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Abstract 

 

I used molecular tools to examine the diversity of haemosporidian parasites from the 

genera Plasmodium, Haemoproteus and Leucocytozoon in birds of Northwest Africa 

and Northwest Iberia. In total, 459 birds of 36 species from Portugal and 324 birds of 

46 species from Morocco were tested using PCR for the presence of infections.We 

identified a total of 169 unique haemosporidian lineages. We found 127 parasite 

lineages in North Africa and 74 lineages in Iberia. Only 32 lineages were shared 

between the study areas. Overall prevalence was higher in Morocco, where 79% of the 

birds carried haemosporidian infections compared to only 44% in Iberia. The rate at 

which new parasite lineages were discovered with increasing sample size did not differ 

between the areas, however, the higher infection prevalence in Morocco translated into 

greater haemosporidian diversity compared with Portugal. The number of hosts from 

which a parasite lineage was recovered varied from one to sixteen. Parasite specificity 

varied among parasite genera. Haemoproteus was the most host-specific and 

Plasmodium was the most host-generalist. The composition of haemosporidian 

communities differed between Maghreb and Iberia. Haemoproteus was more common 

in Maghreb but Plasmodium dominated in Iberia. Infections with parasites found in both 

areas accounted for 63% of total infections. However, no correlation was found 

between the number of lineage observations in Iberia and Morocco for any parasite 

genus, suggesting that the parasite composition of both areas is different at both levels 

– the generic composition and prevalence of individual lineages.  
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Resumo 

 

Foram utilizados métodos moleculares para avaliar a diversidade de parasitas 

haemosporidos do género Plasmodium, Haemoproteus e Leucocytozoon, em aves do 

Noroeste de África e Noroeste da Ibéria. Um total de 459 aves de 36 espécies foi 

amostrada em Portugal, e 324 aves de 46 espécies em Marrocos, e examinadas para 

a presência de infecções. Foram identificadas 127 linhagens de parasitas no Norte de 

África e 74 na Ibéria. A prevalência geral de infecção foi mais elevada em Marrocos 

com 79% das aves apresentando infecções, contra 44% de aves infectadas em 

Portugal. A taxa á qual foram encontradas novas linhagens de parasitas foi igual em 

ambas as áreas, no entanto, a maior prevalência em Marrocos traduziu-se numa maior 

diversidade de haemosporidos do que em Portugal. O nº de hospedeiros do qual a 

mesma linhagem de parasita foi recuperada variou entre 1 e 16. A especificidade dos 

parasitas variou de acordo com o género pertencente, sendo que Haemoproteus eram 

mais específicos e os Plasmodium mais generalistas. A prevalência de cada género 

variou entre as duas áreas de estudo, com Haemoproteus sendo mais comum em 

Marrocos e Plasmodium em Portugal. Infecções com parasitas encontrados em ambas 

as áreas de estudo contabilizaram 63% das infecções. No entanto, não foi encontrada 

qualquer correlação  entre o número de observações de cada parasita entre a Ibéria e 

o Norte de África para nenhum dos géneros, sugerindo que a composição de parasitas 

em ambas as áreas é diferente a dois níveis - a estrutura geral da composição e 

prevalência individual das linhagens.  
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Chapter 1 

Introduction 

Parasitism has evolved several times independently in the history of life. It is even 

argued that it may be the most prevalent means of obtaining food (Price 1977) and that 

parasites make up most of the species on Earth (Windsor 1998). The most commonly 

accepted definition of a parasite is that it is an organism living in another organism (the 

host), feeding on it, showing some degree of structural adaptation to it, and causing it 

some harm (Poulin 2007). 

Birds have long served as a model system to study infectious disease (Atkinson & 

Van Riper III 1991; Valkiūnas 2005). They provide much needed data on pathogen 

ecology, essential for understanding the impact of ongoing global changes (climate, 

biotic invasion, landscape modification) that affect the biology of hosts and their 

parasites and increase the risk of devastating disease outbreaks (Freed et al. 2005; 

Garamszegi 2011). Avian haemosporidians in particular are excellent models to study 

the effects of parasites on wild populations (Valkiūnas 2005). 

1. Haemosporidians and birds 

Haemosporidians (Sporozoa: Haemosporida) are one of the best-studied groups of 

parasitic protists (Valkiūnas 2005). They include agents of human malaria, one of the 

most common diseases in warm climate countries, which kills and causes serious 

illness in millions of people every year (WHO 2010). However, the few species 

responsible for such an impact are just a tiny part of the systematic and ecological 

diversity of haemosporidians. Systematic parasitologists have established 15 genera 

within the order Haemosporidia which contain over 500 species that infect reptiles, 

birds and mammals (Martinsen et al. 2008). They are found in every terrestrial habitat 

and use several families of dipteran vectors. 
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Avian haemosporidians, hereafter also referred to as avian malaria parasites (for the 

sake of simplicity), are comprised of three main genera – Haemoproteus, Plasmodium 

and Leucocytozoon – and constitute the most diverse group of haemosporidians with 

206 species described from hundreds of avian species and from 16 genera of insect 

vectors (Valkiūnas 2005). They have long been the object of intensive research, since 

they were used as models to study human malaria. However, with the discovery of 

malaria parasites in rodents during the second half of the 20th century, investigation of 

this intriguing group of protists considerably declined. Nevertheless, the great body of 

knowledge remained, and when ecologists and evolutionary biologists searched for 

models to test their hypotheses, avian haematozoa provided some of the best existing 

databases. During the last decade, increased use of molecular tools, especially of PCR 

diagnostics brought attention back to avian haemosporidians and the number of 

studies focusing on biology of these parasites grew exponentially (LaPointe et al. 

2012). 

1.1 Haemosporidians Life Cycle 

Haemosporidian are obligate heteroxenous parasites. They need two hosts to 

complete their life cycle.  Parasites go through a series of asexual divisions in an 

intermediate vertebrate host until the development of sexual stages (gametocytes).  

Their sexual reproduction occurs in a definitive host (dipteran vector). The life cycle 

begins with a vector feeding on an infected intermediate host’s blood (Figure 1). The 

three haemosporidian genera use different vectors. Plasmodium employs blood-

Figure 1 General life cycle of avian haemosporidian parasites (adapted from Atkinson 1999). 
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sucking mosquitoes (Diptera: Culicidae), Haemoproteus uses biting midges (Diptera: 

Ceratopogonidae) and louse flies (Diptera: Hippoboscidae), and Leucocytozoon uses 

blood-sucking black flies (Diptera: Simuliidae). Shortly after the insect vector acquires 

infectious gametocytes from an intermediate host during a blood meal, gametocytes go 

through gametogenesis and sexual reproduction in the insect’s midgut. The 

gametogenesis produces a motile ookinete that penetrates the epithelial layer of the 

midgut and develops into an encapsulated oocyst.  Numerous elongated, uninucleated 

sporozoites are formed in the oocyst during the process called sporogony. When 

oocyst fully matures, it bursts and sporozoites invade the salivary glands of the vector. 

This process may take from a couple of hours to days, depending on the species and 

ambient temperature. The insect vector may die if the number of ingested gametocytes 

is too high (Valkiūnas 2005). 

Sporozoites infect birds when the vector injects them with saliva during feeding. The 

development steps inside the host largely depend on the genus of the parasite, but in 

general, one can consider five main stages of infection. The first phase – prepatent – 

occurs when the parasite is developing in the organ tissue cells and, it usually takes 

approximately 5 days for Plasmodium and Leucocytozoon, and 11 days to 3 weeks for 

Haemoproteus (Valkiūnas 2005). During this phase, sporozoites invade the host’s 

organ tissue cells and produce exoerythrocytic meronts or schizonts, which then 

undergo a series of asexual divisions to form merozoites. Merozoites can induce a new 

cycle of merogony or invade the blood stream and develop into sexual stages 

(gametocytes) in the blood cells. The number of merogony cycles varies greatly among 

species, but Plasmodium has the unique ability of also using erythrocytes for this 

process after undergoing two cycles in the organ tissue cells. Leucocytozoon parasites, 

on the other hand, are able to use mononuclear leukocytes for the development of 

gametocytes (Valkiūnas 2005).  

The first appearance of parasites in the host’s blood marks the beginning of the 

second phase called the acute period. It is characterized by a sharp increase in the 

number of infected red-blood cells or parasitaemia. Crisis, the third phase, occurs when 

the parasitaemia reaches its peak. During the last two phases, chronic (4th) and latent 

(5th), the parasitaemia sharply decreases and even can be eliminated due to the host’s 

immune response. However, once a bird is infected, it usually retains chronic or latent 

infection for many years or the rest of its life, serving as a source of infection for 

vectors. Relapses of parasitaemia may occur in many species especially in the spring 

and fall, before and after the reproduction period of hosts in temperate regions, 

facilitating the infection of vectors and transfer of parasites to offspring, but the 
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mechanisms responsible for the regulation of this process are poorly understood 

(Valkiūnas 2005). 

1.2 Diversity and Ecology 

For a century, haemosporidians were classified based on morphology, life cycle, 

and vertebrate and insect host taxa. The traditional taxonomy was contradicted by the 

findings of pioneering molecular systematic studies. These initial studies were based 

on single genes and, although several important nodes were poorly supported, they 

created a great controversy in the definition of the term “malaria parasite” (Pérez-Tris et 

 

Figure 2 Phylogenetic relationships among the major haemosporidian genera. Arrows indicate major vector shifts and 

triangle size indicates the number of sampled host species (adapted from Martinsen et al. 2008). 
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al. 2005; Valkiūnas 2005). That is because the genus Plasmodium was found to be 

paraphyletic in respect to Haemoproteus, with avian and reptilian Plasmodium species 

appearing more closely related to Haemoproteus than to mammalian Plasmodium 

parasites (i.e. Duval et al., 2007). More recently however, Martinsen et al. (2008) 

proposed a phylogenetic hypothesis for Plasmodium and related haemosporidian 

parasites using four genes. They suggested that mammalian and avian Plasmodium is 

paraphyletic to Hepatocystis, a group with very different life-history and morphology, 

specific to bats. Also, Haemoproteus appears to be divided into two divergent clades 

corresponding to Parahaemoproteus and Haemoproteus that were previously 

considered subgenera (Figure 2). Major haemosporidian clades were found to be 

associated with vector shifts to different dipteran families, while other characters used 

in traditional parasitological studies had low phylogenetic signal.  

The use of PCR-based techniques resulted in the discovery of a high genetic 

diversity of haemosporidian parasites, which has been compiled in GenBank nucleotide 

database or, more recently, in a specialized database, the MalAvi database (Bensch et 

al. 2009), specially designed to compile cytochrome-b (cyt-b) haplotypes of avian 

haemosporidian parasites. Some recent studies reported findings of almost as many 

mtDNA cyt-b parasite haplotypes as the number of hosts used in these studies 

(Bensch et al. 2000; Ricklefs & Fallon 2002; Merino et al. 2008; Belo et al. 2011). New 

haplotypes of haemosporidians are being discovered in practically every published 

survey. It is not yet clear whether this great diversity of genetic haplotypes results from 

intraspecific variation within parasite species, speciation within a single host population, 

or reinvasion of a former host following species formation in an alternative host species 

(Ricklefs et al. 2005). However, some studies using mitochondrial and nuclear markers, 

indicate that mtDNA cyt-b haplotypes represent evolutionarily independent lineages, 

populations or species as they are associated with different nuclear haplotypes 

(Bensch et al. 2004; Martinsen et al. 2006; Hellgren et al. 2007). In this thesis we will 

adopt the terminology of lineages rather than haplotypes, following this reasoning and 

the widely adoption of this terminology in avian haemosporidian parasites publications. 

Plasmodium lineages appear to be predominantly host generalists. They are often 

found in hosts from different avian families. In contrast, Haemoproteus and 

Leucocytozoon exhibit more narrow host preferences, usually infecting a single avian 

family (Ricklefs & Fallon 2002; Waldenström et al. 2002; Beadell et al. 2004; Hellgren 

et al. 2008; Dimitrov et al. 2010; la Puente et al. 2011). Although host shifts within 

families are common, as well as vector sharing (Kimura et al. 2010; Njabo et al. 2011), 

some cases of high host-specificity have been observed, especially in Haemoproteus 

parasites (Bensch et al. 2000; Ricklefs & Fallon 2002; Beadell et al. 2004; Fallon et al. 
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2005). Host-specificity is an important characteristic of a parasite that may affect its 

virulence and prevalence in different host species, its genetic variability and response 

to selection within each host (Hellgren et al. 2009). Various studies have found a 

negative correlation between host-specificity and the number of individuals infected 

(Ricklefs et al. 2005; Arriero & Møller 2008; Hellgren et al. 2009; Szöllosi et al. 2011), 

i.e., generalist parasites reaching higher prevalence within host-species (or population). 

The ecological reason behind this pattern is not clear, but the ability of a parasite to 

infect and complete its development in many different host species may increase 

transmission success due to the increase in both the number of potential and infected 

hosts (Hellgren et al. 2009). This leads to an increase in the overall parasite prevalence 

in the host community.  

In addition to the host specificity, parasite prevalence is also affected by the 

transmission rate of arthropod vectors, their abundance and ecological requirements, 

as well as the immunological capacity of the host to either prevent parasite infection or 

to clear established infections (Atkinson & Van Riper III 1991). Finally, associations of 

host age, body-mass, and latitude with parasite prevalence have also been reported. 

Older and heavier birds usually have higher prevalence of haemosporidian parasites 

than younger and lighter birds, and tropical areas have higher prevalence than 

temperate regions (Scheuerlein & Ricklefs 2004; Merino et al. 2008). 

1.3 Effects on wild bird populations 

Although parasitic organisms have a worldwide distribution, great diversity, and high 

prevalence, ecologists frequently ignore them while considering processes that occur in 

the wild, especially in ornithology (Valkiūnas 2005). The pathogenic impact of malaria 

parasites on birds is extremely heterogeneous due to the complexity of 

haemosporidian life cycles and disease epidemiology. This complexity is responsible 

for our poor understanding of their dynamics in wild populations.  In immunologically 

naïve birds of Hawaii, malaria parasites have been shown to radically increase host 

mortality, reduce population sizes, and limit host species distributions (Atkinson & Van 

Riper III 1991; Atkinson & Samuel 2010). In areas of endemic transmission, however, 

malaria parasites are thought to have little impact on wild populations. Rare cases of 

haemosporidian caused mortality have been reported, but studies addressing 

haemosporidian effects provided inconclusive results or failed to find significant fitness 

costs of malaria infections to their avian hosts (e.g. Weatherhead and Bennett 1992; 

Bennett et al. 1993; Davidar and Morton 1993; Stjernman et al. 2004). 
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 This difficulty in assessing the impact of haemosporidians on wild birds could be 

related to several methodological issues. First, there might be differences in the 

capture rate of uninfected and infected individuals. Pathogen-induced changes in 

behavior and/or activity levels may lead to variation in capture probability, biasing the 

patterns of prevalence and survival rates (Jennelle et al. 2007). Seriously ill individuals 

will rarely be caught and sampled, as they are weak, less agile, and more prone to 

predation (Møller & Nielsen 2007). Rare exceptions to this bias happen near human-

inhabited areas (Valkiūnas 2005). Furthermore, the acute stage of malaria infection is 

very brief and can involve high mortality, therefore most infected individuals sampled in 

natural populations are likely to be survivors harboring chronic or latent infections 

(Lachish et al. 2011). If the effect of chronic infections is small, then studies with large 

sample sizes and long-term data, or direct experimentation, will be needed to detect 

and quantify it. The latter are more common, and some studies have been able to 

clearly show, by either the use of anti-malaria drugs or brood manipulation, that even 

chronic infections can exert a significant selection pressure on their hosts and 

decrease their survival (Marzal et al. 2008; la Puente et al. 2010; Lachish et al. 2011) 

or reproductive success (Marzal et al. 2005; Asghar et al. 2011).  

Another problem regarding the assessment of malaria impacts on wild birds is the 

considerable diversity of malaria species. Haemosporidian species differ in their 

distribution (Wood et al. 2007) and have different effects on different avian species 

(Palinauskas et al. 2008) obscuring their individual fitness effects. Due to this 

heterogeneity, few studies have considered that host-parasite interactions and infection 

dynamics may vary with malaria parasites, and those that did, indeed, found 

differences among different parasite infections and host fitness costs (Ortego et al. 

2008; Marzal et al. 2008; Lachish et al. 2011). 

2. Host-parasite biogeography 

Host-parasite relationships can be complex and unpredictable. For example, strong 

parasite virulence increases its prevalence and insures its persistence in a host 

population. However, when the parasite’s virulence reaches a certain threshold and 

becomes too strong, it leads to a decrease in its fitness. In addition, the presence of 

other parasites can modify the compatibility, either by crossed vaccinating effects, 

which reduces fitness of a new parasite, or by immunosuppressive effects, which has 

the opposite effect (Combes 2000). Finally, changes in environmental variables may 

easily disrupt the equilibrium between parasites and their hosts. This is the reason why 
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studies of host–parasite relationships in the spatial and temporal context become of 

special importance during current rapid environmental change.  

One of the major anticipated consequences of global climate change is the 

disruption of ecologic communities due to significant changes in species abundance 

(Hurrell & Trenberth 2010). Poleward and upslope range shifts in mountain areas are 

the expected reactions to temperature increase and have been observed in a number 

of different species (Parmesan 2006). However, climate change is a complex process 

and the simple move of species latitudinally and altitudinally is not the only factor 

affecting ecological communities. Differences in species' physiological tolerance, life-

history strategies, and dispersal abilities, are responsible for the high variability in 

response to the climate change among species exposed to similar climatic trends 

(Parmesan 2006).  

For many species, the first impact of climate change is caused by an asynchrony 

between species’ food and habitat resources due to changes in resources’ distribution 

and availability (Pimm 2009). This might lead to a cascade of disruption events in the 

timing between the life cycles of predators and their prey, herbivorous insects and host 

plants, insect pollinator and flowering plants, and parasitoids and their host insects 

(Parmesan 2006). The outcome of this restructuring of ecological communities is 

currently unpredictable because interactions among species are extremely complex 

and poorly understood (Pimm 2009). 

Of particular concern is our inability to incorporate complex biological factors in our 

models predicting parasites' ability to shift distributions, hosts, and to increase in 

virulence with the progression of the climate change. This concern is rooted in the 

exposure of immunologically naïve potential hosts to novel pathogens as a 

consequence of the changes in the composition of ecological communities, which 

might have negative effects on biodiversity (Dobson & Foufopoulos 2001). In fact, there 

are several studies demonstrating the devastating consequences of invasive or 

emerging parasites on animal and plant populations (e.g. Daszak 2000; Anderson et al. 

2004; Smith et al. 2009). The global climate change is expected to especially favor the 

pathogens employing arthropod vectors for transmission. A number of studies have 

confirmed the importance of climate as a limiting factor in the distribution of many 

insect and tick vectors (Kovats et al. 2001), therefore, changes in climatic patterns and 

in seasonal conditions may affect disease behavior in terms of spread, survival, 

transmission rate, and persistence in novel habitats (Patz & Reisen 2001; Harvell et al. 

2002; de la Roque et al. 2008; Dukes et al. 2009). 
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2.1 The Mediterranean Basin as a study area 

The Mediterranean Basin is one of the world’s greatest centers of biodiversity 

(Dernegi 2010) and it is considered a hotspot for conservation priorities (Myers et al. 

2000). Climate model projections suggest that it might be an especially vulnerable 

region to global change (Giorgi & Lionello 2008) with a high risk of endemic species 

extinction (Malcolm et al. 2006). If climate warming allows vector-transmitted 

pathogens to spread from the tropics into higher latitudes, Mediterranean countries will 

probably be the first to feel the impact. Furthermore, when these pathogens are 

restricted to tropical areas, their impact may be buffered by high levels of species 

diversity, but with their expansion to northern, less diverse regions, the disease impact 

may be greater. However, most models of infectious diseases are focused on human 

pathogen systems, where a single pathogen infects a single host species. They seldom 

consider multiple host systems infected with multiple pathogens (Dobson 2009). This is 

probably due to our poor knowledge of the parasite dynamics at the community level 

(Ricklefs et al. 2005).  

The first important step for modeling or predicting a pathogen distribution in a 

climate change scenario is, therefore, to understand the evolution and dynamics of 

host-parasite communities. This is best accomplished by understanding their structure, 

as well as the geographic scales of the interactions, by analyzing the genetic structure 

of parasites and their hosts (Thompson 2005). In theory, coevolution between hosts 

and their parasites is influenced by the relative rates of gene flow among the parasite 

and host populations (Lively 1999; Gandon & Michalakis 2002). According to these 

theoretical models, parasites are more likely to adapt to their local host population if the 

migration rate of the parasites is higher than that of their hosts. 

The Iberian Peninsula and Maghreb are located at the southwestern edge of the 

Palearctic, and share similar forest and scrubland bird communities (Covas & Blondel 

1998). Although most Iberian species also occur in Maghreb, some Maghreb species 

are not found in Iberia. This has been attributed to the weak exchange of fauna 

between the two regions or, in other words, to the apparent constraint of gene flow 

imposed by the Mediterranean Sea (Garcia et al. 2008; Dietzen et al. 2008; Valera et 

al. 2011). This lack of gene flow between Iberia and Maghreb also seems to be true for 

other groups of vertebrates (e.g. Carranza et al. 2006) and invertebrates (e.g. 

Wahlberg & Saccheri 2007), but not for dipteran insects (Esseghir et al. 1997; Porretta 

et al. 2011), which are the vectors of haemosporidian parasites and can facilitate their 

transmission between the two areas. 
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Unfortunately, there is a lack of information about host-parasite interactions in these 

areas. Community-wide relationships among avian blood parasites and their hosts 

have never been described in forests of the Iberian Peninsula or North Africa using 

PCR-based methods, which are much more sensitive and informative than the 

standard microscopy screening.  

3. Objectives 

This study aims to provide a description of the diversity and prevalence of the forest 

avian haemosporidian communities of northwest Iberia and northwest Africa, which can 

be used as baseline data for future analysis of the impact of environmental changes on 

the dynamics of these communities and their host-parasite interactions. More 

specifically, the goals of this study are to:  

 

1. describe the diversity of haemosporidians in northwest Africa and northwest 

Iberia. Due to inverse relationship between latitude and prevalence and diversity of 

haemosporidian parasites (Merino et al. 2008), we expect that Morocco will have 

more haemosporidian lineages and higher proportion of infected birds than in 

Portugal. 

2. characterize host-specificity in both parasite communities. Existing data 

suggests that Plasmodium lineages are often generalists in their host preferences 

whereas Leucocytozoon and, especially, Haemoproteus are usually more host-

specialized (Ricklefs & Fallon 2002; Waldenström et al. 2002; Beadell et al. 2004; 

Hellgren et al. 2008; Dimitrov et al. 2010; la Puente et al. 2011).  If this is a general 

pattern, we expect that in both of our study areas the number of host taxa 

parasitized by a Plasmodium lineage will be correlated with the frequency of this 

lineage detection in our samples, but no such correlation is expected for 

Leucocytozoon or Haemoproteus. 

3. compare haemosporidian community structure between the two areas. 

Existing data suggest a great degree of spatial and temporal variation in prevalence 

of individual haemosporidian lineages found in a single of a few closely related 

avian species (Reullier et al. 2006; Bensch et al. 2007; Durrant et al. 2008). Much 

less is known about the entire parasite community spatial and temporal dynamics. 

This is why we combined data from multiple years, localities, and host taxa in this 

study.  If the parasite communities of Moroccan and Portuguese forest birds are 

similar, we expect similar proportions of infections caused by different 
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haemosporidian genera and similar prevalence of individual lineages within parasite 

genera. 

 

These aims will be pursued using PCR screening of blood parasites, using a novel 

approach with several primers, to better resolve multiple infections and increase the 

sensitivity of the screening. 

 



Chapter 2 

Methods 

1. Study area and sampling procedure 

A total of 459 breeding or resident birds of 36 species were sampled in Portugal, 

and 324 birds of 46 species were sampled in Morocco in 2009-2011 (Figure 3). In both 

areas, sites were selected to include forest habitats. Birds were captured using mist-

nets. Each bird was ringed, measured, weighed, and when possible, aged and sexed. 

 

Figure 3  Study areas and sampling locations in the West Mediterranean. Each location comprises a different number 

of samples.  
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From each bird, a blood sample was obtained by brachial venipuncture with a sterile 

needle. Blood was collected into a heparin-free capillary tube and immediately 

transferred into a vial with 96% ethanol. Samples were kept at room temperature until 

DNA extraction. Nomenclature of host species followed The Howard & Moore 

Complete Checklist of the Birds (Dickinson 2003). 

2. Parasite screening 

Total DNA was extracted from avian blood samples using the JETQUICK Tissue 

DNA Spin Kit (Genomed) according to the manufacturer’s protocol.  

For parasite detection new primers were designed by Sergei Drovetski, using all the 

sequences available in GenBank for avian malaria (Plasmodium, Haemoproteus and 

Leucocytozoon) mtDNA cyt-b gene which covered the 479 bp fragment of MalAvi’s 

database (the database of avian haemosporidian cyt-b sequences; Bensch et al. 

2009). A total of three primer pairs were designed by modifying previously published 

primers (Bensch et al. 2009) in order to amplify as many known haplotypes as 

possible. These pairs share the same forward primer but have different reverse primers 

(Figure 4).  

Each sample was screened two times with each primer pair and was considered 

parasite free when negative for all 6 PCR runs. PCRs were run in 12.5µl volumes that 

contained 1x GoTaq Flexi buffer, 2mM MgCl2, 0.2mM of each dNTP, 0.3mM of each 

primer, and 0.313u of GoTaq Flexi DNA polymerase (Promega), and 2µl of DNA 

extract. The thermal profile for amplification with the different primer pairs was the 

same and started with 3 min of denaturation at 94o C, followed by 41 cycles at 94o C for 

30 s., 52o C for 30 s., and 72o C for 45 s., ending with an elongation step at 72o C for 

10 min. All reactions were accompanied by negative and positive controls to control for 

contamination and PCR success.   

PCR products were purified using ExoSAP according to the manufacturer’s 

instructions (United States Biochemical Corporation, Cleveland, Ohio) and sequenced 

directly on the Applied Biosystems 3730xl DNA Analyzer at Macrogen’s sequencing 

facility (Macrogen Inc., Netherlands). PCR fragments were sequenced in both 

directions when positive for UNIVF-UNIVR1 primer pair and only with UNIVR2 and 

UNIVR3 for their respective pairs to ensure complete coverage of the 505 bp region 

between primers UNIVF and UNIVR1. 

Sequences were aligned using Sequencher 5.0.1 (Gene Codes, Ann Arbor, 

Michigan) and trimmed to 505bp – the sequence length between primers UNIVF and 

UNIVR1 covered by all three primer pairs.  



22  | Methods 

Multiple infections present in a single PCR fragment were resolved employing 

several approaches.  If the other primer pair(s) produced an unambiguous sequence 

identical to the one present in the multiple-infection PCR fragment (MIF) of the same 

sample, the unambiguous sequence was subtracted to reveal the remaining sequence. 

In some cases, the height of the peaks in MIF’s chromatogram was consistently and 

significantly different along the entire sequence length that also allowed us to resolve 

multiple infections. If the peaks were the same height and there were no unambiguous 

sequences available for a particular sample with the MIF, we aligned the MIF with all 

unambiguous sequences and eliminated, one by one, sequences that had differences 

with the MIF in unambiguous sites (positions that did not contain double-peaks).  After 

this consecutive elimination, we were left with fragments whose consensus produced 

the same pattern of double peaks as we observed in the MIF. Therefore, we 

considered the MIF as being composed of these lineages. In all but two samples with 

MIFs we were able to resolve all infections using combination of these approaches, 

including a few cases when a primer pair amplified three different haplotypes. All the 

sequences were checked for codon structure and in all cases no stop codons were 

found. All new haplotypes found only in multiple infections were double-checked in 

order to assure that they were indeed new lineages and not misreads of the 

chromatograms.  

Unique haplotypes were identified from the individual sequences in DnaSP 5.10.00 

(Librado & Rozas 2009) and compared with GenBank sequences and MalAvi database 

(Bensch et al. 2009) in order to identify known parasite lineages, morphospecies, and 

lineage distribution. Additionally, we also compared our data to that from an 

unpublished survey of haemosporidian parasites in the Caucasus that used the same 

primers (Drovetski and Aghayan, unpublished data) for a better understanding of 

lineage distributions. 

Figure 4 Schematic illustration of the direction and position of each primer in the haemosporidian mtDNA cytochrome-b 

gene. M, R, W and Y stand for nucleotide combinations of A/C, A/G, A/T, and C/T, respectively. 
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3. Phylogenetic analysis 

Phylogenetic relationships among parasite lineages were estimated using bayesian 

and maximum likelihood (ML) methods. We used a GTR+G+I model of DNA 

substitution, that was selected using AIC in jModelTest (Posada 2008). For Bayesian 

inference we used BEAST v1.7.4 (Drummond et al. 2012) with a strict molecular clock 

and Yule speciation priors. Two independent runs of 10 million generations were 

conducted, with trees being sampled every 1000 generations. Tracer (Drummond et al. 

2012) was used to assess convergence, which was visually determined by examination 

of the plots and estimates of effective sample size (ESS>200 indicated that the run had 

converged). The initial 1000 trees of each run were deleted as burn-in, and the 

remaining 18000 trees were combined and used to calculate the maximum credibility 

tree. We also evaluated the lognormal relaxed clock model, but it produced the same 

tree topology and several model parameters failed to converge. For ML inference we 

used MEGA5 (Tamura et al. 2011) and 1000 bootstrap replicates, using the same 

model of DNA substitution. For the tree branches that were congruent with the 

bayesian results, we added the ML bootstrap support value to the maximum credibility 

tree. 

4. Statistical analysis 

Relative diversity of parasites was calculated for each genus in both areas as the 

number of lineages found belonging to a certain genus, divided by the total number of 

lineages found in that area. Prevalence of infection was calculated as the number of 

infected individuals, divided by the total number of birds. G-test was used to test for 

differences in relative diversity and parasite prevalence while Fisher’s exact test was 

used to test the differences in the proportion of species, genera, and families infected. 

Correlations between variables were tested using Pearson test while relations between 

variables were quantified using linear regressions. All tests and regressions were done 

using the add-in software XLSTAT 7.5.2 (Addinsoft) for Microsoft Excel. 
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Chapter 3 

Results 

1. Parasite diversity and prevalence 

A total of 169 different parasite lineages were found in this study, of which less than 

a half (74) are already known from earlier studies and are deposited to MalAvi and/or 

GenBank. However, because our cyt-b fragment is 26 bp longer than MalAvi fragment, 

on several occasions two of our different haplotypes matched the same MalAvi 

sequence. 

The parasites grouped into four major clades (Figure 5) that correspond to the 

genera Leucocytozoon, and Plasmodium, and sub-genera Parahaemoproteus and 

Haemoproteus of the genus Haemoproteus. 

 

 

 

 

 

 

 

 

Figure 5 Bayesian tree of all parasite lineages 

found in this study. The numbers show the 

number of lineages found in each genus. Scale 

refers to the number of substitutions per site. 
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Table 1 The sample size of each avian species with the parasite prevalence, number of parasite sequences retrieved 

from each avian species with the mean per infected bird, and the number of lineages found in each avian species.  

Family Species (Code) 

Sample Size 
(Prevalence %) 

Nº of sequences 
(Mean±SD) 

Nº of lineages 
 

NW 
Africa 

NW 
Iberia 

NW 
Africa 

NW 
Iberia 

NW 
Africa 

NW 
Iberia 

Accipitridae Accipiter nisus (Anis) 1 (0.0) 1 (0.0) --- --- --- --- 

Aegithalidae Aegithalos caudatus (Acau) --- 15 (0.0) --- --- --- --- 

Alaudidae Galerida cristata (Gcri) 1 (100.0) --- 1 (1.0±0.0) --- 1 --- 

Certhiidae Certhia brachydactyla (Cbrac) 9 (22.2) 16 (18.8) 2 (1.0±0.0) 4 (1.3±0.5) 2 4 

Cettiidae Cettia cetti (Ccet) --- 6 (66.7) --- 4 (1.0±0.0) --- 1 

Columbidae Columba palumbus (Cpal) 1 (100.0) 2 (100.0) 1 (1.0±0.0) 4 (2.0±1.0) 1 3 

  Streptopelia decaoto (Sdec) --- 1 (0.0) --- --- --- --- 

  Streptopelia turtur (Stur) 4 (100.0) 2 (50.0) 5 (1.3±0.4) 1 (1.0±0.0) 3 1 

Corvidae Garrulus glandarius (Ggla) 3 (100.0) 6 (83.3) 3 (1.0±0.0) 10 (2.0±0.6) 1 5 

Emberizidae Emberiza cirlus (Ecir) 4 (100.0) 2 (100.0) 9 (2.3±0.4) 4 (2.0±1.0) 4 4 

Falconidae Falco tinnunculus (Ftin) --- 1 (0.0) --- --- --- --- 

Fringillidae Carduelis carduelis (Ccar) 5 (20.0) 15 (20.0) 1 (1.0±0.0) 3 (1.0±0.0) 1 3 

 
Carduelis chloris (Cchl) 8 (75.0) 25 (36.0) 7 (1.2±0.4) 13 (1.4±0.5) 5 5 

 
Cocothraustes cocothraustes (Ccoc) 6 (100.0) --- 13 (2.0±0.8) --- 7 --- 

 
Fringilla coelebs (Fcoe) 75 (96.0) 7 (57.1) 131 (1.8±0.9) 6 (1.5±0.5) 28 6 

  Serinus serinus (Sser) 11 (63.6) 22 (50.0) 9 (1.3±0.5) 12 (1.1±0.3) 7 5 

Laniidae Lanius senator (Lsen) 2 (0.0) --- --- --- --- --- 

Muscicapidae Cercotrichas galactotes (Cgal) 1 (100.0) --- 1 (1.0±0.0) --- 1 --- 

 
Ficedula hypoleuca (Fhyp) 2 (50.0) --- 1 (1.0±0.0) --- 1 --- 

 
Muscicapa striata (Mstr) 9 (100.0) --- 17 (1.9±0.7) --- 8 --- 

 
Oenanthe deserti (Odes) 1 (100.0) --- 1 (1.0±0.0) --- 1 --- 

 
Oenanthe leucura (Oleu) 1 (100.0) --- 1 (1.0±0.0) --- 1 --- 

 
Oenanthe seebohmi (Osee) 1 (100.0) --- 1 (1.0±0.0) --- 1 --- 

 
Phoenicurus moussieri (Pmou) 8 (87.5) --- 8 (1.1±0.3) --- 4 --- 

  Phoenicurus ochruros (Poch) --- 12 (16.7) --- 2 (1.0±0.0) --- 1 

Paridae Parus ater (Pate) 21 (90.5) 16 (50.0) 28 (1.6±0.6) 9 (1.3±0.7) 8 4 

 
Parus caeruleus (Pcae) 21 (90.5) 14 (71.4) 43 (2.3±1.2) 18 (1.7±0.6) 15 10 

 
Parus cristatus (Pcri) --- 4 (50.0) --- 2 (1.0±0.0) --- 2 

  Parus major (Pmaj) 18 (94.4) 29 (72.4) 51 (2.9±1.3) 45 (2.1±0.8) 13 11 

Passeridae Passer domesticus (Pdom) 8 (87.5) 31 (19.4) 9 (1.3±0.5) 6 (1.0±0.0) 5 2 

 
Passer hispaniolensis (Phis) 7 (71.4) --- 7 (1.4±0.5) --- 5 --- 

  Passer montanus (Pmon) --- 6 (0.0) --- --- --- --- 

Picidae Dendrocopos major (Dmaj) 4 (0.0) 5 (0.0) --- --- --- --- 

  Picus viridis (Pvir) 2 (50.0) 1 (0.0) 1 (1.0±0.0) --- 1 --- 

Pycnonotidae Pycnonotus barbatus (Pbar) 3 (100.0) --- 3 (1.0±0.0) --- 1 --- 

Regulidae Regulus ignicapillus (Rign) 4 (0.0) 17 (0.0) --- --- --- --- 

Sittidae Sitta europaea (Seur) 3 (33.3) 4 (0.0) 1 (1.0±0.0) --- 1 --- 

Strigidae Athene noctua (Anoc) 1 (100.0) 1 (100.0) 2 (2.0±0.0) 2 (2.0±0.0) 2 2 

 
Otus scops (Osco) 2 (100.0) --- 2 (1.0±0.0) - 2 --- 

  Strix aluco (Salu) 1 (100.0) 1 (100.0) 1 (1.0±0.0) 1 (1.0±0.0) 1 1 

Sylviidae Hippolais pallida (Hpal) 2 (100.0) --- 3 (1.5±0.5) --- 3 --- 

 
Hippolais polyglotta (Hpol) 4 (75.0) 12 (16.7) 3 (1.0±0.0) 3 (1.5±0.5) 2 2 

 
Phylloscopus bonelli (Pbon) 1 (0.0) --- --- --- --- --- 

 
Sylvia atricapilla (Satr) 3 (100.0) 61 (72.1) 9 (3.0±0.8) 77 (1.7±0.8) 6 15 

 
Sylvia borin (Sbor) 1 (100.0) --- 1 (1.0±0.0) --- 1 --- 

 
Sylvia cantillans (Scan) 6 (50.0) 2 (100.0) 4 (1.3±0.5) 2 (1.0±0.0) 3 1 

 
Sylvia deserticola (Sdes) 4 (25.0) --- 3 (3.0±0.0) --- 3 --- 

 
Sylvia hortensis (Shor) 2 (50.0) --- 1 (1.0±0.0) --- 1 --- 

  Sylvia melanocephala (Smel) 21 (76.2) 8 (25.0) 23 (1.4±0.6) 2 (1.0±0.0) 9 1 

Troglodytidae Troglodytes troglodytes (Ttro) 6 (50.0) 20 (20.0) 3 (1.0±0.0) 4 (1.0±0.0) 2 3 

Turdidae Erithacus rubecula (Erub) 9 (11.1) 51 (23.5) 1 (1.0±0.0) 17 (1.4±0.6) 1 8 

 
Turdus merula (Tmer) 13 (100.0) 40 (97.5) 22 (1.7±0.6) 52 (1.3±0.6) 8 8 

 
Turdus philomelos (Tphi) --- 2 (100.0) --- 4 (2.0±0.0) --- 4 

  Turdus viscivorus (Tvis) 4 (100.0) --- 6 (1.5±0.5) --- 5 --- 

Upupidae Upupa epops (Uepo) --- 1 (100.0) --- 1 (1.0±0.0) --- 1 

Total   
324  

(78.7) 
459  

(44.2) 
439 

(1.7±0.9) 
308 

(1.5±0.7) 
127 74 
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In Northwest Africa, we found 127 unique lineages among 439 parasite mtDNA cyt-b 

sequences from 324 birds of 46 avian species. In Northwest Iberia, we found 74 

lineages among 308 sequences from 459 birds of 36 avian species. The majority of the 

infections in Morocco were found in the common chaffinch (Fringilla coelebs), great tit 

(Parus major), and blue tit (Parus caeruleus); and in Portugal most of them were found 

in the blackcap (Sylvia atricapilla), blackbird (Turdus merula), and great tit (Table 1). 

Despite the difference in the number of parasite lineages found in Morocco and 

Portugal, we found no differences in the relative diversity of each genus between the 

two areas (G = 0.484, df = 2, p = 0.785). 

Although in most avian species with sample sizes > 2 we detected haemosporidian 

parasites, there were several exceptions worth notice. We failed to detect 

haemosporidian pathogens in the Eurasian tree sparrow (Passer montanus; n = 6 all 

from Portugal), greater spotted woodpecker (Dendrocopos major; Morocco n = 4, 

Portugal n = 5), long-tailed tit (Aegithalos caudatus; Portugal n = 15), and firecrest 

(Regulus ignicapillus; Morocco n = 4, Portugal = 17).  Our failure to detect parasites in 

these species suggests either that these species have unusually low prevalence of 

haemosporidian parasites or our primers failed to amplify lineages infecting these 

species. 

Overall parasite prevalence was higher in NW Africa with 79% of the birds being 

infected by haemosporidians, while in Iberia only 44% of the tested birds carried 

infections. Multiple infections affected 40% and 16% of birds in Morocco and Portugal, 

respectively. The number of parasite lineages per bird with multiple infections varied 

from two to six (Figure 6), with most birds carrying only two. 

 

Figure 6 Distribution of the cumulative number of parasite lineages discriminated by number of birds and study area. 
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The most common combinations of parasites were double infections of 

Haemoproteus (2H: n = 22 Morocco, n = 16 Portugal), and of Leucocytozoon with 

Plasmodium (1L1P: n = 17 Morocco, n = 12 Portugal). Double infections of 

Leucocytozoon were also fairly common (2L: n = 15 Morocco, n = 11 Portugal) (Table 

2). Double infections of Plasmodium lineages were much less frequent. Double 

Plasmodium infections were found in 3 Moroccan and in 9 Portuguese birds, in 

addition, there were 6 cases of mixed double infections of Plasmodium with 

Haemoproteus and Leucocytozoon infection(s) (one 1H2P, three 1L2P, one 1H1L2P, 

and one 3L2P). The reason is that although Plasmodium infections were common, the 

number of Plasmodium lineages was much lower than the number of lineages in other 

genera. Therefore, the probability of a bird infected with a Plasmodium haplotype to get 

a second Plasmodium infection is much lower than the probability to get an infection 

from a different parasite genus, which are much more diverse. 

The number of parasite sequences retrieved per host species increased with the 

host sample size in both study areas (Figure 7a). However, the slope of this 

relationship was significantly higher in Morocco (1.862) than in Portugal (1.103, slope 

difference p < 0.0001) confirming that the prevalence of haemosporidian parasites in 

Table 2 Distribution of the different combinations of infection types, discriminated by area and genera: Plasmodium (P), 

Haemoproteus (H) and Leucocytozoon (L). 

Lineages (N) Type NW Africa NW Iberia 

0 - 69 256 

1 1H 70 34 

 
1L 29 24 

 
1P 33 67 

2 1H1L 10 6 

 
1H1P 14 4 

 
2H 22 16 

 
1L1P 17 12 

 
2L 14 11 

 
2P 3 9 

3 1H1L1P 2 0 

 
1H2L 4 0 

 
1H2P 0 1 

 
2H1L 2 3 

 
2H1P 4 1 

 
3H 2 2 

 
1L2P 0 3 

 
2L1P 13 7 

 
3L 3 0 

4 1H1L2P 0 1 

 
2H1L1P 2 0 

 
2H2L 1 2 

 
3H1L 1 0 

 
3H1P 1 0 

 
3L1P 6 0 

5 3L2P 1 0 

6 5L1P 1 0 
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Morocco was higher than in Portugal. The number of parasite lineages found in a host 

species increased with the number of parasite sequences found in that host (Figure 

7b). The slopes of this relationship did not differ between Morocco (0.677) and Portugal 

(0.630, slope difference p = 0.295). This suggests that the parasite lineages were 

discovered at a similar rate in both areas and the higher prevalence of parasites in 

Morocco is responsible for the higher haemosporidian lineage diversity found in that 

area compared to Portugal. 

2. Parasite specificity 

In our study, the number of hosts from which a parasite lineage was recovered 

varied between one and sixteen in a single area. The proportion of species, genera, 

and families infected by each parasite genus did not differ between North Africa and 

Iberia (Table 3).  

The relationship between the number of avian species parasitized by a 

haemosporidian lineage and the number of parasite lineage observations did not follow 

the same pattern among the three parasite genera, but did not differ significantly 

between our study areas (Figure 8). For Haemoproteus lineages, an increase in the 

number of recoveries was not associated with an increase in number of host species, 

genera, or families. This suggests that Haemoproteus lineages are fairly host-specific, 

and infect only a few avian species and rarely from different families.  

 

Figure 7 The relationship between the: (a) number of parasites found per host species and the number of 

sampled birds (Only infected avian species with n ≥ 5 in both areas were used in this regression); (b) the 

number of lineages found per host species and to the number of parasite sequences retrieved from it (Only 

species with n ≥ 2 were used in this regression). 
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For Leucocytozoon parasites, there was a positive correlation between number of 

recoveries and number of host-species. However, at the host-genus and family levels, 

the correlation was weak. Therefore, Leucocytozoon is less specific at the host species 

level than Haemoproteus, but it is specific at the host genus and family levels. 

Nevertheless, some generalist lineages were observed in both parasite genera, 

especially in Leucocytozoon. Therefore, there is a considerable degree of 

heterogeneity in the host specificity of some lineages within both genera. 

Plasmodium parasites had a strong positive correlation between the numbers of 

lineage recoveries and avian host species parasitized, with abundant lineages infecting 

a larger number of host-species, genera and families. This was expected, as 

Plasmodium is known to be more host-generalist then other haemosporidian genera. 

3. Parasite community structure 

The prevalence of each parasite genus differed between both study areas 

(G = 13.920, df = 2, p = 0.001). Plasmodium was predominant in Portugal, and 

Haemoproteus was the most common among infections in Morocco (Figure 9). The 

most common lineage in both areas was SGS1 (n = 50 in NW Africa, n = 60 in NW 

Iberia), which is a cosmopolitan and abundant Plasmodium relictum strain. It was found 

in 24 different species in our study.  This was one of the cases when two of our 

haplotypes matched a single sequence in the MalAvi database (H3 n = 109, H55 

n = 1). The second most common lineage was H102 matching SYAT05 Plasmodium 

vaughani. It parasitized five avian species and was found in both study areas (Morocco 

n = 11, Portugal n = 35). The dominance of Plasmodium parasites among individual 

lineages was not surprising given the lack of the host specificity and low diversity of 

lineages in this genus. 

Table 3 Number of host species, genera and family, infected in both study areas, and probability values (p) from  

Fisher’s  exact test. 

 Species  Genera  Families 

 

Infected Not-infected p  Infected Not-infected p  Infected Not-infected p 

Haemoproteus   

0.119 

   

0.295 

   

0.325  NW Africa 29 17  22 11  13 6 

 NW Iberia 16 20  14 13  9 10 

Leucocytozoon   

0.505 

   

0.999 

   

0.999  NW Africa 19 27  14 19  10 9 

 NW Iberia 18 18  12 15  10 9 

Plasmodium   

0.999 

   

0.609 

   

0.999  W Africa 26 20  17 16  11 8 

 NW Iberia 21 15  16 11  12 7 

Total   

0.138 

   

0.345 

   

0.693  NW Africa 41 5  28 5  16 3 

 NW Iberia 27 9  20 7  14 5 
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Of the 169 haplotypes found in this study, 95 were only observed in North Africa, 42 

only in Iberia, and 32 were observed in both areas (shared lineages). However, when 

the information on the distribution of lineages from previously published studies is 

taken into account, the number of shared lineages approached the number of unshared 

ones. When previously published data for Iberia is used, the number of shared lineages 

increases to 40, but when data for the whole Europe is considered, the number of 

shared lineages increases to 61, leaving Morocco with only 66 unique haplotypes. 

This means that, approximately one third of the parasite lineages we found only in 

Morocco, have also been found in Europe, and could therefore potentially occur in 

Iberia as well. We would need to sample many more birds in Iberia than in Morocco to 

obtain the same number of infections and, consequently, diversity of parasites 

lineages. 

 

Figure 8 Relationship between the number of species, genera and families infected by a parasite, and the number of 

times it was found. 
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Although infections by shared lineages (according to our data) accounted for 63% of 

all parasite observations, there was no correlation between number of lineage 

observations in Iberia and Morocco for any parasite genus (Figure 10). The lack of this 

correlation, which would be expected if the parasite communities were similar, results 

from the presence of lineages observed only in one study area, from differences in 

prevalence of lineages found in both study areas, and from differences in host 

community composition. 

The regressions remained non-significant even when only shared haplotypes were 

used in analyses (Haemoproteus: y = -0.1636x + 0.7063, R² = 0.0508, p = 0.419; 

 

Figure 10 Relationship between parasite recoveries in Portugal and Morocco. Only lineages with n ≥ 2 were used. 

 

Figure 9 Distribution of parasite infections among the three malaria genera in both areas. Each division in the stacked 

columns corresponds to a different lineage. The three most abundant lineages are labeled for each genus in each study 

area. 
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Leucocytozoon: y = 0.1487x + 0.4697, R² = 0.0253, p = 0.604; Plasmodium: 

y = 0.7485x + 0.4648, R² = 0.6935, p = 0.167). Therefore, parasite communities in our 

study areas differ not only at the level of relative frequencies of different parasite 

genera, but at the level of individual parasite lineages as well. 

We found little spatial structure in the phylogeny of the parasites (Figure 11, Figure 

12, and Figure 13, respectively for Haemoproteus and Plasmodium, 

Parahaemoproteus, and Leucocytozoon). Although some clades appear to occur only 

in Morocco according to our data, some lineages in those clades have been previously 

described in Iberia and/or in Europe. Nevertheless, we found one Haemoproteus clade 

recovered from spotted flycatcher (Muscicapa striata) in Morocco, which did not contain 

lineages that have been found elsewhere (haplotypes 81, 76 and 80). Another 

Haemoproteus clade (haplotypes 63, 9 and 15) was recovered from fringillids in 

Portugal. 

 

 

 

Figure 11 Sub-trees of Haemoproteus and Plasmodium parasites. Values above branches indicate bayesian posterior 

probabilities (only values ≥0.85 are shown), and below ML bootstrap support (only values ≥0.5 are shown). Tips labels 

consist in the number of the haplotype, MalAvi’s name and the parasite’s morphospecies (whenever available), and the 

host-species (abbreviated as in Table 1) with number of individuals in which the lineage was found in parentheses. 

Grey, black and bold labels represent haplotypes found in NW Africa, NW Iberia, and in both areas, respectively. 

Symbols represent the closest areas of occurrence in other studies: black-filled starts - Iberia, white-filled stars - Europe, 

white-filled circles - Caucasus, and black-filled circles – continents other than Europe. Scale refers to the number of 

substitutions per site. 
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Figure 12 Sub-tree of Parahaemoproteus parasites. Values above branches indicate bayesian posterior probabilities 

(only values ≥0.85 are shown), and below ML bootstrap support (only values ≥0.5 are shown). Tips labels consist in the 

number of the haplotype, MalAvi’s name and the parasite’s morphospecies (whenever available), and the host-species 

(abbreviated as in Table 1) with number of individuals in which the lineage was found in parentheses. Grey, black and 

bold labels represent haplotypes found in NW Africa, NW Iberia, and in both areas, respectively. Symbols represent the 

closest areas of occurrence in other studies: black-filled starts - Iberia, white-filled stars - Europe, white-filled circles - 

Caucasus, and black-filled circles – continents other than Europe. Scale refers to the number of substitutions per site. 
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Figure 13 Sub-tree of Leucocytozoon parasites. Values above branches indicate bayesian posterior probabilities (only 

values ≥0.85 are shown), and below ML bootstrap support (only values ≥0.5 are shown). Tips labels consist in the 

number of the haplotype, MalAvi’s name and the parasite’s morphospecies (whenever available), and the host-species 

(abbreviated as in Table 1) with number of individuals in which the lineage was found in parentheses. Grey, black and 

bold labels represent haplotypes found in NW Africa, NW Iberia, and in both areas, respectively. Symbols represent the 

closest areas of occurrence in other studies: black-filled starts - Iberia, white-filled stars - Europe, white-filled circles - 

Caucasus, and black-filled circles – continents other than Europe. Scale refers to the number of substitutions per site. 
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Chapter 4 

Discussion 

1. Parasite diversity and prevalence 

We presented here the first extensive molecular survey of haemosporidian parasites 

in forest bird communities of southwestern continental Palearctic. Although other 

studies have focused on Iberian malaria parasites using molecular methods (i.e. Spain: 

Bensch et al. 2004; Marzal et al. 2008; Martínez-de la Puente et al. 2011 and 

Casanueva et al. 2012; Portugal: Ventim 2011), these have usually focused on a 

restricted number of species or on long-distance migrants. 

We found an overall high number of haemosporidian lineages - 169. More than half 

of these lineages were recorded for the first time. Such a high diversity of parasites can 

only be compared, as far as we are aware, to an extensive survey done by Pérez-Tris 

et al. (2007) in which 4513 birds of 47 avian species were sampled from Spain to 

Sweden and where 137 haplotypes (45 Plasmodium and 92 Haemoproteus) were 

found. Nevertheless, the high diversity found in our study, with a much smaller sample 

size, can potentially be explained by three factors. First, we used new primers that 

were specifically designed to amplify as much known diversity of haemosporidians as 

possible and allowed us to resolve multiple infections, greatly increasing our number of 

parasite observations.  Second, compared to most studies in the western Palearctic, 

we sampled a high number of different species (56 in total), most of which are resident. 

Finally, the fact that we sampled two different areas geographically divided by the 

Mediterranean Sea instead of one continuous area might have contributed to the 

overall parasite diversity we discovered. These factors, plus the scarce knowledge of 

haemosporidian parasite communities in North Africa, have also contributed to the high 

proportion of new mtDNA cyt-b lineages found in this study. 
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Among the species for which we sampled more than two individuals, we did not 

obtain any haemosporidians from only four: the long-tailed tit, great spotted 

woodpecker, Eurasian tree sparrow, and firecrest. These species have rarely been 

sampled in the literature, except tree sparrows, that were well sampled in reedbeds of 

central and south Portugal by Ventim (2011), and for which Plasmodium infections of 

SGS1 were found. The lack of infected individuals of this species in our study cannot 

be attributed to the inability of our primers to detect this lineage - the SGS1 was the 

most common lineage found in our study. Perhaps, tree sparrows have a lower 

prevalence of haemosporidians in forest than in reed bed habitats, or the number of 

birds we sampled was not sufficient to detect infections. Nevertheless, for the 

remaining species, most studies reported no haemosporidian infections. Valkiūnas 

(2005) has described the great spotted woodpecker and long-tailed tit as usually being 

free from haemosporidians. A recent survey in the Caucasus (Drovestki and Aghayan, 

unpublished data), has also found no infections in the long-tailed tit (n = 8) and only 

one infected woodpecker (of 7) with a new Haemoproteus lineage. Other studies, 

regardless whether employing molecular methods or not, also failed to find malaria 

parasites in long-tailed tits (Peirce 1981; Ishtiaq et al. 2010). Interestingly, they are 

known to frequently carry other blood parasites, e.g. trypanosome (Valkiūnas 2005). 

The only study we found that had information about blood parasites in common 

firecrests also reported the presence of trypanosoma, but of no haemosporidian 

infections (Peirce 1981). The fact that these species do not seem to carry any 

haemosporidians, or at least not frequently, is rather intriguing. Such cases have been 

described in birds with unique life histories - the swift (Apus apus) and cuckoo (Cuculus 

canorus) (Valkiūnas & Iezhova 2001), but usually attention is given to birds that have 

high diversity of parasites (i.e. blackcaps: Pérez-Tris and Bensch 2005; Pérez-Tris et 

al. 2007; Santiago-Alarcon et al. 2011; among many others). Perhaps the fact that both 

species are quite small could make them less attractive for Haemosporidian vectors 

than large species. However, other causes would be needed to explain the low 

prevalence of these parasites in the great spotted woodpecker. 

As expected, the overall haemosporidian prevalence was higher in North Africa than 

in Iberia, confirming the inverse latitudinal trend found in other studies (Merino et al. 

2008). This difference in prevalence was even more striking when the proportion of 

multiple infections is compared between our study areas. In Morocco, it was more than 

twice that observed in Portugal. It was also much higher than reported in other studies. 

Pérez-Tris and Bensch (2005b), for example, reported 20% of infected blackcaps to 

carry multiple infections, while Marzal et al. (2008) reported 22.5% of the infected 

common house martin (Delichon urbicum). In our study, these proportions varied 
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greatly among species. In blackcaps, 39% of the sampled birds (53% of the infected 

birds) carried multiple infections, whereas in great tits these proportions were even 

higher with 64% of the sampled birds (79% of the infected individuals) carrying multiple 

infections. This overall pattern remained in the parasite genus specific comparisons. 

Jenkins and Owens (2011) reported only 5% of their blue and great tits to harbor mixed 

infections of Leucocytozoon, whereas we found 34% and 45% of these birds, 

respectively, to carry more than one Leucocytozoon parasite. This suggests that 

multiple infections affect a much larger number of birds than previously thought. 

Although difficult to deal with, demanding more time and effort, mixed infections 

deserve much attention as they seem to be the rule rather than exception. Studies of 

multiple infections can provide crucial information about host-parasite interactions, and 

help to better understand the dynamics of intra-host competition, and the evolution of 

parasite virulence and transmission (Rigaud et al. 2010). The reason we had unusually 

high success in detecting multiple infections in our study is likely related to the 

generalist nature of the primers we used and to the use of several primer pairs. The 

use of multiple primer pairs was essential to the successful phasing of haplotypes in 

multiple infections. 

We found a substantially higher number of haemosporidian lineages in North Africa 

than in Iberia (n = 127, n = 74, respectively). This richness of the Moroccan community 

seems to be related to the higher overall parasite prevalence. Although we did find a 

higher number of infections in the Maghreb, the rate of lineage recovery per infection 

was the same in both areas. The fact that we sampled a higher number of different 

species in North Africa might have also elevated richness of the sampled parasite 

community in that area. The presence or absence of certain host species is likely the 

most important factor influencing the presence of parasite lineages (Ricklefs et al. 

2004, 2005). 

2. Parasite specificity 

Parasites from the same haemosporidian genera had a similar degree of host 

specificity in both our study regions.  However, the specificity of the parasites varied 

among the three haemosporidian genera. Haemoproteus lineages were the most host 

specific at all host taxonomic levels – species, genus, family. Leucocytozoon lineages 

were much less specific to host species than Haemoproteus, but were specific to host 

genera and families. Plasmodium lineages were host-generalist at all host taxonomic 

levels, so the increase in the sample size of lineage strongly correlated with increase in 

number of host species, genera, and families parasitized by it. This is consistent with 



38  | Discussion 

other observations for haemosporidian parasites (Ricklefs and Fallon 2002; 

Waldenström et al. 2002; Beadell et al. 2004; Hellgren et al. 2008; Dimitrov et al. 2010; 

Martínez-de la Puente et al. 2011).  

Many of the previously discovered lineages we found in this study infect multiple 

species in other regions in addition to those we found infected with them in our study 

areas. However, one lineage, the Plasmodium sp. LK6, that until our study was known 

only from the Lesser Krestel (Falco naumanni) in Spain, appears to be able to infect 8 

passerine species from 4 families in Morocco.  Interestingly, although we sampled 4 of 

those 8 species in Portugal, we failed to detect LK6 there. Another interesting lineage, 

Parahaemoproteus sp. PYERY01, was known before from a greyheaded-bullfinch 

(Pyrrhula erythaca) from the Hymalaias. In our study it was found in 8 serins (Serinus 

serinus), one from Morocco and 7 from Portugal. This clearly shows that there is still 

much to learn about haemosporidians and that each lineage may have very different 

histories and specificity patterns from those we identified so far. The rarity of 

community level studies and the lack of informations from large portion of the globe are 

likely result in erraneous conclusions about haemosporidian life history traits. 

3. Parasite community structure 

Our data suggest that the structure of the parasite communities differed between 

Portugal and Morocco. Not only the prevalence of each parasite genus differed 

between these areas, probably reflecting differences in vector abundance and activity, 

but also individual lineage composition and abundance were different as well. 

However, we failed to find any clear spatial structure in the phylogenetic relationships 

of the parasites from both communities. This means that although the communities are 

structurally different they are not evolving in isolation. Parasites from Morocco can 

invade Iberia and vice versa.  

These findings are not surprising. Both study areas are used by a large number of 

migratory or partially-migratory species (Cramp 1998).  By the time the migrants arrive, 

most vectors are likely still active, and host-generalist parasites can probably use those 

birds to jump from one area to the other. However, host-specialists of resident species 

should not be able to cross between the areas unless either the hosts or the vectors 

can move across the strait of Gibraltar. A recent study has found a fit between host and 

parasite phylogenies in Leucocytozoon parasites and showed that this pattern was due 

only to associations between non-migratory hosts and their parasites (Jenkins et al. 

2012).  
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The most apparently host-specific parasites (or clades) that we were able to sample 

in reasonable numbers were family-specific parasites found in fringilids and tits. Of 

particular interest was a clade of Leucocytozoon parasites that occurred only in tits 

(from haplotype 109 to 92, following their order in the tree, Figure 13). This clade was 

divided in 3 sub-clades, each infecting mostly blue tits, coal tits, or great tits, 

respectively. The primarily great tit clade contained less specific lineages that also 

infected blue tits. However, the coal tit clade did not infect blue tits, and vice versa, but 

both were able to infect great tits. Coal and blue tits of Europe and North Africa are 

known to be genetically different, with no gene flow occurring between them (Martens 

et al. 2005; Dietzen et al. 2008), while great tits are genetically similar across their 

European and African range (Kvist et al. 2003). This suggests that great tits could 

function as a bridge for tit Leucocytozoon parasites between Iberia and North Africa. 

However, a better sampling of this group of species and their vectors would be needed 

in order to understand if the parasites use great tits to cross the strait, the vector, or 

both. 
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Chapter 5 

Conclusions 

 

This work established the first extensive molecular survey of haemosporidian 

parasites in forest bird communities of southwestern continental Palearctic. Overall we 

found a very diverse fauna of haemosporidians with complex relationships with their 

avian hosts. One thing that became clear with this work is that the world of 

relationships between haemosporidian parasites and their hosts is of enormous 

dimensions. Sample size seems to play a crucial role in the observed patterns, and 

often limits us from attempting to resolve complex interactions. Common host-switches 

and the lack of any clear spatial structure in the distribution of these parasites, make 

them a challenging group of organisms to work with. 

 Future studies should focus on the community-wide analysis of host-parasite 

interactions rather than on a single or few host species and parasite lineages, as this 

seems to be the only way to start understanding the general patterns of spatial 

distribution of avian haemosporidian parasites and their host specificity. 
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Another urgent challenge is to include multiple infections in the analysis.  Currently, 

most studies simply discard them despite their apparently high frequency in avian 

populations. Only multiple infections can elucidate the relationships among different 

members of the parasite community and their joint effects on the host community. 

Nevertheless, few studies have addressed the effects of multiple infections on birds, 

and none have tried to understand the interactions among different parasite lineages, 

particularly whether the presence of one parasite lineage can facilitate or inhibit the 

development of a second infection. 

Temporal variation of the parasite community should also be a priority for further 

research. Many studies have shown a strong variation in the prevalence of individual 

parasite lineages throughout the year, so differences in timing of our sampling could be 

partially responsible for the differences observed in the parasite community structure 

between our study areas. Standardized sampling of birds should also be a goal in 

future studies in order to have representative samples of both the bird and the parasite 

communities. 

Finally, the incorporation of data about the distribution and abundance of dipteran 

vectors, as well as their host specificity and of the haemosporidian parasites they carry 

(for both the vector and the host), will also help elucidating the complex network of 

interactions among birds and their insect and haemosporidian parasites. To ignore 

either the vector or the bird communities, their ecology and their evolution, is to ignore 

an important part of the equation of haemosporidians ecology and evolution.
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