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Abstract 
 

Cellular senescence is a general stress response that encompasses a stable 

proliferation arrest achieved partly due to the activation of tumour suppressor 

pathways. In addition to becoming stably arrested, senescent cells undergo 

other important changes that include profound chromatin reorganization and 

the production of a complex mix of proinflammatory factors. The relevance of 

senescence is highlighted by the multitude of processes it regulates from 

embryogenesis to cancer. For this reason, the discovery of novel senescence 

regulators could not only improve our knowledge about senescence but also 

provide insights useful to understand or treat many pathologies. 

To identify novel genes regulating oncogene-induced senescence (OIS), 

spatial proteomics was performed with IMR90 ER:RAS fibroblasts previously 

fractionated into nuclear soluble, insoluble (chromatin) and cytoplasm. The 

chromatin-associated proteome presented the biggest differences between 

growing and senescent cells. To address the functional relevance of the 

observed changes we performed siRNA screens to target chromatin 

remodelers and identified several genes potentially regulating OIS. 

Preliminary validation steps confirmed a role for 6 of those factors TRIM28, 

ENY2, OGT, TAF10, TAF12 and GTF3C4 in regulating senescence.  

Thus, using unbiased large-scale approaches this work identified novel 

senescence regulators and provided an initial characterization for their role in 

OIS. Further experiments will be essential to investigate how these genes 

regulate senescence and whether or not they could play a role in senescence-

associated diseases such as cancer or fibrosis. 
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Resumo 
 
A senescência celular é uma resposta geral ao stress que consiste num bloqueio 

da proliferação celular em parte, devido à activação de vias de genes supressores 

tumorais. Para além do bloqueio da proliferação, as células senescentes sofrem 

alterações importantes que incluem uma reorganização profunda da cromatina e a 

produção de uma mistura complexa de factores pró-inflamatórios. 

A senescência torna-se relevante quando se avalia a variedade de processos nos 

quais está envolvida, desde a embriogénese ao cancro. Por esta razão, a 

descoberta de novos genes reguladores da senescência poderá expandir o nosso 

conhecimento sobre o processo em si assim como o dos variados contextos 

biológicos e patologias aos quais está associada. 

Com o objectivo de identificar novos genes que regulam a senescência induzida 

por oncogenes (OIS), fibroblastos IMR90 ER:RAS foram fraccionados e as 

amostras contendo as proteínas nucleares solúveis, insolúveis (cromatina) e 

citoplasmáticas foram submetidas a uma análise proteómica. A análise 

proteómica revelou que as células senescentes expressam diferentes proteínas 

relativamente às células em crescimento,  principalmente ao nível das proteínas 

associadas à cromatina. De forma a avaliar a relevância funcional dos resultados 

obtidos, usaram-se screens de siRNAs para silenciar a expressão de vários 

reguladores da cromatina. Vários genes com potencial na regulação do bloqueio 

da proliferação e da expressão do p16 foram identificados e após vários passos 

de validação, confirmou-se o papel dos genes TRIM28, ENY2, OGT, TAF10, 

TAF12 e GTF3C4 na senescência. 

Assim, este trabalho identificou, usando abordagens de larga escala, novos genes  

envolvidos na senescência celular e apresentou uma caracterização inicial do seu 

papel neste processo. Experiências futuras são essenciais para desvendar o 

modo pelo qual estes genes regulam a senescência celular e se podem contribuir 

para as doenças que lhes estão associadas como o cancro ou a fibrose. 
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EP400  E1A binding protein p400 

Esc  Embryonic stem cells   

ER  Oestrogen receptor  

ERK  Extracellular signal-regulated kinases 

ETS  E26 oncogene homolog  

EZH2  Enhancer of zeste homolog 2 

FACT  Facilitates chromatin transcription (complex) 
FALZ  BPTF 

FBS  Foetal bovine serum  

FDR  False discovery rate 

FOX  Forkhead box proteins 

FUBP  Far Upstream element-Binding Proteins 

g  Gram  
G  Guanine  

Gadd45a Growth Arrest and DNA-damage-inducible protein 

GCN5  Histone acetyltransferase GCN5 

GO  Gene ontology GR Glucocorticoid receptor  

GTF3C4 General Transcription Factor IIIC, Polypeptide 4, 90kDa 

GTP  guanosine triphosphate 

GTPase GTP hydrolase 

Gy  Gray 

H  Histone  
HAT  Histone acetyl-transferase  

HCA  High content analysis  

HCF1  Host cell factor C1 

HDAC  Histone deacetylase  
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HDM2  Human double minute 2 homolog 

HEK  Human embryonic kidney  

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  

HGPS  Hutchinson–Gilford progeria syndrome  

HIRA  Histone repressor A  

HO-GSVD Higher-Order Generalized Singular Value Decomposition  

HMG  High mobility group  

HMT  Histone methyltransferase  

HP  Heterochromatic protein  

HP1BP Heterochromatin Protein 1, Binding Protein  

hr  Hour  

HRAS  Harvey rat sarcoma gene  

HSC  Hepatic stellate cells  

hTERT Human telomerase reverse transcriptase  

HTM  High throughput microscopy  

HUCA  HIRA/UBN1/CABIN1/ASF1a complex 

HuR  ELAV-like protein 1 

ID  Inhibitor of DNA binding 
IF  Immunofluorescence  

IL  Interleukin  

INK4  Inhibitor of CDK4  

INT  Integrator 

iPS  Induced pluripotent stem cell  

JARID  Jumonji, AT Rich Interactive Domain 
JMJD  Jumonji domain containing 

K  Lysine  
KAKA  KRAB- and KAP1-associated 

KAP1  KRAB-associated protein 1 (same as TRIM28) 

Kb  Kilo base  

kDa  Kilo dalton  

KDM  Lysine demethylase 

KLF4  Krüppel-like factor 4  

KMT  Lysine methyltransferase 

KRAB-ZFPs  Krüppel associated box- Zinc finger proteins 
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L  Litre  
lncRNA Long non-coding RNA 

LMN  Lamin  

LRIQ1  Leucine-Rich Repeats And IQ Motif Containing  

LTR  Long terminal repeat  

Lys  Lysine 

m  Milli  
M  Molarity  

MAD  Maximum absolute deviation 

MAPK  Mitogen-activated protein kinases  

MAP1A Microtubule-Associated Protein 1A 

MA2A1 Mannosidase, Alpha, Class 2A, Member 1 

Mb  Mega base pair  

MDM2  Mouse double minute 2 homolog 

me  Methylation  

MEF  Mouse embryonic fibroblast  

MEK1  Mitogen-Activated Protein Kinase Kinase 1 

MGAT5 Mannosyl (Alpha-1,6-)-Glycoprotein Beta-1,6-N-Acetyl-

Glucosaminyltransferase 

min  Minute  

miR  MicroRNA  

MLL  Myeloid-lymphoid leukemia protein 

MMP  Matrix metallopeptidase  

MPU1  Mannose-P-Dolichol Utilization Defect 1 

mRNA   Messenger RNA 

MS   Mass spectrometry 

mTOR  Mammalian target of rapamycin 

MW   Molecular weight 

NBEA  Neurobeachin, Lysosomal-Trafficking Regulator 2 

NCOR1 Nuclear Receptor Corepressor 1 

NF-!"  Nuclear factor kappa B 

NI  Nuclear insoluble fraction 

NS  Nuclear soluble fraction 
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NuRD  Nucleosome remodeling and deacetylation 

OCT4   Octamer-binding transcription factor 4 
OGA  O-GlcNAcase  

OGT  O-Linked N-Acetylglucosamine (GlcNAc) Transferase 

O-GlcNAc  O-Linked N-Acetylglucosamine 

OIS   Oncogene induce-senescence 

OSKM  Oct4, Sox2, Klf4 and c-Myc 

OSTC  Oligosaccharyltransferase Complex Subunit (Non-Catalytic) 

PABP2 Poly(A) Binding Protein, Nuclear 1 
PAI   Plasminogen activator inhibitor 

PAXIP1 PAX Interacting (With Transcription-Activation Domain) Protein 1 

PAF1C RNA polymerase-associated factor 1 complex 

PBRM  Polybromo 

PBS   Phosphate buffered saline 

PB1   Polybromo 

PCAF  P300/CBP-associated factor 

PcG             Polycomb group 

PCNA  Proliferating cell nuclear antigen 

PCR   Polymerase chain reaction 

PEI   Polyethylenimine  

PEX1  Peroxisomal Biogenesis Factor 1 

PFA   Paraformaldehyde 

PML  Promyelocytic Leukemia 

Pol I, II or III RNA polymerase I, II or III 

PRC   Polycomb repressive complex 

PRDM  PR Domain Containing 

PSMD  Proteasome (prosome, macropain) 26S subunit, non-ATPase 

PTEN   Phosphatase and tensin homolog 

R  Pearson correlation 

RAD23B RAD23 Homolog B 

RB   Retinoblastoma  

RBP  RNA binding protein 

RLS  Replicative life span  

RNA   Ribonucleic acid 
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RNAi   RNA interference 

RNase  Ribonuclease  

RNA-seq RNA sequencing 

ROS   Reactive oxygen species 

RPL  Ribosomal protein 

rpm   Rotations per minute 

RPN  Ribophorin  

RPN  Ribonucleoprotein particle 

RPS14 Ribosomal protein S14  

rRNA   Ribosomal RNA 

RRBP1 Ribosome Binding Protein 1 

RRP   Ribosomal RNA processing protein 

RS  Ribosomal protein 

RTF1  Paf1/RNA polymerase II complex component 

RT-qPCR Quantitative reverse transcription PCR 

s   Second 
SA-!-gal  Senescence-associated !-galactosidase 

SAGA  Spt-Ada-Gcn5 Acetyltransferase complex (yeast) 

SAHF   Senescence-associated heterochromatic foci 

SALRNA1 Senescence Associated Long Non-Coding RNA 1 

SASP   Senescence associated secretory phenotype 

SDS   Sodium dodecyl sulphate 

SDS-PAGE  SDS polyacrylamide gel electrophoresis 

Ser   Serine 

SET1  SET Domain Containing 1A 

shRNA  Short hairpin RNA 

SILAC  Stable isotope labelling with amino acids in cell culture 

siRNA  Small interfering RNA 

SMAD  Mothers against decapentaplegic homolog 

SMARC  SWI/SNF-related, matrix-associated, actin-dependent regulator of 

chromatin   

SMCA SWI/SNF-related, matrix-associated, actin-dependent regulator of 

chromatin 

SNF          Sucrose non-fermenting 
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snRNA Small nuclear RNA 

SOX2   SRY (sex determining region Y)-box 2 

SQSTM1 Sequestosome 1 

SSRP1 Structure Specific Recognition Protein 1 

STAGA SPT3-TAF(II)31-GCN5L acetylase (human) 

STT3  Subunit Of The Oligosaccharyltransferase Complex 

SUPT(x)H Suppressor Of Ty (x) Homolog  

SUZ12 Suppressor Of Zeste 12 

SWI   Switch 

T   Thymine 
TASCC  TOR autophagy spatial coupling compartment 

TAF  TBP-associated factor 

TBA3E  Tubulin, Alpha 3e 

TBB6  Tubulin, Beta 6 Class V 

TBP  TATA binding protein 

TET  Ten-eleven translocation methylcytosine dioxygenase 

TF  Transcription factor  

TFTC  TBP-free TAF complex 

TGF   Tumour growth factor 

TREX-2  Transcription and Export complex 2 

TRIM28 Tripartite Motif Containing 28 

tRNA  Transport RNA 

Trx  Trithorax 

TSS  transcription start site  

U  Unit (of enzyme activity)  

UBP22 Ubiquitin carboxyl-terminal hydrolase 22 

UDP  Uridine diphosphate 

UV  Ultraviolet  

µ    Micro 

VHL  Von Hippel-Lindau tumour suppressor  
VSV-g  Vesicular stomatitis virus glycoprotein  

WB  Western Blot 
WCL  Whole cell lysates 

w/v  Weight/volume 
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WNT  Wingless (Wg) and integration site (INT) gene  

X-Gal  5-Bromo-4-chIoro-3-indoIyI-!-D-galactopyranoside 

XPO  Exportin 

#H2AX Phosphorylated histone 2, variant X  

Zmpste24 Zinc Metallopeptidase STE24 
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Chapter 1. Introduction 
 

1.1 Senescence 

 
Over half a century ago Hayflick and Moorhead described the finite capacity of 25 

primary human fibroblast strains to replicate in culture (Hayflick and Moorhead, 

1961). They showed that, as opposed to malignant cells, these fibroblasts would 

undergo a maximum of 50±10 population doublings before irreversibly arresting, 

what they attributed to “unknown” intrinsic factors (Hayflick and Moorhead, 1961). 

The observation that cells from adult tissues had less doubling potential than those 

of fetal donors, and the independence of such phenotype from culture conditions 

(as opposed to quiescence), prompted the establishment of the concept of cellular 

senescence or aging as a consequence of accumulation of damage to a certain 

cellular component (Hayflick, 1965). It is now well established that the cellular 

component Hayflick unknowingly mentioned were telomeres, that due to 

incomplete replication upon several cell cycle rounds, become irremediably short, 

posing a blockade to proliferation (Harley et al., 1990; Levy et al., 1992). Despite 

being arrested senescent cells are metabolically active, suggesting a dynamic role 

in biological processes. In following years it was discovered that senescence can 

be triggered prematurely by additional stresses, such as activated oncogenes. 

Oncogene-induced senescence (OIS) constitutes an important barrier against 

malignant transformation (Collado et al., 2005; Serrano et al., 1997). Thus, 

senescence is overall a response to stress, be it telomeric, oncogenic or 

genotoxic, that protects against the spreading of damaged genetic information.   

Despite its “good intentions” senescence has also a dark side and is behind 

several ageing associated diseases. Hence, senescence is a complex phenotype 

with multiple implications and its study has proven fruitful in providing insights into 

many biological scenarios ranging from embryonic development to aging. 
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1.1.1 The senescent phenotype 

 
The main hallmark of senescent cells is their intrinsic inability to resume 

proliferation, being typically arrested at the G1 phase of the cell cycle (Figure 1). 

This differentiates them from quiescent cells, that undergo cell cycle exit (G0) due 

to lack of growth stimuli, but can restart proliferation once physiological stimuli are 

optimal (Campisi and d'Adda di Fagagna, 2007). Behind the cell cycle arrest there 

is a specific genetic program that encompasses activation of major tumour 

suppressive networks, mainly involving pRb and p53 as central mediators. Despite 

the involvement of p53 both in senescence and apoptosis, senescent cells are 

frequently resistant to apoptotic stimuli, what might account for their long-time 

stability (Seluanov et al., 2001). Several factors ranging from stress level, post-

translational modifications of p53 or other cell type specifications seem to 

contribute to determine cell fate (Childs et al., 2014).  

Morphologically, senescent cells can be distinguished in culture by their flat, 

vacuolated and enlarged morphology, which underlies cytoskeleton changes 

(Nishio et al., 2001). An additional feature routinely used to identify senescent cells 

in vivo is the increased senescence-associated-"-galactosidase (SA-"-gal) activity 

measured at a sub-optimal pH 6.0, what reflects increased lysosomal activity 

(Figure 1) (Dimri et al., 1995). Despite its importance for detecting senescent 

cells, SA-"-gal is not relevant for the establishment of senescence and can be 

induced by other stresses such as prolonged confluence in culture. Therefore, its 

use as a tool to identify senescence cells must be complemented by the 

monitoring of other markers (Lee et al., 2006). 

Molecularly, senescence is characterized by changes in expression of cell cycle 

regulators (Figure 1) (Mason et al., 2004; Shelton et al., 1999). Specifically, as 

part of the senescent program for the establishment of the cell cycle arrest, 

senescent cells upregulate several cyclin-dependent kinases inhibitors (CDKi) 

such as p16, p15 and p21 and repress genes involved in proliferation most of 

which are targets of E2F transcription factors, such as cyclins A and B and the 

proliferating cell nuclear antigen (PCNA) (Pang and Chen, 1994; Seshadri and 

Campisi, 1990; Stein et al., 1991). 
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Additionally, senescent cells actively secrete a plethora of factors, collectively 

known as the senescence-associated secretory phenotype (SASP) (Figure 1). 

The SASP has been shown to influence not only the surrounding neighboring cells 

but also the extracellular matrix. The cocktail of secreted factors include, cytokines 

(i.e. IL6), chemokines (i.e IL8) and growth factors, which can have both anti- or 

pro-tumorigenic effects depending of the cellular contexts (Coppe et al., 2010; 

Kuilman and Peeper, 2009).  

Adding up to the altered genetic program, senescent cells undergo deep 

epigenetic changes (Figure 1). Specifically, senescent nuclei display foci of 

heterochromatin (senescence-associated heterochromatin foci- SAHFs) that are 

enriched for specific proteins and chromatin marks such as HP1#, HMGA1 and 2, 

H3K9me3 and H3K27me3 and depleted of H3K4me or H3K9ac (Narita et al., 

2006; Narita et al., 2003). 

Finally, the increased SA-"-gal activity reflects increased lysosomal activity, which 

has been, on its turn, associated with autophagy (Gerland et al., 2003). Autophagy 

(generally referring to macroautophagy) is a cellular catabolic process whereby 

autophagosomes engulf cytoplasmatic components and deliver them to lysosomes 

for bulk degradation (Mizushima and Komatsu, 2011). Previous reports showed 

increased autophagic activity in senescence (Capparelli et al., 2012; Dorr et al., 

2013; Narita et al., 2011; Sasaki et al., 2010; Young et al., 2009). Although rather 

paradoxical, it appears that activation of autophagy, a catabolic process, is closely 

related with the establishment of the SASP, characterized by active protein 

biosynthesis. Specifically, previous work has shown that autolysosomal vesicles 

localize adjacently to the trans side of the Golgi apparatus, forming the TOR-

autophagy spatial coupling compartment (TASCC), where mTOR also 

accumulates, to coordinate protein synthesis (Narita et al., 2011). This spatial 

organization involving catabolic and anabolic centers arises possibly to allow the 

constant supply of basic molecular components for protein biosynthesis. 

Additionally, a recent study postulated that en mass production of secreted factors 

leads to accumulation of misfolded proteins (proteotoxic stress) that can affect 

cellular viability (Dorr et al., 2013). Thus, increased autophagy, and thereafter 

lysosomal activity, has a dual role: establishing the secretory phenotype and 

protecting the cell from proteotoxic stress. It is however relevant to mention that 
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other studies have shown that autophagy counteracts senescence, thus a deeper 

investigation is needed to understand how both processes are interconnected 

(Gewirtz, 2013). It has also been suggested that lipid catabolism (fatty acid 

oxidation) increases in senescence possibly to lower the energy spent in 

biosynthesis of macromolecules that are not needed once cells are not 

proliferating (Jiang et al., 2013; Perez-Mancera et al., 2014; Quijano et al., 2012). 

 

 
 

Figure 1. The Senescent Phenotype. Multiple stresses can induce senescence. Senescent cells 
have several characteristics that allow their discrimination from additional forms of cell cycle arrest 
(i.e. quiescence). As cells undergo senescence they arrest in G1, increase lysosomal activity, 
express SA-"-Gal activity and rearrange their chromatin with concomitant formation of senescence-
associated heterochromatin foci (SAHF). Typical genes upregulated during senescence include 
cyclin-dependent kinases inhibitors (i.e. p16) and secreted factors (SASP). 

 

1.1.2 Replicative senescence 

 
When Hayflick and Moorhead first described that cultured fibroblasts could only 

undergo a finite number of population doublings the idea of a “mitotic clock” was 

established (Hayflick and Moorhead, 1961). A series of discoveries from the 

description of the DNA double helix and the “end-replication problem” by James 

Watson to the revelation of the existence of an organized and repetitive structure 

at the chromosome ends (telomeres), culminated with the finding that telomere 
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shortening, at every cell cycle round, was the phenomenon behind the Hayflick 

limit and cellular ageing (Hayflick, 1979; Moyzis et al., 1988; Shay and Wright, 

2000; Watson, 1972). 

Telomeres consist of double stranded repetitions of a single DNA motive, 

TTAGGG, extending from the 5’ toward the 3’ chromosomal end, which ends in a 

single stranded stretch (Nandakumar and Cech, 2013). In humans, telomeres 

encompass 10 to 15 Kb in average, while in mice they are longer, extending along 

20 to 50 Kb (Nandakumar and Cech, 2013).  Owing to the inability of the DNA 

polymerase to fully replicate the 3’ end of chromosomes, there is a shortening of 

telomeres at every cell cycle round. This has been referred as the “end replication 

problem” and is observed in most adult somatic cells (Figure 2) (Levy et al., 1992; 

Watson, 1972). The observation that some cells, like stem cells or cancer cells, 

overcome this limitation suggested that a compensatory mechanism exists in 

these cells. Indeed, in immortalized cells telomeres are constantly maintained 

through 3’ end binding of telomerase that contains both, a reverse transcriptase 

enzymatic activity (TERT) and the RNA template needed for telomere extension 

(Feng et al., 1995; Kim et al., 1994; Morin, 1989). More than 90% of all cancers 

show TERT upregulation (Heidenreich et al., 2014). Additionally introduction of 

telomerase in normal cells resulted in lifespan extension, suggesting that the lack 

of telomerase in non-immortal cells is behind their limited proliferation (Bodnar et 

al., 1998). 

The single stranded 3’ end of telomeres is not only needed for telomerase 

association but also for binding of specific proteins involved in telomere capping, 

composing the shelterin complex (Nandakumar and Cech, 2013). The shelterin 

complex encompasses 6 proteins, amongst which TRF1 and TRF2 that directly 

bind telomeric DNA protecting both single and doubled stranded DNA from DNA 

damage and end-to-end telomere fusions by non-homologous end joining (NHEJ) 

(Figure 2). Thus, consecutive telomere erosion ultimately leads to a stage where 

shelterin can no longer find its binding motive, therefore leaving telomeres 

uncapped and vulnerable to DNA damage which leads to replicative senescence 

through activation of ATM, p53 and p21 (Diotti and Loayza, 2011; Herbig et al., 

2004). This can be replicated when subunits of the shelterin complex are 

inactivated, for instance by expression of a double mutant TRF2 leading to 
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telomere dysfunction-induced foci (TIF) of persistent DNA damage (Hiroyuki Takai 

and Titia de, 2003; Zhang et al., 2006).  

Confirmation that senescence as a consequence of telomere attrition does happen 

in vivo arrived from several studies showing that not only senescent cells do 

accumulate in older individuals, as these cells have shorter telomeres and co-

localized with DNA damage foci (Cristofalo et al., 2004; Dimri et al., 1995; Herbig 

et al., 2006). 

 

 

 
 
Figure 2. Replicative senescence. The existence of telomerase in cancer cells and telomeric 
proteins protects telomeres from erosion and DNA damage. Somatic cells do not have active 
telomerase and therefore cannot efficiently replicate chromosomal ends. Once cells reach the 
Hayflick limit and/or telomeric proteins uncap the telomeres, telomeric DNA accumulates DNA 
damage that triggers senescence and therefore irreversible cell cycle arrest (Nandakumar and 
Cech, 2013). 
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1.1.3 Premature senescence  

 
Despite its earlier association with telomeres and aging, senescence has been 

subsequently described to occur also in response to other triggers. Thus, due to 

the dissociation of such types of senescence from the cell replicative status, they 

are collectively referred to as “premature senescence”, as it happens before the 

Hayflick limit is reached (Kuilman et al., 2010). Premature senescence represents 

therefore a robust cell defense mechanism to several stresses in order to impede 

perpetuation of damaged genetic content.   

1.1.3.1 Stress-induced senescence  

 

The induction of senescence in response to triggers other than shortened 

telomeres has suggested that senescence is above and foremost a cellular 

response to stress. Although the recent observation of senescence during 

embryonic development challenged the idea that senescence is exclusively an 

endpoint of a stress response, in most cases senescence is a reaction to stress 

(Perez-Mancera et al., 2014).  

Murine cellular models were key for defining premature senescence, as mouse 

cells have long telomeres and activated telomerase, but still undergo senescence 

via telomere independent mechanisms (Kipling and Cooke, 1990; Perez-Mancera 

et al., 2014; Prowse and Greider, 1995).  Indeed stress- and DNA damage-

inducing triggers such as chemotherapeutical drugs (Therapy-induced 

senescence), activated oncogenes or #-irradiation, induce senescence (Dorr et al., 

2013; Rodier et al., 2009; Schmitt et al., 2002; Serrano et al., 1997). Interestingly, 

these stresses frequently lead to persistent DNA damage in the telomeric regions 

(TIF, or telomere dysfunction-induced foci), irrespective of the replicative status, 

which is irreparable due to the presence of the capping complex proteins, such as 

TRF2, that do not allow for assembly of the repair machinery (Fumagalli et al., 

2012; Herbig et al., 2006). 

An additional cause for premature senescence is oxidative stress (Kuilman et al., 

2010). In fact, the association between oxygen levels and senescence has long 

been appreciated as a cause of the “culture shock” observed upon cell culture 

together with disruption of cell–cell contacts, lack of interactions between different 
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cell types, medium-to-cell ratio, lack of appropriate growth factors as well as 

plating on plastic (Sherr and DePinho, 2000). Reactive oxygen species (ROS) are 

central to oxidative stress and have been reported as both cause and 

consequence of senescence. Treatment with anti-oxidants can reverse the 

senescent phenotype (Chen et al., 1995; Lee et al., 1999; Macip et al., 2002; 

Passos et al., 2010). ROS arise from mitochondrial dysfunction and have been 

shown to engage mainly on a p38 MAPK/p21-mediated positive feedback loop 

with DDR to maintain senescence, although p16/pRb pathway might play a role as 

well (Passos et al., 2010; Sun et al., 2007).   

Several studies have shown that the mitochondrial function is significantly altered 

in senescence (Salama et al., 2014). Whereas some studies suggest that 

senescent cells shift their metabolism from glycolysis to mitochondrial respiration 

in senescence with consequent mass energy production (mainly OIS and TIS), 

others report that mitochondrial function and energy production, is impaired in 

senescent cells that show increased mitochondrial biogenesis ( Dorr et al., 2013; 

Kaplon et al., 2013; Moiseeva et al., 2009; Passos et al., 2007a; Passos et al., 

2007b; Quijano et al., 2012). Nevertheless in both cases, increased ROS 

production seems to underlie altered mitochondrial function in senescence 

(Moiseeva et al., 2009; Passos et al., 2007a; Passos et al., 2007b). Increases in 

reactive oxygen species in senescence can also be due to a decrease in NADPH 

(Jiang et al., 2013). 

 

1.1.3.2 Oncogene-induced senescence 

 

A type of premature senescence requiring special mention is that induced by 

activated oncogenes (Figure 3). It had long been appreciated that introduction of 

oncogenes into cells in vitro could result in a cell cycle arrest (Franza et al., 1986; 

Land et al., 1983). The explanation to this phenomenon came in 1997, when 

Serrano and co-workers observed that human fibroblasts transduced with the 

oncogene H-RasV12 presented features overlapping with those of cells that had 

undergone replicative senescence (Serrano et al., 1997). Ras expressing cells 

were cell cycle arrested, expressed p53 and p16 and were positive for SA-"-gal. 

These observations were subsequently extended to other oncogenes such as 
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MEK or RAF (Lin et al., 1998; Zhu et al., 1998). Subsequent studies confirmed that 

this type of senescence was independent from the replicative status of the cells, 

as introduction of telomerase could not revert the phenotype, thus postulating that 

oncogenes could induce senescence prematurely, at least in vitro (Wei et al., 

1999). The relevance of oncogene-induced senescence in vivo came only in 2005 

when several groups independently showed that oncogenes could be found in 

murine and human benign lesions (Braig et al., 2005; Chen et al., 2005; Collado et 

al., 2005; Lazzerini Denchi et al., 2005). Specifically, animal models expressing K-

Rasv12 and Eµ-N-Ras presented benign lung lesions and non-lymphoid 

neoplasias, respectively, with characteristics of senescence. Interestingly, the 

malignant counterparts did not present senescence-like features suggesting that 

OIS could function as a barrier against tumorigenesis (Braig et al., 2005; Collado 

et al., 2005). Moreover in the case of the latter, depletion of either p53 or Suv39h1 

(H3K9 methyltransferase) resulted in bypass of senescence (Braig et al., 2005). 

The overexpression of BRAFE600 and E2F3 in human and murine lesions 

overlapped with appearance of senescence, in the skin and pituitary gland, 

respectively ( Lazzerini Denchi et al., 2005; Michaloglou et al., 2005). The case of 

BRAFE600 benign skin lesions (nevi) is a remarkable example of how oncogene-

induced senescence contributes to the stable repression of malignancy for several 

years (de Keizer et al., 2010; Lazzerini Denchi et al., 2005). OIS has since been 

observed in other pre-malignant lesions, as for instance in K-RASG12D serrated 

colon benign lesions (Bennecke et al., 2010). In addition, more than 50 oncogenes 

are able to induce senescence (Gorgoulis and Halazonetis, 2010). For instance c-

Myc in the presence of stroma derived TGF-" triggers senescence and prevents 

B-cell lymphoma (Reimann et al., 2010). The extent to which oncogenes trigger 

senescence to the detriment of proliferation depends on whether oncogene 

expression exceeds a certain threshold (Junttila et al., 2010; Sarkisian et al., 

2007). 

Senescence upon oncogene activation arises in part due to DNA hyper-replication, 

single- and double-strand DNA breaks (SSB and DSB, respectively) and 

consequent DNA damage, although this might not be a universal feature (Bartkova 

et al., 2006; Bianchi-Smiraglia and Nikiforov, 2012; Di Micco et al., 2006). A 

senescent benign lesion can also be triggered upon tumour suppressor loss. A 
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prototypical case of tumour suppressor loss is that of PTEN- loss-induced cellular 

senescence (PICS) in prostate lesions (Alimonti et al., 2010; Chen et al., 2005; Lin 

et al., 2010). This type of senescence differs from OIS as although it relies on p53 

expression it occurs in the absence of proliferation and visible DDR (Alimonti et al., 

2010; Lin et al., 2010). Loss of NF1,VHL (von Hippel–Lindau tumour suppressor 

gene) and Rb can also induce senescence in neurofibromas, and kidney and 

thyroid tumours, respectively (Courtois-Cox et al., 2006; Shamma et al., 2009; 

Young et al., 2008). 

  
Figure 3. Oncogene-induced senescence. Activated oncogenes lead to DNA hyperreplication, 
proliferation and consequent DNA damage accumulation, triggering senescence. Benign tumours 
are frequently populated by senescent cells, which are thought to provide an anti-proliferative 
barrier for tumour progression. Additionally, senescent cells secrete proinflammatory cytokines that 
attract the immune system leading to tumour clearance, for what senescence is considered an anti-
tumorigenic barrier. However, if cells manage to bypass the senescence barrier, the SASP might 
confer pro-tumorigenic properties to senescent cells and reinforce tumour progression. 

 

1.1.3.3 Other types of senescence  

 

Despite its long-term association with aging, senescence has been shown to occur 

in early phases of the embryonic development. Specifically, two recent 

manuscripts demonstrated that senescence is a developmentally programmed 
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event during embryogenesis  (Figure 4)  (Munoz-Espin et al., 2013; Storer et al., 

2013).  

SA-"-gal had already been reported in the mesonephros (embryonic kidney) of 

quail embryos, however, although hypothesized, a direct connection with 

senescence was not established (Nacher et al., 2006). In 2013, two independent 

studies corroborated these results by showing that SA-"-gal positive cells do 

indeed accumulate in the mesonephros and endolymphatic sac of the inner ear, 

and the apical ectodermal ridge (AER, important for limb outgrowth and patterning) 

and the neural roof plate, respectively, of mice and chick (Munoz-Espin et al., 

2013; Storer et al., 2013). They showed that these cells have characteristics of 

senescence: they are arrested at G1, show increased expression of specific 

senescence-associated markers such as p21, p15 and p27 and have senescence-

associated chromatin and nuclear features (H3K3me, HP1#, PML) (Munoz-Espin 

et al., 2013; Storer et al., 2013). Moreover, gene expression of those cells largely 

overlapped with that of oncogene-induced senescence namely in the induction of 

factors involved in the SASP, suggesting that already in the embryo senescence 

might be triggered to influence surrounding tissues (Storer et al., 2013). Despite 

the overlap of gene expression, developmental senescence appears to be more 

rudimental, as it relies strictly on p21 expression with no DDR, p53 or p16 

associated expression (Munoz-Espin et al., 2013; Storer et al., 2013). 

Nevertheless, failure in establishing senescence in the mesonephros of mice 

embryos, led to developmental defects in the adult animals, namely in the 

incomplete removal of vaginal septa, which can lead to infertility (Munoz-Espin et 

al., 2013). Moreover, the observation that cells with the aforementioned 

characteristics were also present in human embryos suggests that developmental 

senescence is an evolutionary conserved process (Munoz-Espin et al., 2013). 
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Figure 4. Senescence is developmentally programmed. Several embryonic structures stain 
positive for SA-"-Gal during phases E11.5 to E14.5 of embryonic development. Cells show 
charateristics of senescence such as lack of proliferation (BrdU), expression of the CDK inhibitor 
p21, independently of p53, and expression of SASP-associated factors. Developmental 
senescence is independent of DNA damage and is rather activated through the TGF"/SMAD-
mediated pathway. (Adapted from Munoz-Espin et al., 2013 and Storer et al., 2013) 

 

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPS) 

though the expression of four transcription factors, OCT4, SOX2, KLF4 and c-

MYC. However the rate of reprogramming to iPS is low (Takahashi and 

Yamanaka, 2006). Several studies in 2009, showed that expression of the 4 

factors can trigger a DDR response as well as the expression of known 

senescence mediators, p16, p53 and p21 suggesting that limited reprogramming 

could arise due to the establishment of a senescence-associated barrier (Banito et 

al., 2009; Hong et al., 2009; Kawamura et al., 2009; Li et al., 2009; Marion et al., 

2009; Utikal et al., 2009). This becomes relevant in the context of cancer stem 

cells, suggesting that senescence could function as a barrier for the unlimited self-

renewal capacity of these cells (Reya et al., 2001). A recent study however, 

showed that addition of 2 other factors, specifically NANOG and LIN28, allowed for 

full reprogramming of senescent fibroblasts, suggesting that optimization of 

reprogramming methods might permit senescence bypass (Lapasset et al., 2011). 

Finally, one of the main characteristics of senescence is its ability to produce 

secreted factors with both pro- and anti-inflammatory properties, able to affect the 

surrounding tissues (Coppe et al., 2010; Kuilman and Peeper, 2009). Recent 

reports showed that secreted factors, specifically IL-1$ and IL-1" and members of 
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the TGF" family of ligands, can act on neighboring non-stressed cells and induce 

senescence with properties very similar to that of origin cells (Acosta et al., 2013a; 

Hubackova et al., 2012). “Paracrine senescence” is therefore a new form of 

senescence that will certainly elicit further studies, as it reinforces the importance 

of the SASP and consequently the ability of senescent cells to ”spread” the 

phenotype and halt the expansion of damaged cells.  

Of note, any stress able to induce the INK4/ARF locus, which encodes major 

regulators of senescence is likely to induce cell cycle arrest and will be discussed 

later (Peters, 2008).  

 

1.1.4 Molecular pathways controlling senescence 

1.1.4.1 Tumour suppressor pathways 

 

The principal hallmark of senescence is the lack of proliferation, and despite the 

multitude of senescence triggers it all seems to come down to the activation of two 

main tumour suppressor pathways involving p53 and pRb, respectively (Figure 6) 

(Courtois-Cox et al., 2008). 

Retinoblastoma protein (pRb) is a tumour suppressor gene, highly mutated in 

cancer which belongs to the “pocket” protein family that bind members of the E2F 

transcription factors family, involved in cell cycle progression (Burkhart and Sage, 

2008). Despite the similarity of pRb with other pocket proteins (i.e. p107 and p130) 

pRb has specific functions in senescence regulating a particular subset of E2F 

target genes (Chicas et al., 2010). 

Regulation of pRb activity is mediated by phosphorylation. Specifically, as cyclin D 

and E increase during G1, they start forming complexes with cyclin dependent 

kinases (CDK) CDK4 and 6 and CDK2, respectively. Once activated, CDKs are 

able to phosphorylate pRb, releasing E2F transcription factors, which then bind the 

promoters and upregulate the expression of cell cycle genes, such as cyclins (i.e. 

cyclinA2, cyclin E etc) resulting in progression into S-phase (Chicas et al., 

2010);(Spitkovsky et al., 1997; Weinberg, 1995).  

pRb hyperphosphorylation is counteracted by CDK inhibitors (CDKi), such as p16, 

p21, p15 and p27 which are essential for the establishment of hypophosphorylated 
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pRb (Munoz-Espin and Serrano, 2014). Concomitant with an important role in cell 

cycle regulation, CDK inhibitors are often downregulated or mutated in cancer 

(Chu et al., 2008; Krimpenfort et al., 2007; Okamoto et al., 1994). Conversely, 

these CDKi accumulate during senescence (Kuilman et al., 2010). Particularly, the 

p16-pRb pathway is of extreme relevance for both replicative and oncogene-

induced senescence in humans. The CDK4/6 inhibitor p16 which is not normally 

expressed in adult tissues, is increasingly expressed during aging (see below, 

regulation of the INK4/ARF locus) and upon oncogene activation and its depletion 

impairs the establishment of senescence (Alcorta et al., 1996; Brookes et al., 

2004; Brookes et al., 2002; Burd et al., 2013; Lowe and Sherr, 2003; Serrano et 

al., 1997; Zindy et al., 1997). Additionally, p16 is often deleted in cancer and 

mutations are mutually exclusive with those for pRb, reinforcing that these 

molecules act in a linear pathway to inhibit cell cycle and induce senescence 

(Burkhart and Sage, 2008; Okamoto et al., 1994). Inactivation of p16 leads to 

extended, although finite, lifespan as cells can only proliferate for another few 

rounds of replication until they undergo telomere crisis and cell cycle arrest, 

mediated by a second pathway involving p53 and p21 (Brookes et al., 2004; 

Chicas et al., 2010; Shay and Wright, 2000). Of note both p16 and telomerase 

inhibition are needed for immortalization of cultured fibroblasts, what per se 

already suggests the existence of at least 2 pathways controlling senescence 

(Kiyono et al., 1998). A recent report showed that p16 inhibition could result in 

increased telomere instability and further DDR signaling, p53 and p21 activation 

and cell cycle arrest (Wang et al., 2013). Altogether, this suggests that p16 not 

only has a protective role in ageing as it communicates with the p53/p21 pathway 

for reinforcing replicative senescence (Kuilman et al., 2010; Martin et al., 2014; 

Takeuchi et al., 2010). 

Other key tumour suppressor is p53 which has a central role in cell fate decision 

controlling several processes such as senescence and apoptosis, for what it is 

considered the guardian of the genome. It is therefore not surprising that more 

than 50% of all human cancers have mutations on p53 (Bieging et al., 2014; Rinn 

and Huarte, 2011). p53 acts as a transcription factor and directly (via binding to 

p53 consensus response element- p53RE- on target promoters) or indirectly 

regulates the expression of several downstream targets (Rinn and Huarte, 2011). 

One of such genes is the CDK2/CDK1 inhibitor p21, which accumulates in 
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response to p53 activation (el-Deiry et al., 1993). By doing so p53 controls pRb 

phosphorylation levels and induces cell cycle arrest at the G1 and G2 phases by 

negatively interfering with E2F target genes expression such as cyclin A2 and 

directly inhibiting cyclinB/CDK1 complexes, respectively (Abbas and Dutta, 2009; 

Brugarolas et al., 1995; Deng et al., 1995; Dutta and Anindya, 2009; Spitkovsky et 

al., 1997). In mice, p53 can mediate senescence independently of p21 as murine 

cells lacking p21 can still undergo cell cycle arrest (Pantoja and Serrano, 1999). 

However this does not apply to human cells as p21 depletion leads to a 

senescence bypass, suggesting that it is an essential modulator of p53-mediated 

senescence in humans (Brown et al., 1997). Indeed, p53 regulates the expression 

of a plethora of genes relevant for senescence such as MDM2, its negative 

regulator, PAI-1, 14-3-3% and Gadd45a (Bieging et al., 2014; Lanigan et al., 2011). 

Also p21 has been shown to be regulated in a p53-independent and Chk2-

dependent fashion and induce senescence in human cells (Aliouat-Denis, 2005).  

p53 is mainly regulated at the post-translational level. Specifically, one of its target 

MDM2 (HDM2 in humans) is a E3 ubiquitin ligase that regulates p53 by both 

directly inhibiting its transcriptional activity and sending it for degradation (Xu, 

2003). In response to DNA damage p53 is rapidly phosphorylated by ATM (Ataxia 

telangiectasia mutated serine/threonine kinase) and Chk2 (checkpoint kinase 2) 

on serines 15 and 20, respectively, and less so by ATR/Chk1 on Ser 15 what 

competes with MDM2 binding therefore leading to protein stabilization and 

increased half-life (Qian and Chen, 2013). Direct MDM2 phosphorylation by ATM 

synergizes to increase p53 stability that is also enhanced by acetylation. Different 

acetylating events might direct p53 to decide between cell fates (i.e. apoptosis vs 

senescence) that additionally seem to depend on different transactivation domains 

(Brady et al., 2011; Qian and Chen, 2013). 

DNA damage response (DDR) is key for p53 activation and it is often involved in 

cellular senescence (Figure 5) (d'Adda di Fagagna, 2008). Telomere erosion, 

genotoxic stress (i.e. #irradiation), or DNA hyper-replication upon oncogene 

signaling, can lead to the exposure of single stranded DNA or double strand 

breaks (DSB) triggering a DDR signaling and consequent cell cycle arrest 

(Bartkova et al., 2006; d'Adda di Fagagna et al., 2003; Di Micco et al., 2006; 

Fumagalli et al., 2012; Herbig et al., 2004). These abnormalities lead to the 
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recruitment of Ataxia Telangiectasia and Rad3-related (ATR) and ATM, 

phosphorylation of the histone variant H2Ax (#H2Ax), deposition of mediator of 

DNA-damage checkpoint 1 (MDC1) and p53-binding protein 1 (53BP1) that 

reinforce a positive feedback loop which culminates with ATM/CHK2 and 

ATR/CHK1 mediated p53 phosphorylation and senescence (d'Adda di Fagagna, 

2008). This is exacerbated by concomitant phosphorylation and inactivation of 

CDC25 (cell-division cycle 25), which is itself a target of p53 mediated repression 

(Clair and Manfredi, 2006; Mailand et al., 2000).  

 
 
Figure 5. The DNA damage response. MRE11, RAD50 and NBS1 are sensors of double strand 
breaks and lead to activation of the kinase ataxia-telangiectasia mutated (ATM) and consequent 
amplification of the response by recruitment of other DNA damage signaling proteins. ATM acts as 
a kinase of several proteins including MDM2, MDM4, p53 and checkpoint-2 (CHK2), which 
phosphorylates p53 and other proteins. Single strand breaks are sensed by replication protein A 
(RPA) and the RAD9–RAD1–HUS1 (9-1-1) complex that  attract the ataxia-telangiectasia and 
Rad3-related (ATR) - interacting protein (ATRIP) which phosphorylates the 9-1-1 complex 
(constituted by RAD9, RAD1 and HUS1) further activating ATR. Active ATR phosphorylates p53, 
MDM2, checkpoint-1 (CHK1) and other substrates. Both ATM and ATR phosphorylate several 
proteins important for sustaining the DNA damage response (i.e. #H2Ax, 53BP1). DNA damage 
signaling ultimately spreads away from the damaged site, culminating with activation of effector 
proteins such as p53, CDC25 or structural maintenance of chromosomes (SMC1).  Depending of 
cellular context and levels of DNA damage final outcome might encompass DNA repair and 
proliferation resuming, cell death or apoptosis (Sulli et al., 2012) 
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p53 can also be activated through direct phosphorylation by p38- 

regulated/activated protein kinase during Ras-induced senescence, in a DDR 

independent way (PRAK) (Sun et al., 2007). Finally an important regulator of p53 

in mice is p19ARF (p14 ARF in humans). ARF is a negative regulator of MDM2, by 

impeding its ubiquitinase activity against p53 as well as promoting its degradation 

(Honda and Yasuda, 1999; Pomerantz et al., 1998; Tao and Levine, 1999; Zhang 

et al., 1998). p19ARF is upregulated during Ras-induced senescence and its 

depletion led to a bypass of OIS in rodent cells (Kamijo et al., 1997; Palmero et al., 

1998; Wei et al., 2001). Whereas it seems to have a prominent role during OIS in 

murine models, its role in human cells is not so prominent (Michaloglou et al., 

2005; Wei et al., 2001).  

Additionally, in fibroblasts induced to senesce by BRAFE600 expression, p16 is 

upregulated but other factors such as FOXO4/p21 seem to play a key role in 

inducing cell cycle arrest (de Keizer et al., 2010; Michaloglou et al., 2005). Thus, 

both the DDR/p53/p21 and p16/pRb pathways are likely to contribute to the 

establishment of different types of senescence, with cell specificities possibly 

dictating the relative contribution of each route for the observed phenotype.  
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Figure 6.  Molecular routes regulating senescence. Several stresses, from damaged telomeres, 
oncogene signaling or oxidative stress induce senescence invariably through activation of the 
p53/p21 or p16/pRb pathways, culminating with CDKi mediated hypophosphorylated pRb and 
consequent downregulation of E2F transcription factors target genes. Upstream signaling 
pathways can encompass DNA damage signaling as in the case of damaged telomeres and 
oncogenic signaling, ARF-mediated p53 activation (mainly in murine models) upon oncogene 
signaling or CDKN2A derepression or MAPK signaling. Paracrine senescence is activated by the 
SASP and is thought to signal through the TGF"/SMAD signaling pathway (Adapted from Munoz-
Espin and Serrano, 2014). 

 

1.1.4.2 Regulation of the senescence-associated secretory phenotype (SASP) 

 
In addition to the pathways regulating the cell cycle arrest, a parallel, however 

intertwined network of genes regulates the SASP, which consists of a mixture of 

secreted factors, including cytokines, chemokines, proteases, extracellular matrix 

components and growth factors. As these factors are involved in extracellular 

signaling, then senescent cells can influence surrounding cells (Coppe et al., 

2010; Kuilman and Peeper, 2009). Prototypical SASP factors include the cytokine 

IL6 and several of the CXCR2 ligands such as IL8, and GRO$. Their induction has 

been shown to be dependent on NF-!" and C/EBP" (Acosta et al., 2008; Chien et 

al., 2011; Kuilman et al., 2008). Although SASP induction upon persistent DNA 



Chapter 1. Introduction 

 

 42 

damage signaling has been reported, the DDR response does not appear 

absolutely necessarily as DDR-independent induction of the SASP is also 

observed (Freund et al., 2011; Orjalo et al., 2009; Rodier et al., 2009). Additional 

regulators of the SASP include, mTOR, p38MAPK and PARP-1 (Freund et al., 

2011; Narita et al., 2011; Ohanna et al., 2011). Also, while p16 seems 

unnecessary, p53 can affect the production of IL6 and IL8 (Coppe et al., 2011). 

Specifically, Coppe et al. showed that p53 acted to restrain the SASP (Coppe et 

al., 2008). The idea that p53-mediated signaling played a role in SASP regulation, 

was reinforced by a recent work from Lowe and colleagues showing that p53 

depletion in hepatic stellate cells leads to quantitative and qualitative alterations of 

the secretome and consequently a shift in the attracted macrophage population 

from a anti- to protumorigenic, with functions in angiogenesis and tissue 

remodeling (Lujambio et al., 2013). Recent work identified that the inflammasome 

also regulates the SASP (Acosta et al., 2013). 

As the network of SASP regulators continues to build, it is now clear that secreted 

factors can act both in an autocrine or paracrine way (Figure 7). Specifically, 

studies by both Gil and Pepper and colleagues demonstrated that IL6, and CXCR2 

ligands (i.e. IL8, GRO$) not only are upregulated in OIS, as signal through their 

receptors to reinforce senescence in a p15 and p53-mediated way, respectively 

(Acosta et al., 2008; Kuilman et al., 2008). Autocrine reinforcement of senescence 

includes an additional positive feedback loop mediated by IL1 signaling and the 

inflammasome leading to further accumulation of IL6 and IL8 (Acosta et al., 2013; 

Orjalo et al., 2009).  

As previously mentioned, the SASP can act on the surrounding microenvironment 

to induce senescence in non-stressed cells, what has been denominated 

“paracrine senescence” (Acosta et al., 2013). Senescence can be induced on 

bystander cells by soluble factors, among which IL-1$ and IL-1" and TGF" and 

related family members, via SMAD signaling, play a role both in vitro and in vivo 

(Figure 6, Figure 7) (Acosta et al., 2013; Hubackova et al., 2012). Thus, paracrine 

senescence can propagate the tumour suppressive environment to the 

neighboring cells.  
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Figure 7. The senescence-associated secretory phenotype. Senescent cells secrete a plethora 
of proinflammatory cytokines, chemokines and growth factors which is regulated by transcription 
factors such as NF-!" and C/EBP" and other cellular components like the inflammasome. These 
factors can reinforce senescence autonomously (i.e. IL-6 and Il-8) or have paracrine effects that 
range from pro-senescence functions, to immunomodulatory (regulating immune system mediated 
clearance of senescent cells) or pro-tumorigenic depending on the cellular context (Hoare and 
Narita, 2013). 

 

1.1.5 Epigenetic mechanisms controlling senescence 

 
Epigenetic control of gene expression involves mechanisms that are independent 

of the DNA sequence, but instead depend on alterations occurring at the 

chromatin level. Changes in the status of chromatin condensation are achieved by 

a combinatorial action of several effectors from histones, to “writers” (such as 

methyltransferases) and “readers” (i.e. chromodomain containing proteins) (Barth 

and Imhof, 2010). Histones and DNA are the basic components of the chromatin.  

Core histones (H2A, H2B, H3 and H4) associate with around 147 bp of DNA to 

form the nucleosomes. DNA between nucleosomes is called linker DNA and is 

bound by H1 histone. Histone N and C tails can be modified by “writers” (Barth 

and Imhof, 2010). Histone acetylation is usually associated with the induction gene 

expression, and histone methylation with both transcriptional activation and 
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repression. For instance, H3K9me di- and trimethylation and H3K27me3 are 

typical marks of repressed promoters and chromatin. However, H3K4me for 

instance is normally associated with active chromatin (Rai and Adams, 2012). 

Finally once a chromatin mark is created it can be “read” by proteins with specific 

domains, for example bromodomain containing proteins (usually detect acetylated 

histones- i.e. SWI/SNF) or proteins with chromodomains (usually recognize 

methylated residues- i.e. HP1) that translate the chromatin language to other 

enzymatic complexes. Nevertheless additional histone marks and readers exist 

(Barth and Imhof, 2010). 

Regulation of several senescence effectors, such as p21, p14, p16 or p15 is 

achieved mostly at the transcriptional level. Furthermore, the three latter present 

an interesting scenario as they are expressed from the same locus, known as the 

INK4b-ARF-INK4a locus, which is under stringent epigenetic regulation.  

Additionally, high-order chromatin-remodeling events are known to take place in 

senescence, and thought to contribute to the stability of the phenotype.  

 

1.1.5.1 INK4b-ARF-INK4a locus 

 

The INK4b-ARF-INK4a (also known as INK4/ARF locus) locus extends along 25 

Kb of the human chromosome 9p21 (mouse chromosome 4), and encodes two 

related cyclin dependent kinases inhibitions, p15 (INK4b) and p16 (INK4a), and 

the unrelated gene ARF, all with relevant functions in senescence (Figure 8) (Gil 

and Peters, 2006). While p16 and p15 induce senescence by negatively regulating 

CDK4 and CDK6 and consequently allowing pRb mediated negative regulation of 

E2F target genes, ARF is an upstream regulator of p53, that by negatively 

regulating MDM2 (HMD2) increases p53 stability and half-life (Honda and Yasuda, 

1999; Pomerantz et al., 1998; Quelle et al., 1995; Tao and Levine, 1999; Zhang et 

al., 1998) The name ARF derives from the fact this gene arises from an alternative 

reading frame (ARF) from that of p16, with which it shares two exons. However, 

p15 is encoded by an independent and adjacent gene (Quelle et al., 1995).  

The genomic region containing the INK4/ARF locus is one of the most altered in 

cancer (Esteller, 2008; Gil and Peters, 2006). Indeed, data from murine models 

suggest all three genes are bona fide tumour suppressors and senescence 
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regulators (Lanigan et al., 2011; Sharpless, 2005). However some differences 

exist regarding the relevance of each gene in mouse models and humans. While 

ARF is upregulated in murine models and its deletion results in senescence 

bypass and tumorigenesis, the same is not true in human cells (Kamijo et al., 

1997; Michaloglou et al., 2005; Palmero et al., 1998; Voorhoeve and Agami, 2003; 

Wei et al., 2001). Indeed, although existent, ARF-specific mutations in human 

tumours are rarer than those for p16 (Sharpless, 2005). Conversely, the 

expression of p16 is upregulated as tissues age and upon several stresses, such 

as oncogenes, genotoxic stress and telomere erosion, and is one of the most 

mutated genes in human cancer (Alcorta et al., 1996; Burd et al., 2013; Jacobs 

and de Lange, 2004; Okamoto et al., 1994; Serrano et al., 1997; Sun et al., 2007; 

Yamakoshi et al., 2009). The role of p15 has been less studied than those of its 

neighboring genes. However p15 is also a tumour suppressor mainly in 

hematological malignancies and is upregulated and regulates senescence 

(Boultwood and Wainscoat, 2007; Collado et al., 2005; Erickson et al., 1998; He et 

al., 2008; Kim and Sharpless, 2006; Krimpenfort et al., 2007; Malumbres et al., 

2000). 

Owing to the importance of this locus in aging and cancer its regulation must be 

tightly tuned to keep its expression low in young tissues but immediately inducible 

under stressful events. Several transcription factors have been reported to directly 

bind and regulate the expression the INK4b-ARF-INK4a locus, as for instance 

MYC, AP1 and E2F family members (reviewed in Gil and Peters, 2006). The best 

described transcription factor-mediated mechanism regulating INK4a expression is 

that involving Ets1 and Ets2, and ID1 positively and negatively regulating p16, 

respectively (Alani et al., 2001; Lyden et al., 1999; Ohtani et al., 2001).  

However, the tight regulation and plasticity of expression of the INK4/ARF is 

achieved mainly via epigenetic mechanisms (Figure 8) (Gil and Peters, 2006; 

Lanigan et al., 2011; Popov and Gil, 2010).  

The prototypical epigenetic regulators of the INK4/ARF locus are Polycomb 

proteins which organize into two complexes, PRC1 and PRC2. PRC1 is composed 

by a Pc (Polycomb) protein (i.e. CBX7,CBX8), a PSC (Posterior sex combs) 

protein (i.e. BMI1/ MEL18), a RING (Really Interesting New Gene) protein, a PH 

(Polyhomeotic) protein and an SCML (Sex combs on mid-leg) protein, whereas 

PRC2 is made up by EZH2 (Enhancer of Zeste2), Embryonic Ectoderm 
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Development (EED) and SUZ12 (Suppressor of Zeste-12) (Bracken and Helin, 

2009). These complexes are involved in chromatin repression and achieve so via 

a multistep process that involves first the tri-methylation of H3K27 by EZH2 

(PRC2), its reading by PRC1 and consequent H2A monoubiquitination of lysine 

119 mediated by RING proteins (Bracken and Helin, 2009). 

In unstressed young cells Polycomb proteins exert their repressive function on the 

INK4/ARF locus, through deposition of H3K27me3. However as cells reach 

senescence, EZH2, which is downstream of the pRb/E2F pathway, is 

downregulated, Polycomb complexes are displaced and the INK4/ARF locus 

expressed (Agherbi et al., 2009; Bracken et al., 2007; Bracken et al., 2003). 

Moreover, senescence as a consequence of oncogenic Ras displayed identical 

dynamics, indicating that loss of Polycomb-mediated repression of the INK4/ARF 

locus is a common feature in senescence (Barradas et al., 2009). Supporting their 

role in senescence, previous work showed that overexpression of Polycomb genes 

CBX7 and CBX8 resulted in extended lifespan (Gil et al., 2004; Dietrich et al., 

2007), while knockdown of BMI1, CBX7, CBX8, and MEL18 induced senescence, 

due to INK4/ARF upregulation (Dietrich et al., 2007; Gil et al., 2004; Itahana et al., 

2003; Jacobs et al., 1999; Maertens et al., 2009). Considering their role in 

repressing potent tumour suppressors, such as p16, it is therefore not surprising 

that Polycomb genes are frequently overexpressed in cancer and confer 

oncogenic properties (Bracken et al., 2003; Chang et al., 2011; Yang et al., 2010). 

Localization of Polycomb complexes to the INK4/ARF locus has been shown to be 

potentiated by several mechanisms (Figure 8), as for instance binding to 

transcription factors like the Zinc Finger Protein Zfp277 and the DNA replication 

factor CDC6, that interact with BMI1 (Agherbi et al., 2009; Negishi et al., 2010). 

Recently also Homeobox genes (i.e. HLX1) have been shown to mediate p16 

repression through Polycomb recruitment (Martin et al., 2013a; Martin et al., 

2013b). Additionally, binding to long non-coding RNAs (ncRNAs), like ANRIL, 

plays a role in correct targeting of Polycomb proteins to the regulatory region of 

the INK4a locus. Specifically ANRIL is a cis transcript of the INK4/ARF locus and 

has been implicated in recruiting CBX7 containing complexes and contributing for 

Polycomb mediated senescence inhibition (Figure 8) (Yap et al., 2010). 

Polycomb eviction from the INK4/ARF locus during senescence is achieved due to 

concerted action of several mechanisms. In one hand, EZH2 is a target for E2F 
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mediated transcription. As during senescence E2F transcription factors are 

tethered by hypophosphorylated pRb, their transcriptional targets are 

consequently downregulated (Bracken et al., 2004; Bracken et al., 2003). 

Additionally, other chromatin remodeling complexes also play a role. That is the 

case of the SWI/SNF chromatin remodeling complex (mediating nucleosome 

repositioning) that has been associated with senescence partly due to its role in 

promoting displacement of Polycomb complexes from the INK4b-ARF-INK4a locus 

(Figure 8) (Alessio et al., 2010; Burrows et al., 2010; Kia et al., 2008; 

Oruetxebarria et al., 2004; Wilson et al., 2010). Specifically, SWI/SNF targeting to 

the INK4/ARF promoter appears to depend on SNF5, leading to chromatin 

remodeling by subsequent action of the SWI/SNF catalytic subunit BRG1, and 

upregulation of p16 and p15 (Kia et al., 2008). Moreover SWI/SWF positioning 

within the INK4/ARF promoters mediates recruitment of Trithorax group proteins, 

like MLL, leading to formation of active chromatin marks such as H3K4me3, and 

transcriptional activation of both p16 and p15 genes (Kia et al., 2008; Kotake et al., 

2009). Finally, an additional consequence of SWI/SNF recruitment is the eviction 

of DNA methyltransferase DNMT3B and consequent loss of repressive CpG 

island-associated methylation, on the promoter of the p16 gene (Figure 8) (Kia et 

al., 2008). Since the INK4/ARF locus is hypermethylated in cancer and several 

DNA methylases have been described to localize to the regulatory region of 

Polycomb target genes, it is likely that other DNMTs might also contribute for 

repression of INK4/ARF enconded genes (Esteller et al., 2001; Mohammad et al., 

2009; Vire et al., 2006). Also histone demethylases can negatively regulate 

senescence by specifically demethylating the H3K36me2 active chromatin mark 

within the INK4b (p15) locus upon Ras activation (He et al., 2008). 

Finally, in 2009 two groups independently characterized the role of a H3K27me3 

histone demethylase, JMJD3, that counteracts Polycomb mediated repression 

during senescence triggered upon RAS or BRAF overexpression or irradiation 

(Figure 8) (Agger et al., 2009; Barradas et al., 2009). Once again suggesting the 

different importance of ARF in mouse and humans, JMJD3 does modulate ARF 

expression in MEFs but not in HDF, where it specifically upregulates p16 and 

possibly p15 (Barradas et al., 2009). 
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Figure 8. Epigenetic regulation of the INK4/ARF locus. The INK4/ARF locus encodes for the 
CDK inhibitors, p15 and p16 as well as ARF and, in young cells, is normally under epigenetic 
repression mediated by a plethora of regulators. The best described mechanism of epigenetic 
repression of the INK4/ARF locus is that mediated by Polycomb proteins that regulate the 
formation of the chromatin repressive mark H3K27me3 (by PRC2) and H2A119ub (PRC1), leading 
to transcriptional repression. Polycomb proteins are recruited to the INK4/ARF locus through 
several mechanisms: binding to homeobox proteins, anchoring to transcription factors (TF) (i.e. 
CDC6) and tethering by long non-coding RNAs (i.e. ANRIL). Additional negative regulators of the 
INK4/ARF locus include DNA methyltransferases –DNMTs- (i.e. DNMT3B) and histone 
demethylases (i.e. JHDM1B). In old or stressed cells PRC2 member EZH2 is downregulated and 
Polycomb repression is progressively released. This is reinforced by action of several 
transcriptional activators, such as the H3K27me3 demethylase JMJD3, the H3K4me methylating 
complex MLL and the chromatin remodeling complex SWI/SNF that competes with Polycomb 
proteins for promoter binding (Image adapted from Popov and Gil, 2010).  

 

1.1.5.2 Chromatin and structural changes in the nuclei 

 

As part of the senescence program, cells undergo global chromatin reorganization 

(Figure 9). Specifically when compared with proliferating cells, senescent cells 

display DAPI-dense foci that correspond to areas of heterochromatin and are 

known as SAHF (senescence-associated heterochromatin foci) (Narita et al., 

2003). In 2003 Narita and co-workers saw that cells undergoing senescence 
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presented chromatin foci with characteristics of heterochromatin: enrichment for 

H3K9me3 and HP1 (heterochromatin protein) and depletion of H3K4me and 

H3K9ac (Narita et al., 2003). Additionally, these foci were seen to form upon 

pRb/p16 signaling and include repressed E2F target genes such as cyclin A, for 

what they have been considered essential in the establishment of the cell cycle 

arrest during senescence (Narita et al., 2003). Following work has helped 

clarifying the formation and composition of the SAHF. Senescence-associated 

heterochromatin foci additionally include the high mobility group A proteins, 

HMGA1 and HMGA2, which are key for SAHF formation as well as the histone 

variant macroH2A, that is necessary for their maintenance (Figure 9) (Narita et al., 

2006; Zhang et al., 2005). SAHF formation is a multi-step process that involves 

recruitment of histone chaperones ASF1a (antisilencing function 1a) and HIRA 

(histone repressor A), members of the HUCA H3.3 chaperone complex, which 

undergoes a previous and vital incorporation step into PML bodies, before SAHF 

formation (Ye et al., 2007; Zhang et al., 2005). PML (promyelocytic leukemia) is a 

tumour suppressor that is upregulated in senescence and nucleates into nuclear 

bodies to regulate p53 post-translational activation and function and recruitment of 

pRb/E2F complexes leading to abolishment of E2F target genes expression 

(Bischof et al., 2002; Ferbeyre, 2002; Pearson and Pelicci, 2001; Vernier et al., 

2011). 

Each SAHF is thought to represent a single chromosome and recent work has 

described its multilayer nature, with rearrangement of repressive histone marks 

H3K9me3 and H3K27me3 into non-overlapping structural layers (Figure 9) 

(Chandra et al., 2012; Funayama et al., 2006; Zhang et al., 2007). While 

heterochromatin foci become more visible during senescence, the overall levels of 

heterochromatin actually decrease as cells enter senescence (Chandra et al., 

2015; De Cecco et al., 2013; Swanson et al., 2013). Indeed, two recent works 

showed that bona fide areas of constitutive heterochromatin such as centromeric 

and peri-centromeric chromatin become open during senescence leading to 

satellite expression and transcription of transposable elements (De Cecco et al., 

2013; Swanson et al., 2013). Thus, rather than from de novo 

heterochromatinization events, SAHFs result from spatial repositioning of pre-

existing repressive chromatin areas which become loose due to loss of lamina-
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associated heterochromatin (lamina-associated domains, LADs) (Chandra et al., 

2012; Chandra et al., 2015). 

Despite the initial reports that SAHFs participated in the pRb/p16INK4A tumour 

suppressive pathway leading to repression of pro-proliferative genes (Narita et al., 

2003, Narita et al., 2006), recent studies suggest that SAHF are a consequence of 

Ras activation and can persist even after resuming proliferation with p53 depletion 

(Di Micco et al., 2011). The authors suggested that instead, SAHF had a role in 

restraining DDR signaling and contribute for tumorigenesis by not allowing local 

amplification of signals. 

In addition to changes in compaction, senescence encompasses changes in 

chromatin composition. Specifically, some histone variants are depleted from the 

senescent chromatin.  That is the case of the linker histone H1 which is lost during 

senescence, what is thought to allow HMGA2 recruitment into the SAHFs 

(Funayama et al., 2006). Additional work has shown that histone H3 and H4 

biosynthesis is globally decreased during senescence (O'Sullivan et al., 2010). 

Moreover, lysosomal processing of budded-off-nuclei chromatin was observed 

during senescence suggesting a complete make-over of the chromatin landscape 

during senescence (Ivanov et al., 2013). Although the relevance of such dramatic 

event is still to be elucidated, it seemed to be accompanied by loss of lamin B and 

nuclear disintegration (Ivanov et al., 2013). 

Lamin B1 is a component of the nuclear lamina that together with other B-type 

lamins (lamin B2) and A-type lamins (lamin A and C) have functions in nuclear 

envelope structure and mechanics, chromatin organization and  transcription, 

among other roles (Vlcek and Foisner, 2007). Nuclear envelope perturbations are 

characteristic of progeria syndromes, such as the Hutchison–Gilford progeria 

syndrome (HGPS) which is caused by accumulation of a mutated form of lamin A 

(progerin) (Eriksson et al., 2003). Progerin accumulation leads to accelerated 

telomere shortening and premature senescence in human fibroblasts and 

progressive heterochromatin loss (Huang et al., 2008; Shumaker et al., 2006). In 

the last years several reports showed that also lamin B1 is downregulated in 

senescence (Dreesen et al., 2013; Freund et al., 2012; Sadaie et al., 2013; Shah 

et al., 2013; Shimi et al., 2011). Lamin B1 is depleted particularly from H3K9me3 

enriched regions leading to loss of peri-nuclear chromatin, what is thought to 

contribute to SAHF formation upon clustering of constitutive heterochromatic 
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regions (Chandra et al., 2012; Chandra and Narita, 2013; Sadaie et al., 2013). 

Despite the overall loss of lamin B1, new lamin B1-associated domains (LADs) are 

formed with enlarged H3K4me3 and H3K27me3-enriched regions. Loss of large 

H3K27me3 areas also takes place upon lamin B1 depletion, what correlates with 

upregulation of senescence-associated genes (i.e. SASP, cell cycle genes) (Shah 

et al., 2013). Whereas most published works suggest that lamin B1 depletion 

induces senescence, additional publications on the matter report that lamin B1 

overexpression triggers a senescent phenotype in primary fibroblasts, for what the 

specific contribution of different lamin B1 levels for senescence is still on the way 

to be understood (Barascu et al., 2012; Dreesen et al., 2013). 

 

 
Figure 9. Chromatin structural rearrangement during senescence (SAHF). During senescence 
the contacts between constitutive heterochromatin (mainly H3K9me3 enriched areas) and the 
nuclear lamina are progressively lost leading to structural rearrangement of the chromatin and 
clustering of heterochromatic regions potentiating SAHFs (senescence-associated heterochromatin 
foci) formation. SAHFs are organized in layers of different types of chromatin, with constitutive 
heterochromatin (cHC, enriched for H3K9me3) in the center, followed by a layer of facultative 
chromatine (fHC) enriched for H3K27me3 and finally surrounded by a sheet of euchromatin 
(K3K36me3). SAHFs are enriched for several proteins such as HP1, macroH2A and HMGA1 and 2 
and its formation is dependent on the action of histone chaperones HIRA and ASF1a. (O'Sullivan 
and Karlseder, 2012). 
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1.1.6 Senescence in vivo: health and disease 

 
Despite being arrested, senescent cells are metabolically active and produce a 

variety of secreted factors. The senescent secretome not only reinforces 

senescence autonomously as it also acts in a paracrine manner affecting 

surrounding cells (Kuilman and Peeper, 2009). Senescence can occur at several 

stages of an individual’s life cycle contributing to wider biological processes. 

The recent discovery that senescence is developmentally programmed suggested 

that senescence is not just associated with pathology and stress, but is also an 

important developmental process (Munoz-Espin et al., 2013; Storer et al., 2013). 

Indeed, ablation of senescence in murine embryos led to visible developmental 

defects, with impact on fertility (Munoz-Espin et al., 2013). In terms of gene 

expression, senescence in the embryo, largely overlaps with oncogene-induced 

senescence, but lacks activation of major OIS pathways, such as DDR/p53 and 

p16/pRb, relying on TGF"/ SMAD and PI3K/FOXO mediated upregulation of p21 

(Munoz-Espin et al., 2013; Storer et al., 2013). Thus, it is possible that due to the 

controlled nature of development, a “controlled” senescence is triggered. During 

pathological scenarios such as telomere attrition or oncogene-activation, adult 

cells “remember” the embryonic senescence but engage more powerful venues to 

stall proliferation of damaged cells. An interesting observation of the studies by 

Keyes’ and Serrano’s labs was the temporary nature of embryonic senescence, 

occurring between E11.5 and E14.5. Senescent cells secrete factors that 

resemble those of “adult” senescent cells, what attracts macrophages that deplete 

the senescent population (Munoz-Espin et al., 2013; Storer et al., 2013). These 

studies therefore concluded that embryonic senescence could serve two roles: 

eliminating structures through macrophage-dependent clearance, for proper 

development as well as and achieving an accurate balance between cell 

populations (Munoz-Espin et al., 2013). 

In the adult, physiologically controlled senescence was reported to occur in two 

cell types megakaryocytes and placental syncytiotrophoblasts (Munoz-Espin and 

Serrano, 2014). In addition senescence is associated with multiple pathologies 

such as aging and associated diseases and cancer. The observation that benign 

lesions were highly populated by senescent cells catapulted senescence to fame 
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as a potent tumour suppressor mechanism (Collado et al, 2005.) Thus, by blocking 

the cell cycle, senescent cells are able to restrict the spreading of damaged cells. 

But the beneficial aspects of senescence go beyond their ability to stop 

proliferation. Indeed, probably the most relevant feature of senescence, in the 

context of a multi-cellular environment, is the SASP. Not only the SASP helps 

stalling damaged cells by reinforcing senescence autonomously, as it spreads 

senescence to the neighboring and potentially damaged cells (Acosta et al., 2008; 

Acosta et al., 2013; Hoare and Narita, 2013; Kuilman et al., 2008). An additional 

beneficial effect of the SASP is its ability to modulate the immune system to clear 

off senescent cells what is known as “senescence surveillance” (Acosta et al., 

2013a; Chien et al., 2011; Iannello et al., 2013; Kang et al., 2011; Lujambio et al., 

2013; Rakhra et al., 2010; Xue et al., 2007). This has been elegantly 

demonstrated in murine models not only in the context of pre- and malignant liver 

tumours and T-cell lymphoma and B-cell leukemia, as well as in the context of liver 

fibrosis derived from damaged hepatic stellate cells (Iannello et al., 2013; 

Lujambio et al., 2013; Xue et al., 2007). Both the innate and adaptative immune 

system play a role in senescence surveillance, with NK cells, neutrophils, CD4+ T-

cell lymphocytes and macrophages being attracted to senescent cells due to the 

secretion of specific factors, such as CSF1, CCL2, IL1$ and IL6 and IFN#, 

respectively, amongst others. Interestingly, recruitment of an appropriate immune 

response capable of clearing senescent cells appeared dependent on p53 integrity 

(Iannello et al., 2013; Lujambio et al., 2013; Xue et al., 2007). An immune system-

mediated clearance of senescent cells is desirable and one of the aims of therapy 

induced senescence (TIS) for cancer treatment (Nardella et al., 2011). However, 

we are still in the beginning of the journey towards a full understanding of how and 

what drives the immune system to target senescent cells. Also, the heterogeneity 

of senescence and the SASP, and the fact that the process in murine models 

might slightly differ from that in humans, may provide some difficulties for the 

clinical application of senescence surveillance (van Deursen, 2014).  

Senescence also plays a beneficial role in restricting the atherosclerotic plates, 

hypertension and wound healing of skin as well as in limiting, renal cardiac and 

liver fibrosis (Munoz-Espin and Serrano, 2014). Specifically, senescence is 

activated in hepatic stellate cells (HSC) as a consequence of accumulated 
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damage due to uncontrolled proliferation. These cells expressing SA-"-gal and 

other senescence-associated markers ultimately accumulate in the periphery of 

the scar (Krizhanovsky et al., 2008). The effects of senescence go beyond limiting 

the spread of the fibrotic tissue, as senescent cells induce a state of 

immunesurveillance, activating macrophages and subsequent elimination of the 

damaged cells (Lujambio et al., 2013). 

Despite being traditionally regarded as an anti-tumorigenic process, senescence 

has also detrimental effects on surrounding cells. That should not come as a 

surprise as some of the secreted factors have roles in tumorigenesis, such as IL6 

or the metalloproteinase-3 (MMP3) (Ancrile et al., 2007; Parrinello et al., 2005). 

Indeed it has long been shown that senescent cells can, by means of the secreted 

factors they produce, promote or reinforce tumorigenesis of adjacent pre- and 

malignant cells (Krtolica et al., 2001). This proinflammatory network of secreted 

factors can shift into a more pro-tumorigenic force once key senescence mediators 

such as p53 are inactivated (Coppe et al., 2008; Lujambio et al., 2013; Pribluda et 

al., 2013). Thus, senescence has a dark side in tumorigenesis as well, intrinsically 

associated with its secretory phenotype (Coppe et al., 2010).  

Additional age-related conditions in which senescent cells have been shown to 

accumulate and aggravate the phenotype are sarcopenia (degenerative loss of 

muscular mass), type 2 diabetes, obesity and pulmonary fibrosis (Munoz-Espin 

and Serrano, 2014). An ingenious study recently showed how drug-induced 

clearance of p16 positive cells from a murine model of accelerated ageing 

(BubR1h/h) could alleviate several age associated diseases (Baker et al., 2011).  

The “good-bad” dichotomy of senescence might lie on the distinction between 

acute and chronic senescence. Thus in acute situations such as developmental 

senescence or senescence of pre-malignant tumours in young tissues, where the 

immune system is not compromised, senescence seems to play an important role 

in tissue homeostasis, while senescence due to chronic damage, normally 

associated with age with concomitant decrease in immune system function might 

contribute for tumorigenesis and debilitating diseases (Figure 10) (Munoz-Espin 

and Serrano, 2014; van Deursen, 2014). Therefore the accumulation of 

senescence in specific tissues along time should be monitored for better 

understanding its role in the most various processes. Some studies have already 
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tried to monitor senescence using for example a luciferase knock-in mouse model 

to follow p16 expression along time and shown its accumulation in pre-neoplastic 

lesions (Burd et al., 2013). Additional approaches should now emerge to monitor 

accumulation of senescent cells by assessing additional features such as the 

SASP and its correlation with overall immune system health. 

      
Figure 10. Senescence and its biological implications. Senescent cells accumulate in vivo 
during several stages of life due to programmed processes or random stressful events. In young, 
unstressed tissues senescent cells are thought to accumulate due to acute stresses and serve an 
important role in several biological processes from embryonic development, wound healing and 
fibrosis. Due to their ability to attract the immune system, senescent cells are thought to be 
ultimately cleared by the immune system leading to tissue regeneration and homeostasis. 
Additionally owing to their properties (i.e. SASP, high metabolism) senescent cells offer great 
opportunities for anti-cancer therapeutical approaches. However senescent cells also accumulate 
along time due to chronic damage, for what there are not perceived by the immune system, whose 
fitness tends to decline with age. Failure with senescent cells clearance or tissue regeneration 
leads to persistent accumulation of senescent cells what can contribute for chronic inflammation 
and fibrosis (Adapted from Munoz-Espin and Serrano, 2014 and van Deursen, 2014). 
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1.2 Large-scale approaches to discover regulators of cancer and 
senescence 
 
As technology develops, the knowledge of the gene networks expressed during 

specific biological scenarios is growing, leading to data overload but also to a 

better and detailed understanding of biological processes and diseases (i.e. 

cancer or senescence). The integrative view of gene networks and their 

functionality have been made possible by outstanding technological milestones 

such as the complete characterization of the human genome or the development 

of RNA-sequencing and microarray technology, allowing an insight into the 

complete transcriptomes (Lizardi et al., 2011; Mohr and Perrimon, 2012; Zanella et 

al., 2010). Indeed, these technologies have proved valuable in the characterization 

of alternative splicing, lncRNAs and gene profiling in both cancer and senescence 

(Abdelmohsen et al., 2013; Beer et al., 2002; Eswaran et al., 2013; Nelson et al., 

2014; Shelton et al., 1999; Yoon et al., 2004; Zhang et al., 2003). The 

development of proteomics came to reinforce the spectrum of large-scale 

approaches to unravel genes with actual functional relevance, and has also been 

successfully applied for cancer and senescence research (Aan et al., 2013; Acosta 

et al., 2013a; Acosta et al., 2013b; Benvenuti et al., 2002). Although the unveiling 

of transcriptomes, proteomes and metabolomes, set the basis for a functional 

approach of cellular processes it did not per se shed light on the specific function 

of the observed expression changes. This came to change with the development 

of both RNAi technology and high-throughput microscopy and screenings, allowing 

for a more detailed functional analysis of genome-wide gene sets in more complex 

biological scenarios, (i.e. in vivo) (Figure 11) (Zanella et al., 2010). RNAi and 

compound-based screenings have contributed to identify novel regulators of 

senescence and associated pathways such as p53, p16/Rb and the SASP (Acosta 

et al., 2013a; Berns et al., 2004; Bishop et al., 2010; Lahtela et al., 2013; Rovillain 

et al., 2011). An exciting area is that of in vivo screens where the RNAi technology 

is used directly in model animals to target genes and observe their function in a 

physiological background. These studies were first carried out by ex vivo infection 

of cells with shRNAs previous to their implantation in mice, however studies from 

the Fuchs and Zender labs, in 2013, pioneered the direct in vivo usage of RNAi 
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technology to identify regulators of epidermal and liver oncogenic growth and 

regeneration, respectively (Beronja et al., 2013; Wuestefeld et al., 2013; Zender et 

al., 2008). 

 

 

 
Figure 11. High-throughput approaches allow for detailed analysis of complex phenotypes. 
Technological development has allowed a deeper understanding of the gene networks expressed 
during specific biological processes, through the study of DNA sequences, transcriptomes, 
proteomes and metabolomes. The development of high –throughput technologies such as powerful 
high-throughput microscopes allowed the detailed study of complex phenotypes and generation of 
extensive descriptive data but more importantly to a functional insight into how specific cellular 
features are regulated by intricate networks of genes (Zanella et al., 2010).  

 

1.2.1 siRNA technology for regulating gene expression 
 

The concept of RNAi was first propagated in the early nineties, with the first 

miRNA being described in Caenorhabditis elegans (Carthew and Sontheimer, 

2009). miRNAs are small polyadenylated RNA molecules transcribed by the RNA 

Pol II that, when processed through the interfering RNA (RNAi) pathway, have the 

capacity of regulating the expression of endogenous mRNAs, ultimately leading to 

translational repression or target degradation (Bartel et al., 2004). The final 

outcome of miRNA targeting depends on its complementarity with the 3’-end of the 
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mRNA. Because miRNAs are only partially complementary, most mRNAs end up 

being regulated at the translational level (Bartel et al., 2004).  

Soon after the discovery of miRNAs another class of double stranded small RNAs 

(dsRNA) was described to efficiently target gene expression through the RNAi 

pathway (Fire et al. 1998). Although discovered through exogenous injection of C. 

elegans, these 20-25 nucleotide long RNA molecules were found to arise 

endogenously as anti-sense transcripts of specific mRNAs (Carthew and 

Sontheimer, 2009; Fire et al., 1998; Golden et al., 2008). However, in mammalian 

cells they originate mainly externally from viral infections (Jackson and Linsley, 

2010). Since they arose against very specific targets, siRNAs are therefore highly 

complementary to their pair mRNAs and extremely efficient in targeting them for 

cleavage-mediated degradation (Tomari and Zamore, 2005). The observation of 

RNAi in several animal models led to the fine-tuning of synthetic siRNAs 

transduction of mammalian cells and booming of the RNAi technology in human 

research (Elbashir et al., 2001a; Elbashir et al., 2001b).  

The RNAi pathway encompasses multiple steps for full processing of mature 

miRNA and siRNAs (Rao et al., 2009b). Inside the cell the dsRNA is first cleaved 

into a smaller double stranded RNA molecule with a 3’-end overhang (21-22 

nucleotides). This process takes place in the cytoplasm and is mediated by Dicer, 

an RNA Pol III-related endonuclease in a complex with TRBP (Tat RNA-binding 

protein) or PACT (PKR activating protein) (Rao et al., 2009b). Although this step 

does not appear strictly necessary it improves the silencing properties of the 

siRNA (Murchison et al., 2005). The double stranded siRNA/Dicer/TRBP complex 

subsequently associates with Ago2, an endonuclease from the Argonaute family 

that cleaves the passenger strand of the double stranded molecule (Kim et al., 

2007; Matranga et al., 2005; Rand et al., 2005). The degradation of the passenger 

strand converts the pre-RISC (RNA-induced silencing complex) into the holo-RISC 

(Kim et al., 2007). Once the holo-RISC complex is loaded, the single stranded 

RNA guides Ago2 towards target mRNAs leading to their degradation due to its 

endonucleolytic activity (Hutvagner and Zamore, 2002; Yekta et al., 2004). The 

argonaute family of proteins comprises 3 additional members able to bind the 

RISC complex: Ago1, 3 and 4, none of them with endonuclease-like activity (Hock 

and Meister, 2008). Instead, complexes containing these argonaute proteins bind 

to partially complementary sites located in the 3’ UTRs of target mRNAs leading to 
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translation inhibition or deadenylation (removal of poly(A) tail) of the mRNA and 

consequent destabilization, most probably occurring in P-bodies (Hock and 

Meister, 2008).  

Due to the transient nature of the siRNA, there was a need of creating a method to 

achieve sustained RNAi. Brummelkamp and colleagues generated the first vector-

based RNAi technology for mammalian cells and since then the field has been 

improving (Brummelkamp, 2002). shRNAs are inserted into the cells via viral 

infection and subsequently expressed via RNA Pol II or III-mediated transcription, 

forming a hairpin like stem-loop structure. While in the nucleus the hairpin is 

processed by a complex containing the RNase III enzyme Drosha and the double-

stranded RNA-binding domain protein DGCR8 in order to produce a stem-loop 

with a 2 nucleotide- 3’ overhang (Lee et al., 2003; Zhang et al., 2002). Exportin 5-

mediated translocation into the cytoplasm occurs, where, through association with 

the previously described DICER/TRBP/PACT complex, the shRNA is processed 

into a linear double stranded RNA and loaded into an Ago2 containing pre-RISC 

(Rao et al., 2009b; Yi et al., 2003).  

Second generation shRNAs (shRNA-mirs) have been created making use of the 

increasing knowledge of miRNA biogenesis (Dickins et al., 2005; Silva et al., 2005; 

Zeng et al., 2005). Specifically these shRNA-mirs were designed on top of the 

endogenous miRNA mir30 backbone, and their processing has been biochemically 

characterized as to allow for prediction of the mature shRNA product, which 

consists of a 22 bp sequence (Silva et al., 2005). Additionally, these vector based 

shRNAs include a strong promoter, originally the promoter of the RNA Pol III target 

U6 snRNA, however have the advantage of allowing incorporation of alternative 

Pol II promoters, including inducible ones (Dickins et al., 2005). Finally, these 

vectors included a 60 bp barcode sequence for shRNA tracking (Silva et al., 

2005). 

Although mechanistically identical in terms of target silencing, siRNA and shRNA 

technologies present some differences inherent to the nature of the precursor 

molecules, conferring advantages or disadvantages such as specific and 

nonspecific off-target effects due to partial complementarity with additional mRNAs 

and stimulation of the immune system, respectively (Falschlehner et al., 2010; Rao 

et al., 2009b). Indeed, both siRNA and shRNA sharing identical sequences have 

been shown to silence overlapping off-target transcripts, due to partial 
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complementarity lying of the so called “seed region”, the first 1-8 nucleotides of the 

siRNA molecule (Jackson et al., 2006b). However, shRNAs have advantages such 

as the durability of the effect and possibility of an inducible application and for 

yielding less off-target effects (Klinghoffer et al., 2010; Rao et al., 2009a). Indeed, 

while siRNAs are directly introduced into the cells, second-generation shRNAs are 

produced by the cells through the miRNA pathway, undergoing polyadenylation. 

For this reason shRNAs tend to be more stable and efficient (Li et al., 2006b; 

Schwarz et al., 2003; Siolas et al., 2005). Additionally the lack of stability renders 

siRNAs more susceptible to cytoplasmic degradation and production of smaller 

molecules likely to silence off-target mRNAs (Rao et al., 2009b). Another 

advantage of shRNAs is their sustained ability to silence target mRNAs, whereas 

siRNAs achieve it transiently. In spite of the advantages of using the vector-based 

approach, siRNAs confer specific advantages as well. The easiness of use is very 

attractive when compared to shRNA-based strategies, which take longer. 

Additionally, shRNAs use the endogenous miRNA pathway, which may lead to 

over saturation of components of the RNAi pathway, such as the exportin 5, 

affecting the efficacy of endogenous miRNA processing (Grimm and Kay, 2007; 

Grimm et al., 2006). In fact both RNAi approaches have been successfully and 

widely used to identify novel regulators of apoptosis, senescence and cancer 

(Acosta et al., 2008; Berns et al., 2004; Bishop et al., 2010; Luo et al., 2009; 

MacKeigan et al., 2005; Meacham et al., 2009; Schlabach et al., 2008; Wuestefeld 

et al., 2013; Zender et al., 2008). Of note, several studies are in progress to 

assess the use of RNAi in cancer therapy and have been reviewed elsewhere 

(Guo et al., 2013). 

In conclusion, the RNAi technology is nowadays a powerful tool that allows for the 

functional characterization of the effect of genes in mammalian cells. 
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Chapter 2. Material and methods 
 

2.1 Cell lines and Tissue culture methods 
 

HEK-293T and IMR-90 cells were obtained from the American Type Culture 

Collection (ATCC). Both cell types were cultured in Dulbecco’s modified Eagle’s 

Medium (DMEM) from Invitrogen and supplemented with 10% (v/v) Fetal Bovine 

Serum (FBS) (Sigma) as well as 1% antibiotic-antimycotic solution (Invitrogen), 

hereafter referred to as “complete”, and grown in an humid incubator at 37 oC and 

5% CO2. Treatment with trypsin (Invitrogen) was used to detach cells from culture 

plates. Inducible ER:RAS and ER:MEK cells, were treated with 100nM 4-

Hydroxytamoxifen (4-OHT) (Sigma) prepared in DMSO 1 day after plating in order 

to induce senescence (Acosta et al., 2008; Barradas et al., 2009). Cell Viability 

and cell number were estimated by flow cytometry. To that end, 50 µl of cell 

suspension were diluted in 150 µl of Guava ViaCount reagent (Millipore) and 

applied to the Guava Cytometer (Millipore) for cell measurements.  

 

2.2 Plasmids 
 
pLNC-ER:RAS and pLNC-MEK:ER were used to generate the inducible  RASG12V 

and MEK1 over expressing cells, respectively and pLXSN used as the empty 

vector. pGIPZ-based shRNA vectors were purchased from Sigma. For a complete 

list of plasmids, respective resistances and short hairpins sequences used see 

Table A2 and Table A3, respectively. 

 

2.3 Transformation of competent E. coli and plasmid DNA purification 
 
In order to amplify plasmid DNA 1 µl of plasmid was transferred into a tube 

together with chemically competent DH5"TM. The mix was incubated on ice for 30 

min, then brought to 42 oC for 1 min and placed on ice again. The bacteria were 

then diluted in antibiotic free LB and grown for an hour at 37 oC with constant 

shaking. 50-100 µl of the competent bacteria were then plated onto an agar plate 

with appropriate selective antibiotic and grown overnight at 37 oC. A single colony 
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was then picked 16 hours after and grown overnight in 250 ml of antibiotic 

supplemented media. LB was used for plasmids with ampicillin or kanamycin 

resistance and low salt LB for plasmids encoding a Zeocin resistance gene. 

Double selection with Ampicilin and Zeocin was used for pGIPZ plasmids. 

Approximately 16 h after the bacteria cultures were centrifuged at 6000 rpm for 10 

min. The supernatant was discarded and the pellet (bacteria) was collected for 

further processing. The HiSpeed® Plasmid Purification kit from QIAGEN was used 

to extract the plasmid DNA. Briefly, it consisted of ressuspending the bacteria 

pellet in Buffer P1 (50 mM Tris-HCl, pH 8.0; 10 mM EDTA) supplemented with 100 

µg mL-1 RNase A. For alkaline lysis of bacteria and denaturing of DNA Buffer P2 

(200 mM NaOH, 1% SDS (w/v)) was added and after mixing neutralization 

occurred with P3 (3.0 M KAc, pH 5.5) that allowed the precipitation of detergent, 

proteins and genomic DNA, easily discarded from the solution by centrifugation 

and filtration. Buffer P3 facilitated the renaturing of the plasmid DNA that was 

subsequently passed though a column containing a resin with binding properties. 

The plasmid DNA bound to the column and was washed from impurities with 

buffer QC (1.0 M NaCl; 50 mM MOPS, pH 7.0; 15% isopropanol (v/v)). Elution of 

plasmid DNA occurred with Buffer QF (1.25 M NaCl; 50 mM Tris-HCl, pH 8.5; 15% 

isopropanol (v/v)) and addition of isopropanol to the eluate led to precipitation of 

the molecules. After binding the DNA to a new column, it was washed with ethanol 

and the plasmid DNA was eluted with buffer TE (10 mM Tris-HCl, pH 8.0; 1 mM 

EDTA). The concentration was determined by measuring the absorbance at 260 

nm (A260) in a NanoDrop® ND-1000 UV-Vis spectrophotometer. 

2.4 Production of Retrovirus and infection of target cells 

 
HEK293T cells (packaging cells) were seeded at least one day prior to transfection 

in order to achieve an approximate confluence of 80%. A transfection mix 

containing 1 ml of plain DMEM, 20 µg of expression plasmid, 2 µg of the VSV-G 

plasmid (encoding the G protein of the Vesicular Stomatitis Virus, envelope gene), 

8 µg of gag-pol plasmid (encoding capsid proteins (gag) and the reverse 

transcriptase and integrase proteins (pol)) and 75 µl of linear 25 kDa linear 

polyethylenimine (PEI; 1 mg/ml (w/v), Polysciences) was prepared. 30 min post 
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preparation, the mix was added to the HEK293T freshly fed with 9 ml of complete 

DMEM, with extreme care not detach target cells. Approximate transfection 

efficiency was assessed by monitoring, after 24 h, the fluorescence of control cells 

transfected with a reporter plasmid expressing mCherry fluorescent protein. In 

order to concentrate the viral content, the media of the packaging cells was 

changed to 6ml of fresh complete DMEM 24 h post transfection. In parallel, virus-

recipient IMR90 cells were plated at a density of 106 cells per 10 cm dish. 48 h 

post transfection the virus containing supernatant was collected and filtered 

through a 0.45 µm pore filter (Anachem). A round of infection consisted of 

replacing the media of target cells by the viral supernatant supplemented with 4 

µg/ml of Polybrene and feeding the transfected HEK293T cells with 6 ml of fresh 

complete DMEM to continue virus production. 3 rounds of infection as described 

were performed per plasmid, taking place 3 hours apart from each other. The cells 

were left incubating with the viral media of the 3rd round overnight, to maximize 

infection efficiency, and after approximately 16 h the viral media was replaced by 

fresh complete DMEM and the cells were grown until confluent. To assess 

infection efficiency, the fluorescence of mCherry cells was monitored using the 

Guava Cytometer or the IN Cell Analyzer 2000 and compared to that of uninfected 

cells (negative control). Selection of infected cells was performed for 

approximately 5 days in media supplemented with 1 µg/ml Puromycin or 

approximately 2 weeks in complete media supplemented with 400 µg/ml G418 

(Neomycin).  

2.5 Production of Lentivirus and infection of target cells 
 
HEK293T cells (packaging cells) were seeded at least one day prior to transfection 

in order to achieve an approximate confluence of 80%. The transfection mix 

consisting of 1 ml of plain DMEM, 10 µg of expression plasmid, 2 µg of the VSV-G 

plasmid, 8 µg of the psPax2 plasmid (packaging) and 75 µl PEI was prepared and 

added to the cells 30 min post preparation. Approximate transfection efficiency 

was assessed by monitoring the expression of the Green Fluorescent Protein 

(GFP) encoded by the pGIPZ plasmids. 24 h post transfection the media of 

packaging cells was replaced by 6 ml of fresh complete DMEM and IMR90 cells 

were plated for infection as before. The target cells were infected, 24 h post 
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seeding with a 1:4 dilution of the filtered viral supernatant supplemented with 4 µg/ 

ml Polybrene. 4 hours after infection, the media of the infected IMR90 cells was 

replaced with fresh complete DMEM and the cells were grown until confluent. To 

assess infection efficiency, GFP expression by infected cells was monitored using 

the Guava Cytometer or the IN Cell Analyzer 2000 and compared to that of 

uninfected cells (negative control). Selection of infected cells was performed as 

previously described. 

2.6 Cell growth assays 

2.6.1 BrdU 

 
2 x 103 cells/ well were seeded onto a 96 well plate in duplicate or triplicate. The 

day before washing the cells with PBS and fixing the plate with 4% 

paraformaldehyde (PFA) (w/v) for approximately 20 min, the cells were treated 

with 5-Bromo-2#-deoxyuridine (BrdU, 50 µM) for 16-20 h. The BrdU incorporation 

by the target cells was visualized by immunofluorescence. 

2.6.2 Growth curves 
 
5 x 105 cells were plated per 10 cm dish and cultured for approximately 7 days 

after which cell number was estimated. Cells were trypsinized, centrifuged and 

ressuspended in Guava ViaCount reagent as previously described. Cell count was 

assessed by flow cytometry using the Guava flow cytometer (Millipore). The 

plating-count cycle was repeated every ±7 days until control cells reached 

replicative senescence.  

 

2.6.3 Colony formation assays 
 
15 to 25 x 104 cells/well were seeded per 6-well plate and 50 to 100 x 104 were 

plated per 10 cm dish. Once plates containing control cells were confluent all 

experimental plates were washed in PBS and fixed with 0.5% Gluteraldehyde 

(w/v) in PBS for 20 min. Fixed cells were then washed with water and stained with 

0.2% crystal Violet (w/v).  
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2.7 Senescence Associated-!-galactosidase (SA-!-gal) Assay  
 
Cells were plated in 10 cm dishes and in the case of IMR90 ER:RAS cells, 

induced with 100 nM 4-OHT 16-24 h post seeding. 6 days post induction cells 

were trypsinized, counted and plated onto 6 well plates at a density of 6x104 cells/ 

well. After 48 h plates were washed with PBS and fixed with 0.5% Gluteraldehyde 

(w/v) for 15 min. To adjust the pH, cells were washed two times with PBS 

supplemented with 1 mM MgCl2; pH6 (PBS/ MgCl2), and then incubated with X-

Gal staining solution (1 mg/ml 5-bromo-4-chloro-3-indolyl-beta-D-galacto-

pyranoside [Boehringer], 0.12 mM K3Fe[CN]6, 0.12 mM K4Fe[CN]6, 1 mM MgCl2 

in PBS at pH 6.0). Incubation occurred at 37 oC, generally overnight, with 

moderate shaking to avoid the formation of crystals. Once the cells were stained 

the solution was discarded and the plates were washed with PBS and stored at 4 
oC in the dark until further use. To quantify SA-!-gal positive cells, an optic 

microscope was used (Olympus CKX41, supplied with a DP20 digital camera). 

Several representative pictures were taken and percentages were calculated from 

at least 100 cells.  

 

2.8 Small interfering RNA (siRNA) Reverse Transfection 
 
Each 96 well plate (master plate) contained 0.1 nmol of lyophilized siRNA per well 

(QIAGEN). siRNAs were ressuspended in RNAse free water and subsequently 

aliquoted across daughter plates, so that each contained 3.6 µl of a 1 µM siRNA 

suspension per well. Aliquoting procedure was performed using an automated 

handling system (Biomek). Before transfection, siRNAs were incubated for 30 min 

with 17.5 µl of a 3.5% Hiperfect solution (v/v) (QIAGEN) in plain DMEM. 2x103 

cells were then reverse transfected per well upon addition of 100 µl of a cell 

suspension containing 2x104 cell/ml in complete media, leading to a final siRNA 

concentration of 30 nM per transfection. The cells were left to seed overnight and 

transfection media was replaced by complete media 16-18 h after transfection, 

supplemented with 4-OHT in the case of IMR90 ER:RAS cells. Media was 

changed every 3-4 days and cells were fixed 4 to 5 days post induction with 4-

OHT for studying most markers or 8 days for analyzing IL8 expression. BrdU 
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anaylsis was performed as previously described. Transfection efficiency was 

evaluated by assessing fluorescence of a control siRNA, siGlo (Dharmacon), with 

fluorescent properties. 

 

2.9 Protein analysis 

2.9.1 Immunofluorescence 
 

Cells seeded onto 96 well plates were washed with PBS and fixed with 4% PFA 

(w/v) for 20-30 min, washed again and kept in PBS at 4 oC until 

immunofluorescence. To permeabilize cells, the plates were treated with 0.2% 

Triton X-100 (v/v) in PBS for 5 min and then washed in PBS and blocked for 1 h 

with a blocking solution containing 1% BSA (w/v) (Sigma) and 0.2% Fish Skin 

Gelatin (v/v) (Sigma) in PBS. Primary antibodies were diluted in blocking solution 

and incubated for 30 min. For BrdU detection, a treatment with 0.5 U/ml DNAse 

and 1 mM MgCl2 was performed in parallel to anti-BrdU antibody incubation. The 

plates were then thoroughly washed with PBS at least 3 times and then incubation 

with an Alexa-conjugated secondary antibody in blocking solution occurred for 30 

min. After washing 3 times with PBS the nuclei were stained with 1 µM 4',6-

diamidino-2-phenylindole (DAPI) for 15 min. Cells were kept in PBS until 

acquisition to avoid dehydration. For a comprehensive list of antibodies and 

dilutions used, see Table A1. 

2.9.2 High Throughput Microscopy (HTM) and High Content Analysis (HCA) 

 
To visualize the immunofluorescence staining High Throughput Microscopy (HTM) 

was performed using the IN Cell Analyzer 1000 or 2000 (GE Healthcare). The high 

throughput microscope was set to take pictures of several fields per well of a 96 

well plate, for 1,2 or 3 wavelengths (in the case of a co-staining procedure) until 

images of at least 1000 cells were acquired (unless otherwise indicated). To 

process and quantify the expression of the probed epitopes, the InCell Investigator 

software (v1.7) was used. Cells were identified and nuclei segmented with basis 

on DAPI staining. Top-hat segmentation was used defining a minimum of 100 µm2  

for the nuclear area. A collar around the nucleus of 1 µm (or larger, for cytoplasmic 
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markers) was created to define the cell area. An average intensity numerical value 

was assigned per cell (for a given nuclear or cytoplasmic marker) by the software, 

and individual cell values were plotted on a chart. By defining a threshold intensity 

value, it was possible to categorize the cells into “positive” or “negative” for each 

marker and calculate the average percentage of positive cells per well for the 

probed protein. All sample images were analyzed under the same threshold filter 

(Figure 12). Alternatively the average nuclear or cytoplasmatic intensity (or the co-

variance of the raw intensity value) was used. All antibodies were thoroughly 

analyzed to assure specificity of staining. 

           

Figure 12. High content analysis for quantifying protein expression by immunofluorescence. 
p16 expression in IMR90 cells expressing constitutive RAS are shown as an example. Cells were 
seeded in 96-well plates,  fixed at an appropriate time point and stained by immunofluorescence 
(IF) for p16 and DAPI (nucleus). Several IF images were subsequently acquired with the IN Cell 
Analyzer until 1000 cells are counted. For expression quantification, p16 intensity (Nuc intensity 
Reference 2) for individual cells is plotted on a histogram and a threshold filter is created to 
distinguish between cells expressing high (green labeled nuclei) or low levels (red labeled nuclei) 
of p16 and therefore calculate the percentage of p16 positive cells. The same as shown in here 
was used for calculating the expression of additional senescence markers, in cells undergoing 
different types of senescence as detailed in the results chapter (Image adapted from Banito et al., 
2009). 
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2.9.3 Whole cell extracts 

 
For whole cells extracts, confluent plates of cells were washed in cold PBS, 

scraped and pelleted by centrifugation. Cells were ressuspended in RIPA buffer 

(50 mM Tris pH8, 150 mM NaCl, 1% Triton X 100, 0.5% Na-Doc, 0.1% SDS, 1 mM 

EDTA) supplemented with protease inhibitors and incubated on ice for 30 min with 

occasional vortexing. Extracts were then centrifuged for 15 oC at top speed and 

the supernatant was transferred into a new clean tube (whole cell extract). 

Alternatively, cell pellet was ressuspended in 1x Laemmli buffer (60 mM Tris-Cl pH 

6.8, 2% Sodium-dodecyl-sulphate (SDS, w/v), 10% glycerol (v/v), 5% !-

mercaptoethanol (v/v), 0.01% bromophenol blue(w/v)) pre-heated at 95 oC. The 

cell suspension was boiled at 95 oC for 5 min, then passed through a 26 gauge 

needle 5 times and incubated at 95 oC for 5 min again.  

2.9.4 Cellular Fractionation 

 
Confluent plates of cells were trypsinized and passed through a 40 µm pores 

mesh (Falcon) to avoid clumps, pelleted by centrifugation, ressupended in cold 

PBS and pelleted again to wash off serum contaminants. To collect the 

cytoplasmic fraction the cells were ressuspended in a Hypotonic Solution (Nuclear 

extract Kit, Active motive) supplemented with Phos-stop (Roche), protease 

inhibitors (Roche), DTT and PMSF and incubated for 15 min on ice. The 

suspension was sampled throughout the procedure and visualized with Trypan 

blue (Sigma) under an optical microscope. The plasma membrane was then 

broken open with detergent (Nuclear extract Kit, Active motive) as suggested by 

the supplier. The suspension was subsequently centrifuged for 5 min at 3500 rpm 

and the supernatant (cytoplasm) transferred into a fresh tube. The pellet (nuclei) 

was ressupended in Hypotonic Solution and sampled to assess nuclear integrity. 

Another centrifugation took place to clean pellet from cytoplasmic contaminants. 

The nuclei were then ressupended in a buffer (Buffer B) containing EDTA and 

EGTA supplemented with Phos-stop, protease inhibitors and DTT and incubated 

on a shaking platform at 4 oC for 1-16 h. To collect the nucleoplasm the broken 

nuclei were centrifuged at 4000 rpm for 5 min, and the supernatant transferred into 

a clean tube (nucleoplasm). To clean from soluble contaminants, the pellet 
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(chromatin) was ressuspended in Buffer B and centrifuged again under the same 

conditions. The chromatin was then subjected to a DNAse treatment (2 U/µl 

DNAse I; 20 mM Tris7.5; 10 mM MgCl2) for an hour on ice to release the proteins 

from the DNA. 

 

2.9.5 Protein quantification 
 
To quantify the protein content of whole cell lysates extracted with RIPA buffer or 

extracts resulting from cellular fractionation, the DC Protein Assay (BioRad) was 

used according to supplier directions. For proteins extracted with Laemmli buffer 

the RC DC Protein Assay (BioRad) was used due to the presence of substances 

incompatible with the use of the DC Protein Assay alone. Both assays were 

performed on a 96 well plate and absorbance was read at 660nm (A660) on the 

Bio-Rad 680XR microplate reader. Several dilutions of BSA were used to plot a 

calibration curve. 

2.9.6 Sodium-dodecyl-sulphate polyacrylamide gel electrophoresis (SDS-

PAGE)  

 
Equal amount of protein extracts were diluted with 3x Laemmli buffer, boiled for 

5min at 95oC and loaded either onto a gradient Mini-PROTEAN® TGXTM Precast 

Gel (BioRad) or, in the case of samples for Mass Spectometry, onto a CriterionTM 

TGXTM Precast gel and ran in an appropriate electrophoresis tank. Electrophoresis 

was performed in running buffer (25 mM Tris, 190 mM Glycine, 0.1% SDS (w/v)) at 

150 volts until an appropriate separation of the SeeBlue® Plus2 Pre-stained 

protein standard (Novex®) was achieved. In the case of LC–MS/MS the gel was 

subsequently stained with ProtoBlue Safe (National Diagnostics) for 16 h and 

extensively washed with distilled water for protein bands detection.   
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2.9.7 Western Blot 

 
Proteins were subsequently transferred from the polyacrilalmide gel onto a 

Polyvinylidene (PVDF) membrane previously activated with methanol. Protein 

transfer occurred in transfer buffer (25 mM Tris, 190 mM Glycine, 20% methanol 

(v/v)), at constant 100V for an hour. Transfer efficiency was visualized by briefly 

staining the membrane with Ponceau S (Sigma). Membranes were blocked 

overnight with 5% fat milk (w/v) in PBST (PBS supplemented with 0.05% Tween 

20 (v/v) (Sigma)) and primary antibodies were diluted in 1% fat milk (w/v) in PBST 

and incubated at room temperature for 2 hours. After primary antibody incubation, 

membranes were extensively washed with PBST and subsequently probed with a 

Horseradish Peroxidase conjugated (HRP) secondary antibody (Invitrogen) for 1 

hour at room temperature. After extensive washes with PBST, membranes were 

transferred onto a cassette and probed with Enhanced Chemiluminescence (ECL) 

reagent (Amersham/GE Healthcare) and finally developed. 

 

2.9.8 Identification of proteins by Mass Spectromerty 

 
Mass spectrometry and peptide quantification analysis was performed by Pedro 

Cutillas and Peter Faull, in the Biomolecular Mass Spectrometry and Proteomics 

Laboratory (CSC). Gel bands were reduced with dithiothreitol, alkylated with 

iodoacetamide and then subjected to overnight trypsin digestion. The peptide 

extracts underwent a second round of trypsin digestion to minimize the number of 

missed cleavages. Peptide mixtures were analyzed using an UltiMate 3000 Rapid 

Separation LC, coupled to a LTQ-Orbitrap-Velos mass spectrometer 

(ThermoFisher Scientific). Separation was performed in a 3 hr gradient using a 50 

cm Acclaim pepmap C18 column (ThermoFisher Scientific). Protein identification 

and quantification was performed using Maxquant v1.2.0.13, with the embedded 

Andromeda 1.2.0.0 search engine and the IPI_Human_v3.37 database. Generally 

a count of 3 or more peptides was used as significance threshold as well as a 

Macot score of 90. Relative enrichment of each protein per fraction was calculated 

and used to create a heat map. For that, protein abundance was first normalised 
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by dividing protein intensity for one protein by the sum of all protein intensities in a 

given condition (fraction). The normalised protein intensity (abundance) for 

technical replicates (triplicates) were then averaged. Normalised protein 

abundance (average) for a given protein was then divided by the maximum value 

for that protein across the conditions  (fractions) being compared. These values 

were then coloured coded on a scale of 0-1 with 1 (dark blue) being the maximum 

normalised protein abundance condition. 

 

2.10 RNA expression analysis 

2.10.1 RNA Purification 
 

Cells were plated on the same day and on collection day were washed with cold 

PBS, scraped off the plate and transferred into a fresh tube. 800 µl of TRIzol® 

Reagent (LifeTechnologies/ Thermo Fisher Scientific) were added to the cell 

pellets and the mixture was vortexed and frozen at -80 ºC overnight for proper 

homogenization.  Once thawed 150 µl of chloroform was added and the mix was 

vortexed and centrifuged for 15 min for phase separation. The top RNA-enriched 

phase was then transferred into a fresh RNAse free tube, with extreme care not to 

perturb the interphase containing DNA. 70% ethanol was then added on a 1:1 ratio 

to the RNA suspension, mixed and then processed and extracted with the RNeasy 

Mini Kit (QIAGEN). Brieftly, the ethanol containing mixture was passed through a 

RNA binding silica-based membrane by brief centrifugation. The RNeasy column 

was first washed with 700 µl of RW1 buffer by centrifugation and then twice with 

500 µl of the ethanol containing buffer RPE. Residual ethanol was then removed 

through centrifugation at top speed for 1 min. The RNA was finally eluted by 

passing RNAse free water through the column and collected into a fresh tube. 

RNA concentration was measured at 260 nm (A260) using a NanoDrop® ND-1000 

UV-Vis spectrophotometer. 

 

 



  Chapter 2. Material and Methods  

 

 72 

2.10.2 Complementary DNA (cDNA) synthesis 
 

All samples were processed in parallel using the Superscript II™ Reverse 

Transcriptase Kit. In summary, 2 µg of RNA of each sample were first mixed with 

Random Hexamers (50ng/µL N8080127, Invitrogen) and 10 mM dNTP mix 

(18427, Invitrogen) and heated at 65 oC for 5 min and subsequently chilled on ice. 

After a brief centrifugation step were added to the mix 5x First-Strand Buffer, 0.1 M 

DTT, 200 units of the SuperScript II Reverse Transcriptase (18064, Invitrogen) 

and RNAse free dH2O. The contents were centrifuged again and then inserted into 

a thermocycler and cDNA conversion occurred by bringing the mixture to 25 °C for 

10 min first and then 42 °C for 50 min. The reaction was inactivated by heating at 

70 °C for 15 min. 

 

2.10.3 Quantitative RT-PCR (RT-qPCR) Analysis 
 

RT-qPCR reactions were performed on the CFX96TM Real-Time PCR Detection 

System (BioRad) using SYBR Green PCR Master Mix (Applied Biosystems). Gene 

expression data was normalized to Ribosomal protein S14 (RPS14) (a list of RT-

qPCR primers used is given in Table A4 
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Chapter 3. Introducing the Model: RAS-induced senescence in 
primary fibroblasts 

 
In 1995 Littlewood and colleagues described a c-Myc inducible model, taking full 

advantage of the estrogen receptor (ER) ligand-binding domain properties. By 

coupling the c-Myc gene to a mutated form of the ER ligand-binding domain, 

unable to respond to endogenous tamoxifen, they were capable of achieving ER:c-

Myc over expression, by treating the cells with 4-OHT, to which endogenous ER is 

insensible to (Littlewood et al., 1995). Since then, the same technology has been 

used for other oncogenes such as the oncogenic H-RASV12, which has been 

widely used as a model of OIS (Acosta et al., 2013a; Barradas et al., 2009; 

Tarutani et al., 2003). 

  

 
Figure 13. Acquisition of senescence features by primary fibroblasts upon H-RASV12 
activation with 4-OHT. a) HRASV12 overexpression leads to decreased cell number as assessed 
by crystal violet staining, altered morphology and increased SA-!-Gal activity . b) Crystal violet 
staining showing cell cycle arrest upon MEK:ER overexpression. c) The decreased cell number 
corresponds to a decreased proliferation rate displayed by oncogene overexpressing cells. 
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The 4-OHT inducible ER:RAS oncogene was stably expressed in young IMR90 

fibroblasts and, upon induction, cells exhibited senescence associated features: a 

stable cell cycle arrest was noticeable 4-5 days post induction with 4-OHT, IMR90 

cells became flat and enlarged and expressed SA-!-galactosidase under 

suboptimal pH (Figure 13a, b, c). Expression of MEK:ER led to a cell cycle arrest 

similar to that of H-RASV12 overexpressing IMR90 cells (Figure 13b, c). 

 

                
Figure 14. Expression of senescence-associated genes by IMR90 ER:RAS. IMR90 ER:RAS 
were induced with 4-OHT and sampled at the indicated time points. After fixation cells were stained 
by immunofluorescence and several pictures were taken using the IN Cell Analyzer 1000. 
Percentage of positive cells was calculated using the In Cell Investigator software. At least 500 
cells were counted. a) ER:RAS overexpression activates tumour suppressor pathways. b) 
Induction of RAS expression with 4-OHT leads to accumulation of DNA damage, as measured by 
immunofluorescence against #H2Ax and production of proinflamatory cytokines (IL8). 
 

Another hallmark of senescent cells is the activation of tumour suppressor 

pathways. As expected, treatment with 4-OHT led to the engagement of p16/Rb 

and p53/p21 pathways in IMR90 ER:RAS, which can be seen as soon as day 2 

during the time course (Figure 14a). Additionally, by measuring the expression of 

markers such as #H2Ax or 53BP1, we could visualize the accumulation of DNA 
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damage along time, with the production of proinflammatory cytokines (SASP), 

such as IL8, escalading later on at around day 7 (SASP) (Figure 14 b). 

 

        
Figure 15. Representative immunofluorescence (IF) images and respective quantification 
data collected by HCA. IMR90 ER:RAS cells were fixed at day 6 and day 8 (for the SASP). a) 
Treatment of IMR90 ER:RAS with 4-OHT led to decreased BrdU incorporation as assed by IF 
using an anti-BrdU antibody. b) DAPI staining of senescent cells revealed the formation of 
heterochromatin foci (SAHF) (left) and increased DNA damage was assessed by IF against 
53BP1. c) RAS overexpression led to increased expression of the tumour suppressor genes p16 
and p53/ and p21. d) IF at day 8 post 4-OHT treatment revealed increased levels of IL8 (SASP)  
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The use of the IN Cell Analyzer allows for the high content analysis of 

senescence-associated markers. Once cells were stained with specific antibodies, 

thoroughly tested for specificity, the usage of a high throughput microscope 

permitted the quantification of the examined markers providing, in parallel, 

information about protein localization, thus consisting of a very powerful tool for 

protein analysis.  

IMR90 ER:RAS cells were treated with 4-OHT and fixed for further analysis. 

Percentage of positive cells per marker was calculated from at least 1000 cells, 

unless otherwise indicated. Immunofluorescence combined with HCA allows the 

study of several aspects of the senescent phenotype: cell cycle arrest, 

heterochromatin rearrangement (SAHF), assessed by DAPI staining and DNA 

Damage Response (DDR) accumulation as depicted by increased number of 

53BP1 foci (Figure 15b). The engagement of tumour suppressor pathways can 

also be visualized by IF (Figure 15c), as well as the production of proinflammatory 

cytokines (SASP), such as IL8 (Figure 15d). 

  

In conclusion, the IMR90 ER:RAS model of OIS consists of a very robust system 

to study senescence triggered by activated oncogenes, as it recapitulates, in very 

short time, the major hallmarks of oncogene-induced senescence from activation 

of tumour suppressor pathways, the SASP and DDR to SAHF formation. This 

combined with specific antibodies and a powerful microscope and software 

permits the collection, in a relatively short time, of a large amount of data relative 

to the senescence-associated markers, of both qualitative and quantitative nature. 
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Chapter 4. Cataloguing the subcellular proteome of cells 
undergoing OIS 
 

In order to catalogue and identify proteins differentially expressed, as well as 

changing subcellular localization during oncogene-induced senescence we 

conducted a proteomics analysis of cells undergoing OIS. To this end, growing 

and senescent human fibroblasts were fractionated into cytoplasm, nuclear soluble 

and insoluble fractions and the distribution of proteins in the different fractions was 

analyzed by mass spectrometry.  

 

4.1 Subcellular fractionation of cells undergoing OIS 
 

IMR90 ER:RAS cells were treated with 4-OHT for 9 days in order to induce 

oncogene-induced senescence. As a control IMR90 fibroblasts, infected with the 

empty vector (LSXN), referred to as IMR90 vector, were cultured in parallel and 

treated also with 4-OHT (hereafter referred to as “growing”). Confluent plates were 

collected for each condition and subjected to subcellular fractionation. Senescent 

and growing cells were tripsinized and filtered through a 40µm pore cell strainer to 

avoid clumps and washed several times in cold PBS. To purify the cytoplasm, cells 

were incubated with a detergent-based buffer, vortexed and centrifuged to pellet 

intact nuclei. The supernatant, containing cytoplasmic proteins, was collected and 

nuclei were disrupted via incubation in an EDTA-EGTA solution with continuous 

vortexing. The nuclear soluble fraction was separated from the nuclear insoluble 

pellet by centrifugation, and was treated with DNAse. 

To assess the purity of the subcellular extracts of both senescent and growing 

fibroblasts, we performed immunoblotting and probed the collected fractions 

(nuclear insoluble, soluble, cytoplasm and whole cell extracts) with antibodies 

against proteins known to specifically localize to these subcellular compartments 

under analysis (Figure 16a).  
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Figure 16. Subcellular fractionation of senescent and growing human primary fibroblasts. 
IMR90 ER:RAS and LXSN cells were treated with 4-OHT for 9 days after which they were pelleted 
and subjected to subcellular fractionation. a) Western blot against "-Tubulin, PABP2 and Histone 
H3, specific markers of the cytoplasm (CT), nuclear soluble (NS) and nuclear insoluble (NI) 
fractions, respectively. b) Heat-map for the same fractions analyzed by Mass Spectrometry. 
Displayed proteins localize to a specific fraction, suggesting the success of the fractionation 
technique. Values for relative protein enrichment per fraction range from zero (bright yellow) to 1 
(dark blue). (WCL= whole cell lysates) 

 

Alpha-tubulin, histone H3 and PABP2 were used as markers of the cytoplasm, 

nuclear insoluble (chromatin) and nuclear soluble fractions, respectively (Figure 
16a). For further confirmation of the quality of the fractionation, we analyzed the 

relative enrichment per fraction of specific proteins, detected by mass 

spectrometry (Figure 16b). Cytoskeleton proteins such as Tubulin (TBA3E and 

TBB6) and actin (ACTG) and also a lysosomal trafficking regulator (NBEA) were 

enriched in the cytoplasm (Figure 16b). The detection of several variants of 

histones H2A, H2B and H3 as well as the heterochromatin protein HP1B3 on the 

chromatin samples suggested the purity of the fractions. As a nucleoplasm marker 

we looked into the proteins specifically enriched in the nuclear soluble fraction in 

our proteomics analysis. Several proteins with such a profile were identified 

(Figure 16b). As an example, we performed western blot against PABP2 and 

NI NS CT WCL 

Senescent 

!-Tubulin 

PABP2 

H3 

!"#$%&'(

NI NS CT WCL 

)*+,+ ((

)*-, ((
)*-*. ((

),. ((
)/0+, ((

/-+/* ((

123*4 ((
5314. ((

6*-70 ((
-810 ((

974!* ((

Nuclear insoluble 

Nuclear soluble 

  (more) (less) Relative 
enrichment 

100 0 

-.:! ((

:+-,2 ((
:++; ((

8+2- ((

NI NS CT WCL NI NS CT WCL 

Senescent Growing 

Cytoplasm 

  (more) (less) Relative 
enrichment 

1 0 

a 

b 



Chapter 4. Results: Proteomics Analysis 

 

 79 

observed that this protein was detected in the soluble fraction of both senescent 

and growing cells and also on the total extracts (Figure 16a). Altogether these 

experiments suggested the accuracy of the fractionation. 

 

4.2 Changes in protein expression during OIS 
 

Mass spectrometry analysis detected approximately 4,000 proteins. Relative 

protein enrichment per fraction was calculated and is shown on a heat map 

(Figure 17). Overall, the pattern of protein expression in the cytoplasm and 

nucleoplasm (nuclear soluble fraction) of senescent cells overlapped with that 

observed for the same fractions in proliferating cells, with only a few distinct 

groups of differentially expressed proteins (Figure 17 

In contrast to the overall preserved pattern of expression of cytoplasmic and 

nuclear soluble proteins, a clearly distinct pattern of nuclear insoluble proteins 

between senescent and growing cells was detected (Figure 17). This preliminary 

result suggests a major rearrangement of the chromatin protein landscape during 

oncogene-induced senescence. These observations prompted us to perform a 

more detailed investigation of the protein expression changes in OIS. To this end, 

we focused mainly on two aspects: the study of proteins changing subcellular 

localization and the identification of the main clusters of proteins with altered 

expression during senescence. 
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Figure 17. Mass spectrometry analysis of proteins from fractionated senescent and growing 
cells. Heat map of the relative enrichment per fraction of the 4000 proteins (aprox.) detected in the 
proteomics analysis. Senescent and growing cells display a similar pattern of enrichment for both 
cytoplasmic and nucleoplasmic (nuclear soluble) proteins. Conversely, the nuclear insoluble 
fractions of senescent and growing cells display major differences in terms of protein enrichment. 
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4.3 Proteins changing subcellular localization in senescence 
 
Mass spectrometry analysis performed on fractionated cells allows the 

identification of proteins changing subcellular localization whilst not changing the 

overall levels of expression. This is as an advantage when compared to analysis 

of whole cell lysates, where the overall expression of proteins is considered and 

only events involving de novo synthesis of proteins or degradation are likely to be 

detected.   

To identify proteins changing localization in senescence we compared the pattern 

of protein distribution along fractions in senescence with that observed in growing 

cells via calculation of the Pearson correlation (R) of the relative enrichments. The 

Pearson correlation is a measure of the strength of the linear relationship between 

two variables that can be positively correlated (R=1), not correlated (R=0) or 

negatively correlated (R=-1). 

Since we were interested in proteins changing subcellular localization, we filtered 

all correlation values with an R>0.8 out. From these we selected only the proteins 

for what at least 3 peptides were detected and presented a Mascot score of >90. 

The Mascot score relates to the probability that the observed match is a random 

event (the higher the score, the lower the probability). A group of 287 proteins 

matched these criteria. We analyzed the expression of these proteins in both 

samples and grouped them according to their expression pattern in senescence 

and growing cells. 

 

4.3.1 Factors shuttling from the nuclear soluble to the insoluble fraction 

during OIS 

 
A group of proteins showed a pattern of distribution consistent with that of a re-

localization from the soluble to the insoluble nuclear fraction during senescence 

(Figure 18a). While some of these proteins completely shifted from the soluble to 

the insoluble fraction, as for instance the arginine and glutamate-rich protein, 

ARGL1, others were mildly expressed in the nucleoplasm in growing cells (i.e. 

Leucine-Rich Repeats And IQ Motif Containing - LRIQ1). Within the group of 

proteins that migrate to the chromatin during senescence, we identified EP300, a 
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transcriptional co-activator previously shown to negatively regulate senescence 

(Yan et al., 2013). In order to understand the processes these proteins were 

involved in, we performed gene ontology  (GO) analysis using DAVID 

(http://david.abcc.ncifcrf.gov/). This group of proteins was significantly associated 

with chromatin and nuclear related processes (Figure 18b). Additionally, proteins 

of this group were involved in DNA damage and repair. That was the case of 

RD23B and SSRP1 and SP16H, two proteins belonging to the FACT complex, that 

have been previously related with senescence (Safina et al., 2013). Interestingly, 

another protein belonging to a complex with a role in senescence was identified - 

SMCA5, a subunit of the SWI/SNF complex (Khursheed et al., 2013; Tu et al., 

2013). Altogether, these results suggest that a subset of nucleoplasmatic proteins 

is likely recruited to the chromatin during senescence. The identification of known 

regulators of senescence in the group of proteins changing subcellular localization 

reinforces the idea that such changes might reflect a functional role. 
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Figure 18. Several proteins that accumulate in the nuclear soluble fraction in proliferating 
cells move to the chromatin upon induction of senescence. a) Enrichment heat map for 
nuclear soluble proteins accumulating on the chromatin upon induction of senescence. b) GO 
annotations for proteins in a) show that proteins are involved in processes such as chromatin 
remodeling, RNA processing and DNA damage. 
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4.3.2 Proteins shuttling from the chromatin to the nuclear soluble fraction 

during OIS 

Gene expression is a dynamic process that requires a fine balance between the 

recruitment and release of transcriptional activators and repressors from the DNA. 

In this sense it seemed appealing to us to investigate not only the proteins being 

recruited to the chromatin, but also the factors released from the chromatin upon 

induction of senescence (Figure 19). Gene ontology analysis suggested that this 

group of proteins was involved in RNA localization, processing and transport. 

Interestingly, three related proteins clustered together within this group, all 

showing a pattern consistent with a re-localization from the chromatin to the 

soluble pool of proteins in the nucleus (Figure19a). The Far Upstream element-

Binding Proteins, FUBP1,FUBP2 and FUBP3 are known to have RNA binding 

properties and to be involved in mRNA translation, stabilization and processing 

and are overexpressed in cancer correlating with increased proliferation and 

migration of cancer cells. (Davis-Smyth et al., 1996; Malz et al., 2009; Weber et 

al., 2008; Zhang et al., 2013; Zhang and Chen, 2013). Interestingly, a role for 

FUBP1 in regulating p21 expression has been reported (Rabenhorst et al., 2009). 

Altogether, these results suggest that senescent cells might shift their RNA 

processing activity and that some of these proteins could potentially control 

senescence via regulation of mRNA stability. 
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Figure 19 Proteins moving from the chromatin to the nuclear soluble fraction upon 
induction of senescence. a) Heat map for proteins that localize to the chromatin on proliferating 
cells and tend to accumulate on the soluble nuclear fraction during senescence. b) GO terms for 
proteins shown in a) relate with RNA procesing and transport. 

 

4.3.3 Proteins moving from the chromatin into the cytoplasm during OIS  
 

We next focused on a group of proteins that localized to chromatin in proliferating 

cells, but relocalized to the cytoplasm during senescence (Figure 20a).  
 

CCD86 

COR1C 

DD19B 

ELYS 

FUBP1 

FUBP2 

FUBP3 

GLYR1 

HMCN1 

INT3 

K2C5 

M4K4 

MOT1 

MYLK 

NOP14 

PKP2 

SFPQ 

SYNE2 

THOC3 

TRI25 

TRRAP 

VASP 

Biological Processes 

0,001 0,01 

GO:0051028~mRNA transport 

GO:0050657~nucleic acid transport 

GO:0050658~RNA transport 

GO:0051236~establishment of RNA localization 

GO:0006403~RNA localization 

GO:0015931~nucleobase, nucleoside, nucleotide and nucleic acid transport 

GO:0006396~RNA processing 

P value (Log10) 

Senescent Growing 

NI NS CT NI NS CT 

!"#

!$#
%&#

                                 0.01                                           0.001 

Biological Processes 

0,001 0,01 

GO:0051028~mRNA transport 

GO:0050657~nucleic acid transport 

GO:0050658~RNA transport 

GO:0051236~establishment of RNA localization 

GO:0006403~RNA localization 

GO:0015931~nucleobase, nucleoside, nucleotide and nucleic acid transport 

GO:0006396~RNA processing 

p value (Log10) 

a 

b 

  (more) (less) Relative 
enrichment 

1 0 



Chapter 4. Results: Proteomics Analysis 

 

 86 

             

                   

ABCF1 

ACON 

AP2A2 

CKAP4 

CNOT1 

EHBP1 

FRAS1 

FSIP2 

GCN1L 

GOGA3 

GORS2 

HCD2 

ITA1 

K2C8 

MA2A1 

MYH10 

MYH11 

MYH9 

MYO1B 

NCKP1 

PNPH 

RPN1 

S61A2 

SC23B 

STAG2 

STT3A 

STT3B 

TBCK 

TM165 

WLS 

Senescent Growing 

NI NS CT NI NS CT 

!"#

!$#

%&#

Biological Processes 

Cellular Components 

1,00E-05 1,00E-04 1,00E-03 1,00E-02 

!"#$$$%&'()*+,-./0123/0,124/51678/09.51:8;4,<;82=,01
!"#$$>'>?%)*.*=5;872<*2+2:/0.13,5/@42=,01

!"#$$>'A(?)*+,-./0123/0,124/51678/09.51:8;4,<;82=,01
!"#$$$%&'%)*+,-./0123/0,124/51:8;4,<;82=,01

!"#$$&B&>B)C/,*,8;3.+1:8;4,<;82=,01
!"#$$($$'D):8;4,<;82=,01

!"#$$$?>$>):8;4,*+,-./01C/,<;0-E.=41*+,4.<<1
!"#$$$?>$$):8;4,*+,-./013.-2C,8/41*+,4.<<1

!"#$$D>>&%)<-+/2-.513F<48.14.8815/G.+.0=2=,01
!"#$$&A%?A)3F<48.14.8815/G.+.0=2=,01

!"#$$BA?'?)4.88F82+14,3*,0.0-13,+*E,:.0.</<1
!"#$$$($>$)4;-,<9.8.-,01,+:20/H2=,01

!"#$$$>($>)/01F-.+,1.3C+;,0/415.I.8,*3.0-1
!"#$$&%?$()/0-+24.88F82+1-+20<*,+-1

!"#$$>D$B>)*+,-./01-+20<*,+-1
!"#$$&D>'&).<-2C8/<E3.0-1,J1*+,-./018,428/H2=,01
!"#$$BA?'?)4.88F82+14,3*,0.0-13,+*E,:.0.</<1

>K$$L7$&1>K$$L7$B1>K$$L7$A1

!"#$$$'AD$),8/:,<244E2+;8-+20<J.+2<.14,3*8.M1
!"#$$>AD$D).05,3.3C+20.1<;<-.31

!"#$$B>$?$),+:20.88.13.3C+20.1
!"#$$$D('?).05,*82<3/41+.=4F8F313.3C+20.1

!"#$$&A>(D)0F48.2+1.0I.8,*.7.05,*82<3/41+.=4F8F310.-N,+91
!"#$$&&&BA).05,*82<3/41+.=4F8F31*2+-1

!"#$$$D('B).05,*82<3/41+.=4F8F31
!"#$$>%&D?)3;,</014,3*8.M1

!"#$$$>(AD)<-+.<<1@C.+1
!"#$$BA&BA)24=01@823.0-1CF058.1

!"#$$&A%&>)24-,3;,</01
!"#$$>D%A?)24=014;-,<9.8.-,01

!"#$$$D'D%)4;-,<9.8.-,01
!"#$$>%$AB)4;-,*82<3/413.3C+20.7C,F05.51I.</48.1

!"#$$B>?'')3.3C+20.7C,F05.51I.</48.1
!"#$$B>&>$)4;-,*82<3/41I.</48.1

!"#$$B>?'A)I.</48.1
!"#$$&&&B>)!,8:/12**2+2-F<1*2+-1

!"#$$$D'D%)4;-,<9.8.-,01

p value (Log10) 

p value (Log10) 

a 

b 

  (more) (less) Relative 
enrichment 

1 0 



Chapter 4. Results: Proteomics Analysis 

 

 87 

Figure 20. Proteins moving  from the chromatin to the cytoplasm during senescence. a) Heat 
map for proteins that mainly accumulate in the chromatin on proliferating cells and acquire a 
cytoplasmic localization during senescence. b) GO terms for proteins in a) show proteins relate 
with functions associated with protein transport and processing, as for instance glysoslation. 

 

GO annotations associated with this cluster included protein transport and protein 

glycosylation (Figure 20b). Glycosylation is a post-translation modification that 

takes place mainly in the endoplasmic reticulum and Golgi apparatus. Here we 

report the apparent release of proteins involved in glycosylation from the 

chromatin as cells undergo senescence. Histone glycosylation has been 

previously described, therefore the localization and release of these proteins from 

the chromatin could offer another level of regulation of gene expression (Fujiki et 

al., 2011; Sakabe et al., 2010).  

 

4.3.4 Proteins shuttling from the nuclear soluble fraction to the cytoplasm 

during OIS 
 

Next we analyzed the proteins moving from the soluble nuclear fraction to the 

cytoplasm (Figure 21). Most of the factors shuttling from the nucleoplasm to the 

cytoplasm were either ribosomal proteins (e.g. RS2) or ribosome binding proteins 

(e.g. RRBP1), possibly reflecting an increased protein synthesis, known to occur 

partly in the cytoplasm. Congruently, most GO terms associated with mRNA and 

protein transport and localization, as well as with translation elongation (Figure 
21b). Consistently with this, cellular components associating with this group 

encompassed ribosome and ribosomal subunit (Figure 21b - lower panel). In 

addition to proteins associated with translation, also factors associated with protein 

catabolism, (i.e. proteosomal-mediated degradation of proteins) moved from the 

nuclear soluble fraction to the cytosol during OIS (Figure 21).  
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Figure 21. Soluble nuclear proteins migrating to the cytoplasm during OIS. a) Heat map 
showing proteins that shuttle from the nuclear soluble fraction to the cytoplasm upon induction of 
senescence. b) GO annotations for proteins shown in a). GO annotations associate with anabolic 
(RNA translation and protein transport) and catabolic processes (ubiquitin, proteosomal 
degradation of proteins). 

 

Genes involved in fatty acid degradation (process that occurs in the peroxisome) 

are also present in this cluster (i.e. PEX1) and seemed to preferentially localize to 

the cytoplasm upon induction of senescence, suggesting the overall engagement 

of catabolic pathways in senescence. 

 

4.3.5 Proteins moving from the cytoplasm into the nucleus during OIS 
 

Finally, we looked at the proteins shifting from the cytoplasm to the nucleus 

(Figure 22). Upon activation by phosphorylation or other post-translational 

modification, many proteins translocate from the cytoplasm to the nucleus in order 

to regulate gene expression. That is the case for instance of the SMAD2 and 

SMAD3 proteins upon TGF"-mediated phosphorylation (Nicolas et al., 2004). 

Therefore, investigating nuclear import of proteins during senescence seemed 

extremely appealing from the functional point of view.  

Our data identified 23 proteins that shifted from the cytoplasm to the nucleus 

during senescence. These were mostly associating with processes related with 

cytoskeleton and organelle organization and biogenesis (Figure 22). For example, 

ARP3, MAP1A and CAPG are proteins with actin-binding properties and seem to 

accumulate in the nucleus during senescence (Figure 22). Since alteration of the 

cell shape (as the cells become enlarged and flat) is one of the key features of the 

senescent phenotype, would be interesting to understand the functional 

implications of this observation.  
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Figure 22. A group of cytoplasmic proteins relocalizes to the nucleus as cells undergo 
senescence. a) Heat map shows that proteins with a cytoplasmic localization in proliferating cells 
accumulate in the nucleus during senescence. b) GO terms for proteins in a) show these proteins 
are associated with cytoskeleton and and organelle organization processes. 
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4.4 Clustering analysis identifies 3 groups of proteins differentiating 
senescent from proliferating cells 
 
In order to further investigate changes in protein expression taking place during 

oncogene-induced senescence we performed clustering analysis, to unravel the 

proteins, or group of proteins, behind such changes. To this end, Enrico Petretto 

and Xiaolin Xiao from the Integrative Genomics and Medicine lab (CSC MRC) 

used a Higher-Order Generalized Singular Value Decomposition (HO-GSVD) -

based algorithm, termed C3D method, Cross-Conditions Cluster Detection- to 

analyze these data (Figure 23) (Xiao et al., 2014). 

 

      
 

Figure 23. The C3D method. Proteomics data was processed using a High-Order Generalized 
Singular Value Composition algorithm (HO-GSVD), the C3D method (Cross-Conditions Cluster 
Detection). This method comprises and initial phase of data initialization, followed by HO-GSVD 
and finally node selection and cluster validation (Adapted from Xiao et al., 2014). 

 

In summary, they used an algorithm that decomposes the input datasets and 

identifies the common and differential correlation structures (vectors) between two 
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conditions, in this case senescent vs growing. After the data is initialized, each 

vector is then used to reorder the input data matrices so that the candidate 

‘‘common’’ (or ‘‘differential’’) clusters are identified. Once the clusters are identified 

the genes are classified and assigned to each cluster (Figure 23) (Xiao et al., 

2014). Upon C3D mediated analysis, several nodes were found as differentially 

expressed in cells undergoing senescence as compared to the proliferating 

counterparts.         

  

  
Figure 24. Analysis using the C3D method identifies 3 main protein clusters. The HO-GSVD 
based algorithm detected 3 main clusters of proteins differentially expressed in OIS. Custer 1 encompasses a 
group of cytoplasmic proteins expressed in senescence but overall not in the control condition. Custer 2 is a 
group of proteins enriched in the chromatin of growing cells when compared with senescence. Cluster 3 
encompasses proteins enriched in the chromatin during senescence.  (NI, nuclear insoluble; NS, nuclear 
soluble, CT, cytoplasm; WCL, whole cell lysates; FDR, false discovery rate) 
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the chromatin of growing cells (Cluster 2) and c) a group of 324 proteins 

associated with the chromatin of senescent cells (Cluster 3) (Figure 24). 
Only proteins showing a false discovery rate (FDR) of <0.05 (i.e. less than 5% 

probability of being a false positive entry in the cluster) were selected for each 

cluster. A more restrictive filter was used for cluster 1 and cluster 3, with 

FDR<0.001 and FDR<10-6, respectively (Figure 24). As previously mentioned, a 

peptide count of >3 and a Mascot score of >90 were used to filter for the proteins 

identified with high confidence. Clustering analysis on non-filtered data did not, 

however, show any different outcome in the identified clusters and annotations 

associated with them therefore we used the full dataset for the analysis. 
 

4.4.1 A group of cytoplasmic proteins differentiates senescent from growing 

cells (Cluster 1) 
 

One of the 3 clusters identified with the C3D method consisted of a group of 185 

proteins overexpressed in the cytoplasm of senescent cells (FDR &0.001) (Figure 

25). Gene ontology analysis showed the proteins in cluster 1 were involved in 

protein transport, metabolism, biosynthesis and glycosylation. Additionally, terms 

such as vesicle-mediated transport or intracellular protein transport were also 

associated with this cluster (Figure 26). Indeed, there is an increased activity of 

catabolic pathways associated with proteasome and autophagy-dependent 

degradation of proteins in senescence what might explain the association of 

cluster 1 with such GO terms (Salama et al., 2014).  
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Figure 25. Cluster 1 a is group proteins present in the cytoplasm during senescence. Heat 
maps show correlations of cluster proteins with senescence (left) and growing (right). This group of 
proteins are more strongly correlated with senescence than with proliferating cells, therefore 
defining a relevant cluster distinguishing both conditions. 

 

Moreover, terms linked with ATP-dependent pathways, such as ATP biosynthetic 

process or ATP metabolic process associated with cluster 1. 

We next proceeded with the identification of families of genes enriched in cluster 

1. Two functional groups stood out: a group of proteins related with GTPase 

mediated signaling, including Ras-related proteins, such as RAB13 or RB33B, and 

an additional group of proteins regulating N-linked glycosylation (Figure 27). 

Interestingly, altered glycosylation has been reported in aging and in plant 

senescence (Elbers et al., 2001; Fulop et al., 2008; Vanhooren et al., 2011). 
Whether this is an additional potential hallmark of senescence or simply a 

reflection the increased turnover and de novo protein synthesis would be 

interesting to address. 
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Figure 26. GO annotations for proteins in cluster 1. Gene ontology analysis of cluster 1 
revealed proteins in this group  are involved in diverse processes that include Rho GTPase activity, 
protein transport and intracellular localization, protein glycosylation and biosynthesis and 
metabolism. All terms shown were selected with a p value <0.05. 
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Figure 27. Protein families enriched in cluster 1 include Rho GTPases and factors involved 
in glycosylation. Proteins involved in RAS signaling (top) and several proteins with a role in 
glycosylation (bottom) are enriched in the cytoplasm during senscence. 

 

 

4.4.2 Cluster 2 encompasses proteins enriched in the chromatin of growing 

cells  
 

An additional group of 278 differentially expressed proteins defined cluster 2, all 

enriched in the nuclear insoluble fraction of growing cells when compared to the 

senescent counterparts (Figure 24). Indeed, these correlated more strongly with 

the chromatin of proliferating than senescent cells (Figure 28). 

Gene ontology analysis revealed that proteins in this cluster were involved in 

processes such as DNA replication and cell cycle, DNA repair and response to 

stress (Figure 29). Consistent with their localization in the chromatin-bound 

fraction, cluster 2 proteins were overall involved in chromatin remodeling (Figure 
29).  
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Figure 28. Group of proteins enriched in the insoluble nuclear fraction of growing cells 
(control) defines cluster 2. Heat maps displaying correlation values for proteins enriched in the 
insoluble nuclear fraction of control cells showing that these proteins are more strongly positively 
correlated with the control condition then with senescence, producing a tight cluster of differentially 
expressed proteins between the two samples.  
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Figure 29. GO annotations associated with cluster 2. Gene ontology generated using the 
bioinformatic tool DAVID, rendered several groups of biological processes for proteins 
enriched in cluster 2. These include terms such as replication, DNA repair and cell cycle. 
However the most enriched terms corresponded to processes related with chromatin, 
suggesting cluster 2 contains mainly factors involved in chromatin processing. 
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Figure 30. The histone H1 cluster, detected in cluster 2, is depleted from the senescent 
chromatin. Histone H1 was enriched on the chromatin of proliferating cells as opposed to 
that of the senescent counterparts. Loss of H1 from the chromatin is thought to contribute to 
SAHF formation (Funayama et al., 2006). 

 

 

Within the proteins enriched in cluster 2 we found several variants of the 

histone H1, suggesting that histone H1 is reduced during senescence (Figure 
30). This is consistent with previous publications showing that cells 

undergoing both oncogene-induced and replicative senescence show 

decreased levels of linker histone H1, most probably due to a post-

translational mechanism (Funayama et al., 2006). 

Additionally we observed that several members of the high mobility group of 

proteins (HMGB2 and 3, HMGN1,2, 3 and 4) were depleted from the nuclear 

insoluble fraction during senescence when compared with cells undergoing 

proliferation (Figure 31).  
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Figure 31. Cluster 2 encompasses members of several families of chromatin 
remodelers with reduced expression in senescence. Various members of the High 
mobility group protein family are depleted from the chromatin of senescent cells (top). Lamins 
A and B, are slightly more enriched in the chromatin of proliferating cells when compared with 
that of senescent cells (middle). Several variants of the H2A and H2B histone clusters are 
absent from the senescent chromatin (bottom).  

 

 

Lamins were also slightly depleted in senescence, specifically LMNA and 

LMNB1 (Figure 31). Lamin B1 loss has been described in cells undergoing 

both replicative senescence or oncogene-induced senescence (Dreesen et 

al., 2013; Freund et al., 2012; Sadaie et al., 2013; Shah et al., 2013; Shimi et 

al., 2011).  

Finally, several variants belonging to the H2A and H2B clusters of histones 

showed reduced expression in senescence, as previously reported (Figure 

31) (Lopez et al., 2012) 
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4.4.3 A group of proteins is significantly enriched in the senescent 

chromatin (Cluster 3) 
 

Another cluster detected with the C3D method consisted of a group of 

proteins localizing to the nuclear insoluble fraction of senescent cells (Figure 
32). 

 
Figure 32. Group of proteins enriched in the senescent chromatin compose cluster 3. 
Correlation heat map for cluster 3 data a) Full set and b) top 324 proteins with FDR<10-6, 
defining cluster 3. Cluster 3 proteins correlated more strongly with senescence than growing, 
suggesting these proteins are upregulated in the chromatin during OIS. 

 

This cluster contained a group of proteins that strongly correlated with 

senescence, while being globally anti-correlated or non correlated with the 

control (Figure 32a). From these, three hundred and twenty four (324) 

proteins presented an FDR<10-6 (cluster 3) (Figure 32b).       
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Figure 33. Proteins in cluster 3 strongly correlate with the senescent sample but not 
with control. Calculation of the difference between protein correlations in senescence and 
protein correlations in growing cells. a) Heat map for correlation differences showing overall 
positive values, suggesting a higher correlation between proteins in cluster 3 and 
senescence. b) Heat map for positive correlation differences showing most difference values 
are >0 c) Difference matrix plotting difference values of $ 0.5 (blue pixels). 
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Moreover, when the difference between correlation values for senescent and 

growing cells was calculated for these 324 proteins we found that most 

correlation values differed by at least 0.5, reinforcing the strong association of 

proteins belonging to cluster 3 with the chromatin of senescent but not 

growing cells (Figure 33a-c). 

We then proceeded with the identification of the proteins and processes 

associating with cluster 3 by performing a gene ontology analysis. This 

analysis revealed a significant association (p<0.05) with chromatin 

organization, remodeling and modification (Figure 34). The composition of 

these 2 clusters (1 and 2) with differentially expressed proteins in the 

chromatin-bound fraction mirrors the profound chromatin remodeling that is 

known to take place during senescence (Narita et al., 2003; Narita et al., 

2006). Additionally, proteins in cluster 3 were involved in cell cycle and DNA 

repair, which are of conceptual relevance in senescence. Interestingly, 

members of the SWI/SNF complex (i.e. BAZ2A, ARID1A, etc) were also 

enriched in cluster 3 (Figure 35a, b). As members of this complex have been 

associated with the establishment of senescence, this observation not only 

provided an internal control but also reinforced the assurance of a successful 

fractionation. In addition to components of the SWI/SNF complex, other 

senescence-associated factors were significantly enriched in cluster 3, such 

as the HMGA2, a member of the high mobility group A (Figure 35a, b). This 

protein accumulates in the chromatin of senescent cells contributing to the 

formation of the SAHF (Narita et al., 2006).  
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Figure 34. GO annotations associated with cluster 3. Cluster 3 is significantly associated 
with chromatin-associated processes, such as nucleosome organization or chromatin 
assembly. Other significant GO annotations relate with cell cycle and mitosis, and DNA repair 
and response to stress, both senescence related processes. 
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Figure 35. Members of the senescence-associated SWI/SNF complex and high mobility 
group A proteins are detected in the mass spectrometry analysis and belong to cluster 
3. a) GO terms associated with members of the SWI/SNF complex and HMGA proteins are 
significantly enriched (p<0.05) in cluster 3. b) Heat map shows the enrichment of several 
members belonging to the chromatin remodeling complex as well as HMGA2, a high mobility 
group A protein in the nuclear insoluble fraction of senescent cells, as opposed to growing 
cells. 

 

Finally, additional families of proteins enriched in the chromatin during 

senescence in our proteomics data encompassed some histone variants, 

proteins involved in nuclear export and snRNA processing (Figure 36). 

Specifically, we noted enrichment for the H3 variants, H31T and H32 and 

histone H4 (Figure 36).  

Other non-histone proteins accumulating in the nuclear insoluble fraction in 

senescence were the exportins XPOT and XPO2. These are members of the 

Nuclear Pore Complex (NPC), involved in the nuclear export of tRNA and 

importin alpha, respectively (Behrens et al., 2003; Kutay et al., 1997; Kutay et 

al., 1998; Kuwabara et al., 2001; Tai et al., 2010). Interestingly, also 3 

members of the Integrator complex family were found enriched in the nuclear 

insoluble fraction of senescent cells in our proteomic analysis (Figure 36). 
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The main function of this protein complex is its association with the C-terminal 

domain of RNA polymerase II and mediation of 3'-end processing of small 

nuclear RNAs (U1 and U2) (Baillat et al., 2005; Chen and Wagner, 2010).  

 

       
 
Figure 36.  Specific histones, exportins and integrator complex members are enriched 
in the nuclear insoluble fraction during senescence (Cluster 3). Cells undergoing 
oncogene-induced senescence show increased levels of the histone H3 variants, H31T and 
H32, as well as histone H4 in the fraction corresponding to the chromatin. Other non-
chromatin protein groups enriched during senescence are the exportins XPO2 and XPOT and 
the integrator complex members INT1, INT7 and INT10. 

 

Altogether, these results are consistent with a severe chromatin remodeling 

occurring during senescence (Narita 2003 et al., 2003; Narita et al., 2006).  

Indeed, the analysis of fractionated cells allowed the identification of the 

proteins associated with the nuclear insoluble fraction as the most altered 

fraction as cells undergo senescence. Moreover, the identification of proteins 

with a functional role in senescence suggests that other proteins present in 

cluster 3 could also regulate OIS. 
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4.5 Functional validation of cluster 3 

4.5.1 Several components of cluster 3 regulate OIS 

 
Out of the three main clusters previously defined, Cluster 3 was the one that 

better distinguished senescence from the proliferating state (FDR<10-6). In 

addition, the presence of some previously identified regulators of senescence 

within the cluster (such as SWI/SNF complex members, HMGA2 or EP300) 

reinforced the idea that cluster 3 could include genes with potential 

implications for senescence.  In order to test the functional relevance for 

senescence of the proteins identified in cluster 3, we set out to conduct a 

screen using siRNAs. A more detailed explanation of the screening approach 

is provided in Chapter 5. A custom library containing 4 independent siRNAs 

per gene was created targeting a total of 50 genes selected from the 

proteomics analysis. 25 genes were chromatin-associated factors picked out 

of cluster 3 and the other 25 genes were not associated with the 

aforementioned cluster or with chromatin in general (control group). To 

investigate the potential functional role of these genes in OIS, IMR90 ER:RAS 

fibroblasts were reverse transfected with the siRNA library and induced to 

undergo senescence. BrdU incorporation and p16 expression were analyzed 

by immunofluorescence as readout for senescence at day 4 post treatment 

with 4-OHT. Expression data was normalized using B-score computation to 

allow for inter-plate comparison (Figure 44). The screen was performed in 

duplicate. 

Next we proceeded with the selection of candidate siRNAs bypassing OIS. 

For that, we focused specifically on siRNAs displaying a B-score of $2 for 

BrdU and %-2 for p16. From these, only genes for which 3 out of the 8 siRNAs 

analyzed presented such B-scores were selected (Figure 37). 
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Figure 37. Screen for the bypass of OIS identifies senescence regulators within cluster 
3. IMR90 ER:RAS cells were reverse-transfected with 4 independent siRNA against 25 genes 
picked out of proteomics cluster 3 and 25 selected randomly from the mass spectrometry 
data. Cells were induced to undergo OIS and fixed 4 days after treatment with 4-OHT started. 
BrdU and p16 expression were analyzed by IF and used as readout for the bypass of OIS. a) 
siRNAs against 3 genes from cluster 3 (GTF3C4, HMGB1, PB1) bypassed the cell cycle 
arrest as measured by BrdU incorporation, whereas only siWIPl1 , from the random pool of 
genes, scored. b) siPB1, siINTS7, siACTL6A and siEP400 (cluster 3) bypassed full induction 
of p16. siRNA targeting EP300, an inhibitor of OIS, reinforced p16 expression. c) Hits were 
picked with basis on the B-score for individual siRNAs. The cutoff B-Score '+2 or &-2 was 
used and only genes for which 3 out of 8 siRNAs scored were selected. Blue, sip16; red, 
siRNAs bypassing; green, siRNAs reinforcing. 
 

The selective threshold allowed the identification of 4 hits whose knockdown 

bypassed the cell cycle arrest. From these, three (GTF3C4, PB1 and HMGB1) 

were genes picked out of cluster 3. Similarly, knockdown of 6 genes 

prevented p16 induction and 4 of them (PB1, INTS7, ACTL6A, EP400) were 

part of cluster 3 (Figure 37a-b). Altogether, this result suggests a potential 

causal association between genes in cluster 3 and the onset of senescence, 

once again reinforcing the importance of the chromatin for the establishment 

of the senescent phenotype, or at least part of it. Interestingly, some genes 

belonging to the SWI/SNF complex, specifically ACTL6A and PBRM1, scored 

in this analysis (Figure 37). While we did not concentrate on siRNAs that 

reinforced OIS, we did notice that siEP300, which has been recently reported 

to inhibit senescence induced p16 expression (Figure 37b) (Yan et al., 2013). 

Our analysis rendered additional genes with a potential and unreported role in 

senescence. Knockdown of EP400 and INTS7 involved in histone acetylation 

and in snRNAs transcription and DNA damage, respectively, partially 

prevented p16 induction. Additionally, knockdown of GTF3C4 increased BrdU 

incorporation of IMR90 ER:RAS cells treated with 4-OHT, suggesting potential 

roles for these genes in regulating senescence. 
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4.5.2 GTF3C4, identified in cluster 3, regulates senescence 
 

 

           

 
Figure 38. Knockdown of the cluster 3 gene, GTF3C4, bypasses OIS. a) GTF3C4 was 
detected in the mass spectrometry analysis enriched in the nuclear insoluble fraction of 
senescent cells. b) IF against BrdU and p16 of GTF3C4-depleted IMR90 ER:RAS treated 
with 4-OHT for 4 days. c) Quantification of b) shows an increase in BrdU incorporation while 
p16 expression is unaffected by any of the siRNAs against GTF3C4. 
 

 

Amongst the components of cluster 3 we decided to investigate in further 

detail GTF3C4 (protein name -TF3C4). GTF3C4 (also referred to as TFIIIC90) 

is a member of the multi-subunit TFIIIC which is involved in RNA polymerase 

III-mediated transcription of small nuclear RNAs (Dumay-Odelot et al., 2007; 

Hsieh et al., 1999; Kundu et al., 1999). In our proteomics data, GTF3C4 was 
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detected to be enriched in the chromatin –bound fraction during senescence 

(Figure 38a).  

 
Figure 39. Stable knockdown of GTF3C4 leads to bypass of the stable cell cycle arrest. 
a) Knockdown of GTF3C4 in IMR90 ER:RAS cells treated with 4-OHT resulted in increased 
proliferation as assessed by crystal violet staining (top panel) and BrdU incorporation (bottom 
panel). shp53 was used as a control b) RT-qPCR of GTF3C4 mRNA shows the gene was 
efficiently knocked down with both shRNAs. c) Quantification of IF against BrdU showed in b. 

 

Knockdown of GTF3C4 resulted in increased BrdU incorporation by IMR90 

ER:RAS cells treated with 4-OHT, likely in a p16- independent fashion 

(Figure 38b-d). To confirm these results we infected IMR90 ER:RAS cells 

with lentivirus expressing several shRNAs against GTF3C4. Two shRNAs 

efficiently knocked down GTF3C4 (Figure 39b). Infected cells were plated at 

low density, induced to undergo OIS with 4-OHT, and cultured for a few days 

in order to evaluate the ability of cells expressing shGTF3C4 to form colonies. 

In agreement with the previous results, knockdown of GTF3C4 led to 

increased proliferation, as measured by BrdU incorporation and that resulted 

in increased colony formation along time (Figure 39a, c) 
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Figure 40. Knockdown of GTF3C4 does not affect p53 and has little impact on p16 
expression and SAHF formation. a) Immunofluorescence against p16 (top) and p53 
(bottom) on IMR90 ER:RAS infected with shRNAs against GTF3C4. Cells were induced with 
4-OHT and fixed at day 6 for IF. b-c) Quantification of the immunofluorescence images 
collected via high throughput microscopy. d) DAPI stained nuclei revealing the formation of 
SAHF. e) Quantification of the percentage of cells displaying senescence-associated 
heterochromatin foci. 
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Next we sought to investigate whether knockdown of GTF3C4 in oncogene-

induced senescence could have implications for the expression of the main 

tumour suppressor pathways, p16/Rb and DDR/p53 (Figure 40). 

Upon induction of Ras expression, cells infected with the empty vector 

underwent senescence, showing increased p16 as well as p53 expression 

(Figure 40a).  

 
 
Figure 41. Transient knockdown of GTF3C4 does not affect the integrity of major 
pathways in OIS. a) IF against p53, p21 and IL8 (SASP). b-c) siGTF3C4 do not affect the 
p53/p21 pathway. d) The SASP, as measured by IL8 expression, is not greatly affected upon 
GTF3C4 knockdown. 
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Knockdown of GTF3C4 with two independent shRNAs resulted in a slight 

reduction of p16 expression (Figure 40a,b). Knockdown of GTF3C4 had no 

effect on p53 expression (Figure 40a,c). To assess the formation of SAHF we 

stained nuclei with DAPI. Knockdown of GTF3C4 had a modest impact of the 

formation of SAHF (Figure 40d,e). Additionally, transient knockdown of 

GTF3C4 had no effect on the expression of other senescence markers such 

as p21 and the SASP component IL8, as assessed by immunofluorescence 

(Figure 41a,c,d). Also, accumulation of DNA damage seemed unaltered upon 

GTF3C4 knockdown (data not shown).  

In conclusion, these preliminary experiments pinpoint a possible role for 

GTF3C4 in senescence but additional and more detailed experiments are 

needed to understand how GTF3C4 controls senescence. 
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4.6 Discussion and conclusions 

4.6.1. Large-scale studies to identify expression changes in senescence 

 
Over the past years, several groups have conducted large-scale studies of 

gene expression, using microarrays or RNA sequencing (RNA-seq) in order to 

unravel new gene networks controlling senescence (Shelton et al., 1999; 

Yoon et al., 2004; Zhang et al., 2003). For instance Purcell et al. recently 

compared replicative senescence with oxidative stress induced-, 

chemotherapy- and DNA demethylase-induced senescence through RNA-seq 

to conclude that not only upregulation of SASP genes is a common feature 

across different types of senescence, but also that gene expression in 

senescence induced by demethylase treatment highly overlaps with that 

observed in fibroblasts undergoing replicative senescence (RS), reinforcing 

the idea that progressive DNA demethylation has a causal effect in aging 

(Purcell et al., 2015). Additionally, RNA-seq analysis of young and old 

fibroblasts suggested a different pattern of long non-coding RNAs (lncRNA) 

expressed during replicative senescence, allowing the discovery of SAL-

RNA1 (XLOC_023166) as a novel negative regulator of senescence 

(Abdelmohsen et al., 2013). Recently, Nelson et al. published an extensive 

comparison of gene expression between cells undergoing oncogene-induced 

and replicative senescence using microarrays. They showed that although 

very similar in nature, replicative and oncogene-induced senescence 

displayed significant differences in gene expression. Specifically, while both 

display down regulation of cell cycle genes, up regulation of SASP factors and 

p16/pRb associated genes and changes in the expression of Wnt signaling 

effectors, the subset of genes within those categories are different in OIS and 

RS (Nelson et al., 2014).  

While mRNA expression analysis is a valuable tool for identifying expression 

changes, proteins are the functional effectors of the cell and transcriptome 

studies do not take into account post-transcriptional modifications. To 

overcome this, previous studies have used mass spectrometry to investigate 

protein changes in cells undergoing replicative-, stress- or oncogene induced 

senescence  (Aan et al., 2013; Acosta et al., 2013b; Benvenuti et al., 2002). 



Chapter 4. Results: Proteomics Analysis 

 

 116 

For instance, comparison of proteomes of cells undergoing replicative- and 

stress-induced senescence identified differences in changes of protein 

expression when compared to normal fibroblasts. Proteins involved in 

cytoskeleton organization, stress and metabolic pathways, Ca2+ regulation 

and protein folding and degradation were overly differentially regulated in 

these two types of senescence (Aan et al., 2013). Nonetheless, most of these 

studies looked for protein changes while analyzing total cell lysates, therefore 

overlooking changes that do not encompass alterations in total expression 

levels such as differential post-translational modifications or altered 

subcellular localization. Recently, collaborative work from Peeper and 

Altelaar’s labs extensively characterized the proteome and phosphoproteome 

of cells undergoing OIS upon mutant BRAF expression and compared it with 

that of proliferating cells and cells bypassing OIS (de Graaf et al., 2014). This 

study yielded several interesting conclusions. For instance, the authors 

showed that there were major changes in expression related with general 

oncogene overexpression, shared by both OIS and OIS bypassing cells, and 

fewer expression changes related with senescence itself. Moreover, they 

performed proteomics analysis at early and late time points upon oncogene 

activation and observed differences regarding the proteins (and related 

processes) that were up and down regulated at each of these time frames, 

with cell cycle genes changing expression early on and some extracellular 

matrix components and inflammatory cytokines being specifically upregulated 

in senescence at late stages of senescence. Additionally, and more 

importantly, this work unraveled specific changes in protein phosphorylation 

without major changes in total protein expression. That was the case of the 

prototypical senescence regulator, RB1, which was hypophosphorylated 

during OIS and OIS bypass but did not change the total level of expression 

(de Graaf et al., 2014), thus reinforcing that protein function can be fine-tuned 

by post-translational modifications. 

Aiming for a more specific approach to study senescent sub-proteomes, 

Acosta et al. performed a SILAC-based approach focusing specifically on the 

extracellular space to study the SASP (Acosta et al., 2013a). Also, Althubiti et 

al. characterized the plasma membrane-associated proteome of cells 
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undergoing senescence upon p21 or p16 overexpression, and identified novel 

potential senescence selective markers with prognostic value for cancer 

survival (Althubiti et al., 2014). The present study proposed to use an 

alternative approach by applying mass spectrometry on fractionated cells in 

order to specifically identify proteins enriched on particular subcellular 

compartments (chromatin, nucleoplasm and cytoplasm). “Spatial proteomics”, 

as it is called, has been previously described and used to characterize 

subcellular shifts in protein localization across compartments, mainly upon 

induction of DNA damage (Aslanian et al., 2014; Boisvert et al., 2010; 

Boisvert and Lamond, 2010). Specifically, these studies made use of the 

Stable isotope labelling with amino acids in cell culture (SILAC) technique to 

compare protein abundance between differentially labelled subcellular 

fractions from different experimental conditions. Detection of subcellular 

protein localization is of relevance as altered protein localization, more than its 

overall expression within the cell has been associated with predisposition to 

several diseases (Gatto et al., 2014). Protein localization is normally analyzed 

either by immunofluorescence or by combining cell fractionation and protein 

blotting, which allows only the analysis of known proteins at a low throughput 

(Boisvert et al., 2010). Thus, spatial proteomics allows not only the 

determination of spatial organization of specific proteins within the cell but 

also identification of novel proteins regulating a particular process (Boisvert 

and Lamond, 2010). Additionally, variations derived from fractionation and MS 

techniques seem to have only minor effects of the final measured values of 

protein abundance for what this large-scale approach is highly accurate, also 

because it allows the measurement of several subcellular specific markers for 

precise assessment of the fractionation quality (Boisvert and Lamond, 2010). 

Overall, this method presents clear advantages compared to previous 

methods: 1- It allows the identification of proteins changing subcellular 

localization; 2- Is more sensitive to less abundant proteins that tend to occupy 

very specific subcellular niches. In the present work, human primary 

fibroblasts carrying a fusion ER:RAS gene were used as a model of 

oncogene-induced senescence, allowing for the temporally controlled 

induction of OIS. Mass spectrometry analysis of senescent and growing cells 
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identified over 4,000 proteins across different subcellular fractions (Figure 
17). The overall pattern of protein expression in the nucleoplasm and cytosol 

was generally conserved as cells underwent OIS. Conversely, the nuclear 

insoluble proteome displayed major differences in protein representation, with 

clusters of proteins either overexpressed or downregulated in senescence 

when compared to the proliferating counterpart (Figure 17). This observation 

suggests that, rather than a universal alteration of protein expression, 

senescence could encompass minor, but no less important, changes in the 

expression of specific protein groups localizing to the cytoplasm and 

nucleoplasm, accompanied by a global rearrangement of the chromatin- 

associated proteome. This result sheds light on the recurring concept of 

chromatin remodeling as one of the most prominent hallmarks of aging and 

senescence (Adams, 2007; Dimauro and David, 2009; Narita et al., 2003, 

Narita et al., 2006). Of note, several proteins identified across the subcellular 

fractions were under-represented when the whole cell lysates were analyzed. 

Thus, the approach herein presented allowed the analysis of subcellular 

proteomes permitting not only the detection of less abundant proteins, that 

otherwise would be overlooked, but also changes in subcellular localization of 

proteins. Most importantly, it identified that proteins associated with the 

chromatin are the most significantly altered when cells undergo oncogene-

induced senescence. 

4.6.2 Protein groups involved in basic cellular processes change 

subcellular localization in OIS 
 

Analysis of fractionated cells by performing spatial proteomics allows the 

identification of proteins changing subcellular localization (Boisvert and 

Lamond, 2010). In light of this, a group of proteins was shortlisted from the 

mass spectrometry output data for displaying a pattern of expression 

consistent with an intracellular shuttling between compartments (Figure 18-

Figure 22). Proteins were clustered by the relative abundance when 

comparing subcellular compartments pair-wise, and gene ontology analysis 

identified the processes those protein groups associated with. Interestingly, 

most terms corresponded to basic cellular functions, such as mRNA 
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processing, protein synthesis and degradation or cytoskeleton organization 

(Figure 18-Figure 22). Previous work has drawn attention to alterations of the 

mRNA processing machinery during senescence (Chandris et al., 2010; Nose 

and Okamoto, 1980). Specifically, Chandris et al. had reported perturbations 

of the mRNA processing machinery in senescent fibroblasts, showing a 

decrease in polyA mRNAs as cells undergo senescence. Interestingly, this 

was accompanied by a redistribution of the mRNA processing compartments 

from a widespread nucleoplasmatic pattern, with speckles accumulating along 

the interchromatin spaces in young cells to an isolated speckled-pattern in 

senescence (emptying the interchromatin space), reminiscent of that obtained 

upon treating cells with an RNA polymerase II inhibitor (Chandris et al., 2010). 

The importance of RNA-binding proteins (RBP) for the stability or decay of 

senescence-associated genes has been reviewed elsewhere (Wang, 2012). 

For instance the RBPs AUF1 and HuR have been shown to negatively 

regulate senescence by promoting p16 mRNA decay and increase the 

stability of mRNAs encoding cyclins A and B, respectively, therefore 

promoting cell cycle progression (Guo et al., 2010; Wang et al., 2001). 

Conversely the RBP CUGBP1 promotes p21 mRNA stability and translation 

(Iakova et al., 2004). In the present work, a pattern of redistribution of proteins 

involved in RNA processing from an essentially chromatin-associated to an 

exclusive nucleoplasmatic pattern was observed in senescence (Figure 19). 

While we cannot interpret these results in light of the current knowledge, it 

suggests, to a certain degree, a readjustment of the RNA processing 

machinery during OIS. Interestingly, several Far Upstream element-Binding 

factors, involved in RNA binding, translation and mRNA processing were 

identified within this group of proteins relocating from the chromatin into the 

nucleoplasm (Davis-Smyth et al., 1996; Malz et al., 2009; Weber et al., 2008; 

Zhang et al., 2013; Zhang and Chen, 2013). FUBP1 and FUBP3 regulate c-

myc by binding to its promoter and an additional role for FUBP1 in regulating 

p21 mRNA translation and stability has been reported (Rabenhorst et al., 

2009). Whether these results mirror dysfunctional RNA processing or just a 

remodeling of the transcriptional complexes bound to the DNA in order to tune 
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gene expression to facilitate senescence cannot be concluded, however 

would be interesting to explore and understand. 

Also, factors involved in both protein synthesis and catabolism change 

subcellular localization in senescence (Figure 21). These proteins 

accumulate in the nuclear soluble fraction in growing cells acquiring a strict 

cytoplasmic localization during OIS. While paradoxical, protein synthesis and 

degradation cooperate to quality control damaged proteins that tend to 

accumulate as well as to allow the morphological and metabolic changes that 

take place during senescence (Charmpilas et al., 2014; Narita, 2010; Narita et 

al., 2011). Most of the protein synthesis-associated factors detected in the 

cytoplasm during senescence were ribosomal proteins (Figure 21). 

Considering that protein translation occurs partly in the cytoplasm this 

increased accumulation of ribosomal proteins in the cytosol might reflect an 

increased protein synthesis during senescence.  

Macro-autophagy is the main catabolic event in OIS and occurs in 

autophagosomes in the cytoplasm (Salama et al., 2014). The results herein 

presented show that within the group of proteins shuttling from the nucleus to 

the cytoplasm during senescence some were related with the proteosome. 

Gamerdinger et al. have described the autophagic degradation of 

polyubiquitinated proteins during replicative senescence. The polyubiquitin-

binding protein SQSTM has been shown to play a role in this process and is 

found, in our data, to localize in the cytoplasm of senescent cells as opposed 

to the proliferating counterparts (Gamerdinger et al., 2009). Hence, the shift of 

ubiquitin-associated processes, from the nucleus to the cytoplasm could 

mirror the change of the proteolytic pathways in senescence. 

Finally, we also observed relocalization of cytoskeleton-related proteins to the 

nuclei (Figure 22). One of the main characteristics of senescent cells is their 

enlarged and flattened morphology (Serrano et al., 1997). The enlarged 

senescent phenotype is partly due to the increased expression of vimentin 

(Nishio and Inoue, 2005; Nishio et al., 2001). Specifically, the cytoskeleton of 

senescent fibroblasts contained 3 times more vimentin than that of young 

fibroblasts (Nishio and Inoue, 2005; Nishio et al., 2001). Our proteomics data 

show that ARP3, MAP1A and CAPG, all proteins with actin-binding properties, 
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accumulate in the nuclei of senescent cells. Indeed Kwak et al. had reported 

the nuclear accumulation of globular actin during replicative and Ras–induced 

senescence (Kwak et al., 2004). There is, therefore a demand in 

understanding how and why cell shape is altered in senescence, and looking 

into differential expression or subcellular localization of cytoskeleton-related 

proteins might provide a starting point.  

Overall the aforementioned results show several proteins involved in basic 

cellular processes change subcellular localization during OIS. Future 

experiments should validate these observations though immunofluorescence 

or by immunoblotting of proteins in fractionated cells. 

 

4.6.3 Glycosylation: a novel hallmark of senescence? 

 
Glycosylation, an enzymatic reaction where a polysaccharide is attached to a 

protein or lipid, is the most common post-translational mechanism for protein 

modification, contributing to an increased diversity and specialization of target 

molecules (Lisowska et al., 2008). The mammalian glycome repertoire is very 

diverse and encompasses between hundreds and thousands of glycan 

structures, divided in N-glycans, O-glycans, and glycosaminoglycans, 

depending on the anchoring residue (Ohtsubo and Marth, 2006). We 

observed an enrichment of factors involved in both protein and lipid 

glycosylation, in the cytoplasm of senescent cells (cluster1, Figure 27). That 

was the case of the proteins ALG1, ALG3, MGAT5, MPU1, OSTC, RPN2 and 

STT3B mostly involved in N-linked glycosylation in the endoplasmic reticulum. 

Interestingly, analysis of intracellular relocalization of proteins during 

senescence also suggested the shuttling of the factors STT3A, RPN1, MA2A1 

and STT3B, involved in N-linked glycosylation, from the chromatin to the 

cytoplasm during OIS (Figure 20). STT3B, detected in both groups, is the 

catalytic subunit of the N-oligosaccharyl transferase (OST) involved in co-

translational and post-translational N-glycosylation of target proteins (Ruiz-

Canada et al., 2009).  

Protein glycosylation take takes place mainly in the Golgi apparatus and 

endoplasmic reticulum (ER). For instance, proteins undergoing N-linked 
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glycosylation are initially modified in the ER (where also the polypeptide chain 

is produced) and then further processed in the Golgi, two organelles 

belonging to the cellular endomembrane system (Helenius and Aebi, 2004; 

Ohtsubo and Marth, 2006). As we did not control for subcellular localization of 

these organelles it is possible that the observed differences could arise from 

variations in the fractionation of the endomembrane system of senescent and 

growing cells. Nevertheless, free nuclear and cytoplasmic glycosylation has 

also been reported. Thus, further experiments should try to underscore not 

only whether the observed differences correspond to real subcellular protein 

shuttling during OIS and what organelles are involved (Fujiki et al., 2011; 

Funakoshi and Suzuki, 2009).  

Altered glycosylation has been associated with several diseases including 

cancer (Christiansen et al., 2014; Hakomori and Handa, 2002; Lisowska et al., 

2008; Ohtsubo and Marth, 2006). Changes in glysosylation have also been 

reported in aging (Fulop et al., 2008; Vanhooren et al., 2011). For instance, 

Vanhooren et al. reported altered N-glycosylation and increased fucosylation 

in aging mice (Vanhooren et al., 2011). Additionally, alterations and 

accumulation of glycoproteins in the brain during aging has been discussed, 

suggesting, together with the results herein presented a possible role for 

glycosylation in senescence (Sato and Endo, 2010). 

 

4.6.4 Deep remodeling of the chromatin-associated protein landscape 

during OIS 
 

Senescence encompasses major changes at the chromatin level, including 

epigenetic remodeling of the INK4/ARF locus and SAHF formation (Adams, 

2007; Dimauro and David, 2009; Narita, 2007; O'Sullivan and Karlseder, 

2012). Recent work has given insights into nuclear spatial rearrangement and 

the formation and structural complexity of the SAHFs (Chandra et al., 2015; 

Chandra et al., 2012; Cruickshanks et al., 2013; De Cecco et al., 2013; 

Swanson et al., 2013). These reports showed senescence encompasses 

major high-order chromatin remodeling events that implicate an overall 

decondensation, detachment from the nuclear lamina and clustering of 
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decondensed regions leading to loss and gain of local and distant contacts 

between genome areas, respectively (Chandra et al., 2015; Chandra et al., 

2012; Cruickshanks et al., 2013; De Cecco et al., 2013; Swanson et al., 

2013).  

The data presented here reinforced the concept of a deep rearrangement of 

the chromatin during senescence. Indeed, in contrast to the overall conserved 

protein landscape observed in the cytoplasm and nuclear soluble fraction, the 

nuclear insoluble fraction of senescent cells showed a completely different 

pattern of protein expression when compared to that of proliferating cells 

(Figure 17). Two of the 3 principle clusters identified by the C3D method were 

composed of proteins enriched in (cluster 3) or depleted (cluster 2) from the 

senescent chromatin (Figure 28, Figure 32).  

Analysis of the two chromatin-related clusters allowed the identification of 

senescence-associated proteins. That was the case for several members of 

the SWI/SNF complex that were enriched in the chromatin during senescence 

(Figure 35). The SWI/SNF complex regulates nucleosome positioning to 

modulate transcription (Wilson and Roberts, 2011). Members of this complex 

can induce senescence, are overexpressed in senescent cells and localized 

to the chromatin in our mass spectrometry analysis (Burrows et al., 2010; 

Dunaief et al., 1994; Kia et al., 2008). 

An additional senescence-associated protein enriched in the chromatin during 

senescence is EP300 (also known as p300).  Moreover, EP300 was excluded 

from the chromatin in normal cells suggesting intracellular shuttling (Figure 
18). p300 is a transcriptional co-activator that regulates transcription via 

chromatin remodeling through its activity as a histone acetyltransferase, 

ultimately regulating cell growth, differentiation and senescence (Iyer et al., 

2004; Prieur et al., 2011; Yan et al., 2013). The inhibition of the HAT activity of 

p300 causes senescence both in fibroblasts and in melanoma cell lines (Yan 

et al., 2013). While decreased expression of p300 has been previously 

reported in cells undergoing Ras-induced senescence, we do not observe 

such a decrease. This could be due to cell type variations (the previous study 

used BJ and TIG3 fibroblasts), to the time window chosen for the proteomics 

analysis or even to the use of an inducible system as opposed to the 
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constitutive expression of RAS. Also, Prieur et al. showed that the inhibition of 

the HAT activity of p300 does not affect the chromatin-binding activity of the 

protein but cells still undergo cell cycle arrest, suggesting p300 might have 

additional HAT independent functions at the chromatin level of relevance for 

senescence  (Prieur et al., 2011). It is relevant, to mention that additional 

reports suggest that p300 can positively regulate senescence via p53 

acetylation (Avantaggiati et al., 1997; Grossman, 2001; Pedeux et al., 2005). 

SAHF formation is one of the main hallmarks of senescence and some of its 

components are induced as cells undergo senescence (Rai and Adams, 

2012; Salama et al., 2014). Consistent with previous reports and with their 

role in SAHF formation we also observed enrichment of HMGA2 and 

macroH2A and depletion of several H1 variants from the chromatin during 

OIS (Figure 30, Figure 35,data not shown) (Catez et al., 2006; Funayama et 

al., 2006; Maehara et al., 2010; Narita et al., 2006; Narita et al., 2003; Sporn 

et al., 2009; Zhang et al., 2005).  

Epigenetic changes during senescence are partly due to a remodeling of the 

nuclear lamina. Indeed the premature aging syndrome HGPS is characterized 

by accumulation of mutated LMNA (LA&50) leading to altered nuclear shape 

and heterochromatin loss (Eriksson et al., 2003; Goldman et al., 2004; Huang 

et al., 2008; Shumaker et al., 2006). Our data shows a considerable decrease 

in the expression of LMNA in the chromatin fraction during senescence 

(Figure 31). Previous work has shown that overexpression of wild type lamin 

A led to premature aging in human fibroblasts (Huang et al., 2008). Moreover, 

lamin A positively regulates pRb (Johnson et al., 2004). Although this might 

go at odds with the decreased expression of lamin A in the proteomics data, it 

is conceivable that are alterations in the levels of expression in general, rather 

than the directionality of those changes that induces deterioration of the 

nuclear envelope and consequent aging. Additionally, we also observed a 

slight decrease in the levels of another nuclear lamina component, lamin B1, 

in the chromatin of senescent cells (Figure 31). Decreased levels of lamin B1 

were previously reported in senescence (Barascu et al., 2012; Dreesen et al., 

2013; Freund et al., 2011; Sadaie et al., 2013; Shah et al., 2013). This 

downregulation contributes to the rearrangement of the chromatin marks 
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H3K4me3 and H3K27me3 (Sadaie et al., 2013; Shah et al., 2013). Despite 

the global decrease in lamin B1 levels, some lamin B1 clusters persist in 

H3K27me3 enriched areas suggesting the maintenance of a pool of lamin B1 

to control gene expression during senescence (Chandra et al., 2015; Sadaie 

et al., 2013). Nevertheless, while senescent cells show low levels of LMNB1, 

overexpression of lamin B1 has also been shown to induce senescence 

(Barascu et al., 2012; Dreesen et al., 2013). It is therefore important to 

understand the dynamics of lamin B1 levels in senescence. 

Chromatin rearrangement during senescence encompasses alterations of the 

histone pattern as well. Previous work has shown that histone-containing 

chromatin fragments disseminate into the cytoplasm via a nuclear-to-

cytoplasm chromatin blebbing mechanism (Ivanov et al., 2013). Additionally, 

reduced biosynthesis of H4 and H3, particularly of variants H3.1 and H3.2, 

was observed during aging of both yeast and human cells and in 

differentiating and mature rat neurons, and histone overexpression extended 

yeast lifespan (Corpet et al., 2014; Feser et al., 2010; O'Sullivan et al., 2010; 

Pina and Suau, 1987). Also, decreased expression of H2A variants during 

drug-evoked senescence has been reported (Lopez et al., 2012). Conversely, 

H3.3 and its cleaved form, H3.3cs1, are incorporated into the senescent 

chromatin by the HUCA complex (HIRA/UBN1/CABIN1/ASF1a) and induce 

senescence (Adams, 2007; Corpet et al., 2014; Duarte et al., 2014). In this 

work we observed reduced expression of H2A and H2B variants in the 

senescent chromatin reinforcing the previous observations for these histones 

(Lopez et al., 2012). However, we additionally detected an enrichment of both 

H4 and histone H3 variants H31T and H3.2 in the chromatin of senescent 

cells, what go at odds with previous reports (Figure 36). One possible 

explanation for this could be differences in the type of senescence, as 

previous studies used yeast and human cells undergoing replicative 

senescence (Feser et al., 2010; O'Sullivan et al., 2010). Indeed, while 

previous reports showed negative correlation between Asf1 levels and 

replicative senescence, this protein is important for SAHF formation during 

OIS (Feser et al., 2010; O'Sullivan et al., 2010; Zhang et al., 2005; Zhang et 

al., 2007). Further analysis is needed to validate the results herein presented 
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and to better understand the relevance of histone H4 and H3 variants across 

several types of senescence.  

The proteomics analysis allowed the detection of additional protein families 

enriched in the senescent chromatin: exportins XPO2 and XPOT and 

members of the integrator complex INT1, INT7 and INT10 (Figure 36). 

Exportins are involved in the transport of macromolecules from the nucleus 

into the cytoplasm (Okada et al., 2008). While Exportin 2 (XPO2) is involved 

in the export of importin-$ and has a role in apoptosis and cancer, XPOT 

mediates tRNAs export progression (Behrens et al., 2003; Kutay et al., 1997; 

Kutay et al., 1998; Kuwabara et al., 2001; Tai et al., 2010). The localization of 

both proteins in the nuclear insoluble fraction could suggest a role in the 

regulation of chromatin-associated processes, what has been observed for 

additional members of this family (i.e. XPO7) (Hattangadi et al., 2014). 

Nevertheless, localization of these nuclear membrane proteins to the 

chromatin-containing fraction could consist of an artifact of the fractionation 

procedure, thus further experiments are needed to understand whether these 

exportins bind the chromatin and what role play in OIS. 

Finally, the Integrator is a multiprotein complex that associates with the C-

terminal domain of RNA polymerase II large subunit and mediates 3’ end 

processing of snRNAs (Baillat et al., 2005; Chen and Wagner, 2010). Recent 

work showed that in gamma-irradiated osteosarcoma cells INT7 localized to 

the sites of DNA damage (Cotta-Ramusino et al., 2011). INTS7 knockdown 

led to proliferation arrest bypass suggesting a possible role in irradiation-

induced senescence (Cotta-Ramusino et al., 2011). Would be relevant to 

understand how INT7 contributes to senescence and to what extent other 

components of the complex, as for instance INT1 and INT10 are involved. 

 

4.6.5 Expression meets function: GTF3C4, a novel OIS regulator 

 
In order to investigate the functional relevance of the changes in expression 

associated with the chromatin, a small siRNA library was created to target a 

subset of genes detected on cluster 3. Knockdown of PBRM1, HMGB1 and 

GTF3C4 led to a bypass of the cell cycle arrest, while siRNAs targeting 
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PBRM1, ACTL6A, INTS7 and EP400 downregulated p16 expression, 

therefore suggesting a pairing between altered expression and function, which 

was further confirmed though analysis of one of the hits (Figure 37). GTF3C4, 

(or TFIIIC90) is a member of the multisubunit complex TFIIIC, which is 

involved in Polymerase III-mediated transcription (Kundu et al., 1999). 

Specifically, RNA Pol III mediates transcription of small RNA molecules 

involved in basic metabolic processes such as components of the protein 

synthesis apparatus (i.e. 5S RNA) and components of the splicing, tRNAs and 

other RNAs of unknown function (Schramm and Hernandez, 2002). At least 

six subunits of the TFIIIC complex have been well described to date, and work 

together to recognize and recruit RNA Pol IIl, via tethering of TFIIIB, to target 

promoters (Dumay-Odelot et al., 2007; Schramm and Hernandez, 2002). In 

addition to the previous functions, GTF3C4 is one of the 3 subunits detaining 

an intrinsic histone acetyltransferase (HAT) activity towards free and 

nucleosomal H3 which is thought to alleviate chromatin repression and allow 

assembly of RNA Pol III and pre initiation complex onto gene promoters 

(Hsieh et al., 1999; Kundu et al., 1999).  Whether GTF3C4 regulates 

transcription of genes other than those transcribed by RNA Pol III, is not 

known.  

We observed that GTF3C4 is associated with the chromatin during 

senescence (Figure 38a) Unfortunately, no appropriate GTF3C4 antibody 

was found, therefore the subcellular localization has not been confirmed by 

immunoblotting. 

In the present work, GTF3C4 knockdown bypassed the cell cycle arrest and 

slightly affected p16 expression and SAHF formation during OIS (Figure 38; 

Figure 39). The expression of additional senescent mediators (p53, p21, 

53BP1 and IL8) seemed unaffected by GTF3C4 knockdown suggesting that 

its function in senescence does not encompass the regulation of the DDR 

signaling or production of the SASP. One hypothesis would be that GTF3C4 

could regulate the INK4/ARF locus, affecting p15 rather than p16. 

Interestingly, TFIIIC has been shown to hold RNA Pol III transcription 

independent functions (Donze, 2012). Noma et al. showed that the complex 

TFIIIC could bind the DNA adjacent to heterochromatic regions to help 
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prevent the spread of heterochromatin in yeast (Noma et al., 2006). In 2013, a 

review by Kirkland et al. elongated on the potential role of TFIIIC as both 

barrier and enhancer-blocking insulator, therefore contributing for high-order 

chromatin changes (Kirkland et al., 2013). It is conceivable that GTF3C4, as 

part of the TFIIIC complex could contribute to the restriction of the SAHF or 

even for a potential long-range enhancer-mediated promoter regulation in 

senescence, but all is rather speculative. In fact, GTF3C4 has not yet been 

directly linked with senescence.  

Nevertheless, recent evidence showed that inhibition of ribosomal biogenesis 

leads to accumulation of free nascent 5S rRNA, that together with ribosomal 

proteins RPL5 and RPL11, binds to MDM2 (HMD2) and inhibits its interaction 

with p53, ultimately activating the latter (Donati et al., 2013; Sloan et al., 

2013). This is further potentiated by p14ARF that inhibits ribosome biogenesis 

(Sloan et al., 2013). Moreover, this p53 activation by the 5S RNP complex, 

consisting of RPL11, RPL5, and 5S rRNA, has been recently shown to 

mediate both OIS and replicative senescence in MEFs, due to impaired 

ribosomal biogenesis, thus suggesting that 5S rRNA, a RNA Pol III gene can 

mediate senescence (Nishimura et al., 2015). 

Also, ERK and c-Myc have been show to stimulate RNA Pol III transcription of 

tRNAs and 5S rRNA, by mediating phosphorylation or by direct binding to 

TFIIIB, respectively (Felton-Edkins et al., 2003; Goodfellow and White, 2007; 

Kenneth et al., 2007; Mauger and Scott, 2004). This has been suggested to 

account for proliferation-independent cell growth and hypertrophic growth, 

which are typical of senescence (Goodfellow and White, 2007; Mauger and 

Scott, 2004). However, reports against RNA Pol III genes positively regulating 

senescence exist. In one hand, DNA damage signaling pathway induces 

TFIIIB downregulation and consequent Pol III transcription inhibition (Ghavidel 

and Schultz, 2001; Schultz, 2003). In the other hand, several tumour 

suppressors including pRb and p53 have been implicated in repressing RNA 

Pol III transcribed genes either by inhibiting transcription of members of the 

RNA Pol III transcriptional machinery or by blocking the binding of TFIIIB and 

TFIIIC2 to target promoters (Bhargava et al., 2013; Cairns and White, 1998; 

Chesnokov et al., 1996; Dumay-Odelot et al., 2010; Eichhorn and Jackson, 
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2001; Hsieh et al., 1999). Nonetheless, GTF3C4 containing complex (TFIIIC) 

does not seem to suffer from p53-mediated repression (Cairns and White, 

1998; Eichhorn and Jackson, 2001). Thus, the scenario regarding RNA Pol III 

genes in senescence is rather complex and possibly context dependent. The 

observation that it can be involved in proliferation-independent cell growth and 

that it is involved in p53 activation suggests a role in senescence (Nishimura 

et al., 2015). However, the relative contribution of the TFIIIC complex, and its 

subunit GTF3C4, remains to be elucidated. Indeed, we failed to observe an 

effect on p53 upon GTF3C4 knockdown, suggesting it could mediate other 

pathways in OIS. Thus, many questions remain: Does it affect other types of 

senescence or does it depend on RAS activation? Is it involved in other 

situations of cell cycle arrest (e.g. quiescence)? Is it acting in the context of 

the TFIIIC complex and is it HAT activity necessary?  Answering all these 

questions would be of relevance to better understand the role of GTF3C4 in 

senescence.  
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Chapter 5. siRNA screen for the identification of chromatin 
and nuclear factors regulating OIS 
 

 

Our mass spectrometry analysis revealed profound changes in the chromatin 

of cells undergoing OIS. Indeed, two clusters comprising chromatin-

associated proteins were differentially expressed in senescence. Additionally, 

a small siRNA screen for the bypass of OIS revealed that some of these 

proteins could regulate senescence. That was the case of GTF3C4, here 

validated as a potential regulator of OIS. These results prompted us to 

perform a larger siRNA screen with the purpose of identifying novel 

chromatin-remodeling factors controlling OIS.  

 

5.1 Setting up an siRNA screen for the bypass of OIS 
 
A custom siRNA library (QIAGEN), targeting 456 different chromatin-

remodeling factors, was distributed in twenty 96-well plates and each gene 

was targeted by two independent siRNAs in sister plates. Since wells located 

on the plate edge are subjected to more adversities than those in the center of 

the plate (an artifact known as “edge effect”), the siRNA library has been 

spotted onto the plate excluding the outermost rows and columns (Figure 42).  

Instead, wells situated at the edge of the plate were used for mock control 

(cells + transfection reagent only) as well as for monitoring the induction of 

senescence upon treatment of cells with 4-hydroxy-tamoxifen (Figure 42). 

Briefly, cells were reverse-transfected with the siRNAs in triplicate plates and 

treated with 4-OHT the day after. Cells were fixed 4 to 5 days post induction, 

and subjected to immunofluorescence using the high throughput microscope 

IN Cell Analyzer 2000 (Figure 42). 
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Figure 42. siRNA screen workflow. An siRNA library targeting 456 different genes was 
spotted onto 96- well plates. Plate edges were avoided, being used for siRNA-free senescent 
(pink) and proliferating (green) cells (mock control). As proof-of-principle controls, scrambled 
siRNAs (yellow wells) and siRNAs targeting known regulators of senescence - CDKN2A, 
TP53, and CBX7 - were spotted (red, green and blue wells). A fluorochrome-combined siRNA 
was also aliquoted in order to monitor transfection (purple). IMR90 ER:RAS fibroblasts were 
transfected with the library, treated with 4-OHT the day after and fixed 4 days post Ras 
induction. Fixed cells were subsequently stained for immunofluorescence to assess BrdU and 
p16 expression and analyzed by HCA, using the IN Cell Analyzer 2000. 

 

 

As readout for the screen, we measured BrdU incorporation at day 4 post 

induction. As previously mentioned, IMR90 ER:RAS cells undergo a stable 

cell cycle arrest around 4 days post treatment with 4-OHT (Figure 13).  

In addition to the cell cycle arrest, senescent cells upregulate the expression 

of cell cycle inhibitors (p16, p21, p53), DDR effectors (#H2Ax or 53BP1) or the 

SASP (Il8, IL6) (Figure 13). Owing to the functional relevance of INK4a 

induction for oncogene-induced senescence, as well as the robustness of p16 

expression we decided to use it, together with BrdU as a readout marker for 

the loss-of-function screen (Figure 14, Figure 15). Expression of both 

markers was analyzed by immunofluorescence 4 days after treating cells with 

4-OHT, and quantified using the IN Cell Analyzer 2000. 
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Figure 43. Control siRNAs and readouts for the bypass of senescence at day 4 post 
induction with 4-OHT. a) IMR90 ER:RAS fibroblasts targeted either with  scrambled siRNAs 
(All Stars, QIAGEN), siCBX7, siCDKN2A and siTP53 were stained with specific antibodies 
against BrdU and p16, subjected to IF and representative images were collected with the IN 
Cell Analyzer 2000  automated high-throughput microscope b) At least 1000 cells from each 
condition were counted and the percentage of positive cells was calculated for each marker 
using the IN Cell Investigator software. 

 

To assess the feasibility of the screen, we used siRNAs against known 

senescence regulators (CBX7, p16 and p53) (Figure 42). 

Upon treatment with 4-OHT IMR90 ER:RAS transduced with the scrambled 

siRNA underwent senescence as measured by increased p16 expression and 

decreased BrdU incorporation (Figure 43). In agreement with its ability to 

repress the INK4/ARF locus, knockdown of CBX7 in non-induced proliferating 

cells upregulated p16 expression and decreased the percentage of cells 

incorporating BrdU (Figure 43). p16 was efficiently knocked down with 

siCDKN2A. The downregulation of p16 was accompanied by an increase in 

the percentage of cells incorporating BrdU at day 4, post treatment with 4-

OHT (Figure 43b). Similarly, siRNA against p53 led to a bypass of OIS, as 

measured by the increased percentage of proliferating cells (Figure 43b).  
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The siRNA library consisted of twenty 96-well plates, each containing 

approximately 60 siRNAs targeting chromatin factors and two replicate 

siRNAs targeting p16, p53 and CBX7 as well as two scrambled sequences 

and siGlo, a fluorochrome labeled siRNA, to monitor transfection. 

Triplicate plates were used and therefore IMR90 ER:RAS cells were reverse 

transfected on 60 independent plates. The day before fixing, cells were 

incubated with BrdU and plates were fixed at day 4 post 4-OHT treatment. 

Expression of p16 and BrdU was analyzed by immunofluorescence using the 

IN Cell Analyzer 2000. Expression of readout markers was quantified by high 

content analysis with the In Cell Investigator software. Raw p16 intensity as 

well as the percentage of BrdU and p16 expressing cells was calculated for at 

least 1000 cells per well. 

 

5.2 Primary screen identified a group of potential OIS regulators 
 

Once p16 and BrdU expression was quantified we normalized the data to 

allow for inter-plate comparison. Percentage of cells incorporating BrdU and 

p16 expression, as measured by the In Cell Investigator software, were 

therefore normalized using B-scores, which similarly to Z-scores, use 

population measurements, in this case the median and median absolute 

deviation (MAD). Additionally, it incorporates an algorithm that accounts for 

positional effects (row and column) while being resistant to outliers 

(Birmingham et al., 2009; Brideau et al., 2003). The B-score was calculated 

using the software Web cellHTS2 (http://web-cellhts2.dkfz.de/cellHTS-

java/cellHTS2/ (Pelz et al., 2010). To verify the effect that normalization had 

on the expression of p16 and BrdU, we plotted the average expression of both 

markers per plate before and after normalization, using the cellHTS2. When 

the mean raw intensity of p16 and BrdU was calculated per plate we noted 

inter-plate variability (Figure 44a,b). B-score normalization corrected for this 

inter-plate variability, allowing for more accurate comparison between plates 

(Figure 44c-d). 
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Figure 44. Data normalization and quality control of the screen. A spreadsheet 
containing raw p16 intensities and the percentages of BrdU positive cells was uploaded onto 
the Cell-HTS2 website and the B-score was calculated for each individual well (siRNA) per 
screen plate. a-d) Final web Cell-HTS2 output, showing that upon normalization the inter-
plate variability is removed. Shown values correspond to the average of all data points for p16 
and BrdU per plate before and after normalization. e-h) Individual siRNA values for raw and 
normalized p16 expression and BrdU incorporation for all data points across the 60 screen 
plates. Blue dots represent scrambled siRNA, yellow dots indicate siCDKN2A, green color-
codes library siRNAs with a B-score % -2 and purple represent siRNAs showing a B-score of 
$2. i-j) Normalized data ranked by B-score for p16 (i) and BrdU (j), individually. For 
representational purposes only, triplicates for each siRNA were averaged. Control siRNAs, 
CDKN2A, TP53 and CBX7 and respective outcome (bypass vs reinforcement) are shown. B-
scores for additional library siRNAs targeting known regulators of senescence are shown, 
therefore working as internal controls.  

 

Indeed, while control siRNAs (scrambled and siCDKN2A) along different 

plates displayed variable raw intensity of both p16 and BrdU, normalized 

expression values for each marker were much more comparable across 

plates (Figure 44e-h, yellow and blue dots). Hence, normalization made 

plates more comparable, allowing siRNAs of different plates to be ranked 

together and hits selected with basis on how different (how many standard 

deviations) they were from the median.  

For further evaluation of the accuracy of the screen, we investigated the 

outcome of control siRNAs after normalization. As expected, when we 

specifically knocked down p16 (siCDKN2A) we observed a decrease in p16 

expression as suggested by the resulting negative B-scores (Figure 44g,i). 

Concomitantly, siCDKN2A led to an increased proliferation represented by 

positive B-score values for BrdU (Figure 44h,j). Both, clearly standing out 

from the overall background B-scores (including those for the scrambled 

siRNAs) lying around zero, suggesting a successful knockdown and effective 

bypass of OIS.  A similar outcome was observable for sip53 (Figure 44i-j).  
As previously mentioned, CBX7 is a known negative regulator of p16 

expression and senescence. Although we did not see an additional 

upregulation of p16 when this Polycomb gene was knocked down (average B-

score settled around zero), siCBX7 did lead to a further decrease in the 

percentage of proliferating cells, as suggested by the negative B-score value 

for BrdU.  Additional siRNAs targeting senescence regulators were present in 

the library and affected p16 and BrdU accordingly. Consistent with their role 

as positive regulators of senescence, knockdown of the SWI/SNF genes 
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PBRM1 and ARID1B resulted in reduced p16 levels, as indicated by the 

negative B-score (Figure 44i, j) (Burrows et al., 2010; Kia et al., 2008). 

Likewise, siRNAs targeting the senescence inhibitors SUZ12 and EZH2 

scored positively for p16, therefore suggesting a further upregulation of the 

INK4/ARF locus upon knockdown of these genes. Interestingly, knockdown of 

EZH2 resulted in a negative B-score for BrdU, indicative of an additional 

decrease in the percentage of proliferating cells, and therefore a 

reinforcement of OIS in those cells (Figure 44i, j) (Agherbi et al., 2009; 

Bracken et al., 2007; Bracken et al., 2003).  

These results suggested that data normalization allowed for inter-plate 

comparison as intended as well as for the selection of genuine hits, as 

indicated by the detection of known regulators of senescence impacting on 

BrdU and p16 expression. Once we assessed the accuracy of the screen, we 

proceeded with the selection of candidates affecting senescence. 

 
Figure 45. Primary screen identified 69 novel potential regulators of senescence. 
Genes for which 3 out of 6 siRNAs were leading to a B-score $ +2 or % -2 were selected for 
each marker. A total of 69 genes were selected: 22 bypassing p16 expression only, 23 
exclusively bypassing the cell cycle arrest, 4 bypassing both (bold), 16 reinforcing p16 
expression and also 4 reinforcing p16 expression and concomitantly bypassing the cell cycle 
arrest (red). 
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To avoid the confounding effect of outliers we analyzed the 3 replicates 

individually. Therefore, and considering the library contained 2 different 

siRNAs per gene, we looked for how the 6 independent siRNAs per gene 

scored both both p16 and BrdU. 

As a first step we filtered for individual siRNAs displaying a B-score of $+2 for 

BrdU and/or % -2 for p16. We decided on two deviations from the median as it 

provided a satisfactory separation of those siRNAs from the background data, 

for both p16 and BrdU, being permissive enough to allow the detection of 

control siRNAs within its limits (Figure 44e-j). Interestingly, when we 

compared the distribution of the data points displaying a B-score of $2 for 

BrdU and/or % -2 for p16, before and after normalization, we noted that 

normalizing allowed for a better distinction of those siRNAs from the general 

population of siRNAs (including scrambled siRNAs, Figure 44e-h).  

“Bypass hits” were defined when a B-score of $+2 for BrdU or % -2 for p16 

was observed for at least 3 of the 6 individual siRNAs. Additionally, we also 

selected hits for the reinforcement of p16 when a B-score $+2 for p16 was 

verified for 3 out of 6 siRNAs. The final list of “bypass hits” encompassed a 

group of 22 genes whose knockdown prevented p16 induction, another 

subset of 27 genes whose silencing increased the percentage of BrdU 

incorporation and finally a group of 4 hits whose depletion concomitantly 

bypassed both p16 and BrdU (Figure 45). The list of hits whose knockdown 

reinforced p16 included 20 genes. Four of these genes, however, led to a 

concomitant bypass of the growth arrest (Figure 45). Altogether, sixty-nine 

genes for the bypass and/or reinforcement of BrdU and p16, respectively, 

passed the selective threshold and were picked for a secondary screen 

(Figure 45).  

 

5.3 A secondary screen validated 25 genes regulating OIS 

 
In order to validate the primary screen, and refine the candidates, 4 

independent siRNAs for all 69 genes were obtained from QIAGEN creating a 

smaller library to conduct a secondary screen. The screen was conducted 

under the same conditions as previously described (Figure 42).  
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Figure 46. Secondary siRNA screen. A secondary screen was conducted under the same 
conditions as for primary screen using 4 different siRNAs per gene. Screen was performed 
twice (assays A and B) using duplicate plates each time. Because of this, each gene was 
targeted by 16 independent siRNAs. Genes were selected as hits when 6 out of 16 siRNAS 
led to a 20%-fold increase or decrease in BrdU or p16 expression compared to scrambled, 
respectively. a) Hit selection workflow: From 456 genes, 69 bypassed the selective threshold 
set for the primary screen (26 preventing p16 expression, 31 bypassing the cell cycle arrest 
and 20 reinforcing p16 expression, with some overlapping genes). Upon secondary screen 
with 4 different siRNAs per genes, only 25 out of these 69 were validated (12 preventing p16 
induction and 12 bypassing the cell cycle arrest, with 7 genes in common, while 8 reinforced 
p16 expression). b) Heat map for hits bypassing OIS. Outcome of all 4 siRNAs per assay (A 
and B) and per duplicate are depicted. Colored squares represent a 20%-fold difference for 
BrdU (blue) or p16 (green) for a given siRNA compared to the scrambled sequence of the 
same plate. A hit was defined once 6 out of the 16 siRNAs led to 20%-fold increase in BrdU 
or decrease in p16, being that duplicates should score in parallel. All first 12 genes bypassed 
the cell cycle arrest with 7 (top) of them concomitantly bypassing p16 expression as well. 
ARRB1 and JMJD2B are shown as negative controls. 
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The secondary screen was performed twice (two independent runs) in 

duplicate each time. For selective purposes, we pooled the data from the two 

screens together, treating both runs, as well as the duplicate plates 

independently.  

For each siRNA we calculated the fold change of the percentage of p16 or 

BrdU positive cells, always relative to the expression of those markers in cells 

transfected with the scrambled siRNA on the same plate. Since there were 4 

different siRNAs per gene and the screen was performed twice, we analyzed 

how the 8 pairs of duplicate siRNAs scored.  

Hits were defined when at 3 out of the 8 pairs of duplicate siRNAs per gene   

displayed a 20%-fold increase in BrdU incorporation or 20%-fold decrease in 

the percentage of p16 positive cells (Figure 46b). This yielded a group of 5 

genes whose knockdown increased proliferation alone, another subset of 5 

hits whose depletion downregulated p16 and other 7 genes concomitantly 

affecting both p16 and BrdU (Figure 46a).  

In order to investigate siRNAS upregulating p16 expression we also 

performed the secondary screen using IMR90 fibroblasts. We found that 

knockdown of 8 genes induced a $20%-fold increase of the percentage of 

cells expressing p16 (Figure 46a).  

The secondary screen rendered a functionally diverse group of genes, some 

of which had already been related with the establishment of senescence. For 

instance the Bromodomain containing 7 protein, BRD7 has been shown to 

regulate p53 transcriptional activity and to be essential for the establishment 

of replicative senescence (Burrows et al., 2010; Drost et al., 2010; Zhou et al., 

2004). The previously mentioned transcriptional activator EP300 resurfaced 

again in the secondary screen as a negative regulator of OIS with siEP300 

leading to a reinforcement of both p16 expression and cell cycle arrest (data 

not shown) (Yan et al., 2013).  

Some of the candidates identified belonged to the same family or functional 

group. That was the case, for instance, of the PR domain containing proteins 

PRDM4, PRDM8 and PRDM10 and PRDM11, the first two preventing p16 

and increasing BrdU incorporation, respectively, and the last two inducing 

p16; of the histone methyltransferases ASH2L and EHMT1, as well as of the 
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histone demethylases JMJD1C and KDM1A, whose knockdown reinforced 

p16 expression (Figure 46, data not shown). Another functional group 

consisted of general transcription factors, represented by TAF10 and TAF12 

whose knockdown impaired p16 expression and bypassed the cell cycle 

arrest (Figure 46b). 

The knockdown of 7 of the 25 genes, here exemplified by ASH2L, BPTF (also 

known as FALZ) and EHMT1, led to a downregulation of p16 expression with 

a concomitant increase in proliferation (Figure 46b, Figure 47). BPTF is a 

histone-binding component of the NURF complex (specific to H3K4me3), 

involved in nucleosome-remodeling while ASH2L and EHMT1 are involved in 

histone methylation (Li et al., 2006a; Steward et al., 2006; Tachibana et al., 

2005).  

 
Figure 47. Example of hits preventing p16 induction and partially bypassing the cell 
cycle arrest. The knockdown of 7 genes led to a decreased p16 expression and increased 
BrdU incorporation. a) Immunofluorescence of p16 and BrdU, acquired with the high 
throughput microscope IN Cell Analyzer 2000. b) At least 1000 cells were counted and used 
to quantify the percentage of p16 and BrdU positive cells. ASH2L, FALZ (= BPTF) and 
EHMT1 are shown as examples. 
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Specifically, ASH2L is part of both SET1/Ash2 and MLL1/MLL complexes, 

involved in generating H3K4me3, whereas EHMT1 regulates the formation of 

H3K9me and H3K9me2 (Steward et al., 2006; Tachibana et al., 2005). 

Knockdown of all three genes, with at least 2 different siRNAs, downregulated 

p16 expression while increasing the proliferation of IMR90 ER:RAS cells 

treated with 4-OHT. These results suggested a possible role for these genes 

in the regulation of OIS, potentially via the p16/Rb pathway (Figure 47).  

 
Figure 48. Example of hits bypassing the cell cycle arrest without affecting p16 
expression. The knockdown of 5 genes induced a bypass of the cell cycle arrest, ENY2 and 
GTF3C4 are shown as examples. a) Immunofluorescence images of p16 and BrdU, collected 
by high content analysis. b) Quantification of the percentage of p16 and BrdU positive cells 
upon knockdown of ENY2 and GTF3C4. 
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methylation and protein and histone O-GlcNAcylation (Eom et al., 2009; Fujiki 

et al., 2011; Galan and Rodriguez-Navarro, 2012; Hsieh et al., 1999; Wu et 

al., 2009). We have already shown, in our proteomics analysis, that GTF3C4 

is upregulated during senescence, specifically localizing to the chromatin, and 

we have reported a potential functional role for this gene in OIS (Figure 38- 
Figure 41), once again reinforced with this experiment (Figure 48). For 

instance ENY2 is a member of the SAGA complex of histone 

acetyltransferases and its knockdown also increased the percentage of BrdU 

positive cells (Figure 48). This protein is also involved in H2B de-

ubiquitination and mRNA export from the nucleus (Galan and Rodriguez-

Navarro, 2012).  

 

 
Figure 49. Example of hits preventing p16 induction without rescuing proliferation. 
siPRDM4, siCDC73 and siRTF1 are shown as examples of hits leading to a reduced p16 
expression without affecting the cell cycle arrest. a) Immunofluorescence images acquired 
with the IN Cell Analyzer 2000. b) Quantification of the images collected by high throughput 
microscopy. Knockdown of the PAF1C complex units, RTF1 and CDC73, leads to additional 
reduction of the percentage of proliferating cells. 
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Additionally, knockdown of 5 genes led to decreased p16 levels while not 

affecting or reinforcing the proliferation arrest. This group consisted of the 

genes CDC73, PKN1, PRDM4, RTF1 and SUPT5H, involved in histone 

methylation, acetylation and phosphorylation and pre-mRNA processing and 

transcription elongation (Figure 49) (Chittka et al., 2012; Harrison et al., 2010; 

Krogan et al., 2003; Lindstrom et al., 2003). While PRDM4 is a PR-Domain 

containing protein, RTF1 and CDC73 are two related genes belonging to the 

PAF1C complex with functions in RNA polymerase II mediated transcription 

and in the transcriptional activity of KMT2A/MLL1 (Chittka et al., 2012; Krogan 

et al., 2003). Interestingly, knockdown of both genes led to a marked 

decrease in p16 expression suggesting a potential role of PAF1C complex in 

the regulation of CDKN2A expression (Figure 49). The downregulation of p16 

expression was accompanied with a further reinforcement of the proliferation 

arrest for both genes, suggesting that these genes might control additional 

pathways regulating cell cycle progression. A role for PAF1C complex in stem 

cell identity has been reported, hence, understanding how the balance 

between these two processes affects senescence would be of interest  (Ding 

et al., 2009).  

To seek for potential negative regulators of p16 expression, we performed the 

secondary screen on normal proliferating IMR90 cells. The knockdown of 

EP300, AOF2, FOXA3, JMJD1C, ATXN7, NCOR1 and PRDM10 and 

PRDM11 induced p16 expression in IMR90 fibroblasts (data not shown). 

Indeed, siATXN7 and siFOXA3 induced an increase in p16 expression similar 

to that observed upon CBX7 knockdown, a known negative regulator of p16 

(Figure 50). ATXN7 is a member of the STAGA and TFTC chromatin 

remodeling complexes and FOXA3 a DNA binding factor that helps opening 

chromatin for further remodeling (Motallebipour et al., 2009; Zhao et al., 2008)  
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Figure 50. Example of genes inducing p16 expression. Knockdown of ATXN7 and FOXA3 
increases p16 expression in proliferating IMR90 cells. a) In Cell generated images of 
immunofluorescence of readout markers, p16 and BrdU. b) Percentage of p16 and BrdU 
positive cells upon knockdown of ATXN7 and FOXA3. An induction of p16 similar to that 
induced by CBX7 knockdown can been seen upon silencing of the indicated genes. 
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Figure 51. Stable knockdown of candidate genes bypasses growth arrest during OIS. 
Cadidate genes were independently targeted with shRNAs. Genes for which shRNA-
mediated knockdown led to an increased colony formation are shown. Hairpin infected IMR90 
ER:RAS cells were plated for low density assay and treated with 4-OHT to activate RAS and 
induce OIS. (a-f) Knockdown of GTF3C4, TRIM28, OGT, TAF10, TAF12 and ENY2 bypassed 
the cell cycle arrest as assessed by crystal violet staining (left panel). Knockdown efficiency 
of each gene was determined by RT-qPCR (right panel). 
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IMR90 ER:RAS cells were infected with lentiviral particles containing a single 

shRNA sequence against the target genes and infected cells were selected 

with puromycin.  

To assess the ability of the shRNAs to bypass OIS, we plated the shRNA 

infected IMR90 ER:RAS fibroblasts at a low density, induced cells to undergo 

OIS with 4-OHT and monitored cell growth. Out of the 12 analyzed genes, the 

stable knockdown of 5 genes led to a bypass of the cell cycle arrest as 

measured by increased crystal violet staining of low-density plates. In parallel, 

the knockdown of TRIM28, a gene selected directly in the primary screen, 

resulted in an increased number of colonies of cells upon treatment with 4-

OHT. Once again, cells depleted of GTF3C4 bypassed the cell cycle arrest 

imposed by overexpressing RAS in IMR90 cells, confirming our earlier 

observations (Figure 39, Figure 51). In this experiment we report that also 

shRNAs targeting TRIM28, OGT, TAF10, TAF12 and ENY2 prevented the 

senescence-associated growth arrest (Figure 51). This group of genes 

detained exciting characteristics: 1) - they occupy distinct functional niches, 

some new to senescence, from roles in chromatin remodeling complexes and 

protein glycosylation, to functions as co-repressors and general transcription 

factors; 2) - the different magnitude of p16 knockdown upon depletion of each 

of the aforementioned genes suggests that some might act via alternative 

routes to control the cell cycle arrest. Hence, we set out to investigate and 

characterize in more detail, how these genes affect the prototypical 

senescence-associated prototypical pathways and, consequently, regulate 

OIS. 
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5.5 Discussion and conclusions 
 

5.5.1.  siRNA-based screens as a tool for identifying novel regulators of 

OIS 
 

Compound- or RNAi-based screens have been widely used to identify genes 

with functional relevance in the most diverse biological settings, routinely in C. 

elegans and Drosophila cells but also in mammalian cells (Mohr and 

Perrimon, 2012). Loss- or gain- of function screens have also been used to 

discover novel genes in senescence and associated pathways, by assessing 

acquisition of different senescence features (Acosta et al., 2008; Berns et al., 

2004; Bishop et al., 2010; Ewald et al., 2009; Lahtela et al., 2013; Rovillain et 

al., 2011). For instance, Berns et al. and Rovilain et al. set out to identify novel 

genes involved in p53 or pRb-mediated cell cycle arrest and senescence 

upon shRNA-mediated knockdown of target genes (Berns et al., 2004; 

Rovillain et al., 2011). Verschure’s and Jarrard’s labs identified genes whose 

knockdown induced senescence, by looking at several features such as 

proliferation and SA-"-gal activity (Ewald et al., 2009; Lahtela et al., 2013). 

Also Bishop et al., by means of an siRNA genome-wide screen identified 

Hedgehog signaling as a mediator of p16 expression (Bishop et al., 2010). 

RNAi is indeed a very attractive technology for the silencing of target mRNAs 

and potentially useful for cancer therapy (Guo et al., 2013). Since the 

discovery of RNAi in 1993, by Fire and collaborators, we have an increasing 

understanding of its mechanics, what has improved the technology, reducing 

off-target effects and increasing silencing efficiency (Fire et al., 1998; Jackson 

and Linsley, 2010; Rao et al., 2009b). The RNAi technology comes in two 

flavors, siRNA-based and vector-based methods (shRNA), each presenting 

advantages and disadvantages (Rao et al., 2009b).  For ease of usage and to 

perform large-scale approaches, several libraries are available for both 

technologies (Echeverri and Perrimon, 2006; Falschlehner et al., 2010; Silva 

et al., 2005).  

Due to the relevance of chromatin regulation in senescence, we planned to 

perform a loss-of-function screen to indentify epigenetic regulators of 
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oncogene-induced senescence. For that purpose an siRNA-based approach 

was chosen. To avoid off-target effects several methods are systematically 

applied (Dahlgren et al., 2008; Falschlehner et al., 2010; Jackson et al., 

2006a). A very common strategy to circumvent the unwanted effect of off-

targets is pooling several siRNAs together, as different siRNAs have different 

spectrums of off-target mRNAs (Kittler et al., 2007). Alternativey, a much 

simpler way to detect off targets, in the case of small libraries to medium 

libraries, is to use several siRNAs (different sequences) individually, as the 

recurrent observation of a specific phenotype will suggest an on-target result 

(Cullen, 2006; Echeverri et al., 2006).  

In this work, an siRNA library targeting 456 genes involved in epigenetic 

regulation was purchased from QIAGEN. The library came in a 96 well plate 

format and contained 2 different and individual siRNA sequences per gene, as 

to perform a loss-of-function systematic screening (individual siRNAs as 

opposed to pools). Libraries as such represent a very convenient way of 

assessing the effect of several siRNAs, however assaying in multi-well plates 

frequently leads to some experimental artifacts, the most common being 

“edge effect” due to evaporation of the outermost rows and columns 

(Falschlehner et al., 2010; Jean-Philippe et al., 2012). To avoid this we did not 

include any target siRNA in those wells. 

Until recent years screens were often performed using colorimeters or 

fluorescence plate readers that assessed expression of luminescence 

reporters, providing limited insight into cell morphology and localization.  This, 

however, came to change with the development of high-content microscopy 

that allows for multi-parametric readouts. A large number of automated 

microscopy platforms are now available permitting an automated acquisition 

of both bright field and multi-channel fluorescence microscopy (Echeverri and 

Perrimon, 2006). The great amount of data generated ushered the need of 

developing image-analysis tools to annotate expression or morphological data 

from both fixed and live cells, in a quantitative unbiased way (Pepperkok and 

Ellenberg, 2006; Zanella et al., 2010).  

In this study the high-throughput microscope IN Cell Analyzer 2000 and the In 

Cell Investigator Software (GE Healthcare) were used, allowing the collection 
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of thousands of fluorescence microscopy images of p16 and BrdU expression, 

used as readouts of the screen (Figure 42, Figure 43). These markers were 

selected due to their robustness as well as for providing a relatively wide 

dynamic range between the analyzed conditions. Despite the strong 

proliferation arrest and p16 induction, both features could be efficiently 

prevented upon transfection with control siRNAs (sip16 and sip53) hence 

providing a feasible readout system for the bypass of OIS (Figure 43).  

The screen was performed in triplicate and once data was acquired, we 

normalized it to allow for inter-plate comparisons. Several screen 

normalization methods exist (Birmingham et al., 2009; Malo et al., 2006). A 

comparative study of normalization procedures for an RNAi screen, showed 

that no particular approach surpassed the others (Wiles et al., 2008). 

Notwithstanding, several parameters should be taken into account, such as 

inter-plate variation in the screen and whether samples in a plate are 

distributed in an unbiased way. If these premises are true then the data can 

be normalized using B-scores (Birmingham et al., 2009). Indeed, cellHTS2-

mediated B-score normalization, collected for both BrdU incorporation and 

p16 expression of model cells transduced with the epigenetics library, allowed 

for a good-enough separation of positive controls (sip16) from both negative 

controls (scrambled), and background data points allowing the analysis of all 

screen plates together (Figure 44) (Pelz et al., 2010).  

Hit selection can be an arbitrary process although there are logical ways to 

approach it (Birmingham et al., 2009). One of such methods consists of 

setting a standard deviation threshold. Because most internal controls in the 

present experiment differed by at least 2 deviations from the mean (B-score 2 

or -2), this value was selected to set the threshold for hit identification. Any 

gene for which at least 3 of the 6 independent siRNAs (2 siRNAs x 3 

replicates) passed this threshold was classified as a hit. This rendered 69 

potential hits, meaning a 15 % hit discovery rate. Since the threshold is rather 

permissive it could result in false positives. This could be circumvented by 

including more siRNAs per gene, therefore making the selection process lie 

on how many different siRNAs scored. To overcome this limitation, a second 

screen was performed with 4 siRNAs per gene. Because here the low-hit and 
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unbiased-population assumption could not be met, data were not normalized 

and hits were selected with basis on how many different siRNAs diverged 

from the negative controls (scrambled) by at least 20% for either p16 or BrdU. 

This approach reduced the candidates to 25 genes, suggesting that indeed 

the primary screen resulted in a significant number of false positives. 

In conclusion, an unbiased siRNA screen targeting epigenetic factors in a 

model of OIS allowed the identification of several novel potential regulators of 

proliferation and p16 expression, two of the main features of senescence. 

 

5.5.2 Loss-of-function screen identifies a group of genes involved in 

diverse aspects of epigenetic regulation 
 

The loss-of-function screen allowed the identification of genes regulating 

senescence, with basis on the effect on proliferation and p16 expression. 

Reinforcing this premise is the fact that siRNAs against known regulators of 

senescence such as BRD7 and PBRM1 impaired p16 induction and led to an 

increase of proliferation while siEP300 had the opposite effect (Figure 45) 

(Burrows et al., 2010, Yan et al., 2013). A group of siRNAs was found to 

impair the cell cycle arrest, another to downregulate p16 expression, while 

some siRNAs had an opposite phenotype by increasing p16 expression 

(Figure 46). The latter was an interesting finding, as indeed, an important 

step towards senescence is the induction of the INK4/ARF locus. The group 

of genes which repressed p16 in normal fibroblasts included for instance 

ATXN7, a member of the hSAGA and TFTC chromatin remodeling 

complexes, and FOXA3, a DNA binding factor that helps opening chromatin 

(Figure 50) (Motallebipour et al., 2009; Zhao et al., 2008). This could be 

further assessed by investigating whether knockdown of these genes could 

accelerate the induction of p16 upon OIS induction.  

The main goal of the screen was, however, the identification of siRNAs 

bypassing OIS and therefore of genes positively regulating senescence.  

Amongst this group we identified the transcription factors TAF10, TAF12 and 

GTF3C4, which form part of complexes involved in histone and nucleosome 

acetylation (Grant et al., 1998; Kundu et al., 1999; Vassilev et al., 1998). 



Chapter 5. Results: siRNA screen 

 

 151 

Additionally, genes involved in histone glycosylation and DNA damage, 

represented by OGT and PAXIP1, seemed to regulate the proliferation arrest 

during OIS (Callen et al., 2012; Deplus et al., 2013; Miura et al., 2012; Wu et 

al., 2009). This goes at odds with previous reports where knockdown of these 

genes impaired proliferation (Cho et al., 2003; Itkonen et al., 2013; Kamigaito 

et al., 2013).  

The most enriched functional group identified associated with H3K9 and H3K4 

methylation. The proteins PRDM4, PRDM8 and PRDM10 and PRDM11 

belong to the PR domain containing protein family, a domain related to the 

SET methyltransferase domain (Hohenauer and Moore, 2012; Wu et al., 

2009). PRDM4 and PRDM8 have been related with histone arginine 

methylation and establishment of H3K9me, respectively, and siRNA mediated 

knockdown led to a decreased p16 expression (Chittka et al., 2012; Eom et 

al., 2009). Conversely, PRDM10 and PRDM11 do not regulate methylation 

and their knockdown in normal fibroblasts upregulated p16 (data not shown). 

Members of PR domain containing protein family can act both as oncogenes 

and tumour suppressors (Hohenauer and Moore, 201). Thus, it is feasible that 

different members could also have opposite roles in senescence. Of note, 

PRDM4 has been associated with the maintenance of the “stem-like” cellular 

state of neural stem cells (Chittka et al., 2012). Histone methyltransferases 

ASH2L, EHMT1 (also known as GLP) and the already mentioned PAXIP1, 

involved in H3K4 and H3K9 methylation, were identified as positive regulators 

of OIS (Callen et al., 2012; Cho et al., 2007; Steward et al., 2006; Tachibana 

et al., 2005). Conversely, H3K4 and H3K9 histone demethylases, JMJD1C 

and AOF2, appear to negatively regulate p16 expression (data not shown) 

(Kim et al., 2010; Klose and Zhang, 2007). Finally, knockdown of the PAF1C 

complex genes RTF1 and CDC73, involved in RNA polymerase II mediated 

transcription and in the transcriptional activity of the H3K4 histone 

methyltransferase complex KMT2A/MLL1, downregulated p16 expression 

(Figure 49) (Krogan et al., 2003). In addition to preventing p16 expression, 

knockdown of RTF1 and CDC73 reduced the percentage of proliferating cells 

suggesting these genes might regulate parallel pathways to those regulating 

p16 expression. Indeed, a role for this complex in regulating stem cell identity 
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has been reported, suggesting it can positively regulate proliferation (Ding et 

al., 2009). 

Histone methylation plays a major role in senescence (Narita et al., 2006; 

Chandra et al., 2012). The establishment of the repressive marks H3K27me3 

and H3K9me3 is key for regulating the expression of p16 and for the 

formation of the SAHF  (Chandra et al., 2015; Gil and Peters., 2006; Narita et 

al., 2006). Also, while a study showed that loss of H3K4me2 and H3K4me3 

(marks of active chromatin) via a pRb and JARID1a/b mediated mechanism 

allows repression of cell cycle genes, another demonstrated that the 

maintenance of large-scale domains of H3K4me3-enriched chromatin is 

important for senescence (Chicas et al., 2012; Shah et al., 2013).  Here novel 

factors positively and negatively regulating both H3K9 and H3K4 methylation 

were identified as potential inducers and repressors of senescence, 

respectively, suggesting the importance of the maintenance of these marks 

during senescence. A role for some of these factors has been described in 

senescence and in the regulation of associated pathways. For instance, both 

EHMT1 and AOF2 can negatively regulate p53 (Chen et al., 2010; Huang et 

al., 2007). Also DNA damage-dependent degradation of EHMT1 in 

senescence has been reported, which goes at odds with the results herein 

presented (Takahashi et al., 2012). Thus a more extensive analysis of these 

factors is needed to understand how they could regulate senescence, if their 

role involves the methylation of H3K4 and H3K27 and what downstream 

genes they affect. 

As a second validation step of the hits indentified with the siRNA screen, we 

used shRNAs to target genes for which the knockdown bypassed the growth 

arrest during OIS (Figure 51). This not only provided a way to confirm the 

results obtained with the transient experiment, where knockdown levels were 

not assessed, as allowed the establishment of a stable-knockdown model to 

further evaluate the role of target genes in several types of senescence. 

Knockdown of TRIM28, OGT, GTF3C4, ENY2, TAF10 and TAF12 led to 

decreased levels of target genes and bypassed the proliferation arrest during 

OIS (Figure 51). The reason behind the lack of a loss-of-function phenotype 

upon knockdown of the additional tested genes was not assessed, but could 
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arise either from the fact that target genes had scored as false positive on the 

siRNA screen or false negatives during experiments with shRNAs, due to 

infection-derived toxicity.  

In summary, we identified novel chromatin factors with a potential role in OIS 

by performing an siRNA screen, using p16 expression and BrdU incorporation 

as readouts. A secondary screen reduced the number of candidates to 25 

genes encompassing a group positive regulators of p16 expression and/or of 

the proliferation arrest, and another group negatively regulating p16 

expression. From those genes whose siRNAs bypassed the proliferation 

arrest, shRNA-mediated knockdown of 6 resulted in increased proliferation 

and cell number during OIS, thus, validating TRIM28, ENY2, OGT, GTF3C4, 

TAF10 and TAF12 as novel regulators of oncogene-induced senescence. 
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Chapter 6. Identification of novel chromatin factors regulating 
OIS 
 

The loss of function screen yielded 5 novel genes with a potential role in 

regulating senescence. Indeed, siRNAs against TRIM28, OGT, ENY2, TAF10 

and TAF12 bypassed the senescence-associated cell cycle arrest, later 

validated making full use of a stable knockdown system (shRNAs). Here we to 

provide an initial characterization of how these genes may control OIS. 

 

6.1  A role for TRIM28/KAP1 in regulating senescence  
 
We identified siRNAs targeting TRIM28 in our primary screen for their effect in 

preventing p16 induction (Figure 45). Specifically, knockdown of TRIM28 

downregulated p16 levels and conferred a proliferation advantage (Figure 
52). This prompted us to investigate the role of this gene in senescence.  
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Figure 52. siRNA-mediated knockdown of TRIM28 prevents p16 induction and cell 
cycle arrest during OIS a-b) Immunofluorescence images collected with the IN Cell 
Analyzer 2000 for p16 (top) and BrdU (bottom), respectively, for IMR90 ER:RAS fibroblasts 
infected with either siTRIM28 or scrambled siRNAs, upon 4 days of treatment with 4-OHT. c) 
Quantification of the percentage of p16 positive cells upon siRNA-mediated silencing of 
TRIM28. d) siTRIM28 leads to decreased percentage of BrdU incorporating cells when 
compared with the IMR90 ER:RAS cells transfected with the scrambled siRNA.  

 

6.1.1 TRIM28 is phosphorylated on Serine 824 during OIS 

 
The main function of TRIM28 is to act as a co-repressor for the KRAB zinc 

finger proteins and is post-translationally regulated via phosphorylation on 

serines (Ser 473 and 824) and tyrosines (Tyr 499 , 458 and 517) as well as by 

sumoylation (Bolderson et al., 2012; Kubota et al., 2013; Li et al., 2007). To 

start dissecting the role of TRIM28 in senescence, we analyzed the 

expression of TRIM28 and its phosphorylation at serine S824, upon RAS 

activation and induction of senescence in IMR90 ER:RAS cells. This 

phosphorylation is known to induce the relaxation of the DNA by interfering 

with the silencing machinery, allowing the assembly of the repair machinery 

onto the double-strand breaks sites (White et al., 2012).  

We observed a slight increase in the levels of TRIM28, upon induction of RAS 

with 4-OHT (Figure 53a). Interestingly, RAS activation induced the 

phosphorylation of TRIM28 at serine 824 (Figure 53b). It has been shown 

that TRIM28 is phosphorylated upon DNA damage by either ATM/CHK2 or 

ATR/CHK1 complexes (Bolderson et al., 2012 ; Ziv et al., 2006). Since the 

activation of a persistent DNA damage response (DDR) is one of the 

hallmarks of senescence, it is logical to observe the phosphorylation of 

TRIM28. 

 



Chapter 6. Results: Candidate genes 

 

 156 

  

 
Figure 53. TRIM28 is expressed and phosphorylated on serine 824 during OIS. a) IMR90 
ER:RAS cells were treated with 4-OHT and fixed at the indicated times for IF. Staining with a 
specific anti-KAP1 antibody revealed TRIM28 is increasingly expressed in senescence until 
day 6 of 4-OHT. b) Immunofluorescence against pKAP1 (ser824) shows TRIM28 is de novo 
phosphorylated during oncogene-induced senescence. 

 

 

6.1.2 Stable knockdown of TRIM28 leads to a bypass of the cell cycle 

arrest 
 

To investigate the role of TRIM28 in OIS, we tested several shRNAs against 

TRIM28. shTRIM28.1 and shTRIM28.2 were selected as they were the most 

efficient in knocking down TRIM28 levels, both mRNA and protein, as 

assessed by RT-qPCR and immunofluorescence and western blot analysis 

(Figure 54a-c). 

a 
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Figure 54. Two independent shRNAs efficiently knockdown TRIM28. a) 
Immunofluorescence of IMR90 ER:RAS infected with shTRIM28.1 and shTRIM28.2, showed 
decreased levels of TRIM28 as compared with the same cells infected with the vector alone. 
b) Validation of the TRIM28.1 and TRIM28.2 mediated knockdown of TRIM28 in 4-OHT 
treated IMR90 ER:RAS  by western blot. c) RT-qPCR for TRIM28 shows both hairpins 
efficiently knockdown TRIM28 mRNA. 

 

We then analyzed what effect knocking down TRIM28 had in OIS. IMR90 

ER:RAS cells were infected with lentiviruses expressing the aforementioned 

shRNAs and the effects on the cell arrest were first evaluated by culturing 

cells at low density and staining with crystal violet. We observed that TRIM28 

depletion resulted in increased cell growth upon OIS induction, similar to that 

observed upon p53 knockdown (Figure 55a). A BrdU incorporation assay 

showed that, 6 days after treating the cells with 4-OHT, a higher percentage 

of IMR90 ER:RAS with depleted TRIM28 incorporated BrdU, suggesting that 

depletion of TRIM28 partially prevented OIS (Figure 55b,c).  
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Figure 55.  Depletion of TRIM28 bypasses the cell cycle arrest and leads to decreased 
SAHF formation. a) IMR90 ER:RAS cells were plated at a density of 20k cells per well in a 6-
well plate, induced with 4-OHT and fixed for crystal violet staining. TRIM28-depleted cells 
displayed an increased ability to form colonies. b) IF of BrdU at day 6 showed increased BrdU 
incorporation upon TRIM28 knockdown. c) DAPI staining of nuclei where a decreased 
percentage of TRIM28-depleted cells dispaying senescence-associated heterochromatin foci 
could be seen. 

 

Knockdown of TRIM28 also led to a decreased percentage of cells presenting 

senescence-associated heterochromatin foci (SAHF,Figure 55c). Overall, 

knocking down TRIM28 partially prevented OIS,  

 

6.1.3 TRIM28 affects p16 induction 

  
In order to investigate how the knockdown of TRIM28 affected senescence, 

we looked into the expression of the key tumour suppressors involved in the 
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implementation of senescence, p53, p21 and p16. To this end, IMR90 

ER:RAS cells were infected with shRNAs targeting TRIM28 and OIS induced 

upon treatment with 4-OHT. 

   
Figure 56. TRIM28 knockdown leads to decreased p16 expression in IMR90 ER:RAS 
cells. a) Expression of tumour suppressor genes p53, p21 and p16 was assessed by 
immunofluorescence upon treatment of IMR90 ER:RAS with 4-OHT. b-c) Expression of p21 
and p53 was unaffected by low levels of TRIM28. d) shTRIM28.1 and shTRIM28.2 led to 
decreased p16 protein levels in IMR90 ER:RAS cells induced to undergo OIS. 

 

Induction of p53 and p21 during OIS was not affected by TRIM28 knockdown 

(Figure 56a-c). However, p16 levels were lower upon knock down of TRIM28 

(Figure 56a,d), suggesting that TRIM28 could regulate, directly or indirectly, 

p16 expression to control senescence. 
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6.1.4 TRIM28 knockdown prevents full induction of the SASP 

 
Finally we decided to analyze the senescence-associated secretory 

phenotype (SASP) upon depletion of TRIM28 in OIS. 

 
 
Figure 57. Knockdown of TRIM28 affects the SASP. a) IMR90 ER:RAS cells were treated 
with 4-OHT for 8 days to induce the secretory phenotype and stained for the prototypical 
SASP member IL8. TRIM28 knockdown abrogated Il8 expression in RAS overexpressing 
cells. b-g) RT-qPCRs of IL8, Il1b,CCL20,IL6 and CXCL1 reveal an overall reduction in the 
SASP upon TRIM28 depletion in 4-OHT treated IMR90 ER:RAS fibroblasts. 
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IMR90 ER:RAS fibroblasts infected with shRNAs targeting TRIM28, were 

induced to express RAS and sampled for immunofluorescence 8 days upon 

induction in order to look at the SASP. Interestingly, depletion of TRIM28 

strongly suppressed IL8 induction during OIS as assessed by IF (Figure 

57a,b). 

This prompted us to analyze the expression of IL8 and additional SASP 

components by qRT-PCR in IMR90 ER:RAS cells in which TRIM28 

expression had been depleted using shRNAS. In addition to IL8, we analyzed 

the expression of IL1", CCL20, IL6 and CXCL1, factors that we and others 

have previously shown to be part of the SASP and play an important role in 

SASP functions (Acosta et al., 2013, Kuilman et al., 2008) We observed that 

TRIM28 expression partially suppressed the induction of these factors during 

OIS (Figure 57c-g).  

 

6.2  OGT has a role in oncogene-induced senescence 
 

OGT (O-linked-N-acetylglucosamine transferase) is an enzyme involved in the 

modification of proteins (including histones) by the addition of an O-linked-

acetylglucosamine residue (Vocadlo, 2012). 

siRNAs against OGT were indentified in the secondary screen as top hits for 

the  bypass of the cell cycle arrest, suggesting OGT could play a role in 

regulating the senescence-associated proliferation arrest upon oncogene 

signaling (Figure 58a-c). We therefore set out to investigate OGT in OIS and 

its possible implications for the main senescence-associated molecular 

pathways.  
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Figure 58 siRNA-mediated depletion of OGT prevents the cell cycle arrest but not p16 
induction in OIS. a) Immunofluorescence against BrdU (bottom) and p16 (top) collected with 
the IN Cell Analyzer during the secondary siRNA screen show that depletion of OGT does not 
affect expression of p16 but leads to increased proliferation of IMR90 ER:RAS cells. b-c) 
Quantification of the IN Cell Analyzer images shown in a) by HCA, using the In Cell 
Investigator software. d) Immunofluorescence against OGT in 4-OHT-treated IMR90 ER:RAS 
fibroblasts shows decreased expression of OGT upon transfection with siOGT1.3 and 7, 
respectively. Immunofluorescence has been performed 5 days after 4-OHT induction. 

 

 

6.2.1 Expression of OGT during OIS  
 

In order to check OGT expression and levels of O-GlcNAc during OIS, we 

performed immunofluorescence of IMR90 ER:RAS cells treated with 4-OHT 

for 5 days. Interestingly, OGT was expressed in a very similar fashion by 

senescent and control cells, presenting an intense cytoplasmic expression 

localizing as well to the nucleus in both cell types (Figure 59a). Indeed, the 

no siRNA no siRNA scrambled sip16 siOGT.1 siOGT.3 siOGT.7 

DAPI/BrdU 

DAPI/p16 

+4OHT 

!"

#$"

%!"

&'"()*+," &'"()*+," (-./01234" 5(67896:" 5(67896;" 5(67896<"

=#759" >#759"

!"

;!"

?!"

&'"()*+," &'"()*+," (-./01234" 5(67896:" 5(67896;" 5(67896<"

=#759" >#759"

%
 P

os
iti

ve
 c

el
ls

 

""""""&'""""""""""&'""""""""""@-.A"""""()789A:""()789A;""()789A<"
"""()*+,"""""()*+,"""
"
"

>"#759"

"""&'""""""""""&'""""""""""@-.A"""""()789A:""()789A;""()789A<"
()*+,"""""()*+,"""
"
"

>"#759"
%

 P
os

iti
ve

 c
el

ls
 

p16 BrdU 

scrambled siOGT.1 siOGT.3 siOGT.7 

+4OHT 

DAPI/OGT 

a 

b c 

d 



Chapter 6. Results: Candidate genes 

 

 163 

overall levels of OGT were similar across senescent, quiescent and 

proliferating cells (Figure 59c). Since the only known function of OGT is 

protein O-GlcNAcylation, we looked at O-GlcNAc levels. Surprisingly, we 

found an increase in the intensity of O-GlcNAc during senescence, mainly in 

what resembled the nuclear periphery (Figure 59b). This suggested that OGT 

could modify proteins that are structural components or associate with the 

nuclear envelope. 

 
 

Figure 59 Specific antibodies against OGT and its modification, O-GlcNAc, show both 
are expressed during OIS. a) OGT is equally expressed in normal and cells undergoing OIS 
both in the cytoplasm and nucleus, as assessed by IF. b) Immunofluorescence targeting O-
GlcNAc shows widespread expression of OGT-modified proteins during OIS. c) Western blot 
analysis of total extracts of senescent (Sen), quiescent (Qui) and growing (Gro) fibroblasts 
reveals a stable expression of OGT across cell types.  

 

6.2.2 Stable knockdown of OGT prevents the senescence-associated 

cell cycle arrest 

 
For a more detailed investigation of the impact OGT depletion has on 

proliferation, we infected IMR90 ER:RAS cells with several hairpins targeting 

OGT (Figure 60c). IMR90 ER:RAS cells infected with hairpins against OGT 

and the corresponding control were plated at low density, treated with 4-OHT 

and cultured for approximately 1.5 weeks.  
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Figure 60 Stable knockdown of OGT with 2 independent short-hairpin RNAs bypasses 
the cell cycle arrest. a) Crystal violet staining of low density plates of shOGT expressing 
IMR90 ER:RAS cells reveals that OGT depletion delays the cell cycle arrest during OIS. b) 
OGT knockdown leads to increased percentage of BrdU incorporating cells. c) RT-qPCR of 
shOGT.1 and shOGT.4 expressing cells showing decreased levels of OGT mRNA levels. d) 
In Cell Investigator generated quantification of b), shows increased percentage of BrdU 
positive cells upon OGT knockdown. e) DAPI stained nuclei depicting foci of heterochromatin 
(SAHF). OGT knockdown did not interfere with the formation of SAHF. 
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To assess the ability to form colonies, cells were fixed and stained with crystal 

violet. OGT knockdown conferred a proliferation advantage upon activation of 

RAS (Figure 60a). 

Additionally, the same cells were plated for BrdU incoporation assay. In 

accordance with the previous results, there was a significant increase in the 

proliferation rate of OGT depleted cells when compared to empty vector cells, 

both treated with 4-OHT (Figure 60b, d). Additionally, OGT knockdown did 

not affect the formation of the SAHF, as foci of heterochromatin could be seen 

in the nuclei of cells carrying an shRNA against OGT. These results suggest 

that OGT plays a role in senescence, by at least regulating the cell cycle 

arrest. 

 

6.2.3 OGT knockdown impacts on the SASP  

 
To better understand how OGT depletion affects oncogene-induced 

senescence we proceeded with investigating the main tumour suppressor 

pathways. We could see only a small decrease in the levels of p16 upon 

knockdown of OGT, especially with shOGT.4 (Figure 61a,c). Also the 

p53/p21 pathway was not affected, as the protein levels of p53 as well as the 

mRNA levels of p21 remained unaltered upon OGT knockdown (Figure 61b, 

d, e). 
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Figure 61.  Stable knockdown of OGT does not affect p53 and p21 expression, and only 
slightly decreases p16 levels. a) Immunfluorescence of OGT-depleted IMR90 ER:RAS 
against the main tumour suppressor genes in OIS, p16 and p53. b) OGT depletion has  a 
minimal impact on the percentage of p16 expressing cells. c) shOGT does not affect p53 
expression as assessed by IF. d) RT-qPCR of shOGT infected IMR90 ER:RAS cells reveals 
p21 expression is also not affected by OGT levels during OIS.

 
These results suggest that, although OGT might slightly (directly or indirectly) 

affect p16 expression during OIS this alone is mostly unlikely to account for 

the bypass of the cell cycle arrest upon OGT knockdown. The p53/p21 

pathway remained unaltered upon OGT knockdown, and consequently does 

not account for the role of OGT in senescence. We then decided to 

investigate additional characteristic hallmarks of senescence such as the 

SASP. As a preliminary approach to analyze the effect of the OGT knockdown 

on the SASP we performed immunofluorescence against IL8 using shOGT.4. 

Interestingly, we found IL8 expression to be impaired upon shRNA mediated 

knockdown of OGT (Figure 62a, b). 
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Figure 62. OGT knockdown impacts on the SASP. a) Immunofluorescence against IL8 
upon stable knockdown of OGT with shOGT.4 after treating IMR0 ER:RAS cells with 4-OHT 
for 8 days. b) Quantification of the percentage of IL8 positive cells for IF data. c-d) RT-qPCR 
shows mRNA levels of both IL8 and IL6 are impaired upon depletion of OGT. e) Transient 
knockdown of OGT with siRNAs led to decreased production of IL8 as assessed by IF. f) 
Quantification of the percentage of IL8 positive cells shown in e). 
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Indeed, analysis of the RNA levels of both IL8 and IL6, revealed a reduced 

expression of the transcripts of both proinflammatory cytokines in cells 

depleted for OGT (Figure 62c,d). The same was observable upon transient 

knockdown of OGT, using the previously validated siRNAs (Figure 62e, f). 

These results suggest that OGT might play a role in the establishment of the 

senescence-associated secretory phenotype (SASP).  

 

6.2.4 The DNA damage response is slightly affected by OGT depletion 

 
Another hallmark of senescence is the engagement of DNA damage signaling 

pathways, leading to persistent foci of DNA damage that can be monitored by 

the accumulation of several proteins such as #H2Ax and 53BP1. In order to 

assess whether the DDR was intact upon OGT knockdown, we performed 

immunofluorescence using the high-throughput microscope IN Cell Analyzer 

2000 and quantified the number of foci of 53BP1 per nuclei. Upon RAS 

activation, IMR90 ER:RAS cells displayed an increased number of DNA 

damage foci  when compared to non induced cells (Figure 63a, c). To 

quantify accumulation of DNA damage we used the In Cell Investigator 

software to segment and count foci of 53BP1. Both the stable (Figure 63a-b) 

and transient (Figure 63c-d) knockdown of OGT led to a small but consistent 

reduction in the number of 53BP1 foci across experiments upon induction of 

RAS. These results are consistent with a previously reported role of OGT in 

the regulation of the DDR response and suggest that partial deregulation of 

the DNA damage signaling might account for the effects of OGT depletion in 

OIS (Miura et al., 2012). 
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Figure 63.  The accumulation of 53BP1-positive DNA damage foci is reduced upon 
depletion of OGT. a) Immunofluorescence against 53BP1 shows foci of DNA damage 
accumulate during OIS and this accumulation is slightly impaired upon OGT stable 
knockdown. b) Quantification of the average number of foci per nucleus of the images seen in 
a). shOGT leads to a decrease in the average number of DNA damage foci per nucleus. c-d) 
Transient knockdown of OGT with siRNAs also leads to a decreased accumulation of 53BP1 
foci of IMR90 ER:RAS cells treated with 4-OHT. 
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6.3 SAGA complex members ENY2, TAF10 and TAF12 mediate OIS 
 
The genes ENY2, TAF12 and TAF10, were identified in the secondary screen, 

and had in common the fact they were all members of the SAGA complex, a 

histone modifying complex involved in histone acetylation and deubiquitination 

(Koutelou et al.,2010). In addition to their role in the aforementioned complex, 

ENY2 has been reported to hold independent functions, involved for instance 

in mRNA export, while the TBP-associated factors (TAFs) counterparts are 

also part of the TFIID complex involved in RNA polymerase II mediated 

transcription (Bhaumik, 2011; Chen and Hampsey, 2002; Ogryzko et al., 

1998). We then set out to investigate what function these genes had in OIS 

and to what extent the SAGA complex was involved.  

 

6.3.1 Depletion of ENY2 leads to OIS bypass 
 

Several siENY2 were selected as top candidates for siRNAs bypassing the 

growth arrest during OIS in the secondary screen. This suggested ENY2 

could act as a mediator in one of the molecular routes for the establishment of 

the proliferation arrest induced by activated oncogenes. Indeed, we 

additionally observed attenuation of p16 expression during OIS upon ENY2 

knockdown with multiple siRNAs, suggesting regulation of the INK4a locus 

could partly account for the outcome of siENY2 on the cell cycle arrest 

(Figure 64).  
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 Figure 64. Knockdown of ENY2 bypasses the cell cycle arrest and downregulates p16 
levels. a) Immunofluorescence against p16 and BrdU showing impairment in p16 expression 
and increased proliferation upon transient transfection with siRNAs targeting ENY2. b) 
Transient knockdown of ENY2 leads to decreased p16 expression when compared with 
untransfected cells or those transduced with the scrambled sequence. c) Increased 
percentage of cells incorporating BrdU could be seen upon ENY2 knockdown. 
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As a way to validate the bypass of OIS obtained with the experiments with 
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ENY2. Three shRNAs efficiently knocked down ENY2 mRNA (Figure 65c). 

Infected cells were plated for a low density assay, treated with 4-OHT to 

induce RAS expression and cultured until controls (non treated or shp53 + 4-

OHT) were confluent. Consistently with the results obtained for the transient 

knockdowns, depletion of ENY2 with 3 independent shRNAs bypassed the 

cell cycle arrest, visualized by staining the cells with crystal violet (Figure 
65a). Additionally, these cells incorporated more BrdU than vector cells when 
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treated with 4-OHT, suggesting ENY2 could function to promote the 

senescence-associated arrest (Figure 65b, d).  

 

                    
Figure 65.  Stable knockdown of ENY2 prevents the senescence-associated cell cycle 
arrest. a) Crystal violet staining of low density plates revelaled shENY2 expressing cells 
severely bypassed the proliferation arrest. b) Immunofluorescence against BrdU shows 
increased incorporation of BrdU by ENY2 depleted cells. c) Three independent shRNAs 
efficiently knockdown ENY2 mRNA levels, as assessed by RT-qPCR. d) Quantification of the 
percentage of BrdU positive cells for the immunofluorescence images collected with the IN 
Cell Analyzer 2000 at day 4 post induction with 4-OHT. e) Knocking down ENY2 severely 
impacts on the formation of the SAHF. 
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Next, we looked at the SAHF in ENY2 depleted cells. Surprisingly, ENY2 

knockdown had a strong impact on the formation of the senescence-

associated heterochromatin foci, as assessed by immunofluorescence of 

nuclei stained with DAPI (Figure 65e). 

 

 

6.3.1.2 Regulation of p16 and p21 could explain the effect of ENY2 in 

senescence 

 

To address if ENY2 could operate through any of the main tumour suppressor 

pathways known to regulate senescence, we performed immunofluorescence 

against p16, p21, p53 and the DDR marker 53BP1, upon ENY2 knockdown. 

Again, ENY2 depletion prevented full p16 expression in cells induced to 

undergo OIS (Figure 66a). Stable knockdown of ENY2 with shRNAs did not 

affect p53 expression or accumulation of 53BP1 foci during Ras-induced 

senescence  (Figure 66a,c,d), however these markers appeared slightly 

reduced upon siRNA mediated knockdown of ENY2 (Figure 67a,c,d). 

Interestingly, ENY2 knockdown resulted in a decreased percentage of p21 

expressing IMR90 ER:RAS cells. (Figure 67a,b). Altogether, these results 

suggested that ENY2 could play a role in OIS via, direct or indirect, regulation 

of the CDK inhibitors, p16 and p21, possibly in a DDR and p53-independent 

manner. 
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Figure 66.  Stable knockdown of ENY2 has a minimal impact on p16 expression, but 
does not affect p53 or 53BP1 foci accumulation. a) Immunofluorescence against p16, p53 
and 53BP1 collected by high-throughput microscopy, upon targeting ENY2 with 3 
independent shRNAs. b) Stable knockdown of ENY2 led to a slight decrease in the 
percentage of p16 expressing cells 6 days post treating cells with 4-OHT. c) Analysis of the 
expression of p53, suggests depletion of ENY2 leads to increased expression of this tumour 
suppressor gene. d) Accumulation of DNA damage foci, as measured by IF against 53BP1 
seems overall unaffected by ENY2 depletion. Only shENY2.4 led to a small decrease in the 
average number of 53BP1 foci per nucleus. 
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Figure 67. ENY2 trasnsient knockdown impacts on p21 expression and on 53BP1 foci 
accumulation but only slightly affects p53 expression. a) Immunofluorescence against 
p53, p21 and 53BP1 shows decreased expression of p21 and 53BP1 upon ENY2 
knockdown. b-d) In Cell Investigator-generated quantification of the percentage of p21 and 
p53 expressing cells and of the average number of 53BP1 foci per cell (DNA damage). 

 

6.3.1.3 Potential implications of ENY2 in irradiation-induced senescence 

 

We then wondered if ENY2 could mediate senescence induced by other 

stresses. First we addressed whether ENY2 could mediate replicative 
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significant lifespan extension when compared with control fibroblasts (data not 

shown). An additional type of premature senescence is that induced upon 

irradiation-derived genotoxic stress.  
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Figure 68. Irradiation-induced senescence is delayed upon ENY2 knockdown. a) Crystal 
violet staining of ENY2 depleted IMR90 cells submitted to gamma irradiation (5Gy) shows 
increased colony formation by shENY2 expressing cells when compared with control cells 
infected with the vector alone. b) Immunofluorescence against BrdU, p16 and p53. c) RT-
qPCR shows shENY2.3 downregulates ENY2 mRNA levels in irradiated cells. d) ENY2 
depletion leads to increased proliferation upon submitting IMR90 cells to gamma irradiation. 
e) p16 expression was analyzed by immunofluorescence and was impaired upon depletion of 
ENY2. f) Percentage of p53 expressing cells increases upon submitting ENY2-deficient cells 
to irradiation.  
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To this end IMR90 cells infected with hairpins against ENY2 were subjected to 

gamma irradiation (5Gy) and plated at low density to assess the ability of 

these cells to proliferate. Staining with crystal violet revealed a higher number 

of colonies in plates containing ENY2 depleted cells, suggesting a partial 

bypass of the cell cycle arrest (Figure 68a, b). Indeed, ENY2 depleted cells 

incorporated more BrdU than vector cells treated with the same dose of 

irradiation (Figure 68c). Interestingly, while depletion of ENY2 increased p53 

levels it impaired the induction of p16 upon irradiation (Figure 68e, f).  

 

 

6.3.2 TAF10 and TAF12 play a role in senescence  

 
TAF10 and TAF12 are two related transcription factors selected as potential 

regulators of OIS in our screen for their effect on both p16 and proliferation. 

The similar outcome of their knockdown in senescence, together with the fact 

that they are part of the same protein complexes, suggested the possibility of 

both TAF proteins (via the activity of one of the complexes they take part of) 

regulating OIS. 

 

6.3.2.1 TAFs 10 and 12 could mediate senescence through the p16/pRb 

and/or p53/p21 pathways 

 

As previously mentioned knockdown of either TAF reduced p16 expression 

and delayed the cell cycle arrest of cells pushed to undergo senescence in 

response to oncogenic RAS (Figure 69a-d). This was a consistent result 

across several experiments that suggested that TAF10 and TAF12 could 

mediate p16 de-repression during OIS. 
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Figure 69. Transient knockdown of TAF10 and TAF12 concomitantly bypassed the 
proliferation arrest and prevented p16 induction during OIS. a) IF data collected with the 
IN Cell Analyzer 2000 showed a clear decrease in p16 expression with all siRNAs as well as 
an increase in the number of BrdU positive nuclei upon TAF10 and TAF12 knockdown. b) 
Knockdown of TAF10 and TAF12 led to decreased percentage of p16 expressing cells. c) 
The percentage of cells incorporating BrdU increases upon transient depletion of both TAF 
proteins. 

 

We then set out to address whether TAFs depletion could impact on the 

expression of additional markers of senescence. To this end we performed 

immunofluorescence against several senescence regulators on IMR90 

ER:RAS cells infected with siRNAs against TAF10 and TAF12.  

Knockdown of both TAF10 and TAF12 independently resulted in decreased 

expression of p53 assessed 5 days post inducing RAS expression (Figure 
70a, b). Moreover, also the levels of p21 were reduced upon knockdown of 

either TAF protein with independent siRNAs (Figure 71a, b). 

This suggested, that in addition to the pronounced effect on p16 expression, 

TAF 10 and 12 could detain an additional role somewhere down the cascade 

of events regulating p53 and p21 expression during oncogene-induced 

senescence. 
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Figure 70. Expression of the tumour suppressor gene p53 is slightly impaired upon 
transient knockdown of the TAF proteins. a) Immunofluorescence images showing p53 
expression of IMR90 ER:RAS cells transduced with siRNAs against TAF12 and TAF10. b) 
Quantification of the percentage p53 positive cells upon knockdown of TAF12 and TAF10, 
showing that depletion of both TAF proteins slightly reduced the pool of p53 expressing cells 
when compared with the untransfected or scrambled transfected cells. 

 

Of note, the accumulation of 53BP1 and the production of the SASP did not 

suffer from TAF10 and TAF12 depletion during OIS (data not shown).  

Altogether these results suggest that TAF10 and TAF12 regulate OIS 

probably by regulating the expression of the cyclin-dependent kinase 

inhibitors p16 and p21 and the tumour suppressor p53 to affect the cell cycle 

in a DDR-independent way.  
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Figure 71. Transient depletion of TAF10 and TAF12 leads to decreased expression of 
p21. a) Immunofluorescence images for p21 upon knockdown of both TAF10 and TAF12 
show a decrease in the number of p21 expressing nuclei when compared with the mock or 
scrambled control. b) Quantification of data obtained by immunofluorescence. Knockdown of 
both TAF proteins leads to a reduction in the percentage of p21 positive cells. 

 

6.3.2.2 Knockdown of TAF10 and TAF12 extends the lifespan of IMR90 

fibroblasts 

 
To investigate whether TAFs function could extend to additional forms of 

senescence we studied the effect of TAF10 and TAF12 knockdown, with 

shRNAs, during #-irradiation-induced and replicative senescence. 

Depletion of TAF10 or TAF12 did not render conclusive results when cells 

were induced to senesce upon exposure to #-irradiation (data not shown). 

However, when IMR90 fibroblasts were infected with multiple shRNAs 

targeting TAF10 and TAF12 and consecutively passaged, we observed an 

extension in the lifespan of cells depleted for either TAF, when compared with 

control cells. Specifically, while passage 27 fibroblasts, infected with the 

empty vector, underwent a strong cell cycle arrest, cells infected with shRNAs 

against TAF10 and TAF12 continued proliferating and forming colonies along 

time (Figure 72a- d). 

 

a 

b 
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Figure 72.  The lifespan of IMR90 fibroblasts is extended upon knockdown of TAF10 
and TAF12.  a) Cristal violet staining of passage 27 IMR90 cells infected with shRNAs 
against TAF10 and TAF12. Depletion of TAF10 and TAF12 delays the establishment of 
replicative senescence. b-c) RT-qPCR for TAF12 and TAF10 upon knockdown with specific 
hairpins, showing the genes were effectively knocked down. d) Growth curves for passage 27 
IMR90 cells infected with hairpins targeting both TAF proteins show a growth advantage of 
these cells compared to cells infected with the vector alone. shp53 passage 27 cells and 
early-passage IMR90s (p18) were used as controls. 
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This suggested a possible implication for both TAF proteins in replicative 

senescence. Interestingly, knockdown of ENY2 under the same 

circumstances did not lead to a delayed entry of IMR90 cells in senescence 

(data not shown). These consist of preliminary experiments and therefore, a 

repetition should be made in order to validate results and clarify whether 

ENY2 affects replicative senescence to the same extent of TAF proteins. 

 

6.3.2.3 Stable knockdown of TAF12 bypasses OIS  

 

Finally, to confirm the results obtained with siRNAs we set out to investigate 

TAF10 and TAF12 knockdown in OIS using shRNAs. Unfortunately, lack of 

reproducibility for shRNA-mediated knockdown of TAF10 did not allow for 

conclusive results on this gene.  

IMR90 ER:RAS were infected with the best shRNA against TAF12 and plated 

for colony formation assessment upon OIS induction. In line with the results 

previously obtained with siRNA-mediated knockdown, shTAF12-expressing 

cells displayed increased number of colonies when compared with control 

cells after RAS induction with 4-OHT (Figure 73a). Interestingly, however, we 

did not see a significant increase in the percentage of TAF12 deficient cells 

incorporating BrdU (Figure 73b, c). Furthermore, TAF12 knockdown led to a 

significant reduction in the percentage of cells with SAHFs (Figure 73e), 

further suggesting a role for TAF12 in senescence. 

Additionally, we performed immunofluorescence against the prototypical 

senescence associated markers, and analyzed their expression via high-

content analysis. In agreement with the results obtained for the transient 

knockdowns, shRNA-mediated depletion of TAF12 prevented full p16 and p21 

induction and only slightly affected p53 expression (Figure 73f-g). Although 

consisting of preliminary analysis, these results reinforce the idea that TAF10 

and TAF12 could regulate senescence by mediating both p16/pRb and 

p53/p21 pathways as well as chromatin remodeling. 
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Figure 73. Stable knockdown of TAF12 bypases OIS. a) Cristal violet staining of low 
density plates shows increased cell number upon infection of IMR90 ER:RAS fibroblasts with 
shTAF12. b) Immunofluorescence of BrdU positive cells. c) RT-qPCR for TAF12 mRNA 
shows shTAF12 efficiently knocks TAF12 down in cells undergoing OIS. d) Quantification of 
the percentage of BrdU positive cells upon TAF12 depletion e) Immunofluorescence of DAPI 
stained nuclei shows a clear reduction in the formation of SAHFs upon TAF12 knockdown. f-
g) IF against p16, p53 and p21 (left) and respective quantifications (right) shows TAF12 
depletion with shRNA impairs both p16 and p21 expression while only slightly affecting p53. 
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6.4 Discussion and conclusions 

6.4.1 TRIM28 is a new regulator of senescence  

 
TRIM28 (also known as KAP1 or TIF1b) is a member of the Tripartite Motif 

(TRIM) family of E3 ligases characterized by the presence of a RING-finger 

motif, zinc-binding motifs and a coiled–coil region (Hatakeyama, 2011). The 

main function of TRIM28 is to act as a co-repressor for the KRAB-ZFPs 

transcriptional regulators by interacting with HP1 proteins and additional 

complexes involved in transcriptional repression such as SETDB1, NurD and 

HDACs leading to the formation of heterochromatin (Nielsen et al., 1999; 

Schultz et al., 2002; Schultz et al., 2001). 

The activity of TRIM28 is regulated post-translationally via phosphorylation on 

serine (Ser 473 and 824) and tyrosine (Tyr 499, 458 and 517) residues. The 

most widely studied TRIM28 modification is its phosphorylation on serine 824 

by ATM upon DNA damage (Li et al., 2007). Specifically, phosphorylation of 

TRIM28 leads to the release of the repressive machinery from the chromatin 

and therefore the relaxation of the DNA, allowing the assembly of the repair 

machinery onto the damaged sites (Goodarzi et al., 2011). A similar scenario 

is observed upon CHK2 mediated phosphorylation of TRIM28 at serine 473, 

which alleviates repression of cell cycle genes and induces cell proliferation 

(Bolderson et al., 2012; Chang et al., 2008). In addition to being 

phosphorylated, TRIM28 can also also be modified by sumoylation, what 

facilitates its interaction with SETDB1 contributing to gene repression (Ivanov 

et al., 2007; Iyengar and Farnham, 2011; Zeng et al., 2008)  

TRIM28 can regulate multiple cellular processes, such as cell growth and 

differentiation, stem cell self-renewal and plutipotency, proliferation, 

apoptosis, DNA repair and oncogenic transformation (Iyengar and Farnham, 

2011).  
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Figure 74. Regulation of gene expression by TRIM28. In unstressed cells TRIM28 (KAP1) 
is sumoylated and recruited to the DNA through interaction with KRAB-ZNFs. Sumoylated 
TRIM28 recruits repressive machinery leading to the establishment of H3K9me3. Upon DNA 
damage ATM phosphorylates TRIM28 (at residues S824 and S473) leading to a local  
dissolution of the heterochromatic structure, allowing the assembly of the DNA repair 
machinery (Adapted from Iyengar and Farnham, 2011). 

 

However, the role in tumorigenesis is rather complex. In one hand, TRIM28 

behaves as an oncogene and it is frequently overexpressed in tumors 

(Hatakeyama, 2011). Indeed, TRIM28 is a negative regulator of p53 and p21 

(Iyengar and Farnham, 2011). On the other hand, knocking down TRIM28 in 

breast and lung cancer cell lines results in increased proliferation, due to de-

repression of E2F3 and E2F4 mediated transcription. As higher expression of 

TRIM28 in early-stage lung tumors also increases overall survival of patients, 

TRIM28 has been categorized as a tumour suppressor in some genetic 

contexts (Lee et al., 2007; Li et al., 2007; Okamoto et al., 2006; Wang et al., 

2005). Potentially contributing to this role as a tumour suppressor, a recent 

study suggested that the knock down of TRIM28 abrogated senescence in a 

mouse model of progeria (Chen et al., 2012). 
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Zmpste24-/- mice undergo accelerated ageing linked to p53 signaling 

activation (Varela et al., 2005), and mouse embryonic fibroblasts (MEFs) 

derived from Zmpste24-/- mice undergo premature senescence. Interestingly, 

this senescence response can be rescued by knocking down TRIM28 (Liu et 

al., 2013), but how exactly TRIM28 functions and what are the implications 

remains unexplored.  

In the present study, using a model for OIS, we continued these observations 

showing that TRIM28 regulates OIS. Specifically, TRIM28 knockdown partially 

prevented OIS, and depletion of TRIM28 resulted in reduced p16 levels, 

without affecting the activation of the p53/p21 pathway (Figure 55, Figure 
56). Whether the effect of TRIM28 on p16 induction is direct, indirect or just a 

consequence of TRIM28 inhibiting senescence is not clear yet but will be 

worth investigating. Since the main function of TRIM28 is acting as a 

transcriptional repressor, a possible explanation could be that TRIM28 

represses a negative regulator of p16. Indeed, the expression of p16, and by 

extension the INK4/ARF locus, is subjected to strict transcriptional and 

epigenetic control (Liu et al., 2013).  

Interestingly, we observed that TRIM28 is de novo phosphorylated on serine 

824 during OIS (Figure 53). This phosphorylation is known to occur in 

response to the activation of the DNA damage response (Gil and Peters, 

2006). Ser 824 phosphorylation has been shown to interfere with TRIM28 

repressive abilities. It is not clear how to reconcile this observation with the 

effects that TRIM28 has on p16 expression during senescence. As TRIM28 

activity is regulated by multiple phosphorylation and SUMOylation events 

further work would be needed to understand the precise mechanism(s) by 

which TRIM28 controls senescence.  

TRIM28 connects the DNA damage response with heterochromatin 

organization. A DNA damage response is one of the key triggers initiating OIS 

(Li et al., 2007). A profound chromatin reorganization, that includes 

heterochromatin redistribution in SAHFs also occurs during senescence 

(Narita et al., 2003). Interestingly, TRIM28 knockdown reduced the 

percentage of cells with SAHFs, suggesting that TRIM28 could influence 

chromatin organization in senescence (Figure 55). Since it has been 
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proposed that the chromatin reorganization observed during senescence 

contributes to limit the DNA damage response, then TRIM28 could be a key 

factor coordinating these responses during OIS (Di Micco et al., 2006).  

Our results also showed that TRIM28 depletion suppresses the SASP (Figure 

57). Given that depletion of TRIM28 partially prevents senescence, the 

easiest explanation is that decreased senescence results in decreased SASP. 

However, it would be interesting to investigate whether TRIM28 directly 

regulates the SASP. Interestingly, besides its role in controlling chromatin 

formation, TRIM28 directly binds, and inhibits proteins of the IRF family 

involved in inflammatory signaling (Eames et al., 2012; Liang et al., 2011). 

TRIM28 has also been shown to negatively regulate IL6 expression by 

interfering with NF-!" acetylation and recruitment to promoters (Kamitani et 

al., 2011; Tsuruma et al., 2008).  Although it is not clear how that could be 

reconciled with our observations, the relation between TRIM28 and IRFs 

opens additional venues to explain how TRIM28 could control the SASP.  

Interestingly, during ES cells differentiation sumoylated TRIM28 relocalizes 

from the pericentric heterochromatin to nucleoplasmic bodies, which the 

authors denominated KAKA foci, co-localizing with HP1 proteins and KRAB-

ZFPs (Briers et al., 2009). The relevance of these foci is not clear but they are 

adjacent to PML bodies, which are important for senescence (Vernier et al., 

2011). Whether the role of TRIM28 in senescence could advent from this 

association with PML needs further investigation. 

The role of TRIM28 in cancer is complex, and probably context dependent 

(Hatakeyama, 2011). Our data would suggest that, by mediating senescence, 

TRIM28 could have tumour suppressive functions. Overall, here we have 

described a role for TRIM28 in regulating senescence that joins the list of 

other cellular processes regulated by TRIM28. Given the unique position of 

TRIM28 in the coordination of the DNA damage response and 

heterochromatin formation, understanding fully the role of TRIM28 in 

senescence will be important to further evaluate the possibility of targeting 

TRIM28 in disease. 
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6.4.2 The O-GlcNAc transferase (OGT) is a novel regulator of OIS 

 
The O-linkage of N-acetylaglucosamine residues to proteins was first shown 

in 1984 by Torres and Hart while working with plasma membranes of 

lymphocytes (Torres and Hart, 1984). O-GlcNAc has since shown to be a 

widespread modification occurring in both nuclear and cytoplasmatic proteins 

(Haltiwanger et al., 1990; Haltiwanger Rs, 1992; Holts and Hart, 1986). UDP- 

GlcNAc is produced through the hexosamine biosynthetic pathway (HBP) and 

added to proteins by the O-linked N-acetylaglucosamine transferase (OGT) 

(Fardini et al., 2013). OGT (or O-GlcNAc transferase) is the only known 

enzyme able to catalyze the addition of O-GlcNac to the hydroxyl groups of 

serine or threonine residues, action that is counteracted by the "-N- 

acetylglucosaminidase (or O-GlcNAcase –OGA) (Dong and Hart, 1994; Holts 

and Hart, 1986; Kreppel et al., 1997; Torres and Hart, 1984; Vocadlo, 2012) 

(Figure 75). 

              
Figure 75. Protein O-GlcNAcylation results from concerted action of the enzymes OGT 
and OGA. The Hexosamine biosynthetic pathway feeds the cell with uridine diphosphate-N-
acetylglucosamine (UDP-GlcNAc). The O-GlcNAc-transferase (OGT) catalyses the O-linkage 
of N-acetylaglucosamine residues to proteins (including histones). On its turn O-GlcNAcase 
(OGA) catalyses the removal of O-GclNAc. Therefore, the levels of O-GlcNAcylated proteins 
are maintained by concerted action of OGA and OGT (Adapted from Fardini et al., 2013) 
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The O-GlcNAcylation of proteins can regulate their function at several levels. 

O-GlcNAc can affect protein-protein binding, DNA-transcription factor binding, 

stability and nucle-cytoplasmatic shuttling of several proteins (Ozcan et al., 

2010). Transcription initiation and repression has also been shown to happen 

via direct and indirect regulation of Pol II, respectively, by OGT (Ranuncolo et 

al., 2012; Yang et al., 2002). A direct role for epigenetic regulation by OGT 

has also been reported. OGT can modify core histones, through addition of O-

GlcNAc residues as well as by indirectly promoting histone methylation (Chen 

et al., 2013; Deplus et al., 2013; Fong et al., 2012; Fujiki et al., 2011; Sakabe 

et al., 2010; Zhang et al., 2011b). H2B modification by OGT is dependent on 

association with TET2 (Chen et al., 2013; Fujiki et al., 2011). Association of 

OGT with TET1, TET2 and TET3 leads to increased levels of O-GlcNAcylated 

proteins on the CpG islands and TSS of TET proteins- regulated promoters, 

but generally not to an increase in 5-hydroxymethylation (5hmC) (Deplus et 

al., 2013; Vella et al., 2013). Other study, however, showed that O-

GlcNAcylation of TET1 by OGT positively regulates 5hmC deposition (Shi 

2013). Additionally, Deplus and coworkers showed that the association of 

OGT with TET2 and TET3 led to O-GlcNAcylation of HCF1, a member of the 

SET1/Compass H3K4 methyltransferase complex, thus providing an 

additional layer of epigenetic regulation by OGT (Deplus et al., 2013). 

The extensive spectrum of OGT-regulated proteins suggests that O-GlcNAc 

can be an important post-translational modification for several cellular 

processes ranging from nutrient sensing to gene transcription. Altered levels 

of O-GlcNAc are responsible for diseases such as type II diabetes, 

neurodegeneration and cancer (Bond and Hanover, 2013). 

The current work shows that OGT is also involved in regulating senescence. 

Knockdown of OGT in IMR90 ER:RAS cells bypassed the senescence-

associated   arrest (Figure 58,Figure 60). This result contradicts what has 

been observed in cancer cell lines. For instance, previous work has shown 

that OGT is upregulated is prostate cancer cells and tumours and contributes 

to cellular proliferation in a c-Myc mediated way. OGT is also associated with 

poor prognosis (Itkonen et al., 2013; Kamigaito et al., 2013). Additionally, 

knockdown of OGT in breast cancer cell lines reduces proliferation, leading to 
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upregulation of p27 (Caldwell et al., 2010). Indeed, increased O-

GlcNAcylation and OGT expression is observed in several cancer types 

leading to the postulation of this mark as a cancer hallmark (Fardini et al., 

2013). OGT can also regulate stem cell pluripotency and inhibit differentiation 

(Kim et al., 2009; Myers et al., 2011; Shi et al., 2013). Nevertheless, other 

reports describe decreased O-GlcNAcylation in breast and thyroid cancer, 

although no link with OGT expression was made (Krzeslak et al., 2010; 

Slawson et al., 2001). OGT can also O-GlcNAcylate the tumour suppressor 

p53 on Ser149, leading to its stabilization and reduced viability of cells upon 

doxyrubicin induced DNA damage, suggesting p53 modification by OGT could 

control its role in apoptosis and cell cycle arrest (Yang et al., 2006). However, 

in our results, OGT knockdown did not affect levels of p53 (Figure 61).  

The function of OGT in controlling the cell cycle is intricate, as levels of O-

GlcNAc oscillate during the cell cycle (Fardini et al., 2013; Zhang et al., 

2011b). Senescent cells undergo G1 cell cycle arrest, although some cells 

also arrest in G2 (Dulic et al., 1993; Mao et al., 2012). In one experiment with 

human mammary gland cells, Drougat and collaborators showed that O-

GlcNAcylation increased as cells progressed though G1, and rapidly 

decreased when cells progressed through S phase, an event that was 

attributed to increased OGA levels during S phase (Drougat et al., 2012).  

Additionally, they identified several differentially O-GlcNAcylated proteins 

during the G1/ S transition, including the lamina associated proteins, lamin 

A/C and lamin B. Therefore O-GlcNAcylation could play a role in the G1/S cell 

cycle checkpoint and entrance in senescence, for instance by counteracting 

phosphorylation events of key proteins. OGT can affect the phosphorylation of 

important proteins during mitosis (Wang et al., 2010). Indeed, O-

GlcNAcylation of H3 Ser10 and H3 Thr32 reduces the mitosis-associated 

phosphorylation of Ser10, Ser28 and Thr32, and incomplete removal of the O-

GlcNAc groups hinders mitosis (Fong et al., 2012; Zhang et al., 2011a). Of 

note, lowering O-GlcNac levels before the G1 phase leads to a quiescence-

like cell cycle arrest (Slawson et al., 2005). 

In the present work, levels of OGT and its modification were assessed by 

immunofluorescence and western blot (Figure 59,data not shown). OGT and 
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O-GlcNAc modified proteins were ubiquitously expressed in the nucleus and 

cytoplasm (Haltiwanger et al., 1990; Holts and Hart, 1986; Kreppel et al., 

1997). Although no increase in OGT was detected, there was an increase in 

the expression of O-GlcNAcylated proteins, around the nucleus (Figure 59). It 

is worthy noting that glycosylation of the nuclear envelope has been 

previously reported however the relevance of that has not been addressed 

(Holts and Hart, 1986). 

Consistently with the lack of effect on p53, also p21 levels seemed unaffected 

by OGT knockdown, however we observed a small decrease in p16 

expression (Figure 61). This result goes at odds with the previously reported 

function of OGT in positively regulating Polycomb (Chu et al., 2014; Gambetta 

et al., 2009). Specifically, OGT has been shown to O-GlcNAcylate EZH2 at 

Ser75 leading to its stabilization and increase in H3K27me3 formation, a 

chromatin mark known to inhibit p16 expression (Chu et al., 2014). 

Additionally PRC2 is needed for OGT stability and O-GlcNAcylation of 

proteins in stem cells (Myers et al., 2011). Considering that the INK4b-ARF-

INK4a locus is target of Polycomb-mediated repression, it is conceivable that 

it could be modified by OGT. In light of this, the O-GlcNAcylation status of the 

INK4b-ARF-INK4a locus should be investigated. 

O-GlcNAcylation increases upon induction of DNA damage (Miura et al., 

2012). Previous work has shown that OGT directly O-GlcNAcylates ATM, 

facilitating its phoshorylation and activity, while decreased O-GlcNAc levels 

would delay the DNA damage cascade (Miura et al., 2012). In the current 

work a small decrease of 53BP1 was seen 5 days after treating cells with 4-

OHT (Figure 63). It would be relevant to perform a time course study to 

evaluate the accumulation of this or other DNA damage associated markers 

at earlier and later time points to verify whether OGT knockdown delayed the 

DNA damage response triggered upon oncogene signaling as well. 

Finally the most striking result that we have observed upon OGT knockdown 

was a significant decrease of the SASP markers IL8 and IL6 (Figure 62). 
Indirect IL8 regulation by OGT has been reported (Allison et al., 2012). 

Specifically, a study with human and murine cells revealed that OGT modifies 

Rel-A/p65 allowing its acetylation by p300 and together localize to NF-!" 
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regulated promoters. Since p65 is a regulator of the SASP, and considering 

that also IL6 mRNA levels were impaired after OGT depletion then it is 

feasible that OGT could be more broadly involved in regulating the secretory 

phenotype. Therefore would be interesting to investigate whether and how 

OGT regulates the SASP.  

Interestingly, the shRNA providing the best bypass of the cell cycle arrest was 

the one that conferred the lowest knockdown of OGT (Figure 60). This 

suggests that perhaps an accentuated reduction of OGT levels would not be 

compatible with viability. Indeed, previous work suggested that depleting OGT 

in fibroblasts led to a brief cell cycle arrest followed by cell death (Donnell et 

al., 2004; Kazemi et al., 2010).  

While the present work provided novel insights into OGT function in OIS, 

several questions remain to be answered. Further experiments should 

address how OGT activity is regulated and modulates OIS. For instance, OGT 

positively regulates the PI3K signaling pathway, as well as Erk1/2 activity, 

thus it is likely that OGT could specifically modulate Ras signaling (Fardini et 

al., 2013; Tallent et al., 2009). However OGT could additionally O-

GlcNAcylate proteins with a more general role in senescence. Thus, 

cataloguing the pattern of O-GlcNAcylated proteins across different types of 

senescence and identifying the processes they regulate would be key to 

understand the role of OGT in senescence. Nevertheless, while protein O-

GlcNAcylation is the only known function of OGT additional functions might 

exist, for what understanding whether its role in senescence depends on its 

enzymatic activity would also be relevant.  

The fact that O-GlcNAcylated proteins accumulate during aging in rats 

suggests OGT could play a role in senescence-associated processes  (Fulop 

et al., 2008). Thus, untangling its role in senescence could allow a better 

understanding of several pathologies and open venues for novel therapeutic 

approaches. 
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6.4.3 ENY2, TAF10 and TAF12 regulate OIS: SAGA or independent 

stories? 

 
ENY2 is a small nuclear protein whose structure is evolutionary conserved. 

ENY2 can be found within the multisubunit SAGA (Spt–Ada–Gcn5 

Acetyltransferase) and TREX-2 (Transcription and Export complex 2) 

complexes, which regulate histone deubiquitination and acetylation and 

mRNA export, respectively (Garcia-Oliver et al., 2012; Kohler et al., 2006; 

Koutelou et al., 2010; Rodriguez-Navarro et al., 2004; Samara and Wolberger, 

2011; Zhao et al., 2008). 

In the present work we observed that ENY2 knockdown strongly bypassed the 

senescence-associated arrest (Figure 65). Additionally, in the context of OIS, 

ENY2 knockdown prevented p16 and p21 induction and decreased the 

percentage of cells with SAHFs (Figure 66,Figure 67) 

Interestingly, our screen also indentified siRNAs against two genes 

functionally related to ENY2. The TAF (TBP-associated factors) proteins, 

TAF10 and TAF12, are integral components of the previously mentioned 

SAGA complex, the histone acetylase complex PCAF and together with TBP 

are part of the TFIID complex, necessary for RNA Pol II mediated 

transcription (Bhaumik, 2011; Chen and Hampsey, 2002; Ogryzko et al., 

1998). The knockdown of either TAF10 or TAF12 led to a marked bypass of 

the proliferation arrest and concomitant downregulation of p16, p21 and p53 

without affecting accumulation of 53BP1 (Figure 69, Figure 70, Figure 71). 

Moreover, shTAF12 affected SAHF formation during OIS and depletion of 

either TAF extended the replicative life span of normal IMR90s (Figure 72). 

TAF10, TAF12 and ENY2 are all components of the SAGA complex. This, 

together with the similar phenotype obtained upon individual knockdown of 

each gene in OIS, raises the idea that SAGA complex could regulate 

senescence.  

The SAGA complex is organized into 4 subcomplexes with distinct functions: 

the deubiquitinating module (DUB, centered on USP22), the histone 

acetyltransferase module (HAT, centered on GCN5), the SPT module 

involved in pre-initiation complex assembly and the TAF module that plays 
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structural functions (Figure 76) (Samara and Wolberger, 2011; Weake and 

Workman, 2012). The enzymatic activity of the complex is present on the HAT 

and the DUB modules. These are involved in H3 acetylation and H2A and 

H2B deubiquitination, respectively, and are important for transcriptional 

activation and elongation by RNA Pol II (Govind et al., 2007; Lang et al., 

2011; Wyce et al., 2007; Zhao et al., 2008).  

 
Figure 76. The human SAGA complex. The SAGA is composed by 4 multiprotein modules: 
the HAT module involved in histone acetylation, the DUB module with histone 
deubiquitinating activity, the TAF module that has structural and co-activator functions and 
the SPT module involved in Pre-initiation complex assembly. ENY2 belongs to the DUB 
module and has additional functions in mRNA export (in the TREX2 complex). TAF10 and 
TAF12 belong to the TAF module. The names shown correspond to the human homologs 
with exception of the yeast Spt8 (grey) which has not yet been described in humans. 
(Adapted from Samara and Wolberger, 2011) 

 

While ENY2 belongs to the deubiquitination module, TAF10 and TAF12 are 

thought to contribute to the stability of the complex, similarly to the TFIID 

complex. However, TAF12 might additionally function to direct SAGA complex 

to promoters (Fishburn et al., 2005; Kohler et al., 2006; Reeves and Hahn, 

2005; Wu et al., 2004; Zhao et al., 2008). The interdependence of the different 

modules or their ability to be recruited independently is still a matter of debate, 
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however it is possible that the HAT and DUB can coordinate their activities 

(Atanassov et al., 2009; Kohler et al., 2006; Weake and Workman, 2012).  

The SAGA complex can regulate multiple processes (Galan and Rodriguez-

Navarro, 2012; Koutelou et al., 2010). For instance, binding of SAGA and its 

acetylating activity are important for expression of p53 target genes such as 

p21 and Gadd45a, what would support a role for this complex in senescence 

(Gamper and Roeder, 2008). Additionally, deletion of members of the DUB 

module has recently shown to extend the replicative life span of yeast by 

negatively regulating SIRT2-mediated telomere-proximal gene silencing 

(McCormick et al., 2014). Although the HAT module alone did not interfere 

with the replicative life span, DUB mutants had increased replicative lifespan 

upon GCN5 deletion. However, SUS1 (yeast homologue of ENY2) did not 

seem to play a role in life span extension (McCormick et al., 2014). 

Despite the tempting idea of TAF10, TAF12 and ENY2 regulating senescence 

through the SAGA complex, most studies suggest a role for the SAGA 

complex in mediating proliferation and tumourigenesis. Indeed, SAGA can 

cooperate with E2F and c-Myc to mediate transcriptional activation and 

cellular proliferation (Grant et al., 1998; Liu et al., 2003; Liu et al., 2008; 

McMahon et al., 1998). Specifically c-Myc has been shown to recruit USP22 

(the deubiquitinase subunit of the DUB module of the SAGA complex), and 

consequently the SAGA complex, to mediate proliferation and transformation 

(Zhang et al., 2008). Moreover, depletion of USP22 leads to an accumulation 

of G1 arrested fibroblasts (Zhang et al., 2008). Additionally, the USP22 

deubiquitinase activity is important for maintenance of TRF1 stability and 

telomere integrity, in a GCN5 dependent way but independently of its 

acetylating function (Atanassov et al., 2009). Finally, ENY2 can also regulate 

embryonic stem cells self-renewal (Hu et al., 2009). 

The aforementioned examples go at odds with a role for the SAGA complex in 

senescence. Since ENY2, TAF10 and TAF12 have functions besides those 

related with the SAGA complex, it is possible that the role of these genes in 

senescence could be SAGA-independent. For instance, ENY2 is part of the 

TREX2 complex, which is involved in nuclear mRNA export (Jani et al., 2012; 

Kopytova et al., 2010; Rodriguez-Navarro et al., 2004). Previous work, mainly 



Chapter 6. Results: Candidate genes 

 

 196 

in yeast has suggested that ENY2 could work as a bridge between the SAGA 

and TREX-2 complexes promoting contact between target genes and the 

nuclear pore complex (NPC), leading to transcription-coupled mRNA export 

(gene gating) (Cabal et al., 2006; Galan and Rodriguez-Navarro, 2012; Kohler 

et al., 2006; Kurshakova et al., 2007; Rodriguez-Navarro et al., 2004). 

However, a recent report suggested that in humans and Drosophila those 

complexes did not interact (Kopytova et al., 2010; Umlauf et al., 2013). 

Irrespective of whether or not ENY2-mediated gene gating happens in 

humans, it would be interesting to test whether the function of ENY2 in 

senescence depends on its role in mediating mRNA nuclear export. That 

could be addressed, for instance, by analyzing the cytoplasm-associated 

transcriptome of senescent cells lacking ENY2 or the TREX2 complex, to 

identify transcripts whose nuclear export depends on their activity. 

Also TAF12 has been shown to have SAGA and TAF10-independent roles, 

for example, in RNA Pol I mediated transcription (Denissov et al., 2007). Also, 

TAF12 interacts with and recruits the Growth Arrest and DNA-damage-

inducible protein (Gadd45a) to maintain promoters in a hypomethylated state 

(Schmitz et al., 2009). Interestingly Gadd45a is a p53 target, which 

contributes to p53 stability establishing a positive feed back loop in controlling 

cell cycle progression (Jin et al., 2003; Zhan, 2005; Zhan et al., 1999). 

Gadd45 has been linked with senescence via regulation of the p38/p53 

signaling cascade (Bulavin et al., 2003; Passos et al., 2010). Since TAF12 

can bind Gadd45a it would be interesting to investigate whether this would 

interfere with its ability to regulate p53 or p38. Of note, TAF12 is upregulated 

upon RAS signaling and important for its oncogenic properties (Voulgari et al., 

2008). Additionally, TAF proteins take part of the PCAF and TFIID complexes 

that regulate the expression of senescence regulators. Indeed, the PCAF 

complex can regulate p53 acetylation in response to DNA damage (Jin et al., 

2002; Love et al., 2012; Ogryzko et al., 1998) and the TFIID complex 

mediates recruitment of SWI/SNF members to target promoters (Sharma et 

al., 2003).  

In summary our work identified the related factors TAF10, TAF12 and ENY2 

as novel regulators of OIS. While the concerted action of these genes through 
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the SAGA complex is an attractive hypothesis, SAGA-independent functions 

exist for all of these factors. Thus, further experiments should try to address 

this by unveiling the gene spectrum regulated by each one of these factors 

and investigate whether or not they overlap. Additionally the relevance of both 

SAGA enzymatic activities in senescence (by specific knockdown of GCN5 or 

USP22) should be addressed, as it will reveal whether the role of TAF10, 

TAF12 and ENY2 in senescence arises from facilitating histone acetylation or 

deubiquitination. Role of additional relevant complexes, such as PCAF or 

TFIID should also be addressed in OIS. Indeed, the latter has been shown to 

accumulate during senescence in a previous work by Dimri and Campisi, what 

could explain the effects associated with TAF10 and TAF12 (Dimri and 

Campisi, 1994). 

Overall the results herein present suggest that ENY2, TAF10 and TAF12 are 

novel potential regulators of senescence. Since TAF10 and TAF12 are 

frequently downregulated in cancer (Tumorscape-

http://www.broadinstitute.org/tumorscape/pages/portalHome.jsf), these results 

could have important biological implications. Hence, a detailed study of how 

these factors regulate senescence could improve our understanding of 

tumorigenesis and other senescence-associated diseases.  

 

 
 

 

 
 

 

 



Chapter 7. Discussion and Conclusion 

 

 198 

Chapter 7. Final conclusions and future work 
 

7.1 Large-scale approaches identified novel regulators of OIS 

 
Large-scale approaches have provided us with a detailed and integrative view 

of the gene networks regulating several processes. Approaches like high-

content screenings, have allowed a functional characterization of these 

genes.  

To unravel novel genes regulating OIS we performed spatial proteomics, 

allowing the analysis of subcellular proteomes. Several of the identified 

proteins were differentially expressed in senescence, mostly in the chromatin 

fraction. siRNA screens confirmed the functional relevance of the differentially 

expressed chromatin proteins, and identified GTF3C4, TRIM28, ENY2, 

TAF12, TAF10 and OGT as novel regulators of OIS. 

The present proteomics approach compared only between proliferating and 

senescent cells. It will be now relevant to distinguish changes specific of OIS 

from those that result from a general state of cell cycle arrest or oncogene 

activation. For that, a wider spatial proteomics analysis is being conducted to 

compare between proliferating, OIS, OIS bypass and quiescent cells. 

Moreover, a characterization of the candidate genes should be carried out 

including transcriptome analysis upon gene knockdown or overexpression. 

The potential of these factors to induce senescence and their synergism with 

relevant senescence-associated pathways should be further tested upon 

overexpression. As the knockdown of the some candidate genes (i.e. TAF12 

and ENY2) attenuated SAHF formation, it is likely they could play a role in 

OIS by regulating epigenetic mechanisms. Nevertheless, identified genes 

encompass alternative functions that range from glycosylation to mRNA 

export, for what will be key to first investigate where in the cell these genes 

are likely to exert their function in OIS and what proteins (chromatin -

associated or not) are modified as part of their senescence program. Finally, 

their tumour suppressor potential should be addressed using cancer cell lines, 

human samples and animal models. Thorough characterization of these 
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genes in senescence and tumorigenesis would open novel venues for cancer 

therapy, potentially via chromatin-mediated modulation of gene expression. 

  

7.2 Relevance of senescence and epigenetics for cancer therapy 

 
Deregulation of senescence contributes to diseases ranging from liver fibrosis 

to cancer (review in Munoz-Espin and Serrano, 2014). OIS has long been 

regarded as a barrier to tumorigenesis in vivo (Bennecke et al., 2010; Braig et 

al., 2005; Chen et al., 2005; Collado et al., 2005; Lazzerini Denchi et al., 

2005; Michaloglou et al., 2005). 

The potential of senescence as an anticancer therapy was suggested upon 

observing that mainstream chemotherapeutical drugs such as doxorubicin 

and cyclophosphamide could trigger senescence (Chang et al., 1999a; Chang 

et al., 1999b; Schmitt et al., 2002). The concept of therapy-induced 

senescence (TIS) relies on the idea that one could modulate the expression of 

specific senescence-regulators during cancer, to divert cells into senescence, 

block proliferation and eventually clear off the tumour by action of the immune 

system (Baker et al., 2011; Munoz-Espin and Serrano, 2014; Sun et al., 2012; 

Xue et al., 2007). For instance, while using a Eµ-myc transgenic mouse 

lymphoma model, Dohr et al. showed that TIS leads to a highly metabolic and 

energy consuming senescent phenotype due to a need to counteract 

proteotoxic stress as a consequence of the SASP (Dorr et al., 2013). Due to 

their high demand in glucose, these senescent cells are sensitive to drugs 

eliciting the blockage of glucose intake or autophagy, ultimately undergoing 

apoptosis.  

Several lines of TIS have been investigated and extensively reviewed, 

encompassing the use of p53 restoration approaches, PTEN and telomerase 

inactivation and CDK inhibitors (Acosta and Gil, 2012; Nardella et al., 2011). 

Indeed, the CDK4 inhibitor palbociclib (PD-0332991, Pfizer) has been already 

used and shown great results in phase II of clinical trials in the treatment of 

cell lymphoma, breast cancer and liposarcomas (Dickson et al., 2013; Guha, 

2013; Leonard et al., 2012). Thus, discovering novel regulators of 
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senescence-associated pathways might provide novel targets for TIS and 

cancer elimination. 

 

The identification of epigenetic regulators with a possible role in cancer (for 

what the study of processes like senescence might contribute) offers another 

layer of anti-cancer therapy. Aging and cancer have long been appreciated as 

epigenetic diseases (D'Aquila et al., 2013; Rodriguez-Paredes and Esteller, 

2011a). The relevance of “cancer epigenetics” has been rising as not only 

several tumour suppressors are silenced by epigenetic mechanisms in 

cancer, but epigenetic regulators are also mutated in virtually all malignant 

tumors (Azad et al., 2013; Shen and Laird, 2013). For instance, members of 

the SWI/SNF complex (i.e. ARID1A and PBRM1) are largely mutated in 

cancer and members of the Polycomb proteins (i.e. EZH2), are 

overexpressed in cancer (Bracken et al., 2003; Jones et al., 2010;  Wiegand 

et al., 2010; Kleer et al., 2003; Morin et al., 2010; Pawlowski et al., 2013; 

Varambally et al., 2002; Varela et al., 2011). As previously mentioned, both 

Polycomb and SWI/SNF regulate senescence (Agherbi et al., 2009; Bracken 

et al., 2007; Bracken et al., 2003; Kia et al., 2008). Thus the identification of 

epigenetic modulators in senescence might hint to possible genes or 

pathways altered in cancer. 

The concept of cancer epigenetic therapy lays on two main premises: genes 

affected by abnormal epigenetic modulation are normally wild type, for what 

functional restoration is possible, and genetic abnormalities due to mutations 

in one chromatin regulator affect several downstream genes. Thus, epigenetic 

therapy, targeting a specific chromatin remodeler, will lead to a simultaneous 

reversal of the altered signaling pathways affected by it, restoring the function 

of the underlying genes (Azad et al., 2013). Although promising, and despite 

the large variety of epigenetic regulators described so far, only 4 drugs (as of 

2014) have been approved for the epigenetic treatment of blood cancers: two 

HDACs inhibitors and 2 DNMTs inhibitors (Arrowsmith et al., 2012; Byrd et al., 

2005; Garcia et al., 2010; Mummaneni and Shord, 2014; O'Connor et al., 

2006; Piekarz et al., 2009; Rodriguez-Paredes and Esteller, 2011b). Hence, 

an exhaustive characterization of the senescence (such as the one herein 
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presented) and cancer epigenome should be undertaken in order to expand 

the arsenal of known epigenetic modulators of tumorigenesis and open novel 

venues for anti-cancer therapy. 

 

7.3 Concluding remark 
 
The emerging need of a more efficient and specialized anti-cancer medicine 

implies the study of all biological processes that could detain anti- or pro- 

tumorigenic effects. Since senescent cells harbor features of cancer cells, 

particularly regarding the signaling pathways and the epigenetic mechanisms 

they activate, the search for novel regulators of senescence and their 

thorough functional characterization will hopefully amplify our understanding 

of cancer and other aging-associated diseases. 

Here, using a combined approach of spatial proteomics and siRNA screens, 6 

novel chromatin factors regulating OIS were identified: TRIM28, OGT, ENY2, 

TAF12, TAF10 and GTF3C4. Efforts should now center on better 

understanding the biological and epigenetic value of these genes in 

senescence and in cancer. 
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Appendix 
 

Table A1. Antibodies 

Target Clone Company Cat. No. Source Application 
(dilution) 

Anti-Mouse 
IgG 

Alexa Fluor® 
488 Invitrogen A11029 Goat IF 

Anti-Mouse 
IgG 

Alexa Fluor® 
594 Invitrogen A11032 Goat IF 

Anti-Rabbit 
IgG 

Alexa Fluor® 
594 Invitrogen A1103 Goat IF 

Anti-Goat 
IgG 

Alexa Fluor® 
594 Invitrogen A11058 Donkey IF 

Anti Rat 
IgG 

Alexa Fluor® 
488 Invitrogen A11006 Goat IF 

Anti Rat 
IgG 

Alexa Fluor® 
594 Invitrogen A11007 Goat IF 

BrdU BU1/75(ICR1) Abcam ab6326 Rat IF (1:1000) 

CXCL8/IL8 Polyclonal R&D Systems, Inc AF-208-NA Goat IF (1:100) 

Histone H3 mAb10799 Abcam mAb10799 Mouse WB (1:1000) 

OGT Polyclonal Abcam ab50270 Rabbit IF (1:100) 
WB (1:1000) 

O-GlcNAc RL2 Abcam ab2739 Mouse IF (1:100) 

p16 JC8 Santa Cruz 
Biotechnology,Inc sc56330 Mouse IF (1:500) 

p21 CP74 Sigma Aldrich p1484 Mouse WB (1:100) 

p53 DO-1 Santa Cruz 
Biotechnology,In sc-126 Mouse IF (1:100) 

PABP2 EP3001Y GeneTex GTX62070 Rabbit WB (1:10000) 

P-TRIM28 
Ser824) Polyclonal Bethyl 

Laboratories A300-767A Rabbit IF (1:1000) 

TRIM28 Polyconal Abcam ab10484 Rabbit IF (1:1000) 
WB (1:1000) 

$-Tubulin B-5-1-2 Sigma Aldrich T6074 Mouse WB (1:10000) 

53BP1 Polyclonal Novus Biologicals NB100-304 Rabbit IF (1:1000) 

 

Table A2. Constructs 

Vector Insert Antibiotic resistance 
pGIPZ Empty vector/shRNA Puromycin 
LXSN Empty vector Neomycin 
pLNC Empty vector Neomycin 
pLNC ER:RAS Neomycin 
pLNC MEK:ER Neomycin 

pBABE Cherry Puromycin 
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Table A3. shRNA target sequences 

Construct (pGIPZ) Target sequence 
shENY2_1 TACTGAAAACTGTATACCA 
shENY2_2 TAATCGCTGCTCTCATCTG 
shENY2_3 TTAATTACCTCTTTACAGT 

shGTF3C4_1 TGAACTGAAGATTCCAGGA 
shGTF3C4_2 AACCTCTTAATCCAGTCGG 

shOGT_1 AAATTGATATAAGCATCCA 
shOGT_2 ATTCTTCTCTAACTGGTCA 

shp53 TCTCTTCCTCTGTGCGCCG 
shTAF12_1 TCTCCAAATACATTGCTGT 
shTAF10_1 TAGAGTGTACTTGCGGTCC 

shTRIM28_1 AAGGTTGTAGTCCTCAGTG 
shTRIM28_2 TTCACACCTGACACATGGG 

 

 

Table A4. RT-qPCR Primers 

Target gene Sequence  
5’-CCTGTCACTGTCTTGTACCCT-3’ 

CDKN1a 
5’-GCGTTTGGAGTGGTAGAAATCT-3’ 
5’-GGCGAATCAGAAGCAGCAAGCAAC-3 

CCL20 5’-ATTGGCCAGCTGCCGTGTGAA-3’ 
5’-GAAAGCTTGCCTCAATCCTG-3’ 

CXCL1 5’-CACCAGTGAGCTTCCTCCTC-3’ 
5’-CAAGGGTCATTTCGTCGCTG-3’ 

ENY2 5’- AATCGCTGCTCTCATCTGCG-3’ 
5’- CCCGCGGACTCTGTAACTTT-3’ 

GTF3C4 5’- GGAGCCAAATGTGGCCATTG-3’ 
5’-TGCACGCTCCGGGACTCACA-3’ 

IL1! 5’-CATGGAGAACACCACTTGTTGCTCC-3’ 
5’-CATGGAGAACACCACTTGTTGCTCC-3’ 

IL6 5’-CCCAGGGAGAAGGCAACTG-3’, 
5’-GAGTGGACCACACTGCGCCA-3’ 

IL8 5’-TCCACAACCCTCTGCACCCAGT-3’ 
5’-CGGTCGGAGGCCGATCCAG-3’ 

INK4a 5’-GCGCCGTGGAGCAGCAGCAGCT-3’ 
5’- TTTCCTTCCAAGGGTTAGCTG-3’ 

OGT 5’- CCAGAGTGCTAAAGTGAGCAGA-3’ 
5’-CTGCGAGTGCTGTCAGAGG-3 

RPS14 5’-TCACCGCCCTACACATCAAACT-3’ 
5’- GCCTCAGACCCACGCATAAT-3’ 

TAF10 5’- GTACTTGCGGTCCTTGCTCT-3’ 
5’-GAGCAGGATTATGAGGACCCG-3’ 

TAF12 5’- CTGAGGGGCCAAACTGGTTC-3’ 
5’-AGCGGAAATGTGAGCGTGTA-3’ 

TRIM28 5’-CACGTCTGCCTTGTCCTCAG-3’ 
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a  b  s  t  r  a  c  t

Senescence  is  a highly  stable  cell  cycle  arrest  which  limits  the  replication  of  cells  with  damaged  genomes.
The  senescence  program  is activated  during  aging  or in response  to  insults  like  DNA  damage  or  onco-
genic  signaling.  Upon  induction  of senescence,  cells  undergo  profound  changes  on their transcription
program,  chromatin  organization,  and  they  secrete  a  complex  mixture  of  mainly  pro-inflammatory
components  termed  the  senescence-associated  secretory  phenotype  (SASP).  The  SASP  mediates  mul-
tiple  effects,  including  reinforcing  senescence  and  activating  immune  surveillance  responses.  Given the
important  role  that  senescence  has  in  aging,  cancer  and  other  pathologies,  identifying  mechanisms
regulating  senescence  has  therapeutic  potential.  Here  we  describe  a  role  for  TRIM28  (also  known  as
KRAB-associated  protein  1, KAP1)  on  mediating  oncogene-induced  senescence  (OIS).  TRIM28  accumu-
lates  during  OIS  becoming  phosphorylated  on serine  824.  To  investigate  the  role  of  TRIM28,  we knocked
down  its  expression  and  observed  that the  depletion  of  TRIM28  partially  prevented  cell arrest  during  OIS.
While  induction  of p53 and p21  during  OIS,  was  not  affected  by TRIM28  depletion,  p16INK4a induction
was  partially  prevented.  Finally,  we  observed  that  the  induction  of  IL8, IL6 and  other  SASP  components
were  strongly  suppressed  upon  TRIM28  depletion.  In conclusion,  the  above-described  results  show  that
TRIM28  regulates  senescence  and  affects  the induction  of  the  senescence-associated  secretory  phenotype.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Senescence is a highly stable cell cycle arrest triggered in old
cells and in response to a range of insults including oncogenic
signaling, DNA damage, irradiation or exposure to chemothera-
peutic agents [1]. In addition to the stable arrest, senescent cells
undergo profound phenotypic changes in their transcriptional pro-
gram, chromatin organization, metabolism and cell morphology
[2]. Senescent cells also produce a complex mix  of secreted factors,
known as the senescence-associated secretory phenotype (SASP) or
the senescence-messaging secretome (SMS) [3,4]. The SASP influ-
ences the tumor microenvironment and the homeostasis of aged
tissues [3,4].

Epigenetic control and chromatin remodeling are two  critical
layers on senescence regulation. During senescence, cells reorga-
nize their chromatin establishing new heterochromatin domains
termed senescence-associated heterochromatin foci (SAHF) [5].
SAHFs comprise redistributed non-overlapping chromatin regions
with histone H3K9me3 and H3K27me3 marks [6]. Interestingly,

∗ Corresponding author. Tel.: +44 20 8383 8263; fax: +44 20 8383 8306.
E-mail address: jesus.gil@csc.mrc.ac.uk (J. Gil).

heterochomatin has been suggested to restrain the DNA damage
response (DDR) observed during senescence [7]. In addition to
the global chromatin reorganization on senescence, several epi-
genetic mechanisms also contribute to regulate senescence. For
example, the INK4/ARF locus, that encodes for the critical effectors
of senescence p16INK4a and ARF is strongly repressed by Polycomb
repressive complexes, and regulated by other epigenetic modifiers
including histone demethylases or chromatin remodeling com-
plexes [8].

TRIM28 (also known as KAP1 or TIF1!) belongs to the Tripartite
Motif (TRIM) family of E3 ligases characterized by the presence of
a RING-finger motif, zinc-binding motifs and a coiled–coil region.
[9]. TRIM28 functions mainly as a co-repressor for the KRAB-ZFPs
transcriptional regulators by interacting with HP1 proteins and
chromatin repressive complexes such as SETDB1, NurD and HDACs
leading to the formation of heterochromatin [10–12].

The activity of TRIM28 is regulated post-translationally via
phosphorylation on serine (Ser 473 and 824) and tyrosine (Tyr 499,
458 and 517) residues. The most widely studied TRIM28 modifica-
tion is its phosphorylation on serine 824 by ATM upon DNA damage
[13]. Phosphorylation of TRIM28 leads to the release of HP1 from
the chromatin and therefore the relaxation of the DNA, allowing the
assembly of the repair machinery onto the double-strand breaks
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sites [14]. TRIM28 can also be modified by sumoylation [15,16],
what facilitates its interaction with SETDB1 contributing to gene
repression [17].

TRIM28 regulates multiple cellular processes, including pluripo-
tency, proliferation, differentiation and apoptosis [17]. The role
of TRIM28 in tumorigenesis is complex. TRIM28 can behave as
an oncogene and it is frequently overexpressed in tumors [9].
Indeed TRIM28 is a negative regulator of p53 and p21CIP1 expres-
sion [13,18–20]. On the other hand, the knock down of TRIM28 in
breast and lung cancer cell lines results in increased proliferation.
As higher expression of TRIM28 in early-stage lung tumors also
increases overall survival of patients, TRIM28 has been categorized
as a tumor suppressor in some genetic contexts [21]. Potentially
contributing to this role as a tumor suppressor, a recent study sug-
gested that the knock down of TRIM28 abrogated senescence in a
mouse model of progeria [22].

Here, we aim to clarify the role of TRIM28 in senescence
by using a defined, inducible system to study oncogene-induced
senescence (OIS). In our experiments, knock down of TRIM28
expression partially prevented senescence, suggesting that TRIM28
could be a mediator of OIS. Intriguingly TRIM28 expression resulted
in impaired p16INK4a induction without affecting p53 or p21CIP1

expression. TRIM28 depletion also resulted in defective SASP induc-
tion. Overall, the results presented here show a role for TRIM28 in
mediating senescence and suggest a mechanistic explanation to its
functions in tumor suppression and during aging.

2. Materials and methods

2.1. Cell culture and retroviral and lentiviral infection

HEK-293T and IMR-90 cells were obtained from the ATCC. Cells
were maintained in Dulbecco’s modified Eagle’s medium (Invit-
rogen) supplemented with 10% fetal bovine serum (Sigma), 1%
antibiotic-antimycotic solution (Invitrogen). Cell number and via-
bility measurements were determined using the Guava Viacount
reagent (Millipore) and the Guava Cytometer (Millipore). Retroviral
and lentiviral infections were performed as described [23].

2.2. Plasmids

pLNC-ER:RAS and pLXSN and pGIPZ-based shRNA vector
targeting p53 have been described previously [24]. Lentiviral
pGIPZ-based shRNA vectors targeting TRIM28 (shT.1, AAGGTTG-
TAGTCCTCAGTG and shT.2, TTCACACCTGACACATGGG) were from
SIGMA.

2.3. Antibodies

The following antibodies were used for the immunofluores-
cence and blotting analysis shown in this manuscript: rat Anti-BrdU
(ab6326, Abcam), mouse anti-p16 (sc56330, Santa Cruz Biotech-
nology, Inc), mouse anti-p53 (sc-126, Santa Cruz Biotechnology,
Inc), mouse anti-p21WAF1/Cip1 (p1484, Sigma Aldrich), goat anti-
CXCL8/IL8 (AF-208-NA, R&D Systems, Inc), rabbit anti-53BP1
(NB100-304, Novus Biologicals), rabbit anti-TRIM28 (ab10484,
Abcam), rabbit anti-phospho-TRIM28 (S824) (A300-767A, Bethyl
Laboratories, Inc).

2.4. BrdU incorporation, senescence-associated ˇ-galactosidase
and crystal violet staining

These assays were performed as previously described [23,24].

2.5. Gene expression analysis

Total RNA was extracted using Trizol reagent (Invitrogen)
and the RNeasy isolation kit (Qiagen). DNAs were generated
using SuperScript II reverse transcriptase (Invitrogen), dNTPs and
Random Hexamers. PCR reactions were performed in a Real-Time
PCR Detection System (BioRad) using Power SYBR Green Master
Mix  (Applied Biosystems). Expression was normalized to riboso-
mal  protein S14 (RPS14) expression. The following primer sets
were used: CCL20 5′-GGCGAATCAGAAGCAGCAAGCAAC-3′ and 5′-
ATTGGCCAGCTGCCGTGTGAA-3′, CXCL1 5′-GAAAGCTTGCCTCAAT-
CCTG-3′ and 5′-CACCAGTGAGCTTCCTCCTC-3′, IL1! 5′-TGCACG-
CTCCGGGACTCACA-3′ and 5′-CATGGAGAACACCACTTGTTGCTCC-
3′, IL6 5′-CATGGAGAACACCACTTGTTGCTCC-3′ and 5′-CCCAGGG-
AGAAGGCAACTG-3′, IL8 5′-GAGTGGACCACACTGCGCCA-3′ and
5′-TCCACAACCCTCTGCACCCAGT-3′, INK4a 5′-CGGTCGGAGGCCG-
ATCCAG-3′ and 5′-GCGCCGTGGAGCAGCAGCAGCT-3′, CDKN1a
5′-CCTGTCACTGTCTTGTACCCT-3′ and 5′-GCGTTTGGAGTGGTAG-
AAATCT-3′, RPS14 5′-CTGCGAGTGCTGTCAGAGG-3′ and
5′-TCACCGCCCTACACATCAAACT-3′, TRIM28 5′-AGCGGAAATGT-
GAGCGTGTA-3′ and 5′-CACGTCTGCCTTGTCCTCAG-3′.

2.6. Immunofluorescence and high content analysis

Immunofluorescence (IF) was performed as previously
described [25] using the antibodies listed above. Images were
acquired using an automated high throughput microscope (IN Cell
Analyzer 2000, GE Healthcare). A minimum of 1000 cells were
acquired for each sample per duplicate. High content analysis
(HCA) was  performed using the IN Cell Investigator software (v
3.2; GE Healthcare), as described elsewhere [24,25]. Briefly, DAPI
staining of the nuclei was  used to identify cells. The nuclei were
segmented using top-hat segmentation, specifying a minimum
nucleus area of 100 "m2. To define the cell area, a collar segmen-
tation approach was used with a border of 1 "m around DAPI
staining or alternatively, multiscale top-hat was  used to detect
cytoplasmic intensity for a given staining. Each cell was assigned a
nuclear intensity value (and cell intensity value when applicable)
for the specific protein being studied. A histogram of the intensity
values of all cells was  produced and used to set a threshold filter
to determine positive and negative expressing cells. Alternatively,
intensity values were plotted. The antibodies used were validated
with robust controls (including shRNAs inhibition) to assess their
specificity as shown before [24].

2.7. Western blot analysis

Protein extracts were processed and Western blot performed as
previously described [24], using the antibodies described above.

3. Results

3.1. TRIM28 is phosphorylated on Serine 824 during
oncogene-induced senescence

To investigate the role of TRIM28 during OIS, we took advan-
tage of IMR90 ER:RAS cells. IMR90 ER:RAS are human primary
fibroblasts expressing a chimeric fusion protein between the lig-
and binding motif of the estrogen receptor and oncogenic RAS G12V
[24,26]. The ER:RAS fusion can be activated by 4-hydroxytamoxifen
(4OHT). Once RAS is activated a full senescence response is trig-
gered, making it an ideal system to study OIS. After 4OHT treatment,
IMR90 ER:RAS cells slowed down their proliferation, as assessed by
BrdU incorporation (Fig. 1A). In addition, the induction of ER:RAS
results in signs of senescence, such as an increase in the per-
centage of cells positive for senescence-associated !-galactosidase
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Fig. 1. IMR90 ER:RAS as a cell system to study oncogene-induced senescence. IMR90 ER: RAS cells were treated with 200 nM 4OHT to activate ER:RAS. Cells were fixed at 6
or  8 days post induction for further analysis. (A) BrdU incorporation and SA-!-Gal assays shows growth arrest and increase in SA-!-Gal positive cells after induction of OIS.
Quantification (left) and representative pictures, right are shown). (B) Accumulation of cells with senescence-associated heterochromatin foci (SAHF, left) and DNA  damage
(as  evaluated by 53BP1 IF staining, right) is observed upon induction of OIS. (C) Cells undergoing OIS upon ER:RAS activation induce the expression of p53, p21 and p16.
Immunofluorescence was  performed using the appropriate antibodies. Representative pictures (top) and quantification of the percentage of positive cells (bottom) is shown.
(D)  OIS results in the induction of the SASP component IL8. Immunofluorescence was performed in IMR90 ER:RAS cells 8 days after 4OHT treatment. Representative pictures
(top)  and quantification of cells positive for IL8 (bottom) are shown.

(SA-!-Gal, Fig. 1A) and cells showing senescence-associated het-
erochromatin foci (SAHFs) or presenting a DNA damage response
(as exemplified by 53BP1 staining) (Fig. 1B). The senescence pro-
gram is implemented by a parallel and coordinated activation of
the p53/p21 and p16INK4a/Rb tumor suppressor networks [1]. Con-
sistent with this, we observed in IMR90 ER:RAS cells an induction
of p53, p21 and p16 tumor suppressors levels upon 4OHT treat-
ment, as assessed using quantitative immunofluorescence (Fig. 1C).
Finally, one of the most striking characteristics of senescence cells,
with profound functional implications is the expression of a com-
plex mix  of secreted factors known as the SASP [3,4]. We  have
previously used IMR90 ER:RAS cells to interrogate the SASP func-
tion and dissect its composition [24]. We  assessed the expression

of IL8, one of the prototypic SASP components 8 days after 4OHT
induction, and observed that RAS activation strongly induced IL8
during OIS (Fig. 1D).

As an initial experiment to assess the role of TRIM28 during
senescence, we  analyzed the overall TRIM28 levels and its phospho-
rylation on Serine 824 upon senescence induced by RAS activation
(Fig. 2). We observed that upon RAS activation, the levels of TRIM28
increased slightly (Fig. 2A). Interestingly, the most striking obser-
vation was  that RAS activation induced the phosphorylation of
TRIM28 at serine 824 (Fig. 2B). It has been shown that TRIM28
gets phosphorylated upon DNA damage by either ATM/CHK2 or
ATR/CHK1 complexes. Since the activation of a persistent DNA dam-
age response (DDR) is one of the hallmarks of senescence ([27]
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Fig. 2. TRIM28 is phosphorylated on serine 824 during OIS. IMR90 ER:RAS cells were treated with 200 nM 4OHT to induce RAS. Cells were fixed at the indicated times and
immunofluorescence performed using antibodies recognizing total TRIM28 (A) or TRIM28 phosphorylated on serine 824 (B). Representative images (left) and quantification
of  the immunofluorescence as described in materials and methods (right) are shown. For total TRIM28 (A), nuclear intensity was plotted, while for phospho-TRIM28 (B), the
percentage of the positive cells was plotted.

and Fig. 1B), it is logic to expect the phosphorylation of TRIM28.
This result presented the question of whether TRIM28 has a role on
senescence and what that role might be.

3.2. Depletion of TRIM28 delays senescence

To investigate the role of TRIM28 in OIS, we  tested multi-
ple shRNAs targeting TRIM28. From the tested shRNAs we chose
shTRIM28.1 and shTRIM28.2 as they were the most efficient.
Indeed, when we infected IMR90 cells and analyzed TRIM28
expression by immunofluorescence and western blot, observing
that both resulted in a significant knockdown of TRIM28 levels
(Fig. 3A and B).

Next, we analyzed what effect knocking down TRIM28 had on
OIS. IMR90 ER:RAS cells were infected with the viruses express-
ing shRNAs against TRIM28 and the effects on cell arrest were first
evaluated by culturing cells at low density and staining with crys-
tal violet. We  observed that TRIM28 depletion resulted in increased
cell growth upon OIS induction, similar to what was observed upon

p53 knockdown (Fig. 3B). A higher percentage of cells with depleted
TRIM28 levels incorporated BrdU 6 days upon 4OHT induction, sug-
gesting that depletion of TRIM28 partially prevented the effects
of OIS (Fig. 3C). In addition, TRIM28 knockdown also resulted in
less cells presenting features characteristic of senescence such as
senescence-associated heterochromatic foci (SAHF, Fig. 3D). Over-
all, knocking down TRIM28 partially prevents the effects of OIS,
implying that TRIM28 might have a role in mediating OIS.

3.3. Depletion of TRIM28 affects the induction of p16INK4a during
senescence

To understand how the depletion of TRIM28 could affect senes-
cence, we  examined the effect that TRIM28 knockdown has over the
induction of the key tumor suppressors involved in the implemen-
tation of senescence, p53, p21CIP and p16INK4a. To this end, IMR90
ER:RAS cells were infected with shRNAs targeting TRIM28 and OIS
induced by treating with 200 nM 4OHT. While the induction of p53
and p21CIP during OIS was  unaffected, p16INK4a levels were lower
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Fig. 3. Depletion of TRIM28 delays senescence. (A) IMR90 cells were infected with lentiviruses expressing shRNAs targeting TRIM28 (shTRIM28.1 and shTRIM28.2). Knock-
down  efficiency was  assessed by immunofluorescence (left) and Western blot analysis (right). (B)–(D) Depletion of TRIM28 partially prevents OIS. IMR90 ER:RAS cells were
infected  with control vectors or shRNAs targeting TRIM28 or p53 as indicated. The effect on cell proliferation was assessed by crystal violet staining (B) and BrdU incorporation
(C).  (D) IMR90 ER:RAS cells infected with the indicated vectors were stained with DAPI. At least 100 cells on each condition were counted. Representative pictures (left)
and  quantification of cells with senescence-associated heterochromatin foci (right) are shown. For (C) and (D) the significance of the difference between vector +4OHT and
shTIM28.1 o shTRIM28.2 was  assessed used a non-parametric test (Mann Whitney). *p < 0.05; **p < 0.01.
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Fig. 4. Depletion of TRIM28 prevents p16INK4a expression during OIS. IMR90 ER:RAS were infected with the indicated vectors. RAS expression was induced using 200 nM
4OHT  and 6 days after induction cells were prepared for analysis. Immunofluorescence analysis of the expression of p53, p21 and p16 during OIS. Representative pictures
(A)  and quantification (B) is shown. The significance of the difference between vector +4OHT and shTIM28.1 o shTRIM28.2 was  assessed used a non-parametric test (Mann
Whitney). n.s. p > 0.05; *p < 0.05; **p  < 0.01.

upon knock down of TRIM28 (Fig. 4A and B). These results sug-
gested that TRIM28 could regulate, directly or indirectly, p16INK4a

expression to control senescence.

3.4. Depletion of TRIM28 partially prevents the induction of the
SASP

Senescent cells secrete a plethora of mainly pro-inflammatory
factors often referred as the senescence-associated secretory phe-
notype (SASP) [28]. Through the SASP senescent cells are able to
influence their surrounding microenvironment, and therefore the
SASP is an important contributor that defines the overall outcome of
senescence. For example, the SASP enables senescent cells to influ-
ence, activate and recruit both the innate and adaptive immunities
[29,30].

As we have shown that TRIM28 influences senescence, we
decided to investigate how its depletion affects SASP production
during OIS. To this end we infected IMR90 ER:RAS cells with shRNAs
targeting TRIM28, and first analyzed the expression of the proto-
typic SASP component IL8, 8 days upon RAS activation with 4OHT.
Consistent with our previous observations (Fig. 1D and [24]), IL8
was induced during OIS. Interestingly, depletion of TRIM28 strongly
suppressed IL8 induction during OIS as assessed by IF (Fig. 5A and
B).

To extend this observation, we analyzed the expression of IL8
and additional SASP components by qRT-PCR in IMR90 ER:RAS cells
in which TRIM28 expression had been depleted using shRNAS. In
addition to IL8, we  analyzed the expression of IL1b, CCL20, IL6
and CXCL1, factors that we  and others have previously shown
to be part of the SASP and play an important role in SASP func-
tions [24,28,31,32]. We  observed that TRIM28 expression partially
suppressed the induction of these factors during OIS (Fig. 5C-G).
Overall, these results suggest that depletion of TRIM28 depletion
prevent the induction of the SASP during OIS.

4. Discussion

Senescence is associated with aging and an increasing list of
pathologies such as cancer and fibrosis. Pioneering work has shown
that triggering senescence or ablating senescent cells are two
potential strategies that could be exploited for treating cancer
and age-associated pathologies [33,34]. Therefore there is mount-
ing interest in understanding the molecular pathways that control
senescence, with the eventual aim of identifying liabilities that
could be targeted on senescent cells.

Epigenetic factors are a particularly attractive target, as senes-
cent cells undergo profound chromatin reorganization [1,35] and
epigenetic modifications have the potential to be reverted. TRIM28
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Fig. 5. Depletion of TRIM28 prevents SASP induction during OIS. (A) and (B) TRIM28 knockdown prevents IL8 induction as observed by IF. IMR90 ER:RAS cells were infected
with  the indicated vectors. RAS:ER was induced using 200 nM 4OHT and 8 days after induction cells were analyzed by immunofluorescence with a specific antibody against
IL8.  Quantification (A) and representative images (B) are shown. (C)–(G) Depletion of TRIM28 prevents SASP induction during OIS. IMR90 ER:RAS cells were infected with
the  indicated vectors. RAS:ER was induced using 200 nM 4OHT and 6 days after induction, samples were subjected to qRT-PCR. Expression of IL8 (C), IL1b (D), CCL20 (E), IL6
(F)  and CXCL1 (G) is shown.
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is a member of a family of around 60 human genes containing a
tripartite motif (TRIM) [17]. TRIM28 works as a co-repressor for
the KRAB-ZFP transcriptional regulators, and has been involved in
regulating multiple processes such as gene repression, cell growth
and differentiation, stem cell self-renewal, oncogenic transforma-
tion, apoptosis or DNA repair [17]. In addition, a recent study has
linked TRIM28 with regulating DNA repair and affecting senescence
in a model of progeria [22]. Zmpste24−/− mice undergo accelerated
aging linked to p53 signaling activation [36], and mouse embry-
onic fibroblasts (MEFs) derived from Zmpste24−/− mice undergo
premature senescence. Interestingly, this senescence response can
be rescued by knocking down TRIM28 [22], but how exactly TRIM28
does that and what are the mechanisms or implications remained
unexplored. Here, using a model for OIS, we extent those observa-
tion and showed that TRIM28 regulates OIS. TRIM28 knock down
is able to partially prevent OIS, and depletion of TRIM28 results in
a prevention of p16INK4a induction, without affecting to the activa-
tion of the p53/p21 pathway.

Whether the effect of TRIM28 on p16INK4a induction is direct,
indirect or just a consequence of TRIM28 inhibiting senescence is
not clear yet but will be worth investigating. Since the main func-
tion of TRIM28 is acting as a transcriptional repressor, a possible
explanation could be that TRIM28 represses a negative regulator of
p16INK4a. Indeed, the expression of p16INK4a, and by extension the
INK4/ARF locus, is subjected to strict transcriptional and epigenetic
control [37].

Interestingly, we observed that TRIM28 is phosphorylated on
serine 824 during OIS. TRIM 28 is phosphorylated on serine 824 in
response to the activation of the DNA damage response [13]. Phos-
phorylation has been shown to interfere with TRIM28 repressive
abilities. It is not clear how to reconcile this observation with the
effects that TRIM28 has on p16INK4a expression during senescence.
As TRIM28 activity is subjected to regulation by multiple phospho-
rylation and SUMOylation events further work would be needed to
understand the precise mechanism(s) by which TRIM28 controls
senescence.

TRIM28 connects the DNA damage response with heterochro-
matin organization. A DNA damage response is one of the key
triggers initiating OIS [38] and profound chromatin reorganization,
that includes chromatin redistribution in SAHFs also occur during
senescence [5]. It has been shown that the chromatin reorgani-
zation observed during senescence contributes to limit the DNA
damage response [7]. Whether TRIM28 is a key factor coordinating
these responses during OIS remains unknown but it is an attractive
hypothesis.

TRIM28 depletion also results in suppression of the SASP. Given
that depletion of TRIM28 partially prevents senescence, the easi-
est explanation is that decreased senescence results in decreased
SASP. However, it would be interesting to investigate whether
TRIM28 directly regulates the SASP. Interestingly, besides its role
in controlling chromatin formation, TRIM28 directly binds, and
inhibit proteins of the IRF family involved in inflammatory signal-
ing [39,40]. Although it is not clear how that could be reconciled
with our observations, the relation between TRIM28 and IRFs
opens additional avenues to explain how TRIM28 could control the
SASP.

The role of TRIM28 in cancer is controversial, and probably
context dependent [9]. Our data would suggest that, by mediat-
ing senescence, TRIM28 could have tumor suppressive functions.
Overall, here we  have described a role for TRIM28 in regulating
senescence that joins the list of other cellular processes regulated
by TRIM28. Given the unique position of TRIM28 in the coordina-
tion of the DNA damage response and heterochromatin formation,
understanding fully the role of TRIM28 in senescence will be impor-
tant to further evaluate the possibility of targeting TRIM28 in
disease.
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