone orthogonal polygon P with 4k2 + 10k + 10 vertices such that XG2π(P ) ≥ k,

using point 2π-guards. Moreover, they showed that, if G2π is a finite set, then the

construction of Lee and Lin [22] can be used to prove the NP-hardness of determining

XG2π(P ), for a simple polygon P , using a reduction from 3-SAT.

In 2014, Zambon et al. [34] provided an Integer Programming formulation for the

discrete version of CAGP and discussed some techniques to improve the performance

of the solver.

In the same year, Fekete, Friedrichs and Hemmer [13] showed that it is NP-hard to

decide if three or more colors are sufficient for a polygon P with holes, assuming point

2π-guards. More precisely, using a reduction from k-coloring of planar graphs, they

showed that deciding whether XG2π(P ) ≥ k, for k > 2, is NP-hard. They proved also

that it is already NP-hard to decide if two colors suffices for P , that is if XG2π(P ) = 2,

by a reduction from 3-SAT. In his PhD thesis, Erickson [7] presented an additional

important complexity result for a simple polygon P , assuming point 2π-guards, namely

that deciding whether XG2π(P ) ≥ 5 is NP-hard. For the proof, he constructed a

reduction from the 4-coloring problem in circle graphs.

More recently, in 2015, Hoorfar and Mohades [20] defined a CAGP variant for guards

with limited range of vision and proved various upper bounds on the number of colors

for simple polygons, for a range less than or equal to π. However, they assume that

the visibility cones do not include the supporting rays and they also allow to locate

more than one guard at the same point. This makes the problem distinct to the one

we address in the thesis.



Chapter 2

Grid n-Ogons Generation

In this chapter and the following one, we present the algorithms we developed and

implemented for the generation of generic orthogonal simple polygons and of some

specific families of the orthogonal polygons. All these algorithms are based on the

Inflate-Paste technique [30]. This construction technique was proposed for the gen-

eration of grid orthogonal polygons, a.k.a. permutominoes (grid ogons, for short). A

grid ogon is an orthogonal polygon without collinear edges, defined in a unit square

lattice and that has exactly one edge on all the grid lines that intersect their minimum

bounding square. This class is generic enough because we can use grid ogons to create

generic orthogonal polygons, by spacing the grid lines arbitrarily (or sliding edges),

while preserving their relative order somehow.

The structural properties of the horizontal partition of such polygons are exploited in

the design of Inflate-Paste [30]. We proceed in a similar way for adapting the method

to yield grid ogons of more specific subclasses, namely row-convex, convex, thin and

spiral polygons.

2.1 The Inflate-Paste Algorithm for Grid Ogons

In this section, we present the definition of grid n-ogons, their relation to generic

orthogonal polygons and recall the Inflate-Paste method.

13
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An n-ogon P is in general position if and only if every horizontal and vertical line

has at most one edge of P , i.e., if and only if P has no collinear edges. A grid n-ogon

corresponds to a polyomino in general position defined in a n
2
× n

2
grid. Since an n-ogon

has n
2
horizontal and n

2
vertical edges, we have the following result.

Lemma 1. Each grid n-ogon has exactly one edge in every line of a n
2
× n

2
bounded

grid.

An n-ogon not in general position can be mapped to an n-ogon in general position by

performing ε-perturbations (ε-deflections), for a sufficiently small constant ε > 0. On

the other hand, every n-ogon P in general position may be identified with a unique

grid n-ogon, by performing a planar sweep (see Figure 2.1 for an example).

(a)

(1,1)

(b)

Figure 2.1: (a) Three 12-ogons in general position. (b) The corresponding grid 12-ogon.

If we assume that the northwest corner of the bounding square has coordinates (1, 1),

then the H-edges lie on the lines y = 1, ..., y = n
2
and the V-edges lie on the lines

x = 1, ..., x = n
2
. The grid ogon corresponding to P is found by mapping the edges

of P to grid lines using the order in which they are found in a top-to-bottom (left-to-

right) planar sweep. Conversely, as Figure 2.1 suggests, we can create many instances

of n-ogons from a grid n-ogon by spacing the grid lines randomly, while keeping their

relative order.

2.1.1 Inflate-Paste Algorithm

The Inflate-Paste algorithm [30] is an iterative method that creates an n-vertex grid

ogon from a unit square in O(n2) time, using O(n) space. At each iteration, it applies

two transformations (called Inflate and Paste) to glue a new rectangle to the previous
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grid ogon, yielding a new grid ogon with one more reflex vertex. Therefore, it performs

r = n−4
2

iterations to produce a grid n-ogon. The rectangle is defined by a convex

vertex v and a point in the exterior of the polygon. This point belongs to a region

denoted by FSN(v) that consists of points rectangularly visible to v, as we will see

below. In Figure 2.2, we sketch the idea of the method.

•v

(a)

•v
•c

(b)

•v′
•c
′

(c)

•c
′

(d)

•v

(e)

•v•c

(f)

•
v′

•
c′

(g)

•
c′

(h) (i)

Figure 2.2: (a)(e) Select v and find FSN(v) (• color). (b)(f) Select a cell in FSN(v). (c)(g) Apply

Inflate. (d)(h) Paste new rectangle. (i) Final grid 8-ogon.

Inflate is used to insert new gridlines, which are required to ensure that the polygon

is in general position. Paste is used to glue a rectangle to an horizontal edge of the

current grid ogon. The rectangle is fixed to a convex vertex v that is an extreme point

of that edge. When we apply the method to create a polygon at random, in each

iteration, a convex vertex v is selected randomly, as well as a rectangle to be glued.

The sole restriction is that the rectangle belongs to the free neighborhood of v, i.e. to

FSN(v), which is computed also in that step.

FSN(v) is a subset of the points that are in the exterior of the polygon and that are

rectangularly visible to v. More accurately, FSN(v) consists of the external points

that are rectangularly visible from v in the quadrant with origin v that contains the

horizontal edge eH(v) and the inversion of the vertical edge eV (v), incident to v. The

inversion of eV (v) is its reflection with respect to v.
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We say that a point p is rectangularly visible from v if there is an axis-aligned rectangle

that contains v and p, but no point in the interior of P . For the definition of the free

neighborhood, we assume that the grid is bounded by a square, as we show in Figure 2.2,

and that (0, 0) is its northwest corner. All the inflate-paste transformations keep these

extra gridlines empty.

At the beginning of an iteration, the algorithm selects a convex vertex v of the grid

ogon computed in the previous iteration and determines FSN(v), as we illustrate in

Figure 2.2. Then, it selects a cell in FSN(v), at random. Its center and the vertex v

define the opposite corners of the new rectangle to be glued by the Paste operation.

But, firstly, it applies the Inflate operation to insert two new lines, a H-line and a

V -line for the new edges that will meet at c′ = (cx + 1, cy + 1). Here, (cx, cy) is the

northwest corner of the selected cell (this point is represented by c).

The Inflate procedure is rather simple: the y-coordinate of any H-line such that y > cy

is incremented by 1; similarly, the x-coordinate of any V -line such that x > cx is

increased by 1; for the remaining lines, nothing changes.

The Paste procedure distinguishes two situations to keep the polygon in CCW order.

If aH(v′) is after v′ then it removes v′ and inserts the chain (v′x, c
′
y), c

′, (c′x, v
′
y) in its

place. If aH(v′) is before v′ then it replaces v′ by the chain (c′x, v
′
y), c

′, (v′x, c
′
y). Here,

v′ refers to v after the shift carried out by Inflate, which may change its coordinates.

The computation of FSN(v) is the more complex part of the method. Nevertheless,

we can exploit the structural properties of the grid ogons and the fact that FSN(v)

is a Ferrers diagram to find a partition of FSN(v) into rectangles in O(n) time and

space. The partition is useful to select and locate the grid cell in O(n) time.

The algorithm is based on planar sweep, following the work by Overmars andWood [26].

The horizontal sweeping line starts at eH(v) and moves towards the exterior of P , that

is, in the direction given by the inversion of eV (v). This direction defines the quadrant

that contains FSN(v), as we mentioned above. The sweep line status keeps a visibility

interval, which gives the current width of FSN(v). In each event, we have to check

whether there is some point that shrinks the visibility interval. In case there is, we

have to update FSN(v) and the current visibility interval.
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The planar sweep stops, i.e, the algorithm terminates, when the visibility interval

becomes empty or the sweeping line reaches the boundary of the grid. The result is a

partition of FSN(v) into rectangles, each one defined as (y-start, x-interval, y-finish).

x-interval is the visibility interval of v between events y = y-start and y = y-finish.

Figure 2.3 sketches a computation of FSN(v).

•v •l

(a)

•v •l

(b)

•v •l

(c)

•v •l

(d)

Figure 2.3: (a) Finding point l. Set of rectangles: (a) {(vy, ]vx, lx[,_)}; (b) {(vy, ]vx, lx[, vy +

1), (vy + 1, ]vx, lx − 1[,_)}; (c) {(vy, ]vx, lx[, vy + 1), (vy + 1, ]vx, lx − 1[,_)}; (d) {(vy, ]vx, lx[, vy +

1), (vy + 1, ]vx, lx − 1[, vy + 3)}.

In the event at height y′, the visibility interval is defined as ]x1, x2[ if every point (x′, y′)

with x1 ≤ x′ ≤ x2 is rectangularly visible to v.

The first event is always at y′ = vy and the sweep line status is ]min(vx, lx),max(vx, lx)[.

Here, l is a point with ly = vy and belongs to the V -edge that cuts the rectangular visi-

bility of v. In case there is no such V -edge, l is given by the correspondent V -line limit of

the grid boundary. The first rectangle is initialized as (vy, ]min(vx, lx),max(vx, lx)[,_).

At each event, with the current rectangle (y-start, ]x1, x2[,_), the extreme points of the

H-edge at height y′ are analyzed. If the extreme point q is such that qx ∈ ]x1, x2[ then

the rectangle is completely processed, (y-start, ]x1, x2[, y′), and a new one is created,

(y′, x-interval,_). The x-interval, as well as the sweep line status, is ]qx, x2[ if qx > x1

and ]x1, qx[ otherwise.

The proof of Inflate-Paste completeness [30] was done by observing the H-partition of

the grid orthogonal polygons. Since the dual graph of ΠH(P ) is always a tree, it is

possible to remove a leaf from it. If we do that and deflate the resulting polygon, we

get a grid (n− 2)-ogon P ′. Therefore, assuming that P ′ is constructed by the method,

P can be obtained in the next Inflate-Paste step.
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2.2 Implementation

In this section, we describe in detail our generator for grid ogons, using pseudocode.

Algorithm 1 is the main function of the whole process. Given the number of vertices of

the polygon to be generated, n, the algorithm performs r Inflate-Paste transformations.

Table 2.1 shows the auxiliary functions used in the implementation.

Any vertex of the grid ogon is identified by an unique id. This and other details of the

implementation such as the main data structures are explained below.

At each iteration, a convex vertex id v_id is picked from set C. The id of aH(v)

and the interval of x-coordinate values of eH(v) are kept in the variables aHv_id and

eHv_x-interval for future use. Then, FSN(v) is computed, a cell is chosen at random

from it and the Inflate-Paste process begins.

GetRandomCell chooses a cell from FSN(v) region and returns its northwest corner

c = (cx, cy), in O(n) time. The function takes a number m at random, that will identify

the cell. We consider an implicit enumeration of the cells in FSN(v). The cell with

label 1 is the nearest cell to v and all the remaining ones are numbered by rows, starting

from the row that contains eH(v) (see Figure 2.4(a)). Since FSN(v) is decomposed into

rectangles, the cell with label m can be found by analyzing the areas of the rectangles.

If FSN(v) has rectangles r1, r2, ..., rk then ri contains the cell m if the sum of the

areas of r1, ..., ri−1 is less than m and the sum of the areas of r1, ..., ri is greater than

or equal to m. Once the rectangle ri is located, m is updated to m′, by subtracting

the area of the rectangles skipped to m. Now, m′ is between 1 and the area of ri (see

Figure 2.4(b)). Given4H , 4V and the new cell numberm′, it is possible to find (cx, cy)

from the located rectangle in constant time.

After the Inflate procedure, c becomes c′ = (c′x, c
′
y).
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Algorithm 1 Inflate-Paste for grid n-ogons generation.
1: procedure GenerateGridOgon(n)

2: InitStructures();

3: r ← (n− 4)/2;

4:

5: while r 6= 0 do

6: v_id← GetRandomVertex(C);

7: {fsn,4H ,4V } ← GetFSN(v_id);

8: (cx, cy)← GetRandomCell(fsn,4H ,4V );

9:

10: (c′x, c
′
y)← Inflate((cx, cy));

11: aHv_id← GetAdjacent(v_id,H);
12: vy ← GetCoordinate(v_id, y); eHv_x-interval← GetIntervalEdge(vy, H);

13: {c_id, aV c_id} ← Paste(v_id, aHv_id, (c′x, c′y));

14:

15: C ← C ∪ {c_id};

16: if c′x 6∈ eHv_x-interval then

17: C ← (C \ {aHv_id}) ∪ {aV c_id};

18: end if

19:

20: dim← dim+ 1;

21: r ← r − 1;

22: end while

23: end procedure
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Function Description Algorithms

GetRandomVertex(C)
Selects at random, a vertex id from

set C.
1, 14

GetRandomCell(fsn,4H ,4V )

Returns the coordinates of the

northwest corner c of a cell picked

randomly from fsn.

1, 14

GetAdjacent(v_id, dir)
Returns the id of adir(v), given

v_id.

1, 13, 14,

16, 17, 18

GetCoordinate(v_id, axis)
Gives the vaxis coordinate, given

v_id.

1, 2, 7, 12,

13, 14, 15,

16

GetIntervalEdge(coord, dir)

If 0 < coord < dim+ 1, returns the

interval of x-coordinate

(y-coordinate) values that H-edge

y = coord (V -edge x = coord) has,

for dir = H (dir = V ). Otherwise,

the interval of the correspondent

H-gridline (V -gridline) is returned.

1, 3, 4, 14

GetWay(v_id, dir)

Returns 4H = − aV (v)y−vy
|aV (v)y−vy | if

dir = H and 4V = aH(v)x−vx
|aH(v)x−vx| if

dir = V , given v_id.

2, 12, 13,

15, 16

AddVertices(pstart, pfst_new, psnd_new)

Inserts the ids pfst_new and psnd_new

of the new vertices into the circular

list P .

7

Table 2.1: Auxiliary functions for the implementation of the grid n-ogons generator.
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Figure 2.4: How cells are implicitly enumerated in FSN(v). (a) Finding the rectangle that contains

cell 15. (b) Finding the cell within the rectangle.

C is the set of convex vertices of the polygon, which are represented by their ids. In

this way, we have direct access to any convex vertex. Once an Inflate-Paste step ends,

C has to be updated. The point which represents the random cell in FSN(v) is a new

convex vertex and, thus, its id, c_id, is added to C. After the Inflate step, when aH(v′)

is convex but becomes the new reflex vertex once the rectangle is glued, aH(v′) has to

be replaced by aV (c′) in C. This happens when c′ surpasses eH(v′), i.e., c′x is not in

eHv_x-interval. Otherwise, aV (c′) is the new reflex vertex.

The global data structures used in our implementation were carefully chosen to simplify

the most important and complex steps of the algorithm, namely the computation of

FSN(v) region. Table 2.2 presents these main structures and Figures 2.5 and 2.6 show

a visual representation of a grid ogon with these structures.

Note that line_infoH [].coord is the inverse function of gridH []. It is easy to see that

the main structures at Table 2.2 use linear space on the number of vertices.
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grid
A matrix that provides information about the grid. gridH [i]

(gridV [i]) is the id of the horizontal (vertical) grid line y = i (x = i).

line_info

A matrix that provides information about the grid ogon and the grid

itself. line_infoH [i].coord (line_infoV [i].coord) is the y-coordinate

(x-coordinate) of the horizontal (vertical) grid line with id i;

line_infoH [i].vertex (line_infoV [i].vertex) is the id of a vertex

that lies on the horizontal (vertical) grid line with id i.

P

A circular doubly linked list that represents the vertices of the

polygon, in CCW. P [i].lineH (P [i].lineV ) is the id of the horizontal

(vertical) grid line where the vertex with id i lies on; P [i].next and

P [i].prev are the ids of the next and the previous vertices,

respectively.

dim

Variable that has the current number vertices of the grid ogon

divided by two. (dim+ 2)× (dim+ 2) are the current dimensions of

the grid.

C The ids of the convex vertices of the current grid ogon.

Table 2.2: Global data structures for the implementation of the grid n-ogons generator.
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Figure 2.5: Global structures for a grid 12-ogon generated by the algorithm. Numbers with color:

• are grid coordinates; • are line_info ids; • are P ids.
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Figure 2.6: Circular list scheme for the structure P displayed in Figure 2.5.

gridH [] lets us make an ordered search in the relevant H-edges during the FSN(v)

computation. We have access to the H-edge with the same y-coordinate as the current

position of the sweeping H-line, in constant time. Thus, the computation of FSN(v)

takes O(n) time. Furthermore, gridV [] allows us to find the vertical line that defines

the initial V -limit of FSN(v) in O(n) time as well, since the search for this bound is

similar to a vertical line sweep.

line_info is the middle structure of grid ogon abstraction, linking P to the grid. It

lets us to inflate P implicitly by inflating the grid explicitly (only grid and line_info

are updated).

In the Paste procedure, grid is not modified, whereas the new convex and reflex vertices

are added to line_info and P .

The Inflate and Paste take O(n) and O(1) time, respectively. Therefore, using the

described data structures, the total time is O(n2).

InitStructures initializes all the global data structures, resulting into the unit

square grid 4-ogon. For all i ∈ {1, 2} and dir ∈ {H,V }, we settle griddir[i] = i

and line_infodir[i].coord = i.

For P structure, we assign P [i].lineH = b (i+1) mod 4
2

c + 1, P [i].lineV = b i
2
c + 1,

P [i].prev = (i−1) mod 4 and P [i].next = (i+1) mod 4, for each i ∈ {0, 1, 2, 3}. We also

add the id vertices 0 and 2 to the lines with ids 1 and 2, respectively. More formally,

for dir ∈ {H, V }, we set line_infodir[1].vertex = 0 and line_infodir[2].vertex = 2.

Then, the set of convex vertices will be C = {0, 1, 2, 3} and the dimension dim = 2.

The FSN(v) computation steps are organized in GetFSN function (Algorithm 2).
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Here, the quadrant to which FSN(v) belongs is expressed by 4H ∈ {−1, 1} and

4V ∈ {−1, 1}. These variables allow us to move the sweeping lines without being

worried about symmetries. 4H = −1 (4V = −1) means that all cells in FSN(v) have

y-coordinate (x-coordinate) less or equal to vy (vx). 4H = 1 (4V = 1) when all cells

in FSN(v) have y-coordinate (x-coordinate) greater or equal to vy (vx).

Algorithm 2 Computation of the free neighborhood of v.
1: function GetFSN(v_id)

2: vx ← GetCoordinate(v_id, x); vy ← GetCoordinate(v_id, y);

3: 4H ← GetWay(v_id,H); 4V ← GetWay(v_id, V );

4:

5: lx ← GetFSNx-Limit((vx, vy),4H ,4V );

6: fsn← GetRectangles((vx, vy), lx,4H ,4V )

7:

8: return {fsn,4H ,4V }

9: end function

GetFSNx-Limit (Algorithm 3) returns the x-coordinate of the V -edge (or V -line)

that bounds horizontally the rectangular visibility of v. The algorithm scans the V -

edges (and the V -gridline if necessary), as if it were performing a sweep with a V -line,

to find the first one that contains the V -segment defined by y = vy and y = vy +4H .

Algorithm 3 Finding the interval visibility limit.
1: function GetFSNx-Limit((vx, vy),4H ,4V )

2: curr_x← vx +4V ;

3: y-interval← GetIntervalEdge(curr_x, V );

4: while ¬(vy ∈ y-interval ∧ (vy +4H) ∈ y-interval) do

5: curr_x← curr_x+4V ;

6: y-interval← GetIntervalEdge(curr_x, V );

7: end while

8:

9: return curr_x

10: end function
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GetRectangles (Algorithm 4) returns FSN(v) decomposed into rectangles, which

are stored at fsn set. The implementation follows directly from the algorithm presented

at Section 2.1.1.

Algorithm 4 The planar sweep algorithm for finding the free neighborhood.
1: function GetRectangles((sx, sy), lx,4H ,4V )

2: fsn← ∅;

3: ry-start ← sy;

4: rx-interval ← ]min(sx, lx),max(sx, lx)[;

5:

6: curr_y ← sy +4H ;

7: x-interval← GetIntervalEdge(curr_y,H);

8: while sx 6∈ x-interval do

9: if x-interval ∩ rx-interval 6= ∅ then

10: ry-finish ← curr_y;

11: fsn← fsn ∪ {r};

12: ry-start ← curr_y;

13: if 4V < 0 then

14: rx-interval ← ]max(x-interval),max(rx-interval)[;

15: else

16: rx-interval ← ]min(rx-interval),min(x-interval)[;

17: end if

18: end if

19: curr_y ← curr_y +4H ;

20: x-interval← GetIntervalEdge(curr_y,H);

21: end while

22:

23: ry-finish ← curr_y;

24: fsn← fsn ∪ {r};

25:

26: return fsn

27: end function
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The (sx, sy) parameter is the starting point for finding FSN(v), which is exactly (vx, vy)

in the general case. The variable lx gives the x-coordinate that limits the rectangular

visibility of v. For an interval I, the values min(I) and max(I) just give the minimum

and maximum values defining I, respectively.

Inflate (Algorithm 5) gathers the Inflate operations.

Algorithm 5 The Inflate procedure.
1: function Inflate((cx, cy))

2: InflateAxis(cy, H);

3: InflateAxis(cx, V );

4: return (cx + 1, cy + 1)

5: end function

InflateAxis (Algorithm 6) inflates the y-coordinates (x-coordinates) of the grid lines

if dir = H (dir = V ). The ids of the new H-line and V -line in the grid are dim+ 1.

Algorithm 6 The InflateAxis operation.
1: function InflateAxis(coord, dir)

2: for i = dim until coord+ 1 do

3: griddir[i+ 1]← griddir[i];

4: line_infodir[griddir[i]].coord← i+ 1;

5: end for

6: griddir[coord+ 1]← dim+ 1;

7: line_infodir[dim+ 1].coord← coord+ 1;

8: end function

Paste (Algorithm 7) adds the two new vertices, c and aV c, to line_info and P data

structures. The function returns the ids of the new vertices to quickly update the set

C afterwards.
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Algorithm 7 The Paste operation.
1: function Paste(v_id, aHv_id, (c′x, c′y))

2: c_id← 2× dim; aV c_id← 2× dim+ 1;

3:

4: line_infoH [gridH [c′y]].vertex← c_id; line_infoV [gridV [c′x]].vertex← c_id;

5: P [c_id].lineH ← gridH [c′y]; P [c_id].lineV ← gridV [c′x];

6:

7: vy ← GetCoordinate(v_id, y);

8: line_infoH [gridH [vy]].vertex← aV c_id;

9: P [aV c_id].lineH ← gridH [vy]; P [aV c_id].lineV ← gridV [c′x];

10:

11: P [v_id].lineH ← gridH [c′y];

12:

13: if P [v_id].next = aHv_id then

14: AddVertices(v_id, c_id, aV c_id);

15: else

16: AddVertices(aHv_id, aV c_id, c_id);

17: end if

18:

19: return {c_id, aV c_id}

20: end function

After the Paste procedure, v is no longer a vertex of the polygon. However, to simplify

the changes, v’s id is used to represent the new convex vertex adjacent to aV (v). Thus,

only eH(v) has to be updated, i.e., we modify the value of line_infoH [gridH [vy]].vertex.

AddVertices is a function that inserts the chain of ids of the new vertices, pfst_new

and psnd_new, into the circular list P , given the id pstart (id of a vertex that was already

in P and identifies the position where the new chain will be added). The if-else clause

in Algorithm 7 assures that the CCW order of P is preserved. Figure 2.7 shows the

circular list of P from Figure 2.6 modified after the next Inflate-Paste step, where the

convex vertex id selected from set C was 1.
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Figure 2.7: The new circular list from Figure 2.6 after calling AddVertices(1, 12, 13).

2.3 Generation of Generic n-Ogons

As we observed in section 2.1, any n-ogon can be mapped into a n-ogon in general

position and, on the other hand, there is exactly one grid n-ogon that matches the

latter. Hence, once a grid n-ogon is created, a n-ogon can be obtained by moving

(stretching) the edges of the grid n-ogon.

The algorithm for creating n-ogons is shown in pseudocode as Algorithm 8.

Algorithm 8 Generation of a generic n-ogon from a grid n-ogon.
1: procedure GenerateOgon(n,maxCoord, cProb, sT imes)

2: GenerateGridOgon(n);

3:

4: InitDefaultStretcher();

5: StretchGridOgon(maxCoord, cProb, sT imes);

6: end procedure

The idea is to create a grid n-ogon and then randomly picking and stretching edges of

the grid ogon several times to end up with a generic n-ogon. The vertices of the final

n-ogon have always positive integer coordinates.

The new global data structure stretched is used to record the new coordinates.

stretchedy[i] gives the current position of the i-th horizontal edge and stretchedx[i]

gives the current position of the i-th vertical edge. This structure is useful to ensure

that the relative order of the edges is preserved. Clearly, initially, stretchedx[i] and

stretchedy[i] are equal to i, for all 1 ≤ i ≤ dim, meaning that the n-ogon is the grid

n-ogon itself before any stretching. The function InitDefaultStretcher does this

simple initialization.
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The parameters maxCoord, cProb and sT imes (Table 2.3) allow us to have some

control on the stretching phase.

maxCoord
maxCoordx (maxCoordy) sets the maximum x-coordinate

(y-coordinate) for the V -edges (H-edges) of the polygon.

cProb
The probability of making the target edge collinear with an edge in

the following line, if that is possible.

sT imes The number of edge translations to be performed.

Table 2.3: Parameters of the GenerateOgon procedure.

The parameter sT imes should be large enough. Indeed, let the i-th vertical edge of

the grid n-ogon be the one in the line x = i, for 1 ≤ i ≤ dim. In the same way, let the

i-th horizontal edge be the one in the line y = i. If the (dim − 1)-th H-edge has just

been translated and stretchedy[dim−1] = bmaxCoordy
2

c then the first (dim−2) H-edges

would be confined to a rectangle of height bmaxCoordy
2

c. Moreover, when we have these

conditions and the dim-th H-edge has stretchedy[dim] = maxCoordy, the unbalance

of this polygon can be notorious. Therefore, sT imes should be large enough for an

edge to have chances to be translated more than few times, as well as the preceding

ones.

If cProb = 0, the resulting n-ogon will be in general position. Otherwise, the value

(cProb×100)% defines the probability that the target edge becomes collinear with an-

other edge. More accurately, if the target edge is the i-th horizontal edge, for instance,

then this value is the probability that the edge is moved to the line y = stretchedy[i+ 1],

provided it can be moved there and without intersecting any other edge. In a subse-

quent iteration, it can be moved to a different line.

The function StretchGridOgon is presented as Algorithm 9.
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Algorithm 9 Main function to stretch the grid ogon.
1: function StretchGridOgon(maxCoord, cProb, sT imes)

2: ledgeCoordx ← 0; ledgeCoordy ← 0;

3: SetMaxStretchUpper(bmaxCoordx−dim
dim

c, x); SetMaxStretchUpper(bmaxCoordy−dim
dim

c, y);

4:

5: for i = 1 until sT imes do

6: axis← GetRandomAxis(); edgeCoord← GetRandomEdge();

7:

8: if edgeCoord < ledgeCoordaxis then

9: maxStretch← GetMaxStretchLower(axis);

10: else

11: maxStretch← GetMaxStretchUpper(axis);

12: end if

13: TranslateEdge(edgeCoord,maxStretch,maxCoord, cProb, axis);

14:

15: ledgeCoordaxis ← edgeCoord;

16: if edgeCoord > 1 then

17: SetMaxStretchLower(b stretchedaxis[edgeCoord]
edgeCoord−1

c, axis);

18: end if

19: SetMaxStretchUpper(bmaxCoordaxis−stretchedaxis[edgeCoord]
dim−edgeCoord+1

c, axis);

20: end for

21: end function

The edge to be moved is selected randomly and, after a move, the current bounds for the

translations in the same direction are updated. In the implementation we try to balance

the current space available for future translations. At start, the algorithm fixes the

upper bound for translation as bmaxCoordx−dim
dim

c, for every V -edge (and bmaxCoordy−dim
dim

c,

for every H-edge). If the i-th vertical edge is translated, stretchedx[i] changes, and

the bounds for the first i − 1 vertical edges are updated to b stretchedx[i]
i−1

c. In addition,

the bounds for the last dim − i + 1 vertical edges change to bmaxCoordx−stretchedx[i]
dim−i+1

c.

We proceed in a similar way if the target edge was the i-th horizontal edge (using

stretchedy[i] and maxCoordy in the formula, instead).
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The functions GetRandomAxis and GetRandomEdge choose the next edge to be

translated, at random. The first one returns x or y, which defines the direction of the

edge, and the other returns an integer between 1 and dim, which identifies the edge.

The function TranslateEdge performs the translation. The parameters edgeCoord

and axis identify the edge to be moved, and maxStretch defines the upper bound

for the difference between the new position and the current one. TranslateEdge is

presented in pseudocode as Algorithm 10. When the new position is defined by the

assignment in line 17, the edge would be collinear with the subsequent edge.

Algorithm 10 Function to translate an edge.
1: function TranslateEdge(edgeCoord,maxStretch,maxCoord, cProb, axis)

2: if edgeCoord = dim then

3: maxCoord_dist← maxCoordaxis − stretchedaxis[edgeCoord];

4: stretch← GetRandomInteger(0,min(maxStretch,maxCoord_dist));

5: stretchedaxis[edgeCoord]← stretchedaxis[edgeCoord] + stretch;

6: return

7: end if

8:

9: upedge_dist← stretchedaxis[edgeCoord+ 1]− stretchedaxis[edgeCoord];

10: if maxStretch < upedge_dist then

11: stretch← GetRandomInteger(0,maxStretch);

12: else if EdgeCouldIntersect(edgeCoord, upedge_dist, axis) then

13: stretch← GetRandomInteger(0,max(0, upedge_dist− 1));

14: else if GetRandomReal(0, 1)> cProb then

15: stretch← GetRandomInteger(0,max(0, upedge_dist− 1));

16: else

17: stretch← upedge_dist;

18: end if

19:

20: stretchedaxis[edgeCoord]← stretchedaxis[edgeCoord] + stretch;

21: end function
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The function ensures that the edge does not surpass nor intersect any subsequent edges.

It calls EdgeCouldIntersect to check whether the edge defined by edgeCoord and

axis could intersect some edge on the line stretchedaxis[edgeCoord+ 1]. This function

is presented as Algorithm 11.

Algorithm 11 Verifying if the edge may intersect subsequent edges after stretching.
1: function EdgeCouldIntersect(edgeCoord,maxStretch, axis)

2: dir ← GetDirection(axis);

3:

4: for i = edgeCoord+ 1 until dim do

5: if stretchedaxis[edgeCoord] +maxStretch < stretchedaxis[i] then

6: return false

7: end if

8:

9: edge_axis-interval← GetIntervalEdgeOgon(edgeCoord, dir);

10: upedge_axis-interval← GetIntervalEdgeOgon(i, dir);

11: if edge_axis-interval ∩ upedge_axis-interval 6= ∅ then

12: return true

13: end if

14: end for

15:

16: return false

17: end function

GetRandomInteger(min_val,max_val) is an auxiliary function and returns a ran-

dom integer betweenmin_val andmax_val. Similarly, GetRandomReal(min_val,

max_val) returns a random real number in that range. The other relevant auxiliary

functions are described in Table 2.4.

In Appendix A, we show instances of grid 24-ogons (both generic and from the studied

subclasses) that were created by our generators, as well as a 24-ogon derived from

each of them using the stretching algorithm with maxCoordx = maxCoordy = 48,

cProb = 0.5 and sT imes = 48.
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Function Description Algorithms

SetMaxStretchLower(maxStretch, axis)L

SetMaxStretchUpper(maxStretch, axis)U

Saves the maximum stretching

maxStretch for the H-edges

with y-coordinate less thanL

(greater than or equal toU) the

y-coordinate of the last

translated H-edge, if axis = y.

The same for V -edges, w.r.t the

x-coordinate if axis = x.

9

GetMaxStretchLower(axis)L

GetMaxStretchUpper(axis)U

Retrieves the maximum

stretching of the H-edges with

y-coordinate less thanL (greater

than or equal toU) the

y-coordinate of the last

translated H-edge, if axis = y.

The same for V -edges, w.r.t the

x-coordinate if axis = x.

9

GetDirection(axis)
Returns H if axis = y; V if

axis = x.
11

GetIntervalEdgeOgon(coord, dir)

Returns the interval of

x-coordinate (y-coordinate)

values that H-edge y = coord

(V -edge x = coord) has in

stretched, for dir = H (dir = V ).

11

Table 2.4: Auxiliary functions for the implementation of the n-ogon generator.





Chapter 3

Creating Subclasses of Grid n-Ogons

In this chapter, we present tailored versions of the Inflate-Paste algorithm to generate

grid ogons with specific properties, namely row-convex, convex, thin and spiral grid

ogons.

The algorithm developed for the convex grid ogons is based on the one designed for

the row convex family and the algorithm designed for the spiral grid ogons is based on

the one developed for the thin family. In each section, we consider a class and state

the relevant properties, and then describe the customized version of the algorithm.

3.1 Row-Convex Grid n-Ogons

Any column-convex grid ogon can be obtained from a row-convex grid ogon by perform-

ing a rotation of π
2
radians around the center of its bounding square, and reciprocally.

Since the customization of the Inflate-Paste method to produce row-convex grid ogons

is much more simple, we focused on their generation, instead of on the generation of

column-convex grid ogons.

The algorithm is pretty similar to the original version of Inflate-Paste. The main

difference is that only four convex vertices can be used for the expansion at each

iteration: the two topmost and the two bottommost convex vertices of the current

polygon. That is, these four vertices are the ones that lie on the H-edges that define

the minimum bounding square. We can discard all the remaining convex vertices,

35
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which we call the internal convex vertices, because if they were selected the polygon

could not be row-convex anymore. Proposition 1 states this result. In Figure 3.1, we

show an example that provides some intuition for the proof.

v′•

c′
•

v′•

c′
•

Figure 3.1: For all possible points c′, i.e., for all the possible rectangles that could be glued at the

internal vertex v′ (color •), the resulting grid 12-ogon will not be row-convex.

Proposition 1. Let P be a row-convex grid ogon, with n ≥ 6 vertices, and let v

be any internal convex vertex of P . If we use v to perform one more Inflate-Paste

transformation, the grid (n+ 2)-ogon we obtain is not row-convex.

Proof. In the proof, we use the notations introduced in the description of Inflate-

Paste. The grid n-ogon P has an horizontal edge for each y such that 1 ≤ y ≤ n
2
. Since v

is an internal convex vertex, we have 2 ≤ vy ≤ n
2
− 1.

When we apply Inflate, the internal vertices are mapped to internal vertices, because

the order induced by an horizontal planar sweep is preserved by this operation. This

means that if vy is incremented, then all H-edges below v are shifted downwards as

well. If vy is not incremented, then none of the H-edges above v moves. So, if v is

an internal vertex then its image v′ is an internal vertex of the inflated polygon, and

reciprocally.

Now, let us assume, without loss of generality, that y ≥ vy for all points in FSN(v).

Indeed all the other cases can be reduced to this one by symmetry. Then, for v′ and c′

we have 2 ≤ v′y ≤ n
2
and 3 ≤ c′y = cy +1 ≤ n

2
+1, and c′y−v′y ≥ 1. It follows that, when

we glue the rectangle defined by v′ and c′, the intersection of the polyomino with the

row defined by the H-lines y = c′y−1 and y = c′y is not connected. Therefore, whichever

cell we select in FSN(v), the grid (n+ 2)-ogon we obtain is not row-convex.

As a result, the set C of active convex vertices consists of the two topmost and the two

bottommost vertices. Any of these vertices can be used for expansion, because no H-
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line that crosses FSN(v), for v ∈ C, intersects the interior of the current polyomino.

Since FSN(v) consists of a unique rectangle, with unit height, we can simplify the

functions GetFSN and GetRandomCell.

The version of GetFSN we designed for the generation of a row-convex grid ogons is

shown below and referred to as Algorithm 12.

Algorithm 12 Customized version of GetFSN to create row-convex grid ogons.
1: function GetFSN(v_id)

2: vx ← GetCoordinate(v_id, x); vy ← GetCoordinate(v_id, y);

3: 4H ← GetWay(v_id,H); 4V ← GetWay(v_id, V );

4:

5: ry-start ← vy;

6: if 4V < 0 then

7: rx-interval ← ]0, vx[;

8: else

9: rx-interval ← ]vx, dim+ 1[;

10: end if

11: ry-finish ← vy +4H ;

12: fsn← {r};

13:

14: return {fsn,4H ,4V }

15: end function

The main function GenerateGridOgon is then adapted in the following way. We

remove line 12 of Algorithm 1 and replace lines 15−18 by the instruction

C ← (C \ {aHv_id}) ∪ {c_id}.

Finally, the function GetRandomCell is simplified, as the cell can be found in

constant time now.

3.2 Convex Grid n-Ogons

By definition, every convex grid n-ogon has to be row-convex. The set C of the active

convex vertices in each iteration will consist of the two bottommost and the two topmost
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vertices of the polygon, again. Nevertheless, to ensure that the resulting polygon is

also column-convex, we need to restrict the definition of FSN(v).

Considering the way in which the rectangles are glued in Inflate-Paste, we may conclude

that a non convex grid ogon cannot be used to produce a convex one. Now, if the grid

n-ogon P is convex, and v is the vertex in C we select for expansion in iteration (r+1),

then all cells in the range defined by the edge eH(v) can be safely used. However, as

the example in Figure 3.2 shows, we cannot select cells beyond eH(v), unless the other

extreme point of eH(v), that is the vertex aH(v), belongs to line x = 1 or to line x = n
2
.

v′•
c′•

(a)

v′•
c′
•

(b)

Figure 3.2: Two grid 12-ogons generated by the same convex grid 10-ogon. (a) The grid 12-ogon is

not column-convex. (b) The grid 12-ogon is column-convex.

Indeed, since the grid orthogonal polygon has one edge in every line of its minimum

bounding square, we know that when the x-coordinate of the vertex aH(v) satisfies

2 ≤ x ≤ n
2
− 1, then P has some V -edge to the left (right) of the edge eV (aH(v))

if aH(v) is to the left (right) of eV (v). Thus, if the rectangle we glue to obtain a

new polygon grid (n + 2)-ogon P ′ goes beyond eV (aH(v)), there exists some V -line L

between aH(v)x and c′x such that P ′ ∩ L is not connected (see Figure 3.2(a)).

In case aH(v) belongs to the line x = 1, it is safe to include the cell whose northwest

corner lies on the V -line x = 0, because it belongs to the empty column. Similarly, if

aH(v) belongs to the line x = n
2
, we can select the cell whose northwest corner lies on

the V -line x = n
2
.

This leads to a new version of the function GetFSN, that we present as Algorithm 13.

This function is the unique part of the algorithm for the row-convex grid ogons we had

to adapt to create convex grid ogons.
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Algorithm 13 Customized version of GetFSN to create convex grid ogons.
1: function GetFSN(v_id)

2: vx ← GetCoordinate(v_id, x); vy ← GetCoordinate(v_id, y);

3: 4H ← GetWay(v_id,H); 4V ← GetWay(v_id, V );

4: aHv_id←GetAdjacent(v_id,H); aHvx ← GetCoordinate(aHv_id, x);

5:

6: ry-start ← vy;

7: if aHvx = 1 or aHvx = dim then

8: rx-interval ← ]min(vx, aHvx +4V ),max(vx, aHvx +4V )[;

9: else

10: rx-interval ← ]min(vx, aHvx),max(vx, aHvx)[;

11: end if

12: ry-finish ← vy +4H ;

13: fsn← {r};

14:

15: return {fsn,4H ,4V }

16: end function

3.3 Thin Grid n-Ogons

The thin and the fat grid ogons were defined in [2] as the grid ogons for which

the number of pieces of the rectilinear partition ΠHV is minimum and maximum,

respectively. For the fat grid ogons with r reflex vertices we have

|ΠHV (P )| =


3r2+6r+4

4
if r is even

3(r+1)2

4
if r is odd

.

whereas for the thin grid ogons the number of pieces of ΠHV (P ) is 2r + 1. There

is a unique fat grid n-ogon, up to symmetry [2], and its pattern is quite simple (see

Figure 3.3).

This makes the generation of the fat class straightforward and less interesting than the

generation of thin grid n-ogons, which is the one we address in this section.
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(a) (b)

Figure 3.3: The fat and two thin grid n-ogons: (a) n = 8, r = 2 (b) n = 10, r = 3.

The thin grid ogons are the ones for which there are no intersection points between the

horizontal and vertical cuts in the interior of the polygon. Moreover, for n ≥ 6, the

dual graph of ΠHV (P ) is a path graph.

We exploit these structural properties to adapt the Inflate-Paste method. As for the

generation of row-convex and convex grid ogons, thin grid ogons can only be obtained

from thin grid ogons and only a proper subset C of the convex vertices are active in

each iteration, for n ≥ 6. Actually, the following lemma and proposition are shown

in [23].

Lemma 2. Let P be a thin (n + 2)-ogon. Then every grid n-ogon that yields P by

Inflate-Paste is also a thin grid ogon.

Proposition 2. The unique convex vertices of a thin grid n-ogon P that can be used to

yield a thin grid (n+ 2)-ogon, by Inflate-Paste, are the four convex vertices that belong

to the r-pieces associated to the extreme points of the dual graph of ΠHV (P ) (which is

a path graph).

In contrast to the procedure described in [23], which adopts the original definition of

FSN(v) and, in the end, discards the polygon if it is not a thin polygon, the outcome

of our algorithm is always a thin grid ogon. For that purpose, we need to restrict

FSN(v), as well. Essentially, we have to avoid all cases where the new cuts would

intersect the previous ones, as we see in Figure 3.4.

We know that no intersection point between two cuts can be destroyed by Inflate,

because this operation keeps the structure of the rectilinear partition (although the

size of some pieces may increase, the dual graph does not change). In addition, no

two vertical (or horizontal) cuts can overlap because, by definition, a grid ogon has

no collinear edges. Therefore, when a new reflex vertex is added by Paste, the V -
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cut (H-cut) it adds either intersects some previous H-cut (V -cut), creating internal

intersection points, or does not intersect any previous cut.

•v
•

•
•

(a) (b)

Figure 3.4: (a) A thin grid 12-ogon. (b) A grid 14-ogon arising from (a) that is not thin.

Now, we focus on the generation of the thin grid ogons by Inflate-Paste. By case

analysis, we concluded that, for n ≥ 6, we have to distinguish the case where the two

active convex vertices p and q that belong to the extreme piece define a vertical edge

(called Type I ) from the case where they define an horizontal edge (called Type II ), as

we show in Figure 3.5.

Type I

lI

p

q

Type II

lII

p q

Figure 3.5: The two cases we must distinguish to restrict FSN (up to symmetry).

In case Type I, when we select p or q, any rectangle that does not surpass the vertical

cut lI can be glued. Otherwise, the horizontal cut determined by the new reflex vertex

intersects that cut. In case Type II, when we select p, only the rectangles that surpass q

can be glued and, similarly, when we select q, the rectangle must surpass p. Otherwise,

the vertical cut incident to the new reflex vertex intersects the horizontal cut denoted

by lII , and the outcome cannot be a thin grid ogon.
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We state this result as Proposition 3 and prove it by induction. The proof allows us to

understand the structure of the thin grid ogons and at the same time shows how the

Inflate-Paste method works for this subclass.

Proposition 3. The outcome of the Inflate-Paste method is a thin grid ogon if and

only if, in each iteration (other than the first one), we select a convex vertex v that

belongs to a piece defining an extreme point of the dual graph of ΠHV and we follow

the rules given for Type I and Type II to select a cell in FSN(v).

Proof. We proceed by induction on the number of reflex vertices r. Along the

proof, Pr denotes a grid ogon with r reflex vertices.

Base case: In case r ≤ 1, we do not need to impose any restriction, because all the

grid ogons with n ≤ 6 vertices are thin grid ogons. Up to an horizontal or vertical flip,

when we apply Inflate-Paste to P0 using a convex vertex v to obtain a grid ogon P1,

the situation is as sketched in Figure 3.6.

P0

v
eH (v)

eH (aV (v))

P1

w c′
eH (c′)

eH (aH (v))

eH (aV (v))

lI
lII

w c′
eH (c′)

eH (aV (c′))

eH (aV (v))

lI
lII

Figure 3.6: The thin grid 6-ogons, P1, arising from the grid 4-ogon P0 (up to symmetry).

We see that the rectilinear partition ΠHV (P1) consists of three pieces, its dual is a path

graph and one of the extreme pieces is of Type I and the other of Type II. The two

cuts lI and lII result from the extension of the edges that are incident to the reflex

vertex.

If P1 is as depicted on the left, the convex vertex aV (v) (adjacent to v in P0) must be

removed from the current set of active convex vertices C. Indeed, if aV (v) was used

to generate a polygon Pr, for r ≥ 2, then the new cuts will intersect lI or lII , for

every rectangle in its free neighborhood. Similarly, if P1 is the polygon on the right, we
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cannot include the vertex w in the set C. In each case, we can use any of the remaining

four convex vertices and, as we can see, they belong to extreme pieces of the chain.

In both cases, the extreme piece of Type I contains the horizontal edge that is incident

to the reflex vertex of P1. If the selected convex vertex is the other extreme point of

that edge (aH(v) on the left, aV (c′) on the right), there are no new restrictions. On the

other hand, if we selected the other convex vertex in the extreme piece of Type I (i.e.,

c′ in the right or the vertex that is vertically adjacent to aH(v) in the left), then we

can glue a rectangle in the free neighborhood of this vertex if and only if it does not

surpass lI . Otherwise, the vertical cut added by the new reflex vertex intersects lII .

As regards the other extreme piece, which is of Type II, if the selected vertex belongs

to that piece, the rectangles that can be glued are the ones in the free neighborhood

of such vertex that do not contain a vertical line that intersects lII .

So, for P1, the condition stated in the Proposition holds.

Induction step: We are going to show that if the condition holds for all thin grid ogons

Pr, then it holds for all thin grid ogons Pr+1, for r ≥ 1.

We know that the original Inflate-Paste method is complete, which means that every

grid ogon with r + 1 reflex vertices can be obtained from some grid ogon with r reflex

vertices by gluing a rectangle using the Inflate-Paste transformation. Therefore, the

hypothesis implies that any thin grid ogon Pr+1 can be created and its predecessor Pr

is a thin grid ogon. So, the proof reduces to showing that the conditions on the active

convex vertices and on the types of the extreme pieces hold for Pr+1 in next iteration.

Since the Inflate operation preserves the structure of ΠHV (Pr), the hypothesis still

holds for the inflated polygon.

Hence, let us consider the case where the convex vertex v we select in Pr belongs to a

Type I extreme piece.

Considering the induction hypothesis, the local structure of Pr+1 will be of the form

described in Figure 3.7, up to symmetries.

We can see that the extreme piece is replaced by a chain of three pieces. The new

vertical cut divided that extreme piece in two and the rectangle we glued to obtain
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Pr

v
eH (aH (v))

eH (aV (v))

lI

Pr+1

wc′
eH (c′)

eH (aH (v))

eH (aV (v))

lI
lII

Figure 3.7: When v belongs to a piece of Type I in Pr, the new rectangle yields a piece of Type II

in Pr+1.

Pr+1 becomes the new extreme piece, which is of Type II. The vertex aV (v) has to be

removed from the set of active convex vertices, and c′ and w are added to the set. We

can justify this claim as we did for P1, in the base case (Type II).

The remaining structure of Pr and ΠHV (Pr) is preserved, because the new cuts only

affect the extreme piece of Pr that contains v. Hence, the other extreme piece of

ΠHV (Pr+1) is the other extreme piece of Pr (possibly inflated). Therefore, the condi-

tions hold if v belongs to a piece of Type I.

Now we show that the conditions hold also when the convex vertex v we select in Pr

belongs to a Type II extreme piece. Under the induction hypothesis, the local structure

of Pr+1 will be of the form sketched in Figure 3.8, up to symmetries.

Pr

v
eH (aH (v))

lII

Pr+1

wc′
eH (c′)

eH (aV (c′))

lII

lI

Figure 3.8: When v belongs to a piece of Type II in Pr, the new rectangle yields a piece of Type I

in Pr+1.

As in the base case (Type I), we cannot include w in the set of active convex vertices

and aH(v) must be replaced by aV (c′), because aH(v) becomes a reflex vertex when

the rectangle is glued. Since the edge eH(v) is now the new horizontal cut, that cut
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does not intersect any previous cut (by definition of the rectilinear partition). The

new vertical cut, denoted by lI , is directed to the exterior of Pr, and affects only the

rectangle we glued. Therefore, it cannot intersect previous cuts either. The extreme

piece is replaced by a chain of three pieces, and the new extreme piece is now of Type I.

As before, the other extreme piece of ΠHV (Pr) is kept as extreme piece of ΠHV (Pr+1).

This concludes our proof.

3.3.1 Implementation

To develop the generator for thin grid ogons, we adapted the original functions Gener-

ateGridOgon and GetFSN, to take into account the structural properties derived

from the proof of Proposition 3. The new version of GenerateGridOgon is pre-

sented as Algorithm 14.

Now, we assign a type to each convex vertex in C, which is the type of the extreme

piece it belongs to. In addition, in case Type I, we associate the reflex vertex that

yielded the piece to the two convex vertices. This allows us to identify the types easily,

as well as the delimiting r-cuts.

The function InitTypes (line 14) performs the initialization of C and of the types in

the first iteration and UpdateTypes (line 27) updates them in the following iterations.

The first iteration is handled separately because it is a bit different from the other

ones, as the base case in the proof of Proposition 3. When r = 0, the grid ogon is the

unit square. The computation of the free neighborhood is trivial. For that reason, we

defined a specific function GetFSNBaseCase, presented below as Algorithm 15.

For the remaining iterations, we adapted the computation of FSN(v) to make use of

the type of the extreme piece that contains v and of the delimiting cuts, following the

proof of Proposition 3. The new version is shown as Algorithm 16.
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Algorithm 14 Customized version of GenerateGridOgon to create thin grid

ogons.
1: procedure GenerateGridOgon(n)

2: InitStructures();

3: r ← (n− 4)/2;

4:

5: if r 6= 0 then

6: v_id← GetRandomVertex(C);

7: {fsn,4H ,4V } ← GetFSNBaseCase(v_id);

8: (cx, cy)← GetRandomCell(fsn,4H ,4V );

9:

10: (c′x, c
′
y)← Inflate((cx, cy));

11: aHv_id← GetAdjacent(v_id,H);
12: vy ← GetCoordinate(v_id, y); eHv_x-interval← GetIntervalEdge(vy, H);

13: {c_id, aV c_id} ← Paste(v_id, aHv_id, (c′x, c′y));

14: InitTypes(v_id, aHv_id, c_id, aV c_id, (c′x, c′y), eHv_x-interval);

15:

16: dim← dim+ 1;

17: r ← r − 1;

18: end if

19: while r 6= 0 do

20: v_id← GetRandomVertex(C);

21: {fsn,4H ,4V } ← GetFSN(v_id);

22: (cx, cy)← GetRandomCell(fsn,4H ,4V );

23:

24: (c′x, c
′
y)← Inflate((cx, cy));

25: aHv_id← GetAdjacent(v_id,H);

26: {c_id, aV c_id} ← Paste(v_id, aHv_id, (c′x, c′y));

27: UpdateTypes(v_id, aHv_id, c_id, aV c_id);

28:

29: dim← dim+ 1;

30: r ← r − 1;

31: end while

32: end procedure
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Algorithm 15 GetFSN for the unit square (i.e., when r = 0).
1: function GetFSNBaseCase(v_id)

2: vx ← GetCoordinate(v_id, x); vy ← GetCoordinate(v_id, y);

3: 4H ← GetWay(v_id,H); 4V ← GetWay(v_id, V );

4:

5: ry-start ← vy;

6: if 4V < 0 then

7: rx-interval ← ]0, vx[;

8: else

9: rx-interval ← ]vx, dim+ 1[;

10: end if

11: ry-finish ← vy +4H ;

12: fsn← {r};

13:

14: return {fsn,4H ,4V }

15: end function

The function GetRectangles is the same as before (see Algorithm 4). The first two

parameters define the starting point and the V -line that limits the visibility from v.

We use these parameters to customize GetFSN, as follows.

If v belongs to an extreme piece of Type I then lx defines lI , as we observe in Fig-

ure 3.9(a).

In the original version of the Inflate-Paste algorithm, lx is the x-coordinate of the first

V -edge that intersects the horizontal extension of eH(v) and blocks the rectangular

visibility (or a V -line of the grid boundary when there is no such V -edge). However,

from the proof of Proposition 3, if v belongs to a Type I piece, we know that lI is

a vertical limit that never surpasses a V -edge of this kind, since lI is always a value

between vx and aH(v)x.
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Algorithm 16 GetFSN for thin grid n-ogons, for n ≥ 6.
1: function GetFSN(v_id)

2: vx ← GetCoordinate(v_id, x); vy ← GetCoordinate(v_id, y);

3: 4H ← GetWay(v_id,H); 4V ← GetWay(v_id, V );

4:

5: if GetType(v_id) = I then

6: rlI_id← GetReflexI(v_id); lI ← GetCoordinate(rlI_id, x);

7: fsn← GetRectangles((vx, vy), lI ,4H ,4V );

8:

9: else //GetType(v_id) = II

10: aHv_id← GetAdjacent(v_id,H);

11: aHvx ← GetCoordinate(aHv_id, x); aHvy ← GetCoordinate(aHv_id, y);

12: lx ← GetFSNx-Limit((vx, vy),4H ,4V );

13: fsn′ ← GetRectangles((aHvx, aHvy), lx,4H ,4V );

14: fsn←RefineFSNII(fsn′, v_id,4H);

15: end if

16:

17: return {fsn,4H ,4V }

18: end function

v•
lI

(a)

v• •

lII

(b)

Figure 3.9: (a) GetRectangles((vx, vy), lI ,4H ,4V ), for Type I. (b) GetRectan-

gles((aHvx, aHvy), lx,4H ,4V ), for Type II.
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If v belongs to an extreme piece of Type II, the starting point is (aH(v)x, aH(v)y)

instead of (vx, vy). This means that we simply want all cells in FSN(v) that are not

between vx and aH(v)x. In fact, from the proof of Proposition 3, we know that only

cells surpassing aH(v) can be selected in this case.

This leads to the restriction illustrated in Figure 3.9(b). However, we may have to

refine the region further if there are some other edges that obstruct visibility, as the

H-edge e′ in the example we show in Figure 3.10(a). For that purpose, we introduced

a new function RefineFSNII, to check that and finally get the correct region (see

Figure 3.10(b)).

v••
e′

(a)

v••
e′

(b)

Figure 3.10: Case Type II: (a) fsn′ ← GetRectangles((aHvx, aHvy), lx,4H ,4V ). (b)

fsn← RefineFSN(fsn′, v_id,4H).

As we mentioned above, the function InitTypes initializes C and the types in the first

iteration and UpdateTypes updates them in the following iterations. These functions

are presented in pseudocode as Algorithm 17 and Algorithm 18.

The auxiliary functions used in the algorithms are described in Table 3.1.
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Algorithm 17 Setting set C and type initialization.
1: function InitTypes(v_id, aHv_id, c_id, aV c_id, (c′x, c′y), eHv_x-interval)

2: aV aHv_id← GetAdjacent(aHv_id, V );

3: C ← {aV aHv_id, c_id};

4:

5: if c′x ∈ eHv_x-interval then

6: C ← C ∪ {v_id, aHv_id};
7: SetType(aHv_id, aV aHv_id, I); SetReflexI(aHv_id, aV aHv_id, aV c_id);

8: SetType(v_id, c_id, II);

9: else

10: aV v_id← GetAdjacent(v_id, V );

11: C ← C ∪ {aV c_id, aV v_id};

12: SetType(c_id, aV c_id, I); SetReflexI(c_id, aV c_id, aHv_id);

13: SetType(aV v_id, aV aHv_id, II);

14: end if

15: end function

Algorithm 18 Updating set C and adding the type of the new extreme piece.
1: function UpdateTypes(v_id, aHv_id, c_id, aV c_id)

2: if GetType(v_id) = I then

3: aV v_id← GetAdjacent(v_id, V );

4: C ← (C \ {aV v_id}) ∪ {c_id};

5: SetType(c_id, v_id, II);

6:

7: else //GetType(v_id) = II

8: C ← (C \ {v_id, aHv_id}) ∪ {c_id, aV c_id};

9: SetType(c_id, aV c_id, I); SetReflexI(c_id, aV c_id, aHv_id);

10: end if

11: end function
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Function Description Algorithms

SetType(p_id, q_id, τ)
Assigns the type τ to the vertices

p_id and q_id.
17, 18, 19

SetReflexI(p_id, q_id, rlI_id)

Used for Type I cells to associate the

reflex vertex rlI_id to the convex

vertices p_id and q_id.

17, 18, 19

GetType(p_id)
Returns the type of the convex

vertex p_id.
16, 18, 19

GetReflexI(p_id)
Returns the V -cut lI associated to

the convex vertex p_id.
16

RefineFSNII(fsn′, v_id,4H)

Used if v is of Type II to refine fsn′,

ensuring that all points are

rectangularly visible from v.

16

Table 3.1: Some auxiliary functions of the generator of thin grid ogons.

3.4 Spiral Grid n-Ogons

In [23], it was proved that the spiral grid n-ogons are a proper subclass of the thin grid

n-ogons, and the following result.

Lemma 3. Only spiral grid n-ogons can yield, by Inflate-Paste, spiral grid (n + 2)-

ogons.

We exploit these properties to develop a generator for spiral grid n-ogons based on the

one for the thin grid n-ogons.

All we need is to restrict the set C of active convex vertices, to keep all reflex vertices

in one chain and all the convex vertices in another chain. For r ≥ 1, there are only

two active vertices in each iteration. By case analysis, we conclude that for a Type I

extreme piece, the active convex vertex v is the one that has a reflex adjacent. This

reflex vertex will become adjacent to the new reflex. If the piece is of Type II, we must

select v as the convex vertex whose two neighbors are convex vertices. When we glue
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the new rectangle, aH(c′) is the new active convex vertex if the new piece is of Type II.

Otherwise, if the new piece is of Type I, aV (c′) becomes the new active convex vertex.

Hence, the thin grid ogons Inflate-Paste version can be adapted to create spiral grid

ogons. We change the instructions that update set C in the InitTypes and Update-

Types functions. In InitTypes (Algorithm 17), line 3 is replaced by the instruction

C ← ∅. The modified UpdateTypes is described in Algorithm 19.

Algorithm 19 Customized version of UpdateTypes to create spiral grid ogons.
1: function UpdateTypes(v_id, aHv_id, c_id, aV c_id)

2: if GetType(v_id) = I then

3: SetType(c_id, v_id, II);

4:

5: else //GetType(v_id) = II

6: C ← (C \ {v_id}) ∪ {aV c_id};

7: SetType(c_id, aV c_id, I); SetReflexI(c_id, aV c_id, aHv_id);

8: end if

9: end function



Chapter 4

α-CAGP in Steiner Path Orthogonal

Polygons

This chapter addresses the Chromatic Art Gallery Problem with edge-aligned vertex

α-guards (α-CAGP), for α ∈ {π
2
, π, 2π}, focusing on Steiner path polygons. It is known

that XG2π(P ) ≤ 2 for spiral polygons and XG2π(P ) ≤ 3 for staircase polygons [7]. We

show that the chromatic α-guard number of any Steiner path orthogonal polygon P

satisfies XGα(P ) ≤ 3, for α ∈ {π
2
, π, 2π}, and this combinatorial bound is tight.

4.1 On the Structure of Steiner Path Ogons

A path orthogonal polygon is an orthogonal polygon P such that the dual graph of its

rectilinear partition ΠHV (P ) is a path graph. When no rectilinear cut links two reflex

vertices, which means that all horizontal and vertical cuts intersect the boundary at

Steiner points (i.e., at extra points, other than vertices of P ), we call such a polygon a

Steiner path orthogonal polygon (see Figure 4.1).

All thin grid ogons are Steiner path polygons and we can obtain path polygons from

thin grid ogons by shifting the grid lines. In addition, our generator GenerateOgon

can produce both Steiner path orthogonal polygons and path orthogonal polygons that

are not Steiner path orthogonal polygons by asking for polygons in general position or

not in general position.

53
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(a) (b)

Figure 4.1: (a) A path not Steiner path. (b) A Steiner path.

For a Steiner path polygon P with r reflex vertices, ΠHV (P ) = 2r + 1. In our study

of α-CAGP, we consider a decomposition of P into L-shaped pieces, where each piece

consists of the three r-pieces that are incident to a given reflex vertex v of P . We call

it a turn-piece (or the turn-piece of v).

In addition to this decomposition, we consider a refinement of ΠHV (P ) that turned

out to be very useful also. The refinement is obtained by triangulating the r-pieces

of ΠHV (P ) that contain two reflex vertices, as opposite corners. The r-piece is split

into two triangles by adding the diagonal that links those vertices. We call each half

a 4-piece. Using this partition, we can decide whether an r-piece could be covered in

cooperation or whether the piece requires a guard that can see all its points.

We can restrict the analysis to r-pieces shared by two adjacent turn pieces. Let p1

and p2 be the two reflex vertices that define the two turn pieces. Up to symmetry, the

relevant cases are the ones we sketch in Figure 4.2.

p p

g g

(a)

g

g




p

p

(b)

g

g




p

p

(c)

Figure 4.2: Checking whether g1 and g2 can jointly guard the r-piece that contains p1 and p2.



4.1. ON THE STRUCTURE OF STEINER PATH OGONS 55

When p1 and p2 define an edge of the polygon (that is, the two turn-pieces define an

U-shaped piece), as in Figure 4.2(a), two guards located at g1 and g2 cannot assist each

other to cover the r-piece that contains the edge p1p2. Actually, there would be points

of P in a neighborhood of that edge that cannot be covered unless the guard sees all

the points in the r-piece. So, the r-piece cannot be guarded in cooperation.

When p1 and p2 are in different chains (that is, the two turn-pieces define a staircase),

as in Figures 4.2(b)–(c), g1 and g2 can assist each other to fully cover the r-piece with

opposite corners p1 and p2 if and only if each of the two 4-pieces is completely covered

by one of them (i.e., g1 covers the 4-piece with label 1 and g2 covers the 4-piece with

label 2).

Indeed, as we see in Figure 4.2(c), if g1 does not cover the 4-piece labelled 1, then,

even if g2 can cover some part of that piece, there would be some points near p2 that

were not guarded. The same holds in the case where g2 does not cover all points of the

4-piece labelled 2, now for p1 instead of p2.

For solving α-CAGP in Steiner path polygons, we can exploit this property further. Let

us assume that we are checking whether a given polygon P admits a 2-colorable guard

set. Now, suppose that the staircase piece is part of a larger staircase, which includes

vertex g that together with g2 can see the piece defined by p1 and p2, as depicted in

Figure 4.3.

g

g




p

p

g

w

Figure 4.3: A fragment requiring 3 colors if we use g and g2 to guard the r-piece given by p1 and p2.

Clearly, there are points of P in the neighborhood of eV (g1) that cannot be guarded

either by g2 or g, for instance in the shaded region labeled with w. Since the two guards

g and g2, as well as any guard that can cover w see p1, then there is a conflict between

at least three guards. So, the guard set is not 2-colorable (as it requires at least three

colors).
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In the next sections, we will show that there always exist a 3-colorable α-guard set for

any Steiner path orthogonal polygon and that there are instances that require three

colors. The previous observations allow us to simplify the analysis of the problem.

4.2 Minimum Number of Colors for Steiner Path Ogons

We looked for combinatorial lower bounds for the chromatic guard number XGα(P ),

that can hold for every P , assuming edge-aligned vertex α-guards with α ∈ {π
2
, π, 2π}.

Although our first impression was that the problem could be simple for α = π
2
, in the

end it turned out to be more difficult than the case when α = 2π. Indeed, our initial

conjecture that two colors could be sufficient if α = π
2
was not true. We concluded

that a Steiner path orthogonal polygon can have a long staircase requiring two colors

and may require a guard in a vertex that sees all the vertices along the “diagonal” of

another long staircase, leading to a 3-coloring. This cannot be avoided, even when

we restrict to π
2
-guards. The instances we constructed by hand for proving the lower

bounds are of that kind and symmetric (e.g., the instance depicted in Figure 4.4).

v1 v2

v3 v4

v5 v6

v7 v8

v9 v10

v11 v12

v13 v14

v15 v16

v17 v18

v19 v20

w1

w2

w3

w4

w5

w6

Figure 4.4: A Steiner path ogon that has no 2-colorable vertex 2π-guard set.

In the proof of Proposition 4, stated below, we show that this instance has no 2-

colorable vertex 2π-guard set. The shaded ellipses indicate regions that will be useful

to prove the existence of conflicts. We refer to these useful regions as witness regions

(witnesses or critical regions).
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Proposition 4. For n ≥ 20, there are Steiner path n-ogons P such that XG2π(P ) ≥ 3,

for vertex 2π-guards.

Proof. First we prove that the instance given in Figure 4.4 requires a 3-coloring.

Clearly, to cover the witness region w1 (on the top of the polygon), we need a 2π-guard

at either v9, v10, v11 or v12 and each of these vertices sees all the reflex vertices of P

that belong to one the two staircases (i.e., that lie on one of the two oblique lines in •

color).

Without loss of generality, let us focus on the staircase that contains v1. The witness

region w2 requires a 2π-guard at either v1, v2, v3 or v4.

If the guard is located at either v1 or v3, we need another guard to cover the witness

region w3, because neither v1 nor v3 see w3. The new guard must be located at either

v2, v4, v5, v7 or v8. All of these vertices, as well as v1 and v3, see the vertex v4. Thus,

if we locate a guard at v1 or v3, we need at least two colors for any guard set for that

staircase.

Now, let us see what happens if we locate a guard at v2 to cover w2. Since v2 cannot

see the witness region w4, we need another guard at either v4, v5, v6, v7 or v8. All these

vertices, as well as v2, see the vertex v5. Therefore, we need at least two colors for any

guard set for that staircase if v2 is used.

In both cases, if we place a 2π-guard at either v10 or v11 to cover the witness region

w1, then another conflict arises at v4 or v5, and hence we need three colors (at least).

Instead of v10 and v11, we could select either v9 or v12 to locate a guard to cover the

witness w1. Nevertheless, since the polygon is symmetric, similar conflicts will arise in

the other staircase (with v3, v2 and v1 replaced by v18, v19 and v20 for the analysis).

Finally, we consider the case where the guard that covers w2 is located at v4. The

analysis is slightly different. The witness w5 requires another 2π-guard, which must be

placed at either v5, v6, v7, v8 or v11. All these vertices, as well as v4, see v8. So, we

need at least two colors.
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If we select v11 as the new guard, the witness region w1 will be covered, but the witness

w6 will not. Hence, a third guard is needed to cover w6 and it must be located at either

v9, v10, v12, v13 or v15. All these vertices, as well as v4 and v11, see v10. Therefore, we

need at least three colors. Instead of v11, we could select one of the vertices v5, v6, v7

and v8 to cover w5. Then, we need one of the four vertices v9, v10, v11 or v12 to cover

the witness w1. But, v10 and v11 will raise a conflict at v8, asking for a third color and,

by symmetry, also v9 and v12 will raise conflicts in the other staircase.

This concludes the proof that there is no 2-colorable vertex 2π-guard set for the Steiner

path ogon given in Figure 4.4. From this instance, if we extend one of the staircases

downwards, we get a family of Steiner Path n-ogons, with n ≥ 20, whose chromatic

guard number is greater than 2, vertex 2π-guards.

Both for α = π and α = π
2
, the instance we give in Figure 4.4 admits a 2-colorable

edge aligned α-guard set. Nevertheless, the instance depicted in Figure 4.5, which we

call “the space invader”, requires three colors in that case.
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Figure 4.5: A Steiner path ogon that has no 2-colorable vertex α-guard set, for α = π, π2 .
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We constructed this instance by hand, after several attempts to design an algorithm

for finding 2-colorable guard sets, for π
2
-CAGP. The polygon is symmetric with respect

to the bissector of the topmost H-edge and the labels we use in the right side of the

picture, for the vertices and also for the r-pieces and4-pieces, reflect their counterparts

in left side.

Since the analysis of the problem was even more complex than the former one, we

modeled this instance as a constraint satisfaction problem and used a constraint pro-

gramming system to assist us in the proof. The mathematical model we present in this

section is slightly different. It is based on binary integer programming and it is closed

related to the generic model we implemented in our prototype solver for α-CAGP. This

solver is described in the next chapter.

4.2.1 A BIP Model for Checking Whether XGα(P ) ≤ κ

Let G be the candidate guard set and let K be the color set, with |K| = κ. For every

g ∈ G and k ∈ K, we define a (binary) decision variable xg,k whose value is 1 if and

only if g is selected and assigned color k. Otherwise, xg,k = 0.

For α = π and α = π
2
, there are two possible ways of locating an edge-aligned α-guard

at a reflex vertex v. We use vH if it is aligned with the H-edge and vV if it is aligned

with the V -edge incident to v. Because of that we separate the set of convex vertices

from the set of the reflex vertices, and denote them by C and R, respectively. Then

G = C ∪ {vH , vV | v ∈ R}.

The constraints of the model must guarantee that the selected guards cover the whole

polygon, there is at most one guard at each vertex, and there are no color conflicts.

The guarding problem is modeled as a set covering problem. For that purpose, we

consider a decomposition Π of the polygon and require that each piece of Π can be

covered by at least one guard in the guard set. Let Ff be the set of guards from G that

can see a given piece f ∈ Π, and F be a set of all Ff , for f ∈ Π.
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The following constraints require that the selected guard set covers all pieces of Π and

that at most one guard is located at each vertex.

∑
g∈F

∑
k∈K

xg,k ≥ 1, for all F ∈ F (4.1a)

∑
k∈K

xv,k ≤ 1, for all v ∈ C (4.1b)

∑
k∈K

(xvH ,k + xvV ,k) ≤ 1, for all v ∈ R (4.1c)

We will now define constraints to discard color conflicts (incompatibilities). For that

purpose, we identify a set of critical points or regions, and determine the subset I of G

that can see each one. Let I be the set of all subsets I of (possibly) conflicting guards.

The following constraint states that no two guards in such a set I can be assigned the

same color.

∑
g∈I

xg,k ≤ 1, for all k ∈ K and I ∈ I (4.2a)

We will now see how we used this model to check that XGα(P ) > 2 holds for the space

invader, for α = π
2
, π.

4.2.1.1 The Data for the “Space Invader” Model

As we discussed above, in Section 4.1, for checking whether a Steiner path polygon P

admits a 2-colorable guard set, we can take Π as the refinement of ΠHV (P ) obtained by

triangulating the r-pieces that have two reflex vertices as opposite corners. This is the

partition we considered for the “space invader” polygon, as we can see in Figure 4.5.

Since the polygon is symmetric, we use fi to label the pieces on the left side and f ′i

to label the corresponding piece on the right side, for 1 ≤ i ≤ 18, and f19 to label the

r-piece on the top. The set of α-guards that can see fi is given by Fi and the same

applies to f ′i and F ′i .

It is worthwhile noting that we are not looking for guard sets of minimum cardinality.

Otherwise, in general, we need to take a partition that gives a more accurate model

(for instance, the partition induced by the visibility regions of all guards [16, 17]).
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In the same way, in order to show that XGα(P ) > κ, for some constant κ (for instance,

κ = 2), we do not have to identify all possible color conflicts, we can prove that the

constraints are already inconsistent for a proper subset. We followed this approach in

the model defined for “space invader”, and restricted the critical points to the vertices

of the polygon.

Hence, the conflict set Ii refers to all guards that can see vertex vi and we take advantage

of symmetry, defining I ′i as the set of all guards that can see the vertex v′i, for 1 ≤ i ≤ 16.

Since the model is incomplete, if we find a solution using κ colors, XGα(P ) 6> κ can be

a false negative and we must check whether or not Gα raises other conflicts that were

not taken into account in the data.

Nevertheless, when we defined I = {Ii, I ′i | 1 ≤ i ≤ 16} and κ = 2, the model for the

“space invader” instance was inconsistent, implying that XGα(P ) > 2, for α = π, π
2
.

The data is given in Figures B.1 and B.2, in Appendix B. We omitted the values of F ′i
and I ′i because they can be recovered (by the reflection) from the values of Fi and Ii,

for all i.

As for the previous case, we can extend one of the staircases to define a family of

Steiner path n-ogons, for n ≥ 32, with similar properties. This concludes the proof of

Proposition 5.

Proposition 5. For n ≥ 32, there are Steiner path n-ogons P such that XGα(P ) ≥ 3,

for edge-aligned vertex α-guards with α = π and α = π
2
.

4.3 Maximum Number of Colors for Steiner Path Ogons

In this section, we show that three colors are always sufficient for any Steiner path

orthogonal polygon, that is, we prove the upper bound XGα(P ) ≤ 3, for α = π
2
, π, 2π.

The proof defines an algorithm, linear in n, that yields a 3-colorable guard set for the

instance given as input.

Proposition 6. Any Steiner path ogon P can be covered by edge-aligned vertex π
2
-

guards and using at most 3 colors.
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Proof. Let us consider a decomposition of P in turn-pieces, each one defined by

some reflex vertex of P . For a given turn-piece, the turn-piece can have two possible

orientations only (up to symmetry) and, therefore, in three consecutive turn-pieces we

have four cases to check.

Let r = 2m + s, with 0 ≤ s ≤ 1 and m ≥ 0, and define an enumeration of the reflex

vertices, starting from one endpoint of the path. For all 0 ≤ k ≤ m, the label vk is

assigned to the reflex vertex 2k+s and v+
k to the following one (i.e., to the reflex vertex

2k + s+ 1).

We proceed by induction on k, preserving the following invariant.

• P can be totally covered by vertex π
2
-guards, with a 3-coloring, until the

first two r-pieces incident to v+
k , in the enumeration order;

• There is at most two vertex π
2
-guards seeing the r-piece that is incident to

v+
k but not to the two adjacent reflex vertices (we call it the exclusive piece of

v+
k );

• There is at most one vertex π
2
-guard seeing regions that are after the

exclusive piece of v+
k .

Base case: Figure 4.6 shows the location of guards for k = 0, for all cases, up to

symmetry.

v+


(a)

v v+


v

v+


(b)

Figure 4.6: The π
2 -guards placement (• color) to cover the regions (• color) with the first s reflex

vertices of P , including the first two v+0 ’s r-pieces. (a) The case s = 0. (b) The cases s = 1.

Induction step: Now, let us assume that for step k all the three properties referred

above are kept, and check that the same can happen for step k+ 1. Figure 4.7 depicts

the four cases for the turn at vk+1 and the proposed location for the guards for them
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(we always ignore symmetries and the true dimensions). By construction, there is at

most one guard at each vertex.

v+
k

vk+v
+
k+

(a)

v+
k

vk+

v+
k+

(b)

v+
k

vk+v
+
k+

(c)

v+
k

vk+

v+
k+

(d)

Figure 4.7: The π
2 -guards placement (• color) to cover all the vk+1’s r-pieces and the exclusive piece

of v+k+1. Such regions are colored by • and •. In all cases, locally, the π
2 -guards are 2-colored and there

is at most one of them seeing the exclusive piece of v+k+1 (which has • color), possibly surpassing it.

Moreover, there is exactly one guard seeing something on the exclusive piece of v+k (which has also •

color) but that cannot see anything before that.

By the induction hypothesis, all the r-pieces from the first 2k + s reflex vertices of P

are covered and the exclusive piece of v+
k too, and 3 colors are sufficient. Furthermore,

there is at most two guards seeing the exclusive piece of v+
k and at most one guard, g,

that could see regions after this r-piece.

In Figure 4.7, we can check that, with the additional guards, P is totally covered until

the first two r-pieces incident at v+
k+1. At this point, there is no additional guard seeing

something before the exclusive piece of v+
k , only one seeing this r-piece, and these new

guards are 2-colorable so that we can use 3 colors in total to include the possible g’s

conflicts.

From Figure 4.7, we see that only g and one of the new guards may see the exclusive

piece of v+
k+1.

Finally, we check that there is no more than one guard seeing regions after the exclusive

piece of v+
k+1. It is easy to see that this property holds in the cases (a) and (b). For

the cases (c) and (d), the guard g may possibly have visibility rays that surpass v+
k+1.

However, by inspection of these two cases, we see that only one of the guards, either

g or the new one, can see more than the exclusive piece of v+
k+1. Hence, only one

guard can see regions after that exclusive piece, implying that the third property also

holds.
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The proof of Proposition 6 can be easily adapted for a 3-coloring by π-guards and

2π-guards. Corollary 1 and Corollary 2 state these results.

Corollary 1. Any Steiner path orthogonal polygon can be covered by vertex π-guards

and using at most 3 colors.

Proof. Exactly the same, but every π
2
-guard is replaced by a π-guard.

Corollary 2. Any Steiner path orthogonal polygon can be covered by vertex 2π-guards

and using at most 3 colors.

Proof. The proof is similar, with every guard replaced by a 2π-guard, except

that for the cases (a) and (b) of the induction step (see Figure 4.7) the new location

for the guards is as we show in Figure 4.8.

v+
k

vk+v
+
k+

(a)

v+
k

vk+

v+
k+

(b)

Figure 4.8: The new location of 2π-guards, replacing case (a) and (b) of Figure 4.7.

These proofs give us O(n) time algorithms for finding a 3-colorable guard set in each

case.

As regards the cardinality of the computed guard set, at least bn
4
c guards are necessary

for all the three ranges, because the best case occurs when we add exactly one guard

for every k, with 0 ≤ k ≤ b r
2
c (we recall that b r

2
c+ 1 = bn

4
c).

For the worst case, assuming π
2
-guards or π-guards, we need n

2
− 1 guards, since we

may have to add two guards for each k, with 1 ≤ k ≤ b r
2
c plus another for k = 0.
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Thus, we have 2× b r
2
c+ 1 = 2× bn

4
c − 1 and

2× bn
4
c − 1 =


n
2
− 1 if n is a multiple of 4

n
2
− 2 otherwise

.

Nevertheless, for 2π-guards, the upper bound is bn
4
c, since we always add exactly one

guard for each k, with 0 ≤ k ≤ b r
2
c, in all cases. Thus, assuming 2π-guards, we actually

use bn
4
c guards to cover any Steiner path n-ogon.

We know that this number is tight for the min-area grid orthogonal polygons [2], which

are Steiner path grid ogons that consist of a staircase formed by 2r + 1 unit squares.

For all r ≥ 9, they require bn
4
c vertex 2π guards, for a 3-coloring. As we illustrate in

Figure 4.9, for r = 7 and r = 8, we can have smaller guard sets.

(a) (b)

...

...

(c)

Figure 4.9: (a) r = 7 (n = 18) and three 2π-guards are enough. (b) r = 8 (n = 20) and four

2π-guards are enough. (c) r ≥ 9 (n ≥ 22) and bn4 c are required.

Let us assume that we may use at most three colors to cover min-area grid ogons and,

above all, we want to minimize the number of vertex 2π-guards rather than the number

of colors.

As we can see in Figure 4.9, for a min-area grid ogon P , a pair of reflex vertex 2π-

guards can cover at most eleven consecutive r-pieces in ΠHV (P ). On the other hand,

a pair of 2π-guards, one at a convex vertex and other at a convex or reflex vertex, can

cover at most nine r-pieces.

It is noted that a 2π-guard at some reflex vertex has a vision ray traversing the staircase

(color • in Figure 4.9). The min-area grid 18-ogon can be fully covered using only three
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2π-guards at reflex vertices, but inevitably consuming three colors. The min-area grid

20-ogon cannot be fully covered by the same way, it costs at least four colors if we

used more than two 2π-guards at reflex vertices. Four vertex 2π-guards is the optimal

solution, but, once again, three colors have to be consumed. For min-area grid n-ogons

with n ≥ 22, we cannot use 2π-guards at two or more reflex vertices; otherwise we need

more than three colors.

With this in mind, we now determine the minimum number of vertex 2π-guards needed

for any min-area grid n-ogon with n ≥ 22. Since only one reflex vertex 2π-guard can be

used in total, and therefore it can cover as many pieces as a convex vertex 2π-guard,

we can restrict to guards at convex vertices. Let us start to cover the region of an

endpoint of the path (an extreme r-piece) and let us call the reflex vertex that induced

that extreme r-piece as v.

The first 2π-guard we place sees at most four r-pieces. This maximum number is

reached if the 2π-guard is at the convex vertex of the r-piece incident to v. Together,

this 2π-guard and the next one can cover at most eight consecutive r-pieces (by putting

the second on the convex vertex of the incident r-piece of the third reflex vertex).

After the third 2π-guard placement, we have twelve consecutive r-pieces guarded. This

placement is 2-colorable.

In summary, four r-pieces can be guarded per vertex 2π-guard, which means that

d |ΠHV (P )|
4
e

= d2r+1
4
e = dn−3

4
e 2π-guards are needed. Note that

dn− 3

4
e =

d
4k−3

4
e = bn

4
c if n = 4k

d4k+2−3
4
e = bn

4
c otherwise

.

4.4 Related Work

In a recent paper [14], Fekete et al. present several results on the complexity of CAGP,

including the following theorem:

Theorem 1. For a simple polygon P with a finite candidate 2π-guards set G2π, it can

be decided in polynomial time whether there is a 2-colorable 2π-guard set.
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The authors stated several properties about a 2-colorable 2π-guard set on simple

polygons, that are important to formulate the algorithm. In particular, they showed, for

a 2-colorable 2π-guard set, all vertices in the overlay of the 2π-guards visibility polygons

lie on ∂P . Therefore, they may conclude that the dual graph of a triangulation defined

with these vertices is a tree, in which every edge of a triangle can split P into two

subpolygons, at most. They exploit this property to design a polynomial-time decision

algorithm, based on Dynamic Programming.

This work does not deal with α-guards for α < 2π, but we think that the algorithm

works fine for α-CAGP also, with edge-aligned vertex guards. Therefore, we wonder

whether we could have found more quickly a Steiner path orthogonal polygon that is

not 2-colorable if we had run this algorithm for many instances in that family.





Chapter 5

Solving α-CAGP

Over the years, research in the area of AGP has led to combinatorial bounds, algorithms

and hardness results for several variations of the problem.

In the previous chapter, we followed the first line of research, exploiting the geometric

structure of the Steiner path orthogonal polygons to derive tight bounds for α-CAGP

on that class. Although it seemed doable for the path orthogonal polygons as well,

the analysis of the problem for that class turned out to be much more complex. For

that reason, we decided to implement a prototype solver for α-CAGP, to be able to

look for instances or check our conjectures more quickly, using a computer. In the end,

we employed this solver to carry out an empirical study of α-CAGP on random path

orthogonal polygons.

In this chapter, we address the design and implementation of our solver, and present

the results from our empirical study. It is worthwhile noting the algorithms derived

from the proofs of Proposition 6 and of its corollaries, in the previous chapter, compute

a 3-colorable α-guard set for every Steiner path orthogonal polygon P , but cannot be

used to find an optimal solution to α-CAGP on P .

In the last decade, several works in the area of AGP (and, more recently, CAGP [34,

33]) focused on the design of algorithms for computing optimal or good solutions for

(possibly large) problem instances, as well as on their implementation and empirical

evaluation. For a thorough survey on experimental work in this area of AGP, see [27].

Our solver is closely related to the work by Zambon et al. [34].

69
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In a preprocessing phase, the problem is discretized, by making use of packages from

CGAL. Then, it is modeled as a 0-1 ILP problem (a.k.a. Binary Integer Programming

(BIP)) and solved using mathematical software for optimization (we used GNU Linear

Programming Kit (GLPK)1 instead of CPLEX).

We will start by describing the mathematical model and then explain the discretization

procedure.

5.1 The Mathematical Model

As for the “space invader” instance, presented in the previous chapter (in Section 4.2),

the discretization of α-CAGP corresponds to a problem α-CAGP(W , I,G,K, C,R),

where W is a set of witnesses for visibility coverage, I is a set of incompatibilities

(conflicting guard sets), G is the candidate guard set, K is the set of colors that can be

used (we assume that K = {1, 2, . . . , κ}, where κ = |K|), and C and R are the sets of

convex vertices and reflex vertices of the polygon.

Each W ∈ W represents the set of guards that see a particular point/region in the

polygon. It is assumed that once all such points/regions are guarded, the polygon

is completely guarded. Therefore, the guarding problem corresponds to the instance

of the set covering problem determined by W . The relevant points/regions and the

corresponding set W are computed in the preprocessing phase, as well as the set I.

The candidate guard set G is given by G = C ∪{vH , vV | v ∈ R}, for α = π and α = π
2
,

and by G = C ∪R, if α = 2π. As in the “space invader” model, we use vH if the guard

at v is aligned with the H-edge incident to v and vV if the guard is aligned with the

V -edge. We restrict to orthogonal polygons.

Our model is based on the one given in [34, 33] for CAGP. To reduce its size and the

computation time, we restrict G to the set of guards that can see some witness, that

is, we reduce G to G ∩ (
⋃
W∈WW ). Then, the decision variables are defined as follows:

• For every g ∈ G and k ∈ K, we define a (binary) decision variable xg,k

whose value is 1 if g is selected and assigned color k. Otherwise, xg,k = 0.
1https://www.gnu.org/software/glpk/

https://www.gnu.org/software/glpk/
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• For every k ∈ K, we define a (binary) decision variable ck whose value is 1

if the color k is used. Otherwise, ck = 0.

• The variable z represents the value of the objective function, which is given

by the sum of the values of the variables ck, for k ∈ K.

We look for solutions that minimize the value of z, under the constraints stated below.

z =
∑
k∈K

ck (5.1a)

∑
g∈W

∑
k∈K

xg,k ≥ 1, ∀W ∈ W (5.1b)

∑
g∈I

xg,k − ck ≤ 0, ∀I ∈ I, ∀k ∈ K (5.1c)

∑
g∈G

xg,k − |G|ck ≤ 0, ∀k ∈ K (5.1d)

∑
k∈K

xv,k ≤ 1, ∀v ∈ C (5.1e)

∑
k∈K

(xvH ,k + xvV ,k) ≤ 1, ∀v ∈ R (5.1f)

ck − ck+1 ≥ 0, ∀k ∈ K \ {κ}, where κ = |K| (5.1g)∑
g∈G

xg,k −
∑
g∈G

xg,k+1 ≥ 0, ∀k ∈ K \ {κ} (5.1h)

∑
g∈G

xg,k − ck ≥ 0, ∀k ∈ K (5.1i)

These constraints express the α-CAGP for α = π, π
2
. For case α = 2π, the model is

similar, except that the constraints 5.1e–5.1f are replaced by
∑

k∈K xv,k ≤ 1, for all

v ∈ C ∪R. These constraints require that there is at most one guard at each vertex of

P . The remaining constraints establish that:

• 5.1b: the set of witnesses (for visibility coverage) is covered, that is, for all

W ∈ W , there is at least a colored guard selected from W ;

• 5.1c: there are no color conflicts, that is at most one guard that belongs to

a conflict set I ∈ I can get color k, for all k ∈ K;
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• 5.1d: if the color k is assigned to some guard then ck = 1;

• 5.1g: the color k + 1 will not be used if k is not used;

• 5.1h: the number of guards assigned color k is greater than or equal to the

number with color k + 1;

• 5.1i: if no guard g is assigned color k then ck = 0.

The constraints 5.1g−5.1h are symmetry breaking constraints. They preserve the value

of the optimal solution (that is, z) but reduce the search space by breaking some trivial

symmetries. Considering that we look for solutions that minimize z, the constraint 5.1i

is redundant. Nevertheless, it adds some information that can be useful to the solver.

In order to define I, in the preprocessing phase, we determine the conflict graph (G,P):

two vertices g1 and g2 are linked by an edge in P if there is a point in the polygon that

both g1 and g2 can see. In addition to P , we consider a partition of the conflict graph

into disjoint cliques and add these cliques to I. Although the corresponding constraints

add redundant cuts to the model, they can be useful to improve the performance of the

ILP solver. As a side effect, we can discard the constraint 5.1d, since we will include in

I also the cliques that consists of a single guard g. So, when we require that xg,k ≤ ck,

for all k ∈ K, for I = {g}, we guarantee that even in that case the guard cannot be

colored with color k unless ck = 1.

5.2 The Discretization Procedure

As we mentioned above, the problem is discretized by running a preprocessing phase

to determine the set of witnesses W and the set of incompatibilities I.

For that purpose, it is necessary to compute the region that is visible from each guard.

As we see in Figure 5.1, the visibility region may be a degenerate polygon (a.k.a. a

non-regularized polygon), containing some needles.

These needles could be discarded in a model for AGP, but cannot be discarded in

CAGP, where we have to ensure that there would be no color conflicts.
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p

(a)

p

(b)

Figure 5.1: (a) The non-regularized visibility polygon of vertex π
2 -guard at p. (b) The regularized

visibility polygon of vertex π
2 -guard at p.

A polygon P is a regularized or non-degenerate polygon if its boundary does not have

vertices nor edges lying on each other, i.e., ∂(P \ ∂P )∪ (P \ ∂P ) = closure(P \ ∂P ), in

the topological sense. Otherwise, P is called non-regularized or degenerate. Therefore,

in α-CAGP, we have to be able to handle non-regularized visibility polygons to account

for conflicts, whereas we can restrict the analysis of visibility coverage to regularized

visibility polygons.

5.2.1 The Discretization of the Guarding Problem

In order to discretize the guarding problem, we determine a decomposition Π of the

polygon P into a finite set of regions, such that for each f ∈ Π and for each α-guard g

in G, either g sees no point in the interior of f or g sees all points in f . Such a region

is called Atomic Visibility Polygon (AVP).

A natural decomposition satisfying this property is the one induced by the arrangement

of line segments defined by all edges in ∂P and all edges of the regularized visibility

polygons V(g, Cg
α), for (g, Cg

α) ∈ Gα. This arrangement splits P into closed regions

(faces of the arrangement), each one being an AVP [16, 17, 6]. Nevertheless, the

number of regions (pieces) can be too large. On the other hand, some of these regions

may be redundant (or dominated) in the following sense.

Let S(f) denote the set of α-guards in Gα that can see f . Define a strict partial order ≺

on the set of atomic visibility regions by f1 ≺ f2 if and only if f1 and f2 are adjacent

in Π and S(f1) ⊂ S(f2), for all f1, f2 ∈ Π.
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Clearly, we can restrict the witnesses for visibility coverage to the minimal elements in

that strict partial order. Once the minimal elements are guarded, so is the polygon P .

The minimal elements are called the shadow AVPs, in the literature [34, 33]. The

maximal elements are called light AVPs. Since every AVP f is convex, we can easily

represent it by a single point wf from its interior (e.g., the centroid of a triangle defined

by three points in f that are not collinear). Let Wf be the set of α-guards that see the

witness point wf . We will define W as the set of all sets Wf , with f restricted to the

shadow AVPs.

5.2.1.1 Implementation

For the implementation, we make use of some packages from CGAL. First, for each

candidate guard, we compute the visibility polygons, both the regularized and non-

regularized ones. This is done using the library <CGAL/Simple_polygon_visibility_

2.h>, from 2D Visibility Computation package.

For π
2
-CAGP and π-CAGP, we have to take into account that, at each reflex vertex,

there are two different candidate guards with different visibility cones. Currently, the

package 2D Visibility Computation provides results for 2π-guards only. However, it is

easy to see that the regions we need for α ∈ {π
2
, π} can be obtained by performing an

intersection of the visibility polygon of the 2π-guard with suitable rectangles (which

define the corresponding visibility cone). In Figure 5.2 we show some examples.

To perform these intersections and also the ones we need to identify conflicting guards,

we use the library <CGAL/Nef_polyhedron_2.h>, from the 2D Boolean Operations

on Nef Polygons package.

Once we have computed the visibility polygons, we look for the shadow AVPs and

their witness points. We make use of the package 2D Arrangements to construct the

arrangement defined by the edges of ∂P and the edges of the regularized visibility

polygons. We find the shadow AVPs in a subsequent step.
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v

(a)

v

(b)

v

(c)

v

(d)

Figure 5.2: Finding visibility regions of α-guards by clipping the region visible to a 2π-guard, for

α ∈ {π2 , π}.

The arrangement is represented by Doubly-Connected Edge List (DCEL), which is a

geometric data struture quite convenient for exploring the decomposition. It keeps

information about the faces, edges, and vertices, incidence relations and adjacency

relations. Each edge is represented by two twin edges (with opposite orientations and

called halfedges). The faces are CCW oriented, meaning that the face is to the left of

every halfedge that delimits it. The twin edges are halfedges of the adjacent faces.

The 2D Arrangements package provides the library <CGAL/Arr_extended_dcel.h>

that supports the DCEL representation and allows to store extra data on faces, halfedges

and vertices. In our case, we need to save extra data on halfedges. The arrangement

of AVPs is built by adding one segment (i.e., two halfedges) per iteration. We use the

<CGAL/Arr_observer.h> library to update the information of the halfedges, when

each halfedge pair is inserted to the arrangement.

We represent all the regularized visibility polygons and the polygon itself by DCEL

data structures (i.e., a DCEL for each one, having the unbounded face, besides the

bounded face that defines the polygon). Then, we assign a label to each halfedge of

such polygons.

For every regularized visibility polygon, we assign label l to all the internal halfedges

(the CCW halfedges), to represent the (enlighted) region which the guard can see. We
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assign label s to all the external halfedges (the clockwise (CW) halfedges), to represent

the (shaded) region which the guard cannot see.

Suppose that we overlay two visibility polygons, already labeled with l/s, and the

overlay induces to three faces. Each of these faces inherits the labels that are in the

edges of the visibility polygons. The face that both guards can cover has l in all its

CCW halfedges and s in all the twin halfedges. Note that this makes sense, the face

is completely enlighted by those guards but the outer faces are not. Each of the other

two faces have l (s) in the interior (exterior) halfedges, which were inherited from the

halfedges of the visibility polygon where the face belonged to.

With this in mind, halfedges of edges on regularized visibility polygons that are from

edges on the boundary of the polygon instance should be assigned label n ("neutral")

instead of l/s. The reason is that, actually, these halfedges are not delimited by guards

visibility, they are delimited by walls of the polygon instance instead. Therefore, we

set label n to all the halfedges of the polygon instance and, during the construction

of the arrangement, we make sure that n has dominance to l/s values when halfedges

collide. In other words, when two halfeges with same orientation and slope collide and

one has label n and the other has label l or s, the resulting halfedge is always labeled

with n.

Once the overlay of all visibility polygons and polygon instance is finished, we search

for the shadow AVPs. This is done by traversing every face, one by one, and finding

the ones that do not have l assignments in their interior halfedges. These faces are the

shadow AVPs [33].

Note that guards that see a shadow face can see faces that are in the visibility polygons

that have delimited this shadow face, by some of their edges. Furthermore, any face

that shares an edge with the shadow face f is covered by all guards that cover f (unless

the edge is from two visibility polygons that only intersect in the boundary). The face

f is free of l assignments in its interior because, otherwise, there is an adjacent face f ′

with s in the halfedge that is twin to the interior halfedge of f with label l, implying

that there is a guard g ∈ S(f) such that g 6∈ S(f ′) but this is absurd, since f is a

minimal of f ′. By a similar reasoning, all internal halfedges in a light AVP do not have

s assignments.
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In Figure 5.3, we provide an example of the AVPs obtained in a polygon, using vertex

2π-guards.
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Figure 5.3: AVPs in a polygon for 2π-guards. Shadow and light AVPs have color • and •, respectively.

The l/s and n assignments are shown as well.

There still remains the subtle case where the boundaries of two visibility polygons

collide, i.e., there is some pair of edges of these polygons that collide. In these cases,

if such halfedges do not have the same l/s labels, then they have to be changed to s.

Actually, when this happens, it means that the faces that share these halfedges, f and

f ′, have S(f) 6⊂ S(f ′) and S(f ′) 6⊂ S(f).

Figure 5.4 shows a simple example of those cases. If the candidate guard set for this

polygon contains only p and q, then the two unique AVPs are shadows and, therefore,

both guards have to used to cover the polygon.
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Figure 5.4: An example of colliding halfedges and the analysis of the l/s labels. (a) The overlay of
π
2 -guard at vertex p. (b) The overlay of π

2 -guard at vertex q. (c) The overlay of both π
2 -guards at

vertices p and q.
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Once the shadow AVPs are identified, we find the witness points. Each is defined as

the centroid of a triangle inside the corresponding shadow AVP. Then, we search for

the set of guards that see each of these witnesses.

A guard g sees a witness point w if the intersection between w and the non-degenerate

polygon that is visible to g is not empty. To perform this intersection, we use <CGAL/

Nef_polyhedron_2.h> library, from the 2D Boolean Operations on Nef Polygons.

5.2.2 Finding the Conflict Graph

As we mentioned, to define I, in the preprocessing phase, we determine the conflict

graph (G,P). Two α-guards g1 and g2 are connected by an edge in this graph if the

intersection between the non-regularized (i.e., degenerate) visibility polygons of g1 and

g2 is not empty.

The set I consists of the sets {g1, g2} of (possible) conflicting guards, defined by P ,

and sets of guards that define a partition of the conflict graph into disjoint cliques.

For computing that partition, we implemented a greedy algorithm described in [4]. We

present it in pseudocode as Algorithm 20.

Algorithm 20 Finding a partition of a graph into disjoint cliques.
1: procedure GetDisjointCliques(VG, EG)

2: D ← ∅; i← 1;

3: while VG 6= ∅ do

4: v ← GetAVertex(VG);

5: Ci ← {v};

6: while ExistCommonNeighbors(VG,EG,Ci) do

7: v ← GetMaximalNeighbor(VG,EG,Ci);

8: Ci ← Ci ∪ {v};

9: end while

10: RemoveEdges(EG, Ci); RemoveVertices(VG, Ci);

11: D ← D ∪ {Ci}; i← i+ 1;

12: end while

13: end procedure
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The variables VG and EG are the sets of vertices and edges of the graph, respectively.

Each Ci contains the vertices of a disjoint clique and D is the set of all Cis.

GetAVertex(VG) selects a vertex from VG. ExistCommonNeighbors(VG, EG, Ci)

returns true if there is at least one vertex v 6∈ Ci that is adjacent to every vertex in Ci

and, otherwise, returns false. GetMaximalNeighbor(VG, EG, Ci) returns the vertex

v 6∈ Ci that is adjacent to all the vertices in Ci and has the largest number of neighbors.

RemoveVertices(VG, Ci) and RemoveEdges(EG, Ci) update the graph, removing

all the vertices that are in Ci and all the edges incident to them.

5.3 Preliminary Experimental Results

In this section, we present the results of a preliminary experimental study of α-

CAGP using path orthogonal polygons. For creating the sample instances, we apply

our generator for thin grid n-ogons (see Algorithm 14) and then the stretcher (see

Algorithm 8) for spacing the edges randomly.

The empirical tests showed that path orthogonal polygons requiring more than two

colors seem to be very rare. In addition, we realized that our solver will take too much

time for polygons with more than a hundred of vertices, preventing us from getting

some statistics in due time. On the other hand, from our previous experience with

Steiner path polygons and path polygons, we think that the number of vertices is not

a crucial factor to the optimal number of colors, for these families. Therefore, to save

some time, instead of increasing the size of the instances, we decided to increase the

number of polygons in each sample.

For each α ∈ {π
2
, π, 2π}, we generate a sample of one thousand path orthogonal

polygons with a number of vertices n between 16 and 64, and run the solver to find

the optimal value of α-CAGP. The value of n and cProb is chosen randomly for each

instance, and for the other parameters of Algorithm 8, maxCoord and sT imes, it is

assigned a random number between n
2
and 4n each.
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The upper bound κ on the number of colors is defined as 4. We conjecture that any

path is 4-colorable and that there are paths requiring this number of colors, but we

could not prove this conjecture.

Indeed, the results were not flashy. We did not find any path requiring four colors and

even paths not 2-colorable were very uncommon. We found only one path P , with 30

vertices, with XGπ
2
(P ) = 3 and not even one P ′ with XG2π(P ′) = 3. For α = π, the

results were more interesting. We found paths with just 18 vertices not 2-colorable for

edge-aligned vertex π-guards.

The results are shown graphically in Figure 5.5. The graphics describe the percentage

of paths in a particular interval that require more than two colors. In Figure 5.5(a), we

sliced each sample in ten intervals, using the probability of collinearities (i.e., the cProb

parameter of Algorithm 8). While in Figure 5.5(b), we sliced them in six intervals, using

the number of vertices.

As we can see in Figure 5.5(b), the number of vertices does not seem to affect too

much the number of colors and, in these samples, there is a higher percentage of paths

not 2-colorable for n in the range 24 to 40. In Figure 5.5(a), the results showed some

irregularities for edge-aligned vertex π-guards. This is expected somehow, because the

collinearity probability acts only when a particular edge has the possibility to reach

the level of higher edges. Nevertheless, we emphasize that, observing [60, 80[, a greater

number of collinear edges may increase the number of paths requiring more than two

colors.

We also performed some experiments with samples of Steiner paths, with 500 instances

for each α ∈ {π
2
, π, 2π}. We were trying to find polygons that were not 2-colorable,

with less vertices than the ones we obtained in Section 4.2. For the generation, the

possible values of each parameter were the same as the previous samples of thousand

of instances, unless cProb which had to be 0.

In the end, we could not found even one Steiner path orthogonal polygon requiring

three colors in these samples. Therefore, the work we did by hand to find the instances

presented in Section 4.2, was not in vain. The polygons in this class that require three

colors seem really rare, and therefore are difficult to be found simply at hazard.
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Figure 5.5: Proportion of paths requiring a 3-coloring. Paths organized by: (a) collinearity

probability, (b) number of vertices.





Chapter 6

Conclusion

It was a great experience and gratifying to work on the field of Computational Geome-

try. The research work that led to the algorithms for generating the various subclasses

of rectilinear polygons and to the combinatorial bounds for α-CAGP in Steiner path

polygons was the most interesting part.

We developed a generator for n-ogons, as well as, for the subclasses of the row-

convex, convex, path and spiral n-ogons. These series of generators are minimally

well settled to be added at CGAL, a computational geometry C++ library with the

latest version 4.9 beta1. We would like to try to analyze samples of polygons given

by those generators to study statistically the minimum number of colors required in

α-CAGP for the correspondent population of polygons, for α ∈ {π
2
, π, 2π}. However,

unfortunately, we did not have much time to improve the prototype solver, so as to

reduce the runtime. Nevertheless, we ended up with some preliminary results about

path orthogonal polygons. The implementation of the discretization procedure was

tricky because we also had a problem with 2D Boolean Operations on Nef Polygons

package, and it costed us some time to understand it. The problem was that the input

polygons should be saved in the structure in CCW order or, otherwise, the resultant

intersections among them are not well calculated. This package was very useful for us

because we needed to obtain non-regularized intersections between visibility polygons

to get the exact conflicts.
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Despite of the problem above, we had exact results of α-CAGP, for α ∈ {π
2
, π, 2π},

in a particular subclass of rectilinear polygons, the Steiner paths or even thin grid

n-ogons. We proved that any Steiner path P has XGα(P ) ≤ 3 and that there exists a

family of Steiner paths requiring the three colors, for each α ∈ {π
2
, π, 2π}. Discovering

if two colors were or were not sufficient for these polygons was not easy to get for

α = π
2
. We created the examples by hand, since by that time we had not developed the

solver for α-CAGP yet. Otherwise, to look for instances, we could have tried to run it

with Steiner path instances created by our thin grid n-ogon generator. If we had first

attempted to work on the α-CAGP solver before hand, we could possibly have saved

some time and eventually have the statistical results for other n-ogon subclasses.

6.1 Future Work

In the near future, we plan to improve the efficiency of our α-CAGP solver, in order

to be able to carry out statistical studies on subclasses of orthogonal polygons.

In the same way, we think it would be worthwhile to look for new heuristics for creating

generic orthogonal polygons from grid ogons, to cater for the unbalancing problems

and collinearity probability in a better way. Currently, cProb parameter defines the

probability that the shifted edge becomes collinear with a higher one when we move

it. As the edges are moved one by one and the same edge can be moved several times,

collinearities may be broken in subsequent steps.

We plan to pursue our ongoing work on combinatorial bounds for α-CAGP on path

orthogonal polygons. We have the following conjecture.

Conjecture 1. Four colors are sufficient and sometimes necessary for path orthogonal

polygons, using edge-aligned vertex α-guards with α = {π
2
, π, 2π}.

We have already a sketch of an inductive proof that XGπ
2
(P ) ≤ 4, using a similar turn-

piece decomposition. We did not include it in the thesis because we still need some time

to check that there is no flaw. Indeed, the number of cases we have to consider makes

the proof more complex than the one we did for Steiner path orthogonal polygons. We

can observe that, for example, there are nine cases of three consecutive turn-pieces for
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path ogons instead of the four cases for Steiner path ogons (see Figure 6.1). We would

like to find a simpler proof.

Figure 6.1: The nine cases of three consecutive turn-pieces for path ogons.

We believe that, for each α ∈ {π
2
, π, 2π}, there is a path orthogonal polygon P that

XGα(P ) ≥ 4. We think that some instances may have a section that entails a 4-coloring

in a situation similar to the one we show in Figure 6.2, but we have not found such an

instance.

g

Figure 6.2: A fragment of a path ogon that may need three colors to be completely covered and a

guard at g induces the fourth color.

Some of the results presented in the thesis are reported in [31].
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(a) (b)

Figure A.1: (a) A grid 24-ogon. (b) A 24-ogon.

(a) (b)

Figure A.2: (a) A row-convex grid 24-ogon. (b) A row-convex 24-ogon.



93

(a) (b)

Figure A.3: (a) A convex grid 24-ogon. (b) A convex 24-ogon.
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(a)

(b)

Figure A.4: (a) A thin grid 24-ogon. (b) A path 24-ogon.

(a) (b)

Figure A.5: (a) A spiral grid 24-ogon. (b) A spiral 24-ogon.
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C = {v, v′ | v ∈ {v1, v2, v3, v6, v7, v10, v12, v13, v16}}

R = {v, v′ | v ∈ {v4, v5, v8, v9, v11, v14, v15}}

K = {1, 2}

F1 = {v1, v2, v
V
4 , v6}, F2 = {v1, v2, v3, v

H
4 , v

V
4 , v

H
5 , v6}, F3 = {v2, v3, v

H
4 , v

H
5 , v6},

F4 = {v3, v
H
4 , v

H
5 , v6, v

V
8 }, F5 = {v3, v

H
4 , v

H
5 , v

V
5 , v6, v

V
8 , v10},

F6 = {v3, v
V
5 , v

V
8 , v

H
9 , v10}, F7 = {v3, v

H
4 , v

V
5 , v

V
8 , v10},

F8 = {v3, v
V
5 , v7, v

H
8 , v

V
8 , v

H
9 , v10}, F9 = {vV5 , v7, v

H
8 , v

H
9 , v10},

F10 = {v7, v
H
8 , v

H
9 , v10, v13}, F11 = {v7, v

H
8 , v

H
9 , v

V
9 , v10, v

V
11, v13},

F12 = {v7, v
V
9 , v

V
11, v13}, F13 = {v7, v

V
9 , v

H
11, v

V
11, v12, v13, v

H
14},

F14 = {v7, v
H
11, v12, v13, v

H
14}, F15 = {vH11, v12, v13, v

H
14, v16},

F16 = {vH11, v12, v13, v
H
14, v

V
14, v

V
15, v16}, F17 = {v12, v

V
14, v

V
15, v16},

F18 = {v12, v
V
14, v

H
15, v

V
15, v16, v

′H
15 , v

′
16}, F19 = {vH15, v16, v

′H
15 , v

′
16}

F = {Fi, F ′i | 1 ≤ i ≤ 18} ∪ {F19}

I1 = {v1, v2, v
V
4 , v6}, I2 = {v1, v2, v

V
4 , v

H
5 , v6, v

V
8 , v

H
9 , v13},

I3 = {v3, v
H
4 , v

H
5 , v

V
5 , v6, v

V
8 , v10}, I4 = {v1, v2, v3, v

H
4 , v

V
4 , v

H
5 , v6, v

V
8 , v

H
9 , v13},

I5 = {v2, v3, v
H
4 , v

H
5 , v

V
5 , v6, v

V
8 , v

H
9 , v10, v13}, I6 = {v1, v2, v3, v

H
4 , v

V
4 , v

H
5 , v6},

I7 = {v7, v
H
8 , v

H
9 , v

V
9 , v10, v

V
11, v13, v

H
14, v16},

I8 = {v2, v3, v
H
4 , v

V
5 , v7, v

H
8 , v

V
8 , v

H
9 , v10, v13},

I9 = {v2, v
H
4 , v

V
5 , v7, v

H
8 , v

H
9 , v

V
9 , v10, v

V
11, v13}, I10 = {v3, v

V
5 , v7, v

H
8 , v

V
8 , v

H
9 , v10},

I11 = {v7, v
V
9 , v

H
11, v

V
11, v12, v13, v

H
14, v16}, I12 = {vH11, v12, v13, v

H
14, v

V
14, v

V
15, v16, v

′
16},

I13 = {v2, v
H
4 , v

V
5 , v7, v

H
8 , v

V
9 , v

H
11, v

V
11, v12, v13, v

H
14},

I14 = {v7, v
H
11, v12, v13, v

H
14, v

V
14, v

V
15, v16}, I15 = {v12, v

V
14, v

H
15, v

V
15, v16, v

′H
15 , v

′
16},

I16 = {v7, v
H
11, v12, v

V
14, v

H
15, v

V
15, v16, v

′
12, v

′H
15 , v

′
16}

I = {Ii, I ′i | 1 ≤ i ≤ 16}

Figure B.1: Data for “space invader”, with edge-aligned vertex π-guards.
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C = {v, v′ | v ∈ {v1, v2, v3, v6, v7, v10, v12, v13, v16}}

R = {v, v′ | v ∈ {v4, v5, v8, v9, v11, v14, v15}}

K = {1, 2}

F1 = {v1, v2, v
V
4 , v6}, F2 = {v1, v2, v3, v

H
5 , v6}, F3 = {v2, v3, v

H
4 , v

H
5 , v6},

F4 = {v3, v
H
4 , v

H
5 , v6, v

V
8 }, F5 = {v3, v

H
4 , v6, v

V
8 , v10}, F6 = {v3, v

V
5 , v

V
8 , v

H
9 , v10},

F7 = {v3, v
H
4 , v

V
5 , v

V
8 , v10}, F8 = {v3, v

V
5 , v7, v

H
9 , v10}, F9 = {vV5 , v7, v

H
8 , v

H
9 , v10},

F10 = {v7, v
H
8 , v

H
9 , v10, v13}, F11 = {v7, v

H
8 , v10, v

V
11, v13}, F12 = {v7, v

V
9 , v

V
11, v13},

F13 = {v7, v
V
9 , v12, v13, v

H
14}, F14 = {v7, v

H
11, v12, v13, v

H
14}, F15 = {vH11, v12, v13, v

H
14, v16},

F16 = {vH11, v12, v13, v
V
15, v16}, F17 = {v12, v

V
14, v

V
15, v16}, F18 = {v12, v

V
14, v16, v

′H
15 , v

′
16},

F19 = {vH15, v16, v
′H
15 , v

′
16}

F = {Fi, F ′i | 1 ≤ i ≤ 18} ∪ {F19}

I1 = {v1, v2, v
V
4 , v6}, I2 = {v1, v2, v

V
4 , v

H
5 , v6, v

V
8 , v

H
9 , v13}, I3 = {v3, v

H
4 , v6, v

V
8 , v10},

I4 = {v1, v2, v3, v
H
4 , v

V
4 , v

H
5 , v6, v

V
8 , v

H
9 , v13}, I5 = {v2, v3, v

H
4 , v

H
5 , v

V
5 , v6, v

V
8 , v

H
9 , v10, v13},

I6 = {v1, v2, v3, v
H
5 , v6}, I7 = {v7, v

H
8 , v10, v

V
11, v13, v

H
14, v16},

I8 = {v2, v3, v
H
4 , v

V
5 , v7, v

H
8 , v

V
8 , v

H
9 , v10, v13}, I9 = {v2, v

H
4 , v

V
5 , v7, v

H
8 , v

H
9 , v

V
9 , v10, v

V
11, v13},

I10 = {v3, v
V
5 , v7, v

H
9 , v10}, I11 = {v7, v

V
9 , v

H
11, v

V
11, v12, v13, v

H
14, v16},

I12 = {vH11, v12, v13, v
V
15, v16, v

′
16}, I13 = {v2, v

H
4 , v

V
5 , v7, v

H
8 , v

V
9 , v12, v13, v

H
14},

I14 = {v7, v
H
11, v12, v13, v

H
14, v

V
14, v

V
15, v16}, I15 = {v12, v

V
14, v

H
15, v

V
15, v16, v

′H
15 , v

′
16},

I16 = {v7, v
H
11, v12, v

V
14, v16, v

′
12, v

′H
15 , v

′
16}

I = {Ii, I ′i | 1 ≤ i ≤ 16}

Figure B.2: Data for “space invader”, with edge-aligned vertex π
2 -guards.
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