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Resumo 

Helicobacter pylori (H. pylori), uma bactéria gram-negativa espiralada, é um dos agentes 

infeciosos mais comuns em todo o mundo, colonizando a mucosa gástrica de mais de 50% da 

população mundial e cerca de 80-90% da população Portuguesa. 

Devido à sua motilidade flagelar e capacidade para criar um microambiente favorável, a 

H. pylori é capaz de persistir no ambiente acídico do estômago e aderir ao epitélio gástrico, 

estabelecendo com sucesso a infeção. A adesão é mediada por moléculas na superfície 

bacteriana, denominadas adesinas, capazes de reconhecer glicanos expressos na superfície de 

células epiteliais gástricas e na camada de muco que reveste a mucosa gástrica. A longo 

prazo, a presença da bactéria aumenta significativamente o risco de desenvolver várias 

complicações gástricas, sendo uma delas o cancro gástrico. 

Atualmente, as terapias convencionais contra a infeção causada pela H. pylori baseiam-se 

na administração combinada de dois antibióticos e um inibidor da bomba de protões. No 

entanto, o tratamento é ineficaz em 20% dos casos, deixando cerca de 140 milhões de 

doentes em todo o mundo sem tratamentos alternativos. As taxas de cura têm vindo a 

diminuir ao longo dos anos, principalmente devido à resistência bacteriana aos antibióticos e 

à baixa adesão dos pacientes. 

Neste contexto, várias terapias alternativas estão sob investigação. O quitosano, um 

polímero catiónico natural e não tóxico, tem sido bastante investigado como uma ferramenta 

contra infeções gástricas, principalmente devido à sua biocompatibilidade e 

biodegradabilidade, juntamente com as suas propriedades anti- bacterianas e mucoadesivas. 

Apesar da crescente aplicação de sistemas de encapsulação baseados em quitosano, a 

utilização de microesferas de quitosano como um sistema de ligação à H. pylori foi também 

proposta, onde, após administração oral, as microesferas são capazes de capturar e remover 

bactérias do estômago, tirando partido da sua capacidade mucoadesiva/anti-bacteriana. 

Embora encontradas livremente na camada de muco, as bactérias são também 

encontradas aderidas ao muco e à superfície de células epiteliais nas fovéolas gástricas 

(invaginações do estômago). A estabilidade das microesferas de quitosano em meio ácido, 

quando reticuladas com genipina, foi já demonstrada, bem como a sua capacidade para se 

ligar e remover a H. pylori aderente às células gástricas. Estudos em secções 2D de mucosa 

gástrica humana mostraram que as fovéolas gástricas têm aproximadamente 70 μm de 

largura, o que pode dificultar a penetração das microesferas anteriormente desenvolvidas, 

com diâmetro de cerca de 170 µm, e a remoção das bactérias instaladas no interior das 

fovéolas. É então sugerido que, de modo a alcançar as bactérias e removê-las do estômago, 

as microesferas devem apresentar um tamanho menor do que o descrito anteriormente. 



iv 

 

Assim, o objetivo deste projeto consiste no desenvolvimento de microesferas com cerca 

de 50 µm, pequenas o suficiente para penetrar as fovéolas da mucosa gástrica. Microesferas 

de quitosano foram produzidas e caracterizadas, e a sua penetração nas fovéolas gástricas de 

ratinho e humanas foi avaliada, bem como a sua capacidade de adesão à H. pylori. 

Para esse propósito, microesferas de quitosano foram produzidas através de três sistemas 

diferentes, nomeadamente o sistema eletrostático, de pressão co-axial e aerodinâmico. 

Técnicas baseadas em microscopia ótica (Microscópio Ótico e IN Cell Analyzer) e na difração 

de laser (Mastersizer) foram usadas para caracterizar as microesferas de quitosano 

relativamente ao seu tamanho e morfologia. 

Um modelo ex-vivo de estômagos frescos de ratinho foi utilizado para otimizar a 

marcação com fluorescência da mucosa gástrica. Diferentes marcadores foram testados, 

revelando DAPI (amostra fixa) e o marcador de membrana CellMaskTM Deep Red (fresco) com 

bons marcadores para a visualização da mucosa gástrica. As microesferas de quitosano com 

um diâmetro médio de 20 µm foram produzidas com sucesso e incubadas com as mucosas 

gástricas de ratinhos e humana. Microscopia de confocal revelou a presença de microesferas 

em diferentes planos da mucosa, confirmando assim a sua capacidade de penetrar as fovéolas 

gástricas.  

Além disso, a incubação da H. pylori com as microesferas revelou a sua capacidade de 

aderir à superfície das partículas.  

Em conclusão, os resultados sugerem as microesferas de quitosano desenvolvidas como 

uma ferramenta promissora para explorar o tratamento de infeções causadas por H. pylori. 
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Abstract 

Helicobacter pylori (H. pylori), a spiral-shaped gram-negative bacterium, is one of the 

most common infectious agents in the world, colonizing human gastric mucosa of over 50% of 

the world’s population and 80-90% of the Portuguese population.  

Due to its flagellar motility and ability to create a favourable microenvironment, H. 

pylori is able to persist in the stomach acidic environment and attach to the gastric 

epithelium, establishing the infection. Its adherence is mediated by molecules (adhesins) on 

the bacterial surface able to recognize glycans expressed on the surface of gastric epithelial 

cells and mucus layer lining the gastric mucosa. Long-term carriage significantly increases 

the risk of developing several gastric-specific complications, going from gastritis to gastric 

cancer. 

Current H. pylori infection conventional therapies rely on a concomitant administration 

of two antibiotics and proton pump inhibitor. However, the treatment is inefficient in 20% of 

the cases, leaving nearly 140 million patients worldwide without any alternative treatment 

option. The cure rates have been declining over the years, mostly due to bacterial resistance 

to antibiotics and poor patient compliance.  

In this context, several alternative therapies are under investigation. Chitosan, a 

natural-nontoxic cationic polymer, has been thoroughly investigated as a tool against gastric 

infections, mainly due to its biocompatibility and biodegradability coupled with its anti-

bacterial and mucoadhesive properties. Despite the growing application of chitosan-based 

encapsulation systems, the use of chitosan microspheres as a H. pylori binding system has 

also been proposed, where, after oral administration, microspheres are able to capture and 

remove bacteria from the stomach, taking advantage of their muco/bacterial adhesive 

capacity. 

Although found free-swimming in the mucus layer, bacteria are also found adherent to 

the mucus layer and the surface of epithelial cells in gastric foveolae (stomach 

invaginations). The stability of chitosan microspheres in acidic environment, when 

crosslinked with genipin, has been demonstrated as well as their ability to bind and remove 

adherent H. pylori from gastric cells. Studies using 2D sections of human gastric mucosae 

have shown that human stomach foveolae are ~70 µm wide, which might hamper the 

penetration of previously developed chitosan microspheres, with a diameter around 170 µm, 

and the removal of the bacteria living within the foveolae. Therefore, it is suggested that 

the microspheres should be smaller than the previously developed in order to reach bacteria 

and remove them from the stomach. 
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The aim of this project is to develop chitosan microspheres with a diameter around 50 

µm, small enough to penetrate gastric foveolae and remove bacteria adhered inside. The 

microspheres were produced and characterised, and their penetration into mice and human 

gastric foveolae as well as their ability to adhere onto H. pylori evaluated. 

For this purpose, chitosan microspheres were produced by three different systems, 

namely high voltage electrostatic, co-axial air stream and aerodynamically driven systems. 

Techniques based on optical microscopy (Optical Microscopy, IN Cell Analyzer) and laser 

diffraction (Mastersizer) were used to characterize chitosan microspheres regarding size and 

morphology.   

An ex-vivo model using fresh mice stomach samples was used to optimize the 

fluorescence labelling of gastric mucosa. Different dyes were explored, revealing DAPI (fixed 

sample) and CellMaskTM Deep Red plasma membrane (fresh) stain as good gastric mucosa 

markers. Chitosan microspheres with an average diameter of 20 µm were successfully 

produced and incubated with mice and human gastric mucosa. Confocal microscopy revealed 

their presence in different plans of the mucosa, thus confirming their ability to penetrate 

the gastric foveolae.  

Moreover, H. pylori incubation with chitosan microspheres has revealed their ability to 

adhere to the surface of the particles. 

In conclusion, results suggest chitosan microspheres developed as a promising tool to 

explore as H. pylori infection treatment. 
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Chapter 1  

Introduction 

1.1 Stomach and its mucosal surface 

The digestive tube is a musculomembranous tube, with about 9 metres long, extending 

from the mouth to the anus, and lined throughout its entire extent by mucus membrane [1]. 

The stomach is the first intra-abdominal and the most dilated part of the gastrointestinal 

tract, and is situated between the end of the esophagus and the beginning of the small 

intestine, the duodenum [1]. 

It is a muscular, highly vascular, distensible bag-shaped organ, divided in four main 

different regions [1]: cardia, fundus, body and pylorus. The cardia, where the contents from 

the oesophagus are deposited, is the acute angle between the abdominal esophagus and the 

fundus of the stomach, the upper curvature. The body (corpus) corresponds to the bigger 

region of the stomach leading to the pyloric antrum, which is the lower section narrowing 

toward the pylorus, which occupies the distal one quart of the stomach, surrounded by the 

smooth muscle pyloric sphincter [2]. 

The wall of the stomach consists of four layers: serosa, muscularis, submucosa and 

mucosa, together with vessels and nerves (Figure 1) [1]. The outermost layer of the stomach 

is the serosa, a thin serous membrane made of simple squamous epithelial tissue and areolar 

connective tissue. The muscularis layer is composed by 3 layers of smooth muscle tissue 

arranged with its fibers running in 3 different directions: longitudinal external, circular media 

and oblique internal. The submucosa is made of various connective tissues, blood vessels, and 

nerves, and surrounds the mucosa, the innermost layer of the stomach. The stomach mucosa 

contains simple columnar epithelium tissue, a layer of loose connective tissue of lamina 

propria, and thin layer of smooth muscle, the muscularis mucosae. The surface of the 

epithelium is connected via the foveolae (gastric pits) and neck region to the deeper gastric 

glands [3]. These foveolae contain exocrine cells able to produce mucus and secrete digestive 
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enzymes and hydrochloric acid into the lumen of the stomach, creating an environment with 

an acidic pH, able to kill many of the bacteria present in the stomach [4].  

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

The mucus layer is a biochemically complex medium, highly hydrated and rich in high 

molecular weight and heavily glycosylated glycoproteins known as mucins, antimicrobial 

peptides, immunoglobulins and other intestinal proteins [6]. The alkaline and viscous mucus 

is continuously secreted by the mucous superficial cells and neck cells, being its function to 

protect gastric epithelial cells against chemical, enzymatic, microbial and mechanical harm 

[7]. Mucins act as diffusion barrier to acidic HCl instilled into the lumen of the stomach and 

alkaline bicarbonate ions secreted by the gastric epithelium, causing the stomach pH to vary 

between pH 1.2–2.5 in the gastric lumen and pH ~7.4 near the epithelial surface [8]. 

1.2 Helicobacter pylori colonization 

Helicobacter pylori (H. pylori), spiral-shaped gram-negative bacteria, is one of the most 

common infectious agents, colonizing the gastric mucosa of over 50% of the human population 

[1]. H. pylori infection is the strongest known risk factor for gastroduodenal ulcer 

development, present in 60–80% of gastric ulcers and being as well causally (1-3%) related to 

gastric adenocarcinoma [2]. Infection induces an inflammatory response that does not 

eradicate the bacterial colonization, but which instead persists for the lifetime of the 

individual [3]. However, less than 20% of infected individuals have clinical symptoms [4]. 

The risk of serious clinical outcomes is related to interactions between the host, bacteria 

and environment [2]. In general, the host is able to eliminate the bacteria through gastric 

acidity, peristaltic movements and mucus continuously secreted from glands of the epithelial 

cell, which pushes bacteria toward the luminal surface, inhibiting the adhesion and 

colonization of the bacteria in the gastric mucus layer [5]. However, H. pylori have evolved 

intricate mechanisms to avoid the bactericidal acid in the gastric lumen and to survive near 

to, to attach to, and to subvert the human gastric epithelium and immune system [2]. The 

hostile environment features are overcome by virulence factors that create a micro 

Figure 1 - Structures of human stomach and gastric mucosa [5]. 
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environment favourable to its survival. The bacteria is then able to escape the acidic pH of 

the stomach (pH 1.2–2.5) crossing the mucus layer that covers and protects the gastric cells, 

reaching the gastric epithelium where the pH is more neutral (pH ~7.4). This is achieved due 

to its flagellar motility and secretion of urease, which converts endogenous urea into 

ammonia and carbon dioxide, thereby buffering gastric acid in the immediate vicinity of the 

organism [6]. 

Most H. pylori are frequently found moving in the mucus layer, but some bacteria actually 

adhere to the surface of gastric epithelial cells. Schreiber et al. [7] revealed that H. pylori 

colonizes mainly a thin mucus layer located 0-25 µm above the tissue surface, being the 

majority of H. pylori (88%) found within the first 15 µm, with 30% either swimming in the 

layer immediately adjacent to the epithelial cells (0-5 µm) or adhering to them. 

Non-adherent H. pylori are able to cause a direct injurious effect on gastric epithelial 

cells, which is amplified by production and release of a vacuolating cytotoxin, VacA (Figure 2) 

[8]. This secreted protein is able to induce multiple structural and functional alterations in 

cells, such as the formation of large intracellular vacuoles [9,10] and the increase in 

membrane permeability [11]. This event occurs through its insertion in cell membranes, 

which in turn leads to the formation of anion selective channels [12]. In addition, VacA 

stimulates apoptosis in gastric epithelial cells [13], by inducing the release of cytochrome c 

from the mitochondria, therefore activating caspase 3. The inhibition of the expansion of T 

cells, thereby allowing H. pylori to evade the adaptive immune response, is also attributed to 

VacA protein action [14]. 

Nevertheless, attachment is a prerequisite for a successful microbial colonization of 

epithelial surfaces. Interaction between the bacteria and the cells is mediated by molecules 

on the bacterial surface, adhesins, which recognize proteins or glycoconjugates expressed on 

the surface of gastric epithelial cells and also in the mucus layer lining the gastric mucosa 

[6]. H. pylori express adhesins that confer intimate adherence to the gastric epithelium 

where the bacteria can gain easy access to nutrients from host tissues [15]. These adherence 

properties protect the bacteria from the extreme acidity of the gastric lumen and 

displacement from the stomach by forces such as those generated by peristalsis and gastric 

emptying [16]. Two carbohydrate structures in surface mucus cells serve as specific ligands 

for H. pylori adhesins: Lewis blood group antigens, such as Lewis b (Leb), mainly distributed 

in the epithelium surface, and Lewis x (LeX), located deeper in the mucus [5]. The blood 

group antigen-binding adhesin (BabA) was shown to recognize the Leb while sialic acid-binding 

adhesin (SabA) mediates the adherence of H. pylori to inflamed gastric mucosa by binding 

sialylated carbohydrate structures such as sialyl Lewis x (sLex)  [5,6].  

Apart from adhesins and VacA protein, the cytotoxin-associated gene (cagA) is another 

genetic determinant involved in H. pylori virulence [17]. CagA antigen, gene inserted in the 

H. pylori cag pathogenicity island (PAI), is an H. pylori strain-specific factor, which increases 

the risk for development of distal gastric cancer [18], by inducing strong gastric inflammation 

[19]. Subsequent to epithelial cells adherence, H. pylori is able to assemble a type IV 

secretion system, encoded by the cag pathogenicity island (PAI), which translocates the CagA 

protein into gastric epithelial cells  [19,20]. Once inside the former epithelial cells, CagA is 

tyrosine-phosphorylated, however both phosphorylated and nonphosphorylated CagA can 

cause numerous cellular alterations [20]. 
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Figure 2 - Factors that influence the interactions of H pylori with human gastric mucosa [21]. The 
secretion of VacA protein by nonadherent bacteria can affect several cell types, including gastric 

epithelial cells and T cells [22]. Adhesins, namely BabA and SabA, mediate the binding of H. pylori to 
the gastric epithelial cells and mucus [16]. The adherent bacteria are able of assemble a type IV 
secretion system that allows the entrance of CagA protein into the gastric cells conducting to cellular 
alterations [20]. 

  

H. pylori capability of expressing these aforementioned factors will conduct to strains 

with different levels of pathogenicity, which will be determinant for the interaction between 

the bacteria and the human host [23]. 

1.3 Current treatments 

H. pylori eradication treatments require not only antibiotics to kill the bacteria, such as 

amoxicillin, clarithromycin or metronidazole, but also anti-acid medications, particularly 

proton pump inhibitors (PPI) such as omeprazole, rabeprazole, lansoprazole,  to increase the 

environmental pH, therefore ensuring antibiotics stability  within stomach [2]. 

Current available regimens to treat H. pylori infection rely on a triple treatment, which 

includes PPI-clarithromycin and amoxicillin or metronidazole [24–26]. Nevertheless, the most 

recent data have recognized lack of efficiency on the former treatment, often allowing the 

cure of only a maximum of 70% of the patients, which is less than the 80% rate aimed [26] 

and expected for an infectious disease [27]. The administration of the three antibiotics 

together with a PPI (non-bismuth quadruple therapy) has also been considered [28] as well as 

the bismuth-containing quadruple therapy following the development of a gallenic 

formulation including bismuth salts, tetracycline and metronidazole in the same pill [29].   

The Maastricht IV/Florence Consensus Report [24] has stated that PPI-clarithromycin-

containing triple therapy without prior susceptibility testing should be abandoned when the 

clarithromycin resistance rate in the region is more than 15-20%. Moreover, recommended 

regimens vary slightly between areas with low or high clarithromycin resistance. Regarding 

the former case, clarithromycin-containing treatments are recommended for first-line 

empirical treatment, with bismuth-containing quadruple therapy being also an alternative. In 

order to increase the efficacy of triple therapy, some modifications may be implemented:  a 

higher dose (twice a day) of PPI can be used and extending the duration of PPI-

clarithromycin-containing triple therapies from 7 to 10-14 days improves the eradication 

success by about 5% and therefore may be considered as well. PPI-clarithromycin-

metronidazole (PCM) and PPI-clarithromycin-amoxicillin (PCA) regimens are equivalent, and 

therefore metronidazole can be used instead of amoxicillin as the second antibiotic. After 

failure of a PPI-clarithromycin-containing treatment, either a bismuth-containing quadruple 
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therapy or levofloxacin-containing triple therapy is recommended. Concerning areas of high 

clarithromycin resistance, bismuth-containing quadruple therapies are recommended for 

first-line empirical treatment. If this regimen is not available, sequential treatment or a non-

bismuth quadruple therapy is recommended. In case first line regimen fails, levofloxacin 

containing triple therapy is recommended. In both areas, after failure of second-line therapy 

and whenever possible, the treatment should be guided by antimicrobial susceptibility 

testing. 

Particularly, for patients with penicillin allergy, in areas of low clarithromycin resistance, 

for a first-line treatment, a PPI-clarithromycin-metronidazole combination may be prescribed 

while in areas of high clarithromycin resistance, the bismuth- containing quadruple therapy 

should be advised [24]. 

1.4 Reasons for unsuccessful treatments 

The low rate of success in H. pylori is manly related to: (a), poor penetration and (b) 

antibiotic degradation, (c) H. pylori resistance to the antibiotics, (d) recurrence of infection 

and (c) poor compliance.  

The mucus membrane and H. pylori ability to survive in the deep gastric mucosa and in 

the intercellular space between epithelial cells have been proved to limit the access of the 

drugs to the site of action [5,30], causing poor penetration of the antibiotics [5], therefore 

reducing the concentration of antibiotics at the site of action.  

Antibiotic degradation is also a problem leading to unsuccessful treatments, since to act 

effectively against H. pylori, the released antibacterial agents must remain stable in the 

acidic environment of the gastric lumen [31], in order to reach the site of infection in their 

active form [32]. Their proved instability in stomach environment [31–35], reduces the 

bioavailability of the antibiotics reducing their effect on H. pylori, therefore preventing the 

complete eradication of the bacteria [5,30], even in the presence of PPIs [33,36].  

The difficulty of establishing a standard treatment regimen worldwide has also been 

referred as an obstacle to the successful treatment of H. pylori. A significant variation in the 

resistance to antibiotics in H. pylori has been reported [37], especially to clarithromycin, 

which global resistance rate has increased in Europe from 9% in 1998 [38] to 17.6% in 2008-9 

[39]. Therefore, knowledge of previously prescribed antibiotics in the population and 

information about the presence of resistance in the region or other similar areas provides a 

basis for the prescription of the treatment, suggesting the use of some antibiotics over 

others. As H. pylori often becomes resistant when single antibiotics are used for other 

infections, discussion with the patient and identification of which antibiotics have been used 

in the past may be useful to gather information about possible resistance. Their prior use 

might exclude them from specific H. pylori therapy [2]. 

In addition, H. pylori treatment raises some concerns due to the possible recurrence of 

infection [37]. In fact, despite the fact that re-infection after eradication is rare in developed 

countries, in developing countries is still relatively high, around 13% [40]. 

Poor patient compliance due to the dosage regime [41] and due to adverse effects such as 

diarrhea, nausea, and retching [36] have also been considered as limited factors [24]. 

Overall, it has been estimated that eradication therapy is unsuccessful in nearly one in 

five patients [42], leaving potentially around 140 million people without an alternative 
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treatment [43]. Despite the large number of studies, an optimal therapeutic regimen for the 

treatment of H. pylori has not yet been defined, and therefore, alternative therapies are 

required. 

1.5 Alternative therapies 

Alternative therapeutic approaches able to overcome the aforementioned problems have 

been considered. Special attention has been given to the antimicrobial activity of certain 

non-antibiotic compounds, such as polyunsaturated fatty acids [44], vaccines developed 

against H. pylori [45], inhibitors of virulence factors [17,46] and other molecules, such as 

polyphenols [47], able to reduce the activity of the bacteria, therefore maximizing the 

success of the treatment. Some of the strategies may be applied as co-adjuvants of the 

current available therapies [48], leading to an improved outcome. Encapsulation of drugs for 

local delivery has been another extensively studied approach seeking to improve antibiotics 

effect against H. pylori[49]. 

 Certain polyunsaturated fatty acids (PUFA) have been considered due to their inhibitory 

effect on bacterial growth [50]. Particularly, docosahexaenoic acid (DHA), an n-3 

polyunsaturated fatty acid (n-3 PUFA), has been identified as an antibacterial agent, due to 

its ability to inhibit H. pylori growth in vitro and in vivo by reducing gastric mucosa 

colonization [48], by altering the bacterial membrane protein composition [44]. The 

recurrence of H. pylori infection in the mouse model was shown to decrease as a result of the 

combination of DHA with standard treatments. 

Given the worldwide variation of H pylori infection prevalence, which in 2010 ranged 

between 7% and 87% [51], a vaccination strategy would be a valuable option to fight H. pylori 

infection [45,52,53]. However, despite several attempts to develop an H. pylori vaccine for 

humans, progress has been slow. Patent WO 2008/105740 A1 (A New immunoglobulin against 

Helicobacter pylori) describes the preparation of antibodies against the H. pylori BabA 

adhesin and suggests their application in the development of H. pylori passive vaccination. 

However, its action remains unproven. 

Virulence factors inhibitors have also been considered in this sense. For instance, being 

urease essential for the survival of H. pylori [54], drugs such as acetohydroxamic acid (AHA), 

a specific urease inhibitor able to inhibit ammonia production [46], may also be valuable 

alternatives to fight H. pylori. 

Several studies have shown that phenolic compounds found in cranberries, green tea, 

apple and wine, affect H. pylori [55,56]. A recent study showed that both gallic acid and 

catechin, two abundant phenolic compounds widely distributed among plants [57], display 

growth inhibitory effects in H. pylori [47]. 

The encapsulation process appears as a solution for several problems associated with the 

administration of the drugs alone. These systems are able to protect the drug from rapid 

degradation or clearance, extending their half-life and solubility, and reducing its 

immunogenicity [33,58–60]. Previous studies [61] revealed that local application of antibiotics 

to gastric mucosa resulted in better eradication compared to systemically available 

antibiotic. Encapsulation allows not only local drug delivery but also a controlled release of 

the drug [62], thus increasing the retention and concentration at the site of infection [63,64]. 

In fact, previous studies have reported that the efficacy in eradicating H. pylori infection 
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may be  improved by delivering the antimicrobial agents from the gastric lumen into the 

mucus layer [31,32,65].  

Different strategies have been tested including floating drug delivery systems, density-

based approaches, mucoadhesive/bioadhesive systems and swelling systems for improving the 

gastric retention time of the system [5]. Several shapes and sizes can be acquired by these 

systems, including microspheres, nanoparticles, liposomes or other nano systems. 

Particularly, micro/nano particle systems made from naturally occurring biodegradable 

polymers have been developed and applied to H. pylori treatment [59,66], seeking to 

overcome the limits of the conventional application of drugs for H. pylori treatment, 

characterized by limited effectiveness, poor biodistribution and lack of selectivity. These 

have been preferred over the conventional dosage forms like tablet and capsule because of 

their increased surface area, which by  increasing the absorption of the drug reduces the 

dosing frequency, thus improving the patient compliance [5]. Moreover, because these 

tablets or capsules may fall to the base of the stomach from where they are readily emptied, 

little, if any, drug is delivered to the body or fundus of the stomach, being the main drug 

action through systemic effect [67]. 

In order to enhance the effect of the drug, further improvements on the micro/nano 

systems can be performed. Mucoadhesive polymers have been extensively used for gastric 

applications due to their ability to prolong the contact of the drug with the gastric mucosa 

[68], increasing residence time in the stomach [69] by adhering to the mucus layer [70]. 

Mucoadhesion is thought to occur due to electrostatic forces between the mucosal surface 

that is negatively charged and a positively charged polymer, followed by mechanical 

interlocking of the polymer chains, van der Waal’s force, hydrogen bonding and other forces 

[71,72]. This adherence allow micro/nano systems to more easily penetrate the gastric mucus 

barrier, which permit drug diffusion to occur without acidic degradation and at the desired 

local [5,30], therefore enhancing bioavailability and stability of the drug. Controlled release 

of a drug  may lead to lower administration frequency [69], thus minimizing the resistance 

problems associated with systemic administration of antibiotics [73]. 

Mucoadhesive polymer should fulfil some requirements such as strong hydrogen bond–

forming group, such as carboxylate or hydroxyl, strong anionic charge, high molecular weight, 

adequate chain flexibility, surface energy property favouring spreading onto the mucus and 

low or no toxicity [60]. Several materials have been considered for preparing these systems, 

including synthetic polymers, such as polylactic acid, copolymers of lactic, glycolic acids, 

poly(vinyl alcohol), and natural polymers such as chitosan [74]. 

1.6 Chitosan 

Chitosan (Figure 3), a naturally occurring polysaccharide composed of D-glucosamine and 

N-acetyl-D-glucosamine [75], is obtained by alkaline deacetylation of chitin, which is the 

second most abundant polysaccharide after cellulose [76,77]. Chitin is the principal 

component of the exoskeleton of crustaceans such as shrimps, crabs, prawns and lobsters, 

cell walls of some fungi such as aspergillus and mucor and insects [78]. The conditions used 

for deacetylation determines the polymer molecular weight and the degree of deacetylation 

(DD), which will directly affect the chemical and biological properties of the polymer [79]. 
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Figure 3 - Chemical structure of chitosan [80]. 

 

Chitosan is a polycationic, nontoxic, biodegradable and biocompatible polymer, stable in 

neutral conditions due to the strong inter and intra-molecular hydrogen bonds that the amine 

and hydroxyl groups on glucosamine unit are able to form [81]. Chitosan is a versatile 

polymer: its structure can vary considerably in size (average molecular weight; Mw) and DD 

[82], being this diversity exponentially increased by the numerous chemical modifications 

that are possible to perform [82].  

Its cationic character, along with the presence of reactive functional groups, has 

demonstrated chitosan as a valuable component in the preparation of mucoadhesive 

formulations [71,83]. 

Chitosan mucoadhesive [79] and antimicrobial properties [84–86] are particularly 

relevant, namely regarding the treatment of H. pylori [74].  

The mucoadhesive properties of chitosan result from the protonation of D-glucosamine 

residues at low pH, which leads to strong electrostatic interactions established between 

these charged free amines and gastric mucins, negatively charged at the acidic stomach pH 

[71,87,88]. He et al., [83] evaluated and demonstrated the excellent mucoadhesive 

properties of chitosan solution and chitosan microspheres. Turbidimetric measurement 

revealed a strong interaction between chitosan in aqueous solution and mucin, while in vitro 

studies with chitosan microspheres demonstrated similar results. The interaction between 

mucin and chitosan microspheres was suggested to be dominated by electrostatic attraction, 

which can be related to the effective surface charge. Mucoadhesion of chitosan microspheres 

in rat small intestine was also evaluated, revealing that not only chitosan microspheres 

adhere to mucins, they also can be adsorbed onto mucosal tissue. Factors such as ionic 

strength, surface charge and pH were found to influence interaction of the microspheres with 

mucins [83]. 

Regarding the antibacterial activity of chitosan, it is the consequence of the electrostatic 

interactions between the same cationic amino groups and the anionic groups on the bacterial 

wall, which leads to the inhibition of bacterial proliferation [88]. 

This polymer has been widely used in the pharmaceutical field as well as a carrier for 

drug delivery and as biomedical material [89], being commercially available in different 

forms, such as films, fibers, beads, scaffolds and micro/ nano particles [75]. 
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1.7 Chitosan as encapsulation system 

Chitosan micro [66,90] and nano [91,92] particles have been used to provide controlled 

release of many drugs and to improve the bioavailability of degradable substances such as 

proteins or enhance the uptake of hydrophilic substances across the epithelial layers. 

 

 Chitosan micro/nanoparticles production methods 

The production method selected for chitosan particles preparation is a relevant factor 

influencing its final features. The selection of the microencapsulation technique is primarily 

determined by the solubility of the drug and the polymer in various solvents systems [93,94], 

as well as by the particle size requirement [95]. To date, various methods and approaches 

have been proposed for the preparation of chitosan particles, such as ionotropic gelation, 

coacervation technique, spray drying, or emulsification/solvent evaporation (Table 1). 

Nevertheless, combination between the different methods can occur, depending on the 

purpose of the study and on the requirements established [96].  

It is important to prepare uniform-sized particles, controlling the size for their 

application in drug delivery system. The reproducibility of microspheres between batches is 

relevant when selecting the production method since it might lead to poor repeatability of 

the release behaviour and efficacy of drug among doses [97]. 

 

Table 1 - Examples of methods for preparation of chitosan micro/nanoparticles [74]. 

Particles production method Particle Size Advantages (+)/Disadvantages (-) 

Ionic gelation 

Drop wise addition of chitosan solution (positively charged) 
under constant stirring into a polyanionic solution (negatively 
charged, generally TPP). 

Complexation between oppositely charged species results 
in chitosan to precipitate as spherical particles. 

 

Nanoparticles (nm) 
20-200 [38] 
550-900 [33] 
152-376 [40] 

Microspheres (µm) 
~170 [41] 

100-400 [42] 

+ Processing under mild conditions. 
+ Organic solvent free. 
+ Low toxicity impact of reagents. 
+ No changes in drug chemistry. 
 
- Difficult entrapment of high molecular 
weight drugs. 
- Poor stability in acidic conditions. 

Precipitation/Coacervation 

1. Addition of a solute (generally a salt) to chitosan 
solution, forming micro/nanoparticles due to a decrease in 
chitosan solubility. 

2. Chitosan solution might also be blown into an alkali 
solution using a compressed air nozzle to form coacervate 
droplets. 

Nanoparticles (nm) 
100-250 [43] 

Microspheres (µm) 
1.5-2.5 [44] 

+ No complex apparatus needed. 
+ Few purification steps required. 
+ Organic solvent free. 
+ High loading capacity combined with a 
sustained drug release. 
 
- Poor stability in acidic conditions 

Spray drying 

Preparation of chitosan solution where a suitable cross-
linking agent could be added (if desired). This solution or 
dispersion is then atomized in a stream of hot air. Atomization 
leads to the formation of small droplets, from which solvent 
evaporates instantly leading to the formation of free flowing 
particles. 

Temperature and humidity might be regulated. 

Microspheres (µm) 
3-12 [45] 

140-281 [46] 
 

+ Simple, reproducible, and easy to scale 
up. 
+ Low cost process. 
+ Fast solvent removal. 
+ Good sphericity. 
+ Narrow size distribution. 
+ Low dependency of the solubility of 
the drug and polymer. 
 
- High temperatures required. 
- Size influenced by several parameters. 
- Possible difficulty in spraying fluid of 
high viscosity. 

Supercritical anti-solvent precipitation 

Spraying of the chitosan solution into a precipitation 
chamber with supercritical CO2 (anti-solvent), causing rapid 
contact between the two media. A higher super-saturation 
ratio of the solution is generated, resulting in fast nucleation 
and growth. 

Microparticles (µm) 
1.0- 2.5 [47] 

 

+ Processing under mild conditions. 
+ Complete anti-solvent removal. 
+ Non-toxic reagents. 
+ Narrow size distribution. 
+ No changes in drug chemistry. 
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Emulsion cross-linking 

Chitosan aqueous solution is extruded into an oil phase, 
generally liquid paraffin (under intensive stirring), forming and 
water-in-oil (w/o) emulsion. Aqueous droplets are stabilized 
by adding a surfactant. The stable emulsion is cross-linked by 
using an appropriate cross-linking agent such as 
glutaraldehyde. 

Microspheres (µm) 
60-100 [48] 
100-330 [49] 
350-690 [50] 

+ Control of particle size. 
+ Good sphericity. 
 
- Slow process. 
- Chemical cross-linking agents used, 
possibly inducing chemical reactions 
with the drug. 
- Difficult removal of the unreacted 
cross-linking agent. 

Solvent Evaporation 

Aqueous chitosan solution is added to an organic phase 
with vigorous stirring to form the primary water in oil 
emulsion (w/o). The latter is then added to a large volume of 
water containing a surfactant, forming a multiple emulsion 
(w/o/w). The double emulsion is then subjected to stirring 
until most of the organic solvent evaporates, leaving solid 
microspheres. 

Microspheres (µm) 
100-200 [51] 

+ Processing under mild conditions. 
+ Favorable for encapsulation of 
thermally sensitive drugs. 
+ Indicated for delivery of small 
molecule drugs. 
+ Good sphericity. 
 
- Organic solvents usage. 
- Low drug encapsulation efficiency. 
 

Reverse micellar method 

The surfactant is dissolved in an organic solvent followed 
by the addition of chitosan, drug and cross-linking agent, 
under constant vortexing overnight. The organic solvent is 
evaporated, obtaining a transparent dry mass. The latter is 
dispersed in water and then a suitable salt is added to 
precipitate the surfactant out. 

Nanoparticles (nm) 
~100 [52] 

+ Narrow size distribution. 
 
- Organic solvent usage. 

 

Due to the high solubility of chitosan in the gastric fluids [75,98], it is important to 

consider mechanisms able to enhance its mechanical and physical properties during the 

micro/nano particles production, so that a gastric application, such as for the treatment of 

H. pylori, is viable. When associated to drug delivery, the dissolution of the chitosan can be 

restrictive, since due to the protonation of the glucosamine residues of the chitosan in the 

acidic pH, an extensive swelling of the microsphere is verified, followed by a faster release of 

the drug [31], which might not be desirable. As a consequence, low retention time and 

difficulty in crossing the mucus barrier have been observed as well [43].  

 

 Chitosan micro/nanoparticles stability under acidic conditions: crosslinking  

In order to overcome this restriction and to preserve the stability and three dimensional 

structure of chitosan gel under gastric conditions or enzymatic degradation, physical and 

chemical modifications of chitosan have been used as a reinforcement strategy of the 

chitosan structure, improving its mechanical resistance and chemical stability in acidic 

solutions [75,81,95,98].  

Tripolyphosphate (TPP), a non-toxic polyanion able to interact with chitosan via 

electrostatic forces, is conventionally used to form ionic crosslinked networks [98]. However, 

although TPP has fast gelling ability and higher stability in acid than the chitosan alone [98], 

it is difficult to accurately control the physical gel pore size, chemical functionalization, 

dissolution and degradation [79]. As an alternative, chemical crosslinking agents, mainly 

glutaraldehyde, have been considered [99,100]. Glutaraldehyde reacts with chitosan forming 

covalent bonds mainly with the amino groups of the polymer. However, glutaraldehyde, as 

well as other synthetic crosslinking reagents, is cytotoxic, which may impair the 

biocompatibility and biodegradability of the microspheres [101,102]. Biocompatible natural 

occurring crosslinking agents have therefore been thoroughly investigated, seeking for a less 

cytotoxic agent, able to form stable and biocompatible crosslinked products. Genipin is 

particularly effective for chemically crosslink polymers containing amino groups [79], forming 

secondary amides and heterocyclic amino linkages [101]. Sung et al. [103] have found that 

genipin-crosslinked networks are significantly less cytotoxic (about 5000–10000 times) than 
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those crosslinked by glutaraldehyde [100,104], and also that they degrade slower than 

glutaraldehyde-crosslinked ones [105].  

Conjugation of crosslinking methods [32] is also a valuable possibility in order to improve 

its usage for biomedical applications. Mi et al. [81] produced chitosan gel beads by the 

fixation of its amine groups with a co-crosslinking agent composed of TPP (ionic crosslinker) 

and genipin (chemical crosslinker). Simply, the negative charged TPP ions react with positive 

charged chitosan through electrostatic interactions, while genipin reacts with chitosan via 

covalent bonding [75,98]. However, this interaction was found to be dependent on the pH 

value of the co-crosslinker [81,106]. UV (Ultra Violet Spectroscopy), FTIR (Fourier Transform 

Infrared Spectroscopy) and EDAX (X- ray energy dispersion) analysis revealed that chemical 

crosslinking by genipin can be inhibited due to the presence of H+ in the co-crosslinking 

process, significantly encouraging the ionic crosslinking reaction while diminishing the 

chemical crosslinking reaction. Depending on the pH, chitosan can bind more easily with TPP 

ions (low pH) or with genipin (neutral or alkaline pH), fact related to the presence 

of    ,      
  ,    and     on the solution. Different pH conditions will alter the 

concentration of these ions and therefore crosslinkers relation with chitosan: ionic 

crosslinking will be the dominant reaction at lower pH, while  the chemical crosslinking of 

chitosan with genipin will dominate the reaction of co-crosslinking at higher pH [81]. Shah et 

al., [32] developed drug containing microspheres prepared by ionic crosslinking (TPP) and 

precipitation. Chitosan microspheres were loaded with amoxicillin and metronidazole, 

capable of adhere to the mucus layer, releasing the contents locally at the site of infection.  

Apart from crosslinking, alternative approaches can be considered, such as reacetylation 

for instance with acetic anhydride, strategy that has been shown to reduce chitosan solubility 

and improve drug release capacity of the microspheres [107].   

 

 Influence of crosslinking degree on chitosan particles properties 

Nevertheless, chitosan modifications should be addressed carefully, since chitosan final 

properties depend on the extent of crosslinking reaction [95,108]. Its swelling ability, and 

consequently the release rate of the drug, as well as its mucoadhesive properties might be 

affected [101,109]. As previously said, the latter may be attributed to molecular attractive 

forces formed by electrostatic interaction between positively charged chitosan and negatively 

charged mucosal surfaces [106], and therefore by increasing the degree of crosslinking, the 

number of free primary amines will be reduced. Consequently, the possible ligand density 

and the polymer reactivity may also decrease as well as the accessibility to internal sites of 

the material, leading to a loss in the flexibility of the polymer chains [95]. Apart from 

crosslinking, ionic modification and salt formation can also affect the mucoadhesive 

properties of chitosan [110,111]. 

 

In order to control the crosslinking degree, several factors must be taken into account 

(Table 2), including not only concentration and volume of crosslinking agent, incubation time, 

temperature and stirring speed, but also MW and DD of chitosan [90,95]. When designing a 

particle for a specific application, all these factors should be taken into account during 

preparation [112], so that an optimized system can be developed.  
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Table 2 – Factors influencing chitosan micro/nano particles features.  

Chitosan Size Charge Swelling 

Molecular weight 
 [113]  

Degree of deacetylation (%) 
[114] [113]  

Concentration (%w/v) [115]  [115] 

Polymer-drug ratio [90] [90] [90] 

Crosslinking [83,90] [83,90] [75,109] 

  

Regarding crosslinking, by increasing agent or volume of crosslinker, incubation time or 

temperature, crosslinking degree is increased. A high degree of deacetylation of chitosan 

favours crosslinking since it requires mainly deacetylated reactive units. The size of the 

particle is strongly dependent on the concentration of the solutions [33], and the higher the 

degree of crosslinking, the less irregular are the microspheres, and the smaller the particle 

size [83], due to the shrinking of the network observed. The charge of the particle, and 

therefore its mucoadhesive properties, is evaluated through potential zeta, and is reduced 

when the crosslinker volume, incubation time or stirring speed is increased [83,90]. The 

swelling ability influences the drug release profile, which is normally decreased when the 

incubation time and therefore the degree of crosslinking is increased  [75,109]. Prolonged in 

vitro drug release time is also associated with higher degrees of crosslinking [115]. 

All these parameters represent consequences regarding particles performance in vitro 

and in vivo, and therefore should be evaluated carefully. For instance, because the 

accumulated locations of the microspheres containing drug depend on the size of the 

particles, if the size distribution of microspheres is broad, the bioavailability of drug will be 

low and the side-effects of the drug will be increased [97].  

1.8 Chitosan as a binding agent 

Despite the growing application of chitosan particles as drug delivery vehicles, low 

retention of microspheres in the stomach, resistance to the delivered antibiotics, amongst 

other factors have prevented the development of efficient therapies against H. pylori, 

therefore persisting the need of alternative options for the treatment of H. pylori infection 

[74]. 

The antimicrobial activity of chitosan and its derivatives was observed against several 

bacteria [116,117], fungi [118] and parasites [119]. In liquid medium, chitosan was able to 

inhibit the growth of some spoilage bacteria such as Bacillus subtilis IFO 3025, Escherichia 

coli RB, Pseudomonas fragi IFO 3458 and Staphylococcus aureus IAM 1011 [120].  

Antimicrobial activity of chitosan or chitosan-based films has also been investigated, 

showing reduced microbial growth [117,121,122]. Leceta et al., [123] evaluated the 

antimicrobial activity of chitosan-based films and chitosan film forming solutions against E. 

coli 0517H, and L. plantarum CECT748, observing that only chitosan film forming solutions 

presented antibacterial properties, whereas chitosan-based films dried at room temperature 

only showed bacteriostatic properties. Particularly, chitosan ability to bind and kill H. pylori  
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has been investigated and demonstrated [124], revealing new potential therapies against H. 

pylori. 

Nogueira et al. [124]  produced chitosan thin films and evaluated its effect on H. pylori in 

a pH range that simulates gastric conditions (2.6, 4.0 and 6.0). Results revealed that chitosan 

films were able to induce cell death of more than 75% of the adherent bacteria, 

independently of pH. Therefore, the potential use of chitosan-based biomaterials as 

adjuvants in the elimination of H. pylori gastric infection might be a valuable option.  

In fact, Fernandes et al. and Gonçalves et al. [43,108] produced chitosan microspheres 

that rather than being used as a vehicle for gastric drug delivery, were designed and applied 

as an H. pylori-binder system. The rational of the strategy consists on eliminating H. pylori 

present in the stomach by binding the bacteria and impairing its adhesion to host cells. As 

binding agent, it is important to prevent dissolution of microspheres while maintaining its 

mucoadhesive properties, so that binding can happen, followed by removal of the bacteria 

intact from the stomach, through the intestinal tract, after gastric mucosal turnover. 

Furthermore, the microsphere should have a size which allows it to effectively bind H. pylori 

bacteria. Bacteria contained in the stomach but not adhered to the gastric mucosa or mucus 

layer can also be bound by the microspheres [43]. Therefore, a diameter between about 70 

m and about 200m would allow the microspheres not only to adhere to bacteria present on 

the mucus barrier, but also to bacteria adhered to foveolaes.  

This system was further improved by directing the microspheres toward H. pylori. 

Glycosilated receptors that specifically bind to molecules displayed on the surface of H. 

pylori bacteria were incorporated on the system [125], thereby adsorbing the bacteria so that 

they can be removed from the gastric mucosa and/or mucus layer or prevented from binding 

to the gastric mucosa and/or mucus layer. The glycan receptors of H. pylori include 

fucosylated blood group antigens, such as Lewis B and/or Sialyl-Lewis X receptors. By 

removing bacteria from the stomach, colonisation of the gastric mucosa and mucus layer by 

H. pylori bacteria is reduced, and re-colonisation can be reduced or prevented.  

1.9 Active targeting to improve H. pylori treatment 

Active targeting can provide the system specificity by directing it towards the mucosal 

surfaces or bacteria. Complex systems can combine bioadhesive properties, selective targets 

and delivery of the drugs, resulting in a system with improved ability to effectively kill and 

eradicate H. pylori. Any ligand/drug with a high binding affinity for mucins or for the 

bacteria can be covalently linked to the microspheres with the appropriate chemistry [5,59]. 

Depending on the purpose, lectins, bacterial adhesins, amino acid sequences or antibodies 

can be used, either to increase adhesion of bioadhesive microspheres to specific cell surface 

glycoproteins, mucins or bacteria wall [126]. 

Particularly, lectin-conjugated nanoparticle systems, which may bind to the carbohydrate 

residue present on the bacterial surface, have been proposed and play an effective tool for 

eradication of H. pylori. This may influence its adherence to the membrane of surface 

mucous cells [127].  

A study performed by Ramteke et al. [33] demonstrated the efficacy of a more complex 

system on the delivery of antibiotics: chitosan-glutamic acid nanoparticles containing triple 

therapy were produced by ionotropic gelation. With a particle size ranging between 550nm 
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and 900nm, the nanoparticles showed to inhibit growth of H. pylori, however the drug was 

totally released within the first 5h. In order to improve the selectivity and efficacy of the 

nanoparticles, the authors functionalized the chitosan nanoparticles with α(L)-fucose, 

verifying an improvement on the antibacterial effect when comparing to non-conjugated 

ones. The fucose-conjugated formulations showed strong agglutination with H. pylori, 

confirming the presence of lectin type receptors on the surface of H. pylori that can 

selectively bind with the specific ligand present on nanoparticles. In vitro antibacterial 

studies revealed a higher eradication rate for monotherapy when functionalized nanoparticles 

were used when comparing to non-functionalized. Triple therapy showed once again to have 

better effects when applied with functionalized nanoparticles, with an eradication rate of 

97.17% against 91.01% for non-conjugated chitosan nanoparticles and  81.32% for plain triple 

therapy. These results show superior targeting potency toward lectin receptors on H. pylori 

surface. Chitosan nanoparticles without antibiotics, both functionalized and non-

functionalized, were shown to possess antimicrobial activity against H. pylori, with a 

maximum % of growth inhibition of 5.13% for non-functionalized nanoparticles and 7.9% for 

functionalized ones. In vivo tests demonstrated the H. pylori elimination from the stomach of 

the mice after administration of the nanoparticles. An eradication of 100% was found for 

functionalized nanoparticles, confirmed by the negative results of the Gram-staining and 

urease test. Non-functionalized ones presented an eradication rate of 50% or less, while plain 

triple therapy presented even lower values.  

To notice that functionalization leads to an increase in the particle size [33], which 

depending on the application, may not be desired. 



 

 

 

 

 

Chapter 2  

Aim 

The overall aim of this project lies on the production and study of the ability of 50 µm H. 

pylori-binding chitosan microspheres to penetrate the gastric foveolae, using for that ex-vivo 

models consisting of mice and human fresh stomachs. 

 

So that the global aim could be achieved, the work was subdivided into three major 

sections: 

 

1. Production of chitosan microspheres 

 

Previous studies have demonstrated the ability of chitosan microspheres to interact with 

H. pylori and adhere to the gastric mucosa. However, previously developed chitosan 

microspheres presented a diameter around 170 µm, which hampered the penetration and 

removal of the bacteria installed inside the foveolae. For that reason, the development of 

smaller microspheres is crucial to reach the bacteria adhered to the surface of gastric 

epithelial cells. Previous studies using 2D sections of human gastric mucosae have shown that 

human stomach foveolae are ~70 µm wide, therefore microspheres with approximate size of 

50 µm should ideally be used.  

For this purpose, chitosan microspheres were produced by ionotropic gelation, though 

recurring to three different equipments, namely high voltage electrostatic system, co-axial 

air stream system and aerodynamically driven system.  

 An intensive screening of several parameters was performed before selecting the best 

condition. Chitosan degree of acetylation (DA) was one of the parameters assessed and its 

effect was evaluated on the production process. From two DA (6% and 16%), differing in the 

number of primary amines available to establish other reactions, the lowest one was selected 

in order to potentiate the mucoadhesive properties of the microspheres.  
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In order to be stable in the gastric acidic conditions, chitosan microspheres will be 

crosslinked with genipin. Both genipin crosslinking and chitosan mucoadhesive properties are 

processes dependent on the amount of active primary amino groups present on the chitosan 

D-glucosamine units. Therefore, the crosslinking process must be controlled and readjusted 

to the selected microspheres. Morphology and size distribution of chitosan microspheres were 

analysed by three different equipments, based on optical microscopy coupled with image 

acquisition (Optical Microscopy and IN Cell Analyzer high-throughput microscopy) and laser 

diffraction (Mastersizer equipment). 

 

2. Penetration of chitosan microspheres into the gastric mucosa 

 

Following the production of the aimed chitosan microspheres with size average around 50 

µm, the evaluation of their ability to penetrate the gastric foveolae is crucial to accomplish 

to remove H. pylori present within the gastric foveolae. An ex-vivo model was chosen since it 

allows mimicking the 3D structure of the stomach while preserving its mucus layer, which is 

enrolled on bacteria adhesion process. 

 Since mice have been frequently used as an animal model to study H. pylori infection, 

preliminary studies regarding labelling optimization were performed using fresh stomachs 

from C57BL/6 mice strain. Nucleic acids and plasma membrane stains were tried out in fixed 

and fresh stomachs. 

Adhesion studies relied on the incubation of the fresh stomach with the chitosan 

microspheres at 37ºC, for a 2h-period, at pH 6.0, followed by the specific labelling. Samples 

were observed under fluorescence and confocal laser scanning microscopy. Citrate-phosphate 

buffer was used at pH 6.0 since it allows mimicking the acidic stomach conditions, 

particularly the ones near the epithelial cells (pH 6.0). 

 

3. Evaluation of the adhesion of chitosan microspheres to H. pylori 

 

The ability of the chitosan microspheres to interact with H. pylori is also relevant to the 

whole process. Therefore, J99 H. pylori strain, obtained from human isolates and presenting 

BabA and SabA adhesins on its surface, was selected to conduct the adhesion studies.  

The chitosan microspheres prepared were incubated with H. pylori for 2h-period. In order 

to evaluate if being alive would influence the in vitro interaction of H. pylori with chitosan 

microspheres, parallel studies were conducted using FITC-fixed J99 strain and live bacteria, 

using nucleic acid stains. Fluorescence microscopy was used to visualize the samples as well 

as confocal laser scanning microscopy, the latter to better assess bacteria adhesion and to 

evaluate whether bacteria only adheres to the surface of the microsphere or if it goes inside. 

 

 



 

 

 

 

 

Chapter 3 

Materials and Methods 

3.1 Chitosan Microspheres Preparation 

3.1.1  Chitosan purification 

Squid pen chitosan powder with a DA of 6% (MW> 500,000 Da) and 16% (MW 283,000-

472,000 Da) was weighted, separately, and dried for 24 h inside a vacuum oven (60ºC). 

Afterwards, chitosan was hydrated in Milli-Q water for 24 h at 4ºC and glacial acetic acid was 

added to achieve a final concentration of 0.2 M, being kept overnight at room temperature. 

Chitosan should be protected from light all the time as it is sensitive to it. Chitosan solution 

was then filtered and precipitated by addition of NaOH, until the solution was alkaline. 

Chitosan suspension was centrifuged, the supernatant was discarded and deionized water was 

added, followed by pellet resuspension. This process was repeated 3 times. Chitosan 

suspension was then frozen at -80ºC, and lyophilised for 72 h. Lastly, chitosan was milled 

until a fine powder was obtained. 

3.1.2  Preparation of chitosan solution  

Purified chitosan powder was dried in a vacuum oven at 60°C for 24 h. Chitosan was 

previously hydrated using Milli-Q water at 4°C under slow magnetic stirring, and after 24h 

incubation, glacial acetic acid was added to achieve a final concentration of 0.1 M and left 

overnight under moderate stirring at room temperature. For each DA, three solutions with 

different concentrations of 0.5%, 1% and 1.5% (w/v) were prepared. Afterwards, each 

chitosan solution in acetic acid was filtered using a 5 µm pore size syringe filter (Millipore) 

followed by a 0.8 µm pore size filter (Millipore). 
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3.2 Chitosan microspheres production 

Chitosan microspheres were produced by ionotropic gelation into a sodium triphosphate 

pentabasic (TPP; Sigma-Aldrich) solution (pH 9.0) using three different methods. The aim was 

to identify the system able to provide the most suitable microspheres, with adequate size 

and morphology. Several parameters were varied in order to optimize the microspheres 

production.   

3.2.1  High voltage electrostatic system 

Chitosan microspheres were produced in a high voltage electrostatic system (Nisco 

Encapsulation UnitVar 1, NISCO). Briefly, a syringe with chitosan solution was placed on a 

syringe pump and connected to the nozzle. A voltage of 7.0 kV/cm was applied between the 

needle feeding the chitosan solution and the 5% (w/v) TPP solution underneath. This voltage 

forces the droplets to fall off the 0.09 mm diameter needle tip (PE-00515, Nisco) into the TPP 

eletroconductive solution. The chitosan solution flow rate was adjusted and TPP solution was 

subjected to slow stirring (35 rpm). Conditions evaluated are specified in Table 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                          

Figure 4 - High voltage electrostatic system. 

3.2.2  Co-axial air stream system 

Chitosan microspheres were produced by droplet extrusion under co-axial air stream 

(Nisco Encapsulation Coaxial Airflow Induced Dripping VAR J1, NISCO). Briefly, a syringe with 

chitosan solution was placed on a syringe pump and connected to the nozzle. The unit is 

equipped with two connections, one for the hose which provides the chitosan solution, and 

the other connection being aimed for an air hose. Chitosan droplets were extruded through a 

needle (PE-00515, Nisco) into a 5% (w/v) TPP solution, under a co-axial air stream with 

controlled pressure, which blows the chitosan droplets from the needle tip into the TPP 

gelling bath before they would fall due to gravity. Syringe pump flow rate was adjusted and 

the microspheres were formed under slow stirring (35 rpm). A number of parameters were 

Chitosan solution 
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investigated by changing one parameter while keeping the others constant. Conditions 

evaluated are specified in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
Figure 5 - Droplet extrusion under co-axial air stream system. 

3.2.3  Aerodynamically driven system 

Chitosan microspheres were produced by an aerodynamically driven system (Nisco 

Encapsulation Unit Var J30, NISCO). Briefly, the syringe with the chitosan solution is placed 

on the syringe pump and connected to the nozzle. The chitosan enters through a central 

needle, which is enclosed in a pressure chamber with an exit through the orifice. A second 

orifice allows air to enter the chamber, which pressure can be fixed with a potentiometer. 

The exit orifice, which is centrally in line with the axis of the needle, has been counter-sunk 

externally. The counter sunk leads to the aero dynamical effect so that the jet has a smaller 

diameter when passing the orifice than before at the needle. Since the size of the drops is 

determined by the chitosan flow rate and the pressure inside the chamber, these parameters 

were investigated, as well as chitosan solution concentration. Only degree of acetylation of 

6% was used in this method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 – Aerodynamically driven system. 
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3.2.4  Variable conditions 

Table 3 shows the parameters varied during microspheres production, regarding the three 

methods tested. 

 

Table 3 – Conditions tested during Ch microspheres production. 

 
Ch degree of 

acetylation 

Ch solution 

concentration 

Syringe pump 

flow rate 

Air stream 

pressure 

Nozzle 

diameter 

High voltage 

electrostatic 

system 

6% 

16% 

0.5 % (w/v) 

1 % (w/v) 

1.5 % (w/v) 

0.4 mL/h 

1 mL/h 

10 mL/h 

20 mL/h 

NA NA 

Droplet extrusion 

under co-axial air 

stream system 

6% 

16% 

0.5 % (w/v) 

1 % (w/v) 

1.5 % (w/v) 

0.4 mL/h 

1 mL/h 

10 mL/h 

20 mL/h 

0.25 bar 

0.4 bar 

0.6 bar 

1 bar 

NA 

Aerodynamically 

driven system 
6% 

0.5 % (w/v) 

1 % (w/v) 

0.25 mL/min 

0.33 mL/min 

0.5 mL/min 

1 mL/min 

0.205 bar 

0.525 bar 

0.25 mm 

0.50 mm 

NA – not applicable 

 

3.3 Chitosan microspheres characterization 

3.3.1  Size and morphology 

Chitosan microspheres were characterized mainly regarding size and morphology by 

different techniques, each one providing complementary information. Three equipments 

were used to perform the analysis of the particles. 

3.3.2  Optical Microscopy 

Optical microscopy was first used to roughly determine the average diameter of the 

chitosan microspheres. The latter were transferred to 24-well plates and images were 

acquired in Bright field using the 10x objective. Diameter of manually selected chitosan 

microspheres was then measured using AxioVision Software (Zeiss), always horizontally in the 

larger part of the microspheres to avoid bias. 
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3.3.3  IN Cell Analyzer 

IN Cell Analyzer 2000 (GE Healthcare) is a super-fast, sensitive, and flexible wide-field 

cell imaging system, which simultaneously allows the acquisition of high quality images and 

posteriorly the analysis of morphological parameters.  

Chitosan microspheres were transferred preferentially to a 96-well plate, and an 

automated screening was performed throughout all the specified wells. Images were acquired 

in 10x objective using Bright field. Afterwards, in the coupled IN Cell Developer Toolbox, a 

customized protocol was created for chitosan microspheres quantification and analysis. 

Initially, the target to be located and measured, that is each microsphere, was defined. After 

that, pre-processing operations were implemented in order to make the microspheres easy to 

detect, namely operations that erode and dilate image features, reduce noise and correct 

uneven background intensity. To separate and isolate the microspheres from the remaining 

image features, a segmentation algorithm was implemented based on particular sizes, shapes 

and intensities. After defining what is considered a microsphere, specific measurements were 

selected from a library of pre-defined morphological and densitometric measures: area, 

length, average diameter, maximum chord and form factor of each microsphere were 

determined. This protocol was then applied to each image acquired, providing a list of the 

selected measures for each microsphere identified by the protocol. The associated software 

Spotfire™ DecisionSite™ allowed an interactive visualization of the obtained data through 

different graphs. From these graphs, outsiders were eliminated as well as particles smaller 

than 10 µm, which in most of the cases were debris and artefacts of the image. Only after 

this analysis, average measures regarding microspheres characteristics were considered.  

3.3.4  Mastersizer 

Mastersizer 3000 (Malvern) is a particle sizing instrument which uses the technique of 

laser diffraction to measure particle size distributions, from 0.01 µm up to 3.5 mm.  

Chitosan particles are drawn into a water container (The Hydro EV, Malvern) until enough 

sample is recognized. Five measurements are performed for each sample and a sequential 

combination of measurements with red and blue light sources is used to measure across the 

entire particle size range. Sonication can be applied to increase separation between chitosan 

particles. The coupled software gives the information regarding microspheres size. Given that 

it cannot be assured that all the microspheres are exactly spheres, the particle size is defined 

using the concept of equivalent spheres. In this case, the microspheres size is reported as a 

volume equivalent sphere diameter, meaning that the particle size is defined by the diameter 

of an equivalent sphere having the same volume. A volume weighted distribution is then 

given where the contribution of each particle in the distribution relates to the volume of that 

particle. Apart from the histogram regarding the size distribution, parameters based upon the 

maximum microspheres size for a given percentage volume of the sample, named percentiles, 

are reported. Percentiles Dv10, Dv50 and Dv90 are given, being D diameter, v volume 

(specifying the distribution weighting) and 10, 50 and 90 the percentage of sample below this 

particle size. 

 

Since microspheres produced in aerodynamically driven system VarJ30 under 525 mBar 

pressure, 0.5 mL/min flow rate with 0.25 mm nozzle and chitosan with DA 6% at 0.5% (w/v) 
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presented the average diameter of 50 µm aimed, they were selected for all subsequent 

studies.  

3.4  Genipin crosslinking kinetics 

Chitosan microspheres were rinsed three times with Milli-Q water by centrifugation at 10 

000 rpm for 7 min. After that, in order to determine the adequate crosslinking level of 

chitosan microspheres, the crosslinking kinetics was assessed at various time points. Briefly, 

20 µL of rinsed chitosan microspheres suspension were transferred to a 24-well plate and 500 

µL of 10 mM genipin (Wako Chemicals GmbH) solution prepared in 0.01 M phosphate buffer 

saline (PBS) (Sigma, pH 7.4) were added. The crosslinking level of chitosan microspheres was 

determined using an Inverted Fluorescence Microscope (IFM, AxioVert, Zeiss). Images were 

taken every 15 min over a 12-h period. Single chitosan microspheres were visualized in the 

DAPI channel (470 nm) and their densitometric mean fluorescence was followed over time.  

From the kinetics study a time point corresponding to an intermediate crosslinking degree 

was selected and chitosan microspheres were incubated in 10 mM of genipin solution over 45 

min under 120 rpm stirring at 25ºC. After crosslinking, the microspheres were rinsed three 

times by centrifugation with Milli-Q water, frozen in liquid nitrogen and lyophilised at -80ºC 

for 96 h.  

3.4.1  Stability in acidic conditions 

The acidic stomach conditions in the mucus layer near the epithelial cells were mimicked 

by phosphate-citrate buffer (citric acid 0.1 M and Na2HPO4.2H2O 0.2 M) at pH 6.0. Briefly, 20 

µL of crosslinked chitosan microspheres were transferred to a 24-well plate and 500 µL of 

phosphate-citrate buffer were added. Chitosan microspheres were visualized by OM and 

images were taken every 5 min over an hour. 

 

3.5 Chitosan microspheres adhesion to gastric mucosa 

 The efficiency of chitosan microspheres to adhere and penetrate the gastric mucosa was 

evaluated using stomach fresh samples. The model was first optimized using mice gastric 

mucosa, followed by further assessment using human gastric samples. Incubations were 

performed in phosphate-citrate buffer pH 6.0 at 37°C under 70 rpm. 

Figure 7 - Crosslinking reaction mechanism between chitosan and genipin [108]. 
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3.5.1  Gastric mucosa labelling optimization 

Gastric mucosa labelling optimization was performed using mice stomachs.  

Stomachs from 6 to 10 week old wt C57BL/6 mice strain were obtained from Animal 

House at IBMC/INEB (Porto, Portugal) and used shortly after its sacrifice using carbon dioxide 

inhalation. Stomachs were opened through the great curvature from the duodenum to 

oesophagus using chirurgical scissors, obtaining a butterfly-like shape. The food contents 

were gently removed using 0.01 M PBS (pH 7.4) in order to preserve the stomach mucus layer. 

Then, a cut through the mice stomach smaller curvature was done in order to divide this 

organ in two halves. Each half was used separately corresponding to an individual stomach 

sample. 

 

To better assess the penetration of chitosan microspheres, gastric mucosa was labelled 

recurring to nuclear and plasma membrane stains. 

 

 

Table 4 – Nuclear and plasma membrane stains evaluated. 

 
Stains 

Fluorescence 
excitation (nm) 

Fluorescence 
emission (nm) 

Concentration 
(µg/mL) 

Incubation 
time (min) 

N
u
c
le

a
r 

 

DAPI 350 470 
1 (1:100) 

10 (1:100) 
15 

Hoechst 350 461 
1 (1:100) 

10 (1:100) 
15 

P
la

sm
a
 m

e
m

b
ra

n
e
 

Wheat Germ 
Agglutinin (WGA), 

Alexa Fluor® 350 
conjugate 

346 442 5 15 

WGA, Alexa Fluor® 

488 conjugate 
495 519 1 

15 

30 

WGA, Alexa Fluor® 
594 conjugate 

590 617 
5 

20 
15 

WGA, fluorescein 

conjugate 
494 518 5 15 

CellMask™ Deep Red 649 666 1000X - 

 

Regarding the nucleic acid stains, since DAPI is recommended for fixed or permeabilized 

cells, some samples were initially fixed with paraformaldehyde (PFA) 4% before staining.  

Moreover, both DAPI and Hoechst were mounted using two different mounting media, namely 

Vectashield and Fluoromount. 

Samples concerning the plasma membrane staining, Wheat Germ Agglutinin conjugates 

(WGA, Invitrogen) and CellMask™ Deep Red (Molecular Probes), were kept fresh, and no 

fixation or mounting process was performed.  

Samples were observed with IFM and a Leica SP2 and SP5 confocal laser scanning 

microscope (CLSM, Leica Microsystems).  
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3.5.2  Chitosan microspheres adhesion to mice gastric mucosa 

Chitosan microspheres were firstly sonicated for 8 min, followed centrifugation (10000 

rpm, 7 min) in order to transfer the microspheres (kept in ethanol 70%) to the pH 6.0 buffer. 

Afterwards, microspheres were counted using IN Cell Analyzer high-throughput microscopy 

and 500 microspheres in 60 µL of phosphate-citrate buffer pH 6.0 per sample were added to 

mice gastric mucosa for 2 h in 6-well plate covered with parafilm. Afterwards, samples were 

rinsed three times in 1 mL of 0.01 M PBS and mucosa labelling was performed. After that, 

samples were once again rinsed in 0.01 M PBS and visualized by IFM and CLSM.  

3.5.3  Chitosan microspheres adhesion to human gastric mucosa 

Human gastric mucosae were provided by Hospital São João (Porto, Portugal) and were 

obtained from stomach portions that were removed after a partial gastrectomy.  

Chitosan microspheres adhesion to the mucosa was done similarly to the adhesion assay 

using mice gastric mucosa. CellMask™ Deep Red was used as stain. 

3.6 Helicobacter pylori adhesion to chitosan microspheres 

Apart from being able to penetrate gastric mucosa, chitosan microspheres must have the 

capability of adhering to Helicobacter pylori (H. pylori), so that they can afterwards remove 

the bacteria from the gastric foveolae.  

Since the in vivo adhesion of H. pylori to chitosan microspheres occurs with the bacteria 

alive, two independently adhesion assays were conducted with live and previously fixed J99 

H. pylori strain, in order to understand whether the adhesion of H. pylori to chitosan 

microspheres might be influenced by the bacteria being alive. 

3.6.1  H. pylori strain and culture conditions 

H. pylori strain J99, obtained from human isolates, was obtained from the Department of 

Medical Biochemistry and Biophysics, Umeå University, Sweden [128]. Bacteria were cultured 

in OXOID Blood Agar base 2 (Probiológica) supplemented with 10% defibrinated horse blood 

(Probiológica) and antibiotic/antifungal cocktail at 37°C, for 48 h, under microaerobic 

conditions. Bacteria were then spread and incubated for another 48 h. At the end of the 

incubation period, bacteria were harvested using 0.01 M PBS and their optical density at 600 

nm (OD
600

) was measured. Bacteria inoculum was adjusted to an optical density (OD
600

) of 

0.08 using pH 6.0 phosphate-citrate buffer.  

H. pylori previously fixed and labelled with fluorescein isothiocyanate (FITC) and frozen 

according to the protocol described in [129] was also used (OD
600

1.0).
 

3.6.2  Adhesion of H. pylori J99 strain to chitosan microspheres  

Chitosan microspheres were incubated with live or FITC- labelled H. pylori at a final 

optical density (OD600) of 0.04, corresponding to 1 × 10
7

 colony forming units (CFU) per mL, 

for 2 h, under 120 rpm stirring with a final incubation volume of 60 µL of phosphate-citrate 
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buffer at pH 6.0. Adhesion assay with live bacteria was conducted at 37ºC while the assay 

with FITC-labelled bacteria was carried out at room temperature (RT). After incubation, in 

order to remove non-adherent bacteria, microspheres were rinsed five times using 500 µL of 

0.01 M PBS by centrifugation at 10 000 rpm, for 7 min.  

Regarding live bacteria assay, staining was performed after the adhesion, with DAPI (10 

µg/mL) and Hoechst (10 µg/mL) as nucleic acid stains.  

Microspheres were gently transferred to microscope slides. A drop of fluorescence 

mounting medium (Vectashield and Vectashield with DAPI) was added, a glass coverslip was 

placed on top of the preparation and observed under IFM and CLSM. 

 

 

 

 

 

 

 

 



 



 

 

 

 

 

Chapter 4 

Results and Discussion 

4.1 Chitosan microspheres production and characterization 

Chitosan microspheres were produced using three different equipments, being the 

fundamental production process ionotropic gelation. However, since the formation of the 

microspheres occurred at pH 9.0, also coacervation of the chitosan chains occurs. Initially, a 

qualitative analysis was performed, followed by a quantitative analysis on those conditions 

apparently promising, until the condition presenting the 50 µm average diameter 

microspheres was selected. Chitosan microspheres characterization was performed recurring 

to microscopy and laser diffraction techniques. 

4.1.1  High voltage electrostatic system 

The effect of chitosan concentration and flow rate on the chitosan microspheres 

production was evaluated for both chitosan with DA of 6% (Table 5) and 16% (Table 6) using 

high voltage electrostatic system. A qualitative analysis was performed based on the average 

diameter and morphology.  
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Table 5 - Chitosan microspheres images obtained by optical microscopy (scale bar 200 µm). 
Different concentrations of chitosan solution (0.5%, 1% and 1.5% (w/v)) with DA of 6% and different flow 
rates (20, 10, 1 and 0.4 mL/h) are shown. Average diameter is indicated below each condition.  

  Flow rate 

  20 mL/h 10 mL/h 1 mL/h 0.4 mL/h 

C
h
it

o
sa

n
 c

o
n
c
e
n
tr

a
ti

o
n
 

0
.5

 %
 (

w
/v

) 

Mainly one population, 
~130 µm 

Mainly one population, 
~150 µm 

Mainly one population, 
~145 µm 

Mainly one population, 
~131 µm 

1
 %

 (
w

/v
) 

Several sizes, 105-180 
µm 

Mainly one population,~130 
µm  

Mainly two populations, 
~50 µm and 115-160 µm 

One population, 145–180 
µm 

1
.5

 %
 (

w
/v

) 

Mainly one population, 
90-150 µm 

115-180 µm Two populations, 15-35 µm 
and 120-190 µm 

One population, 100–150 
µm 

 

Regarding chitosan with DA of 6% (Table 5), all chitosan microspheres present a uniform, 

spherical morphology, with what seems a denser region in the centre when comparing to the 

periphery (clearer and therefore less dense). Images from optical microscopy (OM) suggest 

that the production of chitosan microspheres is not affected by the variation of the chitosan 

concentration or flow rate, maintaining approximately similar sizes amongst all conditions 

(130-160 µm). Moreover, mostly one population is found in each condition, presenting a 

narrow size distribution.  
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Table 6 - Chitosan microspheres images obtained by optical microscopy (scale bar 200 µm). 
Different concentrations of chitosan solution (0.5%, 1% and 1.5% (w/v)) with DA of 16% and different 
flow rates (20, 10, 1 and 0.4 mL/h) are shown. Average diameter is indicated below each condition.  

 Flow rate 

C
h
it

o
sa

n
 c

o
n
c
e
n
tr

a
ti

o
n
 

 20 mL/h 10 mL/h 1 mL/h 0.4 mL/h 

0
.5

 %
 (

w
/v

) 

Aggregates, impossible to 
identify mics 

Aggregates, impossible to 
identify mics 

Aggregates, impossible to 
identify mics 

Aggregates, impossible to 
identify mics 

1
 %

 (
w

/v
) 

One population,~130 µm One population,~130-150 
µm 

One population, around 
120-140 µm 

One population, around 
105-120 µm 

1
.5

 %
 (

w
/v

) 

One population, 90-120 
µm 

One population, around 
~115µm 

One population around 100-
110 µm 

One population around 110-
125 µm 

 

Regarding chitosan with a DA of 16% (Table 6), it can be seen that at in the lowest 

chitosan concentration (0.5% (w/v)) there is no identification of microspheres, only 

aggregates are seen. Nevertheless, when increasing the concentration to 1% and 1.5% (w/v), 

the formation of spherical and structural homogeneous microspheres is observed throughout 

the conditions (chitosan concentration of 1 % and 1.5 % (w/v)). Similar diameters are also 

found amongst all the conditions, suggesting once again that flow rate is not a differentiating 

variable in this process.  

Over viewing the previous results, a brief comparison between DA denotes an evident 

difference regarding the morphology of the chitosan microspheres, though similarities 

regarding the spherical shape are observed. Microspheres produced with chitosan of DA 6% 

seem to present a heterogeneous internal density, with the centre being darker and 

therefore denser than the periphery, while when produced with chitosan with DA of 16%, a 

homogeneous structure was formed. This may be related to the number of free primary 

amine groups (–NH2) that confer chitosan its almost unique properties of being positively 

charged. Moreover, the nature and extent of ionic reactions were found to be sensitive to 

variables such as charge density of both electrolytes [98], in this case chitosan and TPP, 

leading to different types of the chitosan-TPP complexes. When chitosan solutions are 

dropped into TPP solutions, gelled spheres are formed instantaneously: negative ions in TPP 

solution diffuse into chitosan droplets interacting with the positive amines on the chitosan 
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chain. If more amines are available to react, which is the case of chitosan with DA of 6%, for 

the same amount of negative ions, TPP may have difficulty to penetrate the droplet of 

chitosan, thus forming an external wall preventing the centre to proper reticulate. For DA of 

16%, since less amines are available, a graduate formation of inter and intra molecular 

interactions occurs, leading to the formation of a compact structure [98]. However, in order 

to better understand whether this difference is actually due to the different density inside 

the microspheres or due to the passage of the light through different thicknesses, 

cryosections would have to be performed and analyzed. 

Moreover, and regarding size, a slightly decrease on the average diameter is noticed 

when increasing the DA from 6% (around 150 µm) to 16% (around 115 µm), perhaps due to less 

repulsion between chitosan chains with DA of 16%. 

 

Overall, the chitosan concentration and the flow rate do not seem to have particularly 

influence on the production process using high voltage electrostatic system. However, 

chitosan DA appear to be an influent factor on the chitosan microspheres production process, 

changing their final characteristics. Since chitosan microspheres produced are bigger (115-

150 µm) than desired, this system was considered not appropriate to continue the studies. 

4.1.2  Co-axial air stream system 

Regarding the droplet extrusion under co-axial air stream method, Tables 7, 8 and 9 

gather the images obtained by optical microscopy for chitosan with DA of 6% at a 

concentration of 0.5%, 1% and 1.5% (w/v), respectively, for an increasing air stream pressure 

of 0.25, 0.4, 0.6 and 1 bar and flow rate of the syringe of 1, 10 and 20 mL/h. Tables 10, 11 

and 12 represent the same analysis but for chitosan with DA of 16%. 
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Table 7 - Chitosan microspheres images obtained by optical microscopy (scale bar 200 µm). 
Variation of the flow rate (20, 10, 1 mL/h) and air stream pressure (0.25, 0.4, 0.6 and 1 bar) regarding 
chitosan solution concentration of 0.5% (w/v)) and DA of 6% is shown. Average diameter is indicated 
below each condition.  

Flow rate 

0.5% 
(w/v) 

1 mL/h 10 mL/h 20 mL/h 

A
ir

 s
tr

e
a
m

 p
re

ss
u
re

 

0
.2

5
 b

a
r 

---- 

Two populations: 50 µm and 260 
µm  

Three populations: 70 µm, 115 
µm and 215 µm 

0
.4

 b
a
r 

Several populations: 50, 150-200 
and 300 µm  

Several populations, mainly 
between 50 µm and 215 µm  

Three populations: 20-60, 60-
100 and 150-200 µm 

0
.6

 b
a
r 

Several populations: 20-60, 100-
150 and 200 µm 

Several populations, mainly 
between 30 µm and 160 µm 

Several populations, but few 
>150 µm 

1
 b

a
r 

Several sizes, 20-80 µm and few 
120-140 µm  

Several populations, mainly three: 
15, 50 and 130 µm 

---- 

 

Regarding chitosan solution concentration of 0.5% (w/v) (Table 7), microspheres with 

different morphologies and sizes can be observed throughout all the conditions evaluated. 

Chitosan microspheres present a more irregular shape, becoming less spherical when air 

stream pressure is increased. Moreover, different internal structures are observed even 

within the same condition, with microspheres presenting different roughness, shape and 

internal density and size.  

Smaller chitosan microspheres are produced when increasing the air stream pressure, 

nevertheless a wide particle size distribution is observed even within the same condition. 

Despite obtaining particles with sizes closer to the 50 µm envisaged, at least another big 

population (>100 µm) is also observed. 
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Table 8 - Chitosan microspheres images obtained by optical microscopy (scale bar 200 µm). 
Variation of the flow rate (20, 10, 1 mL/h) and air stream pressure (0.25, 0.4, 0.6 and 1 bar) regarding 
chitosan solution concentration of 1 % (w/v)) and DA of 6% is shown. Average diameter is indicated 
below each condition.  

Flow rate 

1 % 
(w/v) 

1 mL/h 10 mL/h 20 mL/h 

A
ir

 s
tr

e
a
m

 p
re

ss
u
re

 

0
.2

5
 b

a
r 

Several sizes, 10-30 µm (mainly) 
and 110-250 µm 

---- ---- 

0
.4

 b
a
r 

Two populations: 20-35 µm and 
~200 µm 

Three populations: 15-30, 100-150 
and ~220 µm 

Two populations: 30-70 µm and 
210 µm 

0
.6

 b
a
r 

Several sizes, 10-20 (higher 
amount), 70-100, 140-190 µm 

Several sizes, 10-20 (higher 
amount),70-95 and 120-160 µm 

Two populations: 20-75 µm and 
130-170 µm 

1
 b

a
r 

Mainly two populations: 10-15 
µm and 70-100 µm 

Several sizes: higher amount of 10-
20, some 35-60 and few 130 µm 

Mainly small population of 13-25 
µm, few 50-110 µm 

 

Morphologically, 1% (w/v) chitosan microspheres are similar amongst conditions and 

within each particular condition, presenting a spherical shape with heterogeneous internal 

density, with the centre being darker, and therefore denser, than the periphery.  

Regarding average diameter, a similar trend to the previous conditions can be observed: 

by increasing air stream pressure, smaller microspheres are produced. However, mainly one 

or two populations are identified, and despite a smaller population (10-30 µm) is observed 

throughout all the conditions, big microspheres are also observed. 
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Table 9 - Chitosan microspheres images obtained by optical microscopy (scale bar 200 µm). 
Variation of the flow rate (20, 10, 1 and 0.4 mL/h) and air stream pressure (0.25, 0.4, 0.6 and 1 bar) 
regarding chitosan solution concentration of 1.5% (w/v)) and DA of 6% is shown. Average diameter is 
indicated below each condition.  

Flow rate 

1.5% 
(w/v) 

0.4 mL/h 1 mL/h 10 mL/h 20 mL/h 

A
ir

 s
tr

e
a
m

 p
re

ss
u
re

 

0
.2

5
 b

a
r 

Several sizes, 20-90 
(mainly), ~200 and 300-

400 µm 

~20 µm , 65-230 µm  and 
380-400 µm 

Several sizes, 30-50, ~170 
and ~350 µm 

Several sizes, 18-50, 
100-150 and ~330 µm 

0
.4

 b
a
r 

 Several sizes: 20-70 µm, 
120-140 µm and 200 µm 

(few) 

Mainly two populations: 20-
50 µm and 160-200 µm  

Several sizes: 20-400 µm 

 

Several sizes, 10-30 and 
few, 60-120 and 200-290 

µm 

0
.6

 b
a
r 

Mainly one population, 15-
25 µm 

Several sizes, 15-40 µm  and 
90-230 µm 

20-40 µm and 80-115 µm. 
Some agglomerates were 

found 

Mainly three 
populations, 10-35, 70-

120 and 220-280 µm 

1
 b

a
r 

Mainly ~15 µm, with some 
linked microspheres 

Mainly around ~10 µm, 
some between 25-60 µm 

15-40 µm Mainly around 10-20 µm, 
with few ~130 µm 

 

When increasing the chitosan concentration to 1.5% (w/v), microspheres seem to present 

a homogeneous distribution of the chitosan, reducing the differences concerning their 

internal structure. A good sphericity is also observed throughout all the conditions. 

Regarding size distribution, and despite the fact that the influence of the air stream 

pressure remains the same as in the previous set of conditions, smaller microspheres are 

produced. At 0.25 bar, though, bigger microspheres are found when comparing to the ones 

identified with chitosan of 0.5% and 1% (w/v).  

Overall, though the air stream pressure seems to have the same effect regardless the 

chitosan concentration, leading to the production of smaller and less spherical microspheres, 

differences are observed when the chitosan concentration is altered, particularly from 0.5% 

to 1% and 1.5% (w/v). When increasing the latter variable, sphericity of microspheres is 
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increased, presenting also a narrower size distribution, with some populations within the 

range aimed.  

The irregularity of the particles may not be, however, a disadvantageous characteristic, 

since it is not mandatory that the particles wished to be obtained actually have a spherical 

shape. A rough surface may also be beneficial, since the surface contact area is increased.  

Even though some conditions have chitosan microspheres within the aimed size ranged, 

the separation of those populations could reduce the production efficiency, since a high 

amount of chitosan would be lost. 

 

As previously referred, chitosan with DA of 16% was also used to produce microspheres in 

this system.  

 

Table 10 - Chitosan microspheres images obtained by optical microscopy (scale bar 200 µm). 
Variation of the flow rate (20, 10, 1 and 0.4 mL/h) and air stream pressure (0.25, 0.4, 0.6 and 1 bar) 
regarding chitosan solution concentration of 0.5% (w/v)) and DA of 16% is shown. Average diameter is 
indicated below each condition. 

Flow rate 

0.5% 
(w/v) 

0.4 mL/h 1 mL/h 10 mL/h 20 mL/h 

A
ir

 s
tr

e
a
m

 p
re

ss
u
re

 

0
.2

5
 b

a
r 

 
 

 

 

 

 

 

 

 

 

0
.4

 b
a
r 

 

 

 
 

0
.6

 b
a
r 

 

 

  

 

 

 

 

 

 

1
 b

a
r 

  
  

 

 

 

 

 

 

 

Regarding DA of 16%, at 0.5% (w/v) chitosan concentration (Table 10), the same outcome 

as obtained in the high voltage electrostatic system was obtained: no identifiable 

microspheres are seen, only aggregates. This may suggest that the conjugation of a low 

chitosan concentration and a smaller number of free amines seems to unable the formation 

of a microsphere. 
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When increasing the concentration to 1% and 1.5% (w/v), individualized microspheres are 

produced (Table 11 and Table 12).  

 
Table 11 - Chitosan microspheres images obtained by optical microscopy (scale bar 200 µm). 

Variation of the flow rate (20, 10, 1 and 0.4 mL/h) and air stream pressure (0.25, 0.4, 0.6 and 1 bar) 
regarding chitosan solution concentration of 1% (w/v)) and DA of 16% is shown. Average diameter is 
indicated below each condition. 

Flow rate 

1% 
(w/v) 

0.4 mL/h 1 mL/h 10 mL/h 20 mL/h 

A
ir

 s
tr

e
a
m

 p
re

ss
u
re

 

0
.2

5
 b

a
r 

 

 

 

 

 

 

 

Mainly two populations, 
250-300 µm (higher 

amount) and 90-150 µm 

 

 

 

 

 

 

 

Mainly two populations, 
higher amount of ~300 
µm, fewer 120-190 µm 

 

 

 

 

 

 

 

Mainly ~300-340 µm, few 
small ones 

 

 

 

 

 

 

 

 

Mainly two populations: 
250-320 and 100-180 µm 

0
.4

 b
a
r 

 

 

 

 

 

 

 

Mainly two populations, 
70-100 µm and 230-250 

µm (higher amount) 

 

 

 

 

 

 

 

Several sizes, 90-160 µm  
and 200-250 µm 

 

 

 

 

 

 

 

Several sizes, 70-120 µm 
and 170-250 µm 

 

 

 

 

 

 

 

Two populations,120-
160 µm and 240-260 µm 

0
.6

 b
a
r 

 

 

 

 

 

 

Several sizes, 150-200 
µm and 60-100 µm 

 

 

 

 

 

 

Several sizes 160-210 µm 
and 70-100 µm 

 

 

 

 

 

 

Several sizes, few 70-160 
µm 

 

 

 

 

 

 

Several sizes, 120-170 
µm and agglomerated 

50-100 µm 

1
 b

a
r 

 

 

 

 

 

 

Similar size, 55-90 µm 

 

 

 

 

 

 

One population, 70-100 

µm with few ~170 µm 

 

 

 

 

 

 

Several sizes, 20-50 µm 

and 100-150 µm 

 

 

 

 

 

 

Several sizes: 50-130 µm 

 

At 1% (w/v) chitosan concentration (Table 11), chitosan microspheres present a different 

distribution regarding size and shape between conditions. At 0.25 bar the microspheres are 

spherical and internally similar, however by increasing the air stream pressure the 

microspheres become smaller, more irregular and with different internal structures. The flow 

rate does not particularly seem to influence size or morphology. 
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Table 12 - Chitosan microspheres images obtained by optical microscopy (scale bar 200 µm). 
Variation of the flow rate (20, 10, 1 and 0.4 mL/h) and air stream pressure (0.25, 0.4, 0.6 and 1 bar) 
regarding chitosan solution concentration of 1.5% (w/v)) and DA of 16% is shown. Average diameter is 
indicated below each condition. 

Flow rate 

1.5% 
(w/v) 

0.4 mL/h 1 mL/h 10 mL/h 20 mL/h 

A
ir

 s
tr

e
a
m

 p
re

ss
u
re

 

0
.2

5
 b

a
r 

 

 

 

 

 

Several sizes: 40-75 µm, 
230-260 µm and 300-350 

µm 

 

 

 

 

 

Two populations: 50-100 
µm  and 280-310 µm 

 

 

 

 

 

Mainly 250-300 µm 

 

 

 

 

 

Several populations, 
~320 µm, ~100 µm and 

~40 µm 

0
.4

 b
a
r 

 

 

 

 

 

Several sizes, 30-80 µm, 
100-150 µm and 200-250 

µm 

 

 

 

 

 

Several sizes, mainly 35-
80 µm, 100-150 µm and 

200-250 µm 

 

 

 

 

 

Several sizes, mainly 55-
80 µm  and 180-250 µm  

 

 

 

 

 

Mainly small ones 35-65 
µm with few 155-250 

µm 

0
.6

 b
a
r 

 

 

 

 

 

20-70 µm  and 100-140 
µm 

 

 

 

 

 

Several sizes, mainly 20-
75 µm and 100-190 µm 

 

 

 

 

 

Two populations: 20-40 
µm and 80-150 µm 

 

 

 

 

 

 Mainly small ones 20-70 
µm, but few ~155 µm 

1
 b

a
r 

 

 

 

 

 

Mainly 10-20 µm and 30-
70 µm 

 

 

 

 

 

15-30 µm (higher 
amount), 50-80 µm and 

100-140 µm 

 

 

 

 

 

Two populations: 20-30 
µm and 60-125 µm 

 

 

 

 

 

Mainly small ones: 15-30 
µm, 40-80 µm and 90-

110 µm (few) 

 

By increasing even more the chitosan concentration to 1.5% (w/v), smaller and spherical 

microspheres are produced throughout all the conditions. While the effect of flow rate is not 

so evident, the effect of the air stream pressure is relevant to the structure of the 

microspheres: at higher pressures smaller microspheres are formed, with spherical shape and 

similar internal structure. A wide distribution regarding sizes is still observed, with a smaller 

population present in all conditions. 

Regarding the influence of chitosan DA, the same trend as observed with high voltage 

electrostatic system is observed: chitosan microspheres with DA of 16% present a consistent 

structure and generally are more spherical and structurally homogeneous than chitosan 
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microspheres produced with chitosan of 6% DA. The latter leads to more disrupted, 

heterogeneous microspheres, although the size does not vary significantly.  

Air stream pressure is a variable that also seems to influence the characteristics of the 

chitosan microspheres produced by co-axial air stream system, where smaller particles are 

produced when air pressure is increased. This trend is observed in all chitosan concentrations 

evaluated and may be related to the unstable formation of the microspheres at higher air 

pressures, which also leads to the production of more irregular particles.  

 

OM qualitative screening of chitosan microspheres produced by co-axial air stream system 

suggested some conditions with diameters within the aimed range of 50 µm. Since 

microspheres with lower DA are expected to be more mucoadhesive and bind more bacteria, 

preference was given to chitosan with DA of 6%. Therefore, a deeper analysis was conducted 

using the IN Cell Analyzer high-throughput imaging and high-content analysis system. Chitosan 

microspheres produced with chitosan concentration of 1% and 1.5% (w/v) and with DA of 6% 

were selected and their size distribution is shown in Table 13 and 14, respectively. 

Histograms shown are the result of the steps referred in section 3.  

Image acquisition by IN Cell Analyzer high-throughput microscopy brings several 

advantages over OM, mainly due to the automated screening of the wells, therefore avoiding 

the manual arrangement of the plate. The autofocus option is also a valuable tool, fastening 

the acquisition process; however, it works better if a black plate is used. If using white 

plates, images on the periphery of the well are not collected correctly and a segmentation of 

the well needs to be done, applying the autofocus option to each area.   

It is important to notice that although most of the microspheres are target as 

individualized ones, aggregates and overlapping microspheres are considered as one 

microsphere, thus wrongly contributing to the average diameter of the condition. Therefore, 

although this software allows a faster and more comprehensive analysis, it is difficult to 

assure that the created protocol targets each one and only microspheres. This problem could 

be overcome if a relative small amount of microspheres is assessed and if they are not 

aggregated, therefore detecting each microsphere as an individual. Indeed, despite the 

valuable imaging system, data analysis may be a time consuming process until de protocol is 

defined.  
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Table 13 – Size distribution of chitosan microspheres produced with chitosan concentration of 1% 
(w/v) and DA of 6%. Data obtained by IN Cell Analyzer analysis software. 
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Despite not being very evident, IN Cell Analyzer results do correlate with the trend 

observed in OM images. By increasing the air stream pressure, the number of microspheres 

bigger than 60 µm seems to decrease while the number within the range 10-40 µm seems to 

increase. A population of 0-10 µm can be identified in all the evaluated conditions. Moreover, 

the amount of smaller microspheres, especially from 10-40 µm, is always higher than the 

remaining size ranges.  
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Table 14 - Size distribution of chitosan microspheres produced with chitosan concentration of 1.5% 
(w/v) and DA of 6%. Data obtained by IN Cell Analyzer analysis software. 
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Regarding 1.5% (w/v) chitosan concentration, the size range described with OM presents 

some similarities with the data shown in Table 14. It can be seen that generally by increasing 

the air stream pressure, the amount of chitosan microspheres with relative bigger sizes are 

reduced, dominating the range size of 10-40 µm in all conditions. However not many 

microspheres bigger than 60 µm are found in the lowest air stream pressure, contrary to the 

OM results.   

 

The fact that data obtained by the IN Cell Analyzer does not exactly correlate with the 

average diameter determined by OM is somehow expected. First, regarding the latter 

method, only few microspheres were assessed, and therefore the reduced number does not 

allow drawing statistically significant conclusions regarding size. Though it might indicate the 

average range of diameters, it is not an absolute data. Furthermore, the way average 

diameters are calculated in both methods is different. While in OM a straight line is manually 

draw horizontally from one point to the other of the microsphere, the IN Cell Analyzer 

software determines the average diameter as the mean of all internal diameters 

perpendicular to the maximum centre line through the microsphere, automatically. 
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Moreover, in the latter equipment microspheres on the border of each image are 

automatically excluded, although this may not have such influence, because the number of 

excluded microspheres may be distributed over the size range. 

4.1.3  Aerodynamically driven system 

Finally, results of microspheres produced using the aerodynamically driven system are 

reported. Focusing on the DA of 6%, a screening was performed to several conditions, varying 

the nozzle diameter of the equipment, air stream pressure and flow rate for two chitosan 

concentrations, 0.5% (Table 15) and 1% (w/v) (Table 16). OM analysis was not carried on since 

Mastersizer equipment presents particle size distributions in a faster and less time consuming 

way.  

 
Table 15 – Mastersizer analysis of size distribution of chitosan microspheres (DA 6%) produced by 

aerodynamically driven system with nozzle diameter of 0.25 mm. Histogram (relating size classes and 
volume (%)) and corresponding volume percentiles (Dv10, Dv50 and Dv90) are shown. XX axis represents 
the size classes (µm - 10, 100 and 1000 marks are shown). 

 Flow rate 

Nozzle 
0.25 mm 0.25mL/min 0.33mL/min 0.5mL/min 1mL/min 
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Dv10 = 26 µm 
Dv50 = 81.2 µm 
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Dv10 = 20.4 µm 
Dv50 = 55.2 µm 
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Dv90 = 224 µm 
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Dv10 = 66.8 µm 
Dv50 = 203 µm 
Dv90 = 361 µm 
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Dv90 = 387 µm 
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Dv10 = 41.2 µm 
Dv50 = 159 µm 
Dv90 = 305 µm 

 
 
 
 
 
 

Dv10 = 33.4 µm 
Dv50 = 101 µm 
Dv90 = 240 µm 

 
 
 
 
 
 

Dv10 = 23.9 µm 
Dv50 = 79.6 µm 
Dv90 = 145 µm 

 
 
 
 

 
 

Dv10 = 34.2 µm 
Dv50 = 145 µm 
Dv90 = 216 µm 
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Data collected by the Mastersizer includes the histogram with the volume weighted 

particle size distributions and the percentiles regarding the maximum particle size for a given 

percentage volume of the sample (Dv10, Dv50 and Dv90). Overall, this information suggests 

that a wide size distribution (20-400 µm) can be obtained by aerodynamically driven system 

through variation of the different parameters. The percentage of particles smaller than 20 

µm is small, and mostly two populations are found in each condition, with one generally in 

higher amount.  

However, by increasing the air pressure (from 415 to 255 mBar and 525 mBar), a decrease 

in the Dv50 is observed for both concentrations, particularly at 1% (w/v) chitosan 

concentration (~200 µm), where a clear shift to the left is seen on the histogram. Regarding 

the effect of the flow rate, a pattern is not found between the conditions under the same 

pressure, suggesting that this parameter does not influence the chitosan microspheres 

production considerably. 

When comparing chitosan concentrations, it can be observed that at 0.5% (w/v) chitosan 

particles present smaller sizes, with a Dv50 of around 50 µm at the highest air stream 

pressure. At 0.5 mL/min two clear and defined populations can be observed for both 

evaluated pressures. By increasing concentration to 1% (w/v), it can be seen an increase on 

the Dv50 values throughout all the samples.  

 
Table 16 - Mastersizer analysis of size distribution of chitosan microspheres produced by 

aerodynamically driven system with nozzle diameter of 0.5 mm. Histogram (relating size classes and 
volume (%)) and corresponding volume percentiles (Dv10, Dv50 and Dv90) are shown. XX axis represents 
the size classes (µm - 10, 100 and 1000 marks are shown). 

Nozzle  
0.5 mm 0.25 mL/min 0.33 mL/min     0.5 mL/min 1.5 mL/min 
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Dv10 = 36.1 µm  

Dv50 = 157 µm  

Dv90 = 322 µm  

---- 

   

Altering the nozzle diameter of the equipment seems to be a preponderant factor, since 

at 1% (w/v) chitosan concentration is verified a significant increase on the particles diameter 

when comparing with the same concentration but with the smaller nozzle diameter (0.25 

mm). A clear shift to the right on the histogram is observed, showing an increase in all the 

percentiles, for both low (255 mBar) and high (525 mBar) air pressures.  

 

Microspheres produced with higher pressure (525 mBar) and nozzle diameter of 0.25 mm, 

and therefore smaller, were further used for size and morphology analysis in IN Cell Analyzer 

imaging system (Table 17 and 18).  
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Table 17 – IN Cell Analyzer size distribution of chitosan microspheres (DA 6%) produced in the 
aerodynamically driven system with 0.25 mm nozzle under higher pressure (525 mBar). 

Nozzle 
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The effect of the chitosan concentration on the characteristics of the chitosan 

microspheres produced is once again observed with the IN Cell Analyzer high-throughput 

microscope. At the highest pressure (525 mBar) and with the 0.25 mm nozzle, chitosan 

particles present a bigger size when a higher chitosan concentration is used (1% (w/v)). It can 

be observed that with 0.5% (w/v) chitosan particles range mainly between 0-40 µm, with 

some amount between 40-60 µm. When increasing the concentration to 1% (w/v), the trend 

observed on the IN Cell Analyzer analysis is repeated and an increase on the average size of 

the particles is observed: the number of particles between 0-40 µm is reduced, increasing the 

number of particles within the range 40-60 µm and >60 µm. Flow rate 0.5 mL/min at 525 

mBar represents the condition with the smaller Dv50, trend proven by this analysis as well. 

Differences regarding chitosan microspheres morphology are also evident, being the 

microspheres produced with 1% (w/v) chitosan concentration more spherical and 

homogeneous than the ones produced using the low concentration.   

When comparing the results from both IN Cell Analyzer and Mastersizer analysis, a 

correlation can be established. Concerning nozzle 0.25 mm and chitosan concentration of 1% 

(w/v), at 0.33 mL/min the Dv50 is 101 µm, meaning that 50% of the particles have a size 

below that value. This also means that more particles would be represented in the graph in 

the range 40-60 µm and > 60 µm than in the 0.5 mL/min condition, where the Dv50 is 79.6 

µm, and therefore higher amount of particles are smaller. When comparing nozzle 0.5 mm 

condition for the same chitosan concentration and flow rate values, both graphs are similar 

as well as the percentiles. At 0.33 and 0.5 mL/min the Dv50 is 157 µm, with only 10% of the 

particles smaller than 35.6 µm and 36.1 µm, respectively. This average sizes would be within 
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the size range of 0-10 and 10-40 µm in the Mastersizer graphs, but in a smaller amount than it 

actually is. Differences regarding both analyses may be explained given the fact that though 

it is possible to convert particle size data from one type of distribution to another, this 

requires certain assumptions about the form of the particle and its physical properties. 

Therefore, a volume weighted particle size distribution measured using image analysis may 

not necessarily agree exactly with a particle size distribution measured by laser diffraction. 

Nevertheless, the data collected by both methods is complementary, with the IN Cell 

Analyzer high-throughput imaging system having a particular relevance regarding assessment 

of chitosan microspheres morphology. 

 

The optimization process of chitosan microspheres production narrowed the options and 

allowed identifying the aerodynamically driven system (Var J30), in conjugation with the 

parameters specified on Table 18, as the suitable one for the production of 50 µm diameter 

chitosan microspheres. This system was preferred over co-axial air stream system, mainly due 

to the speed of the production process.  

 
Table 18 – Set of parameters applied in encapsulation system Var J30 for production of 50 µm 

chitosan microspheres.  

Degree of Acetylation 6% 

Chitosan concentration 0.5% (w/v) 

Nozzle 0.25 mm 

Flow rate 0.5 mL/min 

Air pressure 525 mBar 

  

The average size and the size distribution of the chitosan microspheres were determined 

by different methods, which results are shown in Figure 8.  

 

 

 

 

 

 

 

 

Figure 8 – Size distribution of chitosan microspheres in TPP after ionotropic gelation evaluated by 
Mastersizer (A), optical microscopy (B, scale bar 100 µm) and IN Cell Analyzer high-throughput 

microscopy (C, scale bar 50 µm).  
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Particle size distribution was firstly collected based on a laser diffraction technique 

(Figure 8, A), where 50% of the particles were found to have a size below 55.2 µm. Optical 

microscopy was also used to assess chitosan microspheres morphology (Figure 8, B) and 

images were used to manually evaluate the average diameter of the microspheres (43.9 µm). 

Moreover, images obtained by IN Cell Analyzer high-throughput microscopy allowed a manual 

measurement of the average diameter of the microspheres (40.4 µm) (Figure 8, C); through 

an automatic analysis the majority of the microspheres were placed within the 10-40 µm 

range. 

Despite the different characterization techniques, the average sizes obtained were 

similar. 

4.2 Genipin crosslinking  

Being a relevant and determinant factor for chitosan microspheres properties regarding 

stability in acidic conditions and mucoadhesion, the crosslinking degree of chitosan 

microspheres was evaluated by time-lapse using fluorescence microscopy.  

Figure 9 shows the fluorescence behaviour of the first two hours of chitosan microspheres 

incubation with 10 mM genipin. Previous studies have determined 10 mM of genipin as the 

adequate concentration, since the reaction time required for crosslinking was shorter and 

with higher fluorescence levels when compared to 1 mM of genipin [108].  
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Figure 9 - Fluorescence microscopy images of chitosan microspheres crosslinked with 10 mM genipin 
(A). The time of crosslinking (h) is represented on the top of each image, scale bar 100 µm. Crosslinking 
kinetic of chitosan microspheres in the presence of 10 mM genipin (B) 

 

Results have shown an increase of fluorescence intensity with crosslinking time for the 

genipin concentration tested (10 mM), reaching a plateau after approximately 1h15min of 

reaction.  

Since chitosan mucoadhesive properties are dependent of the amount of primary amines 

available in the chitosan chain, the crosslinking process must be controlled. For that reason, 

45 min was established as enough time to assure that the microspheres do not dissolve in 

acidic conditions, while maintain their mucoadhesive properties conferred by the free 

amines. As such, after crosslinking of chitosan microspheres genipin 10 mM for 45 min, they 

were submitted to lyophilisation.  

Figure 10 shows the morphology of the microspheres before (A) and after (B) the 

crosslinking and lyophilisation (followed by hydration). 

A C 

B 
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Figure 10 - IN Cell Analyzer images of chitosan microspheres before (A) and after (B) crosslinking 
and lyophilisation and hydration. Scale bar 50 µm. 

 

Images obtained by IN Cell Analyzer high-throughput microscopy revealed an evident 

change in chitosan microspheres morphology, with lyophilised microspheres presenting a 

rather irregular, rough structure, with reduced sphericity.  

An intensive characterization was performed by IN Cell Analyzer, with a strict analysis on 

the Spotfire™ DecisionSite™. Average diameter, maximum chord, form factor and area are 

some of the parameters measured, graphically represented below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Both graphs on Figure 11 represent similar data concerning size distribution of chitosan 

microspheres, although the left graph shows the distribution throughout the 25 fields of the 

well and the right graph the amount of microspheres within each range of sizes. Average 

diameter is calculated as the mean internal distance perpendicular to the maximum curved 

chord, which is the maximum centre line through a target. It can be acknowledged in both 

graphs that size varies from approximately 5 to 60 µm, with the higher amount being 

concentrated around 10-30 µm. Once again, the size of the black dots corresponds to the 

form factor associated to each microspheres. When comparing the average size before and 

after liophilisation, a decrease is observed from 50 µm to around 20 µm. 
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Figure 11 – Average diameter distribution of the individualized chitosan microspheres, after 
lyophilisation. 
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Regarding the morphology, it was observed that the liophilisation process led to a change 

in the shape of the spheres, turning them more irregular and similar to particles. Because the 

particles are not spherical, average diameter may not provide all information regarding 

microsphrees size, and therefore maximum chord may be a valuable information as well. 

Based on Figure 12, most particles present a maximum chord of 50 µm despite ranging 

between 40 and 60 µm, which corresponds to the expected average diameter.  

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each black dot corresponds to a single chitosan microsphere, throughout the 25 fields 

taken of each well. Regarding the graph on the left, the area of each microsphere is 

represented on the XX axis, revealing that most of chitosan microspheres present an area 

inferior to 1000 µm2. However, the size of each black dot also correlates to its form factor: 

smaller black dots possess a smaller value regarding form factor, and therefore are more 

irregular, while bigger dots correspond to rounder microspheres. This can be also correlated 

to the graph on the right, which shows the distribution of the chitosan microspheres 

regarding their form factor. In this case, the size of the black dots correlates to the area of 

the actual microspheres. The selected dot on both graphs corresponds to the same 

microsphere. 

Figure 13 – Area (left graph) and form factor (right graph) of each chitosan microsphere, after 
lyophilisation. 
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Figure 12 – Maximum chord of chitosan microspheres, after lyophilisation. 
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As such, chitosan microspheres present not only a different morphology but also a 

decrease in the average diameter when comparing to microspheres before lyophilisation. 

Chitosan microspheres present a more irregular structure, with an average diameter around 

20 µm, but with a maximum chord around 50 µm. 

4.2.1 Stability in acidic conditions 

In order to validate the chitosan microspheres for application in the stomach without 

dissolution, their stability under acidic conditions must be evaluated. Given the pH range 

found in the gastric mucosa (from pH 1.2-2.5 in the lumen to neutral at the epithelial surface 

pH ~7.4), a compromise had to be made and pH 6.0 was chosen to conduct the experiments. 

Chitosan microspheres were therefore incubated in pH 6.0 phosphate-citrate buffer and 

their behaviour was followed over 1-h period (Figure 14). 

 

   

  

 

Figure 14 – Optical microscopy images of chitosan microspheres in acidic conditions over 1 h. Scale 
bar 100 µm. 

 

As can be seen in Figure 14, no major differences are observed regarding the morphology 

of chitosan microspheres, suggesting their stability under pH 6.0.  

4.3 Chitosan microspheres emission spectrum 

Fluorescence is probably the best technique to evaluate microspheres capacity to 

penetrate gastric foveolae and to bind H. pylori. As such, understanding chitosan 

microspheres fluorescence properties is fundamental. Microspheres spectrum was evaluated 

by exciting microspheres with different lasers: 405 nm, 488 nm and 561 nm. The spectrum 

corresponding to the excitation of 405 nm is presented below (Figure 15).  
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By exciting the chitosan microspheres with a 405 nm laser, two peaks can be identified in 

their emission spectrum: a maximum value at 477 nm, followed by a slow decrease in relative 

fluorescence, and an increase again at 627 nm, approximately, though less intense than the 

first peak. This behaviour can be followed on the fluorescence images shown.  

When chitosan microspheres are excited with different lasers (488 nm and 561 nm, data 

not shown), the exact same behaviour can be observed, although only the second peak is 

observed since excitation is made in a wavelength higher than the first emission peak (677 

nm).  

Therefore, these results indicate that independently of the excitation laser, the emission 

spectrum of the chitosan microspheres will be always the same. The microspheres were not 

previously labelled, and consequently this spectrum can also reveal chitosan microspheres 

auto-fluorescence throughout a wide range of wavelength (450 nm to 650 nm, 

approximately). 

4.4 Chitosan microspheres adhesion to gastric mucosa  

Evaluation of the chitosan microspheres capacity of penetrate the gastric mucosa, in 

order to reach deeper H. pylori living inside the gastric foveolae, is one of the main aims 

initially established. Microspheres adhesion studies to gastric mucosa were performed and 

evaluated by Inverted Fluorescence Microscopy and Confocal Laser Scanning Microscopy. 

 

 

Figure 15 - Chitosan microspheres emission spectrum obtained by CLSM when excited by 405 nm laser. 

477 nm 627 nm 582 nm 432 nm 
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4.4.1  Optimization of gastric mucosa labelling 

The direct observation of ex-vivo samples of gastric mucosa would ease the process of 

evaluating the penetration of the chitosan microspheres into the gastric foveolae. Therefore, 

fresh mice stomach samples were used to optimize the fluorescence labelling of gastric 

mucosa.  

Initially, fresh mice gastric mucosas were mounted only with different mounting media 

(Figure 16).  

 Vectashield Fluoromount 
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Vectashield with DAPI  PFA 4% Vectashield with DAPI  

  

Figure 16 – Fluorescence microscopy images of mice gastric mucosa mounted with different 
mounting media. Scale bar 100 µm.    

Figure 16 allows the observation of the tissue, although not in a very clear way. No gastric 

structures are identified, suggesting that auto-fluorescence of the tissue is residual. This 

auto-fluorescence is apparently improved by the usage of Fluoromount as mounting medium, 

although the difference is not evident. Regarding the application of Vectashield with DAPI, 

previous fixation of the tissue with PFA 4% seems to improve its observation when comparing 

to the sample when only Vectashield with DAPI was applied. 

 

DAPI and Hoechst were then tested as nucleic acid stains (Figure 17), while several Wheat 

Germ Agglutinin conjugates and a CellMask™ Deep Red stain were used as plasma membrane 

stains (Figure 18).   
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Figure 17 – Fluorescence microscopy images of mice gastric mucosa stained with nucleic acid dyes 
(with two different concentrations, 1:100 and 1:1000), using two different mounting media. Scale bar 
100 µm.   

 

The blurred image of gastric mucosa labelled with DAPI 1:100 suggests that this staining is 

not strong enough to adequately label the DNA of the mucosa allowing its visualization. The 

same is observed when Hoechst 1:100 is used. However, DAPI is a stain recommended for 

fixed or permeabilized cells. As such, when analysing the fixed mucosa with PFA 4% followed 

labelling with DAPI, bright spots are observed, identifying what seems to be the nucleus of 

the gastric cells of the surface of the mucosa. Comparing the two concentrations of DAPI, a 

clear and brighter image is obtained when the higher concentration (1:100) is used. 
 

Figure 18 shows the fluorescence labelling of gastric mucosa by different plasma 

membrane stains. As previously referred, these samples were kept fresh without adding 

mounting media. Fluorescently labelled lectins, such as WGA, were exploited as plasma 

membrane stains as well as CellMask™ Deep Red.  
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Figure 18 - Fluorescence microscopy images of mice gastric mucosa labelled with different plasma 
membrane staining, at different concentrations and time of incubation (indicated above each image). 
Scale bar 100 µm.    

Over viewing the different WGA conjugates, none successfully labelled the mucosa. 

However, CellMask™ Deep Red stain performs a stronger staining of the plasma membrane of 

the cells from the gastric mucosa. According to the manufacturer, when comparing to 

labelled WGA, CellMask™ Deep Red plasma membrane stain takes more time to be 

internalized, thus maintaining the staining or a longer period. Therefore, this plasma 
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membrane stain has proved to perform an excellent and rapid plasma membrane staining, 

excluding the need of previous fixation and incubation periods. 

 

Based on this first screening, DAPI (fixed sample) and CellMask™ Deep Red plasma 

membrane (fresh) stain were determined as good gastric mucosa markers. In order to better 

assess its feasibility for further adhesion studies, gastric mucosa without labelling (Figure 19), 

and stained with DAPI 1:100 after fixation with PFA 4% (Figure 20) were observed under CLSM 

as well as CellMask™ Deep Red labelled mucosa (Figure 21). Different Z-plans of the mucosa 

were acquired and are represented below.  
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Figure 19 – Auto-fluorescence of mice gastric mucosa in two ranges of emission wavelength. CLSM 
images of the outer layer (Z=1) and deeper layers (Z=10 and Z=17) of mice gastric mucosa (ScanMode 
xyz; step size 2.9 µm). Scale bar 100 µm. 

CLSM images confirm a residual auto-fluorescence of the gastric mucosa, which emits 

fluorescence between 420-552 nm (green) and between 652-772 nm (red). However, the 

emission is not strong enough to properly observe the physical characteristics of the gastric 

mucosa. 

 

Figure 20 illustrates the difference in the gastric mucosa morphology when going deeper 

inside the tissue of the sample fixed with PFA 4% followed labelling with DAPI 1:100. Apart 

from the horizontal section of the tissue, two orthogonal views of two stacks are shown as 

well. The vertical and horizontal images correspond to a perpendicular plan to the one 

visualized from above on the area of the white crosshair.  
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Figure 20 – Mice gastric mucosa fixed with PFA 4% and labelled with DAPI 1:100. CLSM images of the 
outer layer (Z=5) and deeper layers (Z=7 to Z=15) of mice gastric mucosa (ScanMode xyz; step size 9.99 
µm). Orthogonal views of two stacks (Z=9 and Z=15) are shown (ScanMode xzy). Scale bar 100 µm. 

 

Evaluation of the different stacks at different depths suggests the combination of PFA 4% 

with DAPI 1:100 labelling as a good procedure to observe gastric foveolae. Different stacks 

from the same area allow the identification of three gastric foveolae, whose diameter is 

decreased when going deeper into the tissue (from Z=5 to Z=15). On the orthogonal views the 

curvature of the foveolae is also seen (darker region). 

 

CLSM images of different stacks from the CellMask™ Deep Red labelled mucosa are 

gathered on Figure 21. 
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Labelling with CellMask™ Deep Red seems strong enough to clearly observe the mucosa 

and the foveolae. By going deeper inside the tissue, a change in the morphology of the 

mucosa is seen; the structures become darker and the diameter of the dark areas smaller. By 

going inside the tissue, the mucosa ends up with only dark areas, due to a decrease on the 

fluorescence. The orthogonal view shows the corresponding curvature of the foveolae. 

 
Combination of PFA 4% fixation and DAPI 1:100 labelling as well as the CellMask™ Deep 

Red plasma membrane stain allowed a good observation of the gastric mucosa, both by 

fluorescence and confocal microscopy. Therefore, these staining were applied for the 

following studies. 

4.4.2  Chitosan microspheres adhesion to mice gastric mucosa 

Chitosan microspheres adhesion studies to mice gastric mucosa were performed at 37ºC, 

at pH 6.0 and under stirring, in order to mimic the in vivo conditions. Staining was afterwards 

employed considering the results from the last section. 
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Figure 21 – Mice gastric mucosa cells labelled with CellMask™ Deep Red stain. CLSM images of the 
outer layer (Z=7) and deeper layers (Z=12 to Z=36) of mice gastric mucosa (ScanMode xyz; step size 2.6 
µm). Orthogonal views of stack Z=32 is shown (ScanMode xzy). Scale bar 100 µm. 
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Figure 22 shows the gastric mucosa labelled with DAPI 1:100 after fixation with PFA 4%, 

both without (control) and with chitosan microspheres adhered. Figure 23 gathers the same 

information although regarding CellMask™ Deep Red staining. 
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Figure 22 - Fluorescence microscopy images of mice gastric mucosa alone and with chitosan 
microspheres. Mucosa was fixed with PFA 4% followed labelling with DAPI 1:100 in both conditions. Scale 
bar 100 µm.  
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Figure 23 - Fluorescence microscopy images of mice gastric mucosa alone and with chitosan 
microspheres. Mucosa was labelled with CellMask™ Deep Red in both conditions. Scale bar 100 µm.  

 

Both conditions allow the observation of adhered chitosan microspheres, confirming their 

ability to adhere to the gastric mucosa.  

 

In order to evaluate whether chitosan microspheres are able to penetrate the gastric 

mucosa, 3D images are required. Confocal images for both conditions are presented below. 
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Figure 24 concerns the gastric mucosa labelled with PFA 4% DAPI 1:100. DNA of gastric 

cells of the mucosa is labelled in blue, while the microsphere is seen in red. A single 

microsphere was selected and observed closely. Different stacks were taken in order to 

understand the position of the microsphere in relation to the gastric mucosa.  
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Figure 24 – Chitosan microspheres (red) adhered to mice gastric mucosa fixed with PFA 4% and 
labelled with DAPI 1:100 (blue). CLSM images of the outer layer (Z=3) and deeper layers (Z=51 to Z=143) 
of mice gastric mucosa (ScanMode xyz; step size 0.17 µm). Orthogonal views of merged images are 
shown (ScanMode xzy). Scale bar 50 µm. 

 

Different stacks of the mucosa allow a 3D perpective of the latter, in order to understand 

whether the microsphere is inside the mucosa and consequently between the cells (blue). 

Going through deeper stacks it can be seen that in fact the chitosan microsphere (red) 

penetrated the mucosa. At stack Z=3 the presence of  the microsphere is almost 

imperceptible, however when at Z=51 it starts to appear, being some cells visible above the 

microsphere. At Z=103 a complete plan of the microsphere is seen, however at Z=143 it 

disappears, suggesting that the imaging section is already in an area with only cells.  

Figure 25 presents an orthogonal view of a single chitosan microsphere (red), which is 

clearly inserted on the mucosa (blue). 
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Figure 25 – Orthogonal view of chitosan microsphere (red) inserted into mice gastric mucosa fixed 

with PFA 4% and labelled with DAPI 1:100 (blue) (ScanMode xzy). Scale bar 50 µm. 

 

Gastric mucosa labelled with CellMask™ Deep Red is seen in Figure 26, showing several 

stacks taken at different depths.  
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Figure 26 - Mice gastric mucosa cells labelled with CellMask™ Deep Red stain with chitosan 
microspheres adhered (red). CLSM images of the outer layer (Z=20) and deeper layers (Z=28 to Z=59) of 

mice gastric mucosa (ScanMode xyz; step size 2.6 µm). Scale bar 100 µm. 

 

Observation of the latter set of images allows identifying the presence of chitosan 

microspheres in different plans. At Z=20, a superficial image taken, an imperceptible 

visualization of the mucosa as well as the microsphere indicates the microspheres ability to 
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penetrate. The following stacks confirm that ability, since when going in the direction of the 

muscle, some microspheres are no longer observed while fluorescence of other microspheres 

is detected. This suggests that microspheres are indeed in different plans of the mucosa, 

being able to cross the remaining mucus layer. 

 

Both stainings allow the identification of 3D depressions corresponding to gastric foveolae 

and chitosan microspheres, revealing the presence of the microspheres not only on the 

superficial plans, but deeper inside the tissue. These images were taken after the rinsing 

step, suggesting the chitosan microspheres as highly mucoadhesive, since they are able to 

remain attached to the fresh mucosa. 

However, in order to mimic the natural conditions closely, fresh samples (without 

fixation) may be preferable as a study model. 

4.4.3  Chitosan microspheres adhesion to human gastric mucosa 

Ultimately, human gastric mucosa was used to evaluate the ability of chitosan 

microspheres to penetrate the tissue.  

Given the good performance as mice gastric mucosa labelling, and since it does not 

require fixation of the tissue or an incubation period, CellMask™ Deep Red plasma membrane 

stain was selected to label the human gastric mucosa previously to observation by CLSM.  

Figure 27 shows the labelling of the human gastric mucosa with CellMask™ Deep Red 

stain. 
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Figure 27 - Human gastric mucosa labelled with CellMask™ Deep Red stain. CLSM images of the 
outer layer (Z=13) and deeper layers (Z=19, Z=25 and Z=29) of human gastric mucosa (ScanMode xyz; 
step size 3.9 µm). Scale bar 100 µm. 

 

Firstly, a different morphology of the tissue can be observed when comparing to the mice 

gastric mucosa previously evaluated. Nevertheless, the marker seems to stain the tissue 

properly, since a clear change is seen when going deeper. A thick layer of mucus was 

observed, shown at Z=13, which starts to disappear when stacks from a higher depth are 

taken. At Z=29 it is observed the presence of a darker area, which may resemble the gastric 

foveolae seen in the mice stomach. However the physiology is different and difficult to 

compare.  
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Chitosan microspheres adhesion studies were also performed using human gastric mucosa, 

at 37ºC, at pH 6.0 and under stirring. Figure 28 shows the same area at different depths. 
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Figure 28 - Human gastric mucosa labelled with CellMask™ Deep Red stain. CLSM images of the 

outer layer (Z=1) and deeper layers (Z=8, Z=17 and Z=28) of human gastric mucosa (ScanMode xyz; step 

size 3.01 µm). Scale bar 100 µm.  

 

Regarding the evaluation of the ability of chitosan microspheres to penetrate the human 

foveolae, it can be observed that most of the particles remain in superficial plans: though a 

depth of around 140 µm was evaluated, chitosan microspheres are no longer observed at a 

depth higher than 84.3 µm (Z=28). In addition, it is important to consider the thickness of the 

mucus layer, which may reduce even more the actual depth penetrated by the chitosan 

microspheres. Nevertheless, it is not known whether the microspheres do not actually 

penetrate or if deeper plans cannot be obtained, because lack of fluorescence, thus revealing 

their presence. When comparing to mice gastric mucosa, around 250 µm depth can be 

observed through CLSM, therefore microspheres in deeper plans can be observed.  

4.5 Helicobacter pylori adhesion to chitosan microspheres 

The ability of chitosan microspheres to adhere to Helicobacter pylori (H. pylori) is also 

important considering the final aim of using chitosan microspheres to remove the bacteria 

from the stomach. Therefore, a study was conducted in vitro using J99 strain of H. pylori 

alive and previously fixed and labelled with FITC, at a pH of 6.0. 
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4.5.1  Adhesion of live H. pylori J99 strain to chitosan 
microspheres 

Because the in vivo adhesion process between the microspheres and the bacteria occurs 

with the bacteria alive, in this study labelling of the bacteria was performed only after the 

2h-period of adhesion. Inverted fluorescence microscopy results are shown in Figure 29. 
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Figure 29 – Fluorescence microscopy images of DAPI, Hoechst and Vectashield with DAPI -labelled 

H. pylori adhered to chitosan microspheres. Scale bar 50 µm.  

 

Apparently, only small dots corresponding to bacteria are seen when Vectashield with 

DAPI is used. When DAPI or Hoechst 1:100 are used no evident differences are found between 

the samples, and the chitosan microspheres are still able to be observed in both channels.   

Figure 30 shows confocal images of a chitosan microsphere with adhered bacteria labelled 

with Vectashield with DAPI.  
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Figure 30 – Maximum projection of a chitosan microsphere with Vectashield with DAPI-labelled 

bacteria. Images were obtained by CLSM. Scale bar 25 µm. 

 

As it can be seen, no dots representing the bacteria are observed. This can mean that 

bacteria did not adhere to the chitosan microsphere, or it can also mean that the auto-

fluorescence of the chitosan particle in the blue wavelength is too intense to detected 

bacteria DNA labelling.  

In order to try to eliminate/reduce the factor of auto-fluorescence, a microsphere 

labelled with Vectashield with DAPI should be used as a control. The minimum blue 

fluorescence would be initially determined, so that when the same settings were applied to 

the labelled sample, the auto-fluorescence was subtracted and the labelled bacteria 

detected. For this, similar microspheres should be used: since they are heterogeneous among 

them, microspheres with different density would contribute differently to the auto-

fluorescence. 

Given this results, it can be said that visualization of live DNA labelled-bacteria is difficult 

by both fluorescence and confocal microscopy, being required a different label method. 

4.5.2  Adhesion of fixed H. pylori J99 strain to chitosan 
microspheres  

The adhesion of FITC-labelled H. pylori to chitosan microspheres at pH 6.0 was evaluated 

by CLSM (Figure 31).  
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Figure 31 - FITC-labelled J99 strain (green) adhered to chitosan microspheres (red) under pH 6.0 

for five z-stacks (Z, step size of 2.98 µm). Images were obtained by CLSM. Scale bar 25 µm. 

In this case, a brighter and stronger signal was detected from FITC-labelled bacteria, 

allowing an easy and clear assessment of the adhesion to the chitosan microspheres. CLSM 

allowed the visualization of stacks of the whole microsphere, revealing that bacteria were 

well distributed all over the surface of the microspheres, though no bacteria were found 

inside the microsphere. The fact that the microsphere presents an irregular and 

heterogeneous surface increases the surface contact area and therefore the number of 

adhered bacteria. 

It is herein demonstrated that chitosan microspheres crosslinked with genipin and 

lyophilised have the capacity to adhere to J99 H. pylori strain under pH 6.0.  

 

 

 



 



 

 

 

 

 

Chapter 5  

Conclusions and future considerations 

Conclusions  

 

Chitosan microspheres were produced by three different equipments, in order to evaluate 

the influence of different parameters on microspheres features. Overall, when using the high 

voltage electrostatic system the chitosan concentration and the flow rate do not seem to 

influence the production process. However, chitosan DA appears to be an influent factor on 

the chitosan microspheres production process, with chitosan microspheres with DA of 16% 

presenting a consistent structure and generally being more spherical and structurally 

homogeneous than chitosan microspheres produced with chitosan of 6% DA. Since chitosan 

microspheres produced are bigger (115-150 µm) than desired, this system was considered not 

appropriate. The same trend regarding the influence of chitosan DA on microspheres 

morphology was observed with co-axial air stream system. Moreover, the air stream pressure 

is a preponderant factor in this system, with smaller particles being produced when air 

pressure is increased. Regarding aerodynamically driven system, the increase in the nozzle 

diameter of the equipment seems to lead to an increase in particles diameter. Moreover, by 

increasing the pressure smaller microspheres are produced. Flow rate was accordingly to the 

previous system not a relevant factor. Though co-axial air stream system presented some 

conditions within the diameter range expected, aerodynamically driven system was selected 

mainly due to its speed regarding particles production. 

Chitosan microspheres with an average diameter of 40 µm were successfully produced by 

ionotropic gelation with TPP coupled with coacervation using the aerodynamically driven 

system and chitosan of DA 6% and 0.5% (w/v) concentration under optimized conditions of 

0.5mL/min flow rate, 525 mBar air pressure and 0.25 mm nozzle.  
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Throughout the production process, microspheres were characterized by different 

equipments based on optical microscopy and laser diffraction. Optical microscopy was 

initially used to perform a qualitative analysis, giving information related with size and 

morphology of chitosan particles. IN Cell Analyzer equipment provided an automated 

approach to acquire high quality images and assess morphological parameters concerning 

each microsphere. In this equipment, an advanced analysis tool is coupled to the acquisition 

software allowing a thorough analysis of parameters as average diameter, maximum chord, 

area and form factor. Mastersizer particle sizing instrument uses the laser diffraction to 

measure particle size distribution. In this case, no images are provided, and thus, in order to 

assess morphology, one of the other techniques must be used. In conclusion, all three 

techniques provide complementary information, however depending on the purpose, a 

specific technique might be selected. 

Minimal genipin crosslinking was performed with a genipin concentration of 10 mM during 

45 minutes, only enough to avoid microspheres dissolution in acidic pH without losing their 

mucoadhesiveness. Following crosslinking, chitosan microspheres were lyophilised, presenting 

not only a different morphology but also a decrease in the average diameter when comparing 

to microspheres before lyophilisation. Chitosan microspheres present a more irregular 

structure, with an average diameter around 20 µm, but with a maximum chord around 50 µm. 

Optimization of the gastric mucosa labelling was performed using C57BL/6 mice fresh 

stomachs. Both nucleic acid and plasma membrane stains were employed with a better 

outcome associated with CellMask™ Deep Red stain, which can be applied to fresh stomachs 

without the need of previous fixation. Fixation of the mucosa followed by staining with DAPI 

also showed good results, though the use of fresh samples is preferable. Adhesion studies 

using the same models demonstrated that the developed chitosan microspheres have the 

ability to penetrate the gastric mucosa, which can be promising for future H. pylori removing 

assays. Regarding human gastric mucosa, few microspheres can be seen in deeper plans, 

suggesting that the microspheres have difficulty in penetrating, perhaps due to the thick 

layer of mucus observed over the surface of the mucosa.  

H. pylori adhesion to developed microspheres was evaluated at pH 6.0, and confirmed by 

incubation of previously fixed J99 H. pylori strain, labelled with FITC. When observed by 

CLSM, a spread adhesion of the bacteria to the chitosan microspheres is observed. The 

irregularity of the surface may indeed beneficiate the adhesion, since a higher surface area is 

available. Adhesion assays with live bacteria (only labelled with nucleic acid stains after 

adhesion to microspheres) did not allow drawing any conclusions, due to the auto-

fluorescence capability of chitosan microspheres. Therefore, further improvements need to 

be addressed regarding the labelling of the live bacteria, since it might be interesting to 

understand and evaluate the influence of bacteria being alive or fixed on the adhesion assay.  

In conclusion, the results suggest that chitosan microspheres have the potential to be 

used as binding system, demonstrating their ability to penetrate the gastric mucosa and 

adhere to J99 H. pylori strain.  
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Future work 

 

 

Mucoadhesive effect of microspheres produced with chitosan with DA of 16%  

 

Because microparticles have more difficulty to penetrate through viscoelastic mucus layer 

than nanoparticles, an elevated number of positive charges (lower DA) could make the 

particles too mucoadhesive avoiding their penetration through the mucus layer.  

The production of microspheres with chitosan with DA of 16% in the VarJ30 could be 

therefore relevant to assure the benefits of using chitosan with a high or low DA. 

 

 

Live bacteria staining and bacteria adhesion quantification 

 

An alternative to the difficult observation of DNA staining would be to transform the 

bacteria with green GFP. While the amount of DNA of the bacteria remains the same, the GFP 

is replicated and therefore the signal becomes stronger. Also, and because of its higher 

amount, the contribution of the auto-fluorescence of the chitosan on the green range would 

be smaller, since the laser would not need to be so intense.  

Even regarding the quantification of the adhered bacteria this option could be interesting 

to assess. Image Stream is an imaging flow cytometer, combining the speed, sensitivity, and 

phenotyping abilities of flow cytometry with the detailed imagery and functional insights of 

microscopy. Since the equipment available at INEB only excites with the 488 nm laser, the 

detection of this protein would be facilitated when comparing to the DNA staining. 

Comparisons between fixed and live bacteria adhered to the chitosan microspheres could be 

performed.  

 

 

Study of chitosan microspheres ability to remove H. pylori from stomach fresh samples 

 

After evaluating the capability of chitosan microspheres to adhere to gastric mucosa and 

to H. pylori J99 strain, a system where all components interact should also be studied. 

Stomach samples should be infected with H. pylori, followed by incubation with developed 

chitosan microspheres.  

 

 

Immobilization of glycosylated receptors on chitosan microspheres surface 

 

Chitosan microspheres have shown to adhere to H. pylori due to only their mucoadhesive 

capacity. However, evaluating the influence on H. pylori adhesion of immobilized 

glycosylated receptors (Gly-R), such as Leb and sLex, on chitosan microspheres surface could 

be interesting.  
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