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ABSTRACT 

Macrophages are cells of the innate immune system that have many different functions 

such as iron recycling, fighting infections, repair lesions and immune response against 

cancer. A simple dichotomous nomenclature defines macrophages as classically activated 

M1 “pro-inflammatory” or alternatively activated M2 “immune-regulatory”. Heme was 

shown to activate innate immunity by recruiting and activating neutrophils and 

macrophages. Here we hypothesized if heme and iron loading in macrophages could 

affect macrophage plasticity and polarization in two different contexts: in an experimental 

model of hemolytic disease and an experimental model of lung cancer.  

Hemolytic diseases, such as sickle cell anemia and thalassemia, are characterized by 

enhanced release of hemoglobin and heme into the circulation, heme-iron loading of 

reticuloendothelial system macrophages as well as chronic inflammation. In “Research 

work - Chapter I” of this thesis it is shown that heme excess directs macrophages towards 

an M1-like pro-inflammatory phenotype. We demonstrate that exposure of cultured 

macrophages to hemolytic aged red blood cells; heme or iron causes their functional 

phenotypic change towards a pro-inflammatory state. In addition, hemolysis and 

macrophage heme/iron accumulation in a mouse model of sickle disease triggers similar 

pro-inflammatory phenotypic alterations in hepatic macrophages. On the mechanistic 

level, this critically depends on reactive oxygen species production and activation of the 

Toll-like receptor 4 signaling pathway. We further demonstrate that the heme scavenger 

hemopexin protects reticuloendothelial macrophages from heme overload and reduces 

production of cytokines and reactive oxygen species. Importantly, in sickle mice the 

administration of human exogenous hemopexin attenuates the inflammatory phenotype of 

macrophages. Our data suggest that therapeutical administration of hemopexin is 

beneficial to counteract heme-driven macrophage-mediated inflammation and its 

pathophysiological consequences in sickle cell disease. 

In the context of cancer we investigate in “Research work - Chapter II” whether leakage of 

red blood cells from the vasculature, or heme and/or iron generated by hemolysis, can 

affect the inflammatory profile of tumor-associated macrophages (TAMs), the composition 

of the tumor microenvironment and/or influence tumor growth. Iron staining of samples 

from non-small cell lung carcinoma and experimental murine lung tumors revealed that 

iron accumulates preferentially in TAMs whereas cancer cells are relatively iron spared. 

We detected two populations of TAMs regarding iron content. Iron loaded macrophages 

are located close to red blood cell extravasation sites in the tumor microenvironment and 

are enriched at the invasive front of the tumor. Hemorrhagic areas in tumors do not only 

show increased numbers of iron loaded TAMs but also enhanced infiltration of myeloid 
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cells. We monitor an enhanced inflammatory response, with increased expression of 

cytokines and chemokines responsible for macrophage and neutrophil recruitment, and 

macrophage differentiation, namely Cxcl1, Cxcl2, Csf1 and Csf2. We show that 

macrophages in the presence of tumor cells or conditioned media from tumor cells 

polarize towards an M2-like phenotype which can be shifted to a M1-like inflammatory 

phenotype by applying different sources of iron. We have identified a novel subpopulation 

of TAMs, whose phenotype is characterized by iron loading. The results point to a role of 

red blood cell derived iron and heme in modulating the immune response, macrophage 

plasticity and cytokine production in the tumor microenvironment.  

In conclusion, the present thesis offers an additional basis for the growing evidence that 

heme and iron contribute to inflammation, not only in the context of hemolytic disorders 

but also as a contributing factor to inflammation in the tumor microenvironment.  
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RESUMO 

Macrófagos são células do sistema imune inato que desempenham diversas funções, tais 

como reciclagem do ferro, combate de infecções, reparação de lesões e resposta imune 

contra o cancro.  Os macrófagos podem ser classificados, através de uma nomenclatura 

simples e dicotómica, em dois grupos de polarização: activação clássica M1 “pro-

inflamatória” e activação alternativa M2 “anti-inflamatória”. Foi previamente demonstrado 

que o grupo heme consegue activar o sistema imune inato, através do recrutamento e 

activação de neutrófilos e macrófagos. Nesta tese levantámos a hipótese de que o 

excesso de heme e ferro pode afectar a plasticidade e polarização dos macrófagos em 

dois contextos diferentes: num modelo experimental para doenças hemolíticas e num 

modelo experimental para cancro do pulmão. 

Doenças hemolíticas, tais como a anemia falciforme e talassemia, são caracterizadas por 

um aumento de libertação de hemoglobina e heme para a circulação; sobrecarga de ferro 

e heme nos macrófagos do sistema reticuloendotelial; assim como inflamação crónica.   

No capítulo I do trabalho de investigação desta tese é demonstrado que o excesso de 

heme direcciona os macrófagos para um fénótipo pro-inflamatório semelhante a M1.  

Demonstrámos que a exposição de macrófagos em cultura celular a góbulos vermelhos 

hemolíticos e envelhecidos, heme ou ferro causa uma mudança no fenótipo dos 

macrófagos em direcção a um estado pro-inflamatório. Além disso, hemólise e 

acumulação de heme/ferro em macrófagos residentes no fígado num modelo de anemia 

falciforme  despoleta um fénotipo pro-inflamatório semelhante.  A nível mecanístico, esta 

alteração é dependente da produção de espécies reactivas de oxigénio e activação de 

vias de sinalização relacionadas com o “Toll-like receptor 4”. Também demonstrámos que 

a hemopexina, uma proteína que sequestra o grupo heme, protege os macrófagos 

reticuloendoteliais da sobrecarga de heme, resultando na redução da produção de 

citocinas e espécies reactivas de oxigénio, atenuando desta forma, o fénotipo inflamatório 

dos macrófagos. Os nossos resultados sugerem que a administração de hemopexina 

como terapia é benéfica para contrariar a inflamação resultante da acção de heme sobre 

os macrófagos, assim como as consequências patofisiológicas, em anemia falciforme.  

No capítulo II deste trabalho de investigação, questionámos se o derrame de glóbulos 

vermelhos presentes na vasculatura; o grupo heme e/ou ferro gerados por hemólise, 

podem afectar o perfil inflamatório dos macrófagos associados a tumores; assim como a 

composição do microambiente tumoral e/ou influenciar o crescimento tumoral. A 

coloração de ferro em amostras histológicas de pacientes com carcinoma de células não 

pequenas do pulmão e amostras histológicas de um modelo murino experimental para 

tumores do pulmão, revelou que o ferro está preferencialmente acumulado nos 
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macrófagos associados a tumores. Por sua vez, as células tumorais são negativas para 

esta coloração. Detectámos duas populações de macrófagos relativamente à composição 

em ferro. Macrófagos com ferro estão preferencialmente localizados em áreas onde se 

verifica a extravasão de glóbulos vermelhos no microambiente tumoral e em áreas de 

invasão tumoral. Àreas hemorrágicas no tumor, não só demonstram um aumento em 

macrófagos com ferro mas também um aumento na infiltração de células mielóides. 

Verificámos que nestas áreas há uma resposta inflamatória ampliada, com uma 

expressão aumentada de citocinas e quemoquinas responsáveis pelo recrutamento de 

macrófagos e neutrófilos, nomeadamente Cxcl1, Cxcl2, Csf1 e Csf2. Para além disso, 

demonstrámos que quando os macrófagos estão na presença de células tumorais ou 

meio de cultura condicionado, estes são polarizados em direcção ao fénótipo M2. Após 

tratamento com diferentes fontes de ferro, este fénótipo M2 é deslocado para um fénótipo 

mais semelhante a M1. Identificámos com este trabalho, uma nova subpopulação de 

macrófagos associados a tumores, cujo fenótipo é caracterizado por acumulação de 

ferro. Os resultados apontam para uma capacidade dos glóbulos vermelhos, em 

particular do grupo heme e ferro que fazem parte da sua composição, em modular a 

resposta imune, a plasticidade dos macrófagos e a produção de citocinas no 

microambiente tumoral. 

Em conclusão, a presente tese de doutoramento completa e aumenta o conhecimento de 

que heme e ferro contribuem para um conceito de inflamação estéril, não só no contexto 

de doenças hemolíticas mas também como um factor relevante para a inflamação em 

ambiente tumoral.  
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ABBREVIATIONS 

 

Bach1 Btb And Cnc Homology 1 

BMDM Bone Marrow-Derived Macrophages 

BMP Bone Morphogenetic Protein 

CCL2 Chemokine (C-C motif) ligand 2 (or MCP-1) 

CD Cluster of Differentiation 

cDNA Complementary DNA 

CxCL chemokine (C-X-C motif) ligand 

DFO Desferrioxamine 

DMT1 Divalent Metal Transporter 1 

DNA Deoxyribonucleic Acid 

EP Erythrophagocytosis 

ERK Extracellular-Signal-Regulated Kinases 

FeNTA Ferric Nitrilotriacetate 

GM-CSF (or CSF2) Granulocyte-Macrophage Colony-Stimulating Factor 

Hb Hemoglobin 

HFE Hemochromatosis gene 

HLA Human leukocyte antigen 

HO-1 (Hmox1) Heme Oxygenase 1 

Hp Haptoglobin 

Hx Hemopexin 

IFNγ Interferon gamma 

IL Interleukin 

iNOS inducible Nitric Oxide Synthase 

IRE Iron Responsive Element 

IRFs Interferon Regulatory Factors 

IRP Iron Regulatory Protein 

JAK Janus Kinase 

KC (or CxCL1) Keratinocyte Chemoattractant 

KO Knock-out 

LLC Lewis Lung Carcinoma 

LPS Lipopolysaccharide 

Ly6C Lymphocyte antigen 6 complex, locus C 

Ly6G Lymphocyte antigen 6 complex, locus G 

MAPK Mitogen-Activated Protein Kinases 
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MDSCs Myeloid Derived Suppressor Cells 

M-CSF (or CSF1) Macrophage Colony-Stimulating Factor 

MHC Major Histocompatibility Complex 

MMP Matrix Metalloproteinase 

mRNA Messenger RNA 

MyD88 Myeloid differentiation primary response gene 88 

NAC N-acetyl-cysteine 

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells 

Nrf2 Nuclear factor erythroid 2-related factor-2 

NO Nitric Oxide 

RBC Red Blood Cells 

RES Reticuloendothelial System 

RNA Ribonucleic Acid 

ROS Reactive Oxygen Species 

RPM Red Pulp Macrophages 

SCA Sickle Cell Anemia 

SCD Sickle Cell Disease 

SMAD Mothers against decapentaplegic homolog 

STAT Signal Transducer and Activator of Transcription 

TAMs Tumor-associated Macrophages 

TANs Tumor-associated Neutrophils 

Tf Transferrin 

TfR1 Transferrin Receptor 1 

TGFβ Transforming Growth Factor-β 

TLR Toll-like Receptor 

TNFα Tumor necrosis factor alpha 

VEGF Vascular Endothelial Growth Factor 

WT Wild Type 

Ym1 chitinase-like 3 
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1.  Iron Homeostasis: keeping the balance  

1.1 Why is iron an essential element? 

 

Iron is an essential micronutrient in nearly all organisms where it is required for numerous 

cellular and metabolic functions. All mammalian cells need iron for basic processes such 

as DNA synthesis, cell cycle progression and mitochondrial activity. More than 60% of 

total body iron is present in erythrocytes, where it is incorporated in heme. Heme, a 

porphyrin ring with the ferrous ion in the center, is the major component of hemoglobin 

(Hb), the iron-containing oxygen-transport metalloprotein in the red blood cells (RBC). Iron 

also contributes to the catalysis of redox reactions in the iron-sulfur cluster containing 

enzymes, such as nitrogenases and hydrogenases. We can think about iron as a double-

edged sword. Thus, on the one hand iron is an essential micronutrient, its deficiency can 

limit erythropoiesis and cause anemia. On the other hand iron overload leads to oxidative 

stress due to the production of reactive oxygen species (ROS) through the Fenton 

Reaction (Papanikolaou and Pantopoulos, 2005). ROS can promote damage of DNA, 

lipids and proteins, leading in severe cases to organ malfunction. To avoid these extreme 

situations, it is important to keep iron levels in balance. 

To prevent the toxic effect caused by iron accumulation and to assure a correct 

distribution of iron throughout the body, systemic and cellular iron regulation are required 

(reviewed by (Hentze et al., 2010)). 

Since iron cannot be excreted in a regulated manner (except for epithelial skin losses and 

small bleedings) the key to iron homeostasis is controlling iron absorption. Organs such 

as the small intestine; liver and spleen play a critical role in iron homeostasis and express 

molecules that allow controlled iron uptake, storage and recycling both at a systemic level 

as well as at a cellular level. 

 

1.2 Systemic iron regulation 

 

Dietary iron is absorbed in the duodenum. In the diet, iron is mainly found in its oxidized 

state, ferric iron Fe(III). Ferric iron needs to be reduced by Duodenal cytochrome B 

(DcytB) to ferrous iron Fe(II) to be imported via Divalent Metal Transporter 1 (DMT1) 

which is expressed in the duodenal enterocytes at the brush border (Gunshin et al., 1997). 

Also heme iron can be imported by duodenal enterocytes but the mechanism is still 

unknown. Once inside the enterocyte, heme iron is released by the activity of heme 

oxygenase-1 (HO-1, Hmox) (Ferris et al., 1999). Iron export into the circulation is 



GENERAL INTRODUCTION 

 

12 
 

dependent on ferroportin (Donovan et al., 2005; McKie et al., 2000), the only known iron 

exporter. Ferroportin is expressed at the basolateral membrane of enterocytes. 

Hephaestin, a multicopper oxidase homolog of liver ceruloplasmin, oxidases Fe(II) to 

Fe(III) allowing iron to be loaded onto transferrin (Tf). Transferrin is an iron transporter that 

contains two specific high-affinity Fe(III) binding sites. Once bound to transferrin, iron is 

transported in the blood stream and can be delivered to all cell types. Diferric transferrin 

binds to transferrin receptor 1 (TfR1), expressed at the cell membrane, and triggers 

the endocytosis of the complex (Cheng et al., 2004). Iron can be stored in the liver as 

well as other organs, such as spleen, bone marrow and muscle. Iron stores will be 

mobilized in accordance to cellular demand. 

Iron is required for erythropoiesis. For erythropoiesis, not only dietary iron is utilized but 

also iron that is recycled from aged red blood cells. Iron recycling takes place in 

reticuloendothelial macrophages. These cells take up aged and damaged RBC and 

catabolize heme via the enzyme HO-1. Iron is then exported from the macrophages via 

ferroportin. In macrophages, ferroportin needs ceruloplasmin to oxidize iron so iron can be 

loaded onto transferrin and be made available for erythropoiesis and other cellular 

processes (Figure 1A). 

 

1.3 The hepcidin/ferroportin axis 

 

The maintenance of iron homeostasis critically depends on the interaction between 

hepcidin and the iron exporter ferroportin. The control of iron uptake and availability is 

dependent on the expression of ferroportin. Ferroportin is regulated by the small hormone 

hepcidin (Nemeth et al., 2004b). Hepcidin is a 25 amino acid peptide secreted by the liver 

and it was shown to be the major systemic regulator of ferroportin (Altamura et al., 2014; 

Nemeth et al., 2004b).  

The regulation of ferroportin can occur at transcriptional, posttranscriptional and 

posttranslational levels.  

Transcriptional regulation of ferroportin was first shown in macrophages. In iron-

recycling macrophages, after erythropoiesis, heme and iron increase ferroportin 

expression (Marro et al., 2010). Ferroportin promoter can be bound either by Btb And Cnc 

Homology 1 (Bach1) (gene repression) or Nuclear factor erythroid 2-related factor-2 (Nrf2) 

(gene activation). Heme causes Bach1 degradation, allowing Nrf2 to facilitate ferroportin 

transcription.  During infections with Salmonella typhimurium, Nitric oxide (NO) was shown 
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to activate Nfr2 in macrophages, resulting in increased ferroportin transcription. Lack of 

NO formation resulted in impaired Nrf2 expression, resulting in reduced ferroportin 

transcription (Nairz et al., 2013). Inflammation decreases the expression of ferroportin 

although part of the mechanism is still unknown. LPS injection in mice decreased 

ferroportin mRNA in the liver and spleen (Liu et al., 2005; Yang et al., 2002). LPS is a 

Gram negative bacterial membrane component that activates Toll-like receptor 4 (TLR4). 

Recently it was shown that the ligation of FSL1 to TLR2/6 can induce ferroportin mRNA 

and protein downregulation in the liver and in the spleen, while ferroportin expression in 

the duodenum is unchanged (Guida et al., 2015). In duodenal enterocytes, HIF2α 

stabilization due to hypoxia increases ferroportin mRNA. The promoter of the ferroportin 

gene contains HIF response elements (HREs) that are targets for HIF2α binding. Mice 

lacking HIF2α, fail to upregulate duodenal ferroportin mRNA in response to iron deficiency 

(Taylor et al., 2011). 

At the posttranscriptional level, ferroportin is regulated via iron regulatory proteins 

(IRPs) and their interaction with iron responsive elements (IREs): the IRE/IRP system. 

Iron regulates ferroportin translationally by modulating the interaction of IRPs with IREs in 

its 5’ untranslated region (UTR). This mechanism will be further explored in this thesis 

(see 1.4 Cellular Iron regulation). 

Post translational regulation of ferroportin is mediated through the liver peptide 

hormone hepcidin. Hepcidin binds to ferroportin at the enterocyte brush border, 

hepatocytes’ membrane and macrophages’ membrane and induces endocytosis and 

proteolysis of ferroportin. Iron is then retained inside these cells and its availability is 

reduced (Figure 1B). When hepcidin expression is decreased, ferroportin is active and 

capable of exporting iron (Figure 1C).  

The regulation of hepcidin expression in hepatocytes is a key process in iron 

homeostasis. The expression of hepcidin can be regulated by iron levels, erythropoiesis, 

hypoxia and inflammation.  

Hepcidin is regulated by iron stores and iron plasma concentration. In case of high iron 

availability, hepcidin production is increased to limit dietary iron absorption and to promote 

cellular iron retention. When iron is required, a decrease in hepcidin production allows iron 

to enter the bloodstream. In cases of high concentrations of (Tf-Fe2), Hemochromatosis 

gene (HFE) is displaced from TfR1 to promote HFE interaction with transferrin receptor 2 

(TfR2). The HFE-TfR2 complex then activates hepcidin transcription via extracellular-

signal-regulated kinases (ERK)/mitogen-activated protein kinases (MAPK) and bone 

morphogenetic protein (BMP)/ Mothers against decapentaplegic homolog (SMAD) 
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signaling (Goswami and Andrews, 2006).  Activation of BMP signaling requires 

hemojuvelin (HJV). The BMP co-receptor hemojuvelin (HJV) interacts with type I and type 

II BMP receptors (BMPR) at the plasma membrane and induces phosphorylation of 

SMAD1/5/8 (Kautz et al., 2008). This phosphorylation allows the formation of a complex 

with SMAD4, that translocate to the nucleus and binds to the hepcidin promoter, 

increasing hepcidin expression.  

Since one of the major requests for iron is the formation of new RBC, erythropoiesis also 

regulates hepcidin expression. Hepcidin suppression allows iron stores to be mobilized to 

the bone marrow for the production of erythrocytes. Factors such as Growth 

Differentiation Factor 15 (GDF15) and Twisted Gastrulation Protein Homolog 1 (TWSG1) 

(Tanno et al., 2007; Tanno et al., 2009), were implicated in hepcidin suppression by 

inhibiting BMP/SMAD pathway. These factors were associated with β-thalassemia 

patients and thalassemic mice respectively. Recently, erythroferrone (ERFE), a peptide 

hormone produced by erythropoietin-stimulated erythroblasts, was identified as the factor 

responsible for the inhibition of hepcidin expression in response to erythropoiesis 

demands (Kautz et al., 2014). Hypoxia induces erythropoietin (EPO) synthesis, which in 

turn stimulates erythropoiesis. By inducing erythropoiesis, hypoxia also plays a role in 

influencing hepcidin levels. 

Inflammation also regulates hepcidin expression. Several pathogens require iron to 

proliferate and survive. In order to limit the access of microorganisms to iron, circulating 

iron levels are reduced during infection leading to hypoferremia. Hypoferremia is 

commonly associated to infections and inflammatory conditions. Hepcidin is known as a 

liver derived antimicrobial peptide, and is a clear example of the interface between 

immunity and iron (Kemna et al., 2005; Nemeth et al., 2003).  

LPS, activates TLR4, a receptor mainly expressed in macrophages and dendritic cells, 

and initiates an inflammatory response. The subsequent production of Interleukin (IL)-6 

and IL-1 by macrophages triggers the expression of hepatic hepcidin (Lee et al., 2005; 

Nemeth et al., 2004a). Hepcidin binds and degrades ferroportin in macrophages, causing 

intracellular iron sequestration and decreased plasma iron levels. Hepcidin upregulation 

was demonstrated also in macrophages and neutrophils exposed to LPS, Gram negative 

and Gram positive bacteria suggesting that hepcidin release from macrophages and 

neutrophils contributes to restrict iron access to pathogens during infections (Liu et al., 

2005; Peyssonnaux et al., 2006). IL-6 activates Janus Kinase (JAK)/ Signal Transducer 

and Activator of Transcription (STAT) signaling pathway that promotes hepatic hepcidin 

transcription. Injection of LPS in wild type mice has revealed a role for Activin B (a 
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member of Transforming Growth Factor-β (TGF-β) superfamily) as a mediator of hepcidin 

expression. Activin B induces hepcidin expression through SMAD1/5/8 signaling pathway 

(Besson-Fournier et al., 2012).  

Not only during infections but also in other diseases characterized by inflammation (for 

example, cancer, rheumatoid arthritis and chronic kidney disease), immune cell activation 

and massive inflammatory cytokine production lead to a subtype of chronic anemia called 

anemia of inflammation. Anemia of inflammation is a normocytic anemia with blunted 

erythropoiesis (review by (Weiss and Goodnough, 2005)). Due to the excess of hepcidin 

levels, ferroportin is consistently targeted for degradation and macrophages retain and 

accumulate iron impairing mobilization of iron from stores. Iron retention decreases serum 

iron and impairs erythropoiesis (Theurl et al., 2009). 

 

1.4 Cellular iron regulation 

 

Iron is required for the survival of mammalian cells. The main source of cellular iron is 

transferrin bound iron (Tf-Fe2). The uptake of Tf-Fe2 occurs via transferrin receptor 1 

(TfR1).  Once inside cells, iron can be stored in ferritin or can be used for metabolic 

processes. Similar to systemic regulation, cells have a system that allows for the 

regulation of iron uptake, storage and release. It relies on the trans-acting iron regulatory 

proteins (IRPs) and their interaction with iron responsive elements (IREs) that are 

conserved motifs in mRNAs of iron-related genes (reviewed by (Muckenthaler et al., 

2008)).  In the case of ferroportin and ferritin, a single IRE is located in the 5’ untranslated 

regions (UTRs). Upon IRP binding, the translation of ferroportin and ferritin is inhibited. In 

the case of TfR1, several IREs placed in the 3’ UTR serve to stabilize the mRNA upon 

IRP binding. IRPs exist in two isoforms, IRP1 and IRP2 which bind to IREs in response to 

the cellular labile iron pool. When iron levels are high IRP1 switches from its active RNA 

binding form to a cytosolic aconitase, at the same time IPR2 is targeted for proteasome 

degradation. When iron levels are low, iron deficiency must be counteracted: IRP1 is 

activated as RNA binding protein and IRP2 is stabilized, both becoming fully active. The 

inhibition of ferroportin and ferritin translation reduces iron export and storage, 

respectively. The stabilization of TfR1 mRNA increases iron uptake.  
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Figure 1 – Systemic iron regulation. (A) Iron uptake (1-2mg/day) occurs in the duodenum. Iron 
circulates in the plasma bound to transferrin (Tf-Fe2). It is used for erythropoiesis and cellular 
processes or stored in the liver. Macrophages recycle 20-25mg from senescent or damaged 
erythrocytes. (B) In iron overload conditions, hepcidin is produced by the liver and leads to 
ferroportin degradation in the duodenal enterocytes, macrophages and hepatocytes, promoting 
cellular iron retention and a decrease of circulating iron levels. (C) In iron deficiency, hepcidin 
expression is reduced and ferroportin is fully active to export iron. Figure adapted from (Hentze et 
al., 2004; Hentze et al., 2010).  
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1.5 Macrophages: the iron-recycling machinery 

 

RBC have a lifespan of approximately 120 days, after which they become senescent. 

Macrophages of the reticuloendothelial system (RES) in the spleen, liver and bone 

marrow are responsible for the recycling of aged RBC, a process known as 

erythrophagocytosis (EP). Macrophages can recycle 20-25mg of iron per day, which is a 

considerable amount if we take in to account that only 1-2mg are absorbed from the diet 

in the duodenal brush border (review by (Ganz, 2012)). The RBC-containing phagosome 

merges with lysosomal vesicles (forming the erythrophagolysosome) where red blood 

cells are degraded. The content is subsequently imported into the macrophage cytosol. 

The enzyme heme oxygenase 1 (HMOX-1, HO-1), catabolizes heme (Poss and 

Tonegawa, 1997). HO-1 releases iron from the heme protoporphyrin ring and makes it 

available for storage in ferritin or for export. Knock- out mice for HMOX-1 are not able to 

recycle heme iron and as a consequence they suffer from anemia, reduced serum iron 

levels and accumulation of iron in the liver and the spleen (Poss and Tonegawa, 1997). 

Due to heme toxicity, HMOX-1 knock-out mice lack liver and splenic macrophages. 

The mammalian homolog heme responsive gene 1 (HRG-1) is a transmembrane heme 

permease mainly expressed in macrophages. It transports heme from the phagolysosome 

to the cytoplasm during erythrophagocytosis (White et al., 2013). NRAMP1 (natural 

resistance-associated macrophages protein 1), a divalent metal transporter homologous 

to DMT1, is expressed within phagolysosomal membranes and participates in iron export 

from phagocytic vesicles (Soe-Lin et al., 2009). Ceruloplasmin oxidizes iron to allow for 

iron export via ferroportin. Iron can then be reused for erythropoiesis. Transcriptional 

induction of markers such as heme oxygenase 1, ferritin, and ferroportin is indicative of 

increased cellular heme and iron levels in macrophages during EP. 
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2. Heme: essential and toxic 

2.1 The essential role of heme  

 

Heme acts as prosthetic group in a range of hemoproteins that plays important roles in 

essential biological processes, such as, gas transport and storage, signal transduction, in 

the mitochondrial electron transport chain, drug metabolism and regulation of gene 

expression. The majority of iron that is recycled by macrophages is necessary for heme 

synthesis. Besides being the prosthetic group of many proteins (reviewed by (Tsiftsoglou 

et al., 2006)), heme is mainly known for being a component of hemoglobin and myoglobin, 

that are used for oxygen transport and storage, respectively. Thanks to its iron moiety, 

heme can control redox reactions that are essential for the function of hemoproteins. 

 

2.2 The toxic side of heme 

 

Free heme, on the other hand, can be toxic. Its iron component, when not protected, will 

trigger the production of ROS that causes cell damage (Balla et al., 1991). In hemolytic 

disorders, such as sickle cell anemia, thalassemia and malaria, RBC breakage leads to 

the release of their components, hemoglobin and heme. Tissues are then exposed to 

large amounts of free heme that is associated with tissue damage. 

To prevent heme-derived toxicity, hemoglobin is bound to haptoglobin (Hp), and the 

hemoglobin-haptoglobin complex is internalized through cluster of differentiation (CD)163 

present in the surface of macrophages of the reticuloendothelial system and hepatocytes. 

When haptoglobin is not sufficient, hemoglobin is degraded to heme. Heme is then bound 

to albumin and subsequently bound to hemopexin (Hx), the heme scavenger (Figure 2). 

Heme-hemopexin complexes are taken up via Low density lipoprotein receptor-related 

protein 1 (LRP/CD91) (Hvidberg et al., 2005). After heme binding, Hx delivers heme to the 

liver (Smith and Morgan, 1978). Nevertheless, in pathological conditions, free heme might 

be abundant since haptoglobin and hemopexin are saturated and their scavenger capacity 

is exceeded, leading to non-desirable effects of heme. 
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Figure 2 – Products of RBC lysis. RBC breakage leads to the release of their components, 
hemoglobin and heme. Hemoglobin is bound by Haptoglobin. When the buffering capacity of 
Haptoglobin is exceeded, hemoglobin liberates heme, which binds to albumin and is subsequently 
transferred to Hemopexin. (Courtesy of Francesca Vinchi). 

 

The toxic effect of heme and its iron component includes: 

 Generation of ROS through the Fenton reaction that can cause damage of lipids, 

proteins and nucleic acids (Balla et al., 1991; Jeney et al., 2002; Vercellotti et al., 

1994); 

 Iron present in heme catalyzes the oxidation of cell membrane and promotes the 

formation of cytotoxic lipid peroxide, which enhances membrane permeability, thus 

promoting cell lysis and death (Balla et al., 1991; Kumar and Bandyopadhyay, 

2005; Ryter and Tyrrell, 2000); 

 Heme potentiates hemolysis, since it can damage the membrane of erythrocytes 

(Chiu and Lubin, 1989) 

 Heme impairs vascular function and activates cells of the vascular endothelium 

and induces the recruitment of leukocytes, potentiating inflammation (Wagener et 

al., 2001) (to be discussed in this thesis). 

 

2.3 The inflammatory side of heme  

 

One of the potential toxic effects of heme is connected with inflammation. Heme was 

shown to activate innate immune cells and non-hematopoietic cells thus, promoting 

inflammation (Wagener et al., 2001).  

Heme injection in mice causes vascular permeability, recruitment and activation of 

neutrophils and macrophages, and an increased expression of acute-phase proteins 

(Lyoumi et al., 1999; Wagener et al., 2001).  
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Neutrophil activation induced by heme is dependent on ROS generation and protein 

kinase C (PKC) activation (Graca-Souza et al., 2002; Porto et al., 2007). Neutrophils 

attach firmly to the endothelium through adhesion molecules and migrate to parenchymal 

tissues. Heme injection was also shown to activate endothelial cells, inducing the 

expression of the adhesion molecules intercellular adhesion molecule 1 (ICAM-1), 

vascular cell adhesion molecule 1 (VCAM-1), E-selectin, P- selectin, and VWF (von 

Willebrand factor) (Belcher et al., 2014; Wagener et al., 1997). These adhesion molecules 

facilitate the adhesion of leucocytes and neutrophil migration. Neutrophils are important 

for controlling infections, nevertheless, prolonged activity of these cells is detrimental for 

tissue homeostasis since neutrophils can promote vascular and tissue injury by 

generating ROS and secreting proteases (reviewed by (Mocsai, 2013)). 

Heme also activates macrophages and induces the production of Leukotriene B4 (LTB4), 

IL-1β, Tumor necrosis factor alpha (TNFα), and Keratinocyte Chemoattractant (KC or 

CxCL1). LTB4 (Monteiro et al., 2011) has an important function in heme-induced 

neutrophil migration and KC (Figueiredo et al., 2007) has neutrophil chemoattractant 

activity which contributes to the recruitment of neutrophils. IL-1β and TNFα (Figueiredo et 

al., 2007) are pro-inflammatory cytokines. TNFα secretion induced by heme is important 

for necroptosis (necrotic cell death) (Fortes et al., 2012). The heme-mediated macrophage 

activation was shown to be dependent on the activation of TLR4 (Figueiredo et al., 2007). 

In macrophages, heme induces Myeloid differentiation primary response gene 88 

(MyD88) activation and the secretion of the pro-inflammatory cytokines TNFα and KC. 

TLR4 activation leads to MAPK and Nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) activation, which are necessary for TNFα secretion. The 

activation of these pathways also leads to the formation of ROS. ROS generation can be 

induced by heme independently of TLR4. The presence of ROS potentiates the activation 

of NF-κB, contributing to an enhanced production of TNFα.  

Altogether, these findings classify heme as a damage-associated molecular pattern 

(DAMP), capable of causing sterile inflammation and tissue damage. Plasma scavengers 

of heme and hemoglobin play an important role in preventing the toxic and inflammatory 

effect of heme. For example, hemolysis or heme injection in hemopexin-null mice (Hx-/-) 

cause increased inflammation and renal damage when compared to wild type (WT) mice 

(Vinchi et al., 2008).  
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2.4 Free heme and hemolytic disorders: sickle cell anemia 

 

In hemolytic disorders such as sickle cell anemia, thalassemia and malaria, RBC 

breakage is enhanced and results in the release of their components: hemoglobin (Hb) 

and heme. Tissues are subsequently exposed to large quantities of free heme, since 

scavenging systems, haptoglobin (Hp) and hemopexin (Hx) are not sufficient to cope with 

the excess of free heme and hemoglobin. In the research work presented in this thesis, a 

mouse model for sickle cell disease was used to study the effects of free heme in 

macrophage plasticity. 

Sickle-cell disease (SCD), also known as sickle-cell anemia (SCA), is a hereditary blood 

disorder (Pauling et al., 1949). A single point mutation in the β chain of Hb (β6Glu>Val), 

leads to the synthesis of a modified Hb variant generally referred to as HbS. RBC assume 

an abnormal, rigid, sickle-like shape with shortened half-life and propensity to hemolysis.   

 Sickle-cell disease is associated with a number of acute and chronic health problems, 

such as severe infections, attacks of severe pain ("sickle-cell crisis"), vascular 

occlusion/dysfunction and development of stroke and renal failure. Sickle cell anemia is 

also associated with tissue iron overload, probably caused by chronic accumulation of free 

heme in the circulation (Hebbel et al., 1988; Reiter et al., 2002). Cell-free Hb might 

contribute to the pathogenesis of sickle cell anemia, by scavenging nitric oxide (NO) 

(Reiter et al., 2002), thereby promoting vasoconstriction, platelet aggregation and 

expression of adhesion molecules associated with endothelial cell activation (Belcher et 

al., 2003; Belcher et al., 2014). Interaction of NO with cell-free Hb also catalyzes the 

production of free radicals, promoting Hb oxidation and heme release. As mentioned 

before, free heme has inflammatory properties that can be intrinsically connected with 

inflammation in sickle cell disease. In this case, targeting cell-free Hb or free heme in 

plasma using Hp or Hx should ameliorate the pathological outcome of sickle cell disease 

and reduce inflammation.  
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3. Macrophages in immune response and iron regulation 

 

3.1 Macrophages: origin and function 

 

Macrophages (from Greek: big eaters, from makros "large" + phagein "eat") were first 

discovered at the end of the 19th century by Ilya Metchnikoff. These myeloid immune cells 

are central players in innate defense reactions and are strategically positioned throughout 

tissues. Macrophages have many different functions such as iron recycling, fighting 

infections, repair lesions and immune response against cancer. These cells are 

characterized by avid phagocytosis; they ingest and degrade dead cells, debris, and 

foreign material. Besides orchestrating inflammatory processes, macrophages also play a 

role in tissue remodeling and tissue clearance. 

Macrophages are fascinating cells since their strategic distribution is correlated with the 

development of functional specificity (reviewed by (Epelman et al., 2014)). When we 

speak about macrophages, we are considering a large pleiotropic group of cells (Figure 

3). In fact, the definition of macrophage comprises cells such as microglia, Kupffer cells, 

alveolar macrophages, among many other types of macrophages that differ not only in 

tissue localization, but also in the expression of surface markers, gene expression profiles 

(Gautier et al., 2012), function and even shape. It is this variety and plasticity that makes 

macrophages such an interesting subject for study. The origin and development of 

macrophages have been largely discussed.  Macrophages can be subdivided in two 

groups: macrophages that have an embryonic/prenatal origin and macrophages that 

derive from the differentiation of tissue-infiltrating monocytes.  

Most tissue-resident macrophages are established prenatally and are maintained through 

adulthood by longevity and self-renewal. Certain embryonic macrophage populations are 

established even before the emergence of circulating monocytes. In addition, 

monocytopenic animals display seemingly normal tissue macrophage compartments, and 

the number of tissue-resident macrophages is also largely unaffected in human patients 

suffering from monocytopenia.  

The “second origin” of macrophages is monocyte-derived macrophages. Generally these 

macrophages display a limited life span and are associated with homeostatic but mainly 
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pathological inflammation, such as cancer and infections. Ly6Chi monocytes in mice, and 

CD14+ monocytes in humans, represent classical monocytes, which are recruited to sites 

of pathological changes, such as tumor, and infection sites and can act as precursors of 

monocyte-derived tissue macrophages. Tumors are abundantly populated by 

macrophages, derived from infiltrating monocytes, as a consequence of an anti-tumoral 

response. Many of these tumor-associated macrophages (TAMs) are now known to 

promote tumor initiation, progression, and metastasis.  

In this thesis, I will focus mainly on the following specific types of macrophages: 

macrophages of the RES, namely splenic macrophages and Kupffer cells, and later on, 

tumor-associated macrophages. 

 Splenic macrophages also known as red pulp macrophages (RPM) are specialized in 

iron recycling from senescent RBC (as previously described). RPMs have a prenatal 

origin and this population is maintained without necessary repopulation through monocytic 

input (Hashimoto et al., 2013). Murine RPMs are characterized by the expression of 

F4/80+ CD11blow/- CD206+ and require the transcription factor SPI-C. As expected SPI-C 

deficient mice display an impaired clearance of erythrocytes (Kohyama et al., 2009). In 

case of toxic iron overload and impairment of RPMs, heme can trigger the differentiation 

of monocytes that contribute to establish new population of RPMs (Hashimoto et al., 

2013). Also monocytes stored in the red pulp can be recruited under inflammatory 

conditions (Swirski et al., 2009).  

Kupffer cells are the resident macrophage population of the liver and locate most 

abundantly in the periportal regions. Kupffer cells also play a role in immune surveillance, 

since they form a protective barrier preventing circulation of systemic pathogens. In the 

healthy liver, Kupffer cells display a tolerogenic phenotype, however under pathological 

conditions they can switch to an activated state and contribute to liver injury (Dixon et al., 

2013).  Under hemolytic conditions, the liver is one of the major sites for iron recycling of 

damaged erythrocytes. The expression of CD163 in the surface of Kupffer cells allows 

endocytosis of hemoglobin-haptoglobin complexes. The iron recycling function of Kupffer 

cells is a mechanism to protect the tissues against heme and hemoglobin mediated injury 

(Willekens et al., 2005).  

 

Both splenic macrophages and Kupffer cells are necessary for homeostasis, but 

nevertheless, in pathological conditions, their role as homeostatic cells can be challenged 

and these cells can also contribute to the local immune/inflammatory response (Tacke 

and Zimmermann, 2014). 
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Figure 3 – Macrophage origin and function. Macrophages of either embryonic origin or adult 
Ly6C

hi
 monocytic origin are exposed to tissue specific factors that shape macrophage 

differentiation, function and polarization. Figure adapted from (Varol et al., 2015).   
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3.2 Macrophage polarization 

 

Under non-inflammatory conditions, tissue resident macrophages, promote homeostasis 

and tissue repair. What happens in pathological, inflammatory conditions? Not only tissue 

resident macrophages, but also monocyte-derived macrophages that infiltrate tissues in 

response to inflammation, are exposed to cytokines and chemokines that shape their 

function and inflammatory response. The observation that different subtypes of 

macrophages in inflammatory conditions exist, triggered a need for macrophage 

classification. 

A simple dichotomous nomenclature defines macrophages as classically activated M1 

“pro-inflammatory” or alternatively activated M2 “immune-regulatory” (Gordon, 2003; 

Mantovani et al., 2013; Sica and Mantovani, 2012). This nomenclature mimics the 

Th1/Th2 nomenclature that describes two activation states of helper T cells.  

The two subsets of helper T cells (Th1 and Th2) are distinguished by the cytokines 

secreted after T lymphocyte activation. The Th1-type response is characterized by the 

production of Interferon gamma (IFNγ), thus promoting a cytotoxic response and 

polarization of macrophages towards a M1 phenotype. The term macrophage activation 

(classical activation) was first introduced by Mackaness who observed an enhanced and 

antigen-dependent microbicidal secondary response of macrophages against Bacillus 

Calmette-Guérin (BCG) and Listeria (Mackaness, 1962). Later this enhanced response 

was associated with IFNγ production, as a result of a Th1 response (Nathan et al., 1983).  

Some years later, Th2-type response (characterized by the production of IL-4, and IL-13) 

was associated with an alternative activation of macrophages. This was connected to an 

anti-inflammatory response (Doyle et al., 1994), later called M2 macrophages. 

The origin of M1/M2 nomenclature was established by Mills when he was studying 

arginine metabolism in macrophages (reviewed by (Mills, 2015)). Mills and colleagues 

observed that macrophages which have been activated in mouse strains with preferential 

Th1 or Th2- type response, responded differently to IFNγ or LPS stimuli (Mills et al., 

2000). This difference relied simply on arginine metabolism. Macrophages have both 

inducible Nitric Oxide Synthase (iNOS) and Arginase enzymes that can convert arginine 

to NO or Ornithine. M1 macrophages express iNOS that converts arginine into NO and as 

consequence inhibits cell proliferation. M2 macrophages express Arginase that converts 

arginine into ornithine and promotes cell proliferation and repair (Mills, 2001). Later on, 

Mills also discovered that macrophage polarization could occur independent of T cells or 
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B cells, demonstrating the importance of innate immunity and how it is linked to adaptive 

immunity in a counterbalanced system (Mills et al., 2000). The concept of M1/kill and 

M2/repair was born. 

M1 activity inhibits cell proliferation and causes tissue damage while M2 activity promotes 

cell proliferation and tissue repair. 

In the last decade, macrophage polarization has been the center of many studies that 

tried to better characterize these two different subtypes. The polarization concept was 

linked to many diseases. The M1/M2 macrophages are no longer only associated with 

infections, but they also play an important role also in pathologies with “sterile 

inflammation”, such as atherosclerosis and cancer (Sica et al., 2015).  

M1 macrophages, the classically activated macrophages, are characterized by a strong 

pro-inflammatory activity. The best understood stimuli that drive macrophages into M1 

polarization are pathogen-associated molecular patterns (PAMPs) such as 

lipopolysaccharide (LPS) and inflammatory cytokines such as IFNγ. LPS is a TLR agonist, 

recognized by TLR4 and signals through MyD88, activating the transcription factors NF-

κB, STAT5 and interferon regulatory factors (IRFs). IFNγ binds to the IFNγ receptor 

(IFNGR1 and IFNGR2) and recruits JAK1 and JAK2 adaptors that activate STAT1 and 

IRFs (reviewed by (Martinez and Gordon, 2014)). These stimuli frequently occur together 

to polarize macrophages towards the M1 phenotype. Nevertheless, the gene expression 

profile of macrophages polarized independently with LPS or IFNγ is different from the 

combination of the two stimuli, although a significant overlap is observed (Martinez et al., 

2006; Nau et al., 2002). Recently, Granulocyte-Macrophage Colony-Stimulating Factor 

(GM-CSF) was added to the category of M1 stimuli (Sierra-Filardi et al., 2010). GM-CSF 

signaling triggers the recruitment of JAK2 and activation of STAT5, NF-κB and IRFs, a 

common feature with LPS and IFNγ activation.  Although GM-CSF by itself doesn’t show a 

strong polarization capacity (when compared to LPS or IFNγ) it is able to prime 

macrophages towards an M1 phenotype and to potentiate the effect of LPS and IFNγ. In 

general, M1 macrophages are characterized by the strong production of cytotoxic oxygen, 

nitrogen radicals and inflammatory cytokines such as IL-1α/β, IL-6, TNFα, IL-12, IL-23 and 

also high expression of iNOS, CD86, Major Histocompatibility Complex  (MHC) II and 

CD14. M1 macrophages have been associated with different pathologies. An obvious 

association is the role of M1 macrophages in infectious disease.  M1 macrophages have 

bactericidal and bacteriostatic activity, as well as immune stimulatory activity. This 

subtype of macrophages is also associated with atherosclerosis, diabetes (M1 
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macrophages contribute to disease progression) and cancer. In association with cancer 

M1 macrophages are characterized by tumoricidal activity (Figure 4).  

M2 macrophages, or alternative activated macrophages, are polarized after stimulation 

with anti-inflammatory cytokines. This macrophage subtype and its activation stimuli are 

more diverse than the M1 subgroup. M2 macrophages can be generated in the presence 

of cytokines such as IL-4, IL-13, IL-10, but also in the presence of TGFβ, glucocorticoids 

and immune complexes (IgGs) (reviewed by (Martinez and Gordon, 2014)). Similar to 

what happens with M1 macrophages, also M2 macrophages can result from the 

combination of more than one stimulus. IL-4 and IL-13 are the best described cytokines 

that polarize macrophages towards M2. The binding of IL-4 to its receptors induces the 

activation of JAK1 and JAK3 and the subsequent activation of STAT6 (Martinez et al., 

2009). IL-10 binding induces activation of the transcription factor STAT3. Although 

exposure of macrophages to IL-4 and IL-10 induces a different subtype of macrophages 

(M2a and M2c respectively), in terms of functionality they share common features. As 

mentioned before, macrophages can be exposed to more than one cytokine and the 

combination of stimuli is expected to occur in complex diseases such as cancer. In 

parallel to GM-CSF that primes macrophages towards M1, Macrophage Colony-

Stimulating Factor (M-CSF) was described to prime and potentiate macrophages towards 

M2 polarization (Sierra-Filardi et al., 2010). Upon exposure to LPS, GM-CSF polarized 

(M1) macrophages produced TNFα and pro-inflammatory cytokines; while M-CSF 

polarized (M2) macrophages produced IL-10. M2 macrophages are characterized by the 

expression of Arginase-1, Ym1, IL-10, TGFβ, Resistin like alpha (FIZZ1) (mouse), CD206 

(mannose receptor) and scavenger receptors such as CD163. Functionally, M2 

macrophages are key effectors for the resistance to parasites and for Th2 responses. M2 

macrophages are also associated with diseases such as atherosclerosis and cancer. This 

subtype is involved in tissue remodeling, angiogenesis, immunoregulation which promotes 

tumor invasion and metastasis (Figure 4).  

Although the concept M1/M2 is well established, it seems that the picture is far more 

complex. In vivo, macrophages can be exposed to several and diverse stimuli. This 

complexity of stimuli can drive macrophages in equally diverse subtypes that are not yet 

described or well characterized. Some authors have introduced macrophage 

nomenclature according to functional and homeostatic aspects (Mosser and Edwards, 

2008). Recent guidelines, mainly in vitro systems, classify macrophages according to the 

expression of activation markers, the definition of the activators and the source of 

macrophages used (Murray et al., 2014). Also, network modeling analysis of human 

macrophage transcriptomes revealed at least 9 different macrophage activation programs 
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(Xue et al., 2014) extending the concept of M1/M2 binary classification. Since M1/M2 is 

the most well established nomenclature, in this thesis the markers associated with M1 and 

M2 were used as a mean to compare the macrophages analyzed and studied. 

3.3 Macrophage polarization and iron 

 

Since macrophages, especially RES macrophages are important for iron homeostasis, 

and play an important role in iron recycling, there is a strong hypothesis that iron handling 

by macrophages might be affected by macrophage polarization, or affect macrophage 

polarization. 

When compared with M2 macrophages, M1 macrophages are associated with low iron 

turn-over. They show low expression of CD163, HO-1 and ferroportin and high expression 

of ferritin, suggesting that M1 macrophages show a phenotype compatible with iron 

retention. In contrast, M2 macrophages have a phenotype that is associated with high iron 

uptake, recycling and export (Recalcati et al., 2010). Furthermore, it is reported that 

treatment of polarized M1 and M2 macrophages with different sources of iron does not 

affect the expression of iron related genes such as ferroportin.  These data suggest that, 

when compared to iron,  cytokines involved in macrophage polarization ( M1 – IFNγ and 

LPS; M2 – IL-4) have a dominant effect in the expression of the iron related genes, and 

determine iron handling in this two macrophages subtypes (Corna et al., 2010). In M-CSF 

(M2) differentiated macrophages, the expression of CD163, HO-1 and Ferroportin was 

higher when compared to GM-CSF (M1) polarized macrophages (Sierra-Filardi et al., 

2010). In chronic venous leg ulcers, wound healing models and spinal cord injury, 

macrophage iron overload induces an unrestrained pro-inflammatory M1 phenotype, via 

enhanced production of TNFα, suggesting that iron accumulation in macrophages might 

contribute to a pro-inflammatory phenotype (Kroner et al., 2014; Sindrilaru et al., 2011). 

Also in atherosclerosis, several subsets of macrophages were described (M1, M2, M4, 

Mox and Mhem (reviewed by (Vinchi et al., 2014)). Mhem macrophages are associated 

with hemorrhagic areas, confirming that hemorrhage-derived hemoglobin is a source of 

iron for atherosclerosis-associated macrophages and directs their polarization into a 

phenotype that is dependent on Hemoglobin/iron uptake (Boyle et al., 2009). 

Macrophages associated with hemorrhage areas were characterized as CD163 high and 

human leukocyte antigen (HLA)-DR low (Boyle et al., 2011). Moreover, as a consequence 

of enhanced Hb clearance, Mhem macrophages show increased HO-1 and FPN 

expression, which might facilitate heme catabolism and reduced intracellular free iron.    

 



GENERAL INTRODUCTION 

 

29 
 

 

Figure 4 – Macrophage polarization subsets. Macrophages can be polarized to a M1 or M2 phenotype by 

different stimuli. M1 and M2 macrophage markers are represented as well as their function. Different stimuli 
that can give origin to M1 or M2 macrophage polarization are described with the respective signaling 
pathways (as described in the text). Figure adapted from (Martinez and Gordon, 2014).  
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4. Iron and the tumor microenvironment 

 

4.1 The tumor microenvironment  

 

Cancer is a complex disease that comprises many different stages and features. The 

metastasizing process, the most important and problematic feature of cancer, allows 

cancer cells to reach circulation and invade organs, leading to organ failure and death.  

The “hallmarks of cancer”, a concept developed by  Hanahan and Weinberg (Hanahan 

and Weinberg, 2000, 2011) include sustaining proliferative signaling, evading growth 

suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, 

activating invasion and metastasis, genome instability, inflammation, reprogramming of 

energy metabolism and evading immune destruction. Besides all these features that 

characterize cancer cells, another dimension of complexity can be added to this scenario: 

a complex tumor microenvironment that contributes to tumor progression and affects anti-

tumor therapy.  The tumor microenvironment includes fibroblasts, stroma, blood vessels 

and infiltrates of immune cells. It is a complex ecology of cells that changes with and 

provides support to tumor cells during transition to malignancy. Manipulation of the tumor 

microenvironment is seen as a current therapeutic strategy to improve cancer treatment. 

A better understanding of the functions of cellular constituents of tumors and the 

mechanisms involved in immune evasion is extremely important to develop the next 

generation of innovative cancer immunotherapies  (Hanahan and Weinberg, 2011; van 

Kempen et al., 2003). On the one hand, cytotoxicity against tumor cells, mainly through 

IFNγ-mediated inflammatory response, is able to potentiate and mediate tumor 

elimination. On the other hand, tumor cells develop strategies to evade immune 

surveillance and also to modulate the immune system in order to suppress anti-tumoral 

immune responses. 

Immune cells both from the innate immune system and from the adaptive immune system 

can be found in the tumor microenvironment and display specific roles and functions. 

CD8+ T cytotoxic cells are effector cells of the adaptive immune system. These cells 

have been associated with good prognosis since they can exert anti-tumor effects by 

recognizing tumor-specific antigens presented on MHC I molecules (Vesely et al., 2011). 

They specifically recognize cancer cells and destroy them through perforin and granzyme 

mediated apoptosis (Trapani and Smyth, 2002). In order to escape from CD8 T cell 

mediated attack, cancer cells can downregulate MHC I molecules (Chen et al., 1996).  
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CD4+ T helper cells can be subdivided in Th1 cells and Th2 cells. Th1 cells are 

associated with early stages of tumor development and are associated with good 

prognosis while the presence of Th2 cells in tumors is associated with bad prognosis. The 

Th1 response is pro-inflammatory and anti-tumorigenic, while the Th2 response is anti-

inflammatory and pro-tumorigenic. As mentioned in a previous chapter of this thesis, Th1 

cells produce IFNγ, IL-2 and TNFβ, which activate macrophages towards an M1 subtype. 

By contrast, Th2 cells produce IL-4, IL-5, IL-10, and IL-13. These cytokines activate 

eosinophils, and promote M2 macrophage polarization, thus contributing to tumor 

progression (Knutson and Disis, 2005). The identification of a  third subset of Th cells 

expanded the Th1/Th2 paradigm. Th17 cells express RORγt and produce IL-17. T helper 

17 cells’ contributions to inflammation and autoimmunity have been established, but their 

role in tumor immunity remains unclear. Some reports show that Th17 cells eradicate 

tumors, while other reports reveal that they promote tumor progression (Zhang et al., 

2014).  

CD4+ T regulatory cells (Tregs) are associated with immunosuppression and cancer 

evasiveness. Tregs are CD25+ and depend on the transcription factor Foxp3 for their 

development (Fontenot et al., 2003). The most important mechanism by which Tregs 

mediate tumor evasion is the secretion of TGF-β and IL-10 that impair anti-tumor 

responses by CD4+, CD8+ and NK cells.  

Gamma/delta T-cells are lymphoid cells that are in between innate and adaptive 

immunity. γδ T-cells are potent producers of numerous cytokines, including IFNγ, TNFα, 

growth factors such as G-CSF and GM-CSF, and  chemokines (Vivier et al., 2011) that 

can contribute to the lysis of tumor cells. 

Natural Killer (NK) cells are cytotoxic lymphocytes that potently kill tumor cells, being a 

very important component in surveillance against cancer (Stojanovic and Cerwenka, 

2011). These cells can respond against tumor cells via NK-like receptors such as NKG2D. 

Ligands for NKG2D are rarely detectable on the surface of healthy cells and tissues, but 

are frequently expressed by tumor cell lines and in tumor tissues (Nausch and Cerwenka, 

2008). The potent anti-tumor response of these cells is mediated by the production of 

cytotoxic molecules such as perforins, granzymes and FasL and also cytokines such as 

IFNγ, TNFα and GM-CSF (Kaplan et al., 1998; Stojanovic et al., 2013).  

Myeloid derived suppressor cells (MDSCs) are immature myeloid cells. MDSCs are 

defined as a population of CD11b+ Gr-1+ cells in tumor-bearing mice with demonstrated 

abilities to suppress CD8+ T-cell antitumor immunity (Bronte et al., 1998). It is now well 

accepted that MDSCs express high levels of inducible nitric oxide synthase (iNOS) and 
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arginase-1 which depletes essential aminoacids such as arginine from the 

microenvironment. Depletion of aminoacids impairs T cell growth and differentiation. 

MDSCs produce suppressive cytokines such as IL-10 and TGF-β and also induce Treg 

cell expansion (Huang et al., 2006; Srivastava et al., 2010).  

Neutrophils (Tumor-associated neutrophils, TANs) are also characterized by the 

expression of CD11b and Gr1, which makes it difficult to distinguish from MDSC. The 

plasticity of neutrophils can be classified as N1 (tumor cytotoxicity and immune 

stimulation) versus N2 (tumor supporting mechanisms).The presence of (TGFβ) in the 

tumor microenvironment prevents the generation of N1 neutrophils and favors N2 

neutrophils. The blockade of TGFβ results in the recruitment and activation of TANs with 

anti-tumor phenotype (N1) (Fridlender et al., 2009). 

Dendritic cells (DCs), the professional antigen-presenting cells, are also compromised in 

the context of cancer. DCs are not able to do an efficient presentation of antigens to T 

cells due to the downregulation of MHC I and MHC II. Several tumor-derived mediators, 

such as Vascular Endothelial Growth Factor (VEGF), M-CSF, GM-CSF, IL-6, IL-10, and 

gangliosides, have been reported to contribute to the altered differentiation of DCs 

(Dhodapkar et al., 2001; Gabrilovich, 2004). These immature DCs often express no or low 

levels of costimulatory molecules, such as CD40, CD80, and CD86, and have been 

described to express indoleamine 2,3-dioxygenase, an enzyme that degrades the 

essential amino acid tryptophan that leads to the suppression of T-cell immunity (Munn et 

al., 2002). 

 

4.2 Tumor-associated macrophages (TAMs) 

 

Macrophages are among the most abundant immune cells in the tumor microenvironment. 

In some cases they can represent 50% of the infiltrated cell population. These stromal 

cells, which are marked by the expression of CD11b and F4/80 in mice and CD11b, 

CD14, CD33, and CD68 in humans, are frequently polarized towards an M2-like 

alternative activated macrophage phenotype (see “Macrophage polarization” chapter) 

(Biswas and Mantovani, 2010). Substantial evidence indicates that macrophages, rather 

than being tumoricidal as suggested after their activation in vitro (Fidler, 1988) adopt a 

pro-tumoral phenotype in vivo both in primary and metastatic sites (Biswas et al., 2013). 

This in part results from the production of anti-inflammatory cytokines that benefit tumor 

initiation, tumor promotion and immune suppression. TAMs also critically contribute to the 
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remodeling of the tumor microenvironment through the production of matrix 

metalloproteinases (MMP9 and MMP12), synthesis of growth and angiogenesis factors, 

and their engulfment of apoptotic cells (Condeelis and Pollard, 2006; Lewis and Pollard, 

2006). TAMs that are recruited under hypoxic conditions and/or via growth factors 

orchestrate the angiogenic switch, which results in an increase in vascular density, 

facilitating invasion and metastasis and marking the transition to the malignant state (Lin 

and Pollard, 2007).  

The origin of tumor-associated macrophages is not entirely understood. The most 

probable source of macrophages are recruited bone marrow (BM) monocytes (Wynn et 

al., 2013), circulating Ly6C+ monocytes (Movahedi et al., 2010) or monocytes that result 

from extramedullary hematopoiesis in the spleen that can be rapidly mobilized to the 

tumor (Cortez-Retamozo et al., 2012). In the case of Lewis Lung Carcinoma (LLC) it was 

shown that BM is the primary source of monocytes that generate TAMs and that the 

spleen has only a minor contribution (Shand et al., 2014). M-CSF is a major contributing 

factor for recruitment, differentiation and survival of TAMs (Qian and Pollard, 2010). 

Ablation of M-CSF resulted in a decrease in TAMs recruitment and delayed tumor 

initiation (Chitu and Stanley, 2006; Qian and Pollard, 2010). Besides M-CSF, also 

VEGFA, chemokine (C-C motif) ligand 2 (CCL2) and GM-CSF are important factors that 

contribute to macrophage recruitment and differentiation that might act independently from 

M-CSF (Lin and Pollard, 2007; Linde et al., 2012; Qian and Pollard, 2010). M-CSF -

exposed macrophages orchestrate the “angiogenic switch” (Hanahan and Weinberg, 

2011; Lin and Pollard, 2007). In part macrophages can produce VEGF and promote 

angiogenesis, an essential feature for invasion (Lin and Pollard, 2007). A specific 

population of TAMs that is characterized by the expression of TIE2 (TIE2+ macrophages) 

is mostly aligned near blood vessels, due to the expression of  ANG2, the ligand for TIE2 

expressed in endothelial cells (De Palma et al., 2005; Mazzieri et al., 2011). Ablation of 

TIE2+ macrophages or ANG2 inhibits macrophage-vessel association and inhibits 

angiogenesis (Mazzieri et al., 2011). 

Macrophages are not only an important contributor to angiogenesis; they also help tumor 

cells to gain motility and reach circulation. The production of M-CSF by cancer cells 

stimulates macrophages to express Epidermal growth factor (EGF), which triggers the 

accumulation of cancer cells around blood vessels (Condeelis and Pollard, 2006). 

Macrophages also produce several other molecules that help tumor cell invasion and 

migration, namely Secreted Protein Acidic and Rich in Cysteine (SPARC) (increases 

tumor-cell-extracellular matrix interaction) (Sangaletti et al., 2008), cathepsin proteases 
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(matrix remodeling) (Laoui et al., 2011), and TGF-β (promotes epithelial-mesenchymal 

transition (EMT)) (Bonde et al., 2012).   

Regarding immune suppression, TAMs are able to express HLA-E and HLA-G that can 

inhibit NK cells and a subset of T cells after the ligation to NKG2 (Borrego et al., 1998). 

HLA-E and HLA-G inhibit the migration of NK cells to the lymph node and consequential 

IFNγ production and CD8+T cell activation (Kelly et al., 2002). TAMs also produce 

enzymes, chemokines and cytokines that can directly suppress CD4+ and CD8+ T cells or 

indirectly, through the recruitment of natural Tregs to the tumor microenvironment or 

induction of CD4+ regulatory fraction. The production of TGFβ and IL-10 by TAMs in 

different pathological scenarios was shown to upregulate Foxp3 in CD4+ cells, to suppress 

NK and CD8 T cells, further contributing to immunosuppression and Treg activation 

(Adeegbe and Nishikawa, 2013). Another mechanism for T cell suppression is the 

depletion of L-arginine in the tumor microenvironment. M1 macrophages (pro-

inflammatory) express nitric-oxide synthase (iNOS) while M2 macrophages (anti-

inflammatory) are hallmarked for the expression of Arginase-1 (Biswas and Mantovani, 

2010; Sica and Mantovani, 2012). Arginase-1 produced by TAMs metabolizes L-arginine 

to urea and L-ornithine, depleting L-arginine from the tumor microenvironment.  L-arginine 

is required for T cell function and CD3 re-expression, so its depletion by TAMs results in 

the suppression of T cell function (Rodriguez et al., 2003).  

As addressed before, macrophages can be diverse in their function and they usually 

reflect upon the environment where they are localized.  M1/M2 macrophage 

nomenclature, based on macrophage function is well established and characterized both 

in vitro and in vivo. In the tumor microenvironment TAMs were suggested to be either M1 

(tumor killing) or M2 (tumor helper) (Martinez et al., 2009; Martinez et al., 2008; Sica et al., 

2008). Although this dichotomy is well established, in vivo the situation is far more 

complex. In fact macrophages in the tumor microenvironment might be exposed to many 

different stimuli and play many different roles, leaving the possibility open for the 

existence of several subtypes of macrophages.  Actually, macrophages in the tumor 

microenvironment are able to express both M1 and M2 markers (Qian and Pollard, 2010).  

These findings leave the door open to characterize and discover new subpopulations of 

macrophages within the tumor microenvironment.   
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4.3 Iron and cancer 

 

Iron, being both toxic and essential, can be implicated in the onset of cancer and can also 

contribute to tumor proliferation and sustainability. Excessive iron can lead to the 

formation of ROS. ROS not only damages lipids and proteins, but also causes oxidative 

damage to DNA, which can be mutagenic (Dizdaroglu and Jaruga, 2012). Iron is a nutrient 

required for cell proliferation and for cell viability and cancer cells are not an exception. 

Iron homeostasis is altered in most cancer patients. As a result of cancer-related 

inflammation, cancer patients show impairment in iron homeostasis and develop anemia 

of cancer. The prevalence of anemia of cancer is around 40%, (when using a cutoff value 

of Hb of 12 g/dL for both men and women), as observed in the European Survey on 

Cancer Anemia (ECAS) in almost 15,000 cancer patients with different stages of disease 

and treatment (Ludwig et al., 2004). As seen in anemia of inflammation, the production of 

inflammatory cytokines such as IL-6 might have an impact in hepcidin production and 

macrophage iron retention, which leads to insufficient iron stores to be used in 

erythropoiesis (Rivera et al., 2005). Other factors that might contribute to anemia of 

cancer include: a blunted response to erythropoietin (EPO); bone marrow infiltration by 

the tumor or bone marrow suppression resulting from anticancer treatment (such as 

surgery, chemotherapy, or radiotherapy); and increased loss of RBC caused by blood loss 

from the tumor, surgery, or hemolysis (Schrijvers, 2011).   

Iron was shown to be important for tumor cell proliferation; in fact, clinical and population-

based studies collectively support a model in which increased levels of iron in the body 

are associated with increased cancer risk and increased tumor growth (Torti and Torti, 

2013). The involvement of iron in processes related to DNA replication, maintaining 

genomic integrity (including DNA repair) and epigenetic regulation contribute both to the 

tumor-initiating and to the tumor-promoting propensities of iron. Iron is a co-factor for 

ribonucleotide reductase, an enzyme essential for cell viability and proliferation, that 

catalyses the rate-limiting step in DNA synthesis, the reductive conversion of 

ribonucleotides to deoxyribonucleotides. Iron was also implicated in the activation of 

several signaling pathways that are important for tumor growth and metastasis, namely 

p53, Wnt, NF-κB, Hypoxia-inducible factor (HIF), cyclins and cell cycle regulation, AKT, 

and epidermal (EGF) and vascular endothelial growth factor (VEGF) (Torti and Torti, 

2013; Zhang and Zhang, 2015). 

The expression of iron related genes and proteins, has been also associated to cancer. 

Ferroportin, the only known iron exporter, was associated with prognosis of breast cancer. 
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Ferroportin expression analysis revealed that invasive subtypes of breast cancer express 

low levels of ferroportin, when compared to low grade tumors and benign tissue (Pinnix et 

al., 2010). Abnormal expression of TfR1 and Ferritin-H were observed in lung cancer and 

breast cancer, as well as increased levels of circulating hepcidin (Kukulj et al., 2010; 

Orlandi et al., 2014; Xiong et al., 2014), All these proteins are potential clinical predictors 

for the prognosis of a variety of cancers (Orlandi et al., 2014; Wu et al., 2004; Zhang and 

Zhang, 2015).  

The fact that iron is essential, led to research of iron chelation therapies for cancer. 

Several iron chelators, such as desferrioxamine (DFO), deferiprone and deferasirox are 

used clinically for the treatment of patients with iron overload disorders. The avidity of 

cancer cells for iron has led to the question of whether iron chelators could be used in 

cancer therapy. Two broad strategies have been explored. The first has been to use iron 

chelators to deplete cancer cells of iron. A second, more recent strategy has been to use 

chelators that facilitate the redox cycling of iron to generate cytotoxic ROS within tumors. 

Both approaches are currently being pursued (Torti and Torti, 2013). 

 

4.4 Lung cancer: the role of iron and macrophages 

 

Cancer is a leading cause of death worldwide, accounting for 8.2 million deaths in 2012 

(according to the World Cancer Report 2014 by the World Heatlh Organization). Lung 

cancer is the most common cause of cancer death with 1.59 million deaths in 2012. To 

date, no effective treatment is available and the five-year survival rate remains less than 

15%, despite advances in diagnosis and treatment. Numerous patients suffer from 

recurrence and metastasis following surgery, chemotherapy and radiotherapy (Goldstraw 

et al., 2011). 

In terms of histological classification, lung cancer can be subdivided in two major 

categories: non-small-cell lung carcinoma (NSCLC) and small-cell lung carcinoma 

(SCLC).  The three main subtypes of NSCLC are adenocarcinoma, squamous-cell 

carcinoma and large-cell carcinoma (although several subtypes are described and 

characterized inside each NSCLC subtype). The classification of the stage of lung cancer 

uses the Tumor Node Metastasis (TMN) classification. This is based on the size of the 

primary tumor, lymph node involvement, and distant metastasis (Mirsadraee et al., 2012).  

The role of tumor associated macrophages in the progression of NSCLC is not clear. Most 

of the studies support the idea that M1 macrophages are associated with good prognosis. 
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In a study where NSCLC patients with prolonged survival were compared to those with 

poor survival, it was demonstrated that the presence of M1 macrophages (defined as 

CD68+ and by either HLA-DR+, iNOS+ or TNFα+) was significantly increased in the 

extended survival group compared to those with poor survival (Ohri et al., 2009). In the 

extended survival group, M1 islet density was significantly increased compared with M2 

density, 70% of islet macrophages were positive for M1markers versus 38% for M2 

markers (Ohri et al., 2009). These findings were confirmed in another study where NSCLC 

patients with extended survival had significantly higher tumor islet densities of M1 

macrophages (defined as CD68+HLA-DR+) (Ma et al., 2010).  

About 75% of lung cancers occur in smokers while 25% of lung cancer cases worldwide 

are not attributable to tobacco smoking (Sun et al., 2007). Iron accumulation in alveolar 

macrophages due to smoking is a common observation (Corhay et al., 1992). A study 

performed using the Broncho-alveolar lavage (BAL) of smokers showed that compared 

with the lower lobes, upper lobes of the lungs of smokers contain higher extracellular 

concentrations of ferritin-bound iron and decreased concentrations of transferrin. Also, 

compared with nonsmokers, lobes of smokers contained higher concentrations of iron and 

ferritin. This distribution of lung iron and iron-binding proteins may promote oxidative injury 

in the upper lobes of smokers (Nelson et al., 1996). It is not known if iron accumulation in 

alveolar macrophages or iron in the BAL contributes for the onset of lung cancer.  

Some studies connected lung cancer and iron. Iron oxide was shown to increase the 

incidence of primary lung tumors in mice (Campbell, 1940).  Also, subjects with high body 

iron stores, in particular a transferrin saturation level exceeding 60%, were shown to have 

an increased 1.5 relative risk to develop lung cancer when compared with subjects with 

lower levels (Knekt et al., 1994).  Studies with human H1299 lung cancer cells revealed 

that the overexpression of the IRP1 impaired the capacity of the cells to form solid tumor 

xenografts in nude mice. IRP1 overexpression increased the expression of TfR1, but did 

not affect ferritin and ferroportin expression (Chen et al., 2007). In a similar setting, the 

induction of IRP2 stimulated the growth of tumor xenografts, while the depletion of IRP2 

impaired tumor growth when compared to control mice (Maffettone et al., 2010).These 

data demonstrate an apparent tumor suppressor activity of IRP1 and pro-oncogenic 

activity of IRP2 and provide a direct regulatory link between the IRE/IRP system and 

human lung cancer.   

A different study analyzed the expression of transferrin receptor 1 (TfR1) and ferritin in 

tumor tissue, tumor stroma, and normal lung tissue of NSCLC patients. The expression of 

TfR1 and ferritin in tumor cells was observed in 88% or 62% of patients, respectively while 
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tumor stroma was TfR1 negative and sporadically ferritin positive. A correlation between 

TfR1/ferritin expression in tumor tissue and survival was not observed. At the time of 

diagnosis more than 50% of the patients had anemia and significantly elevated serum 

ferritin. Iron content of serum ferritin (ICF) was below the reference values in 90% of 

patients. (Kukulj et al., 2010). The authors concluded that elevated serum ferritin in sera of 

NSCLC patients may be the result of inflammation and oxidative stress, rather than body 

iron overload. Higher expression of ferritin in tumor tissue may be the consequence of 

local toxicity induced by environmental factors (Kukulj et al., 2010).  

A recent study showed that miR-20a regulates ferroportin expression post-transcriptionally 

in NSCLC human cells lines and that low ferroportin expression stimulated proliferation 

and colony formation. (Babu and Muckenthaler, 2016). Another interesting study revealed 

that subtoxic concentrations of iron, which specifically induce cellular hydroxyl radicals, 

affected cancer stem cell-like subpopulation of human non-small cell lung carcinoma 

(NSCLC). Iron-exposed NSCLC human cell lines (H460 and H292) exhibited an increase 

ability to form cancer stem cell spheroids and to proliferate, migrate and invade 

(Chanvorachote and Luanpitpong, 2016).  

All these studies target the cancer cell itself, and the impact of iron in cancer cell 

proliferation or survival. So far, the role of iron in the tumor microenvironment of lung 

cancer, namely in the polarization and function of tumor-associated macrophages, was 

not addressed.  

 

4.5 The Lewis Lung Carcinoma model 

 

In order to study the impact of iron on tumor growth and cancer related inflammation, we 

used the Lewis Lung Carcinoma (LLC) model. The Lewis Lung Carcinoma cell line was 

initially described by Dr. Margaret R. Lewis in 1951. This cell line originated 

spontaneously as a carcinoma of the lung of a C57BL/6 mouse. The LLC cell line is a 

well-established mouse cancer model that is commonly used as a transplantable 

malignancy model in syngeneic C57BL/6 mice. LLC has been widely used as a model of 

metastasis and to study the mechanisms of cancer chemotherapeutic agents.  

The use of this model has several advantages. So far, LLC is the only widely used 

syngeneic model of NSCLC (Kellar et al., 2015). The major advantage is that LLC cells 

can be injected in an immunocompetent murine background, such as C57BL, and immune 

responses can be evaluated as well as the monitoring of tumor growth. In addition, 
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because the LLC model is syngeneic, tumor microenvironment can be accurately 

analyzed in the animal model.  

LLC cells can be injected subcutaneously (sc), intravenously (iv) and intraperitoneally (ip). 

In the work presented in Chapter II of this thesis, LLC cells were injected mainly 

subcutaneously. Tumors are easy to remove, dissect and analyze. With a subcutaneous 

injection of 1x106 cells, LLC tumors are palpable at day 7 after inoculation and have an 

average weight of 0.3 g at day 11 after inoculation. At this point, micro-metastasis cannot 

be detected, although the process of metastasis had already begun (Srivastava et al., 

2014). 

As a limitation, since this is a murine system, findings and evaluations may not be 

completely transferable to human conditions. Also, subcutaneous injections might not 

reflect tumor development in a real organ. Nevertheless, this system was successfully 

used as a preclinical model for Navelbine evaluation in vivo (a chemotherapy drug used in 

the treatment of NSCLC), prior to its implementation in clinical trials (Papageorgiou et al., 

2000), showing that this is a valuable model for the research of possible therapies against 

lung cancer.  

 

4.6 Inflammation and iron: from infection to cancer 

 

It is evident that iron and immune system are intrinsically connected. Evidences from iron 

overload disorders and infections show us that there might be a loop regulation between 

iron and immunity: on the one hand, expression of iron related genes and proteins in 

immune system cells can contribute to iron regulation and homeostasis (reviewed by 

(Porto and De Sousa, 2007)); on the other hand, inflammation and host-pathogen 

interaction affect the expression of iron genes and proteins and subsequent regulation of 

iron homeostasis (reviewed by (Nairz et al., 2014)).  

Mutations in HFE, a MHC I molecule, leads to iron overload, a disease known as 

hereditary hemochromatosis (HH).  The majority of HH patients are homozygous for the 

C282Y mutation in HFE. This mutation impairs the interaction of HFE with β2-

microglobulin resulting in the absence of HFE expression at cell surface (Feder et al., 

1996). Besides iron overload, HH patients show alterations in the populations of immune 

cells. HFE defect reduces hepcidin circulation and as consequence, macrophages are 

iron depleted. HFE expression was shown to be crucial for the iron export in macrophages 

(Drakesmith et al., 2002; Montosi et al., 2000). Monocytes isolated from HH patients 
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control better the intracellular replication of M. tuberculosis (Olakanmi et al., 2002). In Hfe 

-/- mice, macrophages control intracellular Salmonella Typhiumrium better than 

macrophages from Hfe WT mice (Nairz et al., 2009). In response to LPS, Hfe -/- 

macrophages produce reduced amounts of TNF and IL-6 which has been attributed to 

impaired TLR4 dependent signaling (Wang et al., 2009). In a similar way, LPS stimulation 

of monocytes of HH patients stimulated with LPS also decreased the production of TNFα 

(Gordeuk et al., 1992).  

Patients with β-Thalassemia develop iron overload as a result of blood transfusions and 

become more susceptible to infections (Wang et al., 2003). Iron overload patients are, in 

general, more susceptible to infections with pathogens that are iron-sensitive and might 

benefit from increased circulating or tissue iron levels (Arezes et al., 2015; Valenti et al., 

2011). The control of ferroportin/hepcidin axis was shown to be crucial in the process of 

infections in order to limit the availability of iron to pathogens (see chapter “1.3 The 

hepcidin/ferroportin axis”).  

Several other molecules were implicated in having a dual effect in immunity and iron 

regulation. Nitric oxide (NO) was shown to have both a role in immunity and iron control. 

NO has a strong affinity for iron and can activate IRP1 RNA-binding activity (Kim and 

Ponka, 2003; Weiss et al., 1993).  Lipocalin-2 (LCN2) is produced by several cells in the 

body including neutrophils and macrophages. It plays an important role in scavenging iron 

and restricts its availability to pathogens. Besides being an important player in infections 

and iron metabolism, it is also an important molecule for cancer development.  In 

malignant cells, its proposed functions range from inhibiting apoptosis (in thyroid cancer 

cells), invasion and angiogenesis (in pancreatic cancer) to increasing proliferation and 

metastasis (in breast and colon cancer). Further, it stabilizes the proteolytic enzyme 

matrix metalloprotease-9 (MMP-9) by forming a complex with it, and thereby prevents its 

autodegradation (Chakraborty et al., 2012). Lactoferrin, an iron scavenger produced by 

macrophages and neutrophils, was shown to stimulate the proliferation and differentiation 

of T lymphocytes into the Th1 or Th2 phenotypes (reviewed by (Legrand and Mazurier, 

2010)). In fact, iron might play an important role in activation and proliferation of immune 

system cells. Iron and heme complexes were detected in monocyte culture supernatant’s 

after erythrophagocytosis. Culture of activated T-cells  with this supernatant cultures  was 

enough to increase T-cell proliferation (Costa et al., 1998). 

All this evidences show that here is a strong connection between iron regulation and 

immunity, especially in case of infections. Nevertheless, iron and immune system might 
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also be in the interface of other pathologies characterized by sterile inflammation. Cancer 

is characterized by a strong inflammatory response and alteration in iron levels.  

Macrophages play an important role in iron recycling and iron homeostasis, but 

macrophages are also a big component of the tumor microenvironment. A role for iron 

recycling in the tumor microenvironment has been suggested, since M2 macrophages 

were describe as prone to iron release and turn-over. This is especially due to the 

observation that M2 macrophages express less ferritin and more ferroportin when 

compared to M1 macrophages: lower iron storage and higher iron export. As mentioned 

before, this assumption suggests an iron-feed mechanism from macrophages to tumor 

cells. A better understanding on how iron can affect the tumor microenvironment and 

macrophage function could be an interesting and important step to explore and provide 

new therapies for cancer (de Sousa, 2011). 

Transferrin bound iron and heme iron, are likely to be the most probable sources of iron 

found in tumors.  Nevertheless, the occurrence of angiogenesis might facilitate the 

recruitment of inflammatory cells but might also trigger the extravasation of red blood cells 

into the tumor microenvironment which might break into hemoglobin and heme. 

Macrophages, as professional iron-recycling cells, are the first candidates that would 

uptake RBC, hemoglobin and heme, and recycle iron. It is not clear if this process could 

benefit cancer cells.   

The fact that iron can be modulated and modulate inflammation (see chapter “4.3 Iron and 

the immune system”) strengthens the concept that in the tumor microenvironment might 

be an active role for iron, not only by supporting cancer cells but also by modulating the 

immune response. 
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5. Question and Aims 

 

Different subtypes of macrophages express different subset of genes and proteins related 

to iron handling (Recalcati et al., 2010), storage and recycling. In addition, heme activates 

innate immunity by recruiting and activating neutrophils and macrophages (Dutra and 

Bozza, 2014; Larsen et al., 2012). Macrophages are important for iron recycling and 

erythropoiesis but are also fundamental players in innate immunity and cancer. Taking all 

this knowledge in consideration, we asked the question:  

 

What is the effect of heme and iron in macrophage plasticity, activation and 

function? 

To address this question we aimed to: 

1. Study the effect of heme and iron in macrophage polarization in vitro; 

 

2. Understand how macrophage polarization is modulated in a model of hemolytic 

disease;  

 

3. Understand how heme, iron and RBC affect the tumor microenvironment and 

function of tumor-associated macrophages; 

 

We expected to better understand how heme and iron can influence macrophage 

plasticity in order to promote better therapy for the diseases studied. In order to reply to 

this question, the research work presented in this thesis is divided between two chapters. 

The research work presented in “Chapter I” consists of a published research article that 

shows how heme and iron affect macrophage polarization in the context of hemolytic 

disorders. The research work presented in “Chapter II” consists of a manuscript (in 

process of submission) that explores the role of heme and iron in the context of the tumor 

microenvironment, namely in the plasticity of tumor-associated macrophages. 
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ABSTRACT 

Macrophages play a critical role in the tumor microenvironment. Here, we investigate 

whether leakage of red blood cells from the vasculature, and/or consequent release of 

heme and iron due to hemolysis, affect the inflammatory response of tumor-associated 

macrophages (TAMs) and tumor growth. We show that iron accumulates preferentially in 

TAMs in tumor samples from patients with non-small cell lung cancer and in samples of 

experimental murine lung tumors, whereas cancer cells are relatively iron spared. Iron 

loaded macrophages are located close to red blood cell extravasation sites in the tumor 

microenvironment and are enriched at the periphery of the tumor. Hemorrhagic areas in 

tumors do not only show increased numbers of iron loaded TAMs but also enhanced 

infiltration of myeloid cells. We observed an enhanced inflammatory response, with 

increased expression of cytokines and chemokines responsible for macrophage and 

neutrophil recruitment, namely Cxcl1, Cxcl2, Csf1 and Csf2. Co-culturing of macrophages 

with tumor cells or with conditioned media (CM) from tumor cells polarizes macrophages 

towards an M2-like phenotype. This phenotype can be shifted to a M1-like inflammatory 

phenotype by applying different sources of iron (Ferric Nitrilotriacetate (FeNTA), heme or 

hemolytic RBC). Taken together, we have identified a novel subpopulation of TAMs, 

whose phenotype is characterized by iron loading. We propose that iron and heme in 

addition to being important for tumor growth, also modulate the immune response, 

macrophage plasticity and cytokine production in the tumor microenvironment.  

INTRODUCTION 

The tumor microenvironment is characterized by high cellular complexity that alters  tumor 

progression (1).  It includes fibroblasts, stroma, blood vessels and infiltrates of immune 

cells. Tumor-associated macrophages (TAMs) are a major component of the tumor 

microenvironment since they can represent up to 50% of the mass of infiltrated cells (2).  

Macrophages show high plasticity, reflected on their capacity to integrate diverse signals 

from the microenvironment and to acquire distinct phenotypes (3). Macrophage functions 

and phenotype depend mainly on their origin and the diversity of stimuli they encounter in 

different niches (4, 5). 

According to their responses to Th1 and Th2 cell derived cytokines, macrophages were 

subdivided in two classes: M1 macrophages (classical activation) and M2 macrophages 

(alternative activation) (6-9). M1 macrophages are polarized in the presence of pro-

inflammatory stimuli such as Interferon-gamma (IFNγ), tumor necrosis factor alpha (TNFα) 

and Toll-like Receptor 4 (TLR4) adjuvants such as lipopolysaccharide (LPS).  M2 
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macrophages are polarized in the presence of interleukin (IL)-4, IL-13 and IL-10. This 

dichotomy suggests that TAMs could be either tumor killing (M1) or tumor promoting (M2) 

(10). Several studies classified TAMs as M2-like macrophages due to their ability to 

sustain tumor cell proliferation and invasion (11, 12).  Regarding iron related functions, M2 

macrophages are linked to iron recycling and high iron turn-over when compared to M1 

macrophages.  M2 macrophages express high levels of cluster of differentiation (CD)163, 

Heme Oxygenase-1 (HO-1) and Ferroportin and low expression levels of Ferritin (13), 

suggesting that M2 macrophages might function as iron donors to cancer cells. 

Iron is important for tumor cell proliferation; in fact, clinical and population-based studies 

collectively support a model in which increased iron levels in the human body are 

associated with an increased cancer risk and increased tumor growth (14). Tumors take 

up iron via transferrin-bound iron, which supports cellular functions such as DNA 

synthesis (15).  

Occurrence of angiogenesis may facilitate the recruitment of inflammatory cells but will 

also trigger the extravasation of red blood cells (RBC) into the tumor microenvironment. 

These in turn may release hemoglobin and heme upon hemolysis. Each RBC contains 

around 1.2x109 molecules of heme, and each heme moiety has one ferrous ion within the 

center of the porphyrin ring (16). Thus RBC may serve as a significant iron source for 

tumors.  

An important function of macrophages is the recycling of iron. Thus, it is possible that 

macrophages in the tumor microenvironment would exercise such a function locally.  

Recently we demonstrated that various sources of heme (hemolytic RBC, free heme) and 

iron activate macrophages to differentiate towards an M1-like proinflammatory phenotype, 

which is hallmarked by the production of inflammatory cytokines (TNFα, IL-1β and IL-6) 

and reactive oxygen species (ROS). We further demonstrated that already polarized M2 

macrophages can shift towards a pro-inflammatory M1-like phenotype in the presence of 

heme and iron (17). Additional studies also linked iron accumulation and macrophage 

plasticity, supporting the idea that iron drives macrophages towards a pro-inflammatory 

phenotype (18, 19). 

Inflammation regulates the expression of iron-related genes and proteins and thus affects 

iron homeostasis. As a result of cancer-related inflammation, cancer patients show 

impairment of systemic iron homeostasis and develop a form of anemia (20). Anemia of 

cancer may result from the stimulation of hepatic transcription of hepcidin by circulating 

cytokines, such as IL-6, IL-1α and IL-1β (21-23). Hepcidin binds and degrades the iron 

exporter ferroportin in macrophages, causing intracellular iron sequestration, decreased 

plasma iron levels and anemia due to decreased iron availability. 
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So far, the consequences of iron availability for the composition of the tumor 

microenvironment and for TAMs polarization have not been studied. Based on the findings 

that inflammation disturbs iron homeostasis and heme and iron sources can influence 

macrophage polarization and function (17), we now explored whether RBC extravasation 

as well as heme and iron release from RBC can affect the composition of the tumor 

microenvironment. We focused our analysis on how heme and iron can affect the 

plasticity of tumor-associated macrophages, and how tumor related-inflammation affects 

systemic iron homeostasis in a mouse model of Lewis Lung Carcinoma (LLC). 

RESULTS 

Iron accumulates in a subset of tumor-associated macrophages, but not in cancer 

cells in human non-small cell lung cancer  

To explore the distribution of iron in the tumor microenvironment, Perls’ staining was 

performed on 19 sections from human non-small cell lung cancer (NSCLC). Table 1 

summarizes the clinical information available from this cohort of patients (age, gender, 

survival, histology, tumor grade, smoking history and presence of RBC) grouped by iron 

staining. Histology slides positive for Perls’ staining (=blue) were considered as “iron 

positive” (n=11) while the slides negative for Perls’ staining were considered as “iron 

negative” (n=8). We observed that, when iron is detected, it is localized mainly in the 

periphery of tumors. Iron positive cells accumulate near areas where RBC are visible (10 

patients out of 11). RBC were identified according to their morphology and light 

pink/orange coloration after Perls’ staining (Figure 1A). In general, cancer cells appear to 

be negative for iron staining, while some infiltrating cells are clearly positive. Since 

macrophages are the prime candidates to phagocytose RBC and sequester iron in the 

tumor microenvironment, we performed immunostaining for the macrophage/monocyte 

marker, CD68. Iron staining strongly correlates with positive immune staining for CD68, 

suggesting that macrophages accumulate iron in the tumor microenvironment (Figure 1B). 

To better understand if iron accumulates in tumor-associated macrophages, we isolated 

lymphocytes from fresh tumors tissue (lung adenocarcinoma) and separated them 

according their iron content using magnetic isolation (see “Material and Methods”). Table 

2 summarizes the information regarding the fresh lung adenocarcinoma samples. Cells 

obtained within the “magnetic” fraction (cells that respond to a magnetic field due to their 

high iron content) stain for iron accumulation and are additionally positive for CD68 

staining. This clearly demonstrates that iron accumulates in macrophages associated with 

adenocarcinoma. Cells in the flow through (cells that don’t respond to the magnetic field), 

are negative for iron staining but some cells are positive for CD68, showing that in 
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addition to iron containing macrophages, an iron negative population of macrophages co-

exists (Figure 1C). To explore whether iron accumulation in macrophages might be 

associated with specific areas in the tumor (e.g. the tumor center or the invasive front) we 

performed iron staining on tissue micro-arrays (TMAs) from 116 patients with lung cancer. 

From each patient, three areas of the original histology block were represented:  normal 

lung, tumor center or the invasive front (Figure 1D).  From the 116 patients analyzed, 38 

stained positively for iron at least in the tumor center and/or the invasive front. Table 3 

summarizes the information about this cohort of patients, separated in two groups: iron 

positive and iron negative. Quantification of iron staining revealed that signals are 

significantly higher in the invasive areas of the tumor, compared with normal lung and 

tumor center (Fig. 1E). Although these findings suggest that iron accumulation in TAMs 

might be connected to angiogenesis and RBC leakage, we cannot exclude that 

environmental factors contribute to iron loading in macrophages. For example, it was 

demonstrated that alveolar macrophages can accumulate iron due to cigarette smoking 

(24, 25).  Since 100% of the patients analyzed have a smoking history, it is not clear 

whether iron loading in macrophages is only due to micro-bleedings and RBC 

extravasation in the tumor microenvironment. Rather it may be a mixture of smoking and 

hemorrhage. Nevertheless, some patients do not show iron deposition in macrophages in 

spite of their smoking history. 

Table 1. Patient characteristics: histology slides 

Variable Iron positive (n=11) Iron negative (n=8) 

Age (years, mean ± SEM) 64,00 ± 2,676 55,13 ± 3,777 

Gender (male:female) 9:2 7:1 

Survival (live:dead (%)) 4:7(57) 1:7(14) 

Histology: number (%) 

Adenocarcinoma 

Squamous  

Large cell 

 

4 (36) 

6 (55) 

1 (9) 

 

4 (50) 

4 (50) 

0 

Tumor grade: number (%) 

1 

2 

3  

 

1 (9) 

4 (36) 

6 (55) 

 

0 

4 (50) 

4 (50) 

Smoker: number (%) 11 (100) 8 (100) 

Presence of RBC  

near iron positive cells 

(yes:no) 

10:1 ------- 
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Table 2. Patient characteristics: fresh lung tumors  

Variable 

Patient 

1* 2 3 4 

Age  73 54 74 69 

Gender  Female Female male male 

Histology Adenocarcinoma Adenocarcinoma Adenocarcinoma Adenocarcinoma 

Tumor grade 2 3 2 2 

Smoker yes yes yes yes 

*cytospin slides from this patient are represented in Figure 1C 

 

Table 3. Clinicopathological characterization of patients (n=116) from TMAs of non-

small cell lung carcinoma 

Variable 

Iron positive 

(n=38) 

Iron negative (n=78) P-value 

Age (years, mean ± SEM) 61,65 ± 1,364 64,82 ± 0,8501 0,0453 (*) 

Gender (male:female) 28:10 61:17  

Tumor size (cm, mean ± SEM) 3,712 ± 0,3292 4,230 ± 0,2146 0,1823 (ns) 

Histology: number (%) 

Adenocarcinoma 

Squamous  

Large cell 

 

18 (47) 

20 (53) 

0 

 

28 (36) 

45 (58) 

5(6) 

 

Tumor grade: number (%) 

1 

2 

3  

 

0 

10 (26) 

28 (74) 

 

1 (1) 

30 (38) 

47 (66) 

 

Survival (live:dead, (%))  17:21(80) 29:49(60)  
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Figure 1. Tumor-associated macrophages are positive for iron staining and accumulate near 

RBC. (A) Representative examples of Perls’ staining of two different patients with lung 

adenocarcinoma. Blue staining represents iron. Red blood cells show an orange coloration. (B) 

Representative examples of Perls’ staining and anti-CD68 immunostaining in lung 

adenocarcinoma. Blue staining represents iron and brown staining represents CD68 positive cells. 

(C) Perls’ staining and anti-CD68 immunostaining after magnetic isolation. Blue staining represents 

iron staining and red staining anti-CD68 staining. Results are representative of 4 patients. (D) 

Example of Perls’ staining of TMAs of non-small cell lung carcinoma. The upper panel corresponds 

to normal lung, tumor center and invasive front of a patient with squamous cell carcinoma. The 

lower panel corresponds to normal lung, tumor center and invasive front of a patient with 

adenocarcinoma (E) Quantification of TMAs’ Perls’ staining in normal, center and invasive areas.  

Quantification of iron staining was performed using the Image Pro-Premier 3D software. The 

software calculated the area of pixels corresponding to blue staining (iron staining) (n=38 patients). 

Data are shown as mean ± SEM.  *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.  

 

Iron loaded macrophages are present in the Lewis Lung Carcinoma mouse model 

To better define the source of iron in TAMs (e.g. RBC or environmental factors) we next 

analyzed a mouse model of Lewis Lung Carcinoma (LLC). 

 LLC is a widely used syngeneic mouse model for NSCLC (26). The fact that LLC can be 

injected in an immunocompetent murine background, such as C57BL, makes this mouse 

model an important tool to study tumor-related inflammation. 15 days after LLC injection 

(1x106 tumor cells were injected subcutaneously (sc) in the flanks of mice), mice were 

sacrificed and tumors and organs were removed for further analysis.  Consistent with 

findings in human non-small cell lung carcinomas, tumor cells were negative for iron 

staining. Cells that stained positive for Perls’ staining with DAB enhancement were 

localized within infiltrating cells near the periphery of LLC tumors. Hematoxylin and eosin 

(H&E) staining in consecutive slides revealed that RBC in the proximity of iron loaded 

cells (RBC stain bright pink in H&E staining), suggesting that iron loaded TAMs are 

localized in areas where RBC extravasation occurs (Figure 2A). We also injected 1x105 

LLC cells intravenously (iv) in the tail vein. In intravenous injections, LLC cells colonize the 

lungs. Mice were sacrificed 15 days after injection and lungs were removed  and stained 

for iron As observed in subcutaneous tumors, when iron loaded macrophages were 

detected, they were also associated with areas of RBC extravasation. Tumor cells of lung 

colonies are negative for iron staining (Figure 2A). To better understand the growth 

dynamics of LLC sc tumors, we followed tumor growth by measuring tumor weight and the 

number of infiltrated cells in a time dependent manner. Tumors were analyzed at day 7, 

11 and 15. We observed an exponential tumor growth after day 7 that also correlated with 
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an increase in the number of infiltrated cells in the tumors (Figure 2B). Iron loaded 

macrophages were detected in the tumor at day 11 and day 15 after LLC injection (Figure 

2C). These data show that iron loaded TAMs not present since the beginning of tumor 

development, but rather appear with increase in tumor growth and probably with 

angiogenesis.  
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Figure 2. Iron parameters are altered in tumor bearing mice. (A) Representative examples of 

Perls’ staining with DAB enhancement in LLC tumors. Tumors were removed 15 days after 

subcutaneous (sc) (representative of 10 tumors) or intravenous (iv) injection (LLC cells colonize the 

lung after iv injection, n=3 mice). Brown staining represents iron accumulation in macrophages 

(black arrows show examples of iron loaded macrophages). Consecutive slides were stained with 

Hematoxylin & Eosin (H&E) demonstrating a co-localization of RBC with iron loaded macrophages. 

RBC appear as bright pink dots after Eosin staining. (B) Tumor weight (mg) and number of 

infiltrated cells (10
4
) of LLC tumors injected subcutaneously (n=3 per time point). The total count of 

live cells was performed after lymphocyte purification. Mice were sacrificed and tumors removed at 

the indicated days after injection (day 7, 11 and 15). (C) Representative examples of Perls’ staining 

with DAB enhancement in cytospin preparations of lymphocytes purified from LLC tumors. Tumors 

were collected at day 11 after LLC injection. Brown staining represents iron. (D) Iron 

measurements in the serum (SFBC), spleen, liver and duodenum of non-injected mice (control, 

n=16) and LLC-bearing mice (LLC, n=32). Serum and tissues were collected 15 days after 

subcutaneous injection. (E) Iron measurements in the serum (SFBC) of LLC tumor-bearing mice 

injected subcutaneously (n=3 per time point). Serum was collected at the indicated days after LLC 

injection (day 7, 11 and 15). (F) Hamp1 messenger RNA (mRNA) expression in liver from control 

(n=8 mice) and LLC mice (n=14 mice) determined by quantitative RT-PCR. mRNA levels were 

normalized to Rpl19 mRNA levels . IL-6 and IL-1β levels in serum of control mice (n=5 mice) and 

LLC-bearing mice (n=8 mice). Liver tissue and serum were collected 15 days after subcutaneous 

injection.  Data are shown as mean ± SEM.  *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. 

Mice injected with Lewis Lung Carcinoma (LLC) show altered systemic iron 

parameters 

Inflammation causes the redistribution of iron to macrophages (27-29).  Since 

inflammation is a consequence of cancer, we further characterized iron regulation in LLC-

bearing mice. We compared iron levels in serum, spleen, liver and duodenum of control 

mice (non-injected) with LLC-bearing mice, 15 days after LLC sc injection. The tumor-

bearing mice showed a reduction in serum iron levels (SFBC) as well as a reduction in 

splenic and duodenal iron content (Figure 2D). The reduction of iron levels can be 

observed already at day 11 after LLC injection (Figure 2E). The hepcidin/ferroportin 

regulatory axis is crucial for the regulation of systemic iron levels (30, 31). Hepcidin, the 

major systemic regulator of ferroportin was shown to be increased in some cancers (32-

34).  Hepcidin targets ferroportin for degradation promoting iron retention in macrophages. 

We evaluated the expression of hepatic hepcidin in LLC-bearing mice, compared to 

control mice. We also quantified the levels of IL-6 and IL-1β in the serum, since these 

cytokines were shown to induce hepcidin expression.  At day 15 after LLC injection, 

hepcidin mRNA levels in the liver were not altered, suggesting that iron retention in TAMs 

and the decreased in serum iron levels are independent of systemic hepcidin. Consistent 
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with this finding, serum IL-6 and IL-1β levels were not increased in tumor bearing mice 

(Figure 2F). Thus, the reduction in serum iron levels and duodenum iron content may be 

explained by high iron requirements for tumor growth. The decrease in splenic iron 

content is unexpected and may be due to the infiltration of CD11b+/Gr1+ cells (myeloid 

cells) which are iron spared (Figure 3A-C). The population of iron recycling macrophages 

(Gr-1neg/CD11blow/F4/80high), however, was not altered (Figure 3C). Possibly the decrease 

in iron levels may be caused by a shift in the ratio between iron spared and iron loaded 

cells. In fact, Perls’ staining with DAB enhancement shows a dispersion of iron loaded 

cells in the red pulp of the spleen in LLC-bearing mice when compared to control mice 

(Figure 3B). The expression of ferroportin was detected both in WT as well as in LLC-

bearing mice, suggesting that the iron recycling and export capacity of splenic 

macrophages is not affected by LLC-derived inflammation (Figure 3B). We also observed 

that the infiltration of myeloid cells in the spleen causes an increase in splenic weight 

(Figure 3D).  The analysis of splenic macrophages (Gr-1neg/CD11blow/F4/80high) revealed 

an increase in the expression of CD206 and a decrease the expression of major 

histocompatibility complex (MHC) II, suggesting that tumor-derived factors can also affect 

the polarization of distant tumor-site macrophages (Figure 3E). We conclude that the 

alteration in iron parameters is likely due to tumor cells growth and expansion of myeloid 

cells, rather than a consequence of increased hepcidin expression. 
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Figure 3. Analysis of spleens of control mice and LLC-bearing mice. (A) Gating strategy used 

to analyze the splenic populations from control mice (non-injected) and LLC-bearing mice (LLC). 

Analysis was performed at day 15 after injection. (B) Perls’ staining with DAB enhancement and 

anti-ferroportin staining in spleen from control and LLC-bearing mice. Brown staining in “Perls’+ 

DAB staining” represents iron staining.  Red staining represents ferroportin expression. Samples 

are representative of 4 different mice in each group. (C) Frequency of CD3
+
, CD19

+
 and CD3

-

/CD19
-
 (double negative cells) relative to CD45.2 cells (total number of leukocytes) in control and 

LLC-bearing mice (n=8 mice per group). Frequency of Gr-1+ cells (gated as CD11b
+
/Gr-1

+
); 

CD11b+ cells (gated as CD11b
+
/Gr-1

-
) and F4/80+ cells (gated as Gr-1

neg
/Cd11b

low
/F4/80

high
) 

relative to CD45.2 cells (total number of leukocytes) in control and LLC-bearing mice (n=8 mice per 

group). (D) Spleen weight in control mice and LLC-bearing mice (n=8 mice per group). (E) Analysis 

of the expression of CD206, CD14 and MHC II in CD11b+ cells (gated as CD11b
+
/Gr-1

-
) and 

F4/80+ cells (gated as Gr-1
neg

/Cd11b
low

/F4/80
high

)  in the spleen (n=8 mice per group), expression 

is shown as geometric mean. Data are shown as mean ± SEM.  *p < 0.05, **p < 0.01, ***p < 0.001, 

and ****p < 0.0001.  
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Tumor-associated macrophages of LLC lack the expression of ferroportin  

We next focused our attention on the iron-loaded macrophages within the tumor 

microenvironment by sorting CD11b+/ Gr-1-/F4/80+ cells from tumors (gating strategy is 

shown in Figure 4). Iron loaded cells were contained within this faction and not present in 

the remaining cells (data not shown). Magnetic isolation separated TAMs into two 

populations: iron negative macrophages (“Fe neg”) and iron positive macrophages (“Fe 

pos”) (Figure 5A).  The comparison of these two populations by quantitative RT-PCR 

showed that “Fe pos” TAMs express increased mRNA levels of Cd163 and Hmox1 (Figure 

5B). CD163 is mainly expressed in macrophages and is the scavenger receptor for 

haptoglobin-hemoglobin complexes and for hemoglobin alone (35). HO-1 is an enzyme 

responsible for heme catabolism. This reinforces the idea that “Fe pos” macrophages 

obtain their iron by phagocytosing RBC or their products. We next analyzed the 

expression of ferroportin (Fpn).  Fpn mRNA expression in TAMs is almost undetectable 

and not different between “Fe pos” and “Fe neg” TAMs (Figure 5C). To understand if iron 

retention in TAMs may be caused by the absence of ferroportin expression we cultured M-

CSF-differentiated BDMD for 24h with 50% conditioned media (CM) from LLC cells 

(DMEM was used as NT control). Interestingly, addition of CM polarized bone marrow-

derived macrophages (BMDM) towards an M2 phenotype with increased expression of 

Cd163, Arginase-1, Ccl2 (Figure 5D) and CD206 (data not shown), while the expression 

of Fpn was decreased (Figure 5D). We performed anti-ferroportin immuno-staining in 

sorted TAMs to analyze the expression of Ferroportin at the protein level. Cell 

suspensions from spleen of control mice were used as positive control and we used rabbit 

IgG isotype as negative control for background unspecific staining. Splenic macrophages 

clearly express ferroportin at the protein level, while TAMs are negative for ferroportin 

expression (Figure 5E). These data demonstrate for the first time that, although TAMs are 

M2-like, in this tumor model they don’t express ferroportin and therefore may retain iron. 

Since CM increased the expression of Cd163 we wondered if macrophages polarized by 

LLC cells would have an increased ability to take up RBC. We compared the uptake of 

RBC in BMDM either treated with CM from LLC or with DMEM (NT). BMDM polarized with 

CM were able to take up more RBC, as quantified by intracellular heme measurements 

(Figure 5F). In BMDM treated with LLC conditioned media (CM), Cd163 mRNA 

expression is further increased in the presence of RBC, when compared to CM alone 

(Figure 5G), suggesting that the upregulation of Cd163 is a consequence of iron loading 

or RBC ingestion. Treatment of BMDM in co-culture with LLC cells with aged RBC, heme 

or FeNTA, for 24h, was able to decrease CD206 (M2 marker) and increase CD14 (M1 

marker) (Figure 5H and 5I), suggesting that products of RBC degradation and subsequent 
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iron loading of TAMs drive the polarization of TAMs towards a pro-inflammatory 

phenotype. 

 

 

Figure 4. Gating strategy to select macrophages from LLC cell suspensions. Gating strategy 

used to select macrophages: after the selection of single live CD45.2 cells, the analysis of 

polarization markers was performed on CD11b
+
/Gr-1

-
/F4/80

+
 cells. 
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Figure 5. TAMs lack the expression of ferroportin. (A) Perls’ staining with DAB enhancement of 

sorted TAMs (CD11b
+
/Gr1

-
/F4/80

+
) after magnetic isolation. Two different populations were 

isolated: iron negative TAMs (Fe neg) and iron positive TAMs (Fe pos). TAMs were isolated from 

tumors 15 days after  LLC injection. (B) Cd163 and Hmox1 mRNA expression in “Fe pos” and “Fe 

neg” TAMs determined by quantitative RT-PCR (n=3 independent experiments, each experiment 

with pooled TAMs from 8 mice sacrificed 15 days after LLC injection). Cd163 and Hmox1 mRNA 

levels were normalized to Rpl19 mRNA levels. (C) Comparison of relative expression of Hmox1 

and Fpn in “Fe pos” and “Fe neg” TAMs determined by quantitative RT-PCR (n=3 independent 

experiments, each experiment with pooled TAMs from 8 mice sacrificed 15 days after LLC 

injection). Hmox1 and Fpn mRNA levels were normalized to Rpl19 mRNA levels. (D) mRNA 

expression of Fpn, Cd163, Arginase 1 and Ccl2 by quantitative RT-PCR of BMDM treated with 

control DMEM (NT) or treated with conditioned media from LLC cells (CM) for 24h. Results are 

expressed as fold change relative to control (NT). (n=9; results represent at least 3 independent 

experiments). Fpn, Cd163, Arginase 1 and Ccl2 mRNA levels were normalized to Rpl19 mRNA 

levels. (E) Anti-ferroportin staining in cytospin slides from sorted TAMs (CD11b+/Gr1-/F4/80+) and 

cell suspension from spleen of WT mice without LLC injection (used as positive control). Bright red 

staining represents ferroportin expression. Rabbit IgG was used as isotype control. Stainings are 

representative of samples from 4 different mice. Tumors were removed 15 days after LLC injection. 

(F) Heme measurements in BMDM treated with control DMEM treated (NT) and treated with 

conditioned media from LLC cells after incubation with RBC for 12h (n=3). (G) Cd163  mRNA 

expression by quantitative RT-PCR of BMDM treated with control DMEM (NT) or treated with 

conditioned media from LLC cells (CM), without (-) or with RBC (+RBC) for 24h. Results are 

expressed as fold change relative to control (NT). (n=9; results represent at least 3 independent 

experiments). Cd163 mRNA levels were normalized to Rpl19 mRNA levels. (H) Expression of 

CD206 and CD14 measured by flow cytometry in BMDM co-cultured with LLC cells, non-treated (-) 

or treated (+RBC) with aged RBC for 24h. Results are show as Mean Fluorescence Intensity (MFI) 

(n=6). (I) Expression of CD206 and CD14 measured by flow cytometry in BMDM alone (NT) or co-

cultured with LLC cells, non-treated (-) or treated with 5μM heme (+Heme) or 100μM FeNTA 

(+FeNTA) for 12h (n=6). Results are shown as MFI fold change to NT control.  Data are shown as 

mean ± SEM.  *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.  

  



RESEARCH WORK – CHAPTER II 

111 
 

Hemorrhagic areas in LLC tumors show an increased inflammatory response and 

recruitment of myeloid cells 

Iron loaded macrophages are located in hemorrhagic areas of the tumor. Thus, iron 

loading is likely to be a consequence of RBC uptake in the tumor microenvironment rather 

than of uptake of circulating iron. Heme is known to promote inflammation by activating 

macrophages, neutrophils and endothelial cells (36). We therefore dissected hemorrhagic 

areas (H) and non-hemorrhagic areas (NH) from the same tumor (Figure 6A) and 

quantified heme and Hmox1 mRNA expression as a validation for the dissection. As 

expected heme and Hmox1 levels are increased in hemorrhagic areas (Figure 6B).  In 

terms of infiltrates, H and NH areas differed in the percentage of Gr-1+ cells (gated as 

CD11b+/Gr-1+) cells, while the percentage of TAMs (CD11b+/ Gr-1-/F4/80+) is not changed 

(Figure 6C). Gr-1 (Ly-6C/Ly-6G) is expressed in neutrophils and granulocytes and 

myeloid-derived suppressor cells (MDSCs). Since heme was shown to promote neutrophil 

recruitment by increasing Cxcl1 (37, 38), we further analyze the expression of Cxcl1 and 

Cxcl2, which are chemokines known for their neutrophil and myeloid cells chemoattractant 

activity. Both of these chemokines were increased in H areas when compared to NH 

areas (Figure 6D). Csf1 and Csf2 are macrophage differentiation factors and were also 

increased in H areas (Figure 6D). Since iron positive macrophages accumulate in areas of 

RBC extravasation we checked for the expression of Cd163 and other macrophage 

markers. As expected, Cd163 was increased in hemorrhagic areas. Mmp9 which is 

produced by macrophages was also increased in hemorrhagic areas (Figure 6E). Next we 

evaluated the polarization of TAMs (CD11b+/ Gr-1-/F4/80+) (gating strategy represented in 

Figure 4) located in hemorrhagic areas. CD206 is mildly decreased whereas CD14 

expression is increased. The mRNA expression of Nos2 and the pro-fibrotic Tgfβ were 

also increased in hemorrhagic areas as well as Il-1β and Il-6. Altogether this data supports 

the evidence that RBC extravasation and breakage, as well as iron loading in 

macrophages, stimulate pro-inflammatory activity of macrophages and modulate 

inflammation in the tumor microenvironment. 
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Figure 6. Hemorrhagic areas from LLC tumors show significantly increased inflammation 

markers. (A) Photograph of a LLC tumor removed from flank at day 15 after injection of LLC 

demonstrating the co-existence of non-hemorrhagic area (NH) and hemorrhagic area (H). (B) 

Heme quantification and Hmox1 mRNA expression determined by quantitative RT-PCR in non-

hemorrhagic (NH) and hemorrhagic areas (H) (n=6 tumors with respective NH and H areas, 

removed 15 days after injection). Hmox1 mRNA levels were normalized to Rpl19 mRNA levels. (C) 

Representative plots and quantification of Gr-1+ cells (gated as CD11b
+
/Gr1

+
) and F4/80+ cells 

(gated as CD11b
+
/Gr1

-
/F4/80

+
) in non-hemorrhagic (NH) and hemorrhagic areas (H) of LLC (n=6 

tumors with respective NH and H areas, removed 15 days after injection). Results are expressed 

as percentage of cells inside CD45.2+ population. (D) mRNA expression of Cxcl1, Cxcl2, Csf1 and 

Csf2 determined by quantitative RT-PCR of total tumor mass of non-hemorrhagic (NH) and 

hemorrhagic areas (H) (n=6 tumors with respective NH and H areas, removed 15 days after 

injection). All mRNA levels were normalized to Rpl19 mRNA levels. (E) mRNA expression of 

Cd163 and Mmp9 determined by quantitative RT-PCR of total tumor mass of non-hemorrhagic 

(NH) and hemorrhagic areas (H) (n=6 tumors with respective NH and H areas, removed 15 days 

after injection). All mRNA levels were normalized to Rpl19 mRNA levels. (F) Expression of CD206 

and CD14 measured by flow cytometry in F4/80+ cells from non-hemorrhagic (NH) and 

hemorrhagic areas (H). MFI is shown as fold change to NH. (n=6 tumors with respective NH and H 

areas, removed 15 days after injection). (G) mRNA expression of Nos2, Tgfβ, IL-1β and IL-6 

determined by quantitative RT-PCR of total tumor mass of non-hemorrhagic (NH) and hemorrhagic 

areas (H) (n=6 tumors with respective NH and H areas, removed 15 days after injection). All mRNA 

levels were normalized to Rpl19 mRNA levels.  Data are shown as mean ± SEM.  *p < 0.05, **p < 

0.01, ***p < 0.001, and ****p < 0.0001. 

 

Iron increases the inflammatory response in LLC tumor bearing mice  

To better understand the impact of iron and iron-loaded macrophages in tumor 

progression we analyzed a mouse model with a point mutation (C236S) in ferroportin. 

This mutation causes ferroportin resistance to hepcidin-mediated degradation. As 

consequence serum iron levels are increased and splenic macrophages and Kupffer cells 

are iron depleted (31). Contrary to our expectations, we didn’t observe a more 

pronounced tumor growth or a proliferative advantage of LLC injected in C326S mice 

when compared to WT mice (Figure 7A). Injected LLC cells respond to iron overload by 

downregulating Tfr1 and upregulating Fpn and HO-1 (Figure 7B), suggesting that iron 

supplies for tumor growth are not limiting in WT mice. We next explored the iron content 

and ferroportin expression in TAMs. Unexpectedly, TAMs from both WT and C326S mice 

can be iron loaded. As observed previously, iron loaded macrophages are surrounding 

areas of RBC extravasation (Figure 7C). We further observed a difference in macrophage 
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numbers, when we normalize the total number of macrophages per gram of tumor. We 

observed that C326S mice show a mildly increased number of TAMs compared to WT 

mice (Figure 7D). This is expected to be a consequence of increased CCL2 levels, a 

chemokine responsible for monocyte recruitment. CCL2 protein levels were increased in 

the serum of C326S mice, and at mRNA level in tumor lysates (Figure 7E). GM-CSF 

promotes the differentiation of monocytes. This cytokine was also increased in the serum 

and at mRNA level in tumor lysates (Figure 7F). We next sorted TAMs from WT and 

C326S mice (CD11b+/Gr1-/F4/80+) and we showed that both are negative for anti-

ferroportin immuno-staining, with the exception of few macrophages in the C326S mice 

(Figure 7G). Because in C326S mice ferroportin is resistant to hepcidin binding, this result 

demonstrates that the absence of ferroportin expression in TAMs is independent of 

hepcidin activity. This finding is consistent with the fact that hepatic hepcidin is unchanged 

in LLC-injected mice (Fig. 2F).  In terms of polarization we observed a decrease in the 

expression of the mannose receptor CD206 (M2 marker) while, MHC II and CD86 (M1 

markers) expression was not altered (Figure 7H). When compared to WT LLC-bearing 

mice, C326S LLC-bearing mice had increased circulating levels of IL-6, IL-1β, TNFα and 

IL-10 (Figure 7I).  Altogether this data points in the direction that excess of iron might have 

a pro-inflammatory effect in the tumor microenvironment, rather than promoting tumor 

growth. 
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Figure 7. Iron overload increases CCL2 and macrophage numbers in LLC tumors. (A) Tumor 

weight analyzed in WT mice and C326S mice 15 days after subcutaneous injection of LLC (n=9 

tumors per group). (B) Tfr1, Fpn and Hmox1 mRNA expression in LLC tumors from WT mice and 

C236S mice 15 days after LLC injection (n=6 tumors per group) All mRNA levels were normalized 

to Rpl19 mRNA levels. (C) Representative Perls’ staining with DAB enhancement of subcutaneous 

LLC in WT mice and C326S mice (images are representative of n=6 tumors per group). Brown 

staining represents iron. (D) Number of macrophages per g of tumor in subcutaneous LLC in WT 

and C326S mice. The percentage of F4/80+ cells (gated CD11b
+
/Gr-1

-
/F4/80

+
) was normalized to 

total counts of CD45.2 cells and divided by tumor weight (g) (n=6 tumors per group). (E) Serum 

quantification of CCL2 and mRNA expression of Ccl2 determined by quantitative RT-PCR of total 

tumor mass of WT and C326S mice (n=6 mice per group). Ccl2 mRNA levels were normalized to 

Rpl19 mRNA levels. (F) Serum quantification of GM-CSF and mRNA expression of Csf2 

determined by quantitative RT-PCR of total tumor mass of WT and C326S mice after 15 days of 

LLC injection (n=6). Csf2 mRNA levels were normalized to Rpl19 mRNA levels. (G) Anti-ferroportin 

staining in sorted TAMs (CD11b+/Gr-1-/F4/80+) from LLC tumors of WT and C326S mice. Red 

staining represents ferroportin expression. Images are representative of 4 different mice. (H) 

Expression of CD206, CD86 and MHC II measured by flow cytometry in F4/80+ cells (F4/80+: 

CD11b+/Gr1-/F4/80+). Results are shown as MFI fold change to WT (n=9 tumors analyzed). (I)  

Serum quantification of IL-6, IL-1β, TNFα and IL-10 in WT and C326S LLC-bearing mice after 15 

days of LLC injection (n=6 mice per group). All samples were analyzed after 15 days of LLC 

injection. Data are shown as mean ± SEM.  *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.  

 

DISCUSSION 

During the last decade, the role of the tumor microenvironment in cancer progression and 

therapy has been widely explored. Several studies unraveled the important role of 

immune cells in tumor progression (39-41). Macrophages were shown to be key players in 

the tumor microenvironment and in tumor-related inflammation (2, 42, 43). 

The tumor microenvironment (TME) is hallmarked by a high complexity of different cell 

types, soluble factors and micronutrients. Macrophages and iron (in the form of transferrin 

bound iron, RBC and its degradation products, hemoglobin and heme) are part of the 

TME. Here, we dissected the role of iron in the tumor microenvironment. We hypothesized 

that iron in the tumor microenvironment may play an important role either for tumor cell 

proliferation or in the inflammatory response, especially by altering TAMs plasticity. 

Cancer related inflammation may further impact on systemic iron regulation, 

interconnecting iron and cancer (44). Here we show that TAMs of human non-small cell 

lung carcinoma (NSCLC) and experimental Lung Lewis Carcinoma (LLC) in mice can be 

separated into two different populations according to their iron content: iron loaded and 
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iron spared macrophages. Iron loaded TAMs are predominantly located in invasive areas 

of the tumor and near RBC leakage, suggesting that the most probable source of iron is 

derived from RBC that leak from fragile vessels into the tumor microenvironment. We 

show that iron loaded macrophages are hallmarked by the expression of CD163 and HO-

1 (Hmox1), which are associated with hemoglobin uptake and iron recycling, respectively. 

In BMDM treated with LLC conditioned media (CM), Cd163 mRNA expression is 

additionally increased in the presence of RBC, when compared to CM alone (Fig. S5), 

suggesting that the upregulation of Cd163 is a consequence of iron loading or RBC 

ingestion. In hemorrhagic areas of the tumors where RBC and iron loaded TAMs 

accumulate, both Hmox1 and Cd163 mRNA levels are increased (Figure 5B and 5F).  

TAMs from LLC are characterized by the absence or very low expression of ferroportin. 

We demonstrate that low ferroportin levels are not due to hepcidin mediated regulation 

(Figure 2F). We propose that downregulation of ferroportin may be a consequence of the 

differentiation of precursor cells (monocytes and myeloid-derived suppressor cells-

MDSCs) into macrophages. Monocytes and myeloid cells recruited to the TME encounter 

in the tumor microenvironment cytokines and chemokines that trigger their differentiation. 

These cytokines may induce a macrophage phenotype that inhibits ferroportin expression.  

M-CSF (Csf1) and GM-CSF (Csf2) are factors that contribute to monocyte differentiation 

into macrophages and were also implicated in controlling ferroportin expression (45). 

Human monocytes differentiated with M-CSF expressed higher levels of ferroportin when 

compared with monocytes stimulated with GM-CSF (45). M-CSF and GM-CSF are both 

present in the microenvironment of LLC. In fact these cytokines are increased within 

hemorrhagic areas.  In the case of GM-CSF, it is also increased in tumors and in the 

circulation of iron overloaded mice, when compared to WT mice. The expression of GM-

CSF may explain the absence of ferroportin in macrophages, but further studies are 

required to understand the mechanism by which TAMs from LLC prevent ferroportin 

expression. LLC cells are able to polarize macrophages towards an M2 phenotype (46). In 

a different study, M2 macrophages were shown to express more ferroportin when 

compared to M1 macrophages (13). Our data provide evidence that LLC macrophages 

shown several features of the M2 phenotype, however, ferroportin is absent which is 

expected to cause an iron retention phenotype. 

A recent study in breast cancer demonstrated that TAMs from breast cancer show an iron 

“donor” phenotype with increased expression of ferroportin, showing that the expression 

of proteins involved in iron metabolism in TAMs might be tissue-specific and strictly 

dependent on the niche (47). 

Taken together, our data suggests that TAMs ingest and recycle RBC in the tumor 

microenvironment but they are unable to export recycled iron.  Iron retention in 
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macrophages results in a shift in the polarization profile towards a more pro-inflammatory 

phenotype. TAMs from hemorrhagic areas decrease CD206 (M2 marker) and increase 

CD14 (M1 marker). IL-6 and IL-1β are markers for the M1 polarization phenotype and are 

also increased in hemorrhagic areas. This is consistent with our previous finding that iron 

and heme stimulation of BMDM (M0, M1 and M2 polarized) triggers an M1-like 

polarization phenotype (17). Whether or not iron-controlled changes in TAMs affect tumor 

growth or metastasis is not yet clear. 

Hemorrhagic areas show an enrichment of myeloid cells characterized as CD11b+/Gr-1+ 

cells. Myeloid cells can act as precursor for macrophages, and may be further 

differentiated in the tumor microenvironment (48). CD11b+/Gr-1+ cells are very abundant 

in the LLC tumor model. Previous studies demonstrated that LLC tumor bearing mice 

show increased hematopoiesis and an increase in the proportion of monocytes in the 

peripheral blood, spleen, and bone marrow (49). The increase CD11b+/Gr-1+ cells in 

hemorrhagic areas may be just a consequence of extravasation of circulating cells into the 

tumor microenvironment due to vessel damage. Elevated CD11b+/Gr-1+ myeloid cells are 

associated with impaired immune reactivity and increased tumor progression (50-52). 

CD11b+/Gr-1+ cells secrete pro-angiogenic factors such as matrix metalloproteinases 9 

(MMP9) and iNOS. They are able to differentiate into endothelium-like cells or other 

vascular cells (53-55). Consistent with these findings we observe an increase in MMP9 

and iNOS (Nos2) mRNA expression in hemorrhagic areas. We also observed an 

increased expression of Cxcl1 and Cxcl2, which might be produced by these cells and act 

as chemoattractant factors to myeloid cells, neutrophils and macrophages. Vessel 

damage and accumulation of CD11b+/Gr-1+ cells and RBC alter the tumor 

microenvironment composition and may have consequences in the immune response. 

Here we show that serum iron levels in WT LLC-bearing mice are decreased, probably 

due to tumor cell proliferation. LLC tumors that develop in iron overload conditions (C326S 

mice) didn’t show an increased or faster proliferation and tumor size. In fact, mRNA 

expression of total tumor mass suggests that LLC cells downregulate TfR1 to decrease 

iron uptake and upregulate Ferroportin to increase iron export. Cancer cells are negative 

for iron staining, suggesting these cells do not accumulate excessive amounts of iron. 

This may be explained by iron toxicity. Iron dependent -ROS generation can be toxic to 

cancer cells (56) which explains why cancer cells control cellular iron levels. We conclude 

that iron in the TME may be more important for the modulation of the inflammatory 

response, rather than for tumor growth. Since macrophages are key players in iron 

homeostasis, the increase in CCL2 levels and consequent increase in macrophage 

numbers in response to iron overload, may be explained as an attempt to prevent iron 

toxicity. 
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Although the concept M1/M2 has been used to classify macrophages (57), it seems that 

the picture is far more complex than this. In vivo, macrophages can be exposed to several 

and diverse stimuli and express both M1 and M2 markers. Several studies have revised 

the concept of macrophage polarization introducing new nomenclatures and categories 

(58-61). Here we identified a subpopulation of TAMs, of which the phenotype is directly 

related to iron loading and that may have functional implication in the modulation of the 

immune response in tumors. We propose a model in which hemorrhagic areas in the 

tumor microenvironment are characterized by an increase in CD11b+/Gr-1+ cells, iron 

loaded macrophages and myeloid-cell attractant chemokines.  Iron loading in 

macrophages, due to RBC and heme uptake, alters macrophage polarization and may 

contribute to changes in cancer related inflammation (Figure 8). We show for the first time 

that RBC, due to their iron component may play a role in sterile inflammation in the tumor 

microenvironment.  

 

Figure 8. Hemorrhagic areas as a “new niche” within the tumor microenvironment (A) RBC 

and CD11b
+
/Gr-1

+
 cells extravasate from vessels into the tumor microenvironment. CD11b

+
/Gr-1

+
 

cells secrete pro-angiogenic factors such as MMP9 and iNOS. (B) Hemorrhagic areas are 

hallmarked by increased chemokine levels that facilitate recruitment and differentiation of myeloid 

cells. (C) Macrophages (MΦ) take up RBC and respective degradation products (hemoglobin and 

heme), present in the tumor microenvironment and retain the iron (FeMΦ). Iron retention changes 

the phenotype of macrophages and induces the expression of CD163, HO-1, CD14 and possibly 

IL-6 and IL-1β. The consequences of the phenotypic changes in TAMs in response to iron 

accumulation for the tumor microenvironment require further investigations. 
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MATERIAL AND METHODS 

 

Human samples for histology 

Tissue samples (slides for histology staining) from 19 different patients were provided by 

Lung Biobank Heidelberg a member of the Biomaterial bank Heidelberg (BMBH) and the 

Biobank platform of the German Center for Lung Research (DZL) with ethics approval 

number of 270/2001.  Table 1 summarizes the information of this cohort of patients 

grouped by iron content. Histology slides positive for Perls’ staining (=blue) were 

considered as “iron positive” while the slides negative for Perls’ staining were considered 

as “iron negative”. 

Tissue-micro arrays (TMAs) were provided by the tissue bank of the National Center for 

Tumor Diseases (NCT, Heidelberg, Germany) in accordance with the regulations of the 

tissue bank and the approval of the ethics committee of Heidelberg University. A total of 

116 patients of non-small lung carcinoma were analyzed regarding iron content. From 

each patient, three areas of the original histology block were represented:  normal lung, 

tumor center and invasive front. The classification of the TMA was performed according to 

the 6th edition of the Tumor Node Metastasis (TMN) staging system for non-small cell lung 

carcinoma.  From the 122 patients, 38 stained positively for iron at least in tumor center 

and/or invasive front. Table 3 summarizes the information about this cohort of patients, 

separated in two groups: iron positive and iron negative. Quantification of iron staining 

was performed using the Image Pro-Premier 3D software. The software calculated the 

area of pixels corresponding to blue staining (iron staining). 

 

Preparation of single cell suspensions from fresh human lung adenocarcinoma 

Tumors were obtained in collaboration with Thoraxklinik Heidelberg. Table 2 summarizes 

the patient data. Fresh tumors were mechanically dissociated with tweezers and scalpel 

and digested with 5mg/tumor of DNAse (SIGMA) and Hyaluronidase (SIGMA) in 10ml 

PBS/tumor for 30 min in a 37ºC shaking water-bath.  After enzymatic digestion, tumor 

suspension was strained using a 70μm cell strainer (Becton Dickinson) and washed with 

PBS. For the isolation of lymphocytes cell suspensions were layered over a density 

gradient solution (Biocoll Separating Solution, 1.077g/ml, Biochrom AG, Germany) in a 1:1 

volume ratio and centrifuged at 450g for 30 min without brake, at room temperature. 

Afterwards, leukocyte layers were carefully collected and washed twice with PBS at 1500 

rpm for 10min at 4ºC and further resuspended in 5mls of cold PBS. Cells were further 

processed for magnetic isolation (see “Magnetic isolation” description in Material and 

Methods). 
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Cell culture 

LLC cells were grown at 37 ºC in a humidified atmosphere of 5% CO2/95% air in DMEM 

medium supplemented with 10% heat-inactivated fetal bovine serum and 1% 

penicillin/streptomycin (Sigma) under sterile tissue culture conditions. 

 

Mice and tumor model 

Females and males, 8- to 10- weeks, C57BL/6N and C326S.Fpn mice were used. All mice 

experiments were performed under the guidelines of IBF/DKFZ with the project number G-

267/12, all experiments were approved by “Regierungspräsidium Karlsruhe”. LLC cells 

were detached with trypsin-EDTA (Sigma) washed twice in PBS at room temperature, 

passed through a 40μm cell strainer, counted and injected (1x106 in 100μl PBS) 

subcutaneously into the flanks of mice or intravenously (1x105 in 100μl PBS). Mice were 

sacrificed after 15 days of injection to obtain maximum tumor growth within the ethical 

guidelines.  Mice that developed ulcers or necrotic tumors were sacrificed and not 

considered for the experiments. Blood was removed directly from the heart by cardiac 

puncture. Lung tumor that formed as a result of iv injection of LLC cells were only 

analyzed for histology. Subcutaneous tumors were resected and dissected very carefully 

to avoid tissue damage and micro-bleedings induced during animal preparation. Tumors 

were transferred to 5 ml PBS on ice and tumor weight (g) was measured on a scale by 

transferring the specimen to a sterile Petri dish after removal the excess of PBS with 

paper towel. When indicated, hemorrhagic areas (H) were separated from non-

hemorrhagic areas (NH) according to the color exhibited in the tumor mass (H-red, NH-

white), otherwise, total tumors were processed. Resected tumors were then processed for 

cytospin, FACS analysis and FACS sorting, snap frozen until further analysis or fixed in 

formalin for immunohistochemistry and histological analysis.  

 

Preparation of single cell suspensions from mouse tumors 

After resection, tumors were mechanically dissociated with tweezers and scalpel and 

digested with 5mg/tumor of DNAse (SIGMA) and Hyaluronidase (SIGMA) in 10ml 

PBS/tumor for 30 min in a 37ºC shaking water-bath. After enzymatic digestion, tumor 

suspension was strained using a 70μm cell strainer (Becton Dickinson), washed with cold 

PBS and centrifuged at 1500 r.p.m. at 4 ºC. Red blood cells, dead cells and tumor cells 

were removed by gradient purification using a Lympholyte solution (Cederlane). Briefly, 

7mls of tumor suspension were added on top of 7mls of Lympholyte solution and 

centrifuged at 1500xG at 20ºC for 25 minutes without break. The ring of live cells (CD45+ 

cells) was removed together with the upper part and washed again in cold PBS. Cell pellet 
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was resuspended in FACS buffer (1% FBS, 0.01% sodium azide in PBS) and kept on ice 

for the respective procedures.  

Magnetic isolation 

Cell suspensions were resuspended in 5mls of PBS and pass through a LS column 

(Miltenyi Biotech) attached to a magnetic board. Columns were washed 3 times with 5mls 

of PBS. Cells that were adherent to the column (iron positive – magnetic fraction) were 

flushed with 5mls PBS. Both magnetic fraction and flow through were washed with cold 

PBS (1500r.p.m. 10min 4ºC), resuspended in PBS and centrifuged for cytospin 

preparations.  

 

Flow cytometry 

Cells were resuspended in 100μl of supernatant from 2.42G cells and placed at 4ºC for 15 

min to block non-specific FC receptor binding. Cells were then washed with FACS buffer 

and afterwards incubated with fluorescently labeled antibodies (antibodies used are listed 

in Table 4) at 4ºC in the dark for 30 min and then washed with FACS buffer, resuspended 

in 200μl FACS buffer, and evaluated on a FACSAria II (Becton Dickinson) flow cytometer. 

Cell death was determined using 7AAD (BioLegend). Data were further analyzed using 

FlowJo software (Tree Star).  

 

Table 4. Antibodies used for Flow cytometry (anti-mouse) 

Antibody Fluorophore Clone Isotype Manufacturer 

F4/80 APC BM8 Rat IgG2a, κ BioLegend 

 

CD11b 

APC-Cy7 

FITC 

Horizon V500 

M1/70 

M1/70 

M1/70 

 

Rat IgG2b, κ 

BD Pharmingen 

BDPharmingen 

BD Horizon 

GR1 AlexaFluor 700 RB6-8C5 Rat IgG2b, κ BioLegend 

CD3 FITC 17A2 Rat IgG2b, κ BioLegend 

CD19 PE 6D5 Rat IgG2a, κ BioLegend 

CD4 PE-Cy7 RM4-5 Rat IgG2a, κ BioLegend 

CD8a APC 53-6.7 Rat IgG2a, κ BioLegend 

CD206 FITC MR5D3 Rat IgG2a, κ BioLegend 

CD86 PE GL-1 Rat IgG2a, κ BioLegend 

MHC II PE-Cy7 M5/114.15.2 Rat IgG2b, κ BioLegend 

CD14 APC-Cy7 Sa14-2 Rat IgG2a, κ BioLegend 

CD45.2 Pacific Blue 104 Mouse (SJL) 

IgG2a, κ 

BioLegend 
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Tissue iron measurements 

Serum iron concentration was assessed using the SFBC kit (Biolabo). Tissue non-heme 

iron content was measured using the bathophenanthroline method and calculated against 

dry weight tissue (62). 

 

Histological characterization of cytospin slides 

Single cell suspension (200μl) was transferred to Cytospin funnels and centrifuged in a 

Cytospin Cytocentrifuge (Thermo Scientific) at 500 r.p.m. for 5 min. Iron staining was 

performed using Accustain Iron Stain No. HT20 (Sigma-Aldrich) following manufacturer’s 

instructions. When indicated, Perls´ blue staining was further enhanced using the DAB 

peroxidase substrate kit SK-4100 (Vector Labs).  For immunostaining, cytospin samples 

were fixed and permeabilized in ice cold acetone for 5 minutes, washed in PBS and 

treated with H2O2 to block endogenous peroxidase. Immunostaining was performed 

according to the instructions of the Vectastain ABC mouse, rat and rabbit kits (Vector 

Labs). Anti-mouse ferroportin staining was performed using MTP11-A rabbit polyclonal 

antibody (Anti-Mouse Metal Transporter Protein1/Ferroportin (MTP1/IREG1/Fpn) from 

Alpha Diagnostics); rabbit IgG was used as isotype control for the ferroportin staining. 

Anti-human CD68 staining was performed using Monoclonal Mouse Anti-Human PG-M1 

clone (DAKO). Tissue slides were developed using the Vector AEC substrate (Vector 

Labs), rinsed with distilled water, counterstained with hematoxylin, washed in PBS, and 

mounted using the VectaMount AQ mounting medium (Vector Labs). Images were 

acquired with a Ni-E Nikon microscope.  

 

Histology and Immunohistochemistry analysis 

Tissues obtained from mice (tumors and other organs) were fixed for 24h in 10% neutral 

buffered formalin (Sigma-Aldrich), dehydrated, and paraffin embedded. Tissue sections 

(5μm) were attached to Polysine slides (Thermo Scientific), dewaxed and rehydrated. Iron 

staining was performed using Accustain Iron Stain No. HT20 (Sigma-Aldrich) following 

manufacturer’s instructions. When indicated, the Perls´ blue staining was further 

enhanced using the DAB peroxidase substrate kit SK-4100 (Vector Labs). For 

Hematoxylin & Eosin staining, sections were stained in Weigert's hematoxylin (Sigma-

Aldrich), followed by Eosin (Sigma-Aldrich), dehydrated and mounted. For 

immunohistochemistry, sections were treated for 10 min with 3% H2O2 (Sigma-Aldrich) to 

block the endogenous peroxidases. Tissue slides were subjected to microwave-mediated 

antigen retrieval using the Citraplus reagent (Biogenex). Immunostaining was performed 

using the Vectastain ABC mouse, rat and rabbit kits (Vector Labs) following 
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manufacturer’s instructions. Anti-mouse ferroportin staining was performed using MTP11-

A rabbit polyclonal antibody (Anti-Mouse Metal Transporter Protein1/Ferroportin 

(MTP1/IREG1/Fpn) from Alpha Diagnostics) and anti-human CD68 staining was 

performed using Monoclonal Mouse Anti-Human PG-M1 clone (DAKO). Tissue slides 

were developed using the Vector AEC substrate (Vector Labs), rinsed with distilled water, 

counterstained with Weigert's hematoxylin (Sigma-Aldrich), washed in PBS, and mounted 

using the VectaMount AQ mounting medium (Vector Labs). 

 

Preparation of BMDM 

Bone marrow cells were flushed from tibia and femur using ice-cold HBSS and filtered 

through a 70μm cell strainer. Cells were seeded at a density of 350,000 cells/cm2 in 

RPMI1640-Glutamax medium (Life Technologies) supplemented with 10% of  heat-

inactivated FBS (Thermo Scientific), 1% penicillin/streptomycin (Sigma-Aldrich), and 10 

ng/ml M-CSF (Sigma-Aldrich). After 4 days, non-adherent cells were removed by HBSS 

washing, and the medium was replaced daily until cell harvesting (typically 6–7 days after 

seeding). For each independent experiment, BMDM were prepared from three different 

mice. 

 

Red Blood Cell preparation 

Red Blood Cell aging was performed as described (63). Mice blood was collected on 

ethylenediaminetetraacetic acid (EDTA). After 3 washes with phosphate buffer saline 

(PBS), mouse red blood cells (RBC) were resuspended in Hepes buffer (10 mM Hepes, 

140 mM NaCl, BSA 0.1%, pH 7.4). For in vitro RBC ageing, cells (1x108 cells/ml in Hepes 

buffer) were incubated overnight at 30ºC with 2,5 mM calcium and 0,5 mM of the 

ionophore A23187 (Calbiochem). Treated RBC were then centrifuged (1500 rpm 5 min), 

washed twice with PBS and resuspended in RPMI medium (2x107cells/ml).  

 

BMDM treatment and co-cultures 

LLC cells were plated at 1x104/ml of complete DMEM (10%FBS, 1%PenStrep) and 

conditioned media (CM) was collected when LLC cells were about 80% confluent. CM 

was passed through a 0.22μm filter and stored at -20ºC until further use. BMDM were 

treated with 50% RPMI with 10ng/ml M-CSF (SIGMA) and either 50% complete DMEM 

(NT, control) or 50% CM of LLC for 24h.  For co-culture experiments, LLC cells were 

seeded in a transwell filter of 0.4μm (BD Falcon) and placed in co-culture with BMDM for 

48h. After 48h incubation, BMDM were treated with heme bound to BSA (5μM), FeNTA 

(100μM) for 12h or aged RBC. RBC were seeded at 2x107/ml (3mls in a 6 well plate and 

1ml in 24 well plates) for 12h or 24h.   
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RNA isolation and qRT-PCR analysis 

Total tissue RNA was isolated using TRIzol (Life Technologies), RNA from cells was 

extracted using the RNeasy Mini Kit (Qiagen) or Arcturus Picopure RNA Isolation Kit, 

(Applied Biosystems). 0.5μg to 1μg of total RNA was reverse transcribed by using 

RevertAid H Minus reverse transcriptase (Thermo Scientific), random primers (Invitrogen) 

and dNTPs (Thermo Scientific). Quantitative RT-PCR was performed using SYBR green 

on a Step One Plus Real Time PCR System (Applied Biosystems, California, USA). The 

primers used are listed in Table 5. Differences in relative quantification are shown as fold-

change compared to the control condition. Ribosomal protein L19 (RPL19) was used to 

normalize cDNA levels. 

 

Table 5. Primers for quantitative RT-PCR (mus musculus) 

Gene Sequence 

Rpl19 
Forward 5' AGGCATATGGGCATAGGGAAGAG 3' 

Reverse 5' TTGACCTTCAGGTACAGGCTGTG 3' 

Hamp1 
Forward 5'CCTATCTCCATCAACAGAT 3' 

Reverse 5'TGCAACAGATACCACACTG 3' 

Cd163 
Forward 5’ TCTCAGTGCCTCTGCTGTCA 3’ 

Reverse 5’ CGCCAGTCTCAGTTCCTTCT 3’ 

Hmox1 
Forward 5' AGGCTAAGACCGCCTTCCT 3' 

Reverse 5' TGTGTTCCTCTGTCAGCATCA 3' 

Fpn 
Forward 5' TGTCAGCCTGCTGTTTGCAGGA 3' 

Reverse 5' TCTTGCAGCAACTGTGTCACCG 3' 

Arginase 1 
Forward 5' AATCTGCATGGGCAACCTGT 3' 

Reverse 5' GTCTACGTCTCGCAAGCCAA 3' 

Ccl2 
Forward 5' CATCCACGTGTTGGCTCA 3' 

Reverse 5' GATCATCTTGCTGGTGAATGAGT 3' 

Cxcl1 
Forward 5’AGACTCCAGCCACACTCCAA 3’ 

Reverse 5’ TGACAGCGCAGCTCATTG 3’ 

Cxcl2 
Forward 5’AAAATCATCCAAAAGATACTGAACAA 3’ 

Reverse 5’CTTTGGTTCTTCCGTTGAGG 3’ 

Csf1 
Forward 5' GGTGGAACTGCCAGTATAGAAAG 3' 

Reverse 5' TCCCATATGTCTCCTTCCATAAA 3' 

Csf2 
Forward 5' GCATGTAGAGGCCATCAAAGA 3' 

Reverse 5' CGGGTCTGCACACATGTTA 3' 

Mmp9 
Forward 5' GCCGACTTTTGTGGTCTTCC 3' 

Reverse 5' GGTACAAGTATGCCTCTGCCA 3' 

Nos2 
Forward 5' TGGAGACTGTCCCAGCAATG 3' 

Reverse 5' CAAGGCCAAACACAGCATACC 3' 
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Tgfβ 
Forward 5' TGGAGCAACATGTGGAACTC 3' 

Reverse 5' CAGCAGCCGGTTACCAAG 3' 

Il-1β 
Forward 5' GCAACTGTTCCTGAACTCAACT 3' 

Reverse 5' ATCTTTTGGGGTCCGTCAACT 3' 

Il-6 
Forward 5' GCTACCAAACTGGATATAATCAGGA 3' 

Reverse 5' CCAGGTAGCTATGGTACTCCAGAA3' 

Tfr1 
Forward 5' CCCATGACGTTGAATTGAACCT 3' 

Reverse 5' GTAGTCTCCACGAGCGGAATA 3' 

 

Heme measurements in BMDM 

BMDM incubated with aged RBC were washed 3x with HBSS, detach with StemPro® 

Accutase® (Gibco), counted, centrifuged and the pellet was then solubilized by adding 

500μl of concentrated formic acid. The heme concentration of the formic acid solution was 

determined spectrophotometrically (SpectraMax, Molecular Devices) at 400 nm and 

normalized to the number of cells.  

 

Protein quantification and Tissue heme measurements  

Protein lysates were obtained by homogenizing snap-frozen tissues or cell suspension in 

RIPA buffer supplemented with protease inhibitors (Roche). Protein concentration was 

determined using the DC protein assay ((Bio-Rad). Protein samples (10μg) were 

incubated with 0.5 ml of 2 M Oxalic Acid (Sigma-Aldrich) at 95°C for 30 min. Samples 

were subsequently centrifuged at 14000 rpm for 5 min. Fluorescence emission in the 

supernatant was determined in a  spectrofluorimeter (SpectraMax, Molecular Devices). 

Excitation and emission wavelengths were set at 405 and 662 nm, respectively. The 

background was evaluated by measuring fluorescence in non-boiled samples. 

 

Measurement of cytokines 

Cytokine protein levels were determined in the serum of mice applying Multiplex bead-

array based technology. Measurements were performed on a BioPlex200 System using 

the Bio-Plex Pro Cytokine Reagent Kit and Bio-Plex Pro Mouse Cytokine sets (Bio-Rad) 

according to manufacturer’s instructions. Cytokine protein levels are given as picogram/ml 

of serum. 

 

Statistical analysis 

Data are shown as mean ± SEM, and the number of mice (n) is indicated. Statistical 

analyses were performed using Prism v.6 (GraphPad). Comparisons between two groups 

were performed with two-sided Welch t-tests, and among three or more than three groups 
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with one- or two-way ANOVA, respectively, followed by Bonferroni post-test. *p < 0.05, **p 

< 0.01, ***p < 0.001, and ****p < 0.0001 are indicated.  
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1. Main findings 

 

The main findings of this thesis are summarized as the following: 

 Heme and iron can induce the differentiation of macrophages towards a M1-like 

phenotype. 

 Heme and iron also reprogram already differentiated M1 and M2 macrophages. 

The M1 macrophage phenotype is potentiated, while the M2 phenotype is shifted 

towards a M1-like phenotype. 

 This differentiation program is controlled by signaling pathways under TLR4 

activation and ROS formation. 

 Macrophages from the RES of mouse models with acute hemolysis and sickle 

cells disease show an M1-like phenotype. 

 Hemopexin administration, in complex with heme, prevents the pro-inflammatory 

phenotype observed in macrophages after exposure to heme; 

 Hemopexin administration as a therapeutical approach, rescues the M1-like 

phenotype of macrophages and attenuated liver damage in a mouse model of 

sickle cell disease; 

 

 In the context of the tumor microenvironment, we observed that in human non-

small cell lung cancer and in a mouse model for Lewis Lung Carcinoma, tumor-

associated macrophages retain iron while cancer cells are negative for iron 

staining; 

 Iron retention in macrophages correlates with their location in invasive areas of the 

tumor; 

 Iron loaded macrophages are localized in hemorrhagic areas of the tumor; 

 TAMs do not express ferroportin and the lack of ferroportin is not mediated by 

hepcidin; 

 Iron accumulation in TAMs may be a result of the uptake of RBC; 

 In the model used, iron seems to be more important for the modulation of the 

inflammatory response, than for tumor growth. 
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2. Discussion 

 

Macrophages are characterized by a chameleonic behavior in response to the stimuli of 

the environment. These cells are not only crucial for iron recycling and homeostasis, they 

also participate in immune responses. The concept of polarization is based on the 

expression of markers (for example cytokines or surface receptors) that are associated 

either with the M1 or with the M2 phenotype. Although in vivo the scenario is far more 

complex than this, in this thesis the simplified concept of M1/M2 polarization was used to 

understand if macrophages are closer to a proinflammatory phenotype (M1) or to an anti-

inflammatory phenotype (M2), and as consequence, if macrophages contribute to 

enhanced inflammation and tissue damage or improve tissue repair and anti-inflammatory 

responses, respectively.  In this research work, I aimed to understand how heme and iron 

can affect RES macrophage polarization in the context of hemolytic disorders and also 

how RBC extravasation in the tumor microenvironment, as well as heme and iron release 

might contribute to TAMs function and phenotype.  

 

HEME AND IRON SHAPE MACROPHAGE PLASTICITY: A ROLE IN HEMOLYTIC 

DISORDERS 

Heme and iron shape macrophage plasticity towards a pro-inflammatory phenotype 

Several studies associated iron accumulation in macrophage with an effect on 

polarization. In human chronic venous leg ulcers and in a mouse model for wound 

healing, a population of macrophages characterized by high expression of the iron 

scavenger receptor CD163, is responsible for the perpetuation of inflammation, tissue 

breakdown, and impaired wound healing, via release of TNFα, ONOO•, and OH• 

(Sindrilaru et al., 2011). These findings associate iron with a pro-inflammatory phenotype 

of macrophages. Recently, a study in spinal cord injury showed that 

macrophages/microglia in spinal cord injuries can accumulate iron which results in the 

increase of TNFα expression and the appearance of a macrophage population with a 

proinflammatory mixed M1/M2 phenotype. They also reported that increased loading of 

M2 macrophages with iron induces a rapid switch from M2 to M1 phenotype (Kroner et al., 

2014). In both of these cases, a predominant M1 state is detrimental to recovery since it 

prevents healing and repair. A study of joint bleedings demonstrated that hemarthrosis 

alters monocyte/macrophage polarization, resulting in a blood monocyte M1 phenotype 

and a combined M1-M2 monocyte/macrophage phenotype in the joint. (Nieuwenhuizen et 

al., 2014). All these reports support the idea that heme and iron affect macrophage 
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plasticity and polarization, and that this phenotypic changes have a functional impact in 

the respective diseases studied. 

Here I show that unstimulated macrophages (M0) can develop a M1-like phenotype in 

response to heme treatment, with increased expression of markers such as TNFα, IL1β, 

IL-6 and CD14 and decreased expression of M2 markers such as CD206, IL-10 and 

Arginase-1. In a similar way, treatment with a source of iron (FeNTA) also induces M1-like 

polarization (although the effect of heme is stronger). Not only heme and iron can 

predispose macrophages towards an M1-like phenotype, they can also enhance the 

phenotype of already polarized M1 macrophages (LPS and IFNγ) by increasing the 

expression of M1 markers. Co-stimulation of macrophages with cytokines that promote 

M2 polarization (IL-4 and IL-10) with heme or iron shifted macrophage polarization 

towards a M1 pro-inflammatory phenotype, when compared to cytokine treatment alone. 

Heme and iron thus show a dominant effect over cytokines.  

Macrophages localized in lesions probably originate from monocyte recruitment and the 

observed iron loading in macrophages occurs due to extravascular hemolysis. In 

hemolytic disorders, intravascular hemolysis is a dominant feature due to RBC breakage. 

We wondered if macrophages from the RES (specifically splenic macrophages and 

Kupffer cells) could be affected in terms of polarization and inflammatory response due to 

excessive exposure to heme. Using a mimic disease model for SCD and an acute model 

for hemolysis (intravenous injection of heme) we were able to extend our in vitro findings 

to the in vivo situation and show that macrophages from the RES, when exposed to heme, 

are polarized towards a M1-like phenotype.   

Macrophage polarization by heme and iron is dependent on TLR4 activation and 

ROS formation 

Regarding the mechanism by which heme activates macrophages, it was previously 

reported that heme could act through TLR4, as an activator of sterile inflammation 

(Figueiredo et al., 2007; Lin et al., 2012). TLR4 activation by heme triggers the activation 

of MyD88 and the secretion of pro-inflammatory cytokines. Heme can also induce ROS 

generation independently of TLR4. Both TLR4-dependent MyD88 activation and ROS 

generation contribute to the activation of the MAPKs signaling pathway that activates NF-

κB and induces the production of TNFα and other inflammatory cytokines (reviewed by 

(Dutra and Bozza, 2014)). Our data additionally demonstrate that TLR4 activation and 

ROS formation are responsible for the induction of M1 polarization by heme. Heme was 

unable to activate BMDMs from TLR4 KO mice to the same extent as WT mice. Also the 

use of TAK-242, a TLR4 inhibitor, prevented most of the effect of heme in vitro and in 

vivo. Although the effect was attenuated, the expression of some markers was still 
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induced to a milder extent. These results can be explained by the formation of ROS that is 

independent from TLR4 activation. Co-treatment of TLR4 KO BMDMs with heme and N-

acetyl-cysteine (NAC), an antioxidant, was able to fully prevent the expression of M1 

markers and downregulation of M2 markers. In case of FeNTA, the activation of 

macrophages may be mainly due to iron-dependent ROS formation. Also in this setting, 

NAC was able to at least partially rescue the effect of FeNTA in inducing M1 polarization. 

The incomplete prevention might be due to suboptimal doses applied or activation of 

unknown signaling pathways. 

 

Hemopexin prevents the pro-inflammatory induction and switching of macrophages 

We observed that Kupffer cells from a mouse model of SCD and Kupffer cells and splenic 

macrophages from a mouse model of acute hemolysis (injection of heme-albumin 

complex) display a M1-like phenotype, when compared to the respective controls. Not 

always mouse models resemble the human pathology, nevertheless, inflammation and 

increased levels of inflammatory cytokines were observed in hemolytic disorders. Sickle 

cell disease is well recognized as a chronic inflammatory disease (Belcher et al., 2003; 

Belcher et al., 2000; Jison et al., 2004). Elevated blood levels of inflammatory cytokines 

such as IL-1β, IL-6, TNFα and increased inflammatory biomarkers such as C-reactive 

protein have been described in patients with SCD (Croizat, 1994; Kuvibidila et al., 1997; 

Lanaro et al., 2009; Malave et al., 1993). Also, monocytes from patients with SCD show 

an activation state with production of IL-15, TNFα and IL-1β (Belcher et al., 2000). Our 

findings might explain in part the inflammation observed in these patients, since activation 

of macrophages towards a M1 pro-inflammatory phenotype might contribute to the 

production of inflammatory cytokines observed in patients with hemolytic disorders. 

In hemolytic disorders, Hp and Hx become saturated and are not sufficient to detoxify 

circulating heme; therefore heme toxicity is not prevented (Muller-Eberhard et al., 1968). 

The exogenous administration of heme scavengers might thus be used as a therapeutic 

approach to clear heme and prevent its deleterious effect. Our data show that, incubation 

of macrophages with heme-Hx prevents their pro-inflammatory induction and switching of 

macrophages, when compared to heme-albumin. Since hemopexin keeps heme “out” 

from macrophages or it mediates its uptake, it prevents TLR4 activation and ROS 

formation, and subsequent macrophage inflammatory response. Actually, treatment of 

macrophages with Hx turned out to be more efficient in preventing M1 polarization when 

compared to TLR4 inhibition and NAC treatment. Long-term treatment of SCD mice with 

exogenous Hx was able to rescue the M1-like inflammatory profile of macrophages, 
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suggesting that Hx is a great candidate to be used as a therapeutic approach to reduce 

inflammation in SCD and other hemolytic disorders. 

Hemopexin as a therapeutic approach for hemolytic disorders 

M1 activation of macrophages is associated with liver injury and fibrosis (Tacke and 

Zimmermann, 2014). M1 macrophages produce IL-1β, TNFα and MCP-1 that contributes 

to liver injury and recruitment of inflammatory monocytes. M1-like Kupffer cells also 

activate hepatic stellate cells (HSC) to promote fibrosis via paracrine mechanisms, 

involving the expression of the pro-fibrotic and mitogenic cytokines TGF-β and PDGF 

(Pradere et al., 2013). The effect of Hx treatment in SCD mice, not only rescued the M1-

like Kupffer cell polarization, but also decreased markers of macrophage-mediated liver 

injury such as TNFα, MCP-1, TGF-β and PDGF. Hx treatment also decreased the 

expression of smooth muscle actin (SMA) a marker of HSC activation and increased the 

expression of synaptophysin, a marker for resting HSC. Hepatic macrophages produce 

several matrix metalloproteinases, including MMP-9, MMP-12 and MMP-13 that contribute 

to matrix degradation and resolution of liver injury and fibrosis (Fallowfield et al., 2007; 

Pellicoro et al., 2012). SCD mice treated with hemopexin show an increased expression of 

these MMPs, suggesting that Hx administration helps to prevent fibrosis and tissue injury. 

Altogether these results support the idea that Hx treatment has great potential to reduce 

liver injury and inflammation in SCD patients. 

To complement these results we used a mouse model that mimics chronic hemolysis by 

repetitive injections of heme-albumin. We observed significantly increased collagen 

deposition and hepatocyte apoptosis in mice with repetitive injections of heme-albumin 

(mimicking chronic hemolysis) when compared to heme-Hx injected mice. Also, heme-

albumin injected mice show a significant increase in collagens, TGF-β, PDGF and SMA, 

once more supporting the evidence that macrophage activation by heme contributes to 

liver injury and fibrosis. In addition heme toxicity may directly impact on hepatocytes. 

Injection of heme-Hx prevented collagen deposition, apoptosis of hepatocytes and signs 

of liver fibrosis. Administration of Hx was further shown to prevent the lethal outcome in 

severe sepsis in mice (Larsen et al., 2010) . These authors suggested that Hx 

administration could be a viable therapeutic intervention also for pathologies associated 

with hemolysis. Here we conclude that administration of hemopexin reduces macrophage 

activation and tissue damage promoted by heme in hemolytic disorders, confirming Hx as 

a promising therapy. 
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HEME AND IRON SHAPE MACROPHAGE PLASTICITY: A ROLE IN CANCER 

Is iron an essential nutrient for cancer cells? 

One of the major questions concerning the field of iron and cancer is: what is precisely the 

role of iron in cancer? Several studies support the idea that excess of iron or iron 

administration, are contributing factors for the onset and development of cancer (Knekt et 

al., 1994; Stevens et al., 1988).  The excess of iron triggers the formation of ROS that 

promote DNA damage and mutagenesis, which are events involved in cancer initiation 

(Dizdaroglu and Jaruga, 2012).  

The majority of studies point to the direction that iron is an essential nutrient for cancer 

cells. As a co-factor of many enzymes, iron is involved in several cellular processes, 

namely cell division. The lack of ferroportin in cancer cells, the only known iron exporter, 

was associated with worse prognosis in breast cancer and with increased proliferation of 

lung cancer cell lines, supporting a model where iron retention in cancer cells increases 

cell survival and proliferation (Babu and Muckenthaler, 2016; Pinnix et al., 2010). Iron 

chelation therapies, aimed to deprive cancer cells from iron and promote cancer cell 

death, have been investigated (Corce et al., 2016; Yu et al., 2012) but so far have not 

been established as cancer treatment.  

A different perspective relies on the fact that iron-derived ROS might lead to cancer cell 

death. When the antioxidant defenses of the cell are compromised, the excess of iron 

leads to iron-dependent, oxidative death named ferroptosis (Dixon et al., 2012). 

When we address cancer, one of the most important features to consider is the role of the 

tumor microenvironment (TME) (Hanahan and Weinberg, 2011; Mantovani et al., 2008; 

Mantovani and Sica, 2010). Although iron seems to have an impact in the cancer cell 

itself, the role of iron in the tumor microenvironment may be of great importance and 

should not be neglected (de Sousa, 2011). In this thesis I explored how iron can affect the 

tumor microenvironment. I aimed to address the following questions: where is iron located 

in the tumor microenvironment? What is the consequence of iron accumulation in the 

tumor microenvironment? Is tumor growth affecting iron homeostasis? Is iron affecting 

tumor growth? The results presented in this thesis contribute to extending the knowledge 

about the role of heme and iron in the TME, namely the importance of iron in the context 

of “sterile inflammation” and in the polarization of TAMs. 

 

Iron accumulates in tumor-associated macrophages 

Possible sources of iron reaching the tumor microenvironment are transferrin bound iron 

(that can be taken up by cancer cells via TfR1) and heme iron present in RBC (Macedo 

and de Sousa, 2008). The occurrence of angiogenesis may facilitate the transport of 
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nutrients to cancer cells but it also allows for the infiltration of immune cells and 

extravasation of RBC.  

In Chapter II we show that in human non-small cell lung carcinoma and mouse Lung 

Lewis Carcinoma (LLC), iron (detected by Perls’ staining) is found in TAMs while cancer 

cells are negative for Perls’ staining. The presence of iron loaded macrophages coincides 

with the presence of RBC in the tumor microenvironment.  

The localization of iron loaded TAMs in invasive areas and near sites of RBC leakage, 

suggests that the most probable source of iron is derived from RBC that leak from fragile 

vessels in the tumor microenvironment. In fact, due to the high extent of angiogenesis, 

cancer tissue is a privileged site for leaking of RBC and subsequent extravascular 

hemolysis.  

Microbleedings and intratumoral hemorrhage are likely to occur in later stages of tumor 

growth (de Vries et al., 2012; Li et al., 2012; Sun et al., 2016; Zimmerman and Bilaniuk, 

1980). Each RBC contains around 1.2x109 molecules of heme, and each heme moiety 

has one ferrous ion within the center of the porphyrin ring (Korolnek and Hamza, 2015). 

Thus, RBC may serve as a significant iron source for tumors. It is possible that 

macrophages in the tumor microenvironment are also involved in RBC clearance, in order 

to protect the cancer tissue against iron toxicity.  

Heme and iron released during intravascular hemolysis, have an impact on the 

polarization and activation of RES macrophages, as shown in Chapter I. As mentioned 

earlier in this thesis, M1 macrophages can be characterized as “tumor-killing” and M2 

macrophages as “tumor-helping”. Taking this knowledge in consideration I explored 

whether iron accumulation in TAMs (in this case due to extravascular hemolysis) might 

also have a possible effect on macrophage polarization and function.  

 

Iron content defines a subpopulation of TAMs 

In the LLC model, iron loaded TAMs are characterized by the expression of heme 

degrading enzyme HO-1 (Hmox1) and by the expression of hemoglobin (Hb) scavenger 

receptor CD163, capable of endocytosing pro-oxidant free Hb complexed to acute phase 

protein haptoglobin (Hp) or hemoglobin alone (Schaer et al., 2006b). Other studies, in 

different models and diseases, have identified macrophages characterized by the 

expression of CD163 and HO-1. In atherosclerosis, Boyle and colleagues defined a 

subtype of macrophages in atherosclerotic plaques that is directly correlated with 

hemorrhage inside the lesions (Boyle, 2012; Boyle et al., 2009; Boyle et al., 2012). This 

subtype of macrophages, called Mhem macrophages, also express elevated levels of 

CD163, HO-1 and IL-10. Mhem macrophages are beneficial for atherosclerosis since they 

are capable of mediating efficient cholesterol efflux (Boyle, 2012). Other studies examined 
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the transcriptional response of blood derived human macrophages to Hb by gene array 

analysis. They observed a non-inflammatory macrophage response, characterized by the 

induction of an anti-oxidative and anti-inflammatory gene expression pattern with most 

prominent induction of HO-1(Schaer et al., 2006a).  

In another study, human macrophages that were derived from blood monocytes 

stimulated with M-CSF were shown to express increased levels of CD163 and HO-1 when 

compared to GM-CSF derived macrophages. In the presence of LPS, M-CSF 

differentiated macrophages produced IL-10, a process dependent on HO-1 expression. 

HO-1 expression in metastatic melanoma was primarily detected in CD163-positive TAMs, 

which are known to exhibit an M2-skewed polarization phenotype (Sierra-Filardi et al., 

2010).  These authors suggested that the CD163/HO-1/IL-10 axis contributes to the 

generation of an immunosuppressive environment within the tumor stroma. Our data show 

that the expression of CD163 and HO-1 in TAMs is connected to iron uptake. However, it 

is not clear yet whether this population of macrophages would have an 

immunosuppressive or immune-stimulating function in the tumor microenvironment. So 

far, published studies point to the direction that CD163 and HO-1 expression is associated 

with immune regulation and suppression.  

Nevertheless, the presence of iron within macrophages may change their behavior and 

phenotype. The circumstances in which iron is presented to macrophages is very 

important. Erythrophagocytosis is a physiological process and should not activate 

macrophages towards a pro-inflammatory phenotype. RBC were shown to block NO-

mediated suppressor activity, since NO binds avidly to hemoglobin (Mills, 2001). CD163 

on macrophages was shown to work as an adhesion receptor for erythroblasts (Fabriek et 

al., 2007). In the context of the tumor microenvironment, iron can be presented to 

macrophages either in the form of intact RBC or along with its degradation components: 

hemoglobin and heme. It is not known if TAMs have the same recycling capacity as of 

RES macrophages. BMDM treated with conditioned media of LLC cancer cells increased 

the uptake of aged RBC and/or RBC products, when compared to non-stimulated 

macrophages. This evidence suggests that cancer-related inflammation might also 

increase the phagocytic capacity of macrophages (Richards et al., 2016).  

In the Chapter I of this thesis I have shown that heme and iron, can shift the polarization 

of M2-polarized macrophages towards an M1-like, pro-inflammatory phenotype. To 

support this evidence, we show that co-culture of macrophages with LLC cells triggers 

their polarization towards an M2 phenotype, but, further incubation with iron sources 

(aged/hemolytic RBC, Heme and FeNTA) was able to shift this polarization by decreasing 

the M2 marker CD206 and increasing the M1 marker CD14.  
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In vivo, hemorrhagic areas (where leaked RBC and iron loaded macrophages 

accumulate) show an increase in inflammatory cytokines such as IL-6, IL-1β and also high 

levels of iNOS (Nos2) which are all markers for M1 polarization. In contrast, markers of 

M2 polarization such as Arginase 1 and Ym1 are not changed (data not shown). 

Nevertheless, although these cytokines are associated with M1 activity, the impact of 

these cytokines in tumor growth and proliferation might not have the expected “tumor 

killing” effect. As an example, in LLC tumors, IL-1β was shown to induce VEGF, CXCL2, 

and hepatocyte growth factor (HGF). The induction of these angiogenic factors, produced 

by tumor and stromal cells, promoted an increase in tumor vasculature (Saijo et al., 2002). 

Further experiments are necessary to understand the functional consequences of RBC 

extravasation and iron accumulation in TAMs towards tumor progression. 

The expression of Ferroportin is absent in TAMs from LLC tumors 

The absence of ferroportin expression in TAMs is also an intriguing observation. TAMs 

from LLC were shown to be negative for ferroportin expression at mRNA and protein level. 

This downregulation or absence of ferroportin is independent of hepcidin, suggesting that 

it rather occurs at the transcriptional level than post-translational level.  

Not all macrophages from the human body express ferroportin. Macrophages from the 

RES, such as Kupffer cells and splenic macrophages are known to express ferroportin. 

The expression of ferroportin in these cells is regulated on several levels (see chapter 

1.3). Hepcidin is the systemic regulator of ferroportin expression (Altamura et al., 2014). 

By contrast, peritoneal macrophages and alveolar macrophages don’t express ferroportin 

and retain iron in conditions of iron overload (unpublished data). The expression of 

ferroportin in different subtypes of macrophages is probably dependent on the 

differentiation process during the establishment of embryonic-origin populations or in the 

case of TAMs, the cytokines encountered in the niche by recruited monocytes.  

Macrophage precursor cells (monocytes and myeloid-derived suppressor cells- MDSCs) 

encounter cytokines and chemokines in the tumor microenvironment that trigger their 

differentiation. These cytokines might lead to a macrophage phenotype that does not 

allow for ferroportin expression. As an example, splenic macrophages, known to export 

iron and to express ferroportin, are dependent on the transcription factor SPI-C to 

differentiate into iron recycling macrophages. The niche of the tumor microenvironment is 

different from the splenic niche and probably, TAMs are not differentiated to display an 

iron recycling phenotype, but rather support tissue remodeling and angiogenesis. TAMs 

(CD11b high /F4/80 high) are rather similar to peritoneal macrophages (CD11b high /F4/80 high) 

than to splenic macrophages (CD11blow/F4/80high).  
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We and others showed that LLC cells are able to polarize macrophages towards an M2 

phenotype (Colegio et al., 2014). M2 macrophages were shown to express more 

ferroportin when compared to M1 macrophages (Recalcati et al., 2010).In contrast to this 

study we even observed a slight downregulation of ferroportin when we use CM from LLC 

cells or cytokines that polarize macrophages towards an M2 phenotype. Here we show 

that although macrophages associated with LLC tumors show several features of M2 

macrophages, ferroportin is absent and leads to an iron retention phenotype. This might 

be explained by the complexity of stimuli that macrophages encounter in vivo, within the 

tumor microenvironment that are not seen in vitro, and as well, by the differences in the 

protocols used to differentiate the cells in vitro. A recent study in breast cancer 

demonstrated that TAMs from breast cancer show an iron “donor” phenotype with 

increased expression of ferroportin, supporting the idea that the expression of proteins 

involved in iron metabolism in TAMs might be tissue-specific and strictly dependent on the 

niche (Marques et al., 2016).   

M-CSF (Csf1) and GM-CSF (Csf2) are factors that contribute to monocyte differentiation 

into macrophages and were also implicated in controlling ferroportin expression (Sierra-

Filardi et al., 2010). Human monocytes differentiated with M-CSF expressed higher levels 

of ferroportin when compared with monocytes stimulated with GM-CSF (Sierra-Filardi et 

al., 2010). M-CSF and GM-CSF are both present in the microenvironment of LLC. In fact 

these cytokines are even increased in hemorrhagic areas (See Research work, Chapter II, 

Figure 6D). In the case of GM-CSF, it is also increased in tumors and in the circulation of 

iron overloaded mice, when compared to WT mice. The expression of GM-CSF in the 

tumor tissue might explain the absence of ferroportin in macrophages, but nevertheless 

the mechanism by which TAMs from LLC downregulate ferroportin expression requires 

further investigation. 

The fact that TAMs don’t express ferroportin might contribute to iron retention and 

subsequently to the iron-derived inflammatory phenotype. Our data suggest that a subset 

of TAMs ingest and recycle RBC from the tumor microenvironment but they are unable to 

export recycled iron. We propose a model where, iron uptake by TAMs, increases the 

expression of iron-recycling related proteins such as CD163 and HO-1 and further iron 

retention induces a pro-inflammatory behavior. HO-1 and CD163 are markers of M2 

macrophages and immune suppression but are also important players in iron metabolism. 

In the context of the tumor microenvironment macrophages express M1 and M2 markers 

(Qian and Pollard, 2010), showing that the process of macrophage polarization and 

plasticity in the tumor microenvironment is far more complex than the M1/M2 dichotomy 

(Mosser and Edwards, 2008; Murray et al., 2014; Qian and Pollard, 2010; Xue et al., 

2014). Here we show that iron accumulation in TAMs contributes to the definition of al 
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subpopulation of tumor-associated macrophages, whose function might be dependent on 

(or might be a consequence of) iron loading.  

 

Hemorrhagic areas as a “new niche” within the TME 

During the last decade, the role of the tumor microenvironment in cancer progression and 

therapy has been widely explored. Several studies unraveled the important role of 

immune cells in tumor progression (Grivennikov et al., 2010; Mantovani et al., 2008; 

Ostrand-Rosenberg and Sinha, 2009). Macrophages were shown to be key players in the 

tumor microenvironment and tumor-related inflammation (Allavena et al., 2008; Condeelis 

and Pollard, 2006; Solinas et al., 2009). 

The fact that macrophages can support angiogenesis and invasion makes them of 

extreme importance (Condeelis and Pollard, 2006). In the model studied, macrophages 

represent around 60% of the infiltrated leukocytes. Here we show that hemorrhagic areas 

are characterized by iron loaded macrophages but also by an enrichment of CD11b+/Gr-1+ 

cells. CD11b+/Gr-1+ myeloid-derived suppressor cells (MDSCs) cells are important 

component of the tumor microenvironment (Gabrilovich and Nagaraj, 2009).  

CD11b+/Gr-1+ cells are very abundant in the LLC tumor model. Previous studies 

demonstrated that LLC tumor bearing mice have increased hematopoiesis and an 

increase in the proportion of monocytes in the peripheral blood, spleen, and bone marrow 

(Young et al., 1987). The increase in this population in hemorrhagic areas might be just a 

consequence of extravasation of circulating cells into the tumor microenvironment due to 

vessel damage. Elevated CD11b+/Gr-1+ myeloid cells are associated with impaired 

immune reactivity and increased tumor progression (Marx, 2008; Sinha et al., 2005; Yan 

et al., 2010). CD11b+/Gr-1+ myeloid cells are involved in the tumor vasculature and 

secrete pro-angiogenic factors such as matrix metalloproteinases 9 (MMP9) and iNOS or 

differentiating into endothelium-like cells or other vascular cells (Murdoch et al., 2008; 

Suzuki et al., 2005; Yang et al., 2004).  

Consistent with these findings we observe an increase in MMP9 and iNOS (Nos2) mRNA 

in hemorrhagic areas. We also observed an increased expression of Cxcl1 and Cxcl2, 

which might be produced by these cells and act as pro-angiogenic factors and 

chemoattractant factors to myeloid cells, neutrophils and macrophages. Vessel damage 

and accumulation of CD11b+/Gr-1+ cells and RBC alter the tumor microenvironment and 

may have consequences in the immune response. CD11b+/Gr-1+ myeloid cells can further 

differentiate into macrophages (Gabrilovich and Nagaraj, 2009). The increase in the 

expression of Csf1 and Csf2 may indicate that there is a further differentiation of these 

cells into macrophages, but this has not yet been proven. It is not known if the expansion 
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of CD11b+/Gr-1+ cells is somehow involved in iron homeostasis, but the fact that there is 

an expansion of this population in bone marrow and spleen might affect erythropoiesis 

and iron recycling. 

Does cancer related-inflammation affect iron or does iron affect inflammation in 

cancer? 

Inflammation, cancer and iron are interconnected and can mutually affect each other. On 

the one hand, iron/heme/RBC in the tumor microenvironment might have an important 

role not only in tumor cell proliferation but also in the inflammatory response, especially in 

the modulation of TAMs plasticity. On the other hand, cancer related inflammation was 

shown to have an impact on systemic iron regulation (Kim et al., 2014; Maccio et al., 

2015). 

The decrease observed in serum iron levels can be explained by tumor growth, 

suggesting that LLC cancer cells can obtain the necessary iron from circulation. LLC 

tumors in iron overload conditions didn’t show increased proliferation and tumor size, 

when compared to WT mice. In fact, mRNA expression of total tumor mass suggests that 

LLC cells injected in iron overload mice (C326S mice) downregulate TfR1 to decrease iron 

uptake and upregulate Ferroportin to increase iron export.  

Cancer cells are negative for iron staining, supporting the evidence that cancer cells do 

not accumulate excessive amounts of iron. This can be explained by iron toxicity. Iron 

dependent -ROS generation can be toxic to cancer cells (Dixon et al., 2012) which 

explains why cancer cells control iron levels. Iron seems to be more important for the 

modulation of the inflammatory response, than for tumor growth. We observed an 

increase in cytokines in the circulation of LLC-bearing iron overloaded mice (IL-1β, IL-6, 

TNFα, IL-10, GM-CSF, CCL2) when we compare to WT LLC-bearing mice. In terms of 

macrophage counts, tumors from iron overloaded mice had an increase number of 

macrophages, probably a result of CCL2 increased expression. Once more, CCL2 

expression is increased by iron levels (Valenti et al., 2011; Zager, 2005) but the 

mechanism by which iron affects CCL2 expression is not known.  

LLC-bearing mice develop alterations in iron homeostasis. Serum iron levels are 

decreased, probably due to tumor growth and leakage of RBC in to the tumor 

microenvironment. Also, infiltration of CD11b+/Gr-1+ cells in the bone marrow might affect 

erythropoiesis. The infiltration of the same cell type in the spleen changes the architecture 

of the spleen and possibly causes a decrease in RBC recycling. Expression of hepcidin is 

not affected in this tumor model.  

As mentioned previously, cancer patients frequently develop anemia of cancer. Since 

anemia of cancer might have a negative impact in the quality of life of cancer patients, 
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treatments have been introduced in order to fight anemia.  The treatment options for 

anemia of cancer include blood transfusion, iron administration and erythropoiesis-

stimulating agents (ESAs). Since I observed a modulatory role of iron and RBC in the 

tumor microenvironment, it will be of interest to explore the effects of RBC transfusion in 

cancer patients.  

Around 15% of anemic cancer patients are treated with RBC transfusions (Cremieux et 

al., 2000).  Each unit of RBC with a volume of 300 mL contains approximately 200 mL 

RBC, and after administration to an adult patient Hb levels rise 1 g/dL. One unit of RBC 

contains 200 mg of iron, which is released when hemoglobin from the transfused RBC is 

metabolized after RBC death. The mean life span of transfused RBC is 100–110 days, 

although in the first 24 hours 10%–15% are lost (Luten et al., 2008). This implicates that in 

the first 24h of transfusion, hemolysis of transfused RBC might occur and the release of 

heme might have an implication on inflammation and immune system activation as 

described before. In fact, one of the major complications of RBC transfusion is iron 

overload. After transfusing 10–15 RBC units, excess of iron is typically present in the liver, 

heart, skin, and endocrine organs.  

Several retrospective studies looked at the impact of RBC transfusions on treatment 

outcome in patients with cancer. In patients with head and neck cancer, RBC transfusion 

was associated with decreased survival time and higher local recurrence (Bhide et al., 

2009). Administering RBC transfusions in patients with thoracic malignancies translated 

into a higher perioperative mortality rate whereas there was no impact on overall survival 

in patients with non-small cell lung cancer (Thomas et al., 2007). Studies in patients with 

cervical cancer showed no important effect of transfusion in patients who were treated 

with surgery in relation to survival. In one study evaluating its impact in patients treated 

with radiotherapy, there was a shorter survival rate (Santin et al., 2003). In colorectal 

cancer, a meta-analysis showed a higher recurrence rate in patients receiving RBC 

transfusions at the time of surgery and also a higher infection rate (Amato and Pescatori, 

2006; Houbiers et al., 1997). An overall increased mortality was observed after RBC 

transfusions in patients with colorectal, head and neck, breast, gastric, and prostate 

cancer (Vamvakas and Blajchman, 2001).  

In summary, it is it is uncertain whether RBC transfusion is a good strategy to ameliorate 

anemia of cancer. Also the effect of iron in tumor growth and recurrence has not been 

entirely elucidated. Additional studies and analysis of cancer patients are required to 

dissect how RBC transfusion and iron supplementation might contribute to changes not 

only in the tumor cells, but also in the tumor microenvironment.  
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3. Future Perspectives 

 

Several open questions remain. 

Regarding heme-induced activation of macrophages in hemolytic disorders, it is still 

unknown if this would be considered an advantage or disadvantage in the case of 

infections. Patients with hemolytic disorders receive frequent blood transfusions. The 

frequency of blood transfusions is associated with an increased risk for infections. On the 

one hand, the fact that macrophages are activated towards a M1-like phenotype may 

predispose them to a faster response against pathogens. Nevertheless, we also showed 

that treatment with heme and iron decrease the viability of M1 macrophages (See 

Research work, Chapter I, Table2). As consequence, macrophages may no longer be 

able to respond accordingly to infections. Besides this, iron overload might be an 

advantage for several pathogens that are dependent on iron to proliferate. Hemopexin 

therapy and iron chelation therapies might be a promising therapeutic approach, also in 

case of infections. It might increase macrophage fitness and decrease the availability of 

iron for pathogens. Current projects in the lab are addressing this question. 

Regarding iron and the tumor microenvironment, the main question “are these iron loaded 

macrophages “tumor helping” or “tumor killing”?” has so far not been entirely addressed. 

 According to Mills (Mills, 2015), the classification of macrophages in M1 or M2 

macrophages only defines if macrophages can kill tumor cells, or help tumor cells to 

proliferate. I am currently doing experiments addressing this question. As an experimental 

set-up, I am using co-culture of macrophages with cancer cells, iron treatments and live 

imaging to understand the relationship of iron-loaded macrophages with cancer cells or 

other immune cells. The regulation of ferroportin in TAMs is also an important issue to be 

resolved. It is not known why TAMs from certain tumors don’t express ferroportin. 

Experiments are ongoing to understand the mechanism underlying the absence of 

ferroportin in TAMs associated with LLC. 

Another important aspect is the implication of iron loaded macrophages in the prognosis 

of cancer. Since they are associated with RBC extravasation and angiogenesis, the 

presence of these macrophages might be correlated with metastatic tumors and 

aggressive phenotypes. Iron staining and correlation with macrophage infiltrates might be 

a useful prognosis tool ad needs to be performed in a large patient cohort. Analysis of 

tissue microarrays from cancer patients is being performed in order to address this 

question.  
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