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 Abstract 

Cellular permeation models are tools of the upmost importance when studying the 

application of new drugs for therapeutic use, since they help predict the physiological 

effects, as well as the drug absorption rate and metabolism of new molecules, making them 

an easy, reproducible, ethical and cost-effective method for assessing drug-absorption and 

toxicity mechanisms [1]. Although some in vitro permeation models were already developed 

for the intestinal, pulmonary, nasal, vaginal, rectal, ocular and skin tissues, including triple 

co-culture in vitro models of the intestine [2-4], surprisingly few established in vitro 

permeation models of the gastric wall exist, especially due to the difficulties in maintaining 

primary gastric cultures [5], and among these only simple co-cultures were used. Therefore, 

the development of a triple co-culture model of permeation for the stomach is of paramount 

importance for the evaluation of new therapeutic agents. 

The main objective of this project was to optimize and establish a triple co-culture in 

vitro cellular model of the gastric wall to replicate its functional and morphological 

architecture with application in permeability, toxicity and functional assays. In order to 

accomplish this, a triple co-culture model of the stomach was established, including 

fibroblasts, macrophages and epithelial cells. The integrity of the membrane formed was 

assessed over time, the permeability of the created barrier model to the passage of 

substances was quantified and the model was further morphologically and structurally 

characterized. 

NST20 fibroblasts were cultured upon transwell membranes, which were then either 

coated with Matrigel™ or PuraMatrix™, and MKN28 epithelial cells were seeded on top of this 

coating, to mimic both the mucosa’s epithelium and lamina propria. Permeability assays using 

FITC-dextran were used to assess the model’s integrity. The optimal cell densities to build the 

model were determined, namely of 5×103 NST20 fibroblasts, 5×103 THP-1 derived 

macrophages and 5×104 MKN28 epithelial cells, when cultured in either Matrigel™ or 

PuraMatrix™. The optimized barrier model yielded moderately high trans-epithelial electric 

resistance values of about 200 Ω.cm2, which correlate to a high membrane integrity, and low 

apparent FITC-dextran permeability (approximately 1×10-6cm/s), as desired. The model was 

further characterized structurally by fluorescence, confocal and transmission electron 

microscopy, showing epithelial tight junctions, and the formation of a cohesive, tightly knit 

epithelium. 

The model herein developed constitutes a step forward in the development of in vitro 

model systems of the stomach, by exhibiting rudimentary compositional and functional 

characteristics of the gastric wall. Considering the present results, the application of the 

developed model as a cellular in vitro permeation model for the gastric wall seems viable, 

although further optimization and functional and structural characterization is required. 
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Chapter 1 

Introduction 

1.1. Contextualization 

Gastric drug absorption is generally lower than intestinal drug absorption. However, acidic 

and weak basic drugs can be absorbed in the human stomach through passive diffusion, 

passive transport (aqueous channel-mediated transport) or active receptor-mediated 

transport [6]. This can be useful when the therapeutic target is the stomach, since the drug 

residence time can be greatly increased, thus enhancing the local therapeutic action [7]. 

In order to assess the application of new drugs for therapeutic use, tools that help predict 

the physiological effects, as well as the drug absorption rate and metabolism of new 

molecules are of the utmost importance. Tissue engineering appears as a viable option, since 

it may provide for a partial replication of the in vivo conditions of the human body, namely 

the stomach. In vitro cellular permeation models are an example of such a tool, since they 

represent an easy, reproducible, ethical and cost-effective method for assessing drug-

absorption mechanisms [1]. 

Despite the obvious applications of an in vitro model to study and predict the 

permeability of the gastric wall to certain drugs, few established in vitro permeation models 

of the gastric mucosa exist, especially due to the difficulties in maintaining primary gastric 

cultures [5].  

Although some in vitro permeation models were already developed for the intestinal, 

pulmonary, nasal, vaginal, rectal, ocular and skin tissues, including triple co-culture in vitro 

models of the intestine [2-4], surprisingly few of these models were created when the 

stomach is concerned [8], and only simple co-cultures were used. Hence, this is a relatively 

unexplored field, where there is still much to be done. Therefore, the development of a 

triple co-culture model of permeation for the stomach proposed here has the potential to be 

an invaluable tool for the evaluation of new therapeutic agents, with application in the 

pharmaceutical industry. 

1.2. Anatomy and physiology of the stomach 

Anatomically speaking, the stomach is divided into five regions: the cardia and 

gastroesophageal junction, the fundus, the corpus, the antrum and the pylorus (Fig. 1). 

Functionally speaking, while the fundus and the corpus harbor acid-secreting glands, the 



Establishment of a cellularized artificial model of the gastric wall 

 

João Miguel Quintas Coentro 

2 

 

antrum is composed by an alkaline-secreting surface epithelium and endocrine, gastrin-

secreting G-cells[9]. 

The gastric glands, responsible for the secretion of acid, are divided between pepsinogen-

secreting chief cells, HCL-secreting parietal cells, mucus neck cells, surface epithelial cells 

and enterochromaffin-like cells expressing histidine decarboxylase, essential to the 

production of histamine[10]. These elements are represented in Fig. 2. 

In order to protect the stomach from digesting itself, other glands release a thick mucus, 

mostly formed by mucin, which prevents damage to the stomach epithelium from the acid 

and pepsin [9]. 

 

 

 
Figure 1 – Anatomy of the stomach, evidencing the different anatomical regions. Source: 

http://www.highlands.edu/academics/divisions/scipe/biology/faculty/harnden/2122/images/stomachinternal.jpg  

 

 
Figure 2 - Gastric glands and gastric pits structure. Source: 

http://www.highlands.edu/academics/divisions/scipe/biology/faculty/harnden/2122/images/stomachcells.jpg 
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1.3. Tissue engineering 

Tissue engineering is an area based on cell transplantation, materials science and 

engineering with the purpose of developing biological substitutes that can restore and 

maintain the normal function of a damaged tissue or organ [11]. Although not among its main 

targets, tissue engineering can also be applied to the establishment of cellular models that 

try to replicate the pretended tissues or organs, in order to use them for drug or diagnosis 

methods testing [12].  

Tissue engineering can be divided mainly into two main approaches: the use of acellular 

scaffolds or scaffolds seeded with cells [11]. For the purpose of this work we will consider 

mainly the latter, since our goal is to develop a cellular model that mimics the physiological 

conditions of the stomach. 

Besides the already mentioned interest in the development of cellular models, tissue 

engineering of the stomach is motivated by the need to restore the normal capacity for food 

intake and digestion after end-stage organ failure and tissue loss or after a gastrectomy (such 

as in the case of gastric cancer), since the existent alternatives, such as reconstruction of the 

stomach through jejunal interposition, were shown not to improve the quality of life of the 

patient, leading to malnutrition, anaemia and weight loss [13-15].  

Although many cellular models exist for other tissues, the attempts at modelling the 

gastric mucosa have been modest, relying mainly on biomechanical in vitro systems composed 

by pumps and different compartments with a simulated gastric fluid [8, 16]. Numerous 

attempts have been undertaken to establish primary cultures of gastric epithelial cells in 

several animal models, with only a few being successful [17-19]. This is due to the fact that 

the stomach comprises many types of cells, including epithelial cells, smooth muscle cells, 

mesenchymal cells, vessel-forming cells, nerve cells, immune cells and gastric gland cells, 

with epithelial cells being further divided into at least eleven more different types [20]. 

As a result, two major problems can be found when trying to culture gastric epithelial 

cells: i) cell purification - since there are so many different types, it is difficult to obtain a 

highly purified culture consisting of a single type [14, 21]; ii) and cell differentiation - cells 

begin to de-differentiate and lose their terminal differentiated characteristics after being 

seeded [22]. 

A way to overcome these difficulties consists in using an acellular approach, in which 

biomaterials can be used to develop new appropriate tissue within the host [14]. The 

scaffolds developed for that purpose have taken into account the mechanical properties and 

degradation kinetics [23, 24] and have ranged from collagen sponges reinforced with poly 

glycolic acid (PGA) [25] to three-layer scaffolds composed of poly(D,L-lactide) and ε-

caprolactone, collagen and PGA nonwoven fabrics [26].              

Some attempts have included the use of an acellular collagen scaffold reinforced with 

PGA, which was then covered by a silicone sheet [27] and later poly(D,L-lactide) and ε-

caprolactone (PDLCL) instead of the silicon sheet [26]. Although some degree of regeneration 

of a mucosal and submucosal layer has been reported, with a differentiated epithelium and 

no anastomotic problems have been reported, the defects ended up shrinking due to 

inflammation [25, 26]. 

Alternative approaches have been focused on the use of stomach epithelium organoid 

units (consisting of epithelium and mesenchyme) to allow epithelial-mesenchymal cell 

interactions that are essential for survival, morphogenesis, proliferation and differentiation, 

in order to correctly promote the regenerative capacity of the stomach [13]. In spite of some 

studies being successful in the formation of tissue engineered stomachs in vitro and in vivo 

[13, 28, 29], a complete gastric gland formation, with the presence of mucous, parietal, chief 

and enteroendocrine cells [8, 30], as well as of repairing lesions in the gastric wall though 

tissue engineered gastric walls [31], there are still some pressing problems to be resolved, 

such as being able to combine neomucosa and smooth muscle layer in the same model [25] or 
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addressing the limitations of ex vivo tissue engineering approaches, such as insufficient blood 

supply [14]. 

Furthermore, in order to create long-term sustainable tissue engineered stomachs, it is 

necessary to replicate the parasympathetic innervations, so that these stomachs could have 

normal functionality and effectiveness, as well as being correctly coordinated by the nervous 

and endocrine system [14], although simpler configurations would still allow for the 

restoration of some function and could be applicable in permeation, toxicity or functional 

assays .  

1.4. Cellular permeation models 

Cellular models can have various applications, namely in drug development, where they 

can act as low cost platforms that reproduce the physiological conditions and the various 

cellular and molecular interactions, making it possible to conduct toxicity and efficacy tests 

in a low cost model, as well as in determining a formulation strategy, thus reducing the cost 

of drug testing [12, 32, 33]. 

Cellular permeation models have been developed for various tissues, including intestinal, 

nasal mucosa, skin, pulmonary, vaginal, rectal and ocular tissue [32]. It is relevant to 

understand the variety of strategies used for the various distinct tissues in order to conceive 

the most adequate strategy to develop a gastric wall model. 

 

1.2.1. Intestinal and colorectal permeation models 

Since the oral route is considered the preferred drug route of administration, being easier 

to administer, more user-friendly and less invasive, the intestinal mucosa is one of the main 

barriers of drug absorption. Therefore, it is a highly interesting barrier to replicate in vitro. 

The intestinal mucosa is composed by an epithelial layer, the lamina propria (collagen 

matrix containing blood and lymphatic vessels) and the muscularis mucosa [32]. 

Since primary cultures of enterocytes are usually unable to form an organized epithelial 

monolayer, immortalized cell cultures are usually used instead [34]. One of the most widely 

used cell models are Caco-2 cell monolayers [35-37], which are derived from a human 

colorectal carcinoma. These can later be differentiated into mature enterocyte-like cells on a 

semi-permeable membrane, thus enabling the separation between the apical and basolateral 

compartments [38]. 

Besides monolayer cultures, some co-culture models have been investigated in order to 

more closely represent the heterogeneity of the intestinal epithelium [38]. Some examples 

include the double co-culture models Caco-2/HT29 cells [36] and the Caco-2/Raji B cells [39] 

and, recently, the triple co-culture Caco-2/HT29/Raji B cells model, which was claimed as 

especially suitable to study nanocarrier permeation [3]. 

Since the epithelial layer at the colorectum shares similarities with the colon-derived cell 

monolayers, the Caco-2 model is also presented as suitable for the assessment of rectal drug 

absorption [40], with results showing a good correlation between Caco-2 cell monolayers and 

excised human colorectal tissues for low molecular weight molecules[35]. 

 

1.2.2. Vaginal permeation models 

 

Although different models have been proposed regarding drug permeability trough vaginal 

administration, the most studied in vitro model consists on the harvest of cervical-vaginal 

cells that are grown on collagen-coated ceramic-based filters and differentiated into multi-
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layered stratified squamous epithelium, retaining most of the phenotypical and biologic 

characteristics of the human cervical-vaginal epithelium [41]. 

Cervical cell lines, such as the CaSki line can also be an alternative to primary cell 

cultures, being able to be cultured in mono, bi or tri layers[42] and then used in permeation 

studies, which have been important in the study of the importance of tight junctions and its 

modulation on transepithelial electrical resistance (TEER)[43], as well as the modulation of 

the permeability to pyramine[44]. 

A commercial model, called EpiVaginal™, based on a 3D culture of non-transformed 

human vaginal-ectocervical epithelial cells grown on polycarbonate cell culture tissue inserts, 

also presents a differential multi-layer structure containing non-epithelial elements, such as 

lamina propria or dendritic cells[45], making it a promising option for permeability studies, 

with results showing that it is indeed a viable permeation model, since it was possible to 

provide evidence of increased insulin permeability through reversible disruption of tight 

junctions by hydrogen peroxide[46] 

 

1.2.3. Respiratory mucosa permeation models 

 

The systemic administration of drugs through inhalation has been gathering increased 

interest and, as such, makes permeation study models for the respiratory mucosa even more 

attractive [32]. 

Although both primary cultures [47] and immortalized cell lines [48] have been used in 

permeation models, the latter are the most widely used, since primary cell cultures are more 

expensive, difficult and time consuming to maintain [10]. 

Regarding bronchial epithelial cell lines, the Calu-3 and 16HBE14o- cell lines cultivated in 

monolayers have been used as models for the airway epithelium [48, 49], with studies 

showing that culture conditions can affect the morphologic characteristics and the TEER of 

the monolayers, as well as the pattern of drug permeation, although being suitable as a 

model of the tracheobronchial epithelium[50, 51]. 

Concerning the alveolar region, A549 cells have been used as a model of absorption [52]. 

However, due to its incapacity to form tight monolayers, primary cultures of human alveolar 

epithelial cells (hAEpC) are preferred [53]. 

Some examples of co-cultures include a 3D triple co-culture monolayer composed by A549 

epithelial cells, blood monocyte-derived macrophages and dendritic cells, which resemble the 

in vivo architecture of the human airway epithelial barrier [54], with studies showing the 

expression of proteins involved in cell-cell interactions and tight junction formation[54], 

although the presence of macrophages and dendritic cells reduces the integrity of the triple 

co-culture monolayer[55] and co-cultures of lung epithelial cell lines (NCI-H441) or primary 

human type II alveolar epithelial cells (HATII) and primary human pulmonary microvascular 

endothelial cells (hPMEC), which present the morphologic and histological characteristics of 

the alveolocapilary barrier [56]. 

Monolayers obtained from primary cultures of human nasal epithelial cells and cell lines 

such as RPMI 2650 have been extensively used for nasal permeation studies [10, 57, 58]. 

Co-cultures using a collagen matrix embedded with human nasal fibroblasts covered by a 

RPMI 2650 epithelial cell layer have also been developed, resembling a non-pseudostratified, 

non-ciliated epithelium with permeation barrier properties comparable with excised nasal 

mucosa[58]. 
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1.2.4. Ocular permeation models 

 
Although numerous cell models of the ocular barriers have been established, the human 

corneal epithelium HCE-T cell model represents a standard tool for drug permeation tests 

[59]. 

The IOBA-NHC cell line, a spontaneously immortalized epithelial cell line derived from 

human conjunctiva, also demonstrated high proliferative capacity in vitro and typical 

epithelial morphology, with some studies showing the viability of this model in the study of 

transepithelial antigen delivery [60, 61]. 

Monolayers of immortalized ARPE-19 cell lines have also been applied as a model for the 

outer blood-retinal barrier, as a model  for targeted drug delivery systems[62], since they 

replicate the morphology, the expression of retina-specific markers and the barrier properties 

of the retina[62, 63]. 

 

1.2.5. Skin permeation models 

 

In order to replace animal models in drug testing for skin application, various models have 
been developed, such as living skin equivalent models and human reconstructed 
epidermis[32], which are able to mimic human skin to a large extent. These models are 
mainly commercial (Episkin™, EpiDerm™ and SkinEthic™) and consist of keratinocyte cultures 
grown at an air-liquid interface [64], resulting in a stratified, highly differentiated, 
organotypic tissue model of the human epidermis[65], with various methods for quantification 
of skin permeability having been developed[64], as well as several studies showing the 
viability of these models as permeation models[65-67]. 

 

1.2.6. Stomach permeation models 

Although the intended stomach cellular permeation model has not been established yet, 

some systems have been developed using the NCI-N87 cell line as a gastric epithelial barrier 

model for drug permeability assays. The NCI-N87 is a human gastric cancer cell line[68], 

which possess unique properties, such as the capacity to form  a tightly cohesive epithelium, 

with the expression of adhesion proteins, such as E-cadherin and zonula-occludens-1, a long 

post-confluency stability and the expression and production of gastric mucin, lipases, 

pepsinogens and zymogens[69]. 

 Studies with NCI-N87 monolayers obtained moderately high TEER values, as well as mucus 

production and low apparent permeability coefficients with the passage of integrity markers, 

such as Lucifer Yellow, thus establishing this cell line as a potential model for gastric drug 

permeability assays[5]. Other model using a monolayer of NCI-N87 and AGS human epithelial 

gastric adenocarcinoma cell lines seeded onto  Matrigel has been developed, showing the 

formation of a tightly-knit monolayer, sustainable for the study of the permeability of a 

simulated gastric epithelium [8]. 

1.5. Objectives 

The main objective of this project was to establish and optimize a triple co-culture 

(fibroblasts, macrophages and epithelial cells) in vitro cellular model of the gastric wall 

capable of replicating its morphological architecture and function, to be used for 

permeability, toxicity and functional assays. 

One of the first steps to achieve this goal consists in assessing the barrier capabilities of 

the formed model and its integrity over time. For that purpose, TEER measurements will be 

carried out over time and permeability assays will be conducted for different cell culture 

conditions and different combinations of cell densities, with the purpose of determining the 
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optimal combination yielding a combination of high TEER values with low values of apparent 

permeability. 

Finally, it is imperative to morphologically, structurally and functionally characterize the 

obtained models. To comply with this objective, different cytochemical and histological 

analyses will be performed, recurring to inverted fluorescence microscopy (IFM), confocal 

microscopy and Transmission Electron Microscopy (TEM). 
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Chapter 2 

Materials and Methods 

2.1. Establishment of an Epithelial Gastric Wall Model 

2.1.1. Cell culture 

The MKN28 cell line is an immortalized human epithelial gastric adenocarcinoma cell line, 

first established by Motoyama [70] from a moderately differentiated tubular adenocarcinoma 

(intestinal-type adenocarcinoma)   and was used to simulate the gastric epithelium, since it is 

easier to maintain and expand in culture, while expressing tight junction markers, such as 

occludin and claudin[71, 72]. 

The NST20 cell line (kind gift from Dr. Luis Filipe Silva from IPATIMUP), an immortalized 

fibroblast cell line isolated from normal human stromal tissue was used to simulate the 

fibroblasts and the connective tissue present in the gastric mucosa. 

The human monocytic leukemia cell line, THP-1, was established by Tsuchiya et. Al (1980) 

[73] and was differentiated into macrophages with PMA (phorbol-12-myristate-13-acetate) 

[74], in order to simulate the  immunitary response found in the stomach wall, similarly to 

other tissues.  

MKN28 (Passage 46-60), NST20 (Passage 14-33) and THP-1 (Passage 27-34) were cultured 

at 37ºC in humidified atmosphere of 5% CO2, in RPMI 1640 culture medium (Gibco, UK,) 

supplemented with 10% v/v heat inactivated Fetal Bovine Serum (FBS) (Gibco, U.K.,) and 1% 

v/v Penicillin- Streptomycin (P/S) (Westpoint, U.S.A).  

Culture medium was changed every two to three days and the cells were routinely sub-

cultured, being detached using a 0.25% w/v Trypsin-EDTA solution (Sigma Aldrich, Germany, 

for 5 min at 37ºC, centrifuged at 1200 RPM for 5 minutes and resuspended in RPMI 1640 

culture medium, before seeding in 25 cm2 and 75 cm2 flasks, at a cell density of 0.5×106 and 

1×106 cells, respectively (Thermo Scientific, U.S.A) [75, 76]. 

2.1.2. THP-1 cell line differentiation 

Incubation with PMA activates protein kinase C, which induces a high degree of 

differentiation in THP-1 cells, with an increased adherence and expression of surface markers 

associated with macrophage differentiation, as well as characteristic morphological changes 

[74, 77]. 
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THP-1 cells were incubated at a cell density of 5×105 cells/ml with PMA (Sigma Aldrich, 

Germany,) at a concentration of 0.5µL/ml for 48-72h, using the same culture conditions 

described above [77].  

2.1.3. Cell seeding 

MKN28, NST20 and THP-1 differentiated cells were cultured in 24-well culture plates 

(Corning, U.S.A), either on Polyethylene terephthalate BD Falcon™ transwells inserts with no 

coating (BD, U.S.A) or on BD BioCoat™ Matrigel invasion chambers (BD,U.S.A), both with 8µm 

size pores. 

NST20 cells or NST20 and THP-1 differentiated cells were seeded on the apical side of the 

insert (500µL of cell suspension were added to the apical chamber, while 750µL of RPMI 1640 

culture medium supplemented with 10%v/v heat inactivated FBS and 1% v/v P/S were added 

to the basolateral chamber) and maintained at 37ºC in an atmosphere of 5% CO2/95% O2. After 

24 hours, the culture medium was removed from the inserts, and the apical chambers were 

coated with either BD™ Matrigel™ or BD™PuraMatrix™ (BD, U.S.A), according to the 

manufacturers’ recommendations. After the coating, MKN28 cells were added to the apical 

chamber of the inserts (500µL of cell suspension were added to the apical chamber, while 

750µL of RPMI 1640 culture medium supplemented with 10%v/v heat inactivated FBS and 1% 

v/v P/S were added to the basolateral chamber) and maintained at 37ºC in an atmosphere of 

5% CO2/95% O2. A schematic representation of the model created can be found in Fig. 3. 

Culture medium was changed every two to three days. 

 

 
 

 

 

 

2.1.4. Matrigel™ or PuraMatrix™ coating 

Matrigel™ (BD Biosciences, U.S.A) and PuraMatrix™ (BD Biosciences, U.S.A,) coatings were 

performed according to the manufacturers’ recommendations for 3D matrixes for cell 

cultures. 

Matrigel™ was diluted at a 1:1 rate with RPMI 1640 culture medium, not supplemented 

with FBS, and after the culture medium was extracted from the inserts, 15 or 30µL of the 

resulting solution were added to the apical chamber of each insert and maintained at 37ºC in 

an atmosphere of 5% CO2/95% O2 for 1 hour. 

PuraMatrix™ was diluted with dH2O and 20% sucrose (Sigma-Aldrich, Germany), at a 

dilution rate of 1:1:2, respectively. After the culture medium was removed from the inserts, 

30µL were added to the apical chamber and 250µL of RPMI 1640 culture medium 

supplemented with 10%v/v heat inactivated FBS and 1% v/v P/S were added to the basolateral 

Figure 3- Schematic of the devised in vitro gastric mucosa model. 1- Apical Chamber; 2- 

FITC-dextran; 3- Gastric cell line; 4- BD™Matrigel or BD™PuraMatrix; 5- Macrophages; 6- 
Fibroblasts; 7- Basolateral chamber. 
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chamber of each insert. After 5 minutes, 400µL of RPMI 1640 culture medium supplemented 

with 10%v/v heat inactivated FBS and 1% v/v P/S were added to the apical chamber and were 

then maintained at 37ºC in an atmosphere of 5% CO2/95% O2 for 1 hour. Approximately 2/3 of 

the culture medium on the apical chamber were then removed and replaced with fresh 

medium. This procedure was repeated twice, every half hour.  

2.2. Assessment of membrane integrity 

Membrane integrity was assessed by measuring the Trans-Epithelial Electrical Resistance 

(TEER), since a greater resistance is correlated with a greater integrity of the membrane, and 

the presence of tight junctions, which exist when an epithelial monolayer is correctly formed. 

TEER measurements were taken every day or every two days recurring to an Electric-Volt-

Ohm Meter device from Millipore® (U.S.A), Millicell ERS-2 Volt-Ohm Meter and an EVOM2, 

Epithelial Volt-ohm meter, from World Precision Instruments (U.S.A). 

Prior to every measurement, the electrodes were bathed in 70% ethanol, for 

decontamination, washed with Phosphate Buffered Saline (PBS, Sigma Aldrich) and were pre-

equilibrated with culture medium for 5 minutes. 

Duplicate measurements were performed for each insert and the computed values were 

obtained by deducting the resistance values of the insert filter alone and the culture medium 

and multiplying it by the surface area of the transwell (0,33cm2) [78, 79]. 

2.3. In vitro permeability studies 

2.3.1. Permeability Assays 

 Transwells with different conditions were used after 5, 7 or 8 days in culture, depending 

on the model tested. Permeability studies were performed using Fluorescein isothiocyanate–

dextran (FITC- dextran, Sigma-Aldrich, Germany), a fluorescent marker for paracellular 

transport, used in cell permeability assays, which can be correlated with the integrity of the 

membrane. 

After cell-washing and equilibration in Hanks Buffer Salt Solution (HBSS, Gibco, U.K.), 

which was used to ensure a sufficient supply of calcium to cells, in order to maintain cell 

adhesion and tight junction integrity, 500 µL of FITC-dextran solution at a concentration of 

200µg/ml were added to the apical chamber, while 750µL of only HBSS were added to the 

basolateral chamber. 

Eight time-points were performed in total, and every 15 minutes, 100µL were recovered 

from the basolateral chamber, directly to a black micro-assay 96-well plate (Greiner Bio-one, 

Austria) and substituted with 100µL of free FITC-dextran HBSS. After 2 hours, 100 µL were 

also recovered from the apical chamber for analysis by fluorimetry. 

The plates were maintained at 37ºC with a continuous agitation of 100 RPM during the 

course of the experiment. 

TEER measurements were also performed every hour during the assay to assess membrane 

viability [78, 79]. 
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2.3.2. Fluorimetry 

The collected samples (100µL) were transferred to a black micro-assay 96-well plate 

(Greiner bio-one). Calibration curve (Fig. 4) was obtained by using solutions with known 

concentrations of FITC-dextran (200, 100, 50, 25, 12.5, 6.25, 3.125, 1.56, 0.78 and 

0.39µg/ml). Fluorescence was read using a BioTek® Synergy MX (USA) multi-plate reader at 

an emission/excitation wavelength of 520nm/495nm, respectively. 

The apparent permeability was calculated taking in consideration the calibration curve 

(Fig. 4) and by calculating the concentration and mass of FITC-dextran in each sample using 

equation 1, where Papp is the apparent permeability in cm/s, Q is the concentration of FITC-

dextran in the sample, A is the surface area of the insert, C is the initial concentration of the 

solution of FITC-dextran and t is the time equivalent to the time point chosen: 

 

𝑃𝑎𝑝𝑝 = 𝑄/(𝐴 ∗ 𝐶 ∗ 𝑡) (Equation 1) 

 
The initial concentration of FITC-dextran used was 200µg/ml, the surface area of the 

transwells used was 0.33 cm2 and the time point chosen for the calculations was 1 hour after 

the start of the assay, since the permeation behaviour is linear within this time range [80, 

81]. 

2.4. Morphological and structural characterization 

2.4.1. Hematoxylin/Eosin staining 

After 5 to 7 days in culture, membranes were washed thrice with PBS for 5 min and fixed 

in a 1% (v/v) glutaraldehyde (Sigma-Aldrich, Germany) solution in PBS for 15 minutes at room 

temperature, washed again thrice with PBS for the removal of the fixating agent and fixed in 

a 4% (v/v) paraformaldehyde solution (PFA, Sigma Aldrich, Germany) in PBS for 1 hour, again 

at room temperature. 

Samples were then dehydrated in an ethanol series (50, 70, 96 and 100% ethanol) for 10 

minutes in each solution and were embedded in paraffin for 2 hours. This tissue processing 
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Figure 4- Calibration curve for FITC-dextran for known standard concentrations. 
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was performed in a Paraffin tissue processor Microm STP 120-2 and the paraffin embedding in 

a Modular embedding system Microm EC 350-1/2. 

The membranes were cut in 3µm sections for histological analysis using a Leica RM 2255 

microtome (Leica, Germany). 

Sections were deparaffinised in xylene (AGA, Portugal) (thrice, 8 minutes each time) and 

hydrated in a descending series of ethanol (100%, 96%, 70% and 50%) for 4 minutes and then in 

distilled water for 4 minutes. Slides were incubated in Gill’s hematoxylin (Sigma-Aldrich, 

Germany) for 4 minutes and washed in tap water for 3 minutes, after which they were 

incubated in an ascending series of ethanol (50, 70 and 96% ethanol) for 4 minutes in each 

solution and stained with Alcoholic Eosin (Leica, U.K.) for 3 minutes, after which they were 

quickly washed in ethanol 100% and diaphanized in xylene (thrice, 8 minutes each time). 

Finally they were covered with coverslips using  DPX™ mounting solution (Merck, Germany) 

and visualized using a Zeiss (Germany) Axiovert 200M inverted fluorescence microscope and 

analysed using AxioVs40 v4.8.2.0 software.  

 

2.4.2. Confocal Microscopy 

 For Confocal Microscopy, 6-well transwells (Corning, U.S.A) and 24-well coverslips were 

used instead of the regular 24-well transwells, due to technical problems found when the 

membrane was cut in sections using microtome (detachment of the cells). A similar procedure 

for cell culture was used, with cell densities and volumes adapted proportionally to the 

surface area of the 6-well transwell (4,67cm2) and the 24-wells (1,91cm2). 

After 5 to 7 days in culture, membranes were washed thrice with PBS for 5 min and fixed 

in a 1% (v/v) glutaraldehyde solution in PBS for 15 minutes at room temperature, washed 

again thrice with PBS for the removal of the fixating agent and fixed in a 4% (v/v) 

paraformaldehyde solution in PBS for 1 hour, again at room temperature. 

Cells were then washed thrice in PBS for the removal of the fixating agent and incubated 

in blocking solution (PBS+ 10% (v/v) FCS) for 6 hours at room temperature. Blocking solution 

was changed every two hours. 

The 6-well transwell was sliced with the aid of a scalpel into four parts, which were 

moved into 24-well coverslips. 

Vimentin staining was obtained by incubating the membranes with primary Vimentin 

Rabbit mAB antibody from Santa Cruz Biotechnology (U.S.A) at a dilution rate of 1:100 in 

blocking solution, overnight at 4ºC. The membranes were washed thrice with blocking 

solution, every 20 minutes and were then incubated with the secondary antibody, Alexa 

Fluor®594 Rabbit Anti-Mouse from Invitrogen (U.S.A) at a dilution rate of 1:500 in blocking 

solution for 2 hours. 

F-Actin staining was obtained by incubating the membranes with Alexa Fluor® 488 

phalloidin probe from Invitrogen (U.S.A) in blocking solution for 1 hour at room temperature. 

Finally, the membranes were washed thrice, every 20 minutes, with PBS and were then 

incubated with 4',6-diamidino-2-phenylindole (DAPI, Sigma Aldrich, Germany), at a dilution 

rate of 1:10000 (the concentration of the initial stock solution was of 1mg/ml) for nuclei 

staining for 10 minutes and mounted in Fluoromount™ Aqueous Mounting Medium (Sigma 

Aldrich, Germany, #F4680-25mL)for 30 minutes. 

Confocal microscopy images were obtained using a Laser Scanning Confocal Microscope 

Leica TCS SP5II confocal microscope (Leica Microsystems, Wetzlar, Germany) and were 

analysed using FijiImageJ 1.48v software. 
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2.4.3. Inverted Fluorescence Microscopy 

For Inverted Fluorescence Microscopy, 6-well transwells and 24-well coverslips were used 

instead of the regular 24-well transwells, due to technical problems found when the 

membrane was cut in sections using microtome (detachment of the cells). A similar procedure 

for cell culture was used, with cell densities and volumes adapted proportionally to the 

surface area of the 6-well transwell (4,67cm2) and the 24-wells (1,91cm2). 

After 5 or 7 days in culture, cells were washed thrice with PBS for 5 min and fixed in a 1% 

(v/v) glutaraldehyde solution in PBS for 15 minutes at room temperature, washed again thrice 

with PBS for the removal of the fixating agent and fixed in a 4% (v/v) paraformaldehyde 

solution in PBS for 1 hour, again at room temperature. 

Cells were then washed thrice in PBS for the removal of the fixating agent and incubated 

in blocking solution (PBS+ 10% (v/v) FCS) for 6 hours at room temperature. Blocking solution 

was changed every two hours. 

The 6-well transwell was sliced with the aid of a scalpel into four parts, which were 

moved into 24-well coverslips. 

Vimentin staining was obtained by incubating the membranes with primary Vimentin 

Rabbit mAB antibody from Santa Cruz Biotechnology (U.S.A) at a dilution rate of 1:100 in 

blocking solution, overnight at 4ºC. The membranes were washed thrice with blocking 

solution, every 20 minutes and were then incubated with the secondary antibody, Alexa 

Fluor®594 Rabbit Anti-Mouse from Invitrogen (U.S.A) at a dilution rate of 1:500 in blocking 

solution for 2 hours. 

F-Actin staining was obtained by incubating the membranes with Alexa Fluor® 488 

phalloidin probe from Invitrogen (U.S.A) in blocking solution for 1 hour at room temperature. 

Finally, the membranes were washed thrice, every 20 minutes, with PBS and were then 

incubated with 4',6-diamidino-2-phenylindole (DAPI) at a dilution rate of 1:10000 (the 

concentration of the initial stock solution was of 1mg/ml) for nuclei staining for 10 minutes 

and mounted in Fluoromount™ Aqueous Mounting Medium (Sigma Aldrich, Germany) for 30 

minutes. 

Inverted Fluorescence Microscopy images were obtained using a Zeiss (Germany) Axiovert 

200M inverted fluorescence microscope and analysed using AxioVs40 v4.8.2.0 software. 

 

2.4.4. Transmission Electron Microscopy 

After 5 days in culture, membranes were washed thrice with PBS for 5 min and fixed in a 

2.5% (v/v) glutaraldehyde (Merck, Germany) solution in Cacodylate buffer (pH 7.2) for 30 

minutes at room temperature, washed again thrice for 10 minutes with Cacodylate buffer, for 

the removal of the fixating agent and fixed in a 1% (v/v) osmium tetroxide solution in 

Cacodylate buffer overnight at room temperature. 

Membranes were again washed thrice for 10 minutes in Cacodylate buffer for the removal 

of the fixating agent and dehydrated in a series of solutions with an increasing amount of 

ethanol (25, 50, 70, 96 and 100% ethanol), for 5 minutes in each solution at room 

temperature. 

Membranes were then infiltrated in a solution of Epon and 100% ethanol (1 part Epon/2 

parts 100% Ethanol) for 1 hour at room temperature, followed by another hour in a solution of 
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Epon and 100% ethanol (1 part Epon/1 part 100% Ethanol) and were left to infiltrate overnight 

in a solution of 2 parts resin/1 part 100% ethanol. 

Finally, the membranes were infiltrated in 100% Epon for 1 hour at room temperature and 

were then left to polymerize for 48 hours at 60ºC. 

Transmission Electron Microscopy (TEM) images were obtained using an Electron 

microscope Zeiss model EM 902 and were treated using FijiImageJ 1.48v software. 

 

2.5. Statistical analyses 

Statistical analysis was performed using GraphPad Prism 5 software.  Mean and standard 

deviation   were calculated for each sample. 

Independent samples were considered significantly different if a difference of P < 0.05 

was obtained in the independent samples two-tailed Student’s t-test for samples that 

followed a normal distribution. 
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Chapter 3 

Results and Discussion 
 

The main goal of this work was to establish a cellularized artificial model of the gastric 

wall. In order to do so, several combinations of cell densities and coatings were tested, with 

the purpose of finding the optimal cell combination, which best replicates the gastric 

epithelium, as well as the subjacent extracellular matrix (ECM) and connective tissue, while 

also enabling an immune response. 

Several tests were performed in different models to assess membrane integrity, as well 

as the apparent permeability of these models to a fluorescent paracellular marker (FITC-

dextran), which is an important factor if they are to be used in drug testing. 

Morphological and structural characterization was also performed, with the purpose of 

assessing the constitution of the proposed models.   

3.1. Membrane integrity assessment 

Membrane integrity was assessed through TEER measurements, since a high TEER value is 

correlated with the presence of tight junctions, which exist when a tightly-knit epithelium 

layer is formed [79, 82], and are responsible for the control of solute movement though a 

paracellular pathway [83]. Thus, TEER values can be correlated with membrane integrity, 

since a correctly formed epithelial layer will possess more tight junctions, which in turn will 

constitute an obstacle to the passage of ions, resulting in high TEER values. However, the 

measurement of the TEER is not an absolute indicator of membrane integrity [84], and as 

such these results should rather be taken as a relative indicator of membrane integrity, 

which should be complemented with other tests. 

 

3.1.1. Influence of Matrigel 

Throughout the establishment of the gastric mucosa models, two different volumes (15 

and 30µL) of BD™ Matrigel™ were used to perform a coating over the fibroblasts, simulating 

the extracellular matrix found in vivo. Matrigel is a complex protein gelatinous mixture 

secreted by Engelbreth-Holm-Swarm (EHS) mouse sarcoma cells, which resembles the 

complex extracellular environment found in many cells and is therefore used as a substrate 

for cell culture [85]. However, this leads to great variability in its contents, thus making it 

highly irreproducible. 
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3.1.1.1. Influence of Matrigel™ coating volume 

Initially three different volumes of Matrigel™ were used (15, 30 and 60µL) and compared 

to BD BioCoat™ Matrigel invasion chambers, considering their influence on the homogenous 

formation of the membrane, and its respective integrity. BD BioCoat™ Matrigel invasion 

chambers are commercially available transwells that are previously coated with Matrigel. 

Although the exact volume used to perform this coating is unknown, it is done through an 

industrial process and therefore it allows for a more homogenous coating, to which it is 

possible to compare the influence of the Matrigel coating on the barrier integrity. These 

results can be observed in Fig. 5. 

The first assays were performed using a 15µL Matrigel™ coating to simulate the lamina 

propria, in addition to the fibroblasts and epithelial cells used for the formation of the 

barrier model. However, it was observed that correct barrier formation did not always 

occur, showing low reproducibility. It is supposed this was due to the fact that this amount 

of BD™ Matrigel™ was insufficient to provide a homogenous coating, leading to the formation 

of air bubbles, hence inhibiting cellular growth and the ordered establishment of an 

epithelial barrier. These effects were translated into high standard deviations, impairing the 

correct comparison between the different experimental conditions, as can be seen by 

observing Figs. 5-8 A. 

Considering the above mentioned difficulties, it was hypothesized that a greater volume 

of Matrigel™ could improve the experimental results, by providing a more homogenous 

coating and barrier formation, while not influencing the TEER values obtained. In Fig. 5 it is 

possible to observe that no significant differences were observed between the three volumes 

tested when the barriers were correctly formed. Bearing this in mind, the volume of 30µL 

was chosen for further experiments, since it provided enough reliability at a lower cost. 

 
Figure 5 - Influence of Matrigel™ volume coating on TEER, in a “sandwich” model, after 5 days in 

culture, in comparison to BD BioCoat™ Matrigel invasion chambers (n=2). Samples with ns were considered to 
be statistically non-significant (P>0.05) when compared to the control group (Commercial) and between them. 
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3.1.1.2. Influence of model configuration 

Different model configurations were tested in order to assess the effect of the relative 

positioning of the extracellular matrix (represented by the Matrigel™ coating in Fig. 6) 

within the proposed model on membrane integrity. Therefore, Matrigel™ was used as coating 

directly in contact with the insert, and also with the cells cultivated on top of the coating. 

Other configurations used consisted in using the matrigel between the fibroblasts and the 

epithelial layer, henceforth called “sandwich” model, and finally with the fibroblasts 

embedded in the Matrigel™ coating. A schematic representation of the different 

conformations is represented in Fig. 6. 

The results, in terms of the TEER values of the different conformations, can be observed 

in Fig. 7. 

 

 
  

Figure 6 – Schematic representation of the different configuration models: A- Model with 

Matrigel/PuraMatrix directly on top of the insert (Direct coating); B- “Sandwich” model; C- Model with 
fibroblasts embedded in Matrigel/PuraMatrix ; D- Model without Matrigel/PuraMatrix coating (No coating). 

 
Figure 7 - Influence of Matrigel™ coating conformation on TEER, after 8 days in culture, when 

comparing to a condition without coating (n=2).  

Comparing the different conformations, in terms of the integrity of the model, given by 

the TEER values, it is possible to observe that the model with the direct Matrigel coating and 

the model with the fibroblasts embedded in the Matrigel do not elicit the formation of an 

epithelial barrier, since they present low TEER values. On the other hand, the “sandwich” 

model presented moderately high TEER values, which can be the result of the formation of a 

cohesive epithelial barrier. Hence, the sandwich model was selected as the standard for 

future tests, which will be represented from now on in all figures as “model”. The reason 
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behind these results is still unclear, requiring more experiments to fully understand this 

promising behaviour. However, it is possible to hypothesize that regarding the model 

without the Matrigel™ coating, the barrier formation is inhibited due to the lack of 

extracellular matrix components, which provide essential mechanical and biochemical 

stimuli to the cells. The lower values obtained for the model with the fibroblasts embedded 

in the Matrigel™ can be explained by the interference of the extracellular matrix with the 

passage of signalling factors secreted by the fibroblasts, while in the “sandwich” model the 

epithelial cells can receive the necessary stimuli from the extracellular matrix represented 

by the Matrigel™, as well as the input supplied by the fibroblasts’ secreted extracellular 

matrix.  

3.1.1.3. Influence of fibroblasts’ cell density 

To understand the influence of the cell density of NST20 fibroblasts in the integrity of 

the models, four different cell densities were tested (1×103; 5×103; 1×104 and 5×104 

cells/transwell), while maintaining constant the variable cell density of MKN28  (5×104 

cells/transwell). Two control conditions (MKN28 5×104 and MKN28 5×104 cells/transwell 

coated with Matrigel, without fibroblasts) were also included for comparison, as well as a 

condition with only NST20 cells and another with NST20 cells with a Matrigel coating. 

The results presenting the TEER values over time are shown in Fig. 8, for (A) 15 and (B) 

30µL of BD™ Matrigel™ used. Comparisons between the different conditions, after 5 days in 

culture, are shown in Fig. 9, for 15 and 30µL of Matrigel used. 

When a volume of 15µL was used no significant trend or differences could be noticed 

when comparing the different cell densities. However, when a volume of 30µL was used a 

trend became apparent, namely a decrease in TEER values as the cell density of NST20 

increased. This behaviour can probably be explained by a competition phenomenon, in 

which the fibroblasts can invade the extracellular matrix and compete with the epithelial 

cells for nutrients, oxygen and growth space, thus inhibiting the formation of a 

homogeneous epithelial layer, hence the observed lower TEER values. 

Considering all of this, the cell density of 5×103 NST20 cells/transwell was selected for 

further tests, since it enabled high TEER values, while also being high enough to assure that 

fibroblasts and their physiological contribution can be well represented within the proposed 

models. 
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Figure 8- A: Influence of NST20 cell density on TEER, over time, in a “sandwich” model, for a volume of 

15µL of Matrigel (n=4); B: Influence of NST20 cell density on TEER, in a “sandwich” model, for a volume of 
30µL of BD™ Matrigel (n=3). Note the decrease of the standard deviation values, after the volume of BD™ 
Matrigel was optimized for 30µl. 
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Figure 9- A: Influence of NST20 cell density on TEER, after 5 days in culture, in a “sandwich” model, for 

a volume of 15µL of Matrigel (n=4); B: Influence of NST20 cell density on TEER, after 5 days in culture, in a 
“sandwich” model, for a volume of 30µL of Matrigel (n=3). Samples with ns were considered to be statistically 
non-significant (P>0.05) when compared to the control group (MKN28 5×104+ Matrigel), while samples with * 
were considered to be statistically significant (P<0.05). Note the decrease of the standard deviation values, 
after the volume of Matrigel was optimized for 30µl. 
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3.1.1.4. Influence of epithelial gastric cells’ density 

In order to understand the influence of the cell density of MKN28 cells in the integrity of 

the models, five different cell densities were tested (5×103; 1×104; 5×104; 1×105 and 5×105 

cells/transwell), while maintaining the cell density of NST20 constant (5×103 

cells/transwell). A control condition (NST20 5×103 cells/transwell coated with Matrigel) was 

also included for comparison, as well as a condition with only MKN28 cells (without coating) 

and another with MKN28 cells with a Matrigel coating. 

The results presenting the TEER values over time are shown in Fig. 10, for (A) 15 µL and 

(B) 30µL of Matrigel™ used. Comparisons between the different conditions, after 5 days in 

culture, are shown in Fig. 11, for 15µL and 30µL of Matrigel used. 

Results shows that higher TEER values were obtained using higher cell densities of MKN28 

cells, while being statistically different when compared to the control group (NST20 cells 

coated with Matrigel). This suggests that a minimal cell density is necessary for establishing 

a homogenous epithelial barrier, although no significant differences were found between the 

highest 3 densities tested (1×104 and 5×105 cells/transwell). A saturation phenomenon was 

also achieved after 5-6 days in culture for these cell densities, after which the cells reached 

a plateau and eventually started to deteriorate, possibly due to Matrigel degradation, 

leading to a decrease in the TEER values. It is also important to notice that the TEER values 

are lower for the proposed models than those obtained when only using epithelial cells. This 

can be explained by the fact that the introduction of a 3D matrix might constitute an 

obstacle to cellular proliferation and cell-cell contact, which are essential to the formation 

of an homogeneous and a compact epithelium, thus leading to a more disperse architecture, 

and a more permeable barrier, as well as less cellular proliferation[86]. These values are 

also found to be within the same range as those found in the literature for a MKN28 

monolayer [71]. 
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Figure 10 - A: Influence of MKN28 cell density on TEER, over time, in a “sandwich” model, for a volume 

of 15µL of Matrigel (n=4); B: Influence of MKN28 cell density on TEER, in a “sandwich” model, for a volume of 
30µL of BD™ Matrigel (n=3). Note the decrease of the standard deviation values, after the volume of BD™ 
Matrigel was optimized for 30µl. 
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Figure 11 - A: Influence of MKN28 cell density on TEER, after 5 days in culture, in a “sandwich” model, 

for a volume of 15µL of BD™ Matrigel (n=4); B: Influence of MKN28 cell density on TEER, after 5 days in culture, 
in a “sandwich” model, for a volume of 30µL of Matrigel (n=3). Samples with ns were considered to be 
statistically non-significant (P>0.05) when compared to the control group (NST20 5×103 coated with Matrigel), 
while samples with * were considered to be statistically significant (P<0.05) and with ** were considered to be 
highly significant (P<0.01). Note the decrease of the standard deviation values, after the volume of BD™ 
Matrigel was optimized for 30µl. 
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3.1.2. Influence of puramatrix 

In order to circumvent the disparities in results obtained with the models using matrigel, 

possibly due to its unpredictable constitution, as previously discussed, alternative models 

were tested, using puramatrix since it also emulates the extracellular matrix but 

additionally benefits from being purely synthetic, and thus less variable in nature[87]. 

Similarly as before, different model conformations were tested in order to assess the 

effect of the architecture of the extracellular matrix and its relative positioning within the 

proposed model on the membrane integrity. A schematic representation of the different 

configurations is represented in Fig. 6. These results obtained can be observed in Fig.12. The 

model in which a puramatrix coating was performed directly on the insert failed to promote 

the correct formation of the epithelial barrier, suggesting that a direct contact between 

puramatrix and fibroblasts might be inhibitory or that the coating needs the support of the 

extracellular matrix secreted by the fibroblasts in order to achieve the desired outcome. On 

the contrary, both the “sandwich” model and the one in which the fibroblasts were 

embedded provided successful outcomes, although resulting in no significant differences 

between them and the model without any puramatrix. When comparing the embedded 

results with the results previously obtained with Matrigel, it is observable that when 

PuraMatrix was used, greater TEER values were obtained. This can possibly be explained by 

differences in the mesh created by those two ECM substitutes, with PuraMatrix being more 

permissive and enabling the formation of a tighter epithelium. 

 
Figure 12 - Influence of Puramatrix™ coating conformation on TEER, after 7 days in culture, when 

comparing to a condition without coating (n=2). 

 

3.1.2.1. Influence of cell density of macrophages 

In order to simulate the immune cells present in the gastric mucosa and to better 

replicate the in vivo conditions, THP-1 derived macrophages, which express characteristic 

morphological and functional features of normal macrophages, as well as specific 

macrophage markers [77], were used.  

To understand the influence of the cell density of THP-1-derived macrophages in the 

integrity of the previous co-culture models, three different cell densities were tested 

(1×103, 5×103 and 5×104 cells/transwell) in PuraMatrix™ coated transwells, while maintaining 
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the cell density of NST20 and MKN28 constant (5×103 and 5×104 cells/transwell, 

respectively). A control condition (without macrophages) was also included for comparison. 

The results presenting the TEER values over time, as well the comparisons between the 

different conditions, after 7 days in culture, are shown in Figs. 13 and 14, respectively. 

Results shows that no significant differences were found between the different 

macrophage densities, when compared to the control condition (Model – No Macrophages) 

regarding the TEER. This indicates that macrophages probably do not interfere with the 

TEER, since it is dependent on ion passage, which is not influenced by the presence of 

macrophages. This is corroborated by the low values obtained for the condition with only 

macrophages, indicative of the absence of barrier formation. 

Considering these results, the cell density of macrophages chosen for further tests was 

of 5×103 cells/transwell, considering that no significant differences were found between the 

other densities, while being sufficient to be representative of the macrophage influence in 

the barrier model. 

  

   

Figure 13 - Influence of the cell density of THP-1-derived macrophages cultured on PuraMatrix coated 

transwells on TEER, in a “sandwich” model, over time (n=4). 
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Figure 14 - Influence of the cell density of THP-1-derived macrophages cultured on PuraMatrix™ 

coated transwells  on TEER, after 7 days in culture, in a “sandwich” model, while maintaining the 
concentration of fibroblasts and epithelial cells constant (5×103 and 5×104 cells/transwell, respectively)  
(n=4). Samples with ns were considered to be statistically non-significant (P>0.05) when compared to the 
control group (Model – No Macrophages) and between them.  

3.2. In vitro permeability assays 

The correct formation of the proposed barrier model is dependent on the existence of a 

tightly knit cell layer, responsible for the low permeability of this barrier, similarly to what 

happens in vivo [79]. 

Tight junctions, which are the most apical structures of the epithelial junctional 

complex, formed by proteins such as claudins and occludins, are responsible for the 

mediation of paracellular transport across the membrane. This correlates with a greater 

barrier effect and selective permeability of the membrane to certain solutes (based on 

particle size or charge), such as calcium and sodium ions or small proteins [83]. 

In vitro permeability assays with FITC-dextran, a fluorescent marker for paracellular 

transport, were conducted in order to assess the permeability of the models in study. 

 

3.2.1. Matrigel™ permeability assays 

Permeability assays were conducted with models coated with Matrigel™ and the 

calculated apparent permeability (cm/s) was compared to different control conditions for 

each of the test conditions optimized before, namely: 5×103 NST20 cells/transwell; 5×104 

MKN28 cells/transwell; 5×103 NST20 cells/transwell with a Matrigel coating on top of the 

fibroblasts 5×104 MKN28 cells/transwell in Matrigel coated transwells; transwells with only  a 

Matrigel coating and transwells without cells or coating. An evolution of the quantity of 

FITC-dextran permeated over time of the different samples can be observed in Fig. 15. 
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Figure 15 – Evolution of the quantity of FITC-dextran permeated over time in Matrigel™ coated 

transwells for the different conditions (n=4). 

 

A comparison of the apparent permeability of the different samples after 1 h of 

incubation with FITC-dextran and a comparison between only the proposed models and two 

control conditions (5×104 MKN28 cells/transwell and 5×104 MKN28 cells/transwell inMatrigel 

coated transwells) is represented in Fig. 16, in order to better visualize the differences 

observed. 

The first tests, performed on transwells coated with Matrigel™ with the “sandwich” 

configuration showed that the barriers without macrophages presented lower values of 

apparent permeability than the other controls, only being higher than the values obtained 

for the models formed by only epithelial cells. From among the control conditions, only the 

one with MKN28 cells presented low values of permeability, since it is the only that could 

form a cohesive epithelial layer. Other conditions constitute some obstacle to the passage of 

FITC-dextran (presenting lower apparent permeability values than the condition with only 

the transwells), but are incapable of forming a restrictive barrier. It is interesting to notice 

that the control with epithelial cells seeded over Matrigel-coated transwells, once again, 

showed differences from the control with only epithelial cells, which confirms the TEER 

values presented before in Fig. 8. This time, the model coated with Matrigel presented 

higher permeability values, which may be explained by the 3D environment it imposes upon 

the epithelial cells, hindering their capacity to form a tight epithelial monolayer, which may 

enable the passage of solutes like FITC-dextran. 

The values for the barrier models are in the same range as the ones reported for models 

in other tissues, such as the intestinal [78], which confirms that these models are within 

physiological operating capabilities regarding their permeability. 
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Figure 16 - A: Comparison of the apparent permeability of the different models in Matrigel™ coated 

transwells with the control condition (Transwell) (n=3). B: Detailed comparison of the apparent permeability of 
the models in Matrigel™ coated transwells with the control condition (MKN) and with Matrigel+MKN (n=3). 
Samples with ns were considered to be statistically non-significant (P>0.05) and with * were considered to be 
statistically significant (P<0.05), while samples with ** were considered highly significant (P<0.01) and with *** 
extremely significant (P<0.001) when compared to the control group (Transwell and MKN, respectively) and 
between them.   
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3.2.2. PuraMatrix™ permeability assays 

Considering the already mentioned disparities obtained with the models using   

Matrigel™, possibly due to its unpredictable nature, models with PuraMatrix™ were tested, in 

order to assess their permeability. As previously, these models further include macrophages 

to better emulate the extracellular matrix. 

Permeability assays were conducted with models coated with PuraMatrix™ with and 

without macrophages, in order to assess their influence on the apparent permeability 

(cm/s), which was compared to different control conditions for each sample, namely: 5×103 

NST20 cells/transwell, 5×104 MKN28 cells/transwell, transwells with only PuraMatrix and 

transwells without cells or any coating. An evolution of FITC-dextran permeation over time 

for the different samples can be observed in Fig. 17. 

   

Figure 17 - Evolution of the quantity of FITC-dextran permeated over time in PuraMatrix™ coated 

transwells for the different conditions (n=4). 

 

A comparison of the apparent permeability of the different samples after 1 h of 

incubation with FITC-dextran and a comparison between only the proposed models and a 

control condition (5×104 MKN28 cells/transwell) are represented in figure 18, in order to 

better visualize the differences observed between them. 

With the inclusion of macrophages a significant decrease in the apparent permeability 

was observed, with values even lower than the ones obtained for models where only 

epithelial cells were used. These results clearly show that macrophages have a decisive 

impact in the permeability of these barriers, indicating their involvement in the opsonisation 

and phagocytosis of external particles and/or small molecules such as FITC-Dextran [88], 

although high permeability values were obtained when only macrophages were used, which 

is indicative that they alone are not capable of establishing a cohesive cell layer, despite 

their obvious influence on the apparent permeability. 
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Figure 18 - A: Comparison of the apparent permeability of the different models in PuraMatrix™ coated 

transwells with the control condition (Transwell) (n=4). B: Detailed comparison of the apparent permeability of 
the models in PuraMatrix™ coated transwells with the control condition (MKN) (n=4). 
Samples with ns were considered to be statistically non-significant (P>0.05) and with * were considered to be 
statistically significant (P<0.05), while samples with ** were considered highly significant (P<0.01) and with *** 
extremely significant (P<0.001) when compared to the control group (Transwell and MKN, respectively) and 
between them).   
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3.3. Morphological and structural characterization 

In order to morphologically and structurally characterize the models developed, 

immunohistochemistry was performed, by staining cells for F-actin which is present in the 

cytoskeleton of fibroblasts, epithelial cells, and macrophages, for vimentin, which is a 

specific marker for fibroblasts, and finally for DAPI , which stains the nuclei of all cell types. 

A “sandwich” model with PuraMatrix and macrophages was characterized and the images 

obtained for the different fluorescence channels and the merged results can be observed in 

Figs. 19 and 20. Through inverted fluorescence microscopy (IFM) it was possible to confirm 

the formation of a tightly-knit epithelium (using actin staining, in green, and nuclei staining, 

with DAPI, in blue) on the proposed barrier models, as well as  the presence of cells that 

resemble fibroblasts (with positive staining in red for vimentin, a mesenchymal marker [89], 

which can also be present in macrophages, although in this case the cell morphology allows 

to determine it is probably a fibroblast), in an inferior cell layer, thus emulating the in vivo 

anatomical structure and organization [90]. 

 

 

 

 

 

 

A B

Figure 19 – Fluorescent immunohistochemistry 

of the proposed model. Staining was as follow: DAPI was 
used to stain the nuclei (A, in blue); F-actin (B, in 
green);. Resulting merged images (C). Images obtained 
through IFM with a magnification of 40x. Scale bars are 

20µm.  
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Confocal Microscopy allowed for the confirmation of the structure observed for the 

“sandwich” model through IFM, as can be seen in Fig. 21. A tightly-knit epithelial layer can 

be seen on top, with fibroblasts underneath. 

G

D E

F

Figure 20 - Fluorescent immunohistochemistry of the proposed model. Staining was as follows:  DAPI for 

the nuclei (D, in blue); F-actin (E, in green) vimentin (F, in red),). Resulting merged images (G). Images 
obtained through IFM with a magnification of 40x. Scale bars are 20µm.  
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Figure 21 - Fluorescent immunohistochemistry of the proposed model. Staining was as follows:  Dapi for 

the nuclei (A, in blue), F-actin (B, in green) and vimentin (C, in red). Resulting merged images (D). Images 
obtained through Confocal Microscopy with a magnification of 40x. Scale bars are 40µm.   

Transmission Electron microscopy (TEM) was also performed on “sandwich” model with 

Matrigel as a means to assess the formation of tight junctions by the epithelial cells and the 

integrity of the barrier models overall, since this model proved to be the most reliable and 

similar to the in vivo morphological conditions, with other configurations presenting 

fractured epithelial cell layers. These images can be found in Figs. 22 and 23. It was possible 

to verify the formation of tight junctions between epithelial cells (more electrodense 

regions at the intersection of epithelial cells), which can be correlated with a higher barrier 

integrity [83], since they are responsible for the formation of a tightly-knit epithelium, 

which corroborates the results discussed above, in which the “ sandwich” models presented 

a cohesive epithelium. 

It could also be observed that the cells invaded the insert’s pores, adhering to their 

walls on both sides of the filter. Since the cells can pass through the pores, it can be 

expected that some of them will be lost in the culture medium of the basolateral side. 

However, this should be a small percentage, since most of them will adhere to the apical 

side of the filter. 

A staining with hematoxylin-eosin on a “sandwich model” without macrophages was also 

used to visualize the different cells layers, and their conformation within the proposed 

model. These images can be observed in Fig. 24.The hematoxylin-eosin staining confirmed 

A B

C D
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the architecture of the proposed models, since it can be observable that a layer of 

fibroblasts is adhered to the insert’s filter, while the epithelial cells formed an epithelium 

on top of them, separated by extracellular matrix that is supposedly a mixture between 

matrigel or puramatrix (depending on the model in question) and the extracellular matrix 

secreted by the fibroblasts. It can be seen in the image that epithelial cells detached from 

the filter in some regions, and this was a recurrent problem resulting in decreased integrity 

and higher permeability. One possible explanation is that this happened due to the high 

difference in stiffness between the insert and paraffin, resulting in high mechanical sheer 

stress experienced upon slicing the thin paraffin sheets for the histological preparations, 

thus resulting in detachment of the cells from the membrane. Although different fixation 

and sectioning methods were employed, as well as longer fixation times, cells always 

detached in some regions. A possible solution for this would be to use larger transwells, so 

that the sheer stress inflicted upon the membrane was lower. Even longer fixation times 

could also improve the preservation of the membrane, thus preventing cell detachment.  
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Figure 22 - TEM imaging of the proposed barrier models, evidencing the formation of an epithelial cell 

layer on top of the insert filter. The arrows represent tight junctions connecting epithelial cells, while the 
bracket marks the insert filter. 

 
   

Figure 23 - TEM imaging of the proposed barrier models, with the filter’s pores in evidence, 

represented by the bracket. 
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Figure 24 – A and B: Hematoxylin-eosin staining of the proposed barrier models, where the cytoplasm is 

stained in pink and the nuclei in blue.   
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Chapter 4 

Conclusions 
The aim of this project was to develop a cellularized artificial model of the gastric 

mucosa that could be used for either drug permeability testing or in toxicity assays, as a 

means to simulate the in vivo physiological and functional conditions of the mucosa, thus 

serving as a preliminary tool for drug development and testing. 

In order to achieve this, model barriers were created by seeding fibroblasts and 

macrophages over Polyethylene terephthalate BD Falcon™ transwells inserts and coated with  

either BD™ Matrigel™ or BD™ PuraMatrix™, in order to simulate the lamina propria and then 

epithelial cells were seeded on top, to recreate the gastric epithelium. 

TEER measurements were used to assess the barrier formation and its integrity and 

results showed that with an optimal combination of cell densities (5×103 NST20, 5×103 

Macrophages and 5×104 MKN28), a stable and cohesive barrier could be achieved and 

maintained for up to a minimum of ten days after culture, while maintaining high TEER 

levels. These values are within the range found in similar models in the literature[5].  

Based on the evolution of the TEER values over time, the best model configuration was 

found to be the “sandwich” model, in which the cells could grow and form an organized 

epithelium, while receiving molecular signals from the fibroblasts as well as spatial stimuli 

from the three-dimensional extracellular matrix. The use of fibroblasts and macrophages 

embedded on the extracellular matrix also provided interesting results, although not always 

being replicable, which can be due to the variable nature of the Matrigel. This poses a 

hurdle in replicating results, which is critical considering the applications of the proposed 

models for drug permeability and toxicity assays. Therefore, more reliable extracellular 

matrix replacements should be considered, such as alginate and pectin hydrogels [91, 92]. 

Another method of evaluating the integrity of the barrier models and their possible 

application as drug permeability models was assessing their apparent permeability, which 

yielded considerable results, namely after the introduction of macrophages, since the values 

of permeability obtained were even inferior to the ones obtained for epithelial 

monocultures, which produce a tightly-knit epithelium, with low permeability values, hence 

confirming the integrity of these models. 

IFM and confocal microscopy also confirmed the formation of a cohesive epithelial layer, 

on top of a fibroblast layer, as intended. TEM imaging later supported this by showing the 

existence of tight junctions between the epithelial cells. 

Considering all of these results, it is possible to conclude that the created models can be 

suitable for drug permeability testing and toxicity assays, since they model the gastric 

mucosa and mimic some of their functions, although further optimization and functional and 

morphological tests are required to confirm this. 
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In terms of future work, further optimization of the culture conditions would be 

necessary, in order to increase the reproducibility of the barrier models, as well as a more 

detailed morphological, structural and functional characterization, including 

immunohistochemistry to assess the presence of tight junction proteins, such as occludin 

and claudin-3; epithelial markers, such as E-cadherin and fibroblast and macrophage specific 

markers, such as vimentin and CD14, respectively. 

It would also be interesting to study the different interactions  between the different 

cells types that are part of the proposed models, namely  the assessment of TGF-β  levels, in 

order to understand the crosstalk between the cancer cells and the macrophages, as well as  

the differentiation of normal fibroblasts into cancer fibroblasts, through the assessment of α 

–smooth muscle actin. 

Finally, in order to complete this model, a gastric mucus substitute should be added, 

either through cell induction (recurring to cell transfection or another gastric cell type 

which endogenously produce gastric mucus) or using a commercially available substitute. 

Indeed, a Fasted State Simulated Gastric Fluid (FaSSGF), commercially available, could be 

used at the top of the model, in order to mimic the real conditions found in the stomach, 

which take in consideration vital properties such as pH, osmolality, buffer capacity and 

surface tension of the gastric fluid. 
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