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Abstract 

 

To understand the chain of alterations that occur in the aftermath of a central nervous 

system (CNS) lesion and how these condition the progress of the tissue response and 

ultimately of the disease, requires a systematic approach, as scar formation results from 

a plethora of events.  

Cells within tissues are continuously exposed to physical forces and the CNS is no 

exception. Several CNS disorders have now been intimately correlated with 

mechanotransduction issues. As such, this thesis aimed at exploring the impact of 

mechanotransduction in the CNS, specifically in pathological conditions, envisaging its 

modulation towards the design of new complementary CNS regenerative therapies. In 

particular, the work here presented explores the impact of mechanotransduction on CNS 

key cellular players and subsequent signaling activation pathways. 

Due to the lack of a screening platform, which could allow in vitro testing of 

mechanotransduction in CNS cells, up to now no comprehensive study has addressed 

and clarified this subject. Consequently, the first challenge was the development of a 

tissue-engineered platform, which lead to the establishment of an in vitro alginate-based 

three-dimensional (3D) glial scar model. Using this model we have further explored the 

implications of matrix mechanical properties in the process of astrocyte activation. Here 

mechanotransduction was found to play a pivotal role in modulating astrocyte phenotype 

and its subsequent extracellular matrix (ECM) production. 

Afterwards, the reader is further challenged to look at the effect of substrate mechanical 

properties on neuronal regeneration capacity. The use of biomaterials to bridge CNS 

lesions and create an environment which favors axonal regeneration is currently under 

investigation by several authors but, mechanical properties have not been fully explored 

in this context. Here, mechanotransduction was found to play a pivotal role in axonal 

outgrowth as, poly(trimethylene-co-ε-caprolactone) (P(TMC-CL)) substrates with high 

caprolactone content promoted neuronal polarization and axonal elongation, prompting 

neurons into regeneration mode, even under inhibitory conditions such as in the presence 

of myelin debris.  

One of the major mechanisms responsible for the loss of function observed in several 

neurological diseases is the loss of myelin sheet insulating the nerves - demyelination. In 

the adult CNS myelin loss can only be partially rescued by spontaneous remyelination of 
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spared axons, process essential to preserve axonal integrity and to ensure recovery of the 

lost physiological activity. Though the mechanisms responsible for chronic remyelination 

failure have not yet been identified, evidence of the presence of oligdendrocyte progenitor 

cells (OPCs) in chronic Multiple Sclerosis lesions suggests the existence of a critical 

regulatory mechanism inhibiting OPC differentiation.  

Finally, the combination of the tissue engineered glial scar with an artificial axon system 

further revealed the inhibitory influence of reactive astrocytes on oligodendrocyte cell 

(OPC) differentiation. The use of an “artificial axon” enabled the uncoupling of neuron-

oligodendrocyte cross-talk, showing that, contrarily to what many authors have suggested, 

neurons and their axons are not crucial for OPCs to differentiate and myelinate and that 

physical support can trigger these processes. Furthermore mechanotransduction was also 

revealed as a key player in OPCs differentiation and myelination processes via astrocytic 

activation.  

A common signalling pathway has emerged in all these mechanotransduction scenarios – 

the Rho/ROCK signalling pathway – and, consequently, RhoA was explored as a mediator 

of the mechanoransduction processes. Its inhibition was reconnoitred as a potential 

therapeutic target. 

Overall, besides developing two new in vitro culture systems which can be of added value 

in future neurodegenerative mechanism studies, as well as in drug screenings envisaging 

the development of new therapeutic approaches, we have established 

mechanotransduction as a key modulator of CNS cell behavior in pathological conditions. 
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Resumo 

 

Para entender a cadeia de eventos que ocorrem na sequência de uma lesão no sistema 

nervoso central, e como condicionam o progresso da resposta tecidular e, finalmente, da 

doença, é necessária uma abordagem sistemática uma vez que a formação de uma 

cicatriz glial resulta de um vasto conjunto de eventos. 

Nos tecidos as células estão constantemente expostas a forças físicas e, o sistema 

nervoso central não é excepção. Vários patologias do sistema nervoso central foram já 

intimamente correlacionadas com questões de mecanotransdução. Como tal, esta tese 

tem como objectivo explorar o impacto da mecanotransdução no sistema nervoso central, 

especificamente em condições patológicas, com vista à sua modulação para a concepção 

de novas terapias regenerativas complementares. Em particular, o trabalho aqui 

apresentado explora o impacto da mecanotransdução no sistema nervoso central nos 

principais agentes celulares e na subsequente activação das vias de sinalização. 

Devido à falta de uma plataforma de triagem, que poderia permitir testes in vitro de 

mecanotransdução em células do sistema nervoso central, não há até ao momento 

nenhum estudo abrangente que tenha abordado e clarificado este assunto. Por 

conseguinte, o primeiro desafio foi o desenvolvimento de uma plataforma, o que conduziu 

ao estabelecimento de um modelo tridimensional (3D) in vitro da cicatriz glial com base 

em alginato. Usando este modelo exploramos as implicações das propriedades 

mecânicas da matriz no processo de activação de astrócitos. Deste modo, a 

mecanotransdução mostrou desempenhar um papel central na modulação do fenótipo 

dos astrócitos bem como na subsequente produção de matriz extracelular. 

Em seguida, o leitor é ainda desafiado a olhar para o efeito das propriedades mecânicas 

do substrato na capacidade de regeneração neuronal. O uso de biomateriais para 

regenerar lesões do sistema nervoso central e criar um ambiente que favorece a 

regeneração axonal está atualmente  a ser investigado por vários autores mas, as 

propriedades mecânicas não foram ainda devidamente exploradas neste contexto. Aqui, 

mostrou-se que a mecanotransdução desempenha um papel fundamental no crescimento 

axonal  uma vez que, subatratos de poli (trimetileno - co - ε - caprolactona) (P(TMC - CL)) 

com elevado teor de caprolactona promoveram a polarização neuronal e a elongação 

axonal, promovendo um “modo de regeneração” nos neurónios, mesmo em condições 

inibitórias tais como a presença de restos de mielina. 
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Um dos principais mecanismos responsáveis pela perda de função observada em 

diversas doenças neurológicas, é a perda da folha de mielina que isola os nervos - 

desmielinização. No sistema nervoso central adulto a perda de mielina só pode ser 

parcialmente resgatada por remielinização espontânea de axónios que sobrevivem à 

lesão, processo essencial para preservar a integridade axonal e para assegurar a 

recuperação da atividade fisiológica perdida. Embora os mecanismos responsáveis pelo 

fracasso da remielinização crónica ainda não tenham sido identificados, a evidência da 

presença de células progenitoras de oligodendrócitos em lesões crónicas de esclerose 

múltipla sugere a existência de um mecanismo de regulação crítico que inibe a 

diferenciação destas células. 

Finalmente, a combinação da cicatriz glial mimética com um sistema de axónios artificial 

revelou ainda a influência inibidora dos astrócitos reactivos na diferenciação de  

oligodendrócitos. O uso de "axónios artificiais" permitiu eliminar a comunicação neurónio 

- oligodendrócito, mostrando que, ao contrário do que muitos autores têm sugerido, os 

neurónios e os seus  axónios não são cruciais para células progenitoras de 

oligodendrócitos se diferenciem em oligodendrócitos capazes de produzir mielina e que o  

suporte físico pode desencadear estes processos. Além disso, mosrou-se que a 

mecanotransdução desempenha um papel chave no processo de diferenciação das 

células progenitoras de oligodendrócitos em oligodendrócitos capazes de produzir 

mielina, através da ativação astrocitica. 

Uma via de sinalização comum emergiu em todos esses cenários de mecanotransdução 

- a via de sinalização Rho / ROCK - e, consequentemente, o RhoA foi explorado como um 

mediador dos processos de mecanotransdução. A sua inibição foi reconhecida como um 

potencial alvo terapêutico. 

No geral, para além de desenvolver dois novos modelos de cultura in vitro que podem ser 

de valor acrescentado em futuros estudos mecanisticos em neurodegeneração, bem 

como em screenings de fármacos com vista ao desenvolvimento de novas abordagens 

terapêuticas, identificamos a mecanotransdução como um modulador chave do 

comportamento das células do sistema nervoso central em condições de patologia. 
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“...ao contrário do que geralmente se crê, por muito que  

se tente convencer-nos do contrário, as verdades únicas 

 não existem: as verdades são múltiplas,  

só a mentira é global. “ 

 

(José Saramago)  
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The Central Nervous System Milieu 
 

 

The central nervous system (CNS) is composed by the brain, the spinal cord and the optic 

nerves. These are covered by three layers of connective tissue: the dura mater, the 

arachnoid mater and the pia mater, collectively referred to as the meninges. At the cellular 

level the main constituents of the CNS are the neurons, astrocytes, oligodendrocytes and 

microglia. 

 

Neurons, the nerve impulse transmitting cells, are probably the most widely studied CNS 

cell type. For many years neurons were seen as the most important, if not the only 

important, cells of the CNS. Nowadays studies on the other CNS cells, like astrocytes and 

oligodendrocytes, have shown that these have equally important roles in CNS function 

and dynamics. Neurons have high levels of energy expenditure - it has been estimated 

that cortical neurons use about five billion ATP molecules per second [1]. They control 

their vast peripheral axonal and dendritic network through fast and slow axonal transport, 

which shuttles organelles and substrates between the soma and the synapses. The length 

and shape of the axons, as well as dendrites and synapses, are all important features of 

axonal function. 

Astrocytes are the most abundant cells in the CNS. In the past their function has been 

mainly associated with pathological states, but currently their involvement in several 

homeostasis processes is being unraveled. They play an important role as support cells 

to neurons, as they maintain ion and pH homeostasis, store glycogen and clear neuronal 

wastes [2, 3]. Moreover, astrocytes are also crucial for the synaptic function [4, 5]. 

Additionally, they play a pivotal role in the function of the blood-brain-barrier (BBB) [6], as 

they surround CNS capillaries modulating the blood-brain-barrier (BBB) function and 

communication with neurons. Also in development, they are known to be instrumental in 

the process of neurite extension and path finding [7, 8].  

Oligodendrocyte precursor cells (OPCs) are proliferative, migratory precursor cells [9]. 

Later, mature oligodendrocytes play a key role in the production of myelin and in wrapping 

axons. These insulating myelin sheaths, which isolating capacity is achieved by the high 

amount of lipids present in myelin, are crucial for the saltatory conduction along the axons. 

Oligodendrocytes are polarized cells as the plasma membrane of the myelin sheath is 

continuous with the plasma membrane of the cell body but their protein and lipid 

compositions are significantly different. They are able to form multiple processes and 

myelinate multiple axons. 
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Microglia constitutes the resident population of macrophages of the CNS and have an 

important function in immune surveillance and defense. These are the first to respond to 

harmful stimuli, aiming to preserve CNS health. Some authors have also correlated 

microglia with neuronal activity and synaptic plasticity as microglia’s highly motile 

ramifications directly interact with neurons [10]. Microglia’s response to adverse stimuli is 

characterized by profound morphological and secreted molecular profile alterations [11]. 

 

It is widely accepted that cells are influenced by the surrounding environment, which is 

composed of chemical, structural and physical cues. While the CNS is one of the most 

densely cellularized tissues of our body, the extracellular matrix (ECM), which occupies 

20% of the CNS space [12], is an extremely important constituent. As it fills the space 

between cells, it establishes a complex scaffold comprised of secreted proteins and 

sugars, which play an important role in several processes such as cellular communication, 

stabilization of synapses, cell migration, maturation and differentiation, as well as cell 

survival. CNS ECM is rather unique in composition as it contains relatively small amounts 

of fibrous proteins. Its main constitutes include hyluronan and proteoglycans. Additionally, 

the native CNS ECM is extremely dynamic as it is constantly being remodeled by several 

proteases, including matrix metalloproteases (MMPs). In fact, MMPs have a great capacity 

to remodel CNS ECM as many members of this protein family have the ability to cleave 

laminin, chondroitin sulphate proteoglycans (CSPGs) and ECM receptors like integrins 

[13]. ECM components represent key components to which cell receptors are able to bind 

therefore regulating cell phenotype.  It is known that tissue function relies on proper control 

of the biochemical and biophysical cues from the surrounding microenvironment. In fact, 

not only is the rigidity of the tissue determined by ECM’s structure but also by its 

composition and as such, different local concentrations of the different components may 

result in differences in cell signaling and adhesion. Furthermore, ECM architecture 

provides physical cues to cells, either by the form of fiber diameter, crosslinking patterns 

or even through surface irregularities, the so-called surface nanomechanical properties. 

 

In CNS disease scenarios, ECM composition and structure are frequently altered, 

disturbing cell-cell and cell-ECM interactions. It is known that astrocyte and microglia 

activation is an early event that occurs in response to insults to the CNS. It is also 

recognized that ECM molecules can affect for instance the phenotype and magnitude of 

the inflammatory response [14, 15]. Moreover the enzymes and inflammatory molecules 

excreted by immune cells will further alter ECM composition. In pathological conditions 

ECM is mostly recalled for its components which inhibit regeneration - increased levels of 

CSPGs [16], which are known to inhibit axonal regeneration; hyaluronan, known to bind to 
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CSPGs and further inhibit OPC maturation [17, 18]; tenascin, known to alter the adhesion 

properties of  human monocytes, B cells and T cells [19]; myelin associated inhibitors and 

collagen IV, known to inhibit axonal outgrowth [20, 21], among others - but, it also has 

some protective features. Hyaluronan, one of the major components of CNS ECM, has 

anti-inflammatory properties. In fact, the inflammatory response has been the target of 

several studies in individuals with CNS disorders [22, 23]. ECM forms special stable 

structures around some subtype of neurons, called perineuronal net (PN) (Figure 1). In 

neurodegenerative diseases such as Alzheimer and Parkinson disease an inverse 

relationship between the abundance of PNs and the vulnerability of the neurons was 

found, suggesting a contribution of the matrix components of the PNs [24], indicating that 

CNS ECM also provides protective potential under conditions of CNS pathology. In 

multiple sclerosis (MS) lesions ECM also plays a dual role as on one hand the abnormal 

basement membrane, the membrane that lines the parenchymal side of the micro vessels, 

enables immune cell infiltration into the CNS; and on the other hand, collagen expression 

increases and the fibrils aggregate around blood vessels constituting a physical barrier for 

immune infiltration [25]. 

 

Figure 1 – The three major compartments of the extracellular matrix (ECM) in the CNS. ECM components 

arranged into basement membranes that lie outside cerebral vessels, condensed as perineuronal nets around 
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the cell bodies and dendrites of neurons or diffusely distributed as the neural interstitial matrix between cells 

of the CNS parenchyma. The pink glial cells depict astrocytes, oligodendrocytes or microglia. Reprinted by 

permission from Macmillan Publishers Ltd: Nature Reviews, Lau et al, copyright 2013. 

 

So, upon injury, not only cellular content and morphology are affected but also the 

extracellular matrix environment is altered. Consequently, lesions to the CNS, either 

traumatic or as a result of a pathological condition such as tumors, Parkinson disease, 

Alzheimer’s disease or Multiple Sclerosis (MS), result in several tissue architectural 

abnormalities and, as a consequence, culminate in functional deficits.  

 

Ramon e Cajal have stated many decades ago that the CNS regenerative capacity is 

limited [26], today this statement is still true. This lack of regenerative capacity is mainly 

attributed to the inhibitory environment created at the lesion site as described above. 

Besides all the ECM alterations that occur there are also several cellular related events 

that contribute towards this inhibitory environment. Astrocytes react by initially building 

dense filamentous processes around the lesion, stromal cells migrate to the lesion core 

and produce several connective tissue elements, while OPCs proliferate within the lesion 

as an attempt to replace the dead oligodendrocytes.  

Even though the glial scar may provide several beneficial functions such as the restoration 

of the BBB, prevention of a devastating inflammatory response and limit the action of 

cellular degeneration, it also contributes to the establishment of a physical and chemical 

barrier to axonal regeneration. Nevertheless, it is important to stress that although most 

CNS pathologies are known to result in a glial scar which have many common features, 

glial scars are not all exactly alike, probably due to the different lesion triggers (Figure 2). 

For instance, depending on the degree of deregulation of the BBB permeability the amount 

of infiltrated inflammatory cells, namely macrophages, may vary considerably (Figure 2). 
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Figure 2 – The magnitude and rate of tissue pathology influences the nature of neuroimmune interactions. 

This figure illustrates differences in size and composition of lesions that form in response to trauma or 

neurodegenerative disease. In response to blunt CNS trauma or ischemia/reperfusion injury, in which there is 

extensive hemorrhage and leukocyte recruitment, a wound-healing response is elicited culminating in vascular 

repair, angiogenesis, gliosis and scarring. In contrast, slow and protracted neurodegeneration, in which 

vascular compromise is minimal, elicits glial activation and cytokine synthesis but not classical inflammation 

or wound healing. Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews, Popovich et al 

[27], copyright 2008. 
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Several strategies aiming to increase the regenerative capacity of the CNS have already 

been proposed. Many authors have explored cell transplantation in order to improve 

neuroprotection and recovery. Transplanted cells include Schwan cells [28-32], bone 

marrow stromal cells [33], neural stem cells [34, 35], olfactory ensheathing cells [36, 37], 

activated macrophages [38, 39], mesenchymal stem cells derived from adipocyte tissues 

[40, 41], and more recently, induced pluripotent stem cells [42, 43]. Despite the obtained 

benefits, cells implanted as suspensions usually show poor cell survival, and when 

applicable limited differentiation along neuronal lineage, as a result of the inhibitory milieu 

of the injured tissue. 

Given the extensive inflammation that occurs in most CNS lesions, administration of anti-

inflammatory drugs has also been extensively studied [44-46]. Inhibition of macrophage 

migration has also been tested in order to reduce the inhibitory environment of the CNS 

[47]. In fact, oral administration of a DNA vaccine encoding full-length human myelin basic 

protein (MBP) was able to reduce inflammatory lesions in the brain of MS patients in a 

phase I/II clinical trial [48]. 

As stated above, many ECM components are known to somehow inhibit regeneration. As 

such, another classical target has been myelin. The presence of myelin debris at injury 

site has long been considered as one of the main contributors for the failure of regeneration 

in the CNS. Aiming to overcome the inhibitory environment of the glial scar many authors 

have studied the possibility of blocking myelin inhibition using antibodies [49-51]. 

Moreover, given the correlation of CSPGs with inhibition of axonal outgrowth and OPC 

maturation [52, 53], the use of chondroitinase ABC (chABC) in order to digest CSPGs 

produced in excess as a consequence of the injury, attempts to recover the initial ECM 

environment both chemically and mechanically have been explored. It has been 

established that treatment with chABC reduces inhibitory effects of CSPGs both in vitro 

[54] and in vivo [55, 56]. These results emphasize the importance of ECM structure and 

mechanical properties. 

Moreover, exploration of signaling pathways involved in disease and health of the CNS 

has also lead to the establishment of promising therapeutic targets such as the Rho/ROCK 

signaling pathway [57-61], bone morphogenetic protein signaling [62], MAPK signaling 

[63], among others. 

  

Given the complexity of a CNS lesion it is difficult to select one single strategy to approach 

this problem. It appears that the best way to reach effective neuroregeneration may rely in 

a multicomponent combinatorial approach. In fact, tissue engineering and regenerative 

medicine have a multidisciplinary approach to clinical problems by combining the 

principles of engineering, clinical medicine, biology and materials science, which may be 
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an important tool for CNS regeneration. A combination of strategies involving biomaterials, 

cells and/or bioactive molecules have been pursued over the past several years. 

Biomaterials can serve as delivery vehicles for several therapeutic molecules, such as 

proteins, drugs or growth factors and as cell delivery vehicles providing cellular support, 

which ensures their retention and may improve their survival. Delivery of bioactive 

molecules may target several components of the CNS regeneration problem. Depending 

on the delivered molecules it may promote neuroprotection and plasticity [64], modulate 

the inflammatory response [65, 66] or even stimulate endogenous stem cells to proliferate 

and differentiate [67-69]. Given the multifactorial nature of most CNS pathologies single 

drug development may be extremely hard to accomplish. Nevertheless it is important to 

stress the advantages of biomaterials as delivery systems as these can provide localized 

and sustained delivery while protecting the biomolecules from in vivo degradation. 

Additionally, considering the existent information regarding ECM’s important role in CNS 

function it appears that a combination strategy that considers chemical, cellular and 

physical stimuli is an interesting approach to regenerate the CNS. Altering ECM’s 

composition and on the regenerative milieu with the use of implanted scaffolds, can 

influence cellular signaling and consequently cellular response, as these stimuli can be 

seen as instructive cues towards mechanisms of CNS repair. Nevertheless, more 

knowledge on CNS mechanisms of repair and regeneration is still needed to accomplish 

these objectives. Our understanding of such matters could be enhanced with the use of 

3D culture systems that enable the control of its mechanical, chemical and biological 

environment. The use of biomaterials for this purpose is also extremely appealing as these 

can serve as powerful artificial microenvironments enabling the detailed study of CNS 

cellular mechanisms. 
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Motivation  
 

The work developed, which is presented in this thesis, aimed at exploring the impact of 

mechanotransduction in the CNS, particularly in pathological conditions, envisaging its 

modulation towards the design of novel regenerative therapies.  

 

Specific objectives were: 

 

- The development of a tunable alginate-based 3D in vitro platform to mimic CNS 

astrogliosis, as a tool to study cellular behavior and response to biochemical and 

physical properties.  

 

- Assess the impact of substrate nanomechanical properties on cortical neuron’s 

axonal outgrowth and their potential towards the achievement of overcoming 

myelin inhibition. 

 

- Explore the substrate’s influence on OPC differentiation ability. Dissection of the 

astrocyte - OPCs cross-talk, particularly the effect of astrocyte reactivity on OPC 

differentiation.  

 

- Investigate common signaling mechanisms, which can be interesting future targets 

for the design of novel therapeutic strategies. 
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Thesis Outline 
 

This thesis has been organized into six chapters and one appendix. 

 

Chapter II provides the reader with a literature review, which specifically covers the role 

and influence of mechanical properties in the CNS. It discusses the work of several 

research groups in studying CNS mechanical properties in pathologic conditions. The 

possibility of modulating cellular behavior, and possible disease outcome, by tuning 

mechanical properties is also addressed in this chapter.   

 

The subsequent chapters describe the developed experimental work: 

 

Chapter III explores the use of 3D hydrogels as a bioengineered platform to mimic 

astrogliosis, serving as a powerful tool to study cellular behavior and response to 

biochemical and physical properties. Primary rat astrocytes were cultured within 3D 

alginate discs. Cellular activation was modulated by changing the hydrogel’s mechanical 

properties, achieved by varying the alginate content, and by culturing these cells in the 

presence of meningeal fibroblasts conditioned medium (CM). Reactive astrocytes were 

found to inhibit axonal outgrowth and to produce higher levels of ECM components, such 

as CSPG and collagen. Furthermore, the Rho/ROCK signaling pathway was explored as 

a possible regulator of astrocyte activation. 

 

Chapter IV describes the influence of substrate nanomechanical properties on cortical 

neurons’ morphology and axonal outgrowth. With this work it was possible to establish 

what appears to be an optimum value of stiffness and hardness for cortical neuron’s axonal 

elongation. This was found to be valid even when neurons were cultured under inhibitory 

conditions. These results have shown that a biomaterial can per se modulate cellular 

behavior and activate the GSK3β signaling pathway which was further found to impact the 

interaction of collapsin response mediator protein 4 (CRMP4) and RhoA through CRMP4 

de-phosphorylation. 

 

Chapter V dissects the cross-talk between activated astrocytes and OPCs, particularly the 

effect of astrocyte reactivity on OPC differentiation ability. For this, we have established 

an in vitro rapid myelinating system with electrospun polymeric fibers as artificial axons. 

The Rho/ROCK pathway was once more explored and RhoA was seen as a therapeutic 

target to promote OPC differentiation. Using this culture system we have further uncoupled 
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axonal signalling and OPC differentiation and myelination events, showing the important 

role of mechanotransduction in these complex cellular processes. 

 

To finish, Chapter VI provides the concluding remarks, with an overall analysis of the 

preceding chapters, as well as future perspectives. 

 

Appendix I constitutes the filed patent WO2014116132 A1, which resulted from the work 

presented in chapter IV. 
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ABSTRACT 

 

Cells within tissues are continuously exposed to physical forces and the central nervous 

system (CNS) is no exception. Cells dynamically adapt their behavior and remodel the 

surrounding environment in response to force. The importance of mechanotrasduction in 

the CNS is illustrated by exploring its role in CNS pathology development and progression. 

The cross-talk between the biochemical and biophysical components of the extracellular 

matrix are here explored, considering the recent explosion of literature demonstrating the 

powerful influence of biophysical stimuli like density, rigidity and geometry of the ECM on 

cell behavior. This review aims at integrating mechanical properties into our understanding 

of the molecular basis of CNS disease. Signaling pathways that mediate 

mechanotransduction events, like integrin and Rho/ROCK signaling pathways are 

reviewed. Analysis of CNS pathologies in this context has revealed that a wide range of 

neurological diseases share as hallmark alterations of the tissue mechanical properties. 

Therefore, it is our belief that the understanding of CNS mechanotransduction pathways 

may lead to development of improved medical devices and diagnostic methods as well as 

new therapeutic targets and strategies for CNS repair. 
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1. Introduction 
 

Mechanotransduction is the process by which a cell translates mechanical stimulus into 

biochemical signals. The transduced signals can vary in properties. Being electrical, as 

the ones involved in the depolarization of cellular membranes, chemical, as in producing 

a second messenger, or transcriptional, as in the activation of gene expression, among 

others. Mechanotransduction is ubiquitously present in several taxonomic domains such 

as Eubacteria, Archaea and Eukarya [1], suggesting an early evolutionary occurrence of 

mechanotransducers, which advocates the important role of mechanotransduction in living 

organisms.  

The concept and the importance of mechanotransduction have been initially identified on 

cells that typically experience mechanical stimuli in vivo, like mesenchymal and epithelial 

cells, as well as on sensory cells, like the inner ear hair cells [2, 3]. Today it is known that 

mechanical forces influence the growth, shape and behavior of nearly every cell, tissue 

and organ of the human body. Cells can sense and respond to a wide range of external 

chemical and physical signals and, consequently, change its morphology, dynamics and 
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behavior. As such, mechanotransduction has become a topic of increasing awareness and 

consequently scientific interest in many fields of research. A vast body of research was 

mounted up to illustrate that forces are ubiquitous in vivo and that these can directly impact 

cell function.  

Initial studies of mechanotransduction in the nervous system were performed with sensory 

cells – the somatosensory neurons. In mammals, detection of mechanical forces by the 

somatosensory system is performed by primary afferent neurons, which can detect a wide 

range of mechanical stimuli [1]. Psycho-physical techniques have established in 1882 that 

sensory spots, defined as regions of low threshold to a given kind of stimulus, existed in 

the human skin. Cutaneous somatosensory receptors detect a wide range of mechanical 

stimuli, including light brush of the skin, texture, vibration, touch and noxious pressure [4]. 

One of the main challenges in the study of sensory systems is to discover the basis of the 

transduction process. Rhodopsin, the light-transducing molecule, has been known for 130 

years [5], olfactory receptors were discovered 20 years ago [6], but molecules that 

transduce physical forces as osmotic force, touch, vibration and texture, have been more 

difficult to identify. Corey and Hudspeth [7] have shown that neurosensory transduction is 

extremely rapid. Using hair cells they observed that the movement of a hair bundle 

produced an electrical response within 40 μs. Neurosensory mechanotransduction has 

been recently revised (see reference [4] for additional information) and will not be further 

explored.  

This review will focus on the role of mechanical sensing in the central nervous system 

(CNS) in the context of disease, particularly highlighting the contribution of the mechanical 

properties of the extracellular matrix (ECM) to this process. Although there are some hints 

on how forces impact these regulatory functions, clarifying these mechanisms remains 

crucial for a better understanding of neuromechanics. This could thus lead to alternative 

prognostic and therapeutic options that can in the future improve tissue repair and 

regeneration. 

2. Mechanotransduction in CNS pathology 
 

Tissue architecture reflects a balance in which cells adapt their cytoskeletal tension to 

match the forces generated by neighboring cells and the surrounding ECM, and the 

disruption of this equilibrium can contribute to a variety of diseases [8].  Many times it is 

unclear whether mechanical changes at the tissue level are an early cause of the disease, 
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a mechanism of progression or a late symptom. One of the first diseases to be associated 

with biomechanics and mechanotransduction was atherosclerosis, for which it has been 

shown that low-oscillatory shear stress correlates with sites of atherosclerotic plaques [9, 

10]. Since then many other diseases have been correlated with mechanotransduction 

alterations (Table 1). 

CNS tissues are among the softest tissues in the body and due to their mechanical fragility, 

these are particularly susceptible to mechanical damage caused by trauma. As such, brain 

and spinal cord are protected by stronger structures such as the pia mater, the dura mater, 

the skull and vertebras. In some neurodegenerative diseases a change in stiffness of the 

affected tissues is partly accountable for the cell’s physiological functions loss [11]. Recent 

studies on the mechanical properties of the glia have consistently demonstrated a 

decreased CNS stiffness tissue either as a result of CNS disorders [12-15] or of traumatic 

injuries [16]. Distinct CNS disorders described to be intimately related to alteration of 

mechanotransduction properties will be addressed in the following sections. 

 

2.1.  Headache 
 

Pain can be evoked by mechanical stimuli and inflammatory conditions [17]. As such, 

increased mechanosensitivity has been considered to play a role in the pathophysiology 

of headache and of neuropathic pain [17, 18]. Migraine headaches, which are the most 

common type of primary headaches, are described as neurovascular disorders affecting 

up to 15-20% of the world population [19]. Migraine is characterized by attacks of moderate 

to severe headache that last from 4 to 72 hours, often unilateral, pulsating and associated 

with photophobia/phonophobia and/or nausea/vomiting [19], and one-third of the patients 

have associated symptoms of neurological aura [20]. 

Several studies have found elevated hypertension and dyslipidemia in migraineurs. [21-

23]. Moreover, patients with sexual headache were found to show an abnormal increase 

of systemic blood pressure during exercise [24]. These studies suggest a role of 

vasodilation of cerebral and/or meningeal blood vessels on migraine, which is consistent 

with the role of mechanosensitivity. Calcitonin-related proteins, known to be coupled to 

protein kinase C (PKC) pathway, have been shown to play a role in this mechanical 

hypersensitivity in migraine [17, 18]. 

There has been an extensive debate on whether headaches have a vascular or 

neurogenic origin [25]. Nonetheless, headache is also a common symptom after lumbar 
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puncture, which has been associated with the intracranial hypotension due to 

cerebrospinal fluid (CSF) leakage [26]. Therefore, the genesis of this disorder is believed 

to be in the CNS and not a vascular cause, as vascular changes appear to be a 

consequence of the neural mechanisms at work, and not the initiator [27, 28]. In fact, a 

population of neurons suspected of transducing neuronal signals into vasomotor 

responses has been identified in the cerebral cortex [19]. These findings suggest that 

neurons send projections towards blood vessels in specific brain regions and that blood 

vessels have the ability to respond to changes in the level of neurotransmitters by 

modifying their diameters and consequently local blood flow. 

These results hint a central role of the interaction between the CNS and the surrounding 

blood vessels, with mechanotransduction being a mechanism of disorder progression and, 

as such, a potential therapeutic target. The signaling pathways involved in this process 

are further explored in section 4 of this review. 

 

2.2. Eye disorders 
 

Changes in topography and/or stiffness of eye structures have also been correlated with 

pathologic conditions [29]. The optic nerve head constitutes an interesting biomechanical 

structure with a complex load-bearing tissue architecture, the lamina cribrosa, which is 

subjected to intraocular pressure stress [29, 30] (Figure 1). The biomechanical properties 

of the sclera are also extremely important as the sclera plays a pivotal role in controlling 

eye shape during events that promote eye deformation such as movement, 

accommodation and remodeling. In fact, the ECM and cellular constituents of the sclera 

contribute to the biomechanical environment that enables the sclera to accomplish these 

requirements. 
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Figure 1 – Scheme of an eye A. Major anatomical structure and organization. B. Enlarged section of the 

lamina cribrosa and optic nerve representation of tissue deformation in response to increased intraocular 

pressure (IOP) representative of glaucomatous optic neuropathy. 

 

Strouthidis et al [30] suggested that optic nerve biomechanics is the “link” by which 

intraocular pressure (IOP) can affect other factors such as ischemia, inflammation, 

autoimmunity and glial cell biology. This biomechanical theory may help to explain why 

some people are predisposed to develop glaucomatous optic neuropathy, independently 

of their IOP levels, while others are not. Moreover, the increasing predisposition related to 

ageing may also be explained by changes in biomechanical behavior through alterations 

of the connective tissue [30]. In glaucomatous optic neuropathy, one of the leading causes 

of blindness worldwide [31], IOP causes eye tissue stress, deformations and strain, 

leading eventually to damage and loss of retinal ganglion cell axons [32] (Figure 1). IOP 

reduction remains the only therapy used to preserve vision and retard glaucomatous 

progression [33, 34]. This suggests that the biomechanical effects of IOP to the tissues 

surrounding the optic nerve head are central to disease [35]. Therefore, the correct tuning 

of optic nerve head mechanics may constitute a potential therapeutic target in 

glaucomatous optic neuropathy. 

Biomechanical properties may also affect ocular growth. Changes in sclera mechanical 

properties have been documented during development and pathological conditions as the 

cause of abnormal ocular growth such as myopia, where sclera becomes thinner, weaker 

and more extensible [36, 37]. Mechanical properties of eye structures have also been 

shown to play an important role on retinal detachment. Chou et al. [38] have developed a 

mathematical model to investigate the relationship between flows and pressures and 
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retinal detachment. This study has shown that the destabilization of retinal pigment 

epithelium (RPE) per se is not enough to induce large-scale delamination. Instead, 

spontaneous uniform tissue separation occurs when RPE pumps fail and the adhesion 

energy retina-RPE is globally reduced. Furthermore, it has also been suggested that retina 

elastic modulus is decreased in conditions such as retinal detachment [39]. Observation 

corroborated by thermodynamic calculations that have shown that supported membranes, 

like the normal retina, have greater stiffness values than unsupported membranes [40]. 

Another study from Davis and co-workers [39] has found a significant influence in gene 

regulation of Muller cells as a function of the stiffness of the substrate. This study 

emphasizes the role of YAP (Yes-associated protein) and TAZ (transcriptional coactivator 

with PDZ-binding motif) as important therapeutic targets for retina and optic nerve 

pathologies. These had previously been identified as nuclear relays of mechanical signals 

exerted by ECM rigidity and cell shape [41]. Overall, these studies suggest that eye 

mechanical properties, its mechanotransducers and mechanosensors, are key therapeutic 

targets in distinct eye pathologies. Nevertheless, although some clinical procedures 

already exploit mechanical forces like vitrectomies, laser photocoagulation or pneumatic 

retinopexy, deeper knowledge on the insights of mechanotransduction pathways is 

needed for further therapeutic developments. 

 

2.3.  Neurodegenerative disorders 
 

The incidence of neurodegenerative disorders is increasing in the modern world, 

particularly within the aged population. So far, our understanding of the nature and origins 

of these disorders is still limited, as there exist a vast number of neurodegenerative 

disorders and they are, in general, heterogeneous in nature. Nevertheless, intense efforts 

are being performed to achieve a better understanding of these conditions.  

The Alzheimer’s disease is a chronic disorder characterized by cerebrovascular 

inflammation, accumulation of senile amyloid plaques in the brain and, ultimately, neuronal 

loss. Concerning mechanotransduction issues Alzheimer’s is possibly the most studied 

neurodegenerative disease, due to its dependency on amyloid fibrils mechanical 

properties. In fact, the deposition of amyloid fibrils is associated with several other 

neurodegenerative diseases, as Parkinson disease and in neurodegenerative processes 

accompanying type-2 diabetes. Amyloid fibrils are highly ordered nanoscale assemblies 

of protein protofibrils composed predominantly of β-sheet structure. These have been 

found to alter cell membrane properties, such as fluidity, and molecular architecture, 
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leading to neurovascular dysfunction and chronic degeneration [42]. Interestingly, amyloid 

fibrils (Aβ fibers) deposits are correlated with the activation of phospholipase A2 (PLA2) 

[43], which is known as a crucial modulator of membrane properties both in health and 

disease. In Alzheimer’s diseased brains membrane reduced fluidity has been directly 

associated with decreased PLA2 activity [44, 45]. Amyloid fibrils were shown to be stiffer 

than cytoskeleton components such as actin filaments, microtubules or intermediate 

filaments [46]. Recently several authors have been exploring amyloid fibrils mechanical 

properties, behavior and stability, as the understanding of these features may shed light 

on the fundamental mechanisms of formation and structure dynamics of these 

nanostructures. Depending on the peptide length of its monomers, Aβ fibers will present 

different rupture forces. In fact, Xu et al [47] have stated that longer amyloid fibrils are 

more stable, which is associated with their mechanical properties, mainly due to their close 

contact and denser structure, suggesting that size may imply pathological consequences 

the impact of the pathology can be correlated with the size of the fibrils. Additionally, 

Paparcone et al. [48] have shown that salt bridges contribute to stability, geometry and 

mechanical behavior of amyloid fibrils. Side chain interactions are described to influence 

the aggregation rate, as well as the chemistry and the mechanics of these fibrils. 

Hattori and coworkers [49] have studied the diffusional properties of the corticospinal tract 

in patients with Alzheimer’s disease, Parkinson disease and idiopathic normal pressure 

hydrocephalus (iNPH) by diffusion tensor imaging (DTI). DTI early became a popular 

Magnetic Resonance Imaging (MRI) technique to characterize microstructural changes in 

neuropathologies, as it enables the characterization of white matter fasciculi in three 

dimensions (3D). Many CNS pathologies influence tissue composition and architecture 

and the diffusion of water within these tissues is also altered [50]. iNPH is a rare case of a 

neurological disorder whose symptoms may be relieved by surgical intervention, which 

mainly consists on the implantation of a ventriculoperitoneal shunt in order to drain excess 

cerebrospinal fluid.  The success of this interventions was related with mechanical re-

ordering of the brain tissue [12] (Figure 2B and C). Patients with iNPH presented higher 

white matter damage such as myelin loss and ischemia [49]. Additionally, fractional 

anisotropy values and axial eigenvalues were significantly increased in these patients, 

suggesting alteration in the microstructure of the corticospinal tract, presumably 

consequence of the mechanical pressure resulting from ventricular enlargement [49]. This 

microstructural alterations have been further correlated with tissue’s mechanical 

properties, using magnetic resonance elastography (MRE) [12]. MRE is a non-invasive 

[13] and reproducible [14] method that allows the evaluation of the mechanical properties 

of tissues and has recently been applied to assess biomechanical alterations of the living 
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Figure 2 – Mechanical properties in neurodegeneration. A. Scheme of cereberal multifrequency MRE. The 

MRI scanner is combined with a device for acoustical head stimulations comprising a signal generator that 

produces a multifrequency signal composed from four harmonic frequencies of 25, 37.5, 50 and 62.5 Hz; a 

loudspeaker to generate acoustic vibrations; an extended piston that transfer the vibrations into the scanner 

and a head cradle to stimulate head vibrations mainly along the head-feet direction. Reprinted with kind 

permission from Springer Science and Business Media from Streitberger et al 2012 B. Brain viscoelastic 

properties in healthy volunteers and in NPH before and after surgical intervention. Reprinted with kind 

permission from Springer Science and Business Media from Freimann et al 2012 C. Cereberal MRE of NPH 

brains reveals a disease related decreased stiffness (µ), which is not recovered after surgical treatment. In 

contrast α increases after 3 months, to almost symptomatic values suggesting that the topology of the tissue’s 

matrix is reorganized although its strength remains diminished. Reprinted with kind permission from Springer 

Science and Business Media from Freimann et al 2012 D. Reduction of brains elastic properties in healthy 

volunteers and MS patients. sp- secondary progressive, pp – primary progressive, rr – relapsing remitting. 

Reprinted with kind permission from Springer Science and Business Media from Streitberger et al 2012 E. 

Viscoleastic constants for prediction of brain pathology. Individual data of shear elasticity and power law 

exponent of brain of healthy volunteers and MS patients are represented. Reprinted with kind permission from 

Springer Science and Business Media from Streitberger et al 2012  
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brain (Fig. 2A). In general, patients with iNPH present lower tissue stiffness values when 

compared to healthy controls (Figure 2B). Patients with Alzheimer’s disease also show 

significantly softer brain parenchyma than matched controls [14]. Several processes may 

impact tissue’s mechanical properties in Alzheimer’s disease but, the knowledge on 

amyloid fibrils being several orders of magnitude stiffer than neurons and glia [46-48] 

would, at a first glance, suggest increased stiffness of the patient’s brain tissue. Indeed, 

the decreased tissue stiffness may be a consequence of microstructural events that have 

destroyed cytoarchitectural integrity such as degradation/alteration of the ECM. Moreover 

this loss of microstructural integrity, is in agreement with the findings, of diffusion 

anisotropy studies, of increased brain anisotropy in Alzheimer’s patients [49]. Magnetic 

Ressonance Elastography (MRE) has also been used by several authors to study the 

biomechanical properties of multiple sclerosis patients’ brains [15, 51]. The viscoelasticity 

and brain parenchymal volume of MS brains were shown to be reduced, both in human 

subjects and in animal models of MS [15, 51] in comparison with healthy controls (Fig. 

2D). Once again, these differences are most certainly due to the loss of the brain’s 

mechanical network geometry as a result of the characteristic MS associated 

neuroinflammation. Altogether, these data evidence that the above-mentioned pathologic 

conditions lead to significant changes of tissues’ viscoelastic properties. Taking this in 

consideration, MRE presents great potential as an additional tool to improve diagnostic 

sensitivity as it provides a noninvasive, quantifiable “palpation” method of the brain (Figure 

2E). Biomechanical properties of the brain parenchyma alone may not be enough but if 

correlated with other disease biomarkers and the clinical expression of the disease, can 

lead to a better diagnostic method. Nevertheless, the question remains on whether 

mechanical changes are an early cause of the disease, a mechanism of progression or a 

late symptom. 

 

2.4. Traumatic CNS injury 
 

Traumatic CNS injury results in disruption of the neural structures, local blood-brain barrier 

(BBB) disassemble and massive infiltration of immune cells. After the initial mechanical 

trauma (primary damage), cell damage is triggered and, within hours, the injury site and 

the surrounding hemorrhagic areas begin to undergo necrosis (secondary damage), 

recruiting more inflammatory cells and fibroblasts, which actively participate in ECM 

remodeling. In time a glial scar is formed, enriched in astrocytes, microglia and fibroblasts, 

as well as cell debris and de novo produced ECM deposits. Even though this glial scar 
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may provide several beneficial functions such as the restoration of the BBB, prevention of 

a devastating inflammatory response and delimiting cellular degeneration and death, it 

contributes to the establishment of a physical and chemical barrier to axonal regeneration 

[52]. 

Astrocytes, the most abundant cell type in the CNS [53], are the largest fraction of cells 

recruited to glial scars [11] and reactive astrogliosis one of its major hallmarks. Astrogliosis 

is commonly characterized by increased expression of glial fibrillary acidic protein (GFAP), 

hypertrophy, hyperplasia, and increased ECM component production/secretion by 

astrocytes (particularly chondroitin sulfate proteoglycans (CSPGs) and laminin) [54, 55]. 

The astrocyte response to CNS injury and disease has been the subject of several studies 

[54, 55]. Astrocytes naturally form a 3D meshwork/structure that extends throughout the 

brain which, as suggested by Masthewson and Berry in the 1980s [56], is the ideal 

morphology for sensing mechanical disturbances in the parenchyma. It is possible that the 

observed astrocytic accumulation in the scar is, at least in part, the result of their 

mechanosensitive response. Together with matrix degradation/remodelling and axonal 

disruption occurring after trauma, it is not surprising that tissue stiffness is altered, since 

nearly all brain pathologies result in some degree of deformation of the surrounding 

parenchyma. The ability of astrocytes to respond to mechanical stress could provide a 

general mechanism by which a variety of insults can be felt and managed in the CNS [57]. 

Understanding this structure and its mechanism of action could prove to be extremely 

important for future therapeutic strategies.  

As previously mentioned, mechanotransduction events within the CNS have only been the 

subject of study more recently than in other tissues, probably because CNS tissues are 

not naturally subjected to intense mechanical stress as other structures in our body. 

Nevertheless, the spinal cord, like some cranial nerves, consistently experiences some 

physical stress during routine movements [58]. Schreiber et al have studied the role of glia 

in CNS tissue and concluded that despite of its individual stiffness, which is lower than 

neurons, glia significantly contributes to the tissue overall stiffness and strength, potentially 

by allowing many cells to act together and share the load [58], working somehow as a 

cellular cross-linkers. So the loss of this glial architecture/geometry may be one of the 

reasons why CNS stiffness is reduced in CNS injury scenarios. Other authors [53, 59, 60] 

have also attributed an important mechanical role to glia architecture suggesting that it 

plays a protective role against excessive tensile stress and strains, in order to limit injury. 

Intriguingly, in vitro data suggests an important role of substrate stiffness on astrocytic 

development and possibly on reactivity, with astrocytes becoming reactive in stiffer 

substrates [11, 60, 61]. This does not correlate with the in vivo data, where injured CNS 
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tissue shows decreased stiffness. Nevertheless, these studies were performed in flat 

substrates and, therefore, the important features of a 3D architecture are not represented. 

Moreover, after the correlation of CSPGs with inhibition of axonal outgrowth and 

oligodendrocyte precursor cell (OPC) maturation [62, 63], it has been already established 

that treatment with chondroitinase ABC (chABC) can tame/revert the inhibitory effects of 

CSPGs towards neural cells both in vitro [61, 64] and in vivo [65, 66]. This treatment, 

performed to digest CSPGs produced in response to injury, attempts to recover the initial 

ECM environment both chemically and mechanically. These results emphasize the 

importance of ECM structure and mechanical properties. Overall research has shown that 

glial cells play a pivotal role both in health and in disease, although initially these were only 

correlated with pathological states. Nevertheless, even in pathological scenarios these 

cells play a dual role, as the glial scar represents a physical barrier to regeneration but at 

the same time is crucial to protect the CNS from further damage when everything else 

fails. As such, it is important to further focus on glial cell health, as well as its response 

and behavior in CNS based investigations.  

 

2.5. Cancer 
 

Cancer is a disease characterized by the dysregulation of the cell cycle, particularly of the 

cell signaling pathways that control cell proliferation and apoptosis. CNS tumors are 

generally divided into several categories: astrocytomas, gliosarcomas and meningiomas. 

Gliosarcoma is a rare glioblastoma variant and there is still very little information on the 

disease. Consequently, it will not be focused here. 

Meningiomas are the most common CNS tumors, constituting 25% of all primary 

intracranial cancers and being more frequent in middle-aged and elderly patients [67]. 

Most of the meningiomas are slow-growing tumors, which are well-encapsulated and tend 

to push the adjacent brain parenchyma, rather than infiltrate. During this process, tumor 

cells alter the surrounding ECM components, therefore, affecting tissue biomechanical 

properties [68]. 

Glioblastoma multiforme (GBM), a subtype of astrocytoma, is the most common and most 

aggressive brain tumor type. These tumors are extremely invasive due to their ability to 

remodel the surrounding ECM, through mechanisms that seem to involve integrin 

upregulation [69], MMP mediated proteolysis [70] and de novo secretion of ECM proteins 

by malignant cells [71]. Moreover, cultured GBM cellular activities, such as proliferation, 
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motility and mechanics were shown to be highly sensitive to changes in ECM stiffness [72, 

73]. This knowledge indicates that alterations in tensional homeostasis may play a role in 

cancer progression. Indeed, mechanical properties of the cellular microenvironment of the 

brain were shown to fundamentally alter the migration of glioblastoma cells in vitro and in 

vivo [74, 75], and the expression of contractility-mediating signaling molecules, including 

RhoA and RhoB, are thought to correlate with tumor malignancy [76, 77]. Further 

discussion on the signaling pathways involved in this pathology will be addressed in 

section 4 of this review.  

In all these CNS malignancies individual cells remodel and diffusely invade the 

surrounding ECM [69, 70], decreasing tissue stiffness [78]. In fact, tissue stiffness has 

been already exploited to detect cancer, using MRE and sono-elastography [79, 80]. In 

tumor tissues other than in the CNS, this decrease in stiffness has even been related with 

cellular malignancy and metastatic potential [81]. Qazi et al [82] have further suggested 

that the differential invasive potentials of tumors may be explained by 

mechanotransduction of flow forces, and that fluid shear stress may lower glioma cells 

motility through modulation of the activation of matrix metalloproteinases (MMPs). 

Nevertheless, MMP inhibitors have failed clinically in patients with several types of cancer, 

including glioblastoma [83, 84]. Moreover, there are some preclinical data suggesting that, 

in some instances, MMP inhibition stimulates disease progression [85]. Since focal 

adhesions are thought to play a central role in transducing mechanical signals between 

the cytoskeleton and the external ECM components, focal adhesion proteins have begun 

to emerge as targets of interest in GBM [8]. Taking this in consideration, Sen and 

coworkers showed that alpha-actinin isoforms participate in mechanomechanical 

feedback between glioma cells and the ECM [72]; later, talin-1 was identified as a focal 

adhesion protein crucial for regulation of glioma cell spreading, motility and adaptation to 

ECM stiffness [8]. These hypotheses need to be further validated in a 3D environment that 

presents a more complex combination of mechanical and topological cues. 

As in other conditions it is still unknown if the alteration of ECM mechanical properties 

plays a key role in the establishment of brain tumors or if these can be correlated with 

tumor aggressiveness, but it is clear that it plays a vital role in tumor progression. 
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Table 1 – Analysis of several CNS pathologies and their impact in tissue structure. 

 

Disorder 
Tissue 

Stiffness 
ECM 

remodelling 

Signalling 
Pathway 
Involved 

Possible 
Therapeutic 

Target 
Ref. 

Retinal 
Detachment 

↓ Yes 
Hippo pathway 
EGFR pathway 
Notch Pathway 

RPE pumps 

Morante et al 
Chou t al 

Dupont et al 
Sivak et al 

Glaucoma  Yes Hippo pathway 
Optic nerve head 

mechanics 

Dupont et al 
Heijl et al 
Kass et al 
Rosario 

Hernandez et al 

Migraine = 
Yes 

(mild) 
PKC pathway 
MMP activity 

CNS-blood vessels 
crostalk 

Goadsby et al 
Di Castro et al 
Nassini et al 
Lakhan et al 

Martins-Oliveira 
et al 

CNS injury 

↓ Yes 

PKC pathway 
Rho/ROCK pathway 

MAP kinase 
pathway 

BBB permeability Krizbai et al 

  
EGFR pathway 

Rho/ROCK pathway 
Glia architecture Morante etal 

  
ERK pathway 
PKC pathway 

MMP activity Hsieh et al 

   
Rho/ROCK pathway 

PKC pathway 
CSPGs Bush et al 

Alzheimer’s 

 Yes 
Rho/ROCK pathway 

PLA2 pathway 
Aβ fibrils Moses et al 

↓  
Rho-ROCK 

pathway 
ROCK 

Read et al 
Jagielska et al 

  
ERK pathway 
PKC pathway 

MMP activity Hsieh et al 

Parkinson 

↓ Yes Rho/ROCK pathway ROCK 
Read et al 

Jagielska et al 

  
ERK pathway 
PKC pathway 

MMP activity Hsieh et al 

Multiple 
Sclerosis 

↓ Yes 
Rho-ROCK 

pathway 
ROCK 

Read et al 
Jagielska et al 

  
ERK pathway 
PKC pathway 

MMP activity Hsieh et al 

Cancer ↑ Yes 
FAK signalling 

Rho/ROCK 
signaling 

Talin-1 
MMP activity 

Sen et al 
Ulrich et al 2009 

 

 



Chapter II 

39 
 

3. Mechanotransduction and CNS regeneration 
 

Ramon e Cajal have stated that the CNS regenerative capacity is limited [86] and today, 

many decades later, this statement continues to be true. As previously discussed, 

alterations in the mechanical stimuli that the CNS cells are subjected to may be the trigger 

to pathological states or part of the response to an insult. But mechanotransduction can 

have a dual role in the process of CNS regeneration. If on the one hand CNS regeneration 

can be frustrated due to glial scar, to be successful it is believed that it will be dependent 

on physical cues. 

Paul Weiss and co-workers [87] acquired early evidence that topographical features of the 

substrate might guide axons. More specifically, they noticed that the trajectory of axons 

aligned parallel to grooves generated by brushed clotting blood onto a glass coverslip. 

Recent studies have clarified the role of several physical parameters involved in the 

regenerative processes of CNS cells by carefully engineering substrates in which one is 

bale to vary rigidity and topography, while maintaining a constant chemical composition. 

Several authors have addressed the influence of mechanical properties on neural stem 

cell (NSC) differentiation, with potential impact both at the level of processes that can 

happen in the NSC niche or in the context of regenerative cell based therapies. These 

studies suggest a direct role of stiffness on the regulation of NSC lineage commitment [88, 

89] as NSC can generate the three main cell types of the CNS (neurons, oligodendrocytes 

and astrocytes), or a role on differently favoring cell survival [89]. Regarding neuronal 

differentiation the majority of the studies had their focus on finding optimal neuronal 

differentiation stiffness conditions. The determined values were found to be within the 

elastic modulus of native brain tissue (E = 100 – 1000 Pa) [90], one of softest tissues in 

the body. A study with CNS cell lines using photocrosslinkable methacrylate-chitosan 

hydrogels with incorporated laminin showed different optimum stiffness values for neural 

proliferation (3.5 kPa) and neuronal differentiation (<1 kPa) [90]. Interestingly, 

oligodendrocyte and astrocyte differentiation ability were closely related to neural 

proliferation rates, as well as the presence of neurons. A myelinating population was found 

in all tested stiffness conditions. Concerning astrocytic differentiation contradictory results 

can be found in the literature. Jiang and co-workers [60] investigated cellular response to 

substrate compliance using polyacrylamide gels, suggesting an optimal range of stiffness 

values for immature astrocytes (vimentin but not GFAP expressing cells), and their 

proliferative or differentiating status. Authors state that astrocytes preferentially adhered 

to stiffer substrates (>300 Pa). On the other hand, the response of mature astrocytes 

(GFAP expressing cells) was different, with higher cell adhesion being observed on gels 
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of intermediate stiffness. Another study [11] has shown that mature astrocytes adhere to 

both soft (100 Pa) and stiff (10 kPa) polyacrylamide gels but with morphological 

differences, which is relevant in CNS disorder scenarios where tissue mechanical 

properties are altered. These studies report that astrocytes spread more and acquire more 

complex morphologies on stiff substrates, much like the morphology seen in tissue culture 

polystyrene and glass. Nevertheless, astrocytes cultured on soft substrates resembled the 

star-like shape of astrocytes in vivo. More recently, we have correlated substrate stiffness 

with astrocyte reactivity [61]. Astrocytes cultured within 3D alginate based hydrogels were 

shown to acquire a reactive phenotype when cultured within stiffer gels. 

The relationship between astrocytes and neurons is known to be important in vivo, though 

for many years astrocyte’s main function was believed to be serve simply as an inert 

support for neurons. Lu et al [53] have studied the viscoelastic properties of CNS individual 

glial cells and neurons. These have analyzed intact rodent and bovine hippocampal and 

retina tissue samples using a scanning force microscope and a rheometer. CNS tissues 

were found to display the rheological characteristics of elastic solids. Moreover, astrocytes 

were determined to be about twice as soft as neurons, suggesting that glial cells act as 

soft compliant substrates surrounding neurons, instead of a rigid scaffold, which 

mechanically supports them. This implies a glial cell role closer to the original idea of 

Rudolph Virchow, who considered it to act as “brain glue” [91]. Glial cells have further 

shown a viscoelastic behavior, much like shock absorbers, when subjected to deformation. 

Interestingly, this data is in line with reports showing that neuron outgrowth is favored by 

soft substrates [60, 92]. Also in agreement with these results, Georges et al [59] and Jiang 

et al [60] have demonstrated that while in the presence of astrocytes, neuron growth was 

independent of the substrate (polyacrylamide gel) stiffness. The same behavior was not 

seen when neurons were cultured alone, being able to extend neurites only on soft 

substrates. Therefore, a hard substrate may not constitute a problem for neuronal growth, 

as long as it is covered with a “cushioning” astrocytic layer. Here it is possible to conclude 

on the surface nanomechanical properties importance in relation to the bulk properties. 

Cells sense the microenvironment  nanomechanical properties very closely and respond 

to them in a very effective way [92], as such neurons were able to sense the astrocytic 

layer overcoming the impact of the stiff substrate underneath. 

During development, after neurons have reached their final destination and astrocytes 

have formed a 3D surrounding network, OPCs migrate and start to establish contact with 

axons. Myelination and its regenerative counterpart remyelination represent one of the 

most complex cell–cell interactions in the CNS [93]. Kippert et al [94] have shown that a 

particular balance of matrix rigidity and intracellular contractile forces, mediated by the 
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oligodendrocyte actomyosin cytoskeleton, is required for successful myelination and 

remyelination to occur. Moreover, Jagielska and co-workers [93] evidenced that OPCs can 

differentiate on a wide range of substrate stiffness (0,1 to 70 kPa), which includes the 

range of stiffness found in the human brain (0,1 – 1 kPa). Furthermore, Leipzig and 

Schoichet [90] have observed that maturation and myelination ability were higher at <1 

kPa gels while OPC survival was found to be optimum between 0,7 – 1 kPa. This is 

consistent with the fact that in development OPCs need to migrate over a dense network 

of neurons and glia being subjected to a broad range of mechanical forces.  

Altogether these studies suggest that as for other tissues, CNS cellular morphology is 

determined by a precisely regulated interplay of intracellular contractile forces and 

extracellular attachment. Neurons, which are generated first at the embryonic stage, prefer 

relatively soft surfaces for elaboration and branching of axons and dendrites. These softer 

substrates possibly correspond to the environmental conditions at the time of initial path-

finding of neuronal processes [95]. Astrocytes grow on intermediate substrates while, 

myelin-forming oligodendrocytes that develop later, already at the newborn stage, 

myelinate best on more rigid surfaces. In figure 3 we present a schematic summary of the 

information here discussed, in terms of the characteristics of the tissue mechanical 

properties and its impact on cell behavior. 

Microglial cells, key players in CNS immune response, were shown to be also influenced 

by substrate features. Bollmann et al have shown that although microglial cells 

preferentially migrate towards stiffer substrates, they have the ability to adapt their area, 

morphology and cytoskeleton according to the stiffness of the surrounding environment 

[96]. Additionally, we have shown that microglial cells presented a round shape when 

cultured on flat substrates, while cells cultured on fibrous substrates have shown 

elongated processes, responding with altered cytokine profile and myelin phagocytosis 

capacity to these physical cues [97]. 



Mechanotransduction in CNS Pathology 
 

42 
 

  

Figure 3 - CNS cell differentiation during development as a function of tissue stiffness. 

 

4. The extracellular matrix role in the process of 

mechanotransduction 
 

The ECM represents the secreted product of the CNS resident cells, serving a variety of 

cellular functions (survival, differentiation, proliferation, migration, proteolysis), regulating 

synaptic transmission and plasticity, and constituting a barrier against metastatic invasive 

cancer cells [98]. Initially considered as an inert meshwork providing just physical support 

to cells, it has now been demonstrated its role as an active cell signaling modulator, 

working as a reservoir of enzymes, growth factors and of immunomodulatory cytokines 

and chemokines. Moreover, the architecture of the ECM may direct cell fate by providing 

structural and mechanical cues, which can affect cell transcriptional events and associated 

cell phenotype and functions [99] . ECM is known to influence cell differentiation, 

proliferation, survival, migration and invasion by both biochemical interactions (directly 

through cell adhesion, indirectly through presentation of arrested signaling molecules) and 

mechanical cues (stiffness, deformability) [99-101]. It is thought to play a vital role in 

maintenance of the normal tissue microenvironment and its misregulation leads to 
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pathological conditions such as fibrosis, neuroinflammation, demyelination and cancer 

invasion [102-106]. With the exception of the meninges, vasculature and BBB, the ECM in 

the CNS has particular features as the proportion of fibrillar collagens and fibronectin is 

different than the one typically found in the ECM of other tissues. The CNS ECM is richer 

in adhesive glycoproteins and proteoglycans. Some matrix components such as 

fibronectin, collagen type IV, laminin and CSPGs are prominent and of known relevance 

to CNS plasticity and repair [107]. Nevertheless, the role of ECM components on 

mechanotransduction in this system is still poorly understood. Considering the large 

number of signaling receptors and mechanosensory motifs found in CNS cell surfaces, 

there are several potential pathways and engineering paradigms by which ECM 

mechanical signals could be transduced into biochemical signals [101, 108]. Among these, 

integrins have been considered as the most plausible candidates for mechanosensors 

since they physically connect the ECM and the cytoskeleton, while acting as a signal 

transducer across cell membranes [109]. 

 

4.1.  Integrins 
 

A growing body of evidence now suggests that the essential link between the mechanical 

properties of the extracellular environment and cellular decision-making are 

mechanotransductory processes at integrin-based cell-matrix contacts (Figure 4).  Many 

of the generated forces concentrate at cell-ECM adhesion and at cell–cell adhesion sites. 

Consequently, mechanotransduction - transformation of physical stimuli into intracellular 

biochemical signaling - is thought to occur within the multi-protein complexes of these 

adhesion sites. Mammalian cells usually co-express several integrins, which recognize 

distinct ECM components by binding specific amino-acid residues, such as the Arg-Gly-

Asp (RGD) motif present in fibronectin, laminin or vitronectin [110].  

At the cell surface, integrins of focal adhesion complexes sense and respond to variations 

in force transmission in order to adapt cell-matrix adhesion to the ECM composition and 

properties [111]. The formation of integrins–ECM complexes promotes the integrin 

cytoplasmic domain to interact with the cytoskeleton and other focal adhesion proteins, 

such as paxillin, talin, vinculin, and F-actin, as well as the formation of stress fibers [112]. 

ECM components, which interact with transmembrane receptors of the integrin family, are 

known to trigger, upon mechanical stimuli, a number of intracellular signaling cascades 

initiated by the focal adhesion kinase (FAK) [111]. The intimate contact between proteins 

of these adhesive structures and the actin/tubulin network induces profound alterations at 
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the level of cell cytoskeleton organization, leading to pronounced cell morphology 

modifications. It has been observed that the application of force, using latex beads, on 

integrin-based contacts reinforced adhesive sites and mechanotransduction [113]. Later it 

has been shown that force exerted externally by a micropipette leads to growth of those 

focal adhesions which are tensed [114, 115]. There is some evidence that other adhesion 

structures, such as podosomes and fibrillar adhesions, which also connect ECM proteins 

to the actin cytoskeleton, can also participate in mechanotransduction [116], but these 

have not yet been thoroughly studied in the context of mechanotransduction. 

 

Figure 4 – Schematic representation of ECM biophysical dynamics via integrins. 

 

FAK expression has been described in neurons [117-119] and in oligodendrocytes [120, 

121]. FAK activity is known to be required for early events of cell adhesion in neuronal 

growth cones [122], which sense guidance cues and mechanically pull the axon forward. 
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During this process, novel adhesion complexes are established at the cell migratory front, 

while the cell cytoskeleton restructures leading to cell body contraction, old adhesion 

complexes are then lost and the cell moves forward, establishing novel ECM adhesion 

contacts at the rear [123]. Therefore, FAK is simultaneously implicated in both adhesion 

complexes assembly and disassembly. Similarly, the guidance of growth cones is a 

multistep process that involves adhesion, assembly and disassembly. Moore et al [124] 

have studied the physical interactions of growth cones with their guidance cues. The 

authors have demonstrated the need for mechanical forces during chemo-attraction to 

netrin-1 and for the regulation of FAK and Crk-associated substrate. In fact, in what 

concerns axon guidance, FAK has also been previously implicated in the guidance of 

axons to a growing number of other cues, including: ephrins, semaphorins, and brain-

derived neurotrophic factor [125, 126]. As such, FAK may function as a mechanosensor 

in response to these guidance cues. 

Oligodendrocytes are also cells that undergo important morphological changes through 

their maturation process. FAK as a key player in regulating cytoskeleton organization is 

also involved in the maturation and myelination process of oligodendrocytes. Indeed, 

Hoshimna et al [127] have that FAK mediates process outgrowth in an oligodendrocyte 

rat-derived cell line. Several other studies point to the idea that FAK is crucial for 

oligodendrocytes, particularly during the maturation process [128-131]. Moreover, Forrest 

and coworkers [132] have shown that FAK conditional knock-out mice have some 

inhibition or delay of normal myelination during development, reinforcing the idea of a 

pivotal role of FAK during oligodendrocyte maturation. 

 

4.2. Rho/ROCK Signaling pathway 
 

Lately it has become noticeable that there is cross-talk between integrins and GTPases, 

as a consequence of the adhesion signaling cascades triggered during integrin sensing of 

ECM mechanical properties. In fact, the activation of integrins by mechanical forces is 

thought to result in the recruitment of intracellular mediators that signal through the Rho/ 

Rho-associated coiled-coil-containing protein kinase (ROCK) signaling pathway to 

activate force-generating myosin II (Figure 4) [133]. As such, the Rho family guanosine-5-

triphosphatases (GTPases) are also thought to be crucial in mechanosensing of matrix 

stiffness, cell morphological alterations, and cytoskeleton tension [134, 135]. Moreover, it 

has been proposed that these signaling molecules may work together as a complex 

network, depending on their subcellular location or the status of cells [136]. This complex 
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network could provide cell with the necessary structure and flexibility to tune cellular 

responses under various physiological conditions. 

The small GTPases Ras superfamily comprises 20 members, which are widely expressed 

in mammals, including RhoA, Rac1, and Cdc42. RhoA, the best-characterized of the Ras 

proteins, acts as a molecular switch which cycles between an inactive GDP-bound and an 

active GTP-bound conformation. This molecule has been widely implicated in integrin-

mediated signaling [137-139], regulation of the assembly and organization of the actin 

cytoskeleton network and the control of cell migration [140, 141]. RhoA plays a critical role 

in the assembly of actin stress fibers in response to various soluble stimuli, including 

serum, growth factors, and lysophosphatidic acid (LPA) [142-144], and to insoluble 

adhesion ligands such as fibronectin or other ECM components [137]. It is further known 

to play a critical role in the assembly of actin stress fibers in response to applied 

mechanical forces [145]. Moreover, it is a key regulator of intracellular contractility and, 

thus, allows cells to sense matrix stiffness and to respond to mechanical cues. This 

function is largely put forth through the RhoA major downstream effector, the 

serine/threonine Rho-associated protein kinase (ROCK). ROCK is involved in regulating 

neural cell migration, proliferation, survival, axon guidance, and regeneration [146]. 

Wozniak and coworkers[147] demonstrated that when ROCK or RhoA activity are altered, 

cells no longer respond effectively to mechanical forces induced by increased matrix 

stiffness. Some authors have suggested that stiff matrices, in general, lead to increased 

Rho activation [147, 148] whereas Rac1 activity remained unchanged, implicating that 

ECM stiffness preferentially activates specific Rho GTPases and consequently the 

formation of actin stress fibers [134]. 

Several studies have confirmed that Rho and their associated signaling molecules 

participate and actively mediate crucial neuron biological processes such as axon 

regeneration [149, 150], and have also been correlated with enhanced BBB permeability, 

which is targeted in distinct CNS disorders as are the formation of tumor metastases in the 

brain [151]. Interestingly, Rho has also been correlated with increased cell proliferation in 

many cancers [152-154]. ROCK, Rho A’s main downstream effector, was found to be 

involved in focal adhesion formation by promoting myosin light chain (MLC) 

phosphorylation [155], as well as increasing cell contractility [143, 156], promoting cell 

migration, polarization and differentiation [147]. Moreover, RhoA was found to be closely 

related to the pathogenesis of several nervous system disorders [157], and involved in 

many aspects of neuronal functions including neurite outgrowth and retraction [158]. 

Recent studies provided additional evidences that ROCK inhibitors had potential 

therapeutic application for Alzheimer’s disease [159, 160], Parkinson’s disease [161], 



Chapter II 

47 
 

epilepsy [162] and autoimmune neuritis [163]. Given the established role for RhoA-ROCK-

mediated cytoskeletal tension, not only in cell migration but also cell proliferation, these 

pathways may play, therefore, an essential role in regulating both tissue homeostasis and 

malignant transformation.  

 

4.3.  Matrix metalloproteinases and ECM remodeling 
 

The ECM has remodeling enzymes named matrix metalloproteinases (MMPs). MMPs are 

a large family of proteases involved in many cell-matrix and cell-cell signaling processes. 

Mammalian MMPs share a conserved domain structure that consists of a catalytic domain 

and of an autoinhibitory pro-domain [164]. Collectively they can cleave all protein 

components of the ECM, as well as other substrates including growth factors, cell 

adhesion molecules and receptors [165]. MMPs were initially thought to be enzymes that 

degrade structural components of the ECM. However, MMP proteolysis is now known to 

create space for cells to migrate, to produce specific substrate-cleavage fragments which 

are biologically active, to regulate tissue architecture and influence the activity of signaling 

molecules, both directly and indirectly [166].  

Uncontrolled MMP activity underlies the pathophysiology of many disorders, such as 

cancer, asthma, rheumatoid arthritis and retinal detachment [167-169], and has also been 

associated with neurodegenerative diseases like glaucoma, migraine, Alzheimer’s 

disease, Parkinson’s disease, amyotrophic lateral sclerosis and multiple sclerosis [104-

106, 170]. Although high levels of MMPs often correlated with poor prognosis in human 

patients [171], MMP up-regulation is believed to underlie reparative functions in the CNS 

at well-defined places and time points after an insult [105].  

Given the presence of receptors, like integrins, for ECM components on cells, and the 

ability of MMPs to cleave virtually all ECM components, these enzymes may influence 

cellular function by regulating the ECM composition and concomitantly have a crucial role 

on ECM mechanical properties, playing a part in mechanotransduction events. Although 

this relationship has not been widely studied, particularly in the CNS, some authors have 

already found evidences of it in other systems. In the uterine cervix it has been shown that 

MMPs contribute to de-stiffening which precedes and facilitates the dilatation of the cervix 

during fetal delivery [172]. More recently MMPs were also shown to modulate the 

mechanical properties of the compass depressor ligaments of echinoderms [173]. 

Furthermore, MMPs have also been documented to be involved in osteocyte response to 

mechanical loading [174].  
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Moreover, it has been described that in injury scenarios MMP levels are increased [175-

177]. This observation combined with the lower stiffness of the injured CNS tissue in 

relation to the healthy tissue suggest that increased MMP levels at the injury site lead to 

increased degradation/re-organization of the ECM, with a resulting alteration of the cell 

cytoskeleton network and mechanical properties. 

 

5. Exploring mechanotransduction in the context of CNS diseases: 

current clinical strategies and future perspectives 
 

Physical cues are important regulators of several biological functions during distinct 

momentums of cellular life. The disease contexts explored in this review demonstrate that 

the processes of mechanotransduction, are important contributors to the alteration of 

tissue function. But the interplay between mechanical induction of signaling pathways and 

disease is still a largely unexplored target for therapeutic intervention.  

There are several reports relative to mechanosensing proteins, suggesting the existence 

of multiple mechanisms, though it is not known whether these are redundant or 

complementary mechanisms. The future work done in this field needs to better understand 

the molecular and biophysical basis of CNS mechanotransduction. This will require a 

multidisciplinary approach, with a combination of molecular biology and bioengineering 

techniques. For now, studies have been mainly focused on affecting one pathway, like 

knocking down or inhibiting one protein but most certainly, in the near future, there will be 

the need for high throughput systems which enable the simultaneous analysis of distinct 

and interrelated pathways and the evaluation of the effects of combinatorial drugs and 

treatments. Although efforts have been made at the molecular level we still need to 

increase our understanding of the dynamics of mechanotransduction in health and disease 

beyond the existent knowledge on focal adhesions and ion channels. Therefore, there is 

a growing effort to study such issues at the tissue and organ level, and recent imaging 

techniques such as the MRE will expectedly take us closer to future findings. 

It must be highlighted that the interest on mechanotransduction issues in the context of 

CNS pathologies has already evolved from the bench to the bedside, as seen by the 

increasing number of studies with MRE neuroimaging techniques aiming at the correlation 

of brain mechanical properties with function, as well as the use of such techniques as a 

tool to aid disease diagnostic. In fact, MRE is currently under clinical trials to assess its 
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utility in the non-invasive diagnosis of normal pressure hydrocephalus (clinical trial # 

NCT02230124, in www.clinicaltrials.gov).  

The enhancement of CNS regeneration by targeting ECM molecules known to inhibit 

regeneration has been also under evaluation. A few strategies have been tested such as 

the use of chABC, Nogo-A inhibitors and RhoA inhibitors. These will ultimately target 

mechanotransduction processes. 

ChABC has been tested mainly in spinal cord injury scenarios, due to its ability to digest 

the scar tissue that prevents CNS regeneration after injury, with the final aim of enhancing 

plasticity and promoting effective rehabilitation. At the moment several veterinary clinical 

trials are running aiming to treat spinal cord injuries in dogs, namely at Iowa State 

University. In fact, this is one of the most commonly neurological pathologies in veterinary 

medicine due to the degeneration of intervertebral discs, which then rupture and cause 

injury to the spinal cord. Human clinical trials with chABC are now closer to becoming a 

reality as a modified enzyme is being investigated at the Cambridge Centre for Brain 

Repair towards the development of a human safe formulation. 

Antibodies against Nogo-A is believed to work through inhibition of Nogo, a myelin 

associated neurite outgrowth inhibitorn. Nogo-A is known to activate the small GTPase 

RhoA which then binds to the Rho binding domain of the ROCK, activating this kinase. 

Although Nogo has been widely correlated with axonal growth it may play important roles 

in other mechanisms and, anti-NogoA drugs were recently under phase I clinical trials in 

patients with Multiple Sclerosis (clinical trials # NCT01424423 and NCT01435993, in 

www.clinicaltrials.gov). 

Regarding Rho inhibition two drugs have been currently under focus: ibuprofen and C3 

transferase. 

Ibuprofen has been on the market as an anti-inflammatory drug for a long time but new 

formulations and applications are currently under investigation. In fact, it is currently 

undergoing phase I clinical trials to treat acute traumatic spinal cord injury (clinical trial # 

NCT02096913, in www.clinicaltrial.gov) due to its ability to inhibit Rho and its putative 

neuroprotective effect, plasticity enhancement and consequent neurorestaurative 

potential. It is also under phase II clinical trials for the treatment of mild traumatic brain 

injuries (clinical trial # NCT02443142, in www.clinicaltrials.gov). Additionally, the interest 

in ibuprofen has been expanding to be used as a therapeutic agent in Alzheimer disease 

as it was found to reduce Aβ42 levels by modulating the activity of the γ-secretase enzyme 

http://www.clinical/
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complex. However, it is important to mention that clinical trials in people with mild to 

moderate Alzheimer disease, which took place in 2003 and 2004, found no difference 

between the ibuprofen treated and placebo groups [178]. 

C3 transferase has entered clinical trials PhaseI/II under the name Cethrin® and results 

suggest an increase in neurological recovery after spinal cord injury. BioAxone 

BioSciences was planning a phase II/III trial for spinal cord injuries in USA and Canada 

(NCT02053883) in 2014. Meanwhile, cethrin® was also under pre-clinical trials during 2014 

for optic nerve disorders applications and, if a positive outcome is reached, it may soon 

enter clinical trials. 

While a large number of issues related to the process of mechanotransduction remain to 

be addressed, particularly in the context of CNS, basic and clinical research of the last 

decades led to increasing understanding of mechanostranduction events and put forward 

this process as a valuable diagnostic tool and therapeutic target. Undoubtedly an 

increasing number of therapies is currently seeking translation into human clinical trials. 

Nevertheless, one of the future challenges facing the biomedicine field will be the 

development of effective therapies based on the advances achieved on basic research. 
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ABSTRACT 

 

Glial scars are widely seen as a (bio)mechanical barrier to central nervous system 

regeneration. Due to the lack of a screening platform, which could allow in-vitro testing of 

several variables simultaneously, up to now no comprehensive study has addressed and 

clarified how different lesion microenvironment properties affect astrogliosis. Using 

astrocytes cultured in alginate gels and meningeal fibroblast conditioned medium, we have 

built a simple and reproducible 3D culture system of astrogliosis mimicking many features 

of the glial scar. Cells in this 3D culture model behave similarly to scar astrocytes, showing 

changes in gene expression (e.g. GFAP) and increased extra-cellular matrix production 

(chondroitin 4 sulphate and collagen), inhibiting neuronal outgrowth. This behavior being 

influenced by the hydrogel network properties.  

Astrocytic reactivity was found to be dependent on RhoA activity, and targeting RhoA using 

shRNA-mediated lentivirus reduced astrocytic reactivity. Further, we have shown that 

chemical inhibition of RhoA with ibuprofen or indirectly targeting RhoA by the induction of 

extracellular matrix composition modification with chondroitinase ABC, can diminish 

astrogliosis. 

Besides presenting the extracellular matrix as a key modulator of astrogliosis, this simple, 

controlled and reproducible 3D culture system constitutes a good scar-like system and 

offers great potential in future neurodegenerative mechanism studies, as well as in drug 

screenings envisaging the development of new therapeutic approaches to minimize the 

effects of the glial scar in the context of central nervous system disease. 

  



Extracellular Environment Contribution to Astrogliosis  
  

66 
 

INTRODUCTION 

Astrocytes are the most abundant cells in the central nervous system (CNS) (Lu et al., 

2006) and are known to play a pivotal role in glial scar formation. Reactive astrogliosis 

starts when a trigger-stimulus produced at the injury site drives astrocytes to leave their 

quiescent state and become activated. Reactive astrocytes are characterized by increased 

expression of intermediate filament proteins glial fibrillary acidic protein (GFAP) and 

vimentin (Holley et al., 2003, Robel et al., Wang et al., 2004), augmented production of 

extracellular matrix (ECM) constituents, such as collagen IV (Liesi and Kauppila, 2002) 

and chondroitin sulfate proteoglycans (CSPG) (Busch and Silver, 2007), and increase in 

the production of matrix metalloproteinases (MMPs) thought to be closely associated to 

ECM remodeling (Nair et al., 2008, Ogier et al., 2005, Ogier et al., 2006). The regeneration 

failure in the adult CNS is multi-factorial but the glial scar has been ascribed has a highly 

inhibitory environment. While it has been a widely explored therapeutic target (Jones et 

al., 2003, Koechling et al., 2011), very little is known about the causes and mechanisms 

underlying astrocyte activation. 

Several animal models have been developed to study the processes of CNS degeneration 

and regeneration. Nevertheless, these are time consuming, costly, and raise technical and 

ethical issues when one intends to perform routine assays to elucidate molecular 

mechanisms or screening for potential therapeutics. These emphasize the need to develop 

simpler experimental systems. The existing 2D in vitro astrogliosis models have provided 

important insights (Kimura-Kuroda et al., Wanner et al., 2008, Koechling et al.) but they do 

not replicate key distinctive features of the ECM in a glial scar. As such, the development 

of a 3D model would be of added value, as this can better recapitulate several features of 

native cellular microenvironments, by incorporating both biochemical and mechanical 

components. The biggest challenge is to recreate simple, yet biologically meaningful 

matrices that support cells within the lesion environment, with a minimum number of model 

system variables. ECM-derived natural matrices such as Matrigel® or decellularized tissue 

provide factors that support cell function; however, the inherent complexity and variability 

of these scaffolds makes it difficult to isolate and dissect cell-signaling mechanisms (Owen 

and Shoichet, 2010). Here, a new in vitro alginate based 3D model of the glial scar is 

proposed to serve as a tool in the identification and modulation of molecular mechanisms 

underlying astrocyte activation. Mammalian cells do not interact with alginate, therefore it 

constitutes a relatively inert backbone structure (Lutolf and Blau, 2009, Rowley et al., 

1999). Moreover, alginate based matrices are highly reproducible, a pivotal requirement 

for their application as 3D artificial ECM. 
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Cerebral astrocytes were cultured within 3D alginate discs with different alginate contents, 

and consequently different mechanical properties. These were further stimulated with 

conditioned medium from meningeal fibroblasts, in order to mimic the possible stimuli 

resultant from fibroblast infiltration occurring following CNS injury. Mechanical properties 

of CNS tissue are known to be altered when a glial scar is formed (Bonneh-Barkay and 

Wiley, 2009, Freimann et al., 2011, Murphy et al., 2012) and ECM components are thought 

to play a pivotal role on the mechanotransduction processes in healthy and diseased 

tissues. The correlation between astrocyte reactivity, ECM production and composition 

and the mechanical properties of the surrounding environment was explored. We show 

that the Rho-ROCK signaling pathway can regulate astrogliosis constituting a possible 

therapeutic target. 

 

MATERIALS AND METHODS 

 

Unless mentioned otherwise all reagents were supplied by GIBCO and were of cell culture 

grade. 

 

Animals 

Procedures involving animals and their care were conducted in compliance with 

institutional ethical guidelines (IBMC) and with the approval of Portuguese Veterinary 

Authorities. Animals had free access to food and water, being kept under a 12-h light/ 12-

h dark cycle. 

 

Cell isolation 

Meningeal fibroblasts and cerebral astrocytes 

Meningeal fibroblasts and astrocytes were obtained as previously described (Kimura-

Kuroda et al., 2010). Briefly, meningeal fibroblasts were obtained from brain meninges of 

P2 Wistar Han rats. Upon isolation, meningeal tissue was digested in Hank’s Balanced 

Salt Solution (HBSS) without calcium or magnesium, supplemented with papain (20 U/mL, 

Sigma-Aldrich), for 30 min. Dissociated meninges were plated in poly-L-lysine (Sigma-

Aldrich) coated 75cm2 flasks (BioLite), and maintained in Dulbecco’s Modified Eagle 

Medium (DMEM) supplemented with 10% (v/v) inactivated fetal bovine serum (FBS) and 

1% (v/v) penicillin-streptomycin (PS).  



Extracellular Environment Contribution to Astrogliosis  
  

68 
 

Fibroblast conditioned medium (CM) was obtained by culturing 13.3 cells.cm-2 in DMEM 

supplemented with 10% FBS and 1% PS, for 72 hours. After collection, CM was 

centrifuged and stored at 4ºC until use. 

Cerebral cortices were further dissected, after removal of the meninges. Isolated cortices 

were digested in HBSS without calcium or magnesium supplemented with papain (0.2 

U/ml), for 30 minutes. Dissociated cortices were cultured in 75 cm2 flasks and maintained 

in DMEM supplemented with 10% (v/v) FBS and 1% (v/v) PS. When confluence was 

reached (~12 days) the flasks were shaken overnight on an orbital shaker (240 rpm) at 

37ºC to remove loosely attached microglia, oligodendrocytes and neurons. The remaining 

cells, mainly astrocytes, adhered to the 75 cm2 flasks were then trypsinized and cultured 

in new flasks. Further tripsinizations were performed in order to increase culture purity.  

Cortical neurons isolation and co-culture with astrocytes 

To obtain cortical neurons, E18 Wistar Han rat embryos were recovered by cesarean 

section of pregnant rats. The isolated cortices were dissociated for 30 min at 37ºC in HBSS 

supplemented with 1 mM pyruvate, 2 mg.ml-1 albumin, and 10% (v/v) trypsin. Viable cells 

(trypan blue exclusion assay) were seeded at a density of 2.2×104 viable cells/cm2 in 

DMEM:Nutrient Mixture F-12 (3:1) supplemented with 10% (v/v) inactivated fetal calf 

serum. Two hours later, medium was changed to Neurobasal medium supplemented with 

0.5 mM L-glutamine, 2% (v/v) B27 supplement, 1% (v/v) PS and 0.5% (v/v) Gentamicin. 

For the co-culture, astrocytes were cultured for 4 days, in DMEM supplemented with 10% 

FBS and 1% PS, prior to cortical neurons culture. At day 4 the DMEM culture medium was 

removed and cortical neurons were seeded on top of the adherent astrocytes. The co-

culture were maintained for 4 additional days and then fixed with 4% paraformaldehyde in 

phosphate buffered saline (PBS). 

 

Alginate discs preparation  

In situ forming alginate hydrogel matrices were prepared as previously described (Maia et 

al., 2014). Briefly, PRONOVA ultrapure sodium alginates LVG and VLFG (hereafter 

designated as high and low molecular weight, HMW and LMW, respectively) with a high 

guluronic acid content (68%) were purchased from FMC Biopolymers. Hydrogel-precursor 

solutions with a bimodal molecular weight composition were prepared by combining HMW 

and LMW alginate at a 1:1 volume ratio and at different total polymer concentrations (0.5, 

1 and of 2% w/v). Primary rat astrocytes were added to alginate solutions (4x106 cells.mL-

1) with CaCO3 (Ca2+/COO- molar ratio = 0.288) and δ-gluconolactone (GDL, Ca2+/GDL 

molar ratio= 0.125), and the mixture was pipetted (20 µL) onto the wells of pHEMA-treated 

culture plates. After crosslinking (1h, 37ºC), cell-laden 3D matrices were maintained in 

culture for 7 days, in DMEM or CM. 
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Ibuprofen (0.04 M) and chondroitinase ABC (chABC) (0.1 U.mL-1) were added to the 3D 

cultures at day 7 of culture, and were maintained for additional 48 hours. 

 

ATP quantification 

ATP quantification was performed using the CellTiter-Glo Luminescent Cell Viability Assay 

(Promega) according to the manufacturer’s recommendations. Briefly, the CellTiter-Glo® 

Reagent was added directly to cells cultured in serum-supplemented medium. This 

resulted in cell lysis and generation of a luminescent signal proportional to the amount of 

ATP present, which was measured in a luminescent plate reader (SYNERGY MX, BioTek). 

An ATP standard curve was performed using ATP disodium salt hydrate (Sigma). 

 

Cell viability  

At culture days 1, 3 and 7 alginate discs were incubated with a solution of calcein-AM 

(Promega) for 20 minutes, followed by 5 minutes incubation with propidium iodide (Sigma). 

Discs were rinsed in culture medium twice to wash any excess of calcein-AM and 

propidium iodide and finally observed under the confocal microscope. 

For flow cytometry analysis, cells were firstly incubated with a 6 µM solution of propidium 

iodide (PI, Sigma-Aldrich) for 10 min at 37ºC. Cells were further extracted from the alginate 

disks using trypsin-EDTA and transferred to 96-well round bottom plates and washed with 

150 µL of FACS Buffer (2% FBS in PBS 1X) by centrifuging for 3 min, 244g at RT. For 

data acquisition, cells were suspended in 150 µL of FACS Buffer and analyzed on a BD 

FACS Canto II cytometer using 530/30 and 670/LP optical filters. The cell population of 

interest was gated according to forward (FSC), side scatter (SSC) and fluorescence 

parameters using untreated cells. Doublets were excluded with FSC-peak (height) versus 

FSC-integral (area) gating. A total of 20 000 events were acquired per sample. Data was 

analyzed using FlowJo software version vX.0.7.  

 

Neurite outgrowth quantification and cell motility 

For axonal outgrowth assessment the length of the longest neurite was determined using 

AxioVision image analysis software. Neuronal processes were manually traced and 

quantified on a total of 95 cells per condition from 3 different samples. Cell motility was 

assessed using ImageJ software with the MTrackJ pluggin. The motility profile was traced 

for 30 cells per condition from 3 different samples. 

 

Astrocyte infection 

HEK293T cells at 80% confluence were co-transfected with JetPrime (PolyPlus 

Transfection) according to the manufacturer’s instructions. Transfection ratios were as 
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follows: 3 mg of shRNA plasmids to 4.2 mg of psPAX2 to 2.7 mg of Vesicular Stomatitis 

Virus Glycoprotein (VSVG). Medium was replaced 4h after transfection, and cells were 

cultured for additional 48h. Medium with viral particles was then collected and centrifuged. 

Finally, supernatants containing viral particles were collected. 

Infection of primary astrocytes was performed at 80% confluence with viral supernatants 

overnight. Infection medium was then replaced by fresh medium with puromycin. Cells 

were kept in culture for 7 -12 days. 

 

Gene expression analysis 

Cell lysis and RNA purification were performed using Quick-RNA MiniPrep from Zymo 

Resarch, according to the manufacturer's instructions. Reverse transcription was done 

with SuperScript III (Invitrogen).  

 

RT-PCR 

Primer sequences used for RT-PCR were as follows:  

Gfap sense 5'AGGCTGGAGGCGGAGAAC3';  

Gfap anti-sense 5'GCTGTGAGGTCTGGCTTGG3';  

Vimentin sense 5'CGTGATGTCCGCCAGCAGTATG3'; 

Vimentin anti-sense 5'GGCATCCACTTCGCAGGTGAG3';  

Collagen IV sense 5'AAGGCGAGGAAGGCATCATG3'; 

Collagen IV anti-sense 5'GGGTGAGTAGGCTGGAGGTC3';  

Hprt sense 5'ATGGACTGATTATGGACAGGACTG3'; 

Hprt anti-sense 5'GCAGGTCAGCAAAGAACTTATAGC3'. 

PCR was performed using HotStarTaq DNA polymerase (Quiagen) for 34 cycles. 

Quantification of band intensity was done using ImageLab software. 

 

Quantitative RT-PCR  

Quantitative real-time PCR (qPCR) was performed using Hprt as endogenous control to 

normalize the expression levels of the genes of interest. Analyses were performed on iG5 

(Bio-Rad) using SYBR Green (SYBR Green master mix, Applied Biosystems) according 

to the manufacturer’s recommendations. Reactions were carried out in triplicate (40 

cycles). In order to verify the specificity of the amplification, a melt-curve analysis was 

performed immediately after the amplification protocol. Non-specific products of PCR were 

not found in any case. Primer sequences used for qRT-PCR were as follows:  

Gfap sense 5’GCGGCTCTGAGAGAGATTCG3’; 

Gfap anti-sense 5’TGCAAACTTGGACCGATACCA3’; 

RhoA sense 5’TCAGCAAGGACCAGTTCCCAGAGG3’; 
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RhoA anti-sense 5’AGGCCGCAGGCGGTCATAATCTTC3’; 

RhoB sense 5’ TTTGCTCTGCACAGAGAATG3’; 

RhoB anti-sense 5’TGGTAAAGGAAGGCAACACG3’; 

RhoC sense 5’ TAGCCAAAGGCACTGATCCT3’; 

RhoC anti-sense 5’GCATACCAGGAGAGAGCTGG3’; 

ROCK1 sense 5’CGAGAGTGTGACTGGTGGTC3’; 

ROCK1 anti-sense 5’CTGGTGCTACAGTGTCTCGG3’; 

Src sense 5’GGACAGTGGCGGATTCTA3’; 

Src anti-sense 5’GGTAGTGAGACGGTGACA3’; 

Hprt sense 5'ATGGACTGATTATGGACAGGACTG3'; 

Hprt anti-sense 5'GCAGGTCAGCAAAGAACTTATAGC3'. 

 

Rheological analysis 

Rheological measurements were carried out using a Kinexus Pro rheometer from Malvern 

with parallel-plate geometry with sandblaster surfaces, at 37ºC and with 10% of 

compression. First, the linear viscoelastic region was analyzed for all the samples by 

performing a stress sweep at constant frequency of 0.1Hz. Frequency sweeps in the linear 

viscoelastic regimen were used to determine values of elastic (G’) and viscous (G’’) 

modulus. Samples were analyzed at day 1 and 7 of culture (n=3 for each). 

 

Gelatin zymography 

Cells were switched to serum-free conditions for 24 hours. After 24 hours, cell culture 

supernatants were collected and kept at -20ºC until use. MMP-2 activity was analyzed by 

gel zymography. Zymography was performed using a 10% SDS-Page separating gel with 

0,1% gelatin (Sigma). After running, the gels were incubated in re-naturation buffer (2% 

triton X-100) for 30 minutes, with soft agitation. Then zymogram gels were changed to a 

development buffer (50mM Tris-HCL, 10mM CaCl2) overnight at 37ºC. Afterwards gels 

were stained with Comassie Blue for 20 minutes and finally de-stained with water. Band 

intensity was quantified using a densitometer (Bio-Rad) and quantity one software. 

 

Collagen quantification 

Collagen quantification was performed with the Sircol Collagen Assay (Biocolor), 

according to the manufacturer’s recommendations. Briefly, collagen from samples was 

precipitated with Sircol dye and further dissolved. Colorimetric alterations were measured 

at 555 nm and results were quantified using a standard curve for collagen. 
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Immunocytochemistry  

2D cultured cells were fixed with 4% (v/v) paraformaldehyde. 3D cultured cells were fixed 

as in 2D, but CaCl2 was added to the solution to keep hydrogel disc integrity. Cells were 

further permeabilized and blocked in phosphate buffered saline (PBS), or instead in tris 

buffered saline with calcium chloride (TBS-CaCl2) for 3D discs, containing 5% (v/v). 

Normal Goat Serum (NGS) (Biosource) and 0.2 % (v/v) Triton X-100 (Sigma). Primary 

antibodies were diluted in PBS or TBS-CaCl2 containing 1 % (v/v) NGS and 0.15 % (v/v) 

Triton X-100, and incubated overnight in a humid chamber at 4 ºC. The following primary 

antibodies were used: rabbit anti-GFAP (1:500, Dako), mouse anti-vimentin (1:100, 

ThermoScientific), mouse anti-NG2 (1:100, Abcam), rat anti-MBP (1:500, AbD Serotec) 

rabbit anti-TAU (1:100, Sigma), mouse anti-CSPG (1:200,Millipore). Secondary antibodies 

Alexa-Fluor 488, 568, 594 and 660 were applied for 1h at RT and subsequently treated for 

nuclear counterstaining at RT with Hoechst (Molecular Probes) at 2μl.ml-1. 3D samples 

were then observed under confocal microscope. 

 

Western blot 

Cells were washed with PBS and lysed in lysis buffer (1 mM sodium orthovanadate, 

protease inhibitor cocktail (Amersham), 50mM TRIS, 1% (v/v) nonyl 

phenoxypolyethoxylethanol (v/v), 0.5% (wt/v) sodium deoxycholate, 0.1% (wt/v) sodium 

dodecyl sulphate. Protein lysates (30 μg/lane) were run on a 12% SDS-Page gel and then 

transferred to nitrocellulose membranes (Amersham). For Western blot analysis, 

membranes were blocked with blocking buffer (5% (w/v) non-fat dried milk in tris-buffered 

saline (TBS) plus 0.1% (v/v) Tween 20) and incubated overnight at 4°C in 5% (w/v) bovine 

serum albumin (BSA) in TBS plus 0.1% Tween 20 with primary antibodies. The following 

primary antibodies were used: mouse anti-GAPDH (1:10000, HyTest), rabbit anti-ROCK2 

(1:10000, Abcam), rabbit anti-ROCK1 (1:3000, Abcam), rabbit anti-RhoA (1:1000, Cell 

Signalling), rabbit anti-RhoC (1:1000, Cell Signalling), rabbit anti-phospho-Src Tyr 409 

(1:1000, Cell Signalling), rabbit anti-Src (1:1000, Cell Signalling), rabbit anti-CSK (1:1000, 

Cell Signalling), mouse anti-GFAP (1:500, BD Pharmingen), mouse anti-vimentin (1:500, 

Thermo Scientific), rabbit anti-profilin1 (1:3000, Abcam).  

For chondroitin 4 sulphate quantification cell lysates were first treated with chondroitinase 

ABC 0.05 UN/ml for 2 hours at 37ºC, as previously described (Chan et al., 2007), and then 

loaded 12% SDS-Page gel and transferred to nitrocellulose membranes (Amersham). 

Mouse anti-C4S (1:1000, Millipore) primary antibody was used. 

Band intensity was quantified using a densitometer (Bio-Rad) and quantity one software, 

for all membranes. For a semi-quantitative evaluation of the C4S expression all bands 

present in each lane were quantified. 
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Förster resonance energy transfer analysis 

Astrocytes plated on glass-bottom culture dishes (µ-Dish 35 mm, iBidi) and transfected 

with the FRET probes for RhoA (Raichu-EV-RhoA, ref pmid 12860967) or Src (KRas-Src-

YPet, ref pmid 18799748) were imaged in an inverted epifluorescence microscope 

(DMI6000B, Leica Microsystems). The donor fluorescent protein was excited with a 

mercury lamp coupled to a light attenuator (EL6000, Leica Microsystems), and the 

emission of both donor and acceptor fluorescent proteins was acquired with a digital 

CMOS camera (4x4 binning, ORCA-Flash4.0 V2, Hamamatsu Photonics). A 440-520 nm 

dichroic mirror (CG1, Leica Microsystems) was used together with appropriate emission 

and excitation filters mounted in external filter wheels (Fast Filter Wheels, Leica 

Microsystems). LAS AF software (Leica Microsystems) was used to control all modules. 

Raw images were background subtracted and time-lapse videos representing FRET ratio 

values (FRET/Donor or Donor/FRET) were generated. Regions of interest were drawn 

over cells and detailed analysis was performed to generate time-plots. Videos were 

converted to intensity modulated display mode using custom ImageJ macros and FRET 

channel as intensity modulator. Src kinase inhibitor (SKI-1) was added (200nM) as a 

chemical inhibitor of SRC. 

 

Statistical analysis 

Statistical analysis was performed using the Graphpad Prism program (version 5). 

Statistical differences between groups were determined based on one-way ANOVA tests 

followed by Tukey’s post-hoc analysis (multiple comparisons) or t-student tests (2 group 

comparison). When Gaussian distribution was not confirmed (D’Agostino and Pearson 

omnibus normality analysis), non-parametric tests were applied. Man-Whitney test and 

Kruskal-Wallis test followed by the Dunn’s multiple comparison test were used in the case 

of paired and multiple comparisons, respectively. Data are expressed as the mean ± 

standard deviation and p values <0.05 were considered significant. 
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RESULTS 

Meningeal fibroblasts conditioned medium mimics fibroblast infiltration and 

activates astrocytes. 

 

Astrocytes were cultured in the presence of meningeal fibroblasts conditioned medium 

(CM). The metabolic activity of astrocytes increased with culture time in both control and 

CM conditions (Figure 1A). Astrocytes cultured in the presence of CM showed increased  

 

 

Figure 1 – Astrocyte 2D culture in the presence or absence of meningeal fibroblasts conditioned medium 

(CM). Results are shown as mean ± standard deviation; asterisks represent statistical differences, * p < 0.05, 

** p < 0.01, ***p <0.001 A. ATP levels at 1,3 and 7 days of culture (n=6, statistical analysis was performed 
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between all pairs of columns); B. mRNA levels of astrocytes at 1,3 and 7 days of culture (n=6, statistical 

analysis was performed between control and CM conditions at each time point); C. Immunocytochemistry of 

astrocytes cultured in the presence of CM and control conditions, scale bar 100 μm; D. Quantification of 

Chondroitin 4 sulphate (C4S) at 1, 3 and 7 days of culture. For each time point 3 samples from independent 

experiments were loaded in the gel. Quantification graph refers to whole lane (n=3, statistical analysis was 

performed between control and CM conditions at each time point); E. Collagen quantification during the cell 

culture time. Collagen was measured in the supernatant (collagen excreted to the culture medium) and in the 

culture well (Deposited and cytoplasmic collagen) (n=3; no statistical differences were found); F. MMP 

expression levels (n= 3, statistical analysis was performed between control and CM conditions at each time 

point).  

Effect of control and CM treated astrocytes on cortical neurons; G. Experimental set-up. Astrocytes were 

cultured for 4 days with fresh medium or conditioned medium. At day 4 cortical neurons were cultured on top 

of the astrocytes for additional 4 days; H. Effect of astrocytes on axonal outgrowth (n = 95 cells); I. Cell 

migration velocity (n= 30 cells). 

 

expression of astrogliosis hallmark genes as Gfap and Vimentin (Figure 1B) and proteins 

as GFAP and C4S at 3 days when compared to controls (Figure 1C and 1D). Although no 

statistical differences were found between control and CM, total collagen expression 

levels, both intracellular and deposited non-soluble collagen, also peaked upon 3 days of 

culture (Figure 1E). Additionally, astrocytes cultured with CM exhibited significantly 

increased levels of excreted active MMP-2 upon 3 days of culture compared with controls 

(Figure 1F). When neurons were co-cultured with astrocytes, which had been previously 

cultured in CM (Figure 1G), neurite length was significantly impaired (Figure 1H). 

Moreover, the motility of these neurons was diminished whereas astrocyte motility 

increased (Figure 1I). 

 

Astrocytes can be successfully cultured within 3D alginate matrices.  

 

Astrocytes were cultured within alginate hydrogel discs of different alginate content as 

illustrated in Figure 2A and Image 1, namely 2%, 1% and 0.5% alginate. Astrocytes 

remained viable throughout the 7-day culture period (Figure 2A-B). ATP consumption 

levels varied in time, deepening at the third day of culture to recover initial values at day 7 

(Figure 2C). Such reduction in ATP levels was not the result of a decrease in cell viability, 

as flow cytometry analysis showed that independently of the culture time and tested 

conditions, 95% of cells were propidium iodide negative (Figure 2B).  
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Image 1 – Evaluation of cell viability of 3D cultured control astrocytes. Representative photos of live-dead 

assay. Live cells are stained with Calcein-AM (green) and dead cells are stained with propidium iodide (red). 
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Figure 2 – Evaluation of cell viability and metabolic activity within 3D alginate discs. Results are shown as 

mean ± standard deviation; asterisks represent statistical differences * p < 0.05, ** p < 0.01, ***p <0.001 A. 

Representative photos of live-dead assay for astrocytes cultured in the presence of fibroblast conditioned 

medium (CM). Live cells are stained with Calcein-AM (green) and dead cells are stained with propidium iodide 

(red); B. Quantification of dead cells (propidium iodide) by FACS analysis at 1,3 and 7 days of culture (n=3 

pools of 10000 events); C. ATP levels of the 3D culture astrocytes at 1,3 and 7 days of culture (n=6). 

 

3D cultured astrocytes acquire a reactive-like phenotype.  

 

Astrocytes cultured within alginate matrices show different gene expression levels when 

cultured in the presence or absence of meningeal fibroblasts CM (Figure 3A). Particularly, 

Gfap and Vimentin levels are differently regulated after 7 days of culture. Only astrocytes 

cultured within 1% alginate discs showed increased expression of both Gfap and Vimentin 

when cultured in CM. Although Collagen IV mRNA expression levels were not significantly 

different between CM and control culture conditions (Figure 3A), the presence of CM 

induced astrocytes to increase collagen excretion levels at 1 and 3 days of culture (Figure 

3B). At day 7, significant differences were only seen on astrocytes cultured in 1% alginate  
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Figure 3 – Phenotype and matrix production of 3D seeded astrocytes. Results are shown as mean ± standard 

deviation; asterisks represent statistical differences, * p < 0.05, ** p < 0.01, ***p <0.001 A. mRNA levels for 

Gfap, Vimentin and Collagen IV of astrocytes seeded within alginate discs; B. Collagen quantification at 1, 3 

and 7 days of culture. Collagen was measured in the supernatant (collagen excreted to the culture medium) 

and in the alginate disc (Deposited and cytoplasmic collagen) (n= 3), regarding statistical analysis asterisks 

alone represent differences between of one component (excreted or intracellular collagen) and the control, 

asterisks above the bars with guidance line represent differences between total collagen levels; C. 

Quantification of chondroitin 4 sulphate (C4S) at 1, 3 and 7 days of culture. For each time point 3 samples 

from independent experiments were loaded in the gel. Quantification graphs refer to whole lane (n=3); D. 

MMP-2 activity at 3 and 7 days of culture (n= 4). 
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discs. Moreover, collagen levels were found to be 10 times higher in all alginate 

formulations than those found for 2D cultured astrocytes (Figure 1E, Figure 3B). 

Additionally, alginate content appears to affect collagen production levels, with cells 

cultured in gels with a higher alginate content producing, in general, more collagen than 

those seeded in gels with a lower alginate content. Nevertheless, it is important to say that 

this is not true for astrocytes seeded in 1% alginate discs in the presence of CM upon 7 

days of culture, as these present higher levels of collagen production than the ones 

cultured in 2% alginate discs in the presence of CM. Furthermore, the presence of CM 

also induces 3D cultured astrocytes to produce higher levels of CSPG, with a significant 

increase of CSPG levels at day 3 of culture (Figure 3C). No significant differences were 

found between 2D and 3D conditions CSPG levels (Image 2). Upon 7 days of culture MMP-

2 expression levels were also found to be upregulated in astrocyte cultures in 1% and 

0.5% (Figure 3D).  

 

 

Figure 4 – Effect of control and CM treated astrocytes seeded in 3D alginate discs on cortical neurons. Results 

are shown as mean ± standard deviation; asterisks represent statistical differences ***p <0.001 A. 

Experimental set-up. Astrocytes were cultured for 4 days with fresh medium or conditioned medium. Neurons 

were cultured on glass cover-slips in 24 well-plates, alginate discs were placed on top of neurons using 

transwells; B. (Left) Effect of astrocytes on axonal outgrowth (n = 95 cells); (right) immunocytochemistry of 

cultured cortical neurons with anti-TAU, at the day of image analysis, scale bar 100 µm. 

 

To further confirm the reactive phenotype of the 3D cultured astrocytes, cortical neurons 

were co-cultured with 3D astrocyte cultures. Neurite outgrowth was impaired when 

neurons were co-cultured with 3D astrocyte cultures treated with CM, for all alginate 

formulations (Figure 4). 
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3D seeded astrocytes influence hydrogels mechanical properties.  

 

The calculated mesh size of the hydrogels was found to be dependent on alginate content. 

The 2% alginate discs showed a smaller mesh size than 1% alginate discs and 0.5% 

alginate discs presented the highest mesh size (Image 3). 

 

 

Image 3 – Physical properties of the alginate discs. A. Calculated mesh size of the tested alginate formulations; 

B. Rheological properties of alginate discs without astrocytes. 

 

Mechanical properties of alginate discs with and without astrocytes were analyzed by 

rheometry. Alginate hydrogels presented typical mechanical spectra of gels with a solid-

like character (G’-storage modulus) predominant over liquid-like viscous response (G’’- 

loss modulus). Moreover, the mechanical properties of hydrogel discs varied in an alginate 

content dependent manner (Image 3). A 10-fold difference in stiffness was observed 

between consecutive alginate formulations (from 2% to 1%, and from the latter to 0.5%, 

Image 3 and Figure 5). 

Astrocytes cultured in the presence of CM were able to dynamically alter their original 

mechanical environment and reinforce the overall disc mechanical properties. This 

stiffening of the storage modulus was particularly clear for astrocytes cultured with CM in 

1% alginate discs at 24 hours (Figure 5), with statistically higher storage modulus values 

than those of discs with astrocytes and of discs without cells. In general, storage modulus 

values of discs with astrocytes, cultured with or without CM, decreased from day 1 to day 

7. 
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Figure 5 – Physical properties of the 3D alginate discs. Rheological properties of the 3D alginate discs 

incubated with culture medium or with astrocytes in the presence or absence of CM (n=3). Results are shown 

as mean ± standard deviation; asterisks represent statistical differences,), regarding statistical analysis 

asterisks alone represent differences between storage modulus, asterisks above the bars with guidance line 

represent differences between total levels, ** p < 0.01, ***p <0.001. 

 

The Rho-ROCK signaling pathway regulates astrocyte reactivity 

 

The Rho-ROCK signaling pathway was investigated as a possible mediator of astrocyte 

activation and consequent production of inhibitory molecules. Small hairpin RNAs were 

initially used to knockdown several members of the Rho family (RhoA, RhoB and RhoC).  

 

Image 4 – qPCR data for astrocyte knockdowns. Data is presented as mean ± standard deviation, statistical 

analysis was performed in relation to control samples, statistical comparisons were performed between 

conditions at each time point, * p < 0.05, ** p < 0.01, ***p <0.001 A. RhoA knockdown astrocytes; B. RhoB 

knockdown astrocytes; C. RhoC knockdown astrocytes; D. Src knockdown astrocytes. 
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Knockdowns were validated in astrocytes by qPCR, with consistent high gene-knockdown 

(superior to 70%) being achieved (Image 4).RhoA and RhoC knockdowns had a significant 

influence on Gfap expression in astrocytes, as RhoA knockdown resulted in decreased 

levels of Gfap, and RhoC knockdown in increased Gfap levels. Moreover, RhoA and RhoC 

knockdown also caused alteration in Src gene expression (Image 4).Knockdown influence 

on protein expression was determined by western blot (Figure 6A-B). All knockdowns 

resulted in significantly reduced levels of protein, with RHOA and RHOC protein levels 

decreased by 99%. Western blot analysis confirmed that RhoA and RhoC knockdown and 

respective proteins differently affect GFAP protein levels (Figure 6A-D), with RhoA 

knockdown resulting in down-regulation of GFAP protein levels and RhoC and RhoB 

knockdown in up-regulation of those levels. The effect of RhoA in GFAP levels was further 

confirmed following the ablation of RhoA in RhoAlox/lox astrocytes (Figure 6C-D). 

 

c-src regulates rhoA activity 

 

The src family has been shown to cross-talk with Rho during intracellular signaling, src 

kinase is further known to bind and phosphorylate RhoGDI both in vitro an in vivo at Tyr 

156 (DerMardirossian et al., 2006, Belsches et al., 1997). 

RhoA and RhoB knockdowns resulted in up-regulation of c-SRC while RhoC knockdown 

resulted in SRC down-regulation (Figure 6E-F). c-src knockdown not only resulted in c-

SRC downregulation but also impacted the levels of total Src family tyrosine kinase (SFK) 

activity as demonstrated by the reduction in Tyrosine 416 phosphorylated SFK levels 

(Figure 6G-H). 

Knocking down c-src also resulted in down-regulation of RHOA and RHOC protein levels. 

To investigate whether SRC regulates RHOA activation, we measured RHOA activity in 

astrocytes using a Förster Resonance Energy Transfer (FRET)-based sensor for RHOA 

with enhanced sensitivity, and show that inhibition of c-SRC by the SRC pharmacological 

inhibitor Ski-1 resulted in decreased RHOA activity (Figure 6I). In contrast, knocking down 

RhoA did not significantly influence c-SRC activity, as measured by a FRET-based sensor 

for c-SRC. Interestingly, c-SRC activity was significantly increased in RHOC knockdown 

astrocytes (Figure 6I). 
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Figure 6 – The Rho-ROCK pathway influence on astrocyte reactivity. Results are shown as mean ± standard 

deviation; statistical analysis was performed between conditions at each time point, * p < 0.05, ** p < 0.01, 

***p <0.001 A. Representative images of western blots of RHOA, RHOC and GFAP levels on RhoA, RhoB 

and RhoC knockdown astrocytes; B. Western blot quantification (n=3); C. Representative images of western 

blot of lox/lox RhoA -/- ; D. Western blot quantification (n=3); E. Representative images of western blot of c-

SRC levels on RhoA, RhoB and RhoC knockdown astrocytes; F. Western blot quantification (n=3); G. 

Representative images of western blot from Src Knockdown astrocytes; H. Western blot quantification (n=3); 

I. FRET analysis of RHOA and SRC activity in astrocytes. SKI-1 was used as a chemical inhibitor of SRC; J. 

Effect of the treatment of reactive astrocytes with 0.1 U/ml chABC and 0,04M ibuprofen. Astrocytes were 

cultured for 7 days in the presence of CM and then treated with chABC or Ibuprofen for 48 hours. (KD stands 

for knockdown); K. Effect of reactive astrocytes treated with chABC or ibuprofen (IBU) on cortical neurons. 

Neurons were cultured in glass coverslips and alginate discs with astrocytes were placed on top using 

transwells. 
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Astrocyte reactivity is reverted via RhoA inhibition. 

 

Astrocytes were cultured within 1% alginate discs in the presence of CM, and after 7 days 

of culture chondroitinase ABC (chABC) or ibuprofen (IBU) were added to the culture 

medium. Activated astrocytes treated with chABC showed significantly lower RhoA levels 

than those untreated (CM-activated), and comparable to the control levels (Figure 6J). 

Gfap expression levels followed a similar trend. Nevertheless, Vimentin levels were not 

different from those of CM-treated astrocytes and were statistically higher than those of 

control cells. Regarding cells treated with ibuprofen, RhoA levels were also significantly 

reduced when compared to CM-treated astrocytes, to levels comparable to control cells. 

Gfap and Vimentin expression levels were also significantly reduced, when compared to 

CM-treated cells, and were at comparable levels of the control. RhoC levels were also 

significantly reduced in comparison to all tested conditions (Figure 6J).  

In order to further confirm astrocyte phenotype recovery, astrocytes cultured within 1% 

alginate discs treated with chABC and IBU were co-cultured with cortical neurons (Figure 

6K). Neurite outgrowth was not impaired when neurons were co-cultured with 3D cultured 

astrocytes treated with chABC or IBU (Figure 6K). 

 

DISCUSSION 

 

A tissue-engineered astrogliosis 3D-culture model is of added value. It is more 

physiologically relevant than the existing 2D models, as it can recapitulate better cellular 

interactions in vivo. This is particularly significant when considering astrocytes, which are 

known to form a 3D cellular network that extends throughout the brain (Mathewson and 

Berry, 1985). The role of this network is not well understood yet; however, it likely plays a 

pivotal role in astrocytic response to injury, since most brain pathologies result in some 

degree of deformation of this structure (Ostrow and Sachs, 2005). Alginate hydrogels are 

an attractive choice for such models for several reasons: firstly because of its mechanical 

properties, which are similar to the brain’s mechanical properties (Banerjee et al., 2009); 

secondly, it works as an inert backbone structure that allows the control over system’s 

complexity (Rowley et al., 1999, Lutolf and Blau, 2009); finally, an extremely relevant 

feature is that the cross-linking of these hydrogels can be reversed with the use of 

quelators (e.g. EDTA), enabling the recovery of the cultured cells for further biochemical 

and cellular assays. Here, the glial scar environment was closely recreated by stimulating 

astrocytes culture in alginate hydrogels with tuned mechanical properties with fibroblast 

CM.  
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Astrocyte activation with CM, and their consequent ability to inhibit axonal outgrowth, was 

validated in 2D astrocytic cultures (Figure 1). To the best of our knowledge meningeal 

fibroblast’s CM has never been used to induce astrocyte reactivity. Some authors have 

previously explored co-cultures of cerebral astrocytes and meningeal fibroblasts (Kimura-

Kuroda et al., Abnet et al., 1991, Struckhoff, 1995, Hirsch and Bahr, 1999, Wanner et al., 

2008), nevertheless, the use of CM enables an increased control over the model system 

variables. 

Given the mild gelation conditions, astrocytes remain viable when cultured within the 

tested alginate hydrogels (Figure 2A-B). The reduction of ATP levels at 3 days of culture 

may be explained by an initial adaptation phase of astrocytes to the new surrounding 

environment. Reactive astrocytes are known to have increased metabolic activity 

(Zamanian et al., 2012), and astrocytes cultured in the presence of CM showed increased 

activity in 2 and 1% alginate discs when compared to control (Figure 2C), which was not 

observed in 2D astrocytic cultures (Figure 1A). The presence of CM significantly induced 

an increase in expression levels of Gfap and Vimentin (Figure 1B, Figure 3A) in cultured 

astrocytes. Intermediate filaments augmentation is widely correlated with astrogliosis and 

glial scaring (Wanner et al., 2008, Kimura-Kuroda et al., 2010, Nair et al., 2008, Ogier et 

al., 2005, Wang et al., 2004, Middeldorp and Hol, 2011). 

Increased deposition of ECM molecules and their interaction with local cells is considered 

an important factor in the non-permissive nature for CNS repair (Sobel and Mitchell, 1989, 

van Horssen et al., 2007). For this reason, ECM production was assessed. Increased 

CSPGs production is also a hallmark of astroglisosis and is known to play a pivotal role in 

neurite outgrowth inhibition (Jones et al., 2003, Galtrey and Fawcett, 2007). In fact, 

astrocytes seeded in the presence of CM have shown increased CSPGs production levels 

(Figure 1 C-D, Figure 3C) and were further shown to inhibit neuronal outgrowth (Figure 

1H, Figure 4B). This is particularly relevant, as many authors have considered cultured 

astrocytes too immature to mimic reactive astrogliosis because they would promote rather 

than inhibit neurite outgrowth (Fallon, 1985, Smith et al., 1990). In addition to the CSPG 

analysis already mentioned, collagen levels were also assessed. Interestingly, collagen 

production was 10 times higher in 3D cultured astrocytes than in 2D (Figure 1E, Figure 

3B). The increased collagen production in 3D astrocyte cultures in comparison to the 2D 

cultures, suggests an important role of the 3D structure in regulating ECM production. 

Within the 3D culture, collagen levels were significantly increased by the presence of CM 

in astrocytes cultured within 2 and 1% discs. 

MMPs are known to be up-regulated in reactive astrocytes under pathological conditions 

(Rivera et al., 1997, Rathke-Hartlieb et al., 2000). In addition, MMP-2 (a type IV 

collagenase) was shown to be the most active enzyme in the degradation of myelin basic 
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protein (MBP) (Chandler et al., 1995). Increased MMP-2 activity was seen in 2D cultures 

at 3 days of culture (Figure 1F). In the established 3D systems, MMP-2 activity was found 

to be indirectly proportional to the alginate content (Figure 3D). Moreover, upon 7 days of 

culture, astrocytes cultured within 1 and 0.5% alginate in the presence of CM showed 

significantly increased MMP-2 activity.  

Overall, astrocytes cultured in CM within 1% alginate discs resembled more closely scar 

astrocytes as these showed increased gene expression levels of Gfap and Vimentin 

(Figure 3A), as well as increased ECM production (Figure 3B-C). However, as the CM 

stimulus was present in all tested alginate formulations, astrocytes were probably capable 

of sensing and responding to the physical microenvironment they were in, as this was the 

only variable of the systems. Therefore, to further elucidate the differences in matrix 

stiffness of the different alginate formulations under study, rheological studies were 

performed and mesh size was estimated. 

Calculated mesh size varied slightly, within the nanometer range, in the three tested 

alginate formulations with values below the cellular size (Image 3) so, it can be considered 

that it was possible to change the matrices mechanical properties independently of the 

mesh size. The prepared hydrogels showed a viscoelastic behavior, typically observed in 

ECM-derived hydrogels (Bott et al., 2010). As expected, the discs with higher alginate 

content showed higher stiffness values (Image 3). Furthermore, it was possible to observe 

that astrocytes in softer alginate matrices (1 and 0.5%) effectively stiffened the hydrogel 

after 24 hours of culture with CM (Figure 5). This effect was particularly evident for 

astrocytes cultured within 1% alginate matrices, which can be correlated with the 

increased production of collagen and/or CSPG (Figure 3B-C). As cellular behavior was 

significantly affected by the mechanical properties of the alginate 3D matrices, the only 

variable parameter, we hypothesized that astrocyte activation is mediated by a 

mechanosensing pathway. 

The Rho/ROCK signaling pathway is known to play a critical role in the assembly of actin 

stress fibers in response to applied mechanical forces (Aikawa et al., 1999, Putnam et al., 

2003). Moreover, the small GTPase Rho is a key regulator of intracellular contractility 

allowing cells to sense matrix stiffness and respond to mechanical cues (Wozniak et al., 

2003). Taking this in consideration, the Rho/ROCK signaling pathway was explored as a 

possible mediator of astrocytic activation. 

Data from qPCR and western blot have shown that RhoA and RhoC differently regulate 

Gfap expression, with RhoA knockdown decreasing Gfap expression while RhoC 

knockdown up-regulates it (Image 4, Figure 6). As such, RhoA is here promoting Gfap 

expression while RhoC is blocking it. Western blot data suggests that c-SRC regulation is 

closely correlated with RHOA (Figure 6). FRET analysis showed that c-SRC is positively 
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regulating RHOA activation levels, as chemical inhibition of SRC with SKI-1 in astrocytes 

induced a decrease in RHOA activity. Furthermore, these results show that in astrocytes 

c-SRC is responsible for part of the SFK activity. 

RHOA has previously been shown to play a role in focal adhesion formation in astrocytes 

(Khatiwala et al., 2009, Matthews et al., 2006), and inhibition of the Rho/ROCK signaling 

pathway was shown to increase astrocyte reactivity (Chan et al., 2007, Lau et al., 2011); 

nonetheless, so far to the best of our knowledge no one has shown the individual influence 

of RHOA and RHOC on GFAP expression in astrocytes. This makes RHOA an interesting 

therapeutic target for astrogliosis treatment. 

To further assess the role of Rho/ROCK signaling in the 3D culture model, astrocytes were 

cultured in the presence of two drugs known to affect RhoA: ibuprofen and chABC. Non-

steroidal anti-inflammatory drug Ibuprofen was previously shown to effectively block RhoA 

(Wang et al., 2009, Dill et al., 2010), and the latter is known to mediate the inhibition of 

axonal regeneration by myelin and CSPGs (Walker et al., 2013, Yiu and He, 2006). 

Although RhoA has been mostly studied in neurons, our data suggests that it can be a 

pivotal modulator of astrocyte behavior. Astrocyte reactivity appeared to be achieved 

through increased RhoA levels and not RhoC’s reduction. Moreover, analysis of gene 

expression levels revealed that treatment with Ibuprofen or chABC had an impact on RhoA 

levels as those of treated cells were significantly lower than those of reactive astrocytes. 

Moreover, Gfap levels were also significantly reduced to levels comparable to the control 

(Figure 6J). Although ibuprofen and chABC are known to target different molecules they 

both inhibited RhoA. Ibuprofen is known to directly inactivate RhoA while chABC is known 

to degrade the ECM. These results reinforce the idea that ECM remodeling is a cause of 

astrocyte reactivity and, as such, when ECM is degraded by chABC astrocyte phenotype 

is recovered. As such, RhoA inhibition on reactive astrocytes, either through chABC or 

ibuprofen treatment, generated an environment permissive to neurite outgrowth. 

Overall, this work established the potential of a glial scar like hydrogel based 3D model. 

Cells in this culture model behaved similarly to scar astrocytes, showing changes in gene 

expression and increased ECM production leading to neuronal outgrowth inhibition. 

Moreover, exploring the mechanisms regulating astrogliosis showed a pivotal role of RhoA 

in astrocyte reactivity. As such, RhoA is here seen as a therapeutical target while Ibuprofen 

and chABC are explored as possible approaches to diminish astrogliosis. 

This simple, controlled and reproducible 3D culture system constitutes a good scar-like 

system and offers great potential in future neurodegenerative mechanism studies, as well 

as in drug screenings envisaging the development of new therapeutic approaches. 
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“ Recomeça…  

Se puderes, 

Sem angústia e sem pressa, 

 E os passos que deres, 

Nesse caminho duro 

Do futuro,  

Dá-os em liberdade, 

Enquanto não alcances 

Não descanses, 

De nenhum fruto queiras só metade” 

 
(Miguel Torga) 
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ABSTRACT 

 

Mammalian central nervous system (CNS) neurons do not regenerate after injury due to 

the inhibitory environment formed by the glial scar, largely constituted by myelin debris. 

The use of biomaterials to bridge the lesion area and the creation of an environment 

favoring axonal regeneration is an appealing approach, currently under investigation. This 

work aimed at assessing the suitability of three candidate polymers – poly(ε-caprolactone), 

poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) (11:89 mol%) and 

poly(trimethylene carbonate) - with the final goal of using these materials in the 

development of conduits to promote spinal cord regeneration. Poly(L-lysine) (PLL) coated 

polymeric films were tested for neuronal cell adhesion and neurite outgrowth. At similar 

PLL film area coverage conditions, neuronal polarization and axonal elongation was 

significantly higher on P(TMC-CL) films. Furthermore, cortical neurons cultured on P(TMC-

CL) were able to extend neurites even when seeded onto myelin. This effect was found to 

be mediated by the glycogen synthase kinase 3β (GSK3β) signaling pathway with impact 

on the collapsin response mediator protein 4 (CRMP4), suggesting that besides surface 

topography, nanomechanical properties were implicated in this process. The obtained 

results indicate P(TMC-CL) as a promising material for CNS regenerative applications as 

it promotes axonal growth, overcoming myelin inhibition. 

 

 

Keywords: degradable elastomers; nanomechanical properties; glycogen synthase 

kinase 3β; axonal outgrowth; atomic force microscopy; tissue engineering; central nervous 

system regeneration 
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INTRODUCTION 

 

When an injury is inflicted to the spinal cord, the blood-brain barrier (BBB) breaks down 

locally and a massive infiltration of immune cells is observed. After the initial mechanical 

trauma (primary damage), cell damage is triggered such that within hours the injury site 

and the surrounding haemorrhagic areas begin to undergo necrosis (secondary damage), 

a progressive process that can last for several days. As the necrotic tissue is removed by 

macrophages, large fluid-filled cavities develop, which are bordered by areas of 

glial/connective tissue scarring. Even though this glial scar may provide several beneficial 

functions such as the restoration of the BBB, prevention of a devastating inflammatory 

response and limit the action of cellular degeneration [1, 2], it also contributes to the 

establishment of a physical and chemical barrier to axonal regeneration [1]. Strategies 

aimed at preventing primary and delaying secondary damage need to be administered 

within minutes to hours after injury making these unsuitable for the spinal cord injury (SCI) 

patients in a chronic stage [3]. Furthermore, none of the clinical approaches currently 

available to control or minimize the impact of a SCI lead to neuronal regeneration [4], nor 

there is an efficient regenerative therapeutic strategy for SCI treatment [4]. Although 

injured axons show the ability to regenerate when in a peripheral nervous system 

environment [5], the major factor contributing to the failure of the central nervous system 

(CNS) regeneration is the lack of capacity of injured axons to spontaneously regenerate 

in the glial scar microenvironment [6]. 

The use of biocompatible biomaterials to bypass the glial scar is one of the promising 

approaches being investigated to promote spinal cord regeneration [3, 7-13]. These tissue-

engineering approaches are usually based on the use of either cell-free bridges or of 

cellularized biomaterial-based matrices. There are some advantages in the use of a cell-

free bridging material, as on one hand cell purification and expansion methods are 

laborious, time consuming and expensive, and on the other hand when the transplantation 

of allogenic cells is required, the use of immunosuppressants cannot be circumvented [13]. 

Therefore, the idea of a cell-free bridging material that uses and controls endogenous cell 

population responses by having the ability to promote axon regeneration and control 

inflammatory and glial reactions is arguably appealing.  

There are numerous polymeric materials under study for application in nerve repair 

strategies [3, 10, 14]. These can simultaneously provide a scaffold for tissue regeneration, 

serve as a cell-delivery vehicle and a reservoir for sustained drug delivery [15]. Within this 

class of materials, biodegradable polymers are particularly advantageous for the 
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preparation of these bridges, as polymer degradation can be tuned to match the neuronal 

cell growth. Besides the degradation rate, the mechanical properties of the selected 

material are also of extreme relevance and a property that can be fitted to one needs. 

While the implantable structures must be flexible but relatively strong, as well as easy to 

handle by surgeons, their mechanical properties have an influence on cell phenotype as 

well [16-19]. 

Poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC–CL)) copolymers with high 

caprolactone (CL) content or the parental trimethylene carbonate (TMC) homopolymer are 

very flexible and tough materials that can be processed into highly porous  three 

dimensional structures with degradation rates that can be modulated by adjusting the co-

monomer content [20, 21]. As P(TMC-CL) has been shown to be processable in a variety 

of shapes and forms, including porous conduits [22] and electrospun fibers [23], it presents 

itself as a valuable tool in the design of new strategies for application in the treatment of 

spinal cord lesions. These materials have been shown to be biocompatible [21, 24] and 

have been previously explored for peripheral nerve regeneration conduits [20, 22, 24, 25]. 

Additionally, polymer degradation occurred with minimum swelling of the material [24], 

which is also an essential feature to prevent nerve compression that could compromise 

regeneration. 

After the promising results obtained in the context of peripheral nerve regeneration, the 

suitability of P(TMC-CL) copolymers for application in the CNS and the possibility to 

modulate the biological response by tuning the surface properties at the nanoscale was 

explored, with the ultimate goal of contributing to the design of an artificial 3D scaffold able 

to promote spinal cord regeneration. Films based on a P(TMC-CL) copolymer with a high 

CL content and the respective homopolymers were prepared and cortical neuron cultures 

were conducted after the coating of all substrates with poly(L-lysine) (PLL). For each 

condition parameters like cell adhesion, neurite number and length of the longest neurite 

were determined, as these are key when assessing the potential of a substrate to promote 

axonal regeneration. It is hypothesized that the observed differential cell behaviour is 

related to the materials’ nanomechanical properties that were characterized in this study. 

The involved cell signalling pathway was also investigated. 
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RESULTS 

Cortical neurons adhere and extend neurites in a PLL dependent manner 

 

As a first step in assessing P(CL), P(TMC-CL) and P(TMC) compatibility with the CNS and 

their potential application in devices for neuroregeneration, polymeric discs were tested as 

substrates for cortical neuron growth in vitro. Cortical neurons were seeded on PLL coated 

polymeric films and were found to adhere to the tested substrates in a PLL concentration 

dependent manner (Fig.1A). Cell number and neurite outgrowth on the coated polymeric 

films were evaluated using cover glasses coated with a PLL concentration of 24 μg.μl-1 for  

 

 

 

Figure 1. Cortical neuron culture on PLL coated films of P(TMC-CL) and respective homopolymers 

(2.7 x 104 viable cells were seeded per sample). A. Number of cortical neurons with and without 

neurite extensions on polymeric surfaces coated with aqueous solutions at different concentrations 

of PLL. Glass coated with 24 μg.μl-1 of PLL for 30 minutes was used as control. (n = 3 independent 

studies, mean ± SD, p < 0.05) B. Percentage of PLL covered surface area as a function of the 

coating conditions. (n= 3, mean ± SD, p < 0.05)  

x = condition not tested, 0 = null value. n.s. = non-significantly different from the control, α = total 

number of cells not significantly different from the control, β = number of cells with neurite 



Chapter IV 
 

101 
 

extensions not significantly different from the control and  = number of cells without extensions not 

significantly different from the control. 

 

 

30 min as control. Cortical neurons adhered in comparable numbers to the control when 

the polymeric films were coated overnight with 24 μg.μl-1  and 48 μg.μl-1 of PLL in the case 

of P(CL) films, and 72 μg.μl-1 of PLL in the case of TMC containing films (see Fig. 1A). 

However, only on P(TMC-CL) the majority of adhered cells was able to extend neurites as 

in the control. 

To explain this PLL-dependent behaviour, the amount of PLL adsorbed to the polymeric 

films surface was evaluated by fluorescence quantification of PLL-FITC coated samples 

(see fig.1S for PLL-FITC coating fluorescence images).  

As one can observe in Fig. 1B, the surface area covered by PLL (in %) was only 

comparable to the control conditions when the polymeric films were treated with a PLL 

solution of at least 48 μg.μl-1 and 72 μg.μl-1 in the case of the CL containing materials and 

P(TMC), respectively. Consequently, cell adhesion can be correlated with the PLL 

adsorption profile to the polymeric films.  

Taking into consideration the obtained results, both in terms of cell adhesion and neurite 

extension, the coating conditions used in the subsequent studies were established to be 

polymer surface treatment overnight with 48 μg.μl-1 for P(CL) and 72 μg.μl-1 for P(TMC-

CL) and P(TMC). 
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P(TMC-CL) stimulates axonal elongation 

 

In order to evaluate neurite outgrowth on the different PLL-coated polymeric surfaces, the 

number of neurites per cell, as well as the neurite length were determined. As seen in Fig. 

2A, neurons behave differently on each surface. More than 80% of the cells 

 

 

 

Figure 2. Effect of the PLL coated surfaces on neurite elongation and cellular polarization. A. 

Fluorescently labeled cortical neurons, immunostained for TAU (green); nuclei are counterstained 

with Hoechst (blue); B. Number of primary neurites per cell; C. Total neurite length; D. Average 

neurite length and E. Length of the longest neurite. (n= 130 cells, mean ± SD, *** for p < 0.001) 

 

seeded on polymeric films show one or two neurites, while more than 80% of the cells 

seeded on glass (control) present between 3 to 5 neurites (Fig. 2B). Furthermore, as 

shown in Fig. 2A neurons seeded on the polymeric surfaces exhibit a lower degree of 

branching than those seeded on glass. However, on P(CL) and P(TMC) the adhered cells 

show smaller neurites than on P(TMC-CL) and the control (Fig. 2C-E). Despite the fact 

that for P(TMC-CL) the total neurite length was similar to the one observed on glass, given 

the lower number of neurites per cell in this condition, the average neurite length was 

higher (Fig. 2D). More remarkably, the length of the longest neurite was increased 

relatively to the control (Fig. 2E). 

 

  



Chapter IV 
 

103 
 

P(TMC-CL)’s nanomechanical properties 

 

As shown in Fig. 3A, atomic force microscopy (AFM) analysis indicated that the RMS 

roughness was similar for P(CL) and P(TMC-CL), with mean values of 21.8 ± 11.5 nm and 

24.4 ± 12.1 nm respectively, while significantly lower for P(TMC) with a mean value of 1.6 

± 1.0 nm.  

 

 

 

Figure 3. Morphology and mechanical properties of the tested polymeric surfaces. A. Root mean 

square (RMS) roughness of all polymeric surfaces; B. Representative photographs of the polymeric 

surfaces before and after nanoindentation; images are color coded, showing elevated areas in 

bright and lower areas in dark color. C. Representative nanoindentation force-displacement curves; 

D. Mean hardness values of all polymeric surfaces, calculated for the maximum load and E. Mean 

stiffness values for all polymeric surfaces. (n = 60 indentations, mean ± SD, *** for p < 0.001) 

 

Nanoindentation is one of the most versatile techniques and particularly suited for the 

measurement of localized mechanical properties on the surface of materials [26]. 

Representative photos of the nanoindentations and force/displacement curves are 

represented in Fig. 3B and C, respectively. These show that P(CL) has a greater 

resistance to deformation in relation to the other two materials tested, as the force needed 

to achieve the same displacement is higher than for P(TMC-CL) or P(TMC). As shown in 

Fig. 3 D-E stiffness and hardness values are significantly different between the three 

different substrates. A stiffness value of 312 ± 56.4 N.m-1 and a hardness of 3.32 x106 ± 

0.373 x 106 N.m-2 was found for P(TMC-CL), while P(CL) shows the highest values with a 
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stiffness of 435 ±  40.4 N.m-1 and a hardness value of 6.60 x 106 ±  2.11 x 106 N.m-2. As 

seen in the photos before and after nanoindentation, P(TMC) samples recover almost 

completely from the indentations and, consequently, show stiffness and hardness values 

close to zero. 

 

 

P(TMC-CL) promotes restraining of myelin inhibition 

 

Myelin-associated inhibitors (MAIs) are present at a spinal cord lesion site and are known 

to be among the major impediments of the spontaneous axonal regeneration after SCI. 

Cortical neurons were seeded on myelin coated surfaces with a reduction of adherent cells 

of 50 and 55% for P(TMC-CL) and glass, respectively.  

P(TMC-CL) was chosen from the three tested surfaces as it showed the best results for 

neuronal adhesion and neurite extension, presenting a positive influence on axonal 

elongation. As seen in Fig. 4, when comparing surfaces coated and uncoated with myelin, 

the number of cells with neurites is smaller in the first case. Nevertheless, this decrease is 

not significant on P(TMC-CL) seeded neurons in contrast to the control where this 

reduction is statistically significant (p < 0.01).  
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Figure 4. Effect of CNS myelin on neurite outgrowth of cortical neurons cultured for 4 days 

on PLL-P(TMC-CL) substrates coated with CNS myelin.. A. Cortical neurons are 

immunostained for β-III tubulin (green) and nuclei are counterstained with Hoechst (blue); 

myelin coating is immunostainned for MBP (green), surfaces were fully covered by myelin 

(see fig. 2S for myelin quantification) B. Effect of myelin on the ability of neurons to extend 

processes is presented as the % of cells with neurites in relation to the total number of 

cells. (n = 3 independent studies, mean ± SD; ** for p < 0.01). 

 

GSK3β signalling pathway mediates neuronal behaviour on P(TMC-CL) substrates 

 

Glycogen synthase kinase 3β (GSK3β) is implicated in many processes in the nervous 

system and is known to play a critical role in the regulation of neuron physiology. It is highly 

expressed in neurons and crucial for the establishment of neuronal polarity, as well as for 

the establishment of the branching-elongation equilibrium [27-29]. In view of this 

knowledge, the involvement of GSK3β as a mediator of P(TMC-CL) effect on neurite 

formation and axonal outgrowth was examined. GSK3β is regulated by phosphorylation 

and its activity can be reduced by phosphorylation at Ser-9. Contrarily, tyrosine 

phosphorylation at Tyr-216 increases the enzyme’s activity (Fig. 5A) [30, 31]. As shown in 

Fig. 5B cortical neurons seeded on P(TMC-CL) present lower levels of GSK3β Ser-9  
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Figure 5. Analysis of GSK3β in cortical neurons plated on P(TMC-CL) and effects of GSK3β 

inhibition on neurite extension. A. Schematic representation of the different phosphorylation forms 

of GSK3β and their activity status; B. Analysis of the phosphorylated forms of GSK3β by western 

blot. Representative blots are shown. Expression levels of GSK3β isoforms, β1 and β2, are 

presented and quantified individually or together. (n = 3 independent studies, average ± SD); C. 

Morphology of neurons (immunostained for TAU in green and nuclei counterstained in blue) 

cultured for 24 hours in the presence of DMSO (control) or in the presence of 6-bromoindirubin-3’-

acetoxime (BIO) at 30 and 300 nM. Quantifications of the longest neurite, average neurite length 

and the number of neurites per cell are shown (n = 130 cells, mean ± SD, * for p < 0.05, ** for p < 

0.01 and *** for p < 0.001); D. Determination of CRMP4 phosphorylation levels in cortical neurons 

plated for 4 days on control or P(TMC-CL). Representative western blot is shown and below the 

quantification (n = 3 independent studies, average ± SD). 

phosphorylation and higher level of Tyr-216 phosphorylation, in comparison to neurons 

cultured on glass. This indicates that neurons seeded on P(TMC-CL) display more kinase 

activity than hose on glass. It is also perceptible from Fig. 5B that the GSK3β isoform that 
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is differently expressed is GSK3β2, which is known to be expressed exclusively in the 

nervous system [31, 32].  

To further confirm the involvement of GSK3β as a mediator of the P(TMC-CL) effect on 

axonal outgrowth and number of neurites per cell, cortical neurons were cultured in the 

presence of a GSK3 pharmacologic inhibitor - 6-bromoindirubin-3’-acetoxime (BIO). It is 

expected that inhibiting GSK3 activity should inhibit the polymeric surface’s effect on 

cortical neurons. In fact, as shown in Fig. 5C, when BIO is added to the culture medium 

one can observe a decrease in the length of the longest neurite and in the average neurite 

length, as well as an increase on the number of neurites per cell. These effects occur in a 

dose-dependent manner, with the highest concentration of BIO tested (300 nM) leading to 

statistically significant differences. Alabed et al. [33] have established that GSK3β 

phosphorylation and consequent inactivation, regulates the interaction of CRMP4 and 

RhoA through CRMP4 de-phosphorylation. If this mechanism is active in our setup, 

phospho-CRMP4 levels should be higher for neurons seeded on P(TMC-CL). To test this 

hypothesis, the levels of CRMP4 phosphorylation in cortical neurons seeded on P(TMC-

CL) and glass surfaces were assessed. As expected, phospho-CRMP4 levels were 

increased for neurons cultured on P(TMC-CL) as shown in Fig. 5D. 

 

DISCUSSION 

 

In the aftermath of a SCI, a glial scar is formed. Despite its key role in constraining the 

damaging effects caused by the lesion, the glial scar also prevents axon regeneration. The 

astroglial scar not only contains secreted and transmembrane molecular inhibitors of axon 

growth but also constitutes an almost impenetrable physical barrier to regeneration [4]. 

Consequently, it was hypothesized that by creating a favourable environment at the lesion 

site, one will be able to enhance axonal regeneration and ultimately promote some gain of 

function. Therefore, the use of an implantable scaffold to bypass the glial scar area is one 

of the promising approaches being investigated to promote spinal cord regeneration. A 

prerequisite in the design of such biomaterial is its biocompatibility, which in this context 

means that it must support neuronal survival and axonal growth. The aim of this study was, 

therefore, to investigate the suitability of P(CL), P(TMC-CL) and P(TMC) as substrates for 

spinal cord regeneration purposes. 

One of the most commonly used strategies to assess neuronal behaviour in vitro when 

testing biomaterials for nerve regeneration applications is to evaluate axonal growth [33-

37]. In the present work rat cortical neurons were firstly seeded on the PLL-coated 

polymeric substrates to assess adhesion and neurite outgrowth ability. PLL is a synthetic 
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homo-poly (amino acid), characterized by an isopeptide bond between the ε-amino and 

the α-carboxyl groups of L-lysine, commonly used to coat cell culture substrates [38]. 

Initially, the polymer surface coating conditions were optimized - PLL concentration and 

time of contact - in order to achieve a comparable surface area covered by PLL and, 

consequently, similar cell adhesion in all tested surfaces. The observed PLL dependent 

behaviour can be explained by the different adsorption capacity of PLL on polymeric and 

glass surfaces. Differences that can be attributable to the surface properties of the tested 

materials, as these polymers present a more hydrophobic surface than glass [20]. 

Although after this process one could obtain comparable numbers of cortical neurons after 

4 days of culture on the tested materials, significant morphological differences were found 

between neurons cultured on polymeric surfaces, particularly P(TMC-CL), and the control. 

Firstly, only on P(TMC-CL) the majority of neurons is able to extend neurites. Furthermore, 

our results show that among all the tested surfaces, including glass, seeding cortical 

neurons on P(TMC-CL) stimulates neuronal polarization and promotes axon elongation, 

as neurons on P(TMC-CL) show significantly enhanced neurite outgrowth and significantly 

lower numbers of neurites per cell. This switch to polarized and elongated morphology is 

noteworthy as successful regeneration requires that neurons survive and initiate rapid and 

directed neurite outgrowth [39-41]. A decreased number of neurites per cell were also 

found on P(CL) and P(TMC) but on these materials axonal outgrowth was significantly 

impaired. Moreover, while control neurons have, on average, twice the number of neurites 

of neurons seeded on P(TMC-CL), when one sums the length of all neurites of each cell 

(total neurite length) no significant differences are found. Altogether, cortical neurons 

seeded on P(TMC-CL) were found not only to be polarized but also to extend significantly 

longer neurites. To the best of our knowledge, no previous reports have shown this 

neuronal behaviour on any studied material.  

The potential of materials to trigger specific cellular responses is getting to be a well-

established phenomenon mediated by a number of factors that range from the properties 

of the surface that contacts with the cell, to the mechanical properties of the material [16, 

17, 42-44]. We have previously characterized the family of these copolymers and when 

varying the monomer ratio mainly the thermal and, consequently, the mechanical 

properties of these materials are drastically affected [21]. P(TMC) and P(TMC-CL) 

copolymers with high CL content are flexible and though materials that range from 

amorphous to semi-crystaline elastomers when the CL content increases. Therefore, here 

we hypothesise that surface topography and the nanomechanical properties of the tested 

materials play a key role in influencing cell behaviour. The local characterization of 

roughness, hardness and elastic properties of a wide range of materials has been reported 

including for thin films and biomolecules [45-48] but so far the characterization of TMC-CL 
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copolymers has not been performed. The roughness of the three tested polymeric surfaces 

was first investigated. Values of 22 nm and 24 nm were found for P(CL) and P(TMC-CL) 

respectively, while for the P(TMC) the roughness values were found to be significantly 

lower. In 2002, Fan et al. [49, 50] showed that neuronal cells adherence and survival is 

optimum on surfaces with a RMS roughness ranging from 10 to 50 nm. Taking this data in 

consideration, both P(CL) and P(TMC-CL) show not only similar but also optimum 

roughness values for neural adhesion and survival, while P(TMC) is outside this optimum 

roughness range. Therefore, the different neuronal behaviour on these surfaces cannot 

be explained simply by topography. Aiming to measure localized mechanical properties 

on the surface of the polymeric films, nanoindentations were performed and force-

displacement curves obtained for each indentation. Mean hardness and stiffness values 

were calculated and significant differences were found between all polymeric surfaces, 

with P(TMC-CL) being significantly less resistant to deformation than P(CL) and 

significantly more resistant to deformation than P(TMC). Although roughness values were 

similar between P(CL) and P(TMC-CL) and within the optimum range, P(CL) was two times 

harder than P(TMC-CL), which could explain the different cellular behaviour on these 

surfaces, indicating that changes in stiffness and hardness values may have caused 

changes in cell morphology, specifically in axonal elongation. 

Having observed the ability of P(TMC-CL) surfaces in promoting neuronal polarization and 

axonal elongation under normal cell culture conditions, the capacity of P(TMC-CL) to 

positively affect cortical neurons in a typical CNS inhibitory environment was tested, 

envisaging its application in the design of an axonal regeneration promoting strategy. 

While axons in the context of a mature mammalian CNS do not regenerate if damaged, 

the immature mammalian CNS is able to regenerate after injury [51, 52]. Probably the most 

notable difference between the mature and the immature nervous system is the presence 

of myelin [34]. Indeed, the limited regenerative capacity of the mammalian CNS is known 

to be partially due to myelin inhibition. So far, no biomaterial has shown the ability to 

restrain myelin inhibition unless blockers of myelin protein receptors were used [53]. 

Recently, Mohammad and co-workers have shown that a nano-textured self-assembled 

aligned collagen hydrogel was able to promote directional neurite guidance and restrain 

inhibition by a recombinant myelin-associated glycoprotein of dorsal root ganglia cultures 

[54]. To assess P(TMC-CL)’s neuronal effect under adverse, and more biologically 

relevant conditions, cortical neurons were seeded on P(TMC-CL) films in the presence of 

myelin. As expected, in the glass control surface we observed a statistically significant 

reduction of the number of cells extending neurites when cultured in the presence of 

myelin. In contrast, when P(TMC-CL) was used as a substrate, this reduction was not 

statistically significant (Fig. 4 B), suggesting that P(TMC-CL) is, to some extent, 
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contributing to the promotion of the overcome of myelin inhibition. This is of extreme 

relevance as it has been already demonstrated that some degree of functional recovery 

can be obtained simply by counteracting the activity of myelin inhibition [55, 56]. The 

existence of a biomaterial that has the capacity to restrain this inhibition per se, without 

the need for the administration of antibodies or chemical inhibitors, can prove to be of great 

importance for therapeutic purposes.  

The potential of materials to trigger specific cellular responses, such as interference and/or 

activation of defined pathways is extremely promising for tissue engineering. Stiffness and 

hardness sensing probably involves transduction into biological signals [15]. GSK3β is 

known to regulate axonal growth through the modification of the phosphorylation status of 

several microtubule-binding proteins and consequently the assembly of microtubules [31, 

57]. Moreover, Alabed et al. [33] showed that the overexpression of active GSK3β 

attenuates MAI-dependent neurite outgrowth inhibition. For these reasons, GSK3 was 

studied as a possible mediator of P(TMC-CL)’s effect. Mammalian GSK3 is generated from 

two genes, GSK3α and GSK3β. GSK3 expression in neurons is further characterized by 

an alternative splicing of GSK3β originating two main variants: GSK3β1 and GSK3β2. 

GSK3β2 is specifically expressed in the nervous system [31]. GSK3β is regulated by 

phosphorylation and its activity is dependent on the balance between tyrosine (Tyr-216) 

and serine (Ser-9) phosphorylation as shown in Fig. 5A, with a reduction of activity if 

phosphorylated at Ser-9, and its increase if phosphorylated at Tyr-216 [30, 31]. Our results 

show that GSK3β is differently regulated in neurons seeded on glass and P(TMC-CL), with 

the latter showing lower levels of Ser9 phosphorylation, a site of GSK3β inactivation, and 

higher levels of Tyr216 phosphorylation, which facilitates the activity of GSK3β by 

promoting substrate accessibility [31]. Neurite elongation and neuronal polarization on 

P(TMC-CL) may be promoted by an increase GSK3β activity in vitro. The relationship 

between axonal elongation and GSK3β activity was further confirmed through 

pharmacological inhibition of GSK3 in vitro. As expected, inhibition of GSK3β blocked 

P(TMC-CL) effect, as there was a decrease in neurite length and an increase on the 

numbers of neurites per cell. Cells seeded on P(TMC-CL) and treated with BIO acquired 

a morphology that resembles more closely the neurons seeded on glass Fig. 2A. 

Activation of GSK3β activity occurs in cortical neurons when these are cultured on P(TMC-

CL), resulting in an increase in neurite outgrowth and decrease on the number of neurites 

per cell. Increased axonal outgrowth in the presence of higher GSK3β activity has also 

been shown in prior reports, for cerebellar, dorsal root ganglia and hippocampal neurons 

[28, 33, 58].  

The Rho signalling pathway is known to play an important role in neuronal growth 

regulation and it has been shown that inhibitors of RhoA, and/or its downstream effector 
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Rho kinase, facilitate growth on myelin substrates [59, 60]. Wozniak et al. [16] have studied 

the effects of stiffness on cell shape and shown that ROCK mediated contractility is 

essential for breast epithelial cells to sense the biophysical properties of the surrounding 

environment. Alabed et al. [61] have identified CRMP4 as a protein that functionally 

interacts with RhoA to mediate neurite outgrowth. Later on, this team has found that 

CRMP4-RhoA interaction is regulated by dephosphorylation of CRMP4 as a direct 

consequence of GSK3β inactivation by phosphorylation at Ser-9 [33]. This observation 

indicates that overexpression of GSK3β and consequent inhibition of CRMP4-RhoA 

complex formation may be protective in the context of myelin inhibition. Our findings are 

consistent with Alabed et al. [33] as for neurons seeded on P(TMC-CL), which show higher 

levels of GSK3β activity and longer neurites the levels of phospho-CRMP4 are higher than 

in glass seeded neurons. Overall these results suggest that the activation of GSK3β 

activity, and consequent neurite elongation, is mediated by the surface mechanical 

properties of P(TMC-CL). 

 

CONCLUSION 

 

This work shows that P(TMC-CL) with a high CL content can promote axonal regeneration, 

prompting neurons into a regeneration mode, even under inhibitory conditions. This effect 

is mediated by the GSK3β signalling pathway, which is triggered by P(TMC-CL)’s surface 

mechanical properties.  

P(TMC-CL) being a material that can been processable in a variety of shapes and forms, 

including porous conduits and electrospun fibres, it presents itself as a valuable tool in the 

design of new strategies for application in the treatment of spinal cord lesions, while 

supporting axonal growth and taming myelin dependent neurite outgrowth inhibition 

without the need of the administration of any therapeutic drug. 

 

MATERIALS AND METHODS 

 

Polymeric film preparation 

 

Poly(trimethylene carbonate) (P(TMC), poly(ε-caprolactone) (P(CL)) and 

poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) with 11 mol % of TMC were 

synthesized as previously described [20]. Briefly, prior to polymerization ε-caprolactone 

monomer (Fluka) was dried overnight over CaH2 and distilled under reduced pressure. 

Trimethylene carbonate was obtained from Boehringer Ingelheim (Germany) and used as 
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received. Polymerizations were conducted by ring-opening polymerization in an argon 

atmosphere using stannous octoate as a catalyst. All polymerizations were carried out for 

a period of 3 days at 130°C ± 2°C. The obtained polymers were purified by dissolution in 

chloroform and subsequent precipitation into a ten-fold volume of ethanol. The precipitated 

polymers were recovered, washed with fresh ethanol and dried under reduced pressure 

at room temperature (RT) until constant weight. The prepared polymers were 

characterized with respect to chemical composition by nuclear magnetic resonance 

(NMR). Four hundred MHz 1H-NMR (BRUKER AVANCE III 400) spectra were recorded 

using solutions of polymer in CDCl3 (Sigma). Number average and weight average 

molecular weights (Mn and Mw, respectively), polydispersity indexes (PDI) and intrinsic 

viscosities ([η]) of the (co)polymers were determined by gel permeation chromatography 

(GPC, GPCmax VE-2001, Viscotek, USA). The setup was equipped with ViscoGEL I-

guard-0478, ViscoGEL I-MBHMW-3078, and ViscoGEL I-MBLMW-3078 columns placed 

in series and a TDA 302 Triple Detector Array with refractometer, viscometer, and light-

scattering detectors, allowing the determination of absolute molecular weights. All 

measurements were performed at 30°C, using chloroform as the eluent at a flow rate of 

1.0 ml.min-1. The obtained results are compiled in Table 1. 

Polymer films of 250 μm in thickness were prepared by casting the polymer solution in 

chloroform onto glass Petri dishes. After drying the films under reduced pressure at RT, 

disks with a diameter of 14 mm were punched out. Prior to cell culture, disks were sterilized 

by two incubation steps in a 70% (v/v) ethanol solution for 15 min, followed by two rinsing 

steps of 15 min in autoclaved MilliQ water (Millipore). After sterilization, polymer disks were 

placed in 24-well tissue polystyrene plates (BD Biosciences) and fixed with autoclaved 

silicon o-rings (EPIDOR, Barcelona). 

 

Cortical neuron cell culture 

 

Prior to cell seeding the air side surface of the polymeric disks was coated with 200 μl of 

a poly(L-lysine) (PLL, Sigma) solution in a concentration ranging from 24 to 73 μg.μl-1, at 

37ºC for 30 minutes or overnight and, subsequently, rinsed with autoclaved MilliQ water. 

Cover glass (Menzel) coated with 24 μg.μl-1, at 37ºC for 30 minutes was used as control. 

Procedures involving animals and their care were conducted in compliance with 

institutional ethical guidelines and with the approval of Portuguese Veterinary Authorities 

– Direcção Geral de Veterinária (DGV); approval reference 0420/000/000/2007. Female 

wistar rats were housed in pairs with free access to food and water, under a 12-h light/ 12-

h dark cycle. E17 – E18 Wistar Han rat embryos were recovered by caesarean section of 

pregnant rats first anesthetized by intravenous injection of ketamine chlorohydrate 



Chapter IV 
 

113 
 

(IMALGENE® 1000, Merail) and medetomidine hydrochloride (DOMITOR®, Pfizer Animal 

Health) to confirm pregnancy by palpation, and then euthanized with sodium pentobarbital 

20% (EUTASIL, CEVA Sante Animal) by intravenous injection. The isolated cortices were 

dissociated for 30 min at 37ºC in Hanks Balanced Salt Solution (HBSS) supplemented with 

1.0 mM pyruvate, 2 mg.ml-1 albumin, and 10% (v/v) trypsin (all from Gibco). Viable cells 

(trypan blue exclusion assay) were seeded at a density of 2.2 × 104 viable cells.cm-2 onto 

PLL-coated polymeric discs or cover glasses in 24-well cell culture plates. Neural cells 

were seeded in 300 μl of Dubelcco’s Modified Eagle Medium (DMEM) : Nutrient Mixture 

F-12 (F-12) (3:1) supplemented with 10% (v/v) inactivated fetal calf serum (FCS) (all from 

Gibco). Two hours later, medium and o-ring were removed and 1 ml of Neurobasal medium 

supplemented with 0.5 mM L-glutamine, 2% (v/v) B27 supplement, 1% (v/v) Penicillin-

Streptomycin and 0.5% (v/v) Gentamicin (all from Gibco) was added and polymeric discs 

turned upside down. Cultures were maintained at 37ºC in a humidified atmosphere of 5% 

CO2. Culture purity was determined by immunocytochemistry as described further down. 

Half of the cell culture medium was changed on the third day of culture. After 4 days in 

culture, samples were treated for immunocytochemistry. 

 

Poly(L-lysine) adsorption quantification 

 

Polymeric disks were coated with PLL-FITC (fluorescein isothiocyanate) (Sigma) as 

described in the previous section. Cover glass coated with 24 μg.μl-1 of PLL, at 37ºC for 

30 minutes, was used as control. Polymeric discs coated with PLL-FITC were further 

mounted on microscope slides using an aqueous mounting media (Sigma) and observed 

with an inverted fluorescence microscope (Axiovert 200M, Zeiss, Germany). Image 

analysis was performed with ImageJ 1.44 software. 

 

 Atomic force microscopy 

 

Roughness analysis 

The roughness of the polymer surfaces tested for cell culture was assessed by atomic 

force microscopy (AFM) using a PicoPlus scanning probe microscope interface with a 

PicoScan controller (Agilant Technologies, USA). A 10x10 μm2 piezoscanner was used in 

tapping mode, with a scan speed of 1 line.s-1. A bar shaped silicon cantilever (ACT probe, 

from AppNano), with a spring constant of 25-75 N.m-1 was used and roughness analysis 

was performed from scanned areas of 7x7 μm2 on five randomly chosen locations of each 

sample in air, at room temperature. The root-mean-square (RMS) roughness within the 
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sampling area was determined using the WSxM scanning probe microscope software, [62] 

according to  
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where a represents the image height and N the total number of points. 

 

Nanoindentation 

These measurements were performed at CEMUP (Centro de Materiais da Universidade 

do Porto), on a Veeco Metrology Multimode with Nanoscope IV controler (Veeco 

Instruments, Inc.) at RT conditions in Force-indent mode with a diamond tip, suitable for 

nanoindentation (DNISP Diamond-Tipped Probe from Veeco; spring constant 131 N.m-1). 

Deflection sensitivity of the cantilever was calibrated by indenting a sapphire surface. 

Nanoindentations were made for 1 second and the peak load was confined up to 30 μN 

for P(TMC-CL) and P(CL) and 6.5 μN for P(TMC). Force-displacement curves were 

obtained during loading and unloading for each indentation, and further used to determine 

hardness and stiffness values according to the Oliver and Pharr method. [63] For each 

polymeric substrate type, 60 indents were done on the film side tested for cell culture, 

covering 3 randomly chosen regions of 4 different samples per material. In each region, a 

set of 16 indents were made at a distance of 2 μm of each other. Stiffness was calculated 

as the slope of the tangent line to the unloading curve at the maximum loading point and 

hardness values were calculated for the maximum load and taking into consideration the 

shape of the indenter probe. 

 

Neurite outgrowth on myelin coated polymer films 

Myelin isolation 

 

Myelin was isolated from brains of C57BL/6 male mice, as previously described (for animal 

use ethics please see 5.2.). [64] Briefly, the isolated brains were homogenized in 0.32 M 

sucrose and after centrifugation at 900g, the post-nuclear supernatant was collected. The 

post-nuclear supernatant was carefully overlaid on an ultracentrifuge tube containing a 

0.85 M sucrose solution on top of a 50% (w/v) sucrose cushion. After centrifugation for 1 

hour at 37000 g at 4 ºC (Sorvall Pro80 centrifuge), the interphase between sucrose 
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solutions was transferred to a new ultracentrifuge tube. Two rounds of osmotic shocks 

were performed by adding ice-cold water and centrifugation at 20000 g. The final myelin 

pellet was stored at -80ºC until further use. 

 

Myelin Coating 

 

The polymeric disks and glass control were first coated overnight with PLL as described 

above and washed with 0.1M NaHCO3. A myelin aqueous solution was subsequently 

dispensed onto the samples (total myelin protein 1.25 μg.cm-2), left to dry overnight in the 

laminar flow hood as previously described by Cai et al. [28], and further used as substrates 

for cortical neuron culture. Myelin coating of control and polymer surfaces was quantified 

by fluorescence microscopy after immune labeling of myelin with anti-MBP SMI94 (1: 500, 

Abcam). 

 

Pharmacologic inhibition of glycogen synthase kinase 3 

 

For neuronal outgrowth assays in the presence of a pharmacologic inhibitor of glycogen 

synthase kinase 3 (GSK3), a 30 or 300 nM solution of 6-bromoindirubin-3’-acetoxime (BIO) 

in dimethyl sulfoxide (DMSO) was added to cortical neuron cultures (DMSO final 

concentration 0.05% (v/v)) at two different time points: at seeding (t = 0) being in contact 

with cells for 4 days, and at the third day of culture (t = 3) being in contact with cells for 

24h. Neurons seeded on polymer discs in the presence of 0.05% (v/v) DMSO were used 

as controls. After 4 days in culture samples were treated for immunocytochemistry. 

 

Immunocytochemistry 

 

Cells were fixed for immunocytochemistry staining with 2% (v/v) paraformaldehyde at RT 

and further permeabilized and blocked in phosphate buffered saline (PBS) containing 5% 

(v/v) Normal Goat Serum (NGS) (Biosource) and 0.2% (v/v) Triton X-100 (Sigma). Primary 

antibodies were diluted in PBS containing 1% (v/v) NGS and 0.15% (v/v) Triton X-100, 

and incubated overnight in a humid chamber at 4ºC. Secondary antibodies were applied 

for 1h at RT and subsequently treated for nuclear counterstaining at RT with Hoechst 

(Molecular Probes) at 2 μl.ml-1. Samples were mounted directly in aqueous mounting 

medium and observed with an inverted fluorescence microscope.  
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Culture purity was ≥99% in cortical neurons as determined by mouse anti-glial fibrillary 

acid protein (GFAP) (1:500, BD Biosciences)/ mouse anti-vimentin (1:100, Thermo 

Scientific)/ mouse anti-oligodendrocyte marker 4 (O4) (1:100, Chemicon)/ rabbit anti-Tau 

(TAU protein) (1:100, Sigma)/ 2 μg.ml-1 Hoechst fluorescent staining. Cells were counted 

from 18 radial fields and values were extrapolated to the total surface area of the sample 

(n=3). For axonal outgrowth assessment the length of the longest neurite and total primary 

neurite outgrowth per cell were determined using AxioVision image analysis software. 

Neuronal processes were manually traced and quantified on 130 cells per condition. Three 

independent experiments were performed. 

For neuronal outgrowth analysis on myelin inhibition studies, neurons were stained with 

anti-βIII tubulin (1:500, Abcam) and myelin with anti-myelin basic protein (MBP) SMI-94 

(1:500, Abcam). The secondary antibodies used were anti-rabbit Alexa 488 (1:500, 

Invitrogen), anti-mouse 594 (1:1000, Invitrogen). 

 

Western Blot 

 

Cortical neuron lysates were prepared by washing cells with PBS and further lysed in 

buffer containing 20 mM 3-(n-morpholino)propanesulfonic acid (MOPS), 2 mM ethylene 

glycol tetraacetic acid (EGTA), 5 mM ethylenediaminetetraacetic acid (EDTA), 30 mM 

NaF, 60 mM β-glycerophosphate, 20 mM sodium pyrophosphate, 1 mM sodium 

orthovanadate, 1% (v/v) Triton X-100, 1% (v/v) DL-dithiothreitol (DTT), 1 mM 

phenylmethanesulfonyl fluoride (PMSF) and protease inhibitor cocktail (Amersham). 

Protein lysates (25-100 μg/lane) were run on a 12% SDS-PAGE gel and then transferred 

to a nitrocellulose membrane (Amersham). For Western analysis, membranes were 

blocked with blocking buffer (5% (wt/v) non-fat dried milk in tris-buffered saline (TBS) 0.1% 

(v/v) Tween 20) and incubated overnight at 4°C in 5% (wt/v) bovine serum albumin (BSA) 

in TBS 0.1% Tween 20 with primary antibodies. The following primary antibodies were 

used: rabbit anti-phospho-GSK3β Ser9 (1:1000, Cell Signalling), rabbit anti-phospho-

GSK3β Tyr216 (1:2000, Santa Cruz Biotechnology), mouse anti-GSK3α/β (1:2000, Santa 

Cruz Biotechnology), sheep anti-phospho- CRMP4 Thr 509 (1:1000, Kinasource) and 

mouse anti-total CRMP4 (1:500, Santa Cruz Biotechnology). After washing, membranes 

were incubated with secondary antibodies for 1h at RT. The secondary antibodies used 

were anti-rabbit HRP (1:10000, Jackson Immunoresearch), anti-mouse HRP (1:10000, 

Thermo Scientific) and anti-goat/sheep (1:10000, Binding Site). Proteins were detected 

using a chemiluminescent substrate Pierce ECL western blotting substrate (Thermo 

Scientific) according to the manufacturer’s specifications. For each experiment 



Chapter IV 
 

117 
 

representative western blots are shown. Phospho-protein expression was quantified by 

densitometry with QuantityOne software (BioRad) and levels were normalized to the total 

level of the same protein. 

 

Statistical analysis 

 

For statistical analysis, one-way ANOVA followed by Tukey’s post-hoc test were used. 

When Gaussian distribution was not confirmed non-parametric test Man-Whitney was 

applied, using the Graphpad Prism program. Data is expressed as the mean ± standard 

deviation (SD) and p values of < 0.05 were considered significant.  
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SUPPLEMENTARY DATA 

 

 

Figure 1S.  Representative images of the PLL-FITC coating on the studied surfaces. 

 

 

 

 

Figure 2S. Distribution of the myelin coating. A) Fluorescent quantification of the adsorbed myelin 

on P(TMC-CL) and glass surfaces.  
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“ Procurar o sonho é procurar a verdade.” 

(Fernando Pessoa) 



 
 

  



 
 

 

 

 

 

 

 

 

 

 
 

Astrocyte Activation Affects 
Oligodendrocyte Precursor Cell 

Differentiation 

 

D. N. Rocha 1,2,3, L. R. Pires 1,2, João B. Relvas 3,4,5, Ana Paula Pêgo 1,3,5 

 

(1) INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; (2) FEUP - Faculdade 

de Engenharia da Universidade do Porto, Porto, Portugal; (3) I3S – Instituto de Investigação e Inovação em 

Saúde  (4) IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; (5) ICBAS 

– Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal 

 

 
 
 

CHAPTER V 



 
 

 
 

 



Chapter V 
 

129 
 

 

ABSTRACT 

 

The loss of the myelin sheath insulating axons is the hallmark of demyelinating diseases. 

These pathologies often lead to irreversible neurological impairment and patient disability 

and no effective therapies are currently available to promote remyelination. 

Several elements contribute to the inadequacy of remyelination in diseases such as 

multiple sclerosis, and understanding the intricacies of the cellular and signaling 

microenvironment of the remyelination niche might help us to devise better strategies to 

enhance remyelination.   

Here using a new in vitro rapid myelinating artificial axon system based on engineered 

microfibers, we investigated how reactive astrocytes influence oligodendrocyte precursor 

cell differentiation and myelination ability. This artificial axon culture system enables the 

effective uncoupling of molecular cues from the biophysical properties of the axons 

allowing the detailed study of the astrocyte-oligodendrocyte cross-talk. Oligodendrocyte 

progenitor cells were shown to adhere to uncoated engineered microfibers and 

differentiate into myelinating oligodendrocytes. Reactive astrocytes were found to 

significantly impair oligodendrocyte precursor cell differentiation ability. This inhibition 

could be reverted by rescuing the reactive astrocytic phenotype with ibuprofen, a chemical 

inhibitor of the small rhoGTPase RhoA.  

Overall these findings show that modulating astrocytic function might be an interesting 

therapeutic option for demyelinating diseases. The use of these engineered microfibers as 

an artificial axon culture system will enable the screening for potential therapeutic agents 

that promote oligodendrocyte differentiation and myelination while providing valuable 

insight on the myelination/remyelination processes. 
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INTRODUCTION 

 

The loss or destruction of the myelin sheet - a dielectric material produced by 

oligodendrocytes in the CNS that insulates axons is characteristic of numerous 

pathologies such as contusion-type spinal injury and stroke. In the adult central nervous 

system (CNS) myelin loss can only be partially rescued by remyelination of spared axons 

[1]. The newly formed myelin is not made by oligodendrocytes surviving an episode of 

demyelination, but from oligodendrocyte progenitor cells (OPCs), which become activated, 

proliferate and give rise to remyelinating oligodendrocytes [2]. Promoting myelin repair is 

potentially a highly effective means of long-term axon protection, and is a target for the 

treatment of demyelinating diseases [2-4].  

CNS myelination is a complex process and though the mechanisms responsible for 

chronic remyelination failure have not yet been identified, evidence of the presence of 

OPCs in chronic multiple sclerosis (MS) lesions [5] suggests the existence of a regulatory 

mechanism inhibiting OPC differentiation under certain pathological conditions. Namely, it 

has been proposed that modulation of signalling-pathways like the Rho/ROCK signalling-

pathway can rescue OPC differentiation phenotype s [6, 7]. Astrocytes have also been 

recognized to contribute to CNS myelination [8-10]. During development astrocytes and 

oligodendrocytes are known to communicate so that myelination can occur in an accurate 

and timely manner. However, under pathological conditions, such as in the context of 

demyelinating diseases, astrocytes are also severely affected, playing a pivotal role in the 

modulation of the CNS extracellular environment. In pathologic scenarios astrocytes 

become activated expressing increased levels of glial fibrillary acidic protein (GFAP) and 

also excreting high amounts of extracellular matrix (ECM) components such as chondroitin 

sulphate proteoglycans (CSPG) and collagen IV [11-13]. The cytokine profile expression 

of astrocytes is also altered affecting OPC differentiation and myelination capacity [15, 16].  

All these components are known to contribute to the formation of the glial scar, which 

constitutes a barrier for cellular regeneration and myelination, preventing functional 

recovery [14]. Here, we hypothesize that astrocyte reactivity may play a critical role in the 

course of OPC differentiation into mature oligodendrocytes and that the reversion of the 

astrocyte phenotype to a non-activated status can lead to the recovery of OPC 

differentiation capacity.  

We have previously reported an alginate-based 3D model of astrogliosis [13] where 

astrocytes behave similarly to glial scar astrocytes, showing changes in gene expression 
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(e.g. GFAP) and increased ECM production (chondroitin 4-sulphate and collagen), 

inhibiting neuronal outgrowth. Astrocyte activation is thought to be mediated via RhoA and 

its pharmacological inhibition rescued the astrocyte phenotype. In order to test our 

hypothesis an in vitro rapid myelinating artificial axon system combined with our tissue 

engineered glial scar was used as a tool to dissect the crosstalk between reactive 

astrocytes and OPCs. The use of engineered polymeric microfibers mimicking axons 

enabled the study of the astrocyte-OPC crosstalk and its influence on OPC differentiation 

ability. This approach allowed us to eliminate axon-OPC cross-talk, as well as achieve 

myelination in a significantly shorter period of time. Such an approach has been previously 

explored with success by Howe and his co-workers to study the myelination process [17]. 

Here, OPCs were cultured on electrospun poly(trimethylene-co-ε-caprolactone) (P(TMC-

CL)) fibres in the presence of 3D cultured reactive astrocytes. 

 

MATERIALS AND METHODS 

 

Poly (trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) fibre preparation and 

characterization 

P(TMC-CL) was prepared as previously described [18]. Briefly, prior to polymerization ε-

caprolactone monomer (Fluka) was dried overnight over CaH2 and distilled under reduced 

pressure. Trimethylene carbonate was obtained from Boehringer Ingelheim (Germany) 

and used as received. Polymerizations were conducted by ring-opening polymerization in 

an argon atmosphere using stannous octoate as a catalyst. All polymerizations were 

carried out for a period of 3 days at 130°C±2°C. The obtained polymers were purified by 

dissolution in chloroform and subsequent precipitation into a ten-fold volume of ethanol. 

The precipitated polymers were recovered, washed with fresh ethanol and dried under 

reduced pressure at room temperature (RT) until constant weight. The prepared polymers 

were characterized with respect to chemical composition by nuclear magnetic resonance 

(NMR) and found to contain 11% mol of TMC, which was in accordance with the monomer 

ratio charged (10% mol TMC). The average number molecular weight and polydispersity 

index of the purified polymer were determined by size exclusion chromatography and were 

found to be 8.2 x 104 and 1.61, respectively. 

P(TMC-CL) fibres were obtained by electrospinning using a polymer solution (10% w/v) in 

a dichloromethane:dimethylformamide 3:1 mixture (DCM:DMF; Merck, Germany) as 
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reported elsewhere [18]. The polymer solution was dispensed at a controlled flow rate of 

1 ml.h−1 using a syringe pump (Ugo Basile, Italy). An electric field of 1 kV cm−1 was applied 

(Gamma High Voltage Research, Inc., FL, USA) between the spinneret (inner diameter 

0.8 mm) and the flat collector (15 × 15 cm). Fibres were collected during 1–1.5 h onto 13 

mm glass coverslips (Menzel-Glaser, Germany) distributed on top of aluminium foil. 

Fibre morphology was analysed by scanning electron microscopy (SEM). A JEOL JSM 

6301F/ Oxford INCA Energy 350/ Gatan Alto 2500 was used. Fibre diameter was 

quantified from SEM micrographs using image analysis software Image J (version 1.39; 

NIH, Bethesda, MD, USA). Fibre-mean diameter and fibre distribution were calculated 

from at least 100 measurements from three independent samples. 

Cell culture 

Procedures involving animals and their care were conducted in compliance with 

institutional ethical guidelines (IBMC) and with the approval of Portuguese Veterinary 

Authorities. Animals had free access to food and water, being kept under a 12-h light/ 12-

h dark cycle. 

Cells were obtained from the brains of P2 Wistar Han rats. Isolated cortices were digested 

in Hank’s Balanced Salt Solution (HBSS) without calcium or magnesium supplemented 

with papain (0.2 U.ml-1), for 30 minutes. Dissociated cortices were cultured in 75 cm2 flasks 

and maintained in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% 

(v/v) fetal bovine serum (FBS) and 1% (v/v) penicillin-streptomycin (PS). When confluence 

was reached (~12 days) the flasks were shaken overnight on an orbital shaker (240 rpm) 

at 37ºC to remove loosely attached microglia and oligodendrocytes. The cells in 

suspension were then seeded into non-tissue culture treated petri dishes for 2 hrs to 

remove microglial cells. Oligodendrocyte cells were then seeded on top of polymeric fibres 

and maintained for 24 hrs in DMEM medium supplemented with transferrin (0,01 mg/ml), 

bovine serum albumin (BSA) (0.01 µg.ml-1), putrescin (0.0016 mg/ml), progesterone 

(0.0060 µg.ml-1), thyroxine (0.0040 µg.ml-1), sodium selenite (0.0040 µg.ml-1), triiodo-l-

thyroxine (0.0030 µg.ml-1), insulin (0.025 µg/ml), platelet derived growth factor (PDGF) 

(0.01 µg.ml-1) and fibroblast growth factor (FGF) (0.01 µg.ml-1). Afterwards cells were 

cultured without FGF and FBS (0.5%) was added. The remaining cells adhered to the 75 

cm2 flasks were mainly astrocytes, which were trypsinized and re-cultured in new flasks. 

Further tripsinizations were performed in order to increase culture purity, final astrocyte 

culture purity was >98%. 

Meningeal fibroblasts were obtained from brain meninges of P2 Wistar Han rats. Upon 

isolation, meningeal tissue was digested in HBSS without calcium or magnesium 
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supplemented with papain (20 U.ml-1, Sigma-Aldrich), for 30 min. Dissociated meninges 

were plated in poly(L-lysine) (Sigma-Aldrich) coated 75 cm2 flasks (BioLite), and 

maintained in DMEM supplemented with 10% (v/v) FBS and 1% (v/v) PS. Fibroblast 

conditioned medium (CM) was obtained by culturing 13.3 cells.cm-2 in DMEM 

supplemented with 10% FBS and 1% PS, for 72 hours. After collection, CM was 

centrifuged and stored at 4ºC until use. 

 

Tissue engineered glial scar 

In situ forming alginate hydrogel matrices were prepared as previously described [13, 19]. 

Briefly, PRONOVA ultrapure sodium alginates LVG and VLVG (hereafter designated as 

high and low molecular weight, HMW and LMW, respectively) with a high guluronic acid 

content (68%) were purchased from FMC Biopolymers. Hydrogel-precursor solutions with 

a bimodal molecular weight composition were prepared by combining 1% (wt/v) HMW and 

LMW alginate solution in 0,9% NaCl, at a 1:1 volume ratio. Primary rat astrocytes were 

added to alginate solutions (4x106 cells.ml-1) with CaCO3 (Ca2+/COO- molar ratio = 0.288) 

and δ-gluconolactone (GDL, Ca2+/GDL molar ratio= 0.125), and the mixture was pipetted 

(20 µL) onto the wells. After crosslinking (1h, 37ºC), cell-laden 3D matrices were 

maintained in culture for 4 days, in DMEM or meningeal fibroblast conditioned medium 

(CM). After these 4 days alginate discs were added to OPC cultures using a transwell, and 

co-cultures were maintained for additional 5 days. 

For the experiments with the pharmacological inhibition of RhoA, ibuprofen (0.04 M) was 

added to the 3D cultured reactive astrocytes, after the 4 days activation period, for 48 

hours. 

 

Imunocytochemistry 

Cells were fixed with 4 % (v/v) paraformaldehyde and further permeabilized and blocked 

in phosphate buffered saline (PBS) containing 5 % (v/v). Normal goat serum (NGS) 

(Biosource) and 0.2 % (v/v) Triton X-100 (Sigma). Primary antibodies were diluted in PBS 

containing 1 % (v/v) NGS and 0.15 % (v/v) Triton X-100, and incubated overnight in a 

humid chamber at 4 ºC. The following primary antibodies were used: mouse anti-NG2 

(1:100, Abcam) and rat anti-MBP (1:500, AbD Serotec). Secondary antibodies Alexa-Fluor 

488 and 568 were applied for 1h at RT and subsequently treated for nuclear 

counterstaining at RT with Hoechst (Molecular Probes) at 2μl.ml-1. Samples were then 
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observed under a confocal microscope. Cells positive for NG2 and MBP were counted 

from 10 radial fields. 

Myelin geomorphological analysis was carried out in z-stacks taken with a 500µm z-stack 

step from OPCs cultured on P(TMC-CL) fibres. Images were achieved with the object 

analyzer tool for 3D microscopy images from Huygens Pro software (SVI) using a seed 

parameter of 0% and a threshold parameter of 13%. 

Environmental Scanning Electron Microscopy 

After treatment with 4 % (v/v) paraformaldehyde solution, OPCs cultured on P(TMC-CL) 

fibres were extensively rinsed with water. Samples were then imaged on a FEI Quanta 

400FEG ESEM / EDAX Genesis X4M. 

Statistical Analysis 

Statistical analysis was performed using the Graphpad Prism program (version 5). 

Statistical differences between groups were determined based on t-student tests (2 group 

comparison) or one-way ANOVA tests followed by Tukey’s post-hoc analysis (multiple 

comparisons). When Gaussian distribution was not confirmed (D’Agostino and Pearson 

omnibus normality analysis) non-parametric tests were applied. Man-Whitney test and 

Kruskal-Wallis test followed by the Dunn’s multiple comparison test were used in the case 

of paired and multiple comparisons, respectively. Data are expressed as the mean ± 

standard deviation (SD) and p values <0.05 were considered significant. 

 

RESULTS 

P(TMC-CL) fibres promote OPC differentiation into MBP positive oligodendrocytes.  

The prepared electrospun P(TMC-CL) fibres were found to have an average diameter of 

0,67 ± 0,12 µm (Figure 1A) and the fibre mats depicted a random orientation (Figure 1B). 

Fibre diameter distribution values ranged from 0,2 µm to 3 µm, with only a very small 

percentage of the fibres having a diameter larger than 1,5 µm (Figure 1A). 
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Figure 1 - P(TMC-CL) fibre characterization. A. P(TMC-CL) fibre diameter distribution (n = 3 ± SD, standard 

deviation represents variability between different samples) B. Scanning electron microscope image from the 

P(TMC-CL) fibres. 

 

OPCs were able to adhere, survive and differentiate into MBP positive oligodendrocytes 

when cultured on the electrospun P(TMC-CL) fibres. After 4 days in culture they produced 

large membrane extensions, which in some cases contacted with multiple fibres, (Figure 

2). Differentiated oligodendrocytes were not only found to extend their processes along 

nanofibers but also ensheathed them as shown in Figure 2B and in more detail in Figure 

1S (supplementary information). It must be highlighted that this was observed without the 

need to coat the polymeric fibres with any adhesive molecule.  
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Figure 2 – Oligodendrocyte precursor cells cultured on P(TMC-CL) fibres. A. Confocal microscopy image from 

OPCs cultured on P(TMC-CL) fibres. Fibres can be seen in grey, nuclei are seen in light blue, MBP can be 

seen in blue, F-actin can be seen in green and tubulin in red. B. 3D image of myelinated P(TMC-CL) fibres. 

Arrows point to an ensheathead fibre segment C. Environmental Scanning Electron Microscopy (ESEM) 

images of OPCs cultured on P(TMC-CL) fibres. I. P(TMC-CL) fibre without cells. II. P(TMC-CL) fibres with 

oligodendrocytes. III. Detail of oligodendrocyte cell extending processes to several P(TMC-CL). Arrows point 

out cellular projections of the myelin membrane  

 

Moreover, a significantly higher number of MBP positive oligodendrocytes were found on 

the P(TMC-CL) fibres than on PDL coated glass control surfaces (Figure 3C).  

 

Reactive astrocytes inhibit OPC differentiation 

Monocultures of astrocytes within alginate hydrogels and OPCs on P(TMC-CL) fibres were 

initially performed in the presence of meningeal fibroblast conditioned medium (CM) 

(Figure 3A). As previously observed [13], astrocytes were activated by the presence of CM 

(data not shown). However, no significant alteration in the percentage of MBP positive 

cells was observed in OPCs cultured on P(TMC-CL) fibres in the presence of meningeal 

fibroblast CM (Figure 2C and 2D). Conversely, OPC differentiation ability was inhibited in 

the presence of 3D cultured reactive astrocytes (Figure 3E), with a significant reduction of 
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the percentage of MBP positive cells (Figure 3E). The percentage of NG2 positive cells 

was not affected (Figure 3F). 

 

Figure 3 – Differentiation ability of oligodendrocyte precursor cells differentiation cultured on P(TMC-CL) 

fibres. A. Schematic representation of the experiment. Oligodendrocyte precursor cells were cultured on top 

of P(TMC-CL) fibres and 3D cultured astrocytes (within alginate discs) were cultured on top, in a cell culture 

insert. 3D cultured astrocytes had been previously activated for 4 days, with meningeal fibroblasts conditioned 

medium. OPC medium is DMEM medium supplemented with transferrin, bovine serum albumin, putrescin, 

progesterone, thyroxine, sodium selenite, triiodo-l-thyroxine, insulin, PDGF and FGF; and OL medium is 

DMEM medium supplemented with transferrin, bovine serum albumin, putrescin, progesterone, thyroxine, 

sodium selenite, triiodo-l-thyroxine, insulin, PDGF and FBS. B. Representative images of OPCs co-cultured 
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with astrocytes. I. OPCs cultured on P(TMC-CL) fibres with control astrocytes. II. OPCs cultured on P(TMC-

CL) fibres with reactive astrocytes. C. Quantification of MBP positive oligodendrocytes in controls. D. 

Quantification of NG2 positive oligodendrocytes in controls. E. Quantification of MBP positive cells when OPCs 

were co-cultures with oligodendrocytes. F. Quantification of NG2 positive cells when OPCs were co-

cultured with oligodendrocytes (n= 10 radial fields; average ± SD) 

 

OPCs recover their differentiation ability after astrocyte phenotype rescue 

When the 3D cultured reactive astrocytes, co-cultured with OPCs, were treated for 48 hrs 

with ibuprofen (Figure 3A), a pharmacological inhibitor of RhoA, the number of MBP 

positive cells on the surface of the polymeric fibres increased significantly, to levels 

comparable to those from OPCs cultured with non-reactive astrocytes (Figure 3E). 

Additionally, when ibuprofen was added for 48 hrs to OPC monocultures there was no 

effect on OPC differentiation ability, as the percentages of MBP and NG2 positive cells 

remained unchanged (Figure 3E and 3F). 

 

DISCUSSION 

Existing models to study oligodendrocyte myelination processes with primary neuron 

cultures have three major limitations: time, cost and reproducibility. With electrospinning 

techniques, fibres can be rapidly produced in a standardized way with a range of physical 

properties depending on the polymer used. Furthermore, these can be configured into 

various diameters, orientations and even densities. The simplicity of this artificial axon 

system enables the monitoring of oligodendrocyte behaviour, namely differentiation 

capacity and membrane wrapping, in the absence of neuronal signals. This model further 

allows the study of oligodendrocyte interactions with CNS cells in the absence of neurons. 

Here we explore this artificial axon system to investigate if reactive astrocytes directly 

affect OPC differentiation ability and, consequently if astrocytes may constitute an 

interesting therapeutic target for remyelination. 

Myelinated axons of the CNS are known to have between 0.3 and 2 µm of diameter with 

an average diameter of 1 µm [20, 21]. As such, the selected P(TMC-CL) electrospun fibres, 

with a range of diameters between 0,4 µm and 3 µm, mimic a physiologically relevant mix 

of a CNS axon population. Remarkably, primary OPCs were able to adhere directly to bare 

polymeric fibres (Figure 2). To the best of our knowledge, this is the first report of the 

establishment of an artificial axon system without the need of an adhesive coating. 

Noteworthy, some authors have even considered that the use of a coating was essential 
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to promote myelin production in this model system [22]. The fact that these fibres do not 

need to be coated to support OPC adhesion and differentiation is of added value as several 

authors have already shown that many of the common coating molecules (e.g. laminin, 

fibronectin, etc) may affect several signalling transduction pathways [23, 24] in addition to 

those controlling cell adhesion. In fact, even poly(lysine), which has been for long used to 

promote non-specific cell adhesion, can activate the phosphatidylinositol 3-kinase (PI3K) 

signalling pathway [25], which is known to be involved in oligodendrocyte differentiation 

and CNS myelination [26-28]. Here, the number of cells differentiating into MBP 

expressing oligodendrocytes was significantly higher in the presence of P(TMC-CL) fibres 

than on glass control surfaces (Figure 3C). This suggests an important role of the physical 

3D cues in the framework of the processes of OPC differentiation and myelin production. 

These results further demonstrate that although neurons undoubtedly play an important 

role in the myelination process, they are not crucial for OPC differentiation and myelin 

expression. Additionally, in an in vitro context, the presence of an adhesive substrate is 

also not essential for myelination to occur. 

To test the hypothesis that astrocyte phenotype plays a direct role in OPC differentiation, 

OPCs were cultured in the presence of a tissue engineered glial scar, in which astrocytes 

are in a reactive state (Figure 3A). Astrocyte reactivity was achieved as we have previously 

described  [13], by culturing astrocytes within an 1% (w/v) alginate-based hydrogels in the 

presence of meningeal fibroblast conditioning medium. In these settings astrocytes 

increased gene expression of astrogliosis hallmark genes including Gfap and Vimentin, 

and increased production and excretion of ECM molecules such as CSPG and collagen. 

Here OPCs were cultured on P(TMC-CL) fibres while in the presence of astrocytes cultures 

within 3D hydrogels maintained in the top compartment of a transwell system. Our data 

indicates that reactive astrocytes significantly impair OPC differentiation ability when 

compared to control astrocytes (Figure 3). These results contradict what was suggested 

by Nash and co-workers [29] who stated that quiescent astrocytes inhibit myelination. 

Nevertheless, one must highlight that only a limited verification of the quiescent state was 

performed in that study. 

We have previously shown that RhoA is a pivotal modulator of astrocyte behaviour, with 

astrocyte reactivity being closely related to RhoA levels [13]. Chemical inhibition of RhoA 

with ibuprofen, a non-steroidal anti-inflammatory drug previously shown to block RhoA [30, 

31], was shown to reduce astrogliosis by recovering normal astrocyte phenotype [13]. 

Although ibuprofen did not affect OPCs differentiation ability directly (Figure 3E-F), 

treatment of reactive astrocytes with ibuprofen for 48 hours reverted its inhibitory effect on 

OPC differentiation, with the percentage of MBP positive cells increasing to values 
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comparable to the control (Figure 3E). These results reinforce astrocytes’ role in CNS 

myelination processes and highlight astrocytes’ potential as a therapeutic target in 

demyelinating diseases. 

 

CONCLUSIONS 

 

This work shows that reactive astrocytes significantly inhibit OPC differentiation, and that 

pharmacological inhibition of astrogliosis, enables recovery of OPC differentiation ability. 

This knowledge is relevant in the context of demyelinating neurodegenerative diseases, 

such as multiple sclerosis, where astrogliosis is known to occur together with myelination 

failure. We have further been able to uncouple axonal signalling from OPC differentiation 

and myelination events, further reinforcing the importance of physical cues for the 

myelination process. Finally, the proposed in vitro artificial axon system may be of added 

value for further studies aiming to dissect the molecular mechanisms of myelination, as by 

removing the neuronal cell contribution to the process it allows a more controlled 

manipulation of defined variables of the culture system, constituting a complementary 

approach to currently available neuron-glia cell culture methodologies. 
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SUPPLEMENTARY DATA 

 

 

Supplementary Figure 1 – Sequence of 3D images of myelinated P(TMC-CL) fibres. Fibres are shown in 

green and myelin is shown in red. A joystick image is on the right side of each image, showing the rotation’s 

direction of that image in relation to the first image. 
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The Central Nervous System (CNS) is complex and all its constituents - neurons, 

astrocytes, oligodendrocytes, microglia and extracellular matrix (ECM) - play important 

roles in the homeostasis of this system. 

An insult to the CNS usually results in astrogliosis and the formation of a glial scar. The 

glial scar is characterized by having a high number of reactive astrocytes and altered ECM 

composition, constituting a barrier to regeneration [1]. Although astrocytes have long been 

considered as central players in the glial scar formation, the dynamics of such process has 

not been uncovered yet. Furthermore, the perceived role of astrocytes has changed and 

evolved. Initially they were seen as only providing support to neurons and astrocytes. Now 

they are known to be complex, highly differentiated cells that make numerous essential 

contributions to normal function in the healthy CNS, like regulation of blood-flow, provision 

of energy metabolites to neurons, participation in synaptic function and plasticity, and 

maintenance of the extracellular balance of ions [2, 3]. To understand how the changes in 

a CNS lesion environment occur and how these condition the progress of the tissue 

response and ultimately of disease, requires a systematic approach, as scar formation 

results from a plethora of events. 

Given this, the work here presented first introduces a tissue engineered 3D glial scar. An 

alginate-based 3D culture model has been designed with mechanical properties similar to 

those of CNS tissue [4] and to further work as an inert backbone structure [5] allowing the 

control over system’s complexity, from which it is possible to recover the cultured cells for 

further biochemical and cellular assays. The glial scar environment was recreated by 

stimulating astrocytes with meningeal fibroblasts conditioned medium. The resulting tissue 

engineered glial scar presented numerous features of the glial scars as cells present the 

phenotype of scar astrocytes in terms of gene expression, increased ECM production and 

inhibition of axonal outgrowth. Overall this behavior was found to be influenced by alginate 

network mechanical properties.  

Envisaging the use of biomaterials as bridges to support axonal regeneration in spinal cord 

injuries, a poly(trymethylene-carbonate-co-ε-caprolactone) (P(TMC-CL)) based culture 

system with high caprolactone content was used to study mechanotransduction’s 

relevance and impact on axonal outgrowth and polarization. In the follow up of a spinal 

cord injury, axonal outgrowth inhibition has been mainly attributed to myelin debris that 

remains in the lesion area [6, 7]. In the described experimental setup, surface 

nanomechanical properties were also explored and found to modulate neuronal ability to 

extend axons, even under inhibitory conditions such as the presence of myelin debris. 
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These results further reinforce the idea that mechanical properties play a pivotal role in 

CNS lesion environments, and may be an important therapeutic target showing the 

importance of tuning the implantable material’s mechanical properties.  

At this stage, we hypothesized that if mechanotransduction affects important CNS events 

such as astrogliosis and axonal outgrowth, there are probably other complex events, which 

can be at least partially modulated via mechanotransduction. In fact, the combination of 

the developed tissue engineered 3D glial scar with a P(TMC-CL) based artificial axon 

culture system, has shown that mechanical stimuli can also affect OPC differentiation and 

myelination processes, addressing the cross-talk between astrocytes and OPCs. Reactive 

astrocytes were shown to negatively affect OPC differentiation and myelination processes. 

Nevertheless, when astrocyte phenotype was modulated to a non-activated state, OPC 

differentiation ability was recovered. Additionally, our data indicates that contrarily to what 

many authors have suggested [8] neurons and their axons are not crucial for OPCs to 

differentiate and myelinate. 

In all these studies, which specifically explored the role of mechanotransduction in 

astrocyte activation, in axonal outgrowth and in OPC differentiation and myelination 

capacity, the molecular mechanisms underlying these events were explored. RhoA was 

found to play a pivotal role in the mechanotransduction events, and its inhibition, either 

pharmacologically, with ibuprofen or chondroitinase ABC (chABC), or via substrate 

mechanical properties, significantly enhanced regenerative features.  

 Treatment with ibuprofen or chABC, drugs known to inhibit RhoA signaling [9, 10], 

reduced astrocyte reactivity.  

 P(TMC-CL) promoted axonal elongation via GSK3β signaling pathway. GSK3β 

phosphorylation and consequent inactivation, was found to regulate the interaction 

of CRMP4 and RhoA through CRMP4 de-phosphorylation.  

 Recovery of astrocyte phenotype with ibuprofen, in OPCs-reactive astrocytes co-

cultures, enabled the recovery of OPCs differentiation ability. 

Overall we have developed an in vitro 3D tissue engineered glial scar and an artificial axon 

culture system, which can be of added value in future neurodegenerative mechanism 

studies, as well as in drug screenings envisaging the development of new therapeutic 

approaches. Most importantly, we were able to show the importance of 

mechanotransduction in the CNS, particularly in neurons, astrocytes and OPCs. As such, 

mechanotransduction is here established as an interesting target for the development of 

new therapeutical combinatorial approaches to treat neurodegenerative diseases. 
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