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“The task is not so much to see what no one yet has seen, but to think what 

nobody yet has thought about that which everybody sees.”  
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May pollution restrict the invasive behaviour of the non- indigenous species 
Corbicula fluminea? 

 

Abstract 

The Asian Clam, Corbicula fluminea, is one of the worst 100 non-indigenous invasive 

species in Europe. This bivalve is well known for its high capacity of new habitats colonization, 

by the rapid and extensive dispersion that its populations in general have in colonized habitats 

and by the ecological and economic damage that its invasions often cause. Despite the several 

studies that have been made in recent decades, the factors influencing the invasive behaviour 

of C. fluminea are not yet understood. This knowledge is of utmost importance to prevent new 

invasions, and to control and mitigate the impacts of populations already established. To 

contribute to the progression of knowledge in the area, the central goal of this Thesis was to 

investigate if long-term exposure to pollution may restrict the invasive behaviour of C. fluminea. 

Long-term exposure to pollution may restrict the invasive behaviour of C. fluminea populations 

mainly through an increase of the population mortality rate and a decrease of the population 

health status with negative effects on its fitness, and/or direct negative effects on reproduction.  

These potential effects were investigated in the present study through a field approach taking 

advantage of C. fluminea populations of the tidal freshwater areas (TFA) of Minho (M-est) and 

Lima (L-est) Rivers (NW Iberian Peninsula). Such populations were selected because they have 

been showing a distinct invasive behaviour and M-est and L-est are neighbor estuaries having 

several comparable hydromorphological characteristics but also some differences including in 

environmental factors and chemical contamination. Three specific questions, corresponding to 

the specific objectives of the Thesis, were addressed: (i) May summer environmental conditions 

influence the health status of C. fluminea potentially contributing to the differences related with 

the summer mortality syndrome observed between M-est and L-est populations?(ii) Do metals 

concentration increase C. fluminea stress levels contributing to the invasive behaviour 

differences observed between M-est and L-est populations? (iii) Do C. fluminea populations 

from M-est and L-est have differences in their gonadal development cycle possibly contributing 

to the differences observed between their invasive behaviour?  
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To answer the first specific question, a monitoring study was carried out monthly from July to 

October in the TFA of M-est and L-est (Chapter II). In the M-est, three sampling sites along an 

upstream => downstream gradient were selected. In the L-est, due to the sparse distribution of 

the C. fluminea population, only one site was sampled, corresponding approximately to the 

most downstream site of the M-est. In each sampling site, twenty C. fluminea specimens were 

collected per month. Seven biological parameters, hereafter indicated as biomarkers, were 

determined in each individual, namely: the activities of the enzymes isocitrate dehydrogenase 

(IDH) and octopine dehydrogenase (ODH) involved in cellular energy production; esterases 

(EST) involved in biotransformation; glutathione S-transferases (GST) involved in 

biotransformation and anti-oxidant defences; glutathione reductase (GR) and catalase (CAT), 

involved in anti-oxidant defences; and lipid peroxidation levels (LPO) as indicative of oxidative 

damage. Fifteen water abiotic and sediment physico-chemical parameters were also 

determined per month and sampling site: water temperature, conductivity, pH, hardness and 

turbidity and dissolved oxygen, nitrates, nitrites, ammonium, phosphates, silica, phenol and iron 

concentrations and sediment chlorophylls and organic matter concentrations. Biomarkers data 

were integrated using the integrated biomarker response index (IBR) that indicates the stress 

levels of the animals, and biological and abiotic parameters data were integrated through a 

redundancy analysis. The main conclusions were: July and August are particularly stressful 

months for C. fluminea, especially in the most downstream sampling site of the M-est and in the 

L-est sampling site; the water concentration of ammonia and nutrients, temperature and 

conductivity were the parameters contributing most to C. fluminea increased stress; moreover, 

in July/August, C. fluminea is probably exposed to oxidative stress inducers, environmental 

contaminants biotransformed by EST and GST enzymes, and additional energy to cope with the 

stress induced by temperature and/or contaminants is required. Therefore, summer 

environmental conditions increase C. fluminea stress decreasing the populations health 

condition likely contributing to summer massive mortality events that have been described in 

several C. fluminea populations, including in the M-est one. However, the increased stress was 

also observed in the L-est population for which summer massive mortality events were not 

described so far. C. fluminea density likely plays a determinant role since, in areas with higher 

densities, oxygen and food consumption and production of ammonia would be higher which 

might be lethal to individuals who are already under thermal stress. Therefore, in the L-est 

population that has a low density, the phenomena, if occurring, may be of small magnitude. 
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Thus, although the summer increased stress leading to massive mortality events may influence 

the invasive behaviour of C. fluminea populations, it seems not be a determinant factor 

regarding the invasive behaviour differences between the M-est and L-est populations. 

 The second question was investigated through a monitoring study carried out seasonally 

over one year in the sampling sites previously indicated (Chapter III). In addition to the 

biomarkers and abiotic parameters used in the previous study, the concentrations of 13 metals 

were determined in the whole soft body of C. fluminea and in sediments. The main conclusions 

were: the L-est sampling site showed the highest total concentration of metals, followed by the 

most downstream site in the M-est; C. fluminea populations from the M-est and L-est 

accumulated seven metals (Cr, Cu, Zn, Se, As, Cd, Pb); the health condition of both C. fluminea 

populations shows variation along the seasons, with the higher stress levels being recorded in 

summer/autumn and the lowest in spring; high Mn, Al and Se concentrations in sediments were 

associated with higher stress levels in C. fluminea, especially in the L-est site. Overall, the 

results indicate that the relatively high concentrations of some metals in L-est sediments are 

negatively influencing the heath status of the C. fluminea population in this estuary. Therefore, 

the reduced health condition of the L-est C. fluminea relatively to the heath condition of the M-

est population, may contribute, at least partially, to the invasive behaviour differences between 

the two populations.  

The third specific question was addressed by comparing the gonadal development cycle of 

C. fluminea populations of M-est and L-est in relation to water and sediments parameters, and 

the concentration of metals in sediments and in the whole softy body of C. fluminea specimens. 

From October 2011 to November 2012, monthly, ten specimens of C. fluminea were collected at 

each sampling site for the gonadal development study. The visceral mass of each animal that 

contains the gonad tissue was separated, fixed, dehydrated and embedded in paraffin. 

Longitudinal sections with 5 µm thick (2 per visceral mass sample) were cut and stained with 

hematoxyline and eosine. Slides were observed by optical microscopy to determine the sex and 

the gonadal phase. The main conclusions were: in both estuaries, C. fluminea shows 

hermaphroditism all over the year but with higher percentages in spring which are associated 

with a higher quantity of food; It was observed a seasonal pattern in the relative percentage of 

completely filled follicles with both oocytes and sperm, which is higher in autumn and spring and 

indicates, most likely, two stronger reproductive periods; the follicles filled with only oocytes 

were associated with the concentration of nickel in sediments which could be impairing the 
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development of sperm; and no significant differences between the populations of M-est and L-

est in relation to gonadal development cycle were found. Overall, the findings of Chapter IV 

revealed that, despite pollution may impair male gonad development, the gonadal development 

cycle does not seem to be contributing to the observed differences in the invasive behaviour 

between populations of M-est and L-est.  

Overall, the findings of the present Thesis increase the knowledge on the factors 

contributing to the invasive behaviour of C. fluminea in TDF areas of temperate regions 

indicating that pollution may be restricting the invasive behaviour of C. fluminea by decreasing 

their health status. In addition, the present Thesis contributes to the knowledge necessary to 

achieve the goals posed by The European Union Convention on Biodiversity Strategy for 2020, 

to control or eradicate the priority species, by discussing the use of eradication and/or control 

measures in upstream sampling sites where there is, probably, higher reproductive output.  
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Poderá a poluição limitar o comportamento invasor da espécie não-indígena 
Corbicula fluminea?  

 

Resumo 

A amêijoa asiática, Corbicula fluminea, é uma das 100 piores espécies invasoras na 

Europa. Este bivalve é bem conhecido pela sua elevada capacidade de colonização de novos 

habitats, pela sua dispersão, em geral, rápida e extensiva nos habitats colonizados e pelos 

danos ecológicos e económicos que as suas invasões frequentemente causam. Apesar dos 

estudos que têm sido efetuados nas últimas décadas, os fatores que influenciam o 

comportamento invasor de C. fluminea ainda não são totalmente conhecidos. Este 

conhecimento é da maior importância para tentar evitar novas invasões, bem como para 

controlar e mitigar os impactos de populações já estabelecidas. Para contribuir para o avanço 

do conhecimento na área, o objetivo central da presente Tese foi investigar se a exposição a 

longo termo a poluição poderá estar a limitar o comportamento invasor de C. fluminea. 

Exposições longas a poluição podem limitar o comportamento invasor das populações de C. 

fluminea maioritariamente através um aumento da taxa de mortalidade e uma diminuição do 

estado de saúde da população com efeitos negativos na sua boa condição física e/ou na 

reprodução, seja direta ou indiretamente. Estes efeitos foram investigados nesta Tese através 

de uma abordagem de campo tirando partido de populações de C. fluminea de áreas de água 

doce de zonas estuarinas (TFA) dos Rios Minho (M-est) e Lima (L-est) (Noroeste da Península 

Ibérica). Estas populações foram escolhidas uma vez que têm vido a mostrar diferentes 

comportamentos invasores e o M-est e o L-est são estuários vizinhos com várias 

características hidromorfológicas comparáveis mas também com algumas diferenças, incluindo 

factores ambientais e contaminação. Três questões específicas, correspondentes aos 

objectivos específicos da Tese, foram abordadas: a) Poderão as condições ambientais 

associadas ao verão influenciar o estado de saúde de C. fluminea contribuindo para as 

diferenças relacionadas com a mortalidade em massa observada no verão entre as populações 

do M-est e o L-est; b) poderá a concentração de metais aumentar os níveis de stress de C. 

fluminea contribuindo para as diferenças observadas entre os comportamentos invasores das 

populações do M-est e do L-est?; c) haverá diferenças entre o ciclo de desenvolvimento 
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gonadal das populações do M-est e L-est que poderão estar a contribuir para as diferenças 

observadas entre os seus comportamentos invasores? 

Para responder á primeira questão, um estudo de monitorização foi levado a cabo 

mensalmente de Julho a Outubro nos TFA de M-est e L-est (Capítulo II). No M-est, foram 

selecionados 3 locais de amostragem ao longo de montante para jusante gradiente. No L-est, 

devido á sua distribuição esparsa da população de C. fluminea, apenas um local foi amostrado, 

correspondendo, aproximadamente, ao local mais a jusante do M-est. Em  cada local de 

amostragem, vinte indivíduos foram recolhidos por mês. Sete parâmetros biológicos, doravante 

indicados como biomarcadores, foram determinados em cada indivíduo, nomeadamente: as 

atividades das enzimas isocitrato desidrogenase (IDH) e octopina desidrogenase (ODH) 

envolvidas na produção celular de energia; esterases (EST) envolvidas na biotransformação; 

glutationa S-transferases (GST) envolvidas na biotransformação e defesas anti-oxidantes; 

glutationa reductase (GR) e catalase (CAT) envolvidas nas defesas anti-oxidantes; e níveis de 

peroxidação lipídica (LPO) indicativos de danos oxidativos. Quinze parâmetros abióticos da 

água e físico-químicos dos sediments foram também determinados por mês e local de 

amostragem: temperatura, conductividade, pH, dureza, e turbidez e as concentrações de 

oxigénio dissolvido, nitratos, nitritos, amónia, fosfatos, sílica, fenos e ferro da água e a 

concentração de clorofilas, matéria orgânica e granulometria dos sedimentos. Os dados dos 

biomarcadores foram integrados usando o índice de respostas integradas dos biomarcadores 

(IBR) que indica o nível de stress dos animais, e os parâmetros biológicos e ambientais foram 

integrados através de uma análise de redundância. As principais conclusões foram: Julho e 

Agosto são meses particularmente stressantes para C. fluminea, especialmente no local mais a 

jusante do M-est e no local selecionado em L-est; as concentrações de amónia e nutrientes na 

água, e a temperatura e condutividade da água foram os parâmetros que mais contribuíram 

para o aumento de stress de C. fluminea; ademais, em Julho/Agosto C. flumínea está, 

provavelmente, exposta indutores de stress oxidativo, contaminantes ambientais 

biotransformados pelas enzimas EST e GST, e necessita de energia adicional de forma a lidar 

com o stress induzido pela temperatura e/ou contaminantes. Portanto, as condições ambientais 

do verão aumentam o stress de C. fluminea diminuindo a condição de saúde  da população e 

provavelmente contribuindo para os eventos de mortalidade em massa que ocorrem no verão 

em várias populações de C. fluminea, incluindo a de M-est. No entanto, os elevados níveis de 

stress foram também observados na população de L-est para a qual eventos de mortalidade 
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em massa no verão não foram descritos até ao momento.  A densidade de C. fluminea 

desempenha um papel importante, uma vez que, em áreas com maior densidade, o consumo 

de oxigénio e alimento e a produção de amónia será maior o que poderá ser letal para os 

indivíduos que já estão sob stress termal. Portanto, na população de L-est que tem baixa 

densidade, este fenómeno, se ocorrer, poderá ser de uma magnitude pequena. Deste modo, 

apesar de o stress induzido pelo verão que leva a eventos de mortalidade em massa poder 

influenciar o comportamento invasor das populações de C. fluminea, parece que não será um 

factor determinante em relação ás diferenças encontradas entre os comportamentos invasores 

das populações de M-est e L-est.  

A segunda questão foi investigada através de uma monitorização sazonal durante um ano 

nos locais de amostragem indicados anteriormente (Capítulo III). Além dos biomarcadores e 

dos parêmtros abióticos da água e físico-químicos dos sedimentos avaliados no estudo 

anterior, a concentraçãoo de 13 metais foi determinada no corpo mole total de C. fluminea e 

nos sediementos de cada local amostrado. As conclusões principais foram: o local de 

amostragem do L-est mostrou maior concentração total de metais, seguido pelo local mais a 

jusante do M-est; as populações de C. fluminea de M-est e L-est acumularam sete metais (Cr, 

Cu, Zn, Se, As, Cd, Pb); a condição de saúde de ambas as populações de C. fluminea 

mostraram variação ao longo das estações do ano, com os maiores níveis de stress sendo 

observados no verão/outono e os menores na primavera; concentrações altas de Mn, Al e Se 

nos sedimentos foram associadas com maiores níveis de stress em C. fluminea, especialmente 

no local amostrado em L-est. No geral, os resultados indicam que concentrações relativamente 

altas de aguns metais nos sedimentos de L-est estão a influenciar negativamente a condição 

de saúde de C. fluminea neste estuário. Portanto, uma diminuição da condição de saúde da 

população de L-est relativamente á condição de saúde da população de M-est pode contribuir, 

pelo menos parcialmente, para as diferenças encontradas entre os comportamentos invasores 

das duas populações. 

A terceira questão específica foi abordada comparando o ciclo de desenvolvimento gonadal 

das populações de C. flumínea de M-est e L-est em relação a parâmetros da água e dos 

sedimentos e á concentração de metais nos sedimentos no corpo mole de C. fluminea. De 

Outubro de 2011 a Novembro de 2012, mensalmente, dez indivíduos de C. fluminea foram 

recolhidos em cada local de amostragem para o estudo do desenvolvimento gonadal. A massa 

visceral de cada animal, contendo o tecido gonadal, foi separada, fixada, desidratada e incluída 
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em parafina. Secções longitudinais com 5 µm de espessura (2 por amostra de massa virceral) 

foram cortados e corados com hematoxilina e eosina. As lâminas foram observadas num 

microscópio óptico para determinar o sexo e a fase gonadal. As conclusões principais foram: 

em ambos os estuários, C. flumínea mostra hermafroditismo durante todo o ano mas com uma 

maior percentagem na primavera associada a uma maior quantidade de alimento; foi 

observado um padrão sazonal na percentagem relativa de folículos completamente 

preenchidos com ambos oócitos e espermatozoides, que foi maior no outono e na primavera e 

indica, muito provavelmente, dois períodos reprodutores fortes; os folículos preenchidos 

apenas com oócitos foram associados com a concentração de níquel nos sedimentos o que 

poderá  estar a diminuir a produção de espermatozoides; e não foram encontradas diferenças 

significativas entre as populações do M-est e do L-est no que respeita o ciclo de 

desenvolvimento gonadal de C. fluminea. No geral, os descobertas do Capítulo IV revelam que, 

apesar da poluição poder diminuir o desenvolvimento de gónadas masculinas, o ciclo de 

desenvolvimento gonadal não parece estar a contribui para as diferenças observadas entre os 

comportamentos invasores das populações de M-est e L-est. 

No geral, os descobertas desta Tese aumentam o conhecimento sobre os factores que 

contribuem para o comportamento invasor de C. fluminea em TFAs de regions temperadas 

indicando que a poluição pode limitar o comportamento invasor de C. fluminea afectando o seu 

estado de saúde. Além disso, a presente Tese contribui para o conhecimento necessário para 

alcançar os objectivos propostos pela Convenção da União Europeia na estratétia de 

Biodiversidade para 2020, de controlar ou erradicar as espécies invasoras prioritáris, discutindo 

o uso de medidas de erradicação e/ou control em locais mais a montante onde se observa 

maior capacidade reproductora. 
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General Introduction 

1. The problem of bioinvasions 

Invasions of non-indigenous species (NIS) are recognized as one of the major 

threats to natural ecosystems, having ecological, economic and social 

consequences (European Commission 2013; Karatayev et al. 2007; Kolar and 

Lodge 2001; Larson et al. 2011; Ojaveer et al. 2014; Sakai et al. 2001). NIS are 

identified as harmful to native species and they can drastically impact the physical 

environment, the ecosystem functioning, the biodiversity, recreational activities, 

and human and animal health (Simberloff et al. 2013). Consequently, the focus of 

researchers and policy makers in bioinvasions has been growing progressively, 

being the subject considered as one of the most important concerning global 

environmental changes (Rahel and Olden 2008). The European Union Convention 

on Biodiversity Strategy (European Commission 2011) established that, by 2020, 

the NIS and their pathways should be identified and prioritized, being the priority 

species controlled or eradicated, and the pathways should be managed to prevent 

the introduction and establishment of new invasive species. The European Union, 

as a party to the Convention on Biological Diversity, decided that, to manage 

bioinvasions, a three-way approach should be applied (European Commission 

2014): prevention, eradication, and control (Figure I.1). Prevention requires 

measures that should reduce the probability of invasions before the beginning of 

the invasion process, such as borders control, risk analysis and application of 

directives defined by specialized legislation and regulation (Lockwood et al. 2007; 

European Commission 2014). Prevention measures are generally environmentally 

sustainable but more cost-effective than reactive strategies (Perrings 2005; 

Simberloff et al. 2013). Eradication measures are applied when an invasive 

species has already been introduced. To prevent future consequences, the early 

detection and the rapid eradication are the most cost-effective measures (Zavaleta 

et al. 2001). The early detection efforts may include an efficient communication 

system either to inform other areas that are also at risk of invasion and/or to 

exchange information on potential eradication strategies (European Commission 

2008) or, to detect dispersal trends, the regularly monitoring of a specific site 

(Lockwood et al. 2007). And control measures are applied in cases that 
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prevention, early detection and eradication measures fail or are not feasible 

(European Commission 2014). Control methods, generally, include integrated 

approaches using combinations of different methods, such as physical, 

mechanical, chemical and biological methods or the use of them individually 

(Mackie and Claudi 2010; Sousa et al. 2012). When control measures result in 

high mortality or removal, it is important to monitor the ecosystem complemented 

by preventive measures against reintroductions (Sousa et al. 2012).  

The term “invasive” refers to a species whose population is propagated quickly 

out of their geographical area and who present an impact on the receiver 

environment (Occhipinti-Ambrogi and Galil 2004). The invasive process is usually 

divided into three stages: introduction, establishment and spread (Figure I.1) 

(Engel et al. 2011; Hellmann et al. 2008; Lockwood et al. 2007). Introduction 

corresponds to the arrival of individuals to a given area outside of its native range 

and is dependent on the dispersal vector(s), the process duration, the conditions 

faced along the way, and the conditions of the individuals (Colautti and MacIsaac 

2004; Davis 2009). After being introduced in the new habitat, the species needs to 

survive and reproduce (establishment stage). So it can succeed in the 

establishment stage, the invasive species needs to find conditions within its 

tolerance range, to be able to get the necessary energy for maintenance, growth, 

and reproduction from the available resources, and to be able to reproduce 

(Brockerhoff et al. 2014). Finally, to be a successful invader, the introduced NIS 

must persist for subsequent generations, grow in abundance and disperse well 

beyond the original point of entry (Brockerhoff et al. 2014; Lockwood 2010). About 

half of all non-indigenous species documented, to date, have established self-

sustaining populations (Gollasch 2006). More than 1,000 non-indigenous aquatic 

species have been found in European waters (Nentwig 2007). The bivalve 

Corbicula fluminea is one of the most “efficient” worldwide freshwater invaders, 

listed among the 100 worst invasive alien species (both aquatic and terrestrial) in 

Europe (DAISIE 2015). 
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Figure I. 1. Invasion process illustrating the main stages of the invasion process, some limitations 

they have to overcome, and the management approaches that can be applied in each stage. 

 

 

2. Bioinvasions by Corbicula fluminea 

2.1. Occurrence 

C. fluminea is believed to be native from West to Southern Asia, Africa and 

some areas in eastern Australia (Morton et al. 1986). The global spreading of C. 

fluminea started in the 20th century (McMahon 1999; Karatayev et al. 2007). The 

first publish record of C. fluminea invasion was in 1938, in the Columbia River, 

Washington (USA) and since then, this NIS spread throughout 36 continental 

states of this country, Hawaii, and Northern and Central Mexico (reviewed in 

McMahon 1999). Considering the dates of the first studies reporting the presence 

of C. fluminea in some European ecosystems, its introduction may have occurred  

in the late 1970s, in the Dordogne River estuary (France) and the estuary of Tagus 

River in 1978 (Mouthon 1981). Currently is widely distributed in continental 

Europe: in Austria, Belgium, the Czech Republic, France, Germany, Hungary, 

Luxembourg, Netherlands, Poland, Portugal, Serbia, Spain, Switzerland and 

Ukraine (reviewed in Minchin 2014 and Hubenov et al. 2013).  After the first 

successful colonization in a region, in general the invasion and colonization of 

other ecosystems occurs rapidly likely through several dispersion ways, including 

anthropogenic activities (e.g. ballast water transport) and natural ones (e.g. 

transport by birds) (McMahon 2000). For example, after the first report of the 

Stage 

Challenges 
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Geographical 
borders 
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Management Prevention Eradication 
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species in the Tagus River estuary (Mouthon 1981), C. fluminea was reported to 

occur in the Minho River estuary (M-est) in 1981 (Araújo et al. 1993), and more 

recently in several other ecosystems such as the Lima River estuary (L-est) 

(Sousa et al. 2005), among others. At the present, in Portugal, C. fluminea 

populations occur in all the main hydrological basins except in those of Cávado, 

Ave, Leça and Lis Rivers (reviewed in Rosa et al. 2011). 

 

2.2. Habitat requirements of C. fluminea 

In general, C. fluminea shows preference for habitats with well-oxygenated 

sandier sediments containing high percentages of organic matter (Hakenkamp and 

Palmer 1999; Sousa et al. 2008b; Vaughn and Hakenkamp 2001). However, in 

invaded areas, it has been found in several types of ecosystems including 

oligotrophic and eutrophic streams, rivers including estuaries, and lakes, with 

different types of sediments such as oxygenated muddy, sandy, gravel and cobble 

ones (McMahon 2002; Minchin 2009). As other invasive species, C. fluminea is 

tolerant to a considerable variation of several environmental factors other than 

sediment type. For example, its tolerance regarding temperature variation is 

believed to be from 2ºC (Karatayev et al. 2005; Werner and Rothhaupt 2008) to 

37ºC (McMahon and Williams 1986). However, it has a limited tolerance to high 

salinity, especially juveniles (Byrne and McMahon 1994; Ilarri et al. 2010; Ilarri and 

Johnson and McMahon 1998; McMahon 1999; Sousa et al. 2008, 2011; Xiao et al. 

2014). High nutrient concentrations (Oliveira et al. 2015a) and low oxygen levels in 

the water are also not favorable conditions for C. fluminea, with respiration 

becoming impaired at water dissolved oxygen concentrations of 1 to 3 mg/L 

(Belanger et al. 1991; Johnson and McMahon 1998; Matthews and McMahon 

1999). C. fluminea is also sensitive to waters with pH below 5 and hardness below 

3 mg CaCO3/L (Mackie and Claudi 2010). Because the sensitivity of C. fluminea to 

several environmental factors is higher than the sensitivity of several of its native 

competitors (Reviewed in Sousa et al. 2008a), the high invasive success of this 

species, in general, relies more on its biological characteristics (e.g. high 

fecundity, rapid growth, small juvenile size, and the capacity for downstream 

dispersal) than on its physiological tolerance (Fureder and Pockl 2007; McMahon 

2002; Sousa et al. 2006a, 2008a; Vohmann et al. 2009). 
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2.3. C. fluminea reproduction 

C. fluminea is generally classified as a hermaphroditic (Figure I. 2) species  

(Park and Chung 2004) with a high reproductive capability estimated to be around 

70, 000 juveniles per adult per year (Aldridge and McMahon 1978).  

 
Figure I. 2. Histological section of C. fluminea gonads showing a) female and b) male follicles 

(hermaphroditism). 

 

 

In several ecosystems of temperate regions, C. fluminea has two main 

reproduction periods, one in the spring and the other in the autumn (McMahon 

1983; McMahon and Williams 1986; Morton 1977; Sousa et al. 2008a). However, 

the number of reproductive events may be different and seems to be influenced by 

water temperature (Hornbach 1992; Mouthon 2001b; Rajagopal et al. 2000) and 

the availability of food resources (Cataldo and Boltovskoy 1999; Mouthon 

2001a,b). The gametogenesis is continuous (Byrne et al. 2000). The fertilization 

occurs inside the paleal cavity (Sousa et al. 2008a) and the incubation of embryos 

occurs in the inner demibranchs (Figure I. 3 a) (Ilarri and Sousa 2011). The 

juveniles, have a D-shapped configuration, measure around 250 µm (anterior-

posterior shell length) (Figure I. 3 b) and are released to the water column 

(McMahon 2002).  

a 

b 
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Figure I. 3. C. fluminea a) inner demibranch with larvae and b) small juveniles recently released 

(completely formed with the common D-shaped configuration). 

 

Around four days of being released, juveniles attached to the sediments (Mackie 

and Claudi 2010) where they further develop. However, they can be released from 

sediments back to the water column by strong hydrodynamic events (McMahon 

1999). When juveniles are in the water column, especially in streams, rivers and 

estuaries, they can be dispersed for long distances, mainly downstream 

(McMahon 1999). In general, the maturation period occurs within the first three to 

six months when the shell length reaches about 6 to 10 mm  (anterior-posterior 

shell length) (Ilarri and Sousa 2011). 

 

2.4. C. fluminea feeding 

Filter feeding (Figure I. 4 a) clearly is the main process of food uptake by the 

Asian clam, complemented with by ‘pedal feeding’ in adults (Figure I. 4 b) 

(Cummings and Graf 2010; Hakenkamp and Palmer 1999; Hakenkamp et al. 

2001; Sousa et al. 2008a; Vaughn and Hakenkamp 2001; Yeager and Cherry 

1994). C. fluminea is considered a non-selective suspension feeder and it can 

effectively remove detritus, bacteria and algae from the water column (Boltovskoy 

et al. 1995; Lauritsen 1986; Way et al. 1990). 

a b 
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Figure I. 4. C. fluminea feeding structures: a) inhalant and exhalant opening (used for filter 

feeding) and b) foot (used for ‘pedal feeding’). 

 

2.5. Impacts of C. fluminea invasions 

The invasions by C. fluminea are well known by the negative ecological and 

economic impacts that they in general cause (Reviewed in Karatayev et al. 2007 

and Sousa et al. 2008a). The major ecological negative impacts that have been 

described are: reductions in the native bivalve abundance and biodiversity by 

reducing the available habitats (Vaughn and Hakenkamp 2001); competition, 

advantageously, for food resources and changes in the nutrient cycling because of 

their high filtration rates (Hakenkamp and Palmer 1999; McMahon 1991; Vaughn 

and Hakenkamp 2001); several impacts on habitat and benthic and planktonic 

structure, in biomineralization and oxygenation (Reviwed in Karatayev et al 2007); 

degradation of water quality by C. fluminea massive mortalities in highly invaded 

areas (Cherry et al. 2005; Cooper et al. 2005; Johnson and McMahon 1998; 

Sousa et al. 2012; Strayer 1999): and C. fluminea may also be a vector of 

parasites and pathogens (Sousa et al. 2008a). Besides ecological impacts, C. 

fluminea may also have negative economic impacts mainly related to their 

biofouling activity that usually results in damages on man-made structures 

(Minchin et al. 2002; Pimentel et al. 2005). C. fluminea impair and damage 

underwater structures and equipment by growing and establishing dense 

populations on it which will block pipes and equipment, reduce efficiency of water 

cooling systems, increase corrosion, impair safety hazards and disturb the industry 

operation because of the need for biofouling removal (reviewed in Rosa et al. 

2011). 

a b 



	

	 10	

Despite several negative ecological and economic impacts, positive impacts 

may also occur in systems invaded by this NIS (Reviewed in Karatayev et al. 2007 

and Sousa et al. 2008a): C. fluminea shells may serve as shelter and substrate for 

other species (Crooks 2002; Gutiérrez et al. 2003); it can be used as food 

resource (Cantanhêde et al. 2008; Fried and Emili 1987; McMahon 1991); it may 

reduce euthrophication processes and increase water clarity due to the high 

filtration rates (McMahon 2002; Phelps 1994); and it can be used as a bioindicator 

species for ecotoxicological studies (Cataldo et al. 2001; Doherty 1990; Inza et al. 

1997; Takabe et al. 2011). 

 

2.6. Factors affecting the invasive behaviour of C. fluminea 

The introduction and dispersion of C. fluminea in aquatic ecosystems is, most 

likely, a result of human activities such as their use as food resource or as fish 

bait, aquarium releases, transport of juveniles and/or adults as a tourist curiosity, 

their transport in ballast water, or the juvenile byssal attachment to boats 

(Darrigran 2002; Lee et al. 2005; McMahon 2000, 2002). C. fluminea has also 

great capacities for natural dispersion. The occurrence of both pelagic and benthic 

life stages enables C. fluminea to spread over long distances on the feet or 

feathers of waterfowl and/or by fluvial or tidal currents (Figuerola and Green 2002; 

McMahon 2000, 2002). In addition, the production of long mucous threads 

secreted in response to water current stimuli indicate that flotation assisted by 

mucous seems to be an important mechanism of dispersal (Prezant and 

Chalermwat 1984). 

Three main types of factors have been considered to have a major influence on 

the success of a bioinvasion: genetic variability and phenotypic plasticity of the 

NIS, its tolerance to environmental conditions of the new habitat (Byers 2002) and 

competitive capability of the NIS versus native species (Byers 2002; Facon et al. 

2006; Lee 2002). Despite this knowledge and the considerable amount of studies 

on C. fluminea, the main individual factors influencing its invasive behaviour and 

their mode of action are not known (Sousa et al. 2008a). Low genetic variability 

may lead to altered fitness over time and decrease the capability of populations to 

adapt to the environmental conditions of the new habitat (Byers 2002). Introduced 

individuals of C. fluminea show low levels of genetic diversity (Schmidlin et al. 
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2012; Simard et al. 2012) because of a relatively rare mode of asexual 

reproduction called androgenesis (Hedtke et al. 2008; Komaru et al. 1998). 

However, despite low genetic diversity, asexual reproduction is a common mean 

to become invasive (Roman and Darling 2007) and androgenesis play an 

important role in the invasive success of C. fluminea (Pigneur et al. 2011). 

Regardless their low genetic diversity, C. fluminea show high phenotypic plasticity 

(Lee et al. 2005; Pfenninger et al. 2002; Renard et al. 2000) that may play an 

important role in the adaptation of new environments (Pigneur et al. 2011; Sousa 

et al. 2007b).  

C. fluminea is very sensitive to several environmental factors (Reviewed in 

Sousa et al. 2008a). For example, C. fluminea population density and size 

structure were influenced by abiotic conditions such as salinity fluctuations, 

nutrients and environmental contaminants in L-est located in the NW of Portugal 

(Sousa et al., 2006a) however salinity, temperature, calcium and oxygen 

concentration and pH do not seem to limit the spread of the species in the lake 

Maggiore in Italy (Kamburska et al. 2013). Therefore, environmental contaminants 

seem to be an important factor limiting the invasive behaviour of C. fluminea.  

 

2.7. Effects of environmental contaminants on C. fluminea 

Several studies have demonstrated the adverse effects of various environmental 

contaminants on C. fluminea (reviewed in Doherty and Cherry 1988, Doherty 

1990). Inadequate water quality induced by strong sources of industrial and 

sewage effluents was observed to be responsible for 100% of mortality among C. 

fluminea newborns, for dwarfed adult clams, and for the lack of discernible cohorts 

in the delta of the Paraná River in Argentina (Boltovskoy et al. 1997). Aquatic 

contamination was also found to be responsible for dwarfed C. fluminea 

individuals (e.g., Belanger et al. 1991; Britton and Morton 1982; Fritz and Lutz 

1986), low population densities (Belanger et al. 1990, 1991), decreasing growth 

rates and poor condition index (Cataldo et al. 2001). Juveniles of C. fluminea were 

shown to be extremely sensitive to cooper exhibiting growth inhibitions when 

exposed to concentrations as low as 0.0084 mg/L and a high mortality rate at 

0.0139 mg Cu/L (Belanger et al. 1990). Zinc was also found to be strongly harmful 
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for C. fluminea’s survival, osmoregulation, cellulolytic activity and growth (Belanger 

et al. 1986; Farris et al. 1988). Size-dependent C. fluminea metabolic changes 

related to a perturbed amino acid and energy metabolism were observed after 

short term exposure to environmentally relevant concentrations of a cadmium- zinc 

mixture (1.5 mg/kg of cadmium and 350 mg/kg of zinc) in the sediment but no 

mortality neither reduced condition index were observed (Spann et al. 2011). A 3-

week exposure to 0.025 mg/L of cadmium in water was found to induce mortality 

and significant reductions in cellulase activity preceded mortality, whereas 

significant reductions of DNA strand lengths in C. fluminea individuals exposed to 

lower cadmium treatments (0.003 and 0.006 mg/Kg) preceded of cellulolytic 

enzyme activity (Barfield et al. 2001). Histopathological alterations were also 

observed after C. fluminea exposure to pollutants such as Aroclor 1260, a 

polychlorinated biphenyl compound, that caused significant gonadal atrophy, 

accumulation of brown cells, and inflammation and necrosis in digestive glands 

and foot tissues (Lehmann et al. 2007) and diamond nanoparticles that induce 

vacuolization and thickening of digestive gland cells (Cid et al. 2015). Several 

changes on biochemical biomarkers related to oxidative stress, detoxification 

mechanisms, neurotransmission and energetic metabolism were also observed on 

C. fluminea exposed to pollutants (See Table I. 1). Oxidative stress is known to 

have a severe impact in cell’s metabolism and viability with significant 

consequences at the organ and organism levels and will likely result in population 

wide effects, including reduced fecundity, organ injury and chronic maladies 

(Lehmann et al. 2007;) which might affect the invasive behaviour of C. fluminea. A 

decreased health status related with increased oxidative stress and damage, 

detoxification mechanisms and neurotransmission impairments may have negative 

effects on C. fluminea fitness, and/or direct negative effects on reproduction that 

will probably reduce the ability of C. fluminea to establish in new environments 

and/or decreased their dispersion rates.  
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Table I. 1. Responses of biochemical biomarkers obtained after Corbicula fluminea exposure to contaminants. + indicate significant inductions, - indicate 

significant inhibitions and = indicate no significant differences from respectively controls. Abbreviations are corresponding to cholinesterase (ChE), octopine 

dehydrogenase (ODH), isocitrate dehydrogenase (IDH), glutathione reductase (GR), glutathione S-transferase (GST) pi-class glutathione S-transferase(pi-

GST) and glutathione S-transferase using ethacrynic acid (GST/EA), catalase (CAT), glutathione peroxidase (GPx), lipid peroxidation (LPO), metallothioneins 

(MT), multi-xenobiotic resistance protein (MXR), selinium dependent glutathione peroxidase (Se-GPx), peroxided lipids (PL), peroxidizable lipids (PLI), net 

peroxidation (NP), cytrochrome P450 (P450), cytrochrome P418 (P418), NADH-cytrochrome P450 reductase (NADH-red), NADPH- cytrochrome P450 

reductase (NADPH-red), ethoxyresorufin-O-deethylase (EROD), oxidized glutathione and reduced and oxidized glutathione ration (GSH/GSSG).  

 

 
 

Exposure Tissue Time of 
exposure Concentration 

Biomarker response Reference 

ChE ODH IDH GR GST CAT GPx LPO MT MXR Se-
GPx   

Mercury 
(µg/L) 

Gills (Except for ChE (adductor muscle) 
and ODH and IDH (foot muscle)) 96h 

31 = = = = = = = = n.a n.a n.a  

(Oliveira et 
al. 2015b) 

63 = = = = + = = = n.a n.a n.a  

125 = = = = + = = + n.a n.a n.a  

250 = = = = + = = + n.a n.a n.a  

500 = = - - = + - + n.a n.a n.a  

Cadmium  
(µg/L) 

Gills 

3d 

30 

n.a n.a n.a = n.a = = = n.a + -  

Legeay et 
al. 2005 

7d n.a n.a n.a - n.a = = = + + =  

14d n.a n.a n.a = n.a = = = + + -  

Cadmium  
(µg/L) + 
Hypoxia 

3d n.a n.a n.a = n.a = - + n.a + -  
7d n.a n.a n.a - n.a = = + + + =  

14d n.a n.a n.a + n.a = = + + + -  



	

	 14	

 
 

Table I. 1. (Continued…) 

 

Exposure Tissue Time of exposure Concentration Biomarker response Reference 
CAT GR GST LPO SOD 

Paracetamol  
(mg/L) 

Body 

96h 

0.05 = = = = n.a. 

(Brandão et al. 2011) 

0.48 = - - = n.a. 
4.82 = - - + n.a. 

532.78 = = - + n.a. 

Paracetamol  
(µg/L) 28d 

3.88 = = = - n.a. 

7.74 = = = - n.a. 

15.49 = = = = n.a. 

30.98 = = - = n.a. 

61.95 = = - + n.a 

Cooper  
(mg/L) Gills 

5d 

0.05 = = n.a. n.a. + 

(Netpae et al. 2012) 

0.1 = + n.a. n.a. + 

0.5 = + n.a. n.a. + 

10d 
0.05 = = n.a. n.a. + 
0.1 = + n.a. n.a. + 
0.5 + + n.a. n.a. + 

20d 
0.05 + = n.a. n.a. + 
0.1 + + n.a. n.a. + 
0.5 + + n.a n.a + 

30d 
0.05 + = n.a. n.a. + 
0.1 + + n.a. n.a. + 
0.5 + + n.a n.a + 
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Table I. 1. (Continued…) 

 
 

Exposure Tissue Time of 
exposure Concentration 

Biomarker response 
Reference 

CAT PL PLI NP P450 P418 NADH-
red ChE GST GST/ 

EA 
NADPH-

red EROD SOD Se-
GPX 

Pi-
GST MT 

Trichloro 
-ethylene  

(mg/L) Digestive gland 
except for 

EROD, P450 
and P418 

(Body) 

5d 

1.2 + + = = = = = = = = = = n.a. n.a. n.a. n.a. 

(Vidal et 
al. 2001) 

3.6 + = = = + + = = = = = = n.a. n.a. n.a. n.a. 

14 = = = = + = = = = = = = n.a. n.a. n.a. n.a. 

69.4 = = = = + = = = = = = = n.a. n.a. n.a. n.a. 

Toluene 
 (mg/L) 

4.3 + + + + = = = = = = = = n.a. n.a. n.a. n.a. 

8.2 = = + + = = = = = = = = n.a. n.a. n.a. n.a. 

28.2 = = = = + + = = = = = = n.a. n.a. n.a. n.a. 

36.4 = = = = = = = = = = = = n.a. n.a. n.a. n.a. 

Cooper  
(µg/L) 

Gills 

12h 

10 - n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. = + - + 

(Bigot et 
al. 2011) 

 

50 - n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. - 
 = = - 

Digestive gland 
10 - n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. - - + - 

50 = n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. + = + + 

Cadmium  
(µg/L) 

Gills 
2 - n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. - + - = 

10 - n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. = + - = 
50 - n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. - + - - 

Digestive gland 
2 = n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. = = = + 

10 - n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. + = + + 
50 - n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. = = = + 

Cooper+ 
Cadmium  

(µg/L) 

Gills 
10 - n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. = + - - 
50 - n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. - + - - 

Digestive gland 
10 = n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. = = + + 
50 - n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. - - + + 
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Table I. 1. (Continued…) 

Exposure Tissue Time of 
exposure Concentration 

Biomarker response 
Reference 

EROD GST LPO MT SOD CAT GSSG GSH/GSSG 

Domestic 
landfill 

leachate 
(%) 

Gills 

5d 

2 - = + = n.a. n.a. n.a. n.a. 

(Oliveira et 
al. 2014) 

3 - = = = n.a. n.a. n.a. n.a. 

6 - = = = n.a. n.a. n.a. n.a. 

10 - + + = n.a. n.a. n.a. n.a. 

15d 

2 = = = = n.a. n.a. n.a. n.a. 

3 - = = + n.a. n.a. n.a. n.a. 

6 = = = = n.a. n.a. n.a. n.a. 

10 = = = = n.a. n.a. n.a. n.a. 

Digestive 
gland 

5d 

2 = = + n.a. n.a n.a n.a n.a 

3 = = + n.a. n.a. n.a. n.a. n.a. 

6 = = = n.a. n.a. n.a. n.a. n.a. 

10 = = = n.a. n.a n.a n.a n.a 

15d 

2 = = + n.a. n.a n.a n.a n.a 

3 = = + n.a. n.a. n.a. n.a. n.a. 

6 = = = n.a. n.a. n.a. n.a. n.a. 

10 + = n.a. n.a. n.a n.a n.a n.a 

Cadmium 
(mg Kg/ 

sediments 
d.w.) 

Digestive 
gland 28d 

0.72 n.a. n.a = = = = = = 

(Ren et al. 
2013) 

0.91 n.a. n.a. = = - = = = 

1.62 n.a. n.a. = = - = + = 

2.59 n.a. n.a + = - + + - 

11.2 n.a. n.a + + = = + - 

20.4 n.a. n.a. + + - = = = 

40.6 n.a. n.a. = = - - = = 
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3. Corbicula fluminea invasive behaviour: A case study in Minho and 

Lima estuaries 

The invasive bivalves of the genus Corbicula are one of the most 

widespread species in terms of both abundance and biomass (Byrne et al. 

2000; Pérez-Quintero 2008). There are several studies about the life-history 

traits of C. fluminea in invaded areas (North-America: Aldridge and McMahon 

1978; South-America: Cataldo and Boltovskoy 1998; Europe: Rajagopal et al. 

2000; Sousa et al. 2008) and all authors agree that the relatively short 

lifespan, early sexual maturity (at a shell length of 6–10 mm), rapid growth, 

high fecundity, small juvenile size, and the capacity for downstream dispersal 

of C. fluminea make it highly invasive (McMahon 2002; Sousa et al. 2006a; 

Fureder and Pockl 2007; Vohmann et al. 2009). However, in the north of 

Portugal there are two invaded rivers, Minho and Lima, where C. fluminea 

population invasive behaviour differ substantially, despite the relatively short 

geographical distance between them and the hydrological and geological 

similarities (Sousa et al. 2006a; Sousa et al. 2008d). Araujo et al. (1993) 

observed for the first time, in Minho estuary in 1989, a few juveniles of C. 

fluminea that less than one year after increased in number and area occupied. 

In 1991, C. fluminea already reached 8 to 24 Km upstream. Since then the 

Asian clam has become a major benthic component in terms of abundance 

and biomass (contributing with more than 90% of the macrobenthic biomass 

in the estuarine area (Sousa et al. 2008d) having more than 4000 individuals 

m-2 and more than 400 g AFDW m-2, respectively (Sousa et al. 2005). In 

Lima estuary, C. fluminea was observed for the first time in 2002 in upper 

estuarine areas (Sousa et al. 2006b) and since then their occurrence has 

been constant but at low densities in a limited intertidal area of the Lima 

estuary and was rarely found in the subtidal zone (Sousa et al. 2006a). In the 

Lima estuary the abundance and biomass per site never exceeded 60 

individuals m-2 and 26 g AFDW m-2, respectively (Sousa et al. 2006a; Sousa 

et al. 2006b). Sousa et al. (2006a; 2008d) studied the factors influencing the 

occurrence and distribution of this invasive species in these two estuaries. In 

Minho estuary (Sousa et al. 2008d) the C. fluminea higher biomasses are 
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supported by higher values of redox potential, water hardness, organic matter 

and very coarse and fine sands and lower values of nutrient concentrations 

(namely nitrates and ammonia). In Lima Estuary (Sousa et al. 2006a) the 

author suggests a lag time phase due to its more recent introduction and, 

since they did not find individuals with a shell length less than 13 mm, due to 

a deficient recruitment (reduced spawning and/or high mortality rate of larvae 

and/or juveniles). Other parameter that seems to be highly influencing the 

success and velocity of the invasion in Lima estuary is the salinity that has 

increased throughout the first years of the invasion. The authors further pose 

alternative hypothesis such as nutrient enrichment, higher heavy metals 

concentration and other contaminants and genetic characteristics. However, 

in a later study, the authors show that there are no genetic differences 

between the two populations and state that both populations belong to the 

species C. fluminea (Sousa et al. 2007). However their studies were not 

sufficient to get a definitive answer about the factors contributing to the 

distinct invasive behaviour presented. 

Given the great environmental similarities between these two adjacent 

Portuguese estuaries it was expected a higher invasive behaviour in the Lima 

estuary. One of the hypotheses raised by Sousa et al. (2006a) is that heavy 

metals and other contaminants concentration might be limiting the invasive 

behaviour of the Asian clam in Lima estuary.  

Minho and Lima are international rivers draining hydrological basins of 

10,080 km2 and 2,250 km2, respectively (Bettencourt et al. 2004).  

The Minho River is located on both sides of the border between northern 

Portugal and Spain. The estuary is considered as one of the least 

contaminated along the Portuguese coast, having relatively low levels of 

environmental contamination and it was used as a reference site in previous 

studies (Cairrão et al. 2004; Moreira et al. 2006; Quintaneiro et al. 2006; 

Monteiro et al. 2007; Sousa et al. 2008; Gravato et al. 2010; Guimarães et al. 

2012). However, in since the last decade, several contaminants with dioxin- 

and estrogen-like properties, including PAHs, organochlorine pesticides and 

natural estrogens, have been quantified in the river (Table I. 2) associated 

with industrial and agricultural activities in both upstream and downstream 
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and with boat traffic downstream in the river (Cunha et al. 2005; Rodrigues et 

al. 2006a; Vioque-Fernández et al. 2007; Carvalho et al. 2009; Reis et al. 

2009; Gravato et al. 2010; Mil-Homens et al. 2013b). Lima River, also located 

in the northwest of Portugal, in comparison with other Portuguese rivers, 

receives low levels of urban and industrial effluent inputs, but the amount of 

total suspended solids, phosphorus and nitrogen reaching the river basin is 3-

fold higher compared to that reaching the Minho River basin (Guerreiro and 

Pereira, 2002). Additionally, the river system is considerably impacted by 

anthropogenic activities, mainly due to the harbour of Viana do Castelo, one 

of the largest cities in northern Portugal (47,000 inhabitants) located on the 

left bank of the river, a paper mill and discharges of urban origin that are 

released without prior treatment (INAG, 2000). Several contaminants were 

since the last decade also quantified in this river basin (Table I. 2) (Cunha et 

al. 2005; Rodrigues et al. 2006a; Carvalho et al. 2009; Gravato et al. 2010).  

Despite the amount of agricultural activity in the hydrographical basin of the 

river, Minho estuary exhibited relatively low levels of different organochlorine 

pesticides, however, upstream, sediments revealed concentrations of DDT, 

DDD, dieldrin, endrin and lindane (Carvalho et al., 2009) that can induce 

adverse estrogenic effects (Shanle and Xu 2010). Concentrations of 

organochlorine pesticides are generally lower in Lima estuary, except for 

αHCH and heptachlor, that are in the same range and aldrin and heptachlor 

epoxide that showed higher levels in Lima as compared to Minho estuary 

(Carvalho et al. 2009). Higher concentrations upstream in Minho estuary may 

be due to inputs from the Louro River, since, generally, Spanish tributaries 

have a significant effect in Minho River physicochemical water quality (Santos 

et al. 2013). Louro River is the most polluted tributary of Minho (Table I. 3), 

since it receives untreated or insufficiently treated industrial and municipal 

wastewaters from the Tui (a highly industrialized city in Spain) industrial area 

containing essentially metals but also high levels of organic matter and high 

concentrations of pesticides (Filgueiras et al. 2004; Concha-Graña et al. 2006; 

Lavilla et al. 2010; Planelló et al. 2013; Santos et al. 2013). Concerning PAHs 

and metals, concentrations are usually lower in Minho estuary as compared to 

Lima (Gravato et al. 2010). Yet, the concentrations of major contaminants 

considerably increase, in summer as compared to winter, to the same levels 
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as reported in Lima or sometimes to even higher levels (Table I. 2) (Reis et al. 

2009; Gravato et al. 2010; Mil-Homens et al. 2013b), suggesting a moderate 

contamination in this river system.  
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Table I. 2. Concentrations of several groups of contaminants in different matrices that have been quantified in Minho and Lima rivers by other research 
groups. 

Contaminants 
 River  

Matrices Season Group of compounds References 
Minho Upstream Minho Downstream Lima 

αHCH (ng/g) 1.9  ± 0.2 2.9  ±  0.4 2.1  ±  0.2 

Sediments Spring 2007-2008 Organochlorine pesticides Carvalho et al. 2009 

Lindane  (ng/g) 2.3  ±  0.3 2.3  ±  0.1 1.1  ±  0.2 
Heptachlor  (ng/g) 3.7  ±  0.4 1.9  ±  0.1 2.9  ±  0.4 

Aldrin  (ng/g) 0.29  ±  0.01 0.08  ±  0.01 0.42  ±  0.02 
Heptachlor epoxide  (ng/g) 0.18  ± 0.02 0.23  ±  0.04 0.25  ±  0.02 

Endosulfan I  (ng/g) 1.26  ±  0.03 1.1  ±  0.2 0.68  ±  0.04 
DDE  (ng/g) 1.25  ±  0.06 0.35  ±  0.05 0.25  ±  0.03 

Dieldrin  (ng/g) 0.9  ±  0.1 0.73  ±  0.07 0.26  ±  0.05 
Endrin  (ng/g) 1.5  ±  0.3 1.2  ±  0.2 0.63  ±  0.03 
DDD  (ng/g) 2.6  ±  0.2 0.42  ±  0.04 0.29  ±  0.05 
DDT  (ng/g) 2  ±  0.3 1.44  ±  0.07 0.27  ±  0.03 

Methoxydolor  (ng/g) 2  ±  0.2 1.15  ±  0.04 1  ±  0.1 
PFOS (ng/g WW) 77.24  ±  21.4 76.98  ±  14.81 Mussels   ----------------- Fluorosurfactant Cunha et al. 2005 

17β-estradiol (pg/L) 130 160 Water Autumn 2005 Natural estrogens Rodrigues et al. 2006 Estrone (pg/L) 110 183 
Acenaphthylene  (ng/g) 0.21  ± 0.05 0.28 ± 0.03 

Sediments Winter 2006 PAHs Gravato et al. 2010 

Fluorene (ng/g) 0.57  ± 0.06 0.82  ± 0.20 
Phenantrene (ng/g) 0.99  ± 0.19 2.21  ± 0.60 
Anthracene (ng/g) 0.14  ± 0.02 0.27  ± 0.06 

Fluoranthene (ng/g) 0.78  ± 0.04 2.3  ± 0.87 
Pyrene (ng/g) 0.77  ± 0.10 2.1  ± 0.72 

Benzo[a]anthracene (ng/g) 0.06  ± 0.06 0.65  ± 0.35 
Chrysene (ng/g) 0.21  ± 0.13 0.75  ± 0.28 

Benzo[b]fluoranthrene (ng/g) <0.4 1.36  ± 0.67 
Benzo[k]fluoranthrene (ng/g) <0.4 1.66  ± 0.86 

Benzo[e]pyrene (ng/g) <0.4 1.44  ± 0.99 
Benzo[a]pyrene (ng/g) <0.6 0.6  ± 0.64 

Perylene (ng/g) <0.5 3.09  ± 0.42 
Indenol[1,2,3-cd]pyrene (ng/g) <0.5 0.19  ± 0.33 
Dibenzo[a,h]anthracene (ng/g) <0.5 <0.5 

Benzo[g,h,l]perylene (ng/g) <0.7 <0.7 
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Table I. 2. (continued) 
	

Contaminants 
Rivers 

Matrices Season Group of compounds References 
Minho Upstream Minho 

Downstream 
River 
Lima 

Cd  (µg/g) 0.01  ± 0.01 0.04  ± 0.01     

Metals 

  
Cr (µg/g) 1.57 ± 0.12 6.43  ± 0.51       
Cu  (µg/g) 1.73  ± 1.1 3.63  ± 0.55       
Hg (µg/g) <0.036 <0.036 Sediments Winter 2006 Gravato et al. 2010  
Ni (µg/g) 2.7  ± 0.3 5.63  ± 0.35       
Pb (µg/g) 1.8  ± 0.35 5.27  ± 0.31       
Zn (µg/g) <6.7 22  ± 2.65       
V (µg/g) <2.4 6.87  ± 0.81       

2,4,6-trichlorophenol (TCP) (freqª (%); ng/L) 45; 0.4-3.8   ----------------- 

Water 

March 2003  

Phenolic derivatives 

Almeida et al. 2007 

pentachlorophenol (PCP) (freqª (%); ng/L) 55; 0.5-0.7^d   ----------------- 
Chlorothalonil (freqª (%); ng/L) 41;  <0.1   ----------------- 

Biphenyl(freqª (%); ng/L) 68; <0.1   ----------------- PAHs Naphtalene(freqª (%); ng/L) 23; <0.1   ----------------- 
Bisphenol A  (freqª (%); ng/g, dry wt) 77; 0.1-0.6   ----------------- 

Sediments Phenolic derivatives TCP  (freqª (%); ng/g, dry wt) 100; 0.2-0.4   ----------------- 
2,3,4,5-tetrachlorophenol (TeCP)  (freqª (%); ng/g, dry wt) 100; 22.2-34.7   ----------------- 

PCP (freqª (%); ng/g, dry wt) 92; 51.0-78.6   ----------------- 
Al (%) 0.82 ± 0.06 0.9 ± 0.2   ----------------- 

Sediments September 2005 Metals Reis et al. 2009 

Cr (µg/g) 7 ± 2 9 ± 3   ----------------- 
Cu  (µg/g) 8 ± 2 6.7 ± 0.7   ----------------- 

Fe (%) 1.4 ± 0.4 1.6 ± 0.4   ----------------- 
Mn (µg/g) 198 ± 11 149 ± 26   ----------------- 
Ni (µg/g) 3.6 ± 0.4 4 ± 1   ----------------- 
Pb (µg/g) 4.8 ± 0.2 5 ± 2   ----------------- 
Zn (µg/g) 41 ± 6 47 ± 2   ----------------- 

Al (%) 4.63±0.13   ----------------- 

Surface 
Sediments August 2009 Metals Mil-Homens et al. 

2013b 

Li (µg/g) 47.04±1.88   ----------------- 
As (µg/g) 10.72±1.52   ----------------- 
Cr (µg/g) 23.5±1.63   ----------------- 
Cu (µg/g) 5.95±0.70   ----------------- 
Hg (µg/g) 0.01±0.00   ----------------- 
Pb (µg/g) 14.91±0.21   ----------------- 
Sn (µg/g) 4.53±0.12   ----------------- 
Zn (µg/g) 43.86±3.23   ----------------- 
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Table I. 3. Concentrations of several groups of contaminants that have been quantified in 
Louro River, a highly contaminated affluent of Minho River, in different matrices, by chemical 
analysis in different studies 

Contaminants 
Louro River 

Group of compounds Matrices Month References 
Middle Downstream 

Cd (mg/Kg) 0.550±0.027 1.09±0.11 

Metals Sediments 
May-
July 
2001 

Filgueiras 
et al. 2004 

Cr (mg/Kg) 78.1±2.9 103±4 
Cu (mg/Kg) 56.8±2.5 54.8±1.2 
Ni (mg/Kg) 32.5±2.2 45.6±0.9 
Pb (mg/Kg) 73.3±8.7 65.8±3.1 
SiO2 (%) 61.4±0.2 61.3±0.1 

Al2O3 (%) 18.6 ±0.1 16.1±0.3 
Fe2O3 (%) 5.50±0.06 4.66±0.06 

MnO (mg/Kg) 913±1 827±25 
TiO2 (%) 1.31±0.01 1.53±0.01 

CaO (mg/Kg) 6980±14 1.26±0.04 
MgO (%) 1.58±0.01 1.18±0.08 
Na2O (%) 1.93±0.16 2.90±0.03 
K2O (%) 3.60±0.01 3.44±0.06 

P2O3 (mg/Kg) 1920±184 3995±86 
As (mg/Kg) 4.25±0.12 6.77±1.06 

Metals 
Insect 
larvae 

tissues* 

May 
2007 

Lavilla et al. 
2010 

Cd (mg/Kg) 0.268±0.013 0.35±0.05 
Cr (mg/Kg) 1.28±0.05 1.90±0.79 
Cu (mg/Kg) 19.8±1.0 27.63±9.29 
Fe (mg/Kg) 1560±70 2286.67±618.64 
Mn (mg/Kg) 169±8 40.57±7.08 
Ni (mg/Kg) 2.77±0.11 3.91±2.73 
Pb (mg/Kg) 1.19±0.05 1.95±0.30 
Zn (mg/Kg) 80±4 112.23±43.24 
αHCH (ng/g) 1.26 

Organochlorine 
Pesticides 

Sediments October 
2010 

Planelló et 
al. 2013 

βHCH (ng/g) 0.32 
γHCH (ng/g) <0.10 
δHCH (ng/g) 1.85 

Heptachlor (ng/g) 0.11 
Aldrin (ng/g) <0.10 

Heptachlor epoxide (ng/g) <0.10 
γ-Chlordane (ng/g) 0.37 
α-Chlordane (ng/g) 0.37 
α-Endosulfan (ng/g) <0.10 

p.p'-DDE (ng/g) 0.76 
Dieldrin (ng/g) <0.10 
Endrin (ng/g) 1.18 

β-Endosulfan (ng/g) 18.25 
p.p'DDD (ng/g) 1.7 

Endrin aldehyde (ng/g) <0.10 
Endosulfan sulfate (ng/g) 4.13 

p.p'-DDT (ng/g) 3.21 
Endrin Ketone (ng/g) 6.41 
Methoxychlor (ng/g) 1.16 
Bisphenol A (ng/g) 7.44 Phenolic derivatives Noniphenol (ng/g) 0.31 
Ibuprofen (ng/g) 14.41 

Pharmaceutical 
Products 

Diclofenac (ng/g) 0.86 
Carbamazepine (ng/g) 0.23 

Atenolol (ng/g) 8.36 
Caffeine (ng/g) 0.5 

Enrofloxacin (ng/g) <0.10 
Galaxolide (ng/g) 3.02 Fragrances Tonalide (ng/g) 6.33 

Cd (mg/Kg) <0.10 

Metals 

Pb (mg/Kg) 5.96 
Cr (mg/Kg) 5.02 
Ni (mg/Kg) 2.99 
Cu (mg/Kg) 3.13 
As (mg/Kg) 3.01 
Hg (mg/Kg) <0.05 
Mn (mg/Kg) 128.46 
Zn (mg/Kg) 31.47 
Al (mg/g) 6.47 
Fe (mg/g) 8.03 

	



	

	 24	

 

 

4. Objectives and outline of the Thesis 

 

The main goal of the present Thesis was to answer the central question: 

may long-term exposure to pollution restrict the invasive behaviour of the non-

indigenous invasive species C. fluminea in estuarine freshwater tidal areas?  

Long-term exposure to pollution may restrict the invasive behaviour of C. 

fluminea populations mainly through an increase of the population mortality 

rate, a decrease of the population health status with negative effects on its 

fitness, and/or direct negative effects on reproduction.  These potential effects 

were investigated in the present study through a field approach taking 

advantage of C. fluminea populations of the tidal freshwater areas (TFA) of 

Minho (M-est) and Lima (L-est) Rivers (NW Iberian Peninsula). Such 

populations were selected because they have been showing a distinct 

invasive behaviour (Sousa et al. 2006b, 2007a), and M-est and L-est are 

neighbour estuaries having several comparable hydromorphological 

characteristics but also some differences including in environmental factors 

and chemical contamination (Cairrão et al., 2004; Guimarães et al., 2012; 

INAG, 2000; Reis et al., 2009; Sousa et al., 2006a).  

 

 

To attain the central goal of this study, the following specific questions 

(SQ) that correspond to the specific objectives of the Thesis were 

investigated: 

 

SQ1 – May summer environmental conditions influence the health status 

of C. fluminea potentially contributing to the differences related with the 

summer mortality syndrome observed between M-est and L-est populations? 

 

SQ2 – Do metals concentration increase C. fluminea stress levels 

contributing to the invasive behaviour differences observed between M-est 

and L-est populations? 
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SQ3 – Do C. fluminea populations from M-est and L-est have differences 

in their gonadal development cycle possibly contributing to the differences 

observed between their invasive behaviour? 

 

 

The present Thesis is organized in  six Chapters: Chapter I, corresponding 

to the general introduction; Chapters II to IV, corresponding to the 

presentation and discussion of the experimental work carried out to answer 

SQ1 to SQ3; Chapter V, corresponding to the general discussion and main 

conclusions; and Chapter VI corresponding to the list of references cited.  

 

In the General Introduction (Chapter I) the paradigm of biological invasions 

is introduced, a min-review covering several aspects related with the 

invasions by C. fluminea is made, and the objectives and the outline of the 

Thesis are presented.  

 

The main objective of Chapter II, entitled “Integrated biomarker responses 

of the invasive species Corbicula fluminea in relation to environmental abiotic 

conditions: a potential indicator of the likelihood of clam’s summer mortality 

syndrome”, was to answer SQ1. The rational for SQ1 was that summer 

massive mortality events might influence the invasive behaviour of C. 

fluminea by several ways. For example, they might reduce the population 

density by causing stress inducing high mortality. Thus, considering that 

massive mortality events were reported for the M-est C. fluminea population 

but not for the L-est one, the investigation of biological and abiotic factors 

potentially leading to them may indicate if they are contributing to the distinct 

invasive behaviour of C. fluminea in the two estuaries.  

 

The main objective of Chapter III, entitled “Factors influencing the 

accumulation of metals by Corbicula fluminea and its health status in 

estuarine tidal freshwater areas”, was to answer SQ2. The hypothesis behind 

SQ2 was that relatively high concentrations of metals and other environmental 

contaminants are decreasing the health status of the L-est C. fluminea 
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population and because of this the population has a limited invasive 

behaviour.  

 

The main objective of Chapter IV, entitled “Histological study of the 

gonadal development cycle of Corbicula fluminea and its relationship with 

spatial and temporal variation of environmental parameters” was to answer 

SQ4. The rationale behind the question was: a sucesseful reproduction is 

crucial for population growth rate and thus for the invasive behaviour of NIS; 

the gonadal developmental cycle is determinant for reproduction and it may 

be affected by pollution and other adverse environmental conditions; 

therefore, potential differences in the gonadal developmental cycle between 

M-est and L-est C. fluminea populations may be contributing for their distinct 

invasive behaviours.  

 

General Discussion and Final Conclusions (Chapter V), comprises an 

integrative discussion of the previous chapters in a global perspective, 

focusing the main contributions and some of the remaining challenges in this 

research field.  
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Integrated biomarker responses of the invasive species Corbicula 

fluminea in relation to environmental abiotic conditions: a potential 

indicator of the likelihood of clam’s summer mortality syndrome 

This Chapter is published in the form of a scientific article: Oliveira, C., 

Vilares, P., Guilhermino, L. (2015). Integrated biomarker responses of the 

invasive species Corbicula fluminea in relation to environmental abiotic 

conditions: a potential indicator of the likelihood of clam’s summer mortality 

syndrome. Comparative Biochemistry and Physiology Part A 182, 27-37. 

 

Abstract 

The goal of the present study was to investigate the variation of a set of 

biomarkers in wild populations of C. fluminea in relation to abiotic conditions 

changes and to identify environmental factors associated with increased 

stress in this species potentially leading to massive mortality events. The 

study was carried out from July to October in the TFAs of the estuaries of 

Minho and Lima Rivers (NW Iberian Peninsula). Monthly, 7 biomarkers 

(biotransformation, energy production, anti-oxidant defences and lipid 

peroxidation damage) were determined in C. fluminea and 17 abiotic 

parameters were determined in water or sediments in 5 sampling sites: M1, 

M2 and M3 in the M-est (up => downstream); L in the L-est. The results of 

biomarkers were integrated using the Integrated Biomarker Responses’ Index 

(IBR), and also analysed in relation to environmental parameters by 

Redundancy Analysis (RDA). Overall, the findings of the present study 

indicate that July/August are particularly stressful months for the studied C. 

fluminea populations, especially at downstream sites; the increase of nutrients 

and ammonium water concentrations, water temperature and conductivity 

were major contributors for this increased stress; the biomarkers indicated 

that in July/August C. fluminea is exposed to oxidative stress inducers, 

environmental chemical contaminants biotransformed by esterases and 

glutathione S-transferase enzymes, and that organisms need additional 

energy to cope with the chemical and/or thermally-induced stress. The 
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findings of the present study stress the importance of biomonitoring the health 

condition of C. fluminea because it may allow determining the likelihood of 

summer/post summer mortality syndrome in this species. 

 

Key words: invasive species; biomarkers; bivalve massive mortality; 

summer; abiotic variation. 
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1. Introduction 

The summer/post-summer mortality syndrome in bivalves is a periodical 

event in temperate regions that may have significant adverse ecological and 

economic impacts (Ilarri et al., 2010; Mouthon and Daufresne, 2006; Tomaru 

et al., 2001; Vohmann et al., 2009; Weitere et al., 2009; Werner and 

Rothhaupt, 2008). In wild ecosystems, the sudden input of high amounts of 

organic matter from dead bivalves and their degradation often leads to 

considerable changes in nutrient cycles, energy fluxes, a deep reduction of 

water dissolved oxygen and massive mortalities of several other species, with 

important changes in ecosystem functioning and potential biodiversity losses 

(Baur and Schmidlin, 2007; Cooper et al., 2005; Sousa et al., 2012, 2008b,c). 

The dimension and severity of such events are especially high if the primary 

affected bivalve is a keystone species of the ecosystem and/or if it has a 

considerable biomass (Power et al., 1996). Furthermore, in ecosystems 

invaded by non-native invasive species (NIS), massive mortality events may 

have a decisive influence on the competition between the bioinvasor and its 

native competitors, often acting in favour of the NIS. This is believed to occur 

because NIS generally recovers faster from such adverse events than their 

native competitors (McMahon, 2002).  

Several factors and conditions have been pointed as possible causes for 

the summer/post-summer mortality syndrome in bivalves, including extreme 

events such as draughts, temperature increase, decrease of oxygen 

concentration in the water, increase of pollution, post-spawning stress among 

several others (Cooper et al., 2005; Cotter et al., 2010; Dégremont et al., 

2007; García-esquivel et al., 2001; Huvet et al., 2010; Ilarri et al., 2010; 

Morgan et al. 2003; Mouthon and Daufresne 2006; Tremblay et al., 1998; 

Urrutia et al., 1999; Vohmann et al., 2009; Weitere et al., 2009). However, the 

phenomenon is not yet completely understood (Rosa et al., 2011; Vohmann et 

al., 2009) and more research is needed. 

The goal of the present study was to investigate the variation of a set of 

biomarkers in wild populations of C. fluminea in relation to abiotic conditions 

changes to identify environmental factors associated with increased stress in 

this species potentially leading to massive mortality events. This species was 
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selected for this study mainly because it is one of the 100 worst invasive 

species in Europe (DAISIE, 2014), massive mortality events in their 

populations have been having considerable economic and ecological negative 

impacts (Cherry et al., 2005; Cooper et al., 2005; Ilarri et al., 2010; Sousa et 

al., 2008b, 2011), and these events have being pointed as decisive 

contributors to the decline of several native bivalve competitors. 

 

2. Material and Methods 

2.1. Chemicals 

All the chemicals used were of analytical grade and purchased from 

Sigma-Aldrich (Germany), Merck (Germany) or Bio-Rad (Germany). 

 

2.2. Sampling estuaries, sites and C. fluminea populations 

The populations of the tidal freshwater area (TFA) of two neighbour 

estuaries, those of Minho and Lima Rivers (NW Iberian coast), were selected 

for this study because summer massive mortality events have been reported 

for the former (Ilarri et al., 2010; Sousa et al., 2007a) but not for the latter. C. 

fluminea is present in the Minho estuary (M-est) at least since 1989 (Araújo et 

al., 1993). At the present, the population is spread over all the TFA and has a 

very high density (more than 4000 individuals per m2 in some sites) and 

biomass (more than 400g of AFDW per m2) (Sousa et al., 2005). In the TFA of 

the M-est, 3 sampling sites were selected (Figure II. 1) based on Sousa et al. 

(2008d) identification of three main areas with distinct environmental 

characteristics (upstream to downstream): M1 (N42º03’09.37’’ W8º33’42.73’’), 

a relatively low impacted area with low organic matter (OM) and 

environmental contamination, and residual tidal influence; M2 (N42º01’25.12’’ 

W8º39’24.49’’), located about 3 Km (downstream) far from the mouth of the 

Louro River, a tributary of the Minho River that is one of the most 

contaminated rivers in Galicia (Concha-Graña et al., 2006; Farkas et al., 

2007; Filgueiras et al., 2004; Lavilla et al., 2010), with a high content of OM; 

and M3 (N41º54’41.25’’ W8º47’36.59’’), with a greater tidal influence. C. 
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fluminea was recorded for the first time in the L-est in 2002 and has a 

relatively low density in the TFA (mean of 60 individuals per m2 and 26 g 

AFDW per m2) (Sousa et al., 2006 a,b). This estuary has been considered 

more contaminated than the M-est, with impacts from a paper mill industry, 

urban settlement, agriculture crops, and harbour activities (Cairrão et al., 

2004; Guimarães et al., 2012; INAG, 2000; Reis et al., 2009; Sousa et al., 

2006a). Due to the low density of C. fluminea in the TFA, only one sampling 

site was selected (Figure II. 1), hereafter indicated as L, in a restricted area 

about 15 km upstream from the estuary mouth (N41º42’07.03’’ 

W8º44’37.05’’).  

 

 
Figure II.  1. Map of the estuaries of Minho and Lima Rivers showing the four sampling sites 

location. 

 

2.3. C. fluminea sampling 

C. fluminea specimens were collected monthly from July to October 2011 

in the subtidal area (about 40 – 90 cm deep), at low tide using a hand rake 

with a net. Clams were transported to the laboratory within 2h after their 

collection, being maintained in water from the local where they were collected 

in thermally isolated boxes regularly open to allow water oxygenation. These 

conditions were found adequate for the transport of the clams and did not 

influence significantly the biomarkers’ determinations in preliminary studies 

(data not shown).   
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2.4. Abiotic parameters determination 

Monthly, at each sampling site and simultaneously to C. fluminea 

collection, water temperature, conductivity, dissolved oxygen and pH were 

measured in triplicate using a multi-parameter probe (WTW 340i). In addition, 

water samples were collected, in triplicate, and maintained in appropriate 

bottles on ice until arrival to the laboratory where the following parameters 

were determined using colorimetric methods following the Photometer 

Systems for Water Analysis protocols (Palintest 7000 interface photometer): 

hardness (CaCO3), turbidity (Turb) and the concentration of ammonium 

(NH4
+), nitrates (NO3

-), nitrites (NO2
-), phosphates (PO4

-), iron (Fe), phenol 

(C6H5OH), and silica (SiO2).   

Sediment samples were collected in triplicate with a 100 ml syringe to a 50 

ml polyethylene centrifuge tube. Thirty ml of acetone (90%) and 0.2 ml of 

magnesium carbonate (1 g 100 ml ultra-pure water) were added to each tube, 

and the mixture was shaked and maintained on ice in a thermally isolated box 

until arrival to the laboratory.  Once in the laboratory, samples were kept at 

4ºC for 24 h. After 24h, samples were centrifuged (in a Kubota 5400 

centrifuge) for 3 min at 2330 g, mixed and centrifuged again for 10 min in 

similar conditions; 3 ml of each sample supernatant were carefully collected, 

put in a glass spectrophotometer cuvette and its absorbance was read in a 

spectrophotometer (Jenway 6405 UV/VIS) at 480, 630, 645, 647 664, 665 and 

750 nm; after addition of 0.2 ml of a HCl 1 N solution directly to the cuvette, 

agitation and 4 min waiting, the absorbance was read again at 665 and 750 

nm; the concentrations of  chlorophyll a, chlorophyll b and chlorophyll c were 

calculated according to Jeffrey and Humphrey (1975). 

The quantification of organic matter was obtained after combusting for 24h 

at 550°C in a muffle furnace (Fisher Scientific, Isotemp Muffle Furnace). 

Values were expressed in percentage relatively to the weight loss on ignition 

of each sample analysed. 
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2.5. Determination of biomarkers 

In the laboratory, the anterior-posterior shell length of the clams was 

measured with a calliper (0-150 mm). Animals (20) with a shell length 

between 28 and 31 mm were selected for the study. Clams were open 

immediately after being measured and gills and foot tissues were isolated on 

ice for biomarkers’ determination.  

The biomarkers included in this study were: the activity of esterases (EST) 

and glutathione-S transferases (GST) that are important enzymes involved in 

the biotransformation of several environmental contaminants; the activity of 

octopine dehydrogenase (ODH) and isocitrate dehydrogenase (IDH) that are 

important enzymes of the anaerobic and aerobic pathways of energy 

production in molluscs; the activity of the anti-oxidant enzymes catalase 

(CAT) and glutathione reductase (GR) (GST is also involved in this system), 

and lipid peroxidation levels (LPO) as indicative of oxidative stress and 

damage. 

Foot tissue was used for the determination of EST, IDH and ODH 

activities; gill tissue was used for LPO levels, and GST, CAT and GR activity 

determinations. Biomarkers were determined individually per animal. A piece 

of muscle tissue was put in 1 ml of cold K-phosphate buffer (pH = 7.2; 0.1 M), 

homogenized for 1 min on ice (Ystral GmbH d-7801 Dottingen homogenizer) 

and centrifuged (in a Sigma, 3K30 centrifuge) at 3300 g for 3 min at 4°C; the 

supernatant was recovered and its protein content was determined by the 

Bradford method (Bradford, 1976) adapted to microplate (Frasco and 

Guilhermino, 2002), using bovine γ-globulin as protein standard and 

absorbance readings at 600 nm (in a Spectra Max M2e  spectrophotometer). 

After standardization of the protein content to 1 mg/ml, the supernatant was 

used to determine the activity of EST activity following the production of 

thiocholine as acetylthiocholine is hydrolysed at 412 nm, by the Ellman’s 

method (Ellman et al. 1961), adapted to microplate (Guilhermino et al., 1996). 

Because preliminary results on the characterization of the esterase enzymes 

present in C. fluminea foot tissue suggest that non-specific esterases may be 

responsible for a considerable degradation of the substrate acetylthiocholine 
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used in the Ellman’s technique (data not shown), EST activity will be used to 

indicate the overall esterase activityresponsible for acetylthiocholine 

degradation present in this tissue. 

Another piece of foot tissue was placed in 1 ml of K-phosphate buffer 

tris(hydroxymethyl)-aminomethan buffer (pH = 7.8; 0.5 M), homogenized for 1 

min on ice (Ystral GmbH d-7801 Dottingen homogenizer) and centrifuged (in 

a Sigma, 3K30 centrifuge) at 3300 g for 3 min at 4 °C; the supernatant was 

recovered and used to determine IDH activity following the increase in 

NADPH at 340 nm (in a Spectra Max M2e spectrophotometer), according to 

Ellis and Goldberg (1971) adapted to microplate (Lima et al., 2007), after 

standardization of the protein content of each sample to 1 mg/ml as explained 

above. 

The last piece of muscle tissue was placed in 1 ml tris buffer (pH = 7.5; 0.2 

M), with 0.1 M ethylenediaminetetraacetic acid (EDTA) and 0.1 M DL-

dithiothreitol (DTT) homogenized for 5 s on ice (Ystral GmbH d-7801 

Dottingen homogenizer) and centrifuged (in a Sigma, 3K30 centrifuge) at 

3300 g for 3 min at 4 °C; the supernatant was recovered and used to 

determine ODH activity by the measure of the amount of pyruvate consumed 

due to NADH oxidation at 340 nm (in a Spectra Max M2e spectrophotometer) 

according to Livingstone et al. (1990), after standardization of the protein 

content of each sample to 1 mg/ml as explained above.  

The gills were isolated on ice and homogenized (1:10 g wt/v) in K-

phosphate buffer (pH = 7.4; 0.1M). Part of the homogenate was used to 

determine the amount of endogenous LPO (in a Spectra Max M2e 

spectrophotometer) by measuring the thiobarbituric acid reactive substances 

at 535 nm, according to Ohkawa (1979) and Bird and Draper (1984), 

preventing lipid oxidation by adding 0.2 mM butylhydroxytoluene (BHT) 

(Torres et al., 2002). The remaining gills homogenate was centrifuged (in a 

Sigma, 3K30 centrifuge) for 20 min at 10000 g (4ºC), to obtain the post-

mitochondrial supernatant used for the determination of GST, CAT and GR 

activities, after standardization of the protein content of each sample to 4 

mg/ml as explained above. GST activity was determined (in a Spectra Max 

M2e spectrophotometer) measuring the conjugation of reduced glutathione 

(GSH) with 1-chloro-2,4-dinitrobenzene (CDNB) at 340 nm (Habig et al. 1974) 
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adapted to microplate (Frasco and Guilhermino, 2002). CAT activity was 

determined by measuring the H2O2 consumption at 240nm (in a Spectra Max 

M2e spectrophotometer) according to Clairborne (1985). GR activity was 

measured by following the decrease of NADPH levels, at 340 nm (in a 

Spectra Max M2e spectrophotometer), according to Cribb et al. (1989).  

The protein content of each sample used for enzymatic analysis was 

checked again at the end of enzymatic determinations in triplicate and the 

mean of these determinations was used to express the enzymatic activities 

per mg of protein.  

All biochemical analyses were performed at a constant temperature of 

25ºC. All enzymatic activities expressed as nmol/min/mg protein, except 

catalase, which was expressed as µmol min/mg protein. 

 

2.6. Data analysis 

2.6.1. Analysis of individual parameters  

For each biological and abiotic parameter, measurements or 

determinations corresponding to different sites and months were checked for 

normality of distribution using the Shapiro-Wilk test and for homogeneity of 

variance using the Levene’s test. When required, appropriate data 

transformations were made to achieve the assumptions of the Analysis of 

Variance (ANOVA). Then, a two-way ANOVA  (main factors: site and month) 

with interaction was used to compare data of each parameter collected in 

different sites and months. The Statistics 18.0 package was used and the 

significance level was 0.05. 

 

2.6.2. Integrated biomarker responses 

The integration of the information given by the different biomarkers was 

performed applying the Integrated Biomarker Response index (IBR) described 

by Beliaeff and Burgeot (2002). Briefly, for each parameter, the mean and 

standard deviation (SD) per site and month were calculated; then, a 

standardization of mean values was made using the formula y = (x - m) / SD, 



	

 38	

B
i	 2	

where y is the standardized value of the biomarker for each sampling site and 

month; x is the mean value of the biomarker per month at each sampling site; 

m is the mean of the biomarker calculated for all the sampling sites and 

months, and SD is the standard deviation calculated per month and sampling 

site; using standardized data, Z is computed as equal to y or –y depending if 

the biological effect of the correspondent biomarker is activation or inhibition, 

respectively. The minimum value for each biomarker (min) was determined 

and its absolute value was added to Z values.  Finally, the index calculation is 

based in the triangular areas of star plots. The area (A) connecting two 

consecutive coordinates was calculated for each biomarker result in star plots, 

being Bi and Bi+1 two consecutive biomarker scores and n the number of 

biomarkers considered: 

 

Where: 

A=         sin β (Bi Cosβ + Bi+1 Sinβ) 

 

β = arctan  (                       )   and   α=  

 

The IBR was then calculated through the sum of the star plots triangular 

areas represented by two consecutive biomarker scores for a given sampling 

site and month. Biomarkers used for the IBR calculation were ranged 

clockwise as follows: LPO, GST, CAT, GR, ODH, IDH and EST. The higher 

the IBR value more stressed is the organism (Beliaeff and Burgeot, 2002).  

 

2.6.3. Relating biological and environmental parameters 

The integrated analysis of biological and environmental parameters data 

was carried out through a Redundancy Analysis (RDA), using model-based 

type of Monte Carlo permutation test (ter Braak and Prentice 1986; ter Braak 

and Šmilauer, 2002). Quantitative environmental variables were: water 

temperature, dissolved oxygen, conductivity, pH, hardness, turbidity, 

ammonium, nitrates, nitrites, phosphates, iron, phenol and silica; and 

sediment chlorophyll a, b and c and organic matter. Multivariate analyses 

were performed with Canoco for Windows 4.5. 

2 
B
i
 

Bi+1 sin α 
Bi - Bi+1  cos α 

2π	

									n	
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3. Results  

3.1. Environmental parameters 

The environmental parameters measured monthly in the water and 

sediments of the 4 sites are indicated in Tables II. 1 and 2, respectively. The 

comparison of the mean values (Table II. 3) indicated: significant differences 

among sites in all the parameters except in water phenol and turbidity, and in 

chlorophyll b and c in sediments; significant differences among months were 

also found in all the parameters, except turbidity; the interaction between the 

two factors (site and month) was also significant for all the parameters except 

water phenol and sediment chlorophylls a and c. In the M-est (Table II. 3), the 

mean of water temperature increases from upstream (M1) to downstream 

(M3), and L had a mean of water temperature significantly different from all 

the other sites being in about the middle range of water temperatures 

recorded. The mean of water dissolved oxygen; pH, nitrates and silica were 

significantly higher in M1 than in all the other sites. The highest mean values 

of water conductivity and hardness, and chlorophyll a in sediments were 

recorded in M3 and L. The mean of nitrites in the water was significantly 

higher in all the M-est sites than in L-est site. The highest mean concentration 

of ammonium in the water was found in M2, whereas the highest mean 

concentrations of phosphate and iron in the water were found in M3, and the 

highest means of organic matter in sediments were recorded in M2 and M3. 

The highest mean of water temperature was recorded in August and the 

lowest in October, while the corresponding values for water dissolved oxygen 

were found in July and August/September, respectively. Regarding the 

nutrients, the highest mean of nitrates, nitrites and ammonium were found in 

July, whereas the highest mean of phosphates was observed in August. The 

mean of sediment organic matter increased from July to August and remained 

high in September and October. The lowest means of sediment chlorophylls 

a, b and c were found in July and the highest ones in September and/or 

October.  
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Table II.  1. Abiotic water variables values determined for each sampling site and month in the tidal freshwater area (TFA) of M-est and L-est, from July to 

October 2011. Values are mean±standard error of temperature (T, ºC), dissolved oxygen (DO, mg/L), conductivity (Cond, µS/cm), pH (pH units), nitrites (NO2
-

, mg/L), nitrates (NO3
-, mg/L), ammonium (NH4

+, mg/L), phosphates (PO4
3-, mg/L), silica (SiO2, mg/L), phenol (C6H5OH, mg/L), iron (Fe, mg/L), hardness 

(CaCO3, mg/L) and turbidity (Turb, FTU). 

 

Sampling 
site Month Abiotic water variables 

  T DO Cond pH NO2
- NO3

- NH4
+ PO4

3- SiO2 C6H5OH Fe CaCO3 Turb 

M1 

July 18.27±0.09 9.17±0.22 14.43±0.03 7.28±0.02 0.13±0.00 4.48±0.07 0.04±0.01 0.01±0.00 6.32±0.21 0.07±0.01 0.03±0.00 27.22±1.11 0.00±0.00 
August 25.27±0.12 10.11±0.12 88.23±2.40 7.77±0.10 0.05±0.02 0.41±0.03 0.29±0.10 0.09±0.01 6.02±0.74 0.07±0.01 0.04±0.01 36.11±0.56 3.33±2.69 

September 19.57±0.15 8.47±0.03 79.67±0.33 7.28±0.07 0.01±0.00 0.65±0.06 0.14±0.02 0.11±0.01 6.96±0.38 0.07±0.01 0.02±0.00 33.33±2.55 7.33±0.38 
October 19.03±0.27 10.21±1.79 85.67±0.12 9.90±0.12 0.00±0.00 0.40±0.05 0.13±0.06 0.04±0.01 7.24±0.10 0.06±0.00 0.02±0.01 31.67±0.96 6.67±3.42 

M2 

July 22.33±0.03 10.10±0.22 17.40±0.02 7.33±0.02 0.13±0.00 1.96±0.09 0.94±0.06 0.01±0.00 1.38±0.06 0.08±0.00 0.08±0.01 40.00±2.54 8.00±2.00 
August 25.73±0.24 8.01±0.04 34.00±1.36 7.69±0.12 0.01±0.00 0.56±0.04 0.13±0.01 0.15±0.02 0.98±0.03 0.07±0.00 0.05±0.01 42.22±0.56 5.78±0.22 

September 22.50±0.17 8.55±0.05 117.33±0.33 7.46±0.02 0.01±0.00 0.60±0.02 0.09±0.01 0.09±0.01 1.98±0.05 0.11±0.01 0.05±0.02 43.89±2.22 3.56±1.74 
October 20.50±0.23 8.35±0.05 122.67±0.33 7.47±0.02 0.01±0.00 0.26±0.02 0.08±0.05 0.02±0.01 1.65±0.06 0.09±0.02 0.03±0.01 54.44±2.42 6.67±2.69 

M3 

July 23.50±0.00 9.10±0.04 37.67±1.45 6.96±0.03 0.12±0.03 2.16±0.10 0.33±0.09 0.00±0.00 1.04±0.01 0.04±0.02 0.04±0.00 263.33±14.24 3.11±1.94 
August 25.87±0.12 8.25±0.03 29.4±2.56 7.49±0.04 0.00±0.00 0.61±0.04 0.08±0.02 0.60±0.05 1.15±0.04 0.08±0.02 0.05±0.02 257.22±3.09 12.67±1.39 

September 23.20±0.31 8.22±0.18 1477.00±3.51 7.82±0.04 0.01±0.00 0.41±0.00 0.17±0.03 0.16±0.03 2.16±0.01 0.10±0.01 0.16±0.05 228.89±10.82 5.33±1.54 
October 20.87±0.09 9.67±0.07 987.00±7.21 7.93±0.05 0.01±0.00 0.19±0.02 0.14±0.08 0.11±0.03 2.09±0.03 0.06±0.01 0.02±0.00 155.00±8.66 1.33±0.67 

L 

July 21.33±0.19 10.52±0.04 32.00±0.58 7.49±0.04 0.00±0.00 1.84±0.07 0.31±0.05 0.05±0.01 2.17±0.16 0.07±0.01 0.10±0.02 21.11±1.11 6.67±2.52 
August 26.13±0.15 7.84±0.04 29.30±3.37 7.46±0.06 0.00±0.00 0.72±0.06 0.08±0.01 0.05±0.01 4.28±0.12 0.08±0.02 0.03±0.00 132.78±4.75 2.89±1.35 

September 22.20±0.15 8.53±0.00 1566.67±0.88 7.26±0.12 0.00±0.00 0.49±0.07 0.12±0.04 0.06±0.01 2.51±0.10 0.09±0.01 0.04±0.01 149.44±10.56 1.33±1.33 
October 19.13±0.12 8.25±0.23 824.33±28.59 8.08±0.15 0.00±0.00 0.21±0.01 0.22±0.06 0.07±0.01 2.13±0.08 0.09±0.01 0.03±0.00 90.56±5.47 5.33±2.40 
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Table II.  2. Sediments chlorophyll a,b and c values and organic matter percentage for each 

sampling site and month in the tidal freshwater area of M-est and L-est, from July to October 

2011. Values are mean±standard error of chlorophyll a, b and c (Chl a, Chl b and Chl c, 

respectively, units are µg/L), very coarse sand (VCS, %), coarse sand (CS, %), medium sand 

(MS, %), fine sand (FS, %), very fine sand (VFS %) and silt + clay (S+C, %) for granulometry 

and organic matter (%). 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

September and October showed the highest means of water conductivity 

and silica. The highest mean of water pH was found in October and the lowest 

in July. The highest values of water iron, phenol and hardness were found in 

July/September, September and August/September, respectively. 

 

3.2. C. fluminea biomarkers variation 

 Biomarker responses are given in Figure II. 2. Significant differences 

among the means calculated for different months and sites were found for all 

the parameters, except GST and EST activities among sites (Table II. 4); a 

significant interaction between months and sites was also found, except in the 

CAT activity (Table II. 4).  

 

Sampling 
site Month Sediment chlorophyll  

(µg/L)  Organic 
matter 

(%) 
  Chl a Chl b Chl c  

M1 

July 1.20±0.15 0.84±0.03 2.04±0.07  0.99±0.23 
August 1.88±0.58 1.06±0.18 2.13±0.14  1.40±0.40 

September 1.85±0.30 0.95±0.04 2.09±0.09  0.86±0.07 
October 2.16±0.36 1.39±015 2.41±0.19  1.60±0.09 

M2 

July 0.75±0.01 0.69±0.01 1.85±0.02  1.35±0.17 
August 0.91±0.05 0.77±0.00 1.98±0.05  2.40±0.16 

September 2.11±0.26 1.18±0.11 2.25±0.11  2.75±0.74 
October 1.31±0.18 0.98±0.12 2.15±0.09  4.58±0.82 

M3 

July 1.32±0.10 0.79±0.02 1.95±0.03  0.72±0.05 
August 1.78±0.25 0.97±0.06 2.25±0.06  3.74±0.32 

September 3.14±0.54 1.20±0.10 2.64±0.09  4.65±0.45 
October 1.77±0.28 0.87±0.08 2.24±0.14  0.73±0.05 

L 

July 2.46±0.58 0.87±0.06 2.10±0.11  1.76±0.12 
August 2.03±0.40 0.99±0.16 2.55±0.45  1.62±0.06 

September 1.93±0.64 0.82±0.08 2.12±0.09  1.44±0.08 
October 3.08±0.58 0.96±0.04 2.58±0.27  1.39±0.03 
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Table II.  3. Results of the one-way analysis of variance (one-way ANOVA) and post-hoc test 

(Tukey) of abiotic water and sediment variables performed to investigate significant 

differences among sampling sites and among months. Small letters represents significant 

differences between sampling sites and capital letters represents significant differences 

between sampling months. Temperature (T), dissolved oxygen (DO), conductivity (Cond), pH 

(pH), nitrites (NO2
-), nitrates (NO3

-), ammonium (NH4
+), phosphates (PO4

3-), silica (SiO2), 

phenol (C6H5OH), iron (Fe), hardness (CaCO3), turbidity (Turb) chlorophylls a, b and c (Chl a, 

Chl b and Chl c, respectively) and organic matter (OM).  

 

Parameters Factor df F p 
Tukey groups 

M1 M2 M3 L 
July August September October 

T 
site 3 210.999 <0.001 20.53a  22.77c 23.36d 22.20b 

month 3 892.900 <0.001 21.36B 25.75D 21.87C 19.88A 
site x month 9 31.461 <0.001     

DO 
Site 3 12.543 <0.001 9.49b 8.75a 8.81a 8.78a 

Month 3 34.832 <0.001 9.72C 8.55A 8.44A 9.12B 
site x month 9 17.202 <0.001     

Cond 
Site 3 7150.701 <0.001 67.00a 72.85a 632.77c 613.08b 

Month 3 10140.528 <0.001 25.38A 45.23B 810.17D 504.92C 
site x month 9 2854.141 <0.001     

pH 
Site 3 46.174 <0.001 8.06b 7.49a 7.55a 7.57a 

Month 3 148.979 <0.001 7.27A 7.60C 7.45B 8.35D 
site x month 9 55.685 <0.001     

NO2- 
Site 3 21.653 <0.001 0.05b 0.04b 0.03b 0.00a 

Month 3 93.474 <0.001 0.09B 0.01A 0.01A 0.01A 
site x month 9 12.196 <0.001     

NO3- 
Site 3 148.372 <0.001 1.49b 0.84a 0.84a 0.81a 

Month 3 1625.051 <0.001 2.61C 0.58B 0.54B 0.26B 
site x month 9 136.232 <0.001     

NH4
+ 

Site 3 7.923 <0.001 0.15a 0.31b 0.18a 0.18a 
Month 3 27.217 <0.001 0.41B 0.15A 0.13A 0.14A 

site x month 9 17.529 <0.001     

PO4 
Site 3 71.300 <0.001 0.06a 0.07a 0.22b 0.06a 

Month 3 89.124 <0.001 0.02A 0.22D 0.11C 0.06B 
site x month 9 43.242 <0.001     

SiO2 
Site 3 458.692 <0.001 6.64c 1.50a 1.61a 2.77b 

Month 3 6.811 0.001 2.73A 3.11AB 3.40B 3.28B 
site x month 9 10.219 <0.001     

C6H5OH 
Site 3 2.710 0.061 0.07a 0.09a 0.07a 0.08a 

Month 3 3.960 0.017 0.07A 0.08AB 0.09B 0.07AB 
site x month 9 1.695 0.131     

Fe 
Site 3 3.933 0.017 0.03a 0.05ab 0.07b 0.05ab 

Month 3 5.508 0.004 0.06B 0.04AB 0.07B 0.03A 
site x month 9 4.975 <0.001     

CaCO3 
Site 3 842.181 <0.001 32.08a 45.14b 226.11d 98.47c 

Month 3 32.995 <0.001 87.92A 117.08B 113.89B 82.92A 
site x month 9 40.919 <0.001     

Turb 
Site 3 1.021 0.396 4.33a 6.00a 5.61a 4.06a 

Month 3 0.770 0.520 4.45A 6.17A 4.39A 5.00A 
site x month 9 4.022 0.002     

Chl a 
site 3 5.758 0.003 1.78ab 1.27a 2.00b 2.38b 

month 3 3.853 0.019 1.44A 1.65AB 2.26B 2.08AB 
site x month 9 1.732 0.125     

Chl b 
Site 3 2.427 0.085 1.07a 0.90a 0.96a 0.91a 

Month 3 5.802 0.003 0.80A 0.95AB 1.04B 1.05B 
site x month 9 2.984 0.012     

Chl c 
Site 3 2.094 0.122 2.17a 2.06a 2.27a 2.33a 

Month 3 3.487 0.028 1.99A 2.23AB 2.27AB 2.34B 
site x month 9 1.199 0.332     

Organic 
matter 

Site 3 18.991 <0.001 1.21a 2.77b 2.46b 1.55a 
Month 3 10.575 <0.001 1.20A 2.29B 2.43B 2.07B 

site x month 9 14.322 <0.001     
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Figure II. 2. Gills lipid peroxidation (LPO) levels, and glutathione S-transferase (GST), 

catalase (CAT) and glutathione reductase (GR) activities and foot muscle esterase (EST), 

isocitrate dehydrogenase (IDH) and octopine dehydrogenase (ODH) activities determined for 

each sampling site and month in the tidal freshwater area of M-est and L-est, from July to 

October 2011. Values are the mean of 20 clams per sampling site per month with the 

corresponding standard error bars. 
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Comparing the mean of biomarkers among sampling months, the highest 

LPO levels were found in August/September and the lowest in July/October. 

The highest mean of CAT, IDH, ODH and EST activities were determined in 

July, and the lowest in October, August, September/October and 

August/September, respectively. The highest GR activity was found in August 

and the lowest in July.  Clams from M3 had the highest means of LPO levels 

and ODH activity, while those from M2 had the highest GR activity. The L-est 

site had the lowest levels of LPO, CAT and GR, and the highest IDH activity.  

 

 
Table II.  4. Results of the two-way analysis of variance (one-way ANOVA) and post-hoc test 

(Tukey) of biomarkers values performed to investigate significant differences among sampling 

sites, among months, and the respective interaction. Small letters represents significant 

differences between sampling sites and capital letters represents significant differences 

between sampling months. Lipid peroxidation (LPO), glutathione S-transferase (GST), 

catalase (CAT), glutathione reductase (GR), isocitrate dehydrogenase (IDH), octopine 

dehydrogenase (ODH) and esterase (EST). 

Parameters Factor df F p 

Tukey groups 

M1 M2 M3 L 

July August September October 

LPO 

site 3 12.716 <0.001 0.43a 0.39a 0.48b 0.40a 
month 3 18.195 <0.001 0.38A 0.47B 0.47B 0.39A 
site x 
month 9 6.063 <0.001     

GST 

Site 3 0.953 0.416 16.38a 18.68a 18.22a 18.17a 
Month 3 12.837 <0.001 14.24A 20.53B 15.76A 20.92B 
site x 
month 9 4.151 <0.001     

CAT 

Site 3 2.323 0.075 4.94b 5.06b 5.02b 4.42a 
Month 3 30.640 <0.001 6.16C 4.63B 4.96B 3.69A 
site x 
month 9 1.026 0.419     

GR 

Site 3 5.147 0.002 2.76ab 3.10b 2.62a 2.47a 
Month 3 17.746 <0.001 2.19A 3.42C 2.61AB 2.74B 
site x 
month 9 8.673 <0.001     

IDH 

Site 3 23.666 <0.001 4.18a 4.15a 4.62a 6.15b 
Month 3 22.796 <0.001 5.96C 3.93A 4.92B 4.28AB 
site x 
month 9 3.105 0.001     

ODH 

Site 3 49.984 <0.001 2.61a 3.03a 4.40c 4.01b 
Month 3 20.585 <0.001 3.99B 3.97B 2.91A 3.18A 
site x 
month 9 7.641 <0.001     

EST 

Site 3 0.482 0.695 0.62a 0.64a 0.63a 0.59a 
Month 3 5.803 0.001 0.71B 0.56A 0.57A 0.65AB 
site x 
month 9 2.351 0.014     
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The results of the integrated analysis of biomarkers through the IBR index 

are indicated in Table II. 5. For all the sites, the highest values of IBR were 

found in July/August with, in general, higher contributions of ODH and IDH 

(Figure II. 3), whereas the lowest ones were calculated for October.  In the M-

est, the increasing order of IBR is M1< M2 < M3, except in July where the 

lowest value was determined for M2. Clams from L, in the L-est, had the 

highest IBR values in all months (contributions mainly from IDH and ODH), 

except in August where the highest value was found in M3 (higher 

contributions of EST, ODH and GR) (Figure II. 3).  
 

Table II.  5. IBR index values calculated for clams from each sampling site and month in the 

tidal freshwater area of M-est L-est, from July to October 2011. Values are computed using 

the following biomarkers responses: lipid peroxidation (LPO), glutathione S-transferase 

(GST), catalase (CAT), glutathione reductase (GR), isocitrate dehydrogenase (IDH), octopine 

dehydrogenase (ODH) and esterase (EST). Higher values indicate higher stressed condition.  

 

 

 

 
 

 

 

 

3.3. Integrated data analysis of biological and abiotic parameters 

 Ten variables (hardness, turbidity, phosphates, iron, phenol, silica, 

chlorophylls a, b and c and organic matter) had to be removed from the final 

analysis because they were strongly correlated with one or more of the 

remaining environmental variables, producing collinearity problems. 

Therefore, these variables were causal variables explaining the biological 

responses variation weakly than the other abiotic variables included in the 

final RDA (Nally, 2000). 

 

 

Sampling 
site 

Sampling month 
July August September October 

M1 6.21 3.28 1.65 0.47 
M2 4.08 5.33 3.95 1.15 
M3 6.25 11.95 4.25 3.95 
L 10.57 8.92 5.74 4.23 
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Figure II. 3. Star plots representing the contribution of each biomarker (gills lipid peroxidation 

(LPO) levels, glutathione S-transferase (GST), catalase (CAT) and glutathione reductase 

(GR) activities and foot muscle esterase (EST), isocitrate dehydrogenase (IDH) and octopine 

dehydrogenase (ODH) activities), used to compute the IBR index calculated for each 

sampling site and month in the tidal freshwater area of M-est and L-est, from July to October 

2011. 

 

 

The results of RDA are indicated in Figure II. 4. The first two axes explain 

93.4% of the total variance (F-ratio = 1666.665, p = 0.0220, Monte Carlo 

permutation) with the first canonical axis (horizontal) explaining 84% of the 

relation between biological and environmental parameters while the second 

canonical axis (vertical) explains 10.5%. Regarding sites, the first axis 

separates M1 from M2, M3 and L; M1 and M2 are further separated by the 

second axis from M3 and L. M2 is associated with high levels of GR activity 

and LPO levels, pH values and phenol concentration. Increased ODH activity, 

conductivity and temperature are associated to M3 and L. Concerning 

months, July and September are separated from August and October by the 
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first axis; the second axis further separates July from September and August 

from October. Higher levels of nitrites, nitrates, ammonium, and CAT, EST 

and IDH activities are positively associated to July. High GST and GR 

activities, temperature and pH are associated to August. The same 

parameters except temperature are also associated to October. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure II. 4. Redundancy analysis ordination diagram displaying the scores for biological 

variables (represented by straight arrows) showing correlations with quantitative 

environmental variables (represented by dotted arrows): the first axis (horizontal) significantly 

explained 84.0% and second (vertical) 10.5% of the variability.  The biological variables are: 

Gills lipid peroxidation (LPO) levels, and glutathione S-transferase (GST), catalase (CAT) and 

glutathione reductase (GR) activities and foot muscle esterase (EST), isocitrate 

dehydrogenase (IDH) and octopine dehydrogenase (ODH) activities. The quantitative 

environmental variables are: temperature (T), dissolved oxygen (DO), pH, NH4
+ (Ammonium), 

NO2
- (nitrites) and NO3

- (nitrates). Centroids of the sampling sites are represented by black 

triangles and centroids of months by black circles. 

 

 

 

NO2
- 

-1.5 1.0 

-1
.0

 
1.

0 

LPO 

GST CAT 

GR 

EST 

IDH 
ODH 

T 

O2 

Cond 

pH 

NO3
- 

NH4
+ 

J 

A 

S 

O 

M1 

M2 

M3 

L 



	

 48	

4. Discussion 

4.1. Abiotic parameters variation along sites and time 

The results of abiotic parameters indicate important spatial and temporal 

variability in environmental conditions (Table II. 1). The high levels of nitrites 

and nitrates found in July in M1 (Table II. 1) reflect an environmental condition 

previously associated with summer massive mortality of C. fluminea in this 

area (Sousa et al., 2007a). 

 Nevertheless, M1 is located in a sort of  ‘bay’ relatively to the main river 

flow and in the vicinity of the mouth of a Minho River tributary (PBH 2001) that 

crosses agriculture fields. Due to these conditions and the accumulation of 

sediments, part of the tributary discharge stays in the ‘bay’ instead of entering 

directly into the main river flow. Aquatic plants and green algae are very 

abundant and eutrophication conditions regularly occur which may be adverse 

for bivalves’ physiological status (Farcy et al., 2013). The analysis of the 

abiotic parameters considering the overall means per site (Table II. 3) reveals 

an increasing gradient (upstream to downstream) of temperature, hardness, 

and conductivity in the M-est. Furthermore, downstream sites (M2 and M3) 

had higher levels of organic matter and lower levels of dissolved oxygen than 

those recorded in M1; M3 had the highest phosphate concentrations, and M2 

the highest ammonium concentrations. As a whole, these results suggest that 

in downstream sites, especially in M3, C. fluminea is exposed to more 

stressful conditions than in M1.  

The highest means of water conductivity observed at M3, the most 

downstream site of the M-est, and at L, in the L-est (Table II. 3) associated to 

their location relatively to the mouth of M-est and L-est suggest that these 

sites are under a higher tidal influence than M1 and M2, in good agreement 

with findings of previous studies (Ilarri et al., 2012; Sousa et al., 2008a,d). 

Considering now the comparison of means per month (Table II. 3), the 

highest mean of water temperature recorded in August combined with a 

relatively low water dissolved oxygen should be highlighted since the 

combination of these two factors is particularly stressful to C. fluminea and 

bivalves in general (Cherry et al., 2005; Cooper et al., 2005; Johnson and 
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McMahon, 1998; Vohmann et al., 2009; Weitere et al., 2009; Werner and 

Rothhaupt, 2008). August had also the highest phosphates mean (Table II. 3), 

and these water contaminants were especially high in M3 at this time (Table 

II. 1). Concentrations of phosphates in the water above 0.25 mg/L were 

associated with zebra mussel extinction (Karatayev et al., 2003). 

 

4.2. C. fluminea health status variation  

The highest IBR values were found in L in July (10.57) and in M3 in 

August (11.95), respectively. At this time, in L, the highest water 

concentrations of nitrates (1.84 mg/L) and ammonia (0.31 mg/L), and turbidity 

(6.67) were recorded (Table II. 1), whereas at M3, the highest water 

temperature (25.87 ºC), phosphate concentration (0.60 mg/L) and turbidity 

(12.67) were found (Table II. 1). These findings suggest that increased water 

nutrients, ammonia, turbidity and/or temperature contributed to the high levels 

of stress found in C. fuminea collected in July (L) and August (L and M3). The 

highest IBR values calculated for M1 (6.21) and M2 (5.33) were observed in 

July and August, respectively, with a similar IBR value in M3 in July. In July, 

high water concentrations of nitrates and nitrites were recorded in all these 

sites, whereas the water temperature and phosphates were particularly high 

in August in M2. This finding also suggests, and supports the previous 

findings that increased water nutrients; ammonium, temperature and/or 

turbidity are important factors in the summer-induced stress in C. fluminea, 

likely acting in combination. This is in good agreement with the outcomes and 

hypotheses raised in previous studies with C. fluminea (Cherry et al., 2005; 

Cooper et al., 2005; Ilarri et al., 2010; Sousa et al., 2007a, 2008b; Vohmann 

et al., 2009; Weitere et al., 2009) and other bivalves (Cotter et al., 2010; 

Samain et al., 2007; Samain and McCombie, 2008; Soletchnik et al., 2005). 

Moreover, our findings also mean that monitoring along the year the stress 

levels of C. fluminea populations will make possible to determine the 

likelihood of summer/post summer mortality syndrome in this species. 

 The biomarkers most contributing to the high IBR value found in clams 

from M3 in August were the enzymes EST (decreased), ODH (induced) and 

GR (induced) (Figures II. 2 and 3).  EST inhibition indicates exposure to 
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inhibitors of these enzymes that may be anticholinesterase pesticides used in 

neighbour crop fields that may be at increased concentrations in the water 

due to a reduced river flow in the summer. The induction of GR activity, an 

anti-oxidant enzyme, indicates exposure to oxidative stress inducers. These 

may be the increased water temperature observed at this time (Table II. 1) 

and/or chemical stressors present in the water as environmental 

contaminants. The increase of ODH activity suggests increased energetic 

demands that may be need to face thermal and/or chemically induced stress. 

In fact, ODH is an enzyme involved in the anaerobic metabolism of several 

invertebrate species (Gerd et al., 1978) and its induction is often a response 

to cope with respiratory deficit and to supply extra ATP (Lima et al., 2007). In 

clams collected in July in L that had the second highest IBR value (Table II. 

5), increased activity of the energy related enzymes ODH and IDH, and of the 

biotransformation GST enzymes were found. The increase of IDH and ODH 

suggest increased energy demands probably to cope with the stress caused 

by the presence of environmental contaminants (no increase of water 

temperature was found at this time in L), while the increase of GST activity 

indicates exposure to chemicals that are biotransformed by these enzymes 

and are known to be present in L-est (Guimarães et al., 2012). Other 

biological factors that may have contributed to the highest levels of stress 

found in C. fluminea in July/August are those related with the reproductive 

cycle. In bivalves, important physiological alterations occur during the gonads 

development and spawning, which are very demanding processes (Cotter et 

al., 2010; Dégremont et al., 2007; Huvet et al., 2010; Myrand et al., 2000; 

Soletchnik et al., 2005). In C. fluminea, an additional stress factor may be the 

embryos incubation process because it occurs in the adults’ gills (Byrne et al., 

2000). A study of the gonadal development of C. fluminea in the studied sites 

has been carried out. The preliminary evidences indicate the presence of 

individuals with mature gametes almost all the year (data not shown). Thus, 

the influence of factors related with the gonads development, spawning, and 

embryo incubation is unlikely to be an important factor in the variability of IBR 

found, despite potentially having some influence.  

Overall, the IBR index provided an integrated view of C. fluminea stress 

levels allowing the discrimination of the more stressful months and sites. 
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However, attention should be taken when using IBR index (Cravo et al., 2012) 

since is a dynamic index that varies with the type and number of biomarkers 

used, and the kind of response recorded (e.g. activation/inhibition) (Beliaeff 

and Burgeot, 2002; Tsangaris et al., 2011). 

 

4.3. Relating biological and environmental parameters 

The association between high ODH activity and high water conductivity 

and in a less extend with water temperature in M3 and L, suggests that clams 

from these sites are under energetic stress caused by these two abiotic 

variables. Because these are downstream sites (in M-est and L-est) the tidal 

influence is likely to significantly contribute to these high conductivity values 

as previously discussed (section 3.1). Although C. fluminea can tolerate some 

salinity for relatively short periods (Sousa, 2006a), this is a freshwater 

species, and it seems to be sensitive to salinity fluctuations (Xiao et al., 2014). 

Therefore, the increased ODH activity shown by clams from M3 and L may be 

at least in part due to the need of getting more energy to face salinity-induced 

stress. C. fluminea is also sensitive to increased water temperature (Cooper 

et al., 2005; Sousa et al., 2008d; Weitere et al., 2009). In C. fluminea, thermal 

stress also requires additional energy to activate molecular defences against 

its effects, increase tissue repair mechanisms, and other processes (Weitere 

et al., 2009). M2 appears separated from the other sites in the RDA ordination 

diagram mainly because the high GR activity that is positively associated with 

water pH values. In fact, M2 clams showed increased GR activity relatively to 

clams from all the other sites in September and October (Figure II. 2), 

indicating increased exposure to oxidative stress inducers.  

The positive association between high water concentrations of nitrites, 

nitrates, ammonium, and increased activities of the enzymes CAT, EST and 

IDH contributing to the separation of July from all the other months (Figure II. 

2), suggests that these biological responses are, at least in part, due to these 

abiotic factors. A recent study also observed that the fast proliferation of algal 

cells could influence negatively the biomarker responses in Mytilus edulis L. 

(Farcy et al., 2013). Such enzymatic inductions indicate exposure to oxidative 

stress inducers (CAT), environmental contaminants hydrolysed by EST, and 
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that additional energy is required to cope with chemically induced stress 

resulting in IDH induction. August and October appear separated from the 

other months in the RDA ordination diagram mainly due to high GST activity. 

In fact, the clams from all the sampling sites showed high GST activity in 

August, being reduced in September and increased again in October, except 

in L where no increase was observed in October (Figure II. 2). The induction 

of this enzyme is very important to face chemical stress induced by 

electrophilic agents that are biotransformed through glutathione conjugation. 

Common environmental contaminants of this type are organochlorine 

pesticides that may reach the rives through lixiviation from adjacent fields, 

PAHs, PCBs and several dioxin-like environmental contaminants that may 

reach the estuaries through contaminated tributaries and/or direct inputs. 

Because in August the flow of M-est and L-est is reduced due to draw 

conditions, the water concentration of these chemicals is likely to be high.  

They are expected to decrease when the river flow comes back to normal 

values and is expected to further increase if strong rain occurs in the autumn 

causing the lixiviation of contaminated surrounding crop fields. 

 

4. Conclusions 

Important spatial and temporal variation in several of the 17 environmental 

parameters analysed were found. The most important ones were related with 

the increase of water temperature, conductivity and nutrients in downstream 

sites (M3 and L) creating stressfully conditions to C. fluminea. The IBR 

analysis indicated that July/August were more stressful to clams than 

September/October, especially in downstream sites. The clam’s stress in the 

summer months was mainly due to increased activity of energy-related (IDH 

and ODH) and biotransformation (EST and GST) enzymes. These findings 

indicate that in the summer C. fluminea populations of M-est and L-est are 

exposed to chemical environmental contaminants biotransformed by EST and 

GST enzymes and probably also to thermal stress and a higher tidal influence 

(especially in downstream sites), and that they need to activate energy 

relatedenzymes to get the additional energy required to face these types of 

stress. Finally, the integration of environmental and biological variables 
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through a RDA analysis provided a separation among sites (M1 ≠ M2 ≠ M3 ≈ 

L) and among months (J ≠ A ≠ S ≠ O). Increased activities of the energy 

related enzyme IDH, of the anti-oxidant enzyme CAT and of EST enzymes 

associated with increased water concentrations of ammonia, nitrate and 

nitrites contributed to the separation of July from the other months; induction 

of the GST biotransformation enzyme mainly contributed to separate August 

and October from the other months. Overall, the findings of the present study 

indicate that July/August are particularly stressful months for the studied C. 

fluminea populations, especially at downstream sites; the increase of nutrients 

and ammonia water concentrations, water temperature and conductivity are 

major contributors for this increased stress; the biomarkers indicated that in 

July/August C. fluminea is exposed to oxidative stress inducers, 

environmental chemical contaminants biotransformed by EST and GST 

enzymes, and that organisms need additional energy to cope with the 

chemical and/or thermally-induced stress. The findings of the present study 

highlight the importance of biomonitoring the health condition of C. fluminea 

because it may allow determining the likelihood of summer/post summer 

mortality syndrome in this species. 
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Factors influencing the accumulation of metals by Corbicula 

fluminea and its health status in estuarine tidal freshwater areas 

 

Abstract 

The main goal of this study was to identify sediment metal concentrations 

effects on the health status of the non-indigenous invasive species (NIS) 

Corbicula fluminea in estuarine tidal freshwater areas (TFA), and the factors 

influencing the metals accumulation on their tissues a topic of high interest to 

increase the knowledge on the specific factors influencing the invasive 

behaviour of this non-invasive species (NIS). A seasonal monitoring study 

was carried out on two C. fluminea wild populations inhabiting the TFA of two 

estuaries over one year. The parameters investigated were: 16 

water/sediments variables; concentrations of 13 metals in sediments 

(bioavailable fraction) and C. fluminea soft tissues, and 9 biomarkers. C. 

fluminea accumulated 7 metals (Cr, Cu, Zn, Se, As, Cd, Pb) with 

bioconcentration factors (BSAF) ranging from ≈ 2 (Cr) to ≈ 36 (Cu). The 

redundancy analysis integrating abiotic variables and BSAF indicated that 

sediment granulometry and organic matter, and water temperature and 

turbidity were the main factors influencing the accumulation of metals by C. 

fluminea. The Integrated Biomarker Response index (IBR) integrating the 

biomarkers’ responses indicated that C fluminea individuals from downstream 

sampling sites had a decreased health status relatively to those from 

upstream sites.  The main factors found to influence the health status of C. 

fluminea were: the coarser sands and silt/clay fraction and the concentrations 

of Mn, Al, Se and organic matter in sediments, and water temperature. Higher 

stress levels were extremely associated with Mn, Al, Cr, As and Se mostly in 

L-est, however, the concentration in the tissues was lower suggesting that C. 

fluminea inhabiting in L-est can efficiently eliminate, detoxificate and/or avoid 

excessive concentrations of these particular metals. The mechanisms of 

metal elimination and/or avoidance are probably inducing higher stress levels 
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that may be limiting the invasive behaviour of this population. In addition the 

energy expended to cope with metal pollution might be also contributing for 

the low dispersion of C. fluminea in L-est since the energy required for the 

establishment and spread of the population may be redirected to cope with 

metal contamination.  

 

 

 

Key words:  
Corbicula fluminea; Bioinvasions; Metals bioaccumulation; Health status; 

Biomarkers; Invasive Behaviour.   
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1. Introduction 

Biological invasions are recognized as one of the major threats to natural 

ecosystems (European Commission 2013; Karatayev et al. 2007; Kolar and 

Lodge 2001; Larson et al. 2011; Ojaveer et al. 2014; Sakai et al. 2001). 

Consequently, the European Union Convention on Biodiversity Strategy 

(European Commission 2011) established that, by 2020, the priority non-

indigenous invasive species (NIS) should be controlled or eradicated, and 

their invasive pathways should be managed to prevent the introduction and 

establishment of new invasive species. Knowing how specific factors 

influence the invasive behaviour of NIS is a most important issue since it will 

allow preventing new invasions, controlling already existent ones and 

mitigating adverse effects that are almost impossible tasks at the present 

(Occhipinhi-Ambrogi 2007). Corbicula fluminea is one of the worst 100 

invasive species (DAISIE 2015) and the bioinvasions by this species are of 

high concern because they can cause adverse economical and ecological 

impacts (Rosa et al. 2011) and is considered a major treat to biodiversity 

conservation (Sousa et al. 2008d). Despite the several studies that have been 

made in recent decades, the factors influencing the invasive behaviour of C. 

fluminea are not yet completely understood. For example, in the Northwest of 

Portugal there are two Rivers estuaries (Minho and Lima estuaries hereafter 

indicated as M-est and L-est respectively) where C. fluminea populations 

have substantially different invasive behaviours (Sousa et al. 2006a, 

2008b,d). Several hypothesis were already raised to explain these 

differences, such as that the population inhabiting in Lima may still be in a lag 

phase, or it may have a reduced spawning and/or high mortality rate of larvae 

and/or juveniles (Sousa et al. 2006a), however the reasons behind it are still 

unclear. M-est and L-est are neighbour estuaries having several comparable 

hydromorphological characteristics but also some differences including in 

environmental factors and chemical contamination (Cairrão et al. 2004; 

Guimarães et al. 2012; INAG 2000; Reis et al. 2009; Sousa et al. 2006a) 

which might be contributing to the differences observed between the invasive 

behaviours of C. fluminea inhabiting both estuaries. Exposure to contaminants 

have already be found to impair C. fluminea recruitment (Boltovskoy et al. 
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1997), decrease growth rates and the condition index (Cataldo et al. 2001) 

and induce histopathological alterations (Cid et al. 2015; Lehmann et al. 2007) 

and several changes on biochemical biomarkers (Oliveira et al. 2015b; 

Legeay et al. 2005; Brandão et al. 2011; Netpae et al. 2012; Bigot et al. 2011; 

Ren et al 2013). Therefore, the main goals of the present study were to 

investigate the factors influencing the health status of natural C. fluminea 

populations in relation to the concentrations of metals in sediments, water 

quality and other abiotic parameters variation and the accumulation of metals 

by C. fluminea in real scenarios. Metals were selected for this study mainly 

because C. fluminea is known to accumulate metals (Cataldo et al. 2001; 

Sebesvari et al. 2005; Shoults-Wilson et al. 2009; Reis et al. 2014; Spann et 

al. 2011; Takabe et al. 2011), however the factors influencing the process and 

the effects of these environmental contaminants on the health status of native 

populations are not totally understood. Furthermore, among the diverse types 

of environmental contaminants that may be accumulated by C. fluminea, 

metals deserve special attention since several metals are ubiquitous 

pollutants able to cause toxic effects on the biota and humans after exposure 

to ecologically relevant concentrations, have a long environmental persistence 

(Nicolodi et al. 2011; Hill et al. 2011) and a long half-life in the body of several 

species including humans (Vasanthi et al. 2012). Moreover, some forms of 

metals (e.g. arsenic, cadmium, chromium, nickel, mercury) are carcinogenic 

(IARC 1993, 2009), and the organic forms of some metals (e.g. mercury) are 

biomagnified in trophic chains (Lee et al. 2015; Vasanthi et al. 2012; Zaza et 

al. 2015). Thus, metals are considered chemicals of specially concern (UNEP, 

USEPA, ECHA), and their concentrations in the environment and species 

used for human consumption, such as C. fluminea (Fried and Emili 1987; 

Graczyk and Fried 1998; Phelps 1994), should be monitored under the scope 

of national and international regulations, such as the European Marine 

Strategy Framework Directive (MSFD 2008/56/EC).  
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2. Material and Methods 

2.1. Chemicals 

All the chemicals used were of analytical and trace metal grade and 

purchased from Sigma-Aldrich (Germany), Merck (Germany), Bio-Rad 

(Germany), Panreac (Spain) or Theta (Portugal).  

 

2.2. Sampling estuaries and sites, and C. fluminea collection 

C. fluminea populations of the estuaries of Minho (M-est) and Lima (L-est) 

Rivers (NW Iberian Peninsula) were selected for this study mainly because 

they have been studied for decades (e.g. Araujo et al. 1993; Sousa et al. 

2006a, 2007b, 2008d,e; Oliveira et al. 2015a; Reis et al. 2014) and have been 

showing a distinct invasive behaviour. For instance, the M-est population 

colonized practically all the TFA reaching a very high density and biomass (up 

to 4000 ind m-2 and 400g m-2, respectively) (Sousa et al. 2005), whereas the 

TFA L-est population has a relatively lower density and biomass population 

(up to 60 ind m-2 and 26 g m-2, respectively), sparsely distributed (Sousa et al. 

2006b). The M-est and L-est are located in the NW Iberian Peninsula coast, 

their mouths are separated by ≈ 25 Km, they have several comparable 

hydromorphological characteristics but also several differences, including in 

some water parameters (e.g. salinity) and concentrations of several 

environmental contaminants such as metals (Guimarães et al. 2012). The M-

est, that makes border between Portugal and Spain, is included in NATURA 

2000 and is considered a low impacted estuary (Ferreira et al. 2003), despite 

having some punctual sources of contamination, such as input of the Louro 

river, considered one of the most contaminated Rivers in Galicia (Spain) 

(Planelló et al. 2013; Santos et al. 2013). In general, the L-est has been 

considered as more contaminated than the M-est, especially in its lower part 

due to the presence of a harbour, oil storage facilities, a paper mill, a marina, 

among other facilities (Guimarães et al. 2012). In the vicinity of both estuaries 

there are agriculture field crops of small-medium dimension, urban 

settlements, and industrial facilities (Ribeiro et al. 2015).To study the potential 

effects of tidal influence and the potential impact of the Louro tributary, 3 
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sampling sites were selected in the M-est (Figure III. 1): M1, M2 and M3 

(upstream to downstream).  M1 (N42º03’09.37’’ W8º33’42.73’’) located 

upstream to Louro River mouth (≈ 6 Km from it); M2 (N42º01’25.12’’ 

W8º39’24.49’’) located ≈ 3 Km below Louro River mouth; and M3 

(N41º54’41.25’’ W8º47’36.59’’) located ≈ 20 Km downstream to Louro River 

mouth and ≈15 Km from the mouth of the estuary. Because only one spot of 

C. fluminea could be found in comparable areas of the L-est, only a sampling 

site (L) was selected in this estuary (N41º42’07.03’’ W8º44’37.05’’), ≈ 15 km 

upstream from the estuary mouth (Figure III. 1). C. fluminea specimens were 

collected seasonally with a hand rake including a net: in summer 2011 (July), 

autumn 2011 (October), winter 2011 (January) and spring 2012 (April). In 

each sampling period fifty individuals with ≈ 30 mm (maximal distance from 

the valve extreme perpendicular to the umbo) were selected for further study, 

whereas smaller or bigger individuals were released back to the wild. After 

collection, the specimens were transported to the laboratory in thermally 

isolated boxes containing water from the location where C. fluminea 

individuals were collected, within the lowest time possible, with aeration 

(Oliveira et al. 2015a). In the laboratory, all the specimens were measured 

(digital caliper) and weighted (balance). Fifteen to thirty C. fluminea 

individuals per site and season were used for chemical analyses, and twenty 

for biomarkers determinations. 

 

 
Figure III. 1. Map showing the location of sampling sites in the estuaries of Minho and Lima 

Rivers.  
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2.3. Integrated monitoring approach 

Following the recommendations included in the MSFD (Descriptor 8), an 

integrated monitoring approach was used. It included the following 

parameters: 13 water variables; 3 sediment variables; concentrations of 13 

metals in sediment samples and in C. fluminea body (soft tissues); and 7 

biomarkers. The biomarkers were: the activity of the enzymes isocitrate 

dehydrogenase (IDH) and octopine dehydrogenase (ODH) that are involved in 

the pathways of energy production; the activity of esterases (EST) that are 

involved in the biotransformation of xenobiotics; the activity of glutathione S-

transferases (GST) that are involved in biotransformation and anti-oxidant 

defences; the activity of catalase (CAT) and glutathione reductase (GR) that 

are part of the antioxidant defences; and the levels of lipid peroxidation (LPO) 

as indicative of lipid oxidative damage. These particular enzymes were 

selected as biomarkers for this study due to their crucial role in functions that 

are determinant for the survival and performance of the organisms in the wild. 

LPO was selected because the valuable information that it provides in relation 

to oxidative damage.  

 

2.3.1. Water and sediment parameters  

In each season and per sampling site, water and sediments were collected 

for determination of several parameters, following the procedures described in 

Oliveira et al. (2015a). Briefly, water temperature, dissolved oxygen, 

conductivity and pH were measured in situ in triplicate with a multiparameter 

probe (WTW 340i). Water samples were collected, in triplicate, to determine 

the following parameters using colorimetric methods following the Photometer 

Systems for Water Analysis protocols (Palintest 7000 interface photometer): 

hardness, turbidity and the concentration of ammonium, nitrates, nitrites, 

phosphates, iron, phenol, and silica. Sediment samples were collected in 

triplicate to determine granulometry, organic matter and chlorophylls a, b and 

c. Briefly, for granulometry, samples were placed into an oven for 72 hours at 

60°C. Subsequently, a grain size analysis was performed by sifting with a Ro-

Tap agitation, with columns of sieve, according to the grain size scale of 
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different mesh sizes (1 - 2 mm - very coarse sand; 0.5 - 1mm - coarse sand; 

0.25 - 0.5 mm - medium sand; 0.125 - 0.25 mm - fine sand; 0.063 - 0.125 mm 

- very fine sand; < 0.063 mm - silt + clay fraction) and the frequency of each 

class was expressed as % of total weight of the sample. Organic matter was 

determined after combusting the sediments during 24h at 550ºC in a muffle 

(Fisher Scientific, Isotemp Muffle Furnace). Values are expressed in 

percentage relatively to the weight loss on ignition of each sample analysed. 

For chlorophyll determinations 30 ml of acetone (90%) and 0.2 ml of 

magnesium carbonate solution (1%) were added to the samples in situ and 

the mixture was shaked and maintained on ice in a thermally isolated box until 

arrival to the laboratory. After 24h at 4ºC, samples were centrifuged and the 

supernatants were carefully collected, put in a glass spectrophotometer 

cuvette and its absorbance was read in a spectrophotometer (Jenway 6405 

UV/VIS) at 480, 630, 645, 647 664, 665 and 750 nm. The concentrations of 

chlorophyll a, b and c were calculated according to Jeffrey and Humphrey 

(1975). 

 

2.3.2 Chemical analysis 

Chemical analyses (Fe, Al, Cr, Cu, Mn, Ni, Zn, Se, As, Co, Cd, Hg and Pb) 

were performed seasonally in C. fluminea’s tissues (15-30 animals per 

determination) and sediments (3 replicates per site) that were collected from 

summer 2011 to spring 2012. Extractable/acid-exchangeable metals in 

sediments were analysed using the first step of the three-stage sequential 

extraction procedure proposed by the European Standards, Measurements 

and Testing (SM&T) Program, formerly the Community Bureau of Reference 

(BCR) as described by Pueyo et al. (2001). This method was originally 

developed for the analysis of heavy metals in sediments, and has been widely 

accepted and applied to metal fractionation in different environmental 

samples, and the first step is considered the fraction with the higher 

bioavailability (Reis et al. 2009; Rao et al. 2008; González-Flores et al. 2011). 

So, in this article we will refer to them as bioavailable metal concentration. 

Briefly, 40 ml of acetic acid solution (0.11 mol l-1) were added to 1 g of 
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sediment in a 80–100 mL centrifuge tube and immediately shaked for 16 h at 

22±5 ºC (overnight). Then, the extract was separated from the solid residue 

by centrifugation at 3000 g for 20 min and the supernatant was decanted into 

a polyethylene container. It was stored in a refrigerator at ≈ 4ºC prior to 

analysis. Before extraction samples were precisely weighed in porcelain 

crucibles, and placed in an oven (105±2ºC) until constant weight. In the case 

of C. fluminea samples, 0.5 g of freezed dried C. fluminea’s tissue was 

digested in a microwave oven Ethos 1 (Milestone Sorisole, Italy) with 7 ml of 

nitric acid and 1ml H2O2. After digestion the extract was dissolved with milli-Q 

water. In both types of extracts, metals concentrations were analysed by 

using a NexION 300D Inductively Coupled Plasma Mass Spectrometer (ICP-

MS) (PerkinElmer, Inc., Shelton, CT). In all batches of analysis, reagents and 

procedures blanks were included.  

All metal concentrations were expressed as µg metal g-1 dry weight (d.w.). 

 

2.3.3. Biomarkers 

The preparation of the tissues and biomarkers were determined as 

indicated in more detail in Oliveira et al. (2015a). Briefly, immediately after the 

determination of size and weight, each animal was sacrificed by opening the 

valves under cold induced anaesthesia. The tissue isolation was carried out 

on ice, and all the biomarkers were determined per individual. Gills were 

isolated, washed in phosphate buffer, and used to determine LPO levels, and 

GST, CAT and GR activity determinations and foot tissue was used for the 

determination of EST, IDH and ODH activities.  

All biochemical analyses were performed at a constant temperature 

(25±1ºC) and protein content of supernatants was standardized to 4 mg ml-1 

for CAT and GR activities and for 1 mg ml-1 for GST, EST, IDH and ODH 

activities. LPO levels were determined in the homogenate and no protein 

standardization was performed. All enzymatic activities were expressed as 

nmol min-1 mg-1 protein, except catalase, which was expressed as µmol min-1 

mg-1 protein.  
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2.4. Data analysis 

Data from each parameter was checked for normality of distribution and 

homogeneity of variances before the Analysis of Variance (ANOVA) (Zar, 

1999). When these assumptions could not be full field even after data 

transformation, the non-parametric Kruskal–Wallis comparison test was used 

to compare different seasons and sites. When significant differences were 

found, the Dunn’s multicomparison test was used to discriminate statistically 

significant treatments. The Statistics 18.0 package was used and the 

significance level was 0.05. 
To assess the bioaccumulation of each metal by C. fluminea, the biota-

sediment accumulation factors (BSAF) (Szefer et al., 1999) were determined 

per month and sampling site through the following ratio: mean concentration 

of the metal in the whole body (soft tissues) of C. fluminea / mean of the metal 

concentration in sediment samples. In both cases, the units were µg of metal 

per g of dry weight (d.w.)  

The heath status of C. fluminea along time and in different sites was 

evaluated by assessing the levels of stress though the Integrated Biomarker 

Response Index (IBR) described by Beliaeff and Burgeot (2002). Briefly, the 

computed scores of each biomarker (standardized data) per season and site 

were represented in star plots. The IBR was then calculated through the sum 

of the star plots triangular areas represented by two consecutive biomarker 

scores for a given sampling site and season. Biomarkers used for the IBR 

calculation were ranged clockwise as follows: LPO, GST, CAT, GR, ODH, 

IDH and EST. Higher IBR values indicate higher levels of stress than lower 

IBR values (Beliaeff and Burgeot 2002), and higher levels of stress indicate 

decreased health status (Oliveira et al. 2015a).  

Data from biological and abiotic parameters were integrated through a 

Redundancy Analysis (RDA), using a model-based type of Monte Carlo 

permutation test (ter Braak and Prentice 1986; ter Braak and Smilauer 2002). 

The quantitative variables were: IBR values; concentrations of 13 metals in 

sediments; concentrations of 13 metals in the body of C. fluminea; water 

temperature, dissolved oxygen, conductivity, pH, hardness, turbidity, 
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ammonium, nitrates, nitrites, phosphates, iron, phenol and silica; and 

sediment granulometry, chlorophylls (a, b and c) and organic matter. Six 

water parameters (nitrites, nitrates, phosphates, iron, phenol, silica) had to be 

removed from the final analysis because they produce collinearity problems 

by being strongly correlated with one or more of the remaining environmental 

variables. Therefore these variables were causal variables (Nally 2000) 

explaining the sediment metal concentration and the C. fluminea’s 

bioaccumulation factors variation weakly than the other abiotic variables 

included in the final RDA. Multivariate analyses were performed with Canoco 

for Windows (version 4.5). 

 

3. Results 

3.1. Seasonal and spatial variation of water and sediment parameters 

The mean concentrations of water and sediments abiotic parameters, per 

season and sampling site are shown in Table III. 1, and the corresponding 

results of statistically analysis are shown in the Supplementary material 

(Table III. 2) Significant differences among the seasonal means were found 

for all the abiotic parameters, except for water dissolved oxygen, turbidity, 

phenol, silica and the percentages of sediment very coarse sand, coarse sand 

and fine sand. The means of water temperature and the concentrations of 

nutrients (ammonium, nitrates and nitrites) were significantly higher in the 

summer than in the other seasons. Contrariwise, the seasonal means of water 

dissolved oxygen, conductivity, pH and phosphates concentrations followed in 

general the opposite trend, being significantly lower in the summer than in the 

other seasons. Concerning sediments granulometry, significant differences 

among seasonal means were only found for the percentage of medium sand, 

fine sand and very fine sand; medium sand showed a significantly lower mean 

in the summer than in the other seasons, whereas the means of fine sand and 

very fine sand were significantly lower in the winter than in the remanding 

seasons. The highest mean concentration of organic matter in sediments was 

found in the spring, whereas the highest means of chlorophylls a, b and c 

concentrations in sediments were found in the autumn and spring.  
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Significant differences of water conductivity, hardness, nitrites, phosphates 

and silica, and sediment granulometry, organic matter and chlorophyll a were 

found among sampling sites (Table III. 1). Downstream sampling sites (M3 

and L) showed higher means of conductivity, hardness and phosphate 

concentrations than in upstream sites. The mean concentration of nitrites in 

the water was significantly higher in all the sites of M-est than in the L-est site. 

Contrariwise, the mean concentration of chlorophyll a in sediments was 

significantly higher in L-est sampling site than in all the M-est sampling sites. 

The mean percentages of very coarse sand and coarse sand in sediments 

were significantly higher in M1 and L than in the other sites. The mean 

percentage of medium sand in sediments was significantly higher in M1 than 

in the other sites, whereas the mean percentages of fine sand, very fine sand 

and silt and clay were significantly lower in M1 than in the other sites.  

 

3.2. Concentration of metals in sediments (bioavailable fraction) and C. 

fluminea body 

The mean concentrations of metals in sediments and C. fluminea body are 

shown in Table III. 3, and the results of their statistical analysis are indicated 

in Table III. 4. All the concentrations of Hg in sediments were bellow the 

detection limit, as well as those of Cd in winter and spring. Regarding the 

mean of the total bioavailable concentration of metals in sediments, significant 

differences among seasons and sites were found. The highest metal 

concentration was found in the summer (1242.73 µg g-1 d.w.), and the lowest 

in the winter (655.93 µg g-1 d.w.). The site with the highest total bioavailable 

metals concentration was L (1548.68 µg g-1 d.w.), and the site with the lowest 

mean was M2 (527.87 µg g-1 d.w.). No significant differences among the 

seasonal means were found for Al, Mn, Zn, Se, As, Co, and Pb, whereas 

significant differences were found for Fe, Cr, Cu, Ni and Cd. Significant 

differences in the mean sediment concentrations of Al, Cr, Cu, Mn, Ni, Zn, Co 

and Pb were found among sites, while no significant differences were found in 

relation to Fe, Se, As and Cd.  
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Table III. 1. Temporal and spatial variation of water and sediment parameters. Values 

represent the mean and corresponding standard deviation of water temperature (T, ºC), 

dissolved oxygen (DO, mg l-1), conductivity (Cond, µS cm-1), pH (pH units), turbidity (Turb, 

FTU), hardness (CaCO3, mg l-1), ammonium (NH4+, mg l-1), nitrates (NO3
-, mg l-1), nitrites 

(NO2
-, mg l-1), phosphates (PO4

3-, mg l-1), phenol (C6H5OH, mg l-1), silica (SiO2, mg l-1) and 

iron (Fe, mg l-1); and sediment organic matter (OM, %), granulometry (very coarse sand 

(VCS), coarse sand (CS) medium sand (MS), fine sand (FS), very fine sand (VFS) and silt 

and clay (S+C), all in %), and chlorophylls a, b and c (Chla, Chlb and Chlc, respectively, µg ml-

1). M1, M2 and M3 are sampling sites located in Minho estuary and L in Lima estuary. 

Different letters identify significant differences among sampling seasons (capital letters) or 

sites (small letters), as indicated by the Dunn multiple comparison test. 

 Factor 
Summer 11 Autumn 11 Winter 11 Spring 12 

M1 M2 M3 L 

Water 

T 
Season 21.36±2.24 C 19.88±0.94BC 9.04±0.26A 13.56±1.27B 

Site 14.58±4.84 16.33±6.18 16.91±6.64 16.03±6.45 

DO 
Season 9.97±1.13 9.62±3.37 10.32±1.26 10.76±1.25 

Site 10.70±2.37 10.72±1.88 9.43±0.29 9.81±2.84 

Cond 
Season 25.38±11.23A 504.92±467.73B 233.00±191.28B 1017.67±1547B 

Site 67.19±35.94a 87.02±47.26a 519.25±388.53b 1107.50±408.31b 

pH 
Season 7.27±0.22A 8.35±1.07C 7.40±0.54AB 7.50±0.27B 

Site 8.17±1.18 7.53±0.16 7.50±0.40 7.32±0.74 

Turb 
Season 4.44±3.61 5.00±2.52 2.44±2.94 4.72±2.28 

Site 3.78±3.22 4.17±3.71 4.17±2.40 4.50±3.40 

CaCO3 
Season 87.92±117.21A 82.92±53.83 AB 46.39±20.62A 124.72±109.77B 

Site 34.72±15.02a 46.81±6.82a 149.58±82.91c 110.83±35.12b 

NH4
+ 

Season 0.41±0.38C 0.14±0.06B 0.038±0.01A 0.18±0.03BC 

Site 0.09±0.06 0.31±0.43 0.18±0.12 0.19±0.15 

NO3
- 

Season 2.61±1.25C 0.26±0.10A 0.49±0.14B 0.37±0.12AB 

Site 1.38±2.06 0.84±0.76 0.83±0.90 0.68±0.90 

NO2
- 

Season 0.12±0.09B 0.01±0.00A 0.01±0.00A 0.01±0.00A 

Site 0.04±0.06b 0.06±0.11b 0.03±0.05b 0.00±0.00a 

PO4 
Season 0.02±0.02A 0.06±0.04B 0.07±0.01B 0.24±0.32C 

Site 0.05±2.13a 0.04±0.87a 0.08±0.96a 0.23±0.90b 

C6H5OH 
Season 0.07±0.02 0.07±0.02 0.07±0.01 0.08±0.02 

Site 0.07±0.03 0.08±0.03 0.07±0.05 0.07±0.01 

SiO2 
Season 2.73±2.44 3.28±2.65 3.63±1.74 3.27±1.21 

Site 5.26±0.01b 2.38±0.01a 2.65±0.02a 3.62±0.01a 

Fe 
Season 0.06±0.03B 0.03±0.01A 0.02±0.01A 0.06±0.02B 

Site 0.03±1.91 0.05±1.12 0.04±1.70 0.05±0.59 
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Table III. 1. (Continued…) 

 

 Factor 
Summer 11 Autumn 11 Winter 11 Spring 12 

M1 M2 M3 L 

Sediment 

OM 
Season 1.20±0.45A 2.07±1.71AB 1.06±0.27A 3.14±2.13B 

Site 1.24±0.01ab 2.11±0.03bc 1.95±0.03a 2.16±0.05c 

VCS 
Season 8.63±12.97 6.12±9.86 15.98±15.11 7.72±9.83 

Site 12.05±0.30b 1.39±1.65a 1.87±2.47a 23.15±0.23b 

CS 
Season 13.09±16.96 12.31±14.43 19.15±16.52 11.33±13.92 

Site 18.96±15.01b 0.38±1.29a 3.59±2.92a 32.94±3.61b 

MS 
Season 29.84±30.58A 54.31±28.52B 45.69±17.29B 40.13±27.31AB 

Site 64.88±8.94b 27.96±0.18a 41.72±4.73a 35.42±2.10a 

FS 
Season 29.40±31.53 21.83±28.18 16.66±23.20 25.77±27.11 

Site 2.42±23.23a 59.04±13.43c 28.66±38.16b 3.54±5.62a 

VFS 
Season 15.62±19.52B 3.77±4.75AB 1.57±1.42A 11.73±17.08B 

Site 0.85±1.59a 9.03±7.12c 20.41±16.81bc 2.40±0.47b 

S+C 
Season 2.89±2.82B 1.03±0.83AB 0.64±0.41A 2.80±2.79B 

Site 0.45±0.27a 1.47±5.75b 3.35±22.82ab 2.10±0.54b 

Chla 
Season 1.43±0.73A 2.11±0.75B 1.24±0.42A 2.67±0.92B 

Site 1.52±0.23a 1.63±1.12a 1.66±3.63a 2.62±0.31b 

Chlb 
Season 0.80±0.08A 1.07±0.23B 0.79±0.07A 1.10±0.12B 

Site 1.01±0.43 0.87±1.27 0.91±0.76 0.94±0.63 

Chlc 
Season 1.99±0.11A 2.35±0.19B 2.03±0.07A 2.38±0.21B 

Site 2.16±0.26 2.12±0.19 2.18±0.24 2.28±0.06 

 

	

All metals were detected in the body of C. fluminea in all seasons and 

sites, except Al that was below the detection limit in the summer and autumn 

(Table III. 3). Considering the means of total metals concentration in C. 

fluminea body, significant differences among seasons and sites were found 

(Table III. 4). The highest concentration was found in individuals collected in 

the winter (1310.87 µg g-1 d.w.) and the lowest one in individuals collected in 

the summer (670.61 µg g-1 d.w.). C. fluminea individuals from M3 had the 

highest mean of total metals concentration (1781.52 µg g-1 d.w.), while those 

from L had the lowest one (553.21 µg g-1 d.w.) (Table III. 3). Regarding the 

mean concentrations of individual metals in C. fluminea body, in general they 

were significantly higher in C. fluminea individuals from the M-est  (M1, M2 

and/or M3) than in those from the L-est. The exceptions were: As, and Pb for 

which the individuals from L had higher mean concentrations than those from 

M1.  
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Table III. 2. Results of the Kuskal-Wallis test and significance of temporal and spatial 

variation of water and sediment parameters. Temperature (T), dissolved oxygen (DO), 

conductivity (Cond), pH (pH), turbidity (Turb), hardness (CaCO3), ammonium (NH4
+), nitrates 

(NO3
-), nitrites (NO2

-), phosphates (PO4
3-), phenol (C6H5OH), silica (SiO2) and iron (Fe); and 

sediment organic matter (OM), granulometry very coarse sand (VCS), coarse sand (CS) 

medium sand (MS), fine sand (FS), very fine sand (VFS) and silt and clay (S+C), and 

chlorophylls a, b and c (Chla, Chlb and Chlc). M1, M2 and M3 are sampling sites located in 

M-est and L in L-est.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Season Site 
Χ2 p Χ2 p 

Water 

T 40.833 0.000 2.092 0.554 

DO 0.452 0.092 5.363 0.147 

Cond 27.767 0.000 15.502 0.001 

pH 18.322 0.000 5.219 0.156 

Turb 3.778 0.289 0.702 0.873 

CaCO3 11.175 0.011 22.265 0.000 

NH4
+ 18.501 0.000 4.433 0.218 

NO3
- 34.113 0.000 2.865 0.413 

NO2
- 8.839 0.020 28.496 0.000 

PO4 25.642 0.000 7.982 0.046 

C6H5OH 1.008 0,799 4.266 0.234 

SiO2 4.486 0.214 16.991 0.001 

Fe 26.187 0.000 3.557 0.313 

Sediment 

OM 9.314 0.025 9.843 0.020 

VCS 3.829 0.281 30.348 0.000 

CS 1.193 0.755 38.433 0.000 

MS 8.050 0.045 10.928 0.012 

FS 1.822 0.610 40.715 0.000 

VFS 9.902 0.019 20.126 0.000 

S+C 8.872 0.031 10.821 0.013 

Chla 12.894 0.005 16.752 0.001 

Chlb 22.689 0.000 7.754 0.051 

Chlc 21.062 0.000 5.692 0.128 
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Table III. 3. Temporal and spatial variation of sediments (bioavailable/extractable fraction) 

and tissues metal concentrations. Values represent the mean and corresponding standard 

deviation of Iron (Fe), aluminium (Al), chromium (Cr), copper (Cu), manganese (Mn), nickel 

(Ni), zinc (Zn), selenium (Se), arsenic (As), cobalt (Co), cadmium (Cd), mercury (Hg) and lead 

(Pb). All metal concentrations are in µg g-1 dry weight. M1, M2 and M3 are sampling sites 

located in Minho estuary and L in Lima estuary. Different letters identify significant differences 

among sampling seasons (capital letters) or sites (small letters), as indicated by the Dunn 

multiple comparison test. <DL means below detection limit. 

Metal Matrix Factor Summer Autumn Winter Spring 
M1 M2 M3 L 

Fe 
Sediment 

Season 274.08±106.21B 214.21±79.68AB 163.14±158.07A 300.89±431.28A 
Site 238.82±117.42 132.22±92.19 372.97±392.28 208.29±165.22 

Tissues Season 477.13±265.56 761.76±631.50 709.82±453.16 544.54±418.06 
Site 370.24±134.87a 562.79±66.23b 1284.05±352.14c 346.68±104.60a 

Al 
Sediment Season 827.75±663.00 530.33±418.80 382.40±217.66 449.76±262.43 

Site 345.30±82.76a 329.03±83.21a 400.96±234.19a 1114.95±490.59b 

Tissues Season <DL <DL 376.06±160.48 442.57±275.32 
Site 419.28±123.44b 442.87±109.46b 582.62±226.78b 139.38±24.68a 

Cr 
Sediment Season 1.08±0.36C 0.53±0.24B 0.29±0.08A 0.45±0.25AB 

Site 0.45±0.44a 0.42±0.16ab 0.67±0.38b 0.82±0.47b 

Tissues 
Season 0.65±0.32 0.86±0.23 1.48±1.08 0.91±0.53 

Site 1.49±0.89b 0.97±0.30b 1.03±0.32b 0.33±0.16a 

Cu 
Sediment Season 4.89±7.74B 0.62±0.22A 1.97±1.06B 2.18±1.68B 

Site 0.90±0.55a 1.17±0.72a 6.29±6.98b 1.29±0.52ab 

Tissues Season 41.94±9.85A 42.98±13.79A 66.96±14.49B 50.95±11.57A 
Site 51.76±8.37b 62.83±11.72b 53.24±14.50b 34.37±9.24a 

Mn 
Sediment Season 113.40±117.83 83.77±81.35 95.11±50.06 83.54±79.07 

Site 72.79±34.31a 49.04±5.12a 42.28±15.84a 211.71±57.10b 

Tissues Season 27.04±7.20AB 21.29±10.6A 56.84±29.36C 54.12±24.79B 
Site 49.72±36.26b 42.53±30.07ab 44.54±10.70b 19.82±3.16a 

Ni 
Sediment 

Season 3.02±1.13B 2.49±1.41AB 1.78±0.96A 1.62±0.59A 
Site 2.88±0.98b 3.07±0.91b 2.07±0.63b 0.91±0.40a 

Tissues 
Season 1.37±0.56AB 0.88±0.31A 1.96±1.33B 2.10±1.30B 

Site 2.36±1.11b 1.94±0.91b 1.54±0.51b 0.34±0.09a 

Zn 
Sediment Season 12.47±6.98 7.25±2.84 7.01±1.26 9.27±5.10 

Site 8.31±2.37b 8.95±1.83b 12.71±8.30b 6.03±1.21a 

Tissues Season 70.07±8.20 72.98±11.55 74.98±12.22 75.38±13.59 
Site 73.71±6.98b 82.49±7.99b 74.31±9.12b 62.51±5.99a 

Se 
Sediment Season 0.16±0.13 0.07±0.09 0.14±0.06 0.16±0.14 

Site 0.12±0.03 0.10±0.06 0.08±0.05 0.23±0.15 

Tissues Season 1.93±0.25 2.08±0.32 2.35±0.25 2.18±0.19 
Site 1.84±0.15a 2.42±0.21b 2.31±0.13b 1.98±0.18a 

As 
Sediment 

Season 1.24±0.64 0.95±0.47 0.66±0.17 1.23±1.20 
Site 0.67±0.16 0.78±0.04 1.42±1.17 1.20±0.71 

Tissues 
Season 12.53±2.61 14.77±1.41 16.98±3.75 15.22±2.17 

Site 11.80±1.58a 14.19±1.30ab 18.36±2.76c 15.46±1.14bc 

Co 
Sediment Season 1.90±0.53 1.46±0.82 1.39±1.06 1.27±0.4 

Site 2.36±0.56c 1.42±0.46b 1.41±0.63b 0.85±0.25a 

Tissues Season 1.15±0.29 1.05±0.43 1.52±0.65 1.46±0.77 
Site 1.45±0.48b 1.76±0.47b 1.38±0.18b 0.55±0.18a 

Cd 
Sediment Season 0.06±0.01C 0.02±0.01B 0.00±0.00A 0.003±0.00AB 

Site 0.03±0.00 0.01±0.00 0.02±0.02 0.02±0.02 

Tissues Season 0.72±0.26 0.75±0.23 1.00±0.10 0.83±0.25 
Site 1.00±0.07b 0.74±0.17a 0.67±0.17a 0.84±0.22a 

Hg 
Sediment 

Season 
<DL Site 

Tissues Season 0.15±0.04A 0.18±0.08A 0.27±0.08B 0.18±0.06A 
Site 0.15±0.04a 0.26±0.07b 0.24±0.08b 0.14±0.05a 

Pb 
Sediment Season 2.67±1.04 3.15±2.25 2.02±1.18 2.12±1.40 

Site 1.54±0.24a 1.66±0.25a 4.41±1.35b 2.35±1.26a 

Tissues Season 0.52±0.26 0.55±0.42 0.66±0.20 0.60±0.37 
Site 0.36±0.17a 0.53±0.18b 0.97±0.21c 0.51±0.10b 

Total 
extractable 

metals 
concentration 

Sediment Season 1242.73 844.89 655.93 852.53 
Site 674.22 527.87 845.31 1548.68 

Tissues 
Season 670.61 920.11 1310.87 1243.73 

Site 815.70 994.89 1781.52 553.21 
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Table III. 4. Results of the Kuskal-Wallis test and significance of temporal and spatial 

variation of body and sediments metal concentrations. Iron (Fe), aluminium (Al), chromium 

(Cr), copper (Cu), manganese (Mn), nickel (Ni), zinc (Zn), selenium (Se), arsenic (As), cobalt 

(Co), cadmium (Cd), mercury (Hg) and lead (Pb). M1, M2 and M3 are sampling sites located 

in M-est and L in L-est.  

 

 

 

Body Sediments 

Season Site Season Site 

Χ2 p Χ2 p Χ2 p Χ2 p 

Fe 2.255 0.521 32.017 0.000 9.339 0.025 7.554 0.056 

Al 0.242 0.622 13.366 0.004 7.552 0.056 25.356 0.000 

Cr 7.700 0.053 25.212 0.000 16.883 0.001 11.425 0.010 

Cu 15.523 0.001 21.210 0.000 19.340 0.000 11.032 0.012 

Mn 17.230 0.001 8.840 0.031 2.512 0.473 27.952 0.000 

Ni 8.585 0.035 28.027 0.000 9.270 0.026 23.894 0.000 

Zn 0.219 0.975 21.316 0.000 7.658 0.054 9.634 0.022 

Se 5.187 0.159 17.953 0.000 3.628 0.305 5.164 0.160 

As 6.315 0.097 20.217 0.000 7.299 0.063 4.413 0.220 

Co 7.710 0.052 27.189 0.000 6.594 0.086 25.817 0.000 

Cd 7.483 0.058 16.086 0.001 32.707 0.000 1.469 0.689 

Hg 10.636 0.014 21.283 0.000 0.000 1.000 0.000 1.000 

Pb 4.082 0.253 27.585 0.000 3.553 0.314 17.634 0.001 
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C. fluminea BSAFs calculated for each metal per season and sampling 

site are shown in Table III. 5. Pb BSAFs were lower than 1 in all seasons and 

sampling sites. BSAFs higher than 1 were found for Fe, Cu, Zn, Se, As and 

Cd in all seasons, and for Cr in the autumn, winter and spring; and for Ni and 

Co in the winter and spring. Concerning sites, BSAFs higher than 1 were 

found for Fe, Cu, Zn, Se, As and Cd in all seasons; for Al and Cr in all M-est 

sites; for Mn in M3 and for Co in M2.  
 

 

Table III. 5. Temporal and spatial variation of biota-sediment accumulation factors (BSAFs). 

Values represent the BSAFs of Iron (Fe), aluminium (Al), chromium (Cr), copper (Cu), 

manganese (Mn), nickel (Ni), zinc (Zn), selenium (Se), arsenic (As), cobalt (Co), cadmium 

(Cd), mercury (Hg) and lead (Pb). M1, M2 and M3 are sampling sites located in Minho 

estuary and L in Lima estuary. 

Metal Factor Summer Autumn Winter Spring Total 
average M1 M2 M3 L 

Fe Season 1.84 3.56 4.35 1.99 
2.84 

Site 1.63 4.26 3.42 1.66 

Al Season - - 0.98 0.98 
1.04 

Site 1.28 1.35 1.53 0.13 

Cr Season 0.62 1.60 5.11 2.07 
2.15 

Site 3.51 2.33 1.58 0.40 

Cu Season 9.29 69.84 33.97 23.35 
35.90 

Site 61.95 53.79 8.43 26.59 

Mn Season 0.22 0.25 0.60 0.65 
0.55 

Site 0.68 0.87 1.07 0.09 

Ni Season 0.41 0.35 1.10 1.30 
0.72 

Site 0.80 0.63 0.77 0.38 

Zn Season 6.03 10.07 10.70 8.07 
8.72 

Site 9.53 9.22 5.81 10.37 

Se Season 11.69 14.91 14.56 10.97 
13.69 

Site 13.16 20.54 16.29 7.36 

As Season 10.95 15.58 25.75 12.60 
15.99 

Site 18.95 18.29 12.92 12.87 

Co Season 0.55 0.72 1.10 1.14 
0.87 

Site 0.58 1.24 0.99 0.65 

Cd Season 13.89 17.30 - 19.99 
17.00 

Site 20.71 17.76 12.57 16.76 

Hg Season - - - - 
- 

Site - - - - 

Pb Season 0.17 0.18 0.33 0.30 
0.24 

Site 0.19 0.32 0.22 0.23 
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3.2.1. Abiotic parameters influencing the concentrations of metals in 

sediments and C. fluminea  bioaccumulation factors  

The results of the RDA analysis carried out to investigate the relationships 

between water and sediment parameters and the sediment concentrations of 

metals is shown in Figure III. 2A. The first two axes explain 99.6% of the total 

variance (F-ratio = 0.00, p = 0.022, Monte Carlo permutation) with the first 

canonical axis (horizontal) explaining 92.6%, while the second canonical axis 

(vertical) explains 7% of the total variance. The first axis separate the summer 

from the remaining seasons and L from the remaining sites. Fe, Zn, Cu, Pb, 

As and Cd in sediments are positively associated with very fine sand, the silt 

and clay fractions, and organic matter content in sediments, and the water 

hardness in M3 during the spring. The sediments concentration of Co and Ni 

are associated with sediments medium and fine sand, and water pH and 

dissolved oxygen, in M1 and M2, and the autumn and winter; Cr, Se, Al and 

Mn are associated with sediments coarse and very coarse sand, and water 

ammonium, turbidity, conductivity and temperature, in L and the summer.  

The results of the integration of abiotic data and C. fluminea BSAFs of 

different metals through RDA are shown in Figure III. 2B. The first two axes 

explain 97% of the total variance (F-ratio = 0.00, p = 0.022, Monte Carlo 

permutation) with the first canonical axis (horizontal) explaining 87.9%, and 

the second canonical axis (vertical) explaining 9.1% of the total variance. The 

first axis separates C. fluminea individuals collected in M1 and M2 from those 

collected in M3 and L, and individuals collected in the autumn from those 

collected in the remaining seasons. The second axis further separates C. 

fluminea individulas collected in winter from those collected in the summer 

and spring, and individuals collected in M3 from those collected in L. BSAFs 

of Fe, Cr, As, and in a less extent Se contribute to separate the C. fluminea 

individuals collected in the winter from those collected in the other seasons, 

and are negatively associated with water ammonium, conductivity and 

hardness. BSAFs of Pb, Co, Al, Mn and Ni are positively associated with 

sediment very coarse, coarse and fine sands, and negatively associated with 

water temperature and organic matter in sediments. These BSAFs also 

contribute to separate C. fluminea individuals collected in the winter from 
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those collected in the other seasons (although in a less extent than those of 

Fe, Cr, As).  Cu, Zn and in a less extent Se concentrations are positively 

associated with water pH, medium sand and dissolved oxygen, contributing to 

separate the autumn from the other seasons, and M1 and M2 from the other 

sites. Cd BSAF was associated mostly with water turbidity and temperature, 

and organic matter in sediments.  

 

 

 

 

 
 
 
 
 
 
 
 
 

 

Figure III. 2. Ordination diagrams of RDA analyses showing the relationship between 

variation in the levels of natural environmental parameters and: (A) the metal concentrations 

measured in sediments; (B) the biota-sediment accumulation factors (BSAFs). Natural 

environmental parameters are represented by straight arrows, metal concentrations in 

sediments and BSFAs are represented by dotted arrows, centroids of the sampling sites are 

represented by filled circles, and centroids of seasons by open circles. Legend: Iron (Fe), 

aluminium (Al), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), zinc (Zn), selenium 

(Se), arsenic (As), cobalt (Co), cadmium (Cd), mercury (Hg) and lead (Pb); temperature (T); 

dissolved oxygen (DO); conductivity (cond); pH; hardness (CaCO3), turbidity (Turb), nitrates 

(NO3
-), nitrites (NO2

-); organic matter (OM) very coarse sand (VCS), coarse sand (CS), 

medium sand (MS), fine sand (FS), very fine sand (VFS), silt and clay (S+C). M1, M2 and M3 

are sampling sites located in Minho estuary and L in Lima estuary. 
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3.3. Health condition of C. fluminea collected in different sites and seasons 

The mean and standard deviation of the biomarkers determined along the 

study are indicated in Table III. 6, and the results of their statistical analysis in 

Table III. 7. 

 

 
Table III. 6. Temporal and spatial variation of biochemical biomarkers involved in oxidative 

stress and damage, detoxification and energy metabolism and condition index. Values 

represent the mean and corresponding standard deviation of lipid peroxidation levels (LPO), 

glutathione S-transferase (GST), catalase (CAT), glutathione reductase (GR), esterase 

(EST), isocitrate dehydrogenase (IDH) and octopine dehydrogenase (ODH) activities and the 

condition index of 20 C. fluminea collected in each sampling season and site. All activities are 

expressed in nmol min-1 mg protein-1, except CAT that is expressed in µmol min-1 mg protein-

1. M1, M2 and M3 are sampling sites located in Minho estuary and L in Lima estuary. Different 

letters identify significant differences among sampling seasons (capital letters) or sites (small 

letters), as indicated by the Dunn multiple comparison test. 

 

 

 

For all the biomarkers, significant differences among seasons and sites 

were found. LPO levels and CAT activity were significantly higher in the 

Biomarker Factor 
Summer Autumn Winter Spring 

M1 M2 M3 L 

LPO 
Season 0.38±0.02C 0.39±0.05C 0.28±0.11B 0.18±0.03A 

Site 0.28±0.12 0.29±0.09 0.33±0.12 0.32±0.06 

GST 
Season 13.73±2.94A 20.92±3.89C 16.53±2.98B 26.31±4.19D 

Site 21.11±7.26b 21.28±6.17b 17.29±5.14a 18.40±2.23a 

CAT 
Season 6.22±0.43C 3.69±0.35B 3.39±0.38A 3.37±0.63A 

Site 3.87±1.44 4.29±1.36 4.18±1.71 4.28±1.26 

GR 
Season 2.20±0.62A 2.75±1.06B 4.86±2.23C 3.09±1.04B 

Site 3.88±1.98c 4.28±2.02c 2.58±0.63b 2.11±0.53a 

EST 
Season 0.70±0.05B 0.65±0.07A 0.88±0.07D 0.86±0.06C 

Site 0.79±0.11 0.74±0.07 0.77±0.13 0.80±0.21 

IDH 
Season 5.72±1.28B 4.28±0.65A 5.54±1.16B 4.06±1.34A 

Site 4.86±0.66b 3.91±1.04a 4.72±1.26b 6.38±1.28c 

ODH 
Season 3.93±0.50B 3.18±1.68A 4.81±0.98C 2.67±1.93A 

Site 2.29±1.42a 3.10±1.84b 4.73±0.27c 4.53±0.74c 

Condition 
index 

Season 0.28±0.03B 0.26±0.07A 0.28±0.03B 0.26±0.04A 

Site 0.23±0.01a 0.28±0.03b 0.24±0.03a 0.32±0.03c 
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summer and autumn. GST activity was significantly higher in the spring 

followed by autumn and winter, being significantly lower in the summer. GR 

activity was significantly lower in the summer and higher in the winter than in 

the other seasons. EST activity was significantly higher in the winter and 

spring than in the summer and autumn. Energy related enzymes (IDH and 

ODH) and the condition index were significantly higher in the summer and 

winter than in the autumn and spring. Concerning sampling sites, spatial 

differences were observed for GST, GR, IDH and ODH activities, and the 

condition index. GST and GR activities were significantly higher in M1 and M2 

than in M3 and L. IDH activity and the condition index were significantly higher 

in L than in M-est sampling sites, whereas the ODH activity was significantly 

higher in M3 and L than in M1 and M2. 

 
Table III. 7. Results of the Kuskal-Wallis test and significance of temporal and spatial 

variation of biochemical biomarkers involved in oxidative stress and damage, detoxification 

and energy metabolism and condition index. Lipid peroxidation levels (LPO), glutathione S-

transferase (GST), catalase (CAT), glutathione reductase (GR), esterase (EST), isocitrate 

dehydrogenase (IDH) and octopine dehydrogenase (ODH) activities and the condition index. 

M1, M2 and M3 are sampling sites located in M-est and L in L-est.  

 

 Season Site 

 Χ2 p Χ2 p 
     

LPO 173.653 0.000 14.850 0.002 

GST 109.181 0.000 42.621 0.000 

CAT 127.665 0.000 10.133 0.017 

GR 65.103 0.000 116.324 0.000 

EST 119.674 0.000 0.165 0.104 

IDH 58.953 0.000 78.142 0.000 

ODH 62.059 0.000 107.142 0.000 

CI 10.273 0.016 158.196 0.000 

 

 

The results of the integration of biomarkers data through the IBR are 

shown in Figure III. 3. In all sites, the highest IBR values were found in C. 

fluminea individuals collected in the summer, and in M3 and L. High IBR 
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values were also found in C. fluminea individuals collected in the autumn in 

M3, and in winter in L. The lowest values per site were recorded in C. 

fluminea individuals collected in spring in M1 and M2, in winter and spring in 

M3, and in spring in L. 

 

 

Figure III. 3. Integrated biomarker responses index (IBR) values calculated for clams from 

each sampling site and season. IBR values were computed using the following biomarkers 

responses: lipid peroxidation (LPO), glutathione S-transferase (GST), catalase (CAT), 

glutathione reductase (GR), isocitrate dehydrogenase (IDH), octopine dehydrogenase 

(ODH)  and esterase (EST). Higher values indicate higher stressed condition. M1, M2 and M3 

are sampling sites located in Minho estuary and L in Lima estuary. 

 

 

3.4. Influence of abiotic factors and bioavailable metal concentrations in 

sediments on biomarkers 

The results of RDA analysis integrating the water and sediment 

parameters, the C. fluminea condition index and IBR are indicated in Figure 

III. 4A. The first canonical axis explains 100% of the total variance (F-ratio = 

0.00, p = 0.022, Monte Carlo permutation). It separates M1 and M2 from M3 

and L, and the summer and autumn from the spring and winter. M1 was 

positively associated with fine and very fine sands and pH, M2 with 

conductivity and organic matter, M3 with temperature and nutrients (nitrites 

and nitrates) and L with coarse and very coarse sands, ammonium and 

turbidity. Summer and autumn were positively associated with nutrients 
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(namely nitrates and nitrites) and temperature; spring was positively 

associated with dissolved oxygen and organic matter and winter with 

hardness and conductivity. The IBR was positively associated with nutrients 

(nitrates, nitrites and ammonium), temperature and turbidity. The condition 

index was positively associated mainly with coarser sands.  

The results of RDA analysis integrating the metal concentrations in 

sediments and C. fluminea body, and the C. fluminea condition index and IBR 

are indicated in Figure III. 4B. The first canonical axis explains 100% of the 

total variance (F-ratio = 0.00, p = 0.022, Monte Carlo permutation). The first 

axis separates M1 and M2 sites from L and M3, and the summer and autumn 

from the spring and winter.  

 

 

 
Figure III. 4. Ordination diagrams of RDA analyses showing the relationship between clam’s 

condition index and stress levels (IBR index) and: (A) the natural environmental parameters; 

(B) the metal concentrations measured in sediments and in tissues. Condition index (CI) and 

IBR are represented by straight arrows, metal concentrations in clams are represented by 

dotted arrows and in sediments are represented by straight arrows (bigger than biomarkers), 

natural environmental parameters are represented by dotted arrows, centroids of the 

sampling sites are represented by filled circles. Legend: Iron (Fe), aluminium (Al), chromium 

(Cr), copper (Cu), manganese (Mn), nickel (Ni), zinc (Zn), selenium (Se), arsenic (As), cobalt 

(Co), cadmium (Cd), mercury (Hg) and lead (Pb); temperature (T); dissolved oxygen (DO); 

conductivity (cond); pH; hardness (CaCO3), turbidity (Turb), nitrates (NO3
-), nitrites (NO2

-); 

organic matter (OM) very coarse sand (VCS), coarse sand (CS), medium sand (MS), fine 

sand (FS), very fine sand (VFS), silt and clay (S+C). M1, M2 and M3 are sampling sites 

located in Minho estuary and L in Lima estuary.  
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In C. fluminea individuals from L sampling sites, the condition index and in 

a less extent the IBR were positively associated with the concentrations of Se, 

Al, Mn, Cr and AS in sediments. M3 was positively associated with sediments 

concentrations of Ni, Zn, Cd, Cu and Pb. M2 was positively associated with 

the concentrations of As and Se in C. fluminea body and M1 with Co and Fe 

in sediments and Fe, Cr and Zn in C. fluminea body. Summer and autumn 

were positively associated with the concentrations of Cd, Pb and Cu in 

sediments whereas spring and winter were positively associated with the 

concentrations of As and Se in the C. fluminea body. 

 

4. Discussion 

4.1. Brief abiotic characterization of the system over time 

The temporal and spatial variation in water and sediments abiotic 

parameters found in the present study (Table III. 1) are typical of highly 

dynamic ecosystems such as estuaries (Bettencourt et al. 2004) and are in 

good agreement with the findings of previous studies in M-est and L-est (Ilarri 

et al. 2012; Sousa et al. 2008e). Overall, the results of Table III. 1 indicate 

higher water temperature, conductivity and nutrients concentrations (namely 

ammonium, nitrites and nitrates) in the summer than in other seasons. These 

conditions are considered not favourable to C. fluminea (Vohman et al. 2009; 

Weitere et al. 2009). Moreover, in the summer, the total concentration of 

metals in sediments was higher than in the other seasons (Table III. 2), in 

good agreement with the findings of a previous study performed in the M-est 

(Rubal et al. 2009). The results shown in Table III.  3, also indicate a spatial 

variation of the total metal concentration in sediments, with the following 

decreasing ranking order of the sampling sites: L (1548.68 µg g-1 d.w.) > M3 

(845.31 µg g-1 d.w.) > M1 (674.22 µg g-1 d.w.) > M2 (523.87 µg g-1 d.w.). Thus, 

the highest total metal concentrations in sediments were found in the most 

downstream sampling sites (L and M3, in L-est and M-est, respectively). Not 

excluding the possibility of a higher direct input of metals in downstream areas 

relatively to upstream ones, these findings suggest the accumulation of 

contaminated sediments dragged way from most upstream areas by the water 
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flow in L and M3. The retention and accumulation of metals in these sites may 

be favoured by the relative high contents of very fine sand and silt and clay 

fractions of local sediments (Table III. 1). For instance, sediments rich in such 

fractions have a high surface area available for metal adsorption and, in 

general, are also rich in organic matter, factors that contribute to their high 

capability to retain metals (Duman et al. 2013; Reis et al. 2014; Salman et al. 

2011).  

Several studies have been investigating the concentrations of metals in 

sediments from the estuaries of Minho and Lima Rivers. The mean of total 

bioavailable metals concentration in sediments determined in the present 

study are in general lower than those reported in studies performed previously 

(Gravato et al. 2010; Guimarães et al. 2012; Reis et al. 2009; Reis et al. 2014; 

Rodrigues et al. 2014; Rubal et al. 2009). However, these studies reported 

total metals concentrations in Minho basin after strong-acid digestion, and it is 

known that bioavailable metal concentrations (after weak-acid extraction) are 

lower (usually <20%) than those of total ones (Reis et al. 2009). Sequential 

extraction schemes are a good compromise that provides a practical method 

for giving information on environmental contamination risk (Sahuquillo et al. 

2002). Determinations of broader forms or phases to be measured (e.g. 

“bioavailable” forms of elements, so called ‘‘mobile’’ or ‘‘carbonate-bound’’ 

forms, using extraction procedures as step 1 of BCR method) can be a good 

compromise to give information on environmental contamination risk (Rauret 

et al. 1999; Pueyo et al. 2001; Rao et al. 2008). This first step is considered 

the fraction with the higher bioavailability when analysing metals in sediments 

(Reis et al. 2009; Rao et al. 2008; González-Flores et al. 2011). 

  

4.2. Factors influencing the accumulation of metals by C. fluminea   

The BSAFs values higher than 1 (Table III. 5) indicate that C. fluminea is 

accumulating several metals in both M-est (Fe, Al, Cr, Cu, Zn, Se, As, Cd and 

Co in M2 and Mn in M3) and L-est (Fe, Cu, Zn, Se, As and Cd) with the 

highest BSAF values for Cu, Cd, As and Se.  There are several differences 

between the ranking orders of metal accumulation by C. fluminea from all the 

sampling sites suggesting that metal accumulation strongly depends on the 
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environmental conditions (Maanan 2008; Shoults-Wilson et al. 2009). 

Nonetheless, in general (except in M3), Cu was the metal with the highest 

BASF value suggesting that the Asian clam accumulates very efficiently this 

metal. In fact, a recent study also observed high Cu concentrations 

bioaccumulated by C. fluminea in Minho estuary (Reis et al. 2014).  

As indicated by the BSAF values lower or near 1 (Table III. 5), C. fluminea 

from the M-est and L-est are not accumulating Al, Mn, Ni, Co and Pb. These 

results suggest that C. fluminea may be able to regulate the concentration of 

these metals in the body, for example through a reduced absorption and/or 

efficient elimination among other processes such as the storage of metals in 

the shells. For instance, Pb was found to be stored in the shell of the Asian 

clam, C. fluminea  (Conners et al. 1999).  

It was observed a spatial and temporal variation of the BSFA values.  The 

positive association between the water dissolved oxygen concentration and 

the BSAF values (Figure III. 2), suggests that these abiotic factor is 

influencing the metals accumulation by C. fluminea. These findings are in 

good agreement with the influence of water dissolved oxygen on the 

accumulation of As by C. fluminea found in a previous study (Shoults-Wilson 

et al. 2009). BSAF values were also positively associated with coarser sands 

and negatively associated with finer sediments (Figure III. 2). Finer sediments 

have a greater capability of retaining metals (Salman et al. 2011), potentially 

reducing their accumulation by C. fluminea. 

In summary, C. fluminea can accumulate several metals, especially Cu, 

Cd, As and Se, in its body soft tissues, a characteristics in favour of its use as 

bioindicator of early contamination of aquatic systems by these metals; the 

accumulation of several metals by C. fluminea showed seasonal as well as 

spatial variations, increased water dissolved oxygen concentrations, and 

sediments rich in coarser sands are favourable to the accumulation of metals 

by C. fluminea.  
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4.3. Heath status of C. fluminea in relation to abiotic parameters and 

concentrations of metals  

The integrated analysis of biomarkers (IBR index) showed a temporal and 

spatial variation of C. fluminea stress levels (Figure III. 3). In general, higher 

stress levels were observed in summer/autumn. Environmental conditions 

observed in summer/autumn have been previously shown to induce a high 

stress condition that may have led to a possible massive mortality (Oliveira et 

al. 2015a). In fact, LPO levels as well as CAT activity (Table III. 6) were rather 

higher in summer/autumn decreasing in the following seasons, indicating an 

attempt to cope with oxidative stress that probably failed since there are 

higher levels of oxidative damage. Concerning sampling sites, IBR index was 

generally higher in downstream sampling sites (M3 and L) concomitant with 

higher sediment metal concentrations, suggesting that a higher exposure to 

metals induce higher stress levels. 

In the integrated analysis, results showed a separation between 

downstream and upstream sampling sites. The condition index and IBR index 

were associated with Lima sampling sites and in a less extent with M3 mostly 

influenced by higher temperatures, organic matter, coarser sands and the silt 

and clay fraction. When metal concentrations are included in the analysis one 

can notice that higher stress levels were extremely associated with Mn, Al, Cr, 

As and Se mostly in L-est. In fact, several of these metals were in much 

higher concentrations in L-est than in M-est sediments, however the 

concentration in the tissues was lower. Several detoxification mechanisms, 

which can range from shell closure and/or reduced filtration rates to induction 

of metalothionein proteins, may influence the uptake, distribution and 

elimination of metals (Baudrimont et al. 2002; Marigómez et al. 2002). 

Induction of metalothioneins was already observed in C. fluminea after 

exposure to Cd and Zn, which, particularly early in the depuration phase, were 

shown to decrease nearly 40% (Baudrimont et al. 2002). Results suggest that 

C. fluminea inhabiting in L-est can efficiently eliminate and/or avoid excessive 

concentrations of these particular metals. The mechanisms of metal 

detoxification and elimination and/or avoidance are known to induce oxidative 

stress (Valko et al. 2005) contributing to higher stress levels that may be 
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limiting the invasive behaviour of this population, since a strong association 

was observed between these particular metals and higher IBR values. In 

addition the energy expended with metal elimination might be also 

contributing for the low dispersion of C. fluminea in L-est since the energy 

required for the establishment and spread of the population may be redirected 

to cope with metal contamination. 

 

5. Conclusions 

Environmental conditions in summer may be particularly stressful for C. 

fluminea, especially because of an increase in water temperature, conductivity 

and nutrients concentrations (namely ammonium, nitrites and nitrates) and 

concentrations of bioavailable metals in sediments. Downstream sampling 

sites (M3 and L) showed higher concentrations of several metals in sediments 

(Al, Cr, Cu, Mn, Hg and Pb) that are likely to be more toxic to C. fluminea than 

those found in M1 and M2. 

C. fluminea can bioaccumulate concentrations of Cu, Cd, As and Se 

becoming a good bioindicator of early contamination of aquatic systems by 

theses metals. Contrariwise, C. fluminea seems to efficiently eliminate Al, Mn, 

Ni, Co and Pb or these metals or may be accumulate them in their shells 

since no obvious bioaccumulation in the C. fluminea body was observed for 

these metals. Higher metal accumulation was observed in M3 and winter 

mostly associated to dissolved oxygen concentration and coarser sands 

indicating that seasonal fluctuations influence the bioaccumulation of metals 

by C. fluminea. 

Higher stress levels were observed in summer/autumn mainly induced by 

an increased water temperature and nutrients concentrations. In winter, 

higher stress levels were induced by a decreased water quality probably 

associated to metal resuspension. In addition, IBR index was higher in L-est 

and the most downstream sampling site in M-est (M3) probably due to the 

higher concentration of metals that are drawn from upstream. L-est population 

stress levels were mostly associated with Mn, Al, Cr, As and Se 

concentrations probably due to the mechanisms of detoxification, elimination 

or/and avoidance of these metals that may be stressful, since lower 
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concentrations were observed in their bodies compared with M-est C. 

fluminea population. Mechanisms of metal elimination and/or avoidance seem 

to be limiting the invasive behaviour of this population. In addition the energy 

expended with metal elimination might be also contributing for the low 

dispersion of C. fluminea in L-est since the energy required for the 

establishment and spread of the population may be redirected to cope with 

metal contamination. 

C. fluminea, showed a high ability to bioaccumulate several metals and 

high tolerance to high metal concentrations in their tissues proving to be 

useful for bioremediation programs in locations previously invaded by this 

species, since is spread in several rivers around the world, however, always 

taking special care not to promote their further dispersion. In addition, the 

analysis of heavy metals concentrations in C. fluminea body inhabiting in M-

est and L-est indicated safe levels for human consumption in M-est and L-est. 

 

 

 
 

Acknowledgments 

This research was partially supported by the European Regional 

Development Fund (ERDF) through the COMPETE - Operational 

Competitiveness Programme and national funds through FCT – Foundation 

for Science and Technology, under the projects NISTRACKS (PTDC/AAC-

AMB/102121; FCOMP-01-0124-FEDER-008556) and PEst-

C/MAR/LA0015/2013. C. Oliveira had a PhD fellowship from FCT 

(SFRH/BD/68423/2010), supported by “Programa Operacional Potencial 

Humano do QREN Portugal 2007-2013” and national founds from the 

“Ministério da Ciência e Tecnologia e Ensino Superior” (MCTES – POPH-

QREN-Tipologia 4.1).



	

 

 

 
Chapter IV 

 

 

 
 

 
 
 



	

 

 
 
 
 
 
 
 
 
 
 



	

 89	

Histological study of the gonadal development cycle of Corbicula fluminea 

and its relationship with spatial and temporal variation of environmental 

parameters 

 

Abstract 

The freshwater clam Corbicula fluminea is a non-indigenous invasive species in 

Europe and several other regions of the world. The reproductive outcome of C. 

fluminea populations is determinant for their successful establishment in new areas 

and likely influences their invasive behaviour in colonized habitats. More knowledge 

on the reproductive cycle in distinct regions of the world and on the environmental 

factors affecting it are needed to prevent new invasions and mitigate the adverse 

impacts in ecosystems already colonized. Thus, the goals of the present study were 

to investigate the gonads developmental cycle of C. fluminea populations inhabiting 

two neighbour estuaries of the Iberian Peninsula that have been showing distinct 

invasive behaviours and to identify the abiotic factors influencing the process in 

estuarine tidal freshwater areas (TFA). From October 2011 to November 2012,  

monthly, 10 C. fluminea specimens were collected in three sampling sites of the 

Minho River estuary (M-est) and one site in the Lima River estuary (L-est). From 

each individual, the gonads were isolated and prepared for histological analysis to 

determine the sex and the gonadal phase. Gonadal development cycle data were 

analysed in relation to water and sediments parameters variation.  Although the 

gametogenic condition of the follicle did not appear to change over the year, it was 

observed a seasonal pattern in the relative percentage of hermaphrodites and empty 

follicles most probably indicative of higher reproductive periods. Results showed 

higher hermaphrodites percentages among all sampling sites in spring associated 

with greater availability of food. Because in C. fluminea, the fertilization requires the 

simultaneous occurrence of oocytes and sperm, these findings suggest 

synchronization between the peaks of fertilization and availability of nutritional 

resources that are crucial for larval survival. Generally, C. fluminea population 

inhabiting in both estuaries showed higher relative percentage of hermaphrodite 

individuals, and, therefore, higher reproductive periods, in autumn and spring and no 



	

 90	

important differences were observed between M-est and L-est populations indicating 

that gonadal development cycle do not contribute, most likely, to the differences 

observed between their invasive behaviours. However, reproductive output also 

includes the number of juveniles formed and their release and survival, which may 

be contributing to the invasive behaviour differences observed between M-est and L-

est. 

The integrated analysis of data indicated an association between high 

percentages of hermaphroditism and high concentrations of nutrients, organic matter 

and chlorophylls, suggesting a good synchronism between fertilization/spawning and 

food availability that is crucial for larvae survival and performance. 

 

 

 
 
 
Key words: Corbicula fluminea; Invasive behaviour; Reproduction; 

environmental factors; Pollution 
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1. Introduction 

The freshwater clam Corbicula fluminea, native in south-eastern Asia, has been 

introduced globally around the world and is generally considered to be an aquatic 

non-indigineous invasive species (NIS) of pest status in several regions, including in 

Europe (Denton et al. 2012). C. fluminea is known to be a highly invasive species 

mostly due to their reproductive characteristics such as high fecundity, and early 

sexual maturity (Sousa et al. 2008a). The reproductive success is crucial for the 

establishment of the species in new habitats and their dispersal (Brockerhoff et al. 

2014; Kamburska et al. 2013). Most studies observed that C. fluminea reproduces 

twice a year in temperate regions: one in the spring and the other starting in late 

summer (Mouthon 2001; Sousa et al. 2008a; Wittmann et al. 2008). However, some 

studies found differences in the number of reproductive periods (Denton et al. 2012; 

Doherty et al. 1987; Rajagopal et al. 2000). For example, Denton et al. (2002) only 

found one reproductive period in late summer whereas Doherty et al. (1987), 

Rajagopal et al. (2000), observed two reproductive periods. Natural factors, such as 

temperature, salinity, food availability and contamination may perturb or alter 

gametogenesis, spawning periods and other steps of the reproductive cycle of C. 

fluminea  (Cataldo and Boltovskoy 1999; Cataldo et al. 2001; Lehmann et al. 2007; 

Mouthon 2001; Morgan et al. 2003; Rajagopal et al. 2000). Reaching certain 

temperature levels is crucial to initiates several stages of C. fluminea reproduction 

(Rajagopal et al. 2000; Mouthon and Parghentanian 2004). For example, spawning 

usually initiates at temperatures around 18ºC, however, it ceases when temperature 

reaches around 28ºC and a weaker spawning typically occurs after a decrease of 

temperatures (Byrne et al. 2000; Denton et al. 2012; Rajagopal et al. 2000; Mouthon 

and Parghentanian 2004). Incubation of embryos and release of juveniles are also 

modulated by temperature fluctuations (Baba et al. 1999; Byrne et al. 2000; 

McMahon 1982). Although temperature is rather important to trigger several stages 

of reproduction, food availability is also important for gonad development, fecundity, 

embryo development and successful brooding, and increases both the number of 

embryos and the individual size of developing embryos (Beekey and Karlson 2003; 

Doherty et al. 1987; Mouthon 2001). Salinity range may also have important effects 

on larval survival and development (Baba et al. 1999). Environmental contamination 

is another parameter that might seriously affect the reproduction of C. fluminea. For 
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example, gonadal atrophy was observed after exposure to a polychlorinated biphenyl 

compound (Lehmann et al. 2007).  

The populations of C. fluminea inhabiting the tidal freshwater areas of the 

estuaries of Minho (M-est) and Lima (L-est) Rivers (NW Iberian Peninsula), two 

neighbour estuaries, have been showing different invasive behaviours (Sousa et al., 

2006a; Sousa et al., 2008b,d). Because so far, no significant genetics difference 

between the two populations were found, their comparative study may provide 

valuable insides on the influence of environmental factors on biological aspects 

determinant for the invasive behaviour of C. fluminea populations and thus to control 

it and/or mitigate the adverse effects of the invasions by this NIS. The first record of 

C. fluminea in the M-est was in 1989 (Araújo et al., 1993). Since then, the population 

has been increasing and colonized practically all the TFA, reaching an extraordinary 

abundance and biomass (Sousa et al., 2008b). Contrariwise, in the L-est, the 

species was recorded for the first time in 2002, and only with a sparse and spotted 

distribution with low abundance and biomass (Sousa et al., 2006b). This population 

is believed to be in a lag time phase, possibly due to environmental conditions 

limiting its dispersion (e.g. salinity, chemical contamination) (Sousa et al. 2006a). 

These factors may limit the invasive behaviour of the population acting negatively on 

its reproductive success, for example on gametogenesis, fertilization, recruitment 

and/or juvenile development. The difficulty in finding individuals with less than 13 mm 

of shell length (Sousa et al. 2006a) supports this hypothesis. Thus, the main goal of 

the present study is to document and compare the gonads development cycle of M-

est and L-est C. fluminea populations in relation to abiotic variation, including 

environmental contamination by metals.  
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2. Material and Methods 

2.1. Chemicals 

All the chemicals used were of analytical grade and purchased from Sigma-

Aldrich (Germany) or Merck (Germany).  

 

2.2. C. fluminea collection and tissue preparation 

C. fluminea specimens were collected monthly over 14 months (from October 

2011 to November 2012) in four sampling sites (10 individuals per sampling site and 

month): 3 sites in the M-est (M1, M2, M3) and one site in L-est (L) with a hand rake 

with a net at low tide. Water and sediments from the different sampling months and 

sites were collected at the same time as C. fluminea individuals. Water temperature, 

dissolved oxygen, conductivity and pH were measured in situ and water samples 

were collected, in triplicate. C. fluminea individuals were transported to the laboratory 

as soon as possible in a container thermally isolated with aeration. In the laboratory, 

they were measured (caliper 0 – 150 mm) weighted (balance), and sacrificed under 

cold-induced anaesthesia. The visceral mass of each animal that contains the gonad 

tissue was separated and fixed in 4% formalin buffered with 0.1 M phosphate buffer 

for 24 h. After this period, fixed visceral mass samples were placed in 70% of 

ethanol aqueous solution until further analysis. Fixed visceral mass samples were 

dehydrated by passing the tissue through a series of increasing alcohol 

concentrations (76%, 90% and 100%), cleared in methylbenzoate (≥ 99% purity) and 

rinsed in benzene (≥ 99% purity) in an autostainer (ST5010 Autostainer XL, 

Germany) and embedded in paraffin. Longitudinal sections with 5 µm thick (2 per 

visceral mass sample) were cut, always in, approximately, the middle of the sample, 

using a rotary microtome (Leitz 1512,Ernest Leitz Wetzlar GmbH, Austria) and 

stained with hematoxyline and eosine (ST5010 Autostainer XL, Germany). Slides 

were observed by optical microscopy (Leitz Laborlux S light microscope, Germany) 

to determine the sex and the gonadal phase. Because, according previous works 

with this species, oogenesis continues throughout almost the entire year with 

different size classes of oocytes always present in the follicles (Kraemer and 

Galloway 1986), only three gonadal phases were considered, namely phases A, B 

and C (Figure 1). Individuals were considered to be in phase A, when in both 
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gonadal sections all the follicles contained filled oocytes only (in pre-vitellogenesis 

and in vitellogenesis with cytoplasm, nucleus and nucleolus well-defined); 

Specimens were considered to be in phase B when both gonadal sections contain 

filled follicles with both oocytes (in pre-vitellogenesis and in vitellogenesis with 

cytoplasm, nucleus and nucleolus well-defined) and sperm cells (spermatogonia 

along the follicular walls and sperm cells approaching the follicle centre), and/or 

some follicles contained oocytes (in the stages previously indicates) only, whereas  

other contained only sperm cells (as previously described); in both cases, these 

individuals were considered hermaphrodites. Finally, individuals were considered to 

be in phase C when in both gonadal sections contains follicles almost empty (C) 

suggesting a post-spawning and/or resting phase.  

 

 

 

 
Figure IV. 1. Corbicula fluminea gonad sections stained with eosine-hematoxyline (with a 5x 

amplification). A – Gonads containing follicles with only oocytes; B – Gonads containing follicles with 

oocytes and sperm cells; and C – Gonads containing empty follicles.  

 

 

2.3. Water and sediment analysis 

In the water and sediment samples collected simultaneously to C. fluminea, the 

following parameters were determined as described in Chapter III: water hardness, 

turbidity and the concentration of ammonium, nitrates, nitrites, phosphates, iron, 

phenol and silica and sediments organic matter, chlorophylls a, b and c and 

granulometry.  

 

A B C 
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2.4. Data analysis 

Data from each water abiotic and sediment physico-chemical parameter was 

checked for normality of distribution and homogeneity of variances before the 

Analysis of Variance (ANOVA) (Zar, 1999). When these assumptions could not be 

full field even after data transformation, the non-parametric Kruskal–Wallis 

comparison test was used to compare different months and sites. When significant 

differences were found, the Dunn’s multicomparison test was used to discriminate 

statistically significant treatments. The Statistics 18.0 package was used and the 

significance level was 0.05. 

Data from gonadal development cycle phases and temporal significant water 

abiotic and sediment parameters simultaneously to the gonads development cycle, 

as well as metal concentrations both in C. fluminea tissues and sediments 

(discussed in Chapter III) were integrated through a Redundancy Analysis (RDA), 

using a model-based type of Monte Carlo permutation test (ter Braak and Prentice, 

1986; ter Braak and Smilauer, 2002). In order to include metal concentrations, that at 

alongside with natural factors, also influence reproduction (Lehmann et al. 2007; 

Sousa et al. 2008a) the multivariate analysis was performed with the results obtained 

in October 2011, January 2012 and April 2012 (that is seasonally in autumn, winter 

and spring) that were the months in which samples were collected together with 

those collected for metal analysis. Variables included in the analysis were: gonadal 

development phases; IBR values (since stress condition may influence reproductive 

processes and vice versa); water temperature, conductivity, pH, hardness and 

ammonium, nitrates, nitrites, phosphates and iron concentrations; sediment organic 

matter, medium sand and silt and clay fraction contents and total chlorophylls; C. 

fluminea tissue concentrations of copper, manganese, nickel and mercury; and 

sediment concentrations of iron, chromium, copper, nickel and cadmium. 

Environmental parameters were chosen based on seasonal significant differences 

obtain in data analysis performed in Chapter III. 
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3. Results and Discussion 

3.1. Natural environmental parameters variation 

  The results of abiotic water and physic-chemical sediments parameters 

indicate important spatial and temporal variability in environmental conditions 

(Tables IV. 1 and 2, respectively). Significant temporal variations were found for 

water temperature, dissolved oxygen, pH, nitrates and iron (Table IV. 3). The results 

showed that the highest water temperatures were observed in July, August and 

September and the lowest ones in January and February. Water dissolved oxygen 

concentrations showed, in general, an opposite trend with lower values in June and 

higher in April. The combination of higher temperatures and lower water dissolved 

oxygen concentrations should be highlighted since the combination of these two 

factors is particularly stressful to C. fluminea and bivalves in general (Cherry et al., 

2005; Cooper et al., 2005; Johnson and McMahon, 1998; Vohmann et al., 2009; 

Weitere et al., 2009; Werner and Rothhaupt, 2008). 

Spatial significant differences were found for water conductivity, hardness, 

nitrites, phosphates and silica and for sediment granulometry and total chlorophylls 

concentration (Table IV. 2). Spatial differences generally reveals an increasing 

gradient (upstream to downstream): water conductivity, hardness and phosphate 

concentration and sediment silt and clay fraction and total chlorophyll concentration 

were, in general, higher in downstream sampling sites (both M3 and L), suggesting 

that these sites are under a higher tidal influence than M1 and M2, in good 

agreement with findings of previous studies (Ilarri et al., 2012; Sousa et al., 2008a,d). 

The sediment grain size, in general, decreased from upstream to downstream in the 

M-est, whereas L-est sediments had higher percentage of coarser sands and silt and 

clay fraction, and lower percentage of intermediate grain sizes than the M-est sites. 

Finer sediments may be resuspended and dragged to locations further downstream 

where they are deposited, increasing the percentage of fines in these locations (Ortiz 

et al. 2013). 
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Table IV. 1. Abiotic water variables values determined for each sampling site and month in the tidal 

freshwater area of M-est and L-est, from October 2011 to November 2012. For each parameter, the 

values are the mean with the corresponding standard error within brackets. Temperature (T, ºC), 

dissolved oxygen (DO, mg/l), conductivity (Cond, µS/cm), pH (pH units), nitrites (NO2
-, mg l/1), 

nitrates (NO3
-, mg/l), ammonium (NH4

+, mg/l), phosphates (PO4
3-, mg/l), silica (SiO2, mg/l), phenol 

(C6H5OH, mg/l), iron (Fe, mg/l), hardness (CaCO3, mg/l) and turbidity (Turb, FTU).  

 

  

Month	 Site	 T	 DO	 Cond	 pH	 Turb	 CaCO3	 NH4
+	 NO3

-	 NO2
-	 PO4	 C6H6O	 Si	 Fe	

Oct	11	

M1	 19.03	
(0.46)	

9.21	
(0.13)	

85.67	
(2.52)	

9.90	
(0.20)	

6.67	
(5.93)	

31.67	
(1.67)	

0.13	
(0.11)	

0.40	
(0.08)	

0.00	
(0.00)	

0.04	
(0.01)	

0.06	
(0.00)	

7.24	
(0.18)	

0.02	
(0.01)	

M2	 20.50	
(0.40)	

8.35	
(0.08)	

122.67	
(0.58)	

7.47	
(0.03)	

6.67	
(4.67)	

54.44	
(4.19)	

0.08	
(0.09)	

0.26	
(0.03)	

0.01	
(0.00)	

0.02	
(0.01)	

0.09	
(0.03)	

1.65	
(0.10)	

0.03	
(0.02)	

M3	 20.87	
(0.15)	

9.67	
(0.12)	

987.00	
(12.49)	

7.93	
(0.08)	

1.33	
(1.15)	

155.00	
(15.00)	

0.14	
(0.13)	

0.19	
(0.03)	

0.01	
(0.00)	

0.11	
(0.06)	

0.06	
(0.01)	

2.09	
(0.06)	

0.02	
(0.01)	

L	 19.13	
(0.21)	

7.58	
(0.33)	

824.33	
(49.52)	

8.08	
(0.26)	

5.33	
(4.16)	

90.56	
(9.48)	

0.22	
(0.10)	

0.21	
(0.02)	

0.00	
(0.00)	

0.07	
(0.02)	

0.09	
(0.01)	

2.13	
(0.14)	

0.03	
(0.00)	

Nov	11	

M1	 14.20	
(0.26)	

9.50	
(0.36)	

93.67	
(0.58)	

6.82	
(0.08)	

3.56	
(3.15)	

22.22	
(2.55)	

0.01	
(0.01)	

0.31	
(0.10)	

0.00	
(0.00)	

0.04	
(0.02)	

0.11	
(0.03)	

5.95	
(0.66)	

0.02	
(0.00)	

M2	 14.73	
(0.15)	

8.40	
(0.10)	

110.00	
(0.00)	

7.20	
(0.02)	

10.44	
(0.38)	

53.89	
(11.10)	

0.21	
(0.08)	

0.34	
(0.01)	

0.01	
(0.00)	

0.12	
(0.03)	

0.08	
(0.03)	

3.20	
(0.13)	

0.05	
(0.03)	

M3	 14.50	
(0.30)	

8.41	
(0.12)	

505.67	
(5.59)	

7.28	
(0.02)	

3.44	
(2.01)	

88.89	
(2.55)	

0.27	
(0.08)	

0.24	
(0.04)	

0.01	
(0.00)	

0.09	
(0.01)	

0.09	
(0.01)	

3.00	
(0.13)	

0.03	
(0.01)	

L	 14.20	
(0.10)	

8.27	
(0.06)	

496.33	
(15.95)	

6.29	
(0.06)	

1.78	
(1.68)	

55.56	
(5.09)	

0.02	
(0.02)	

0.22	
(0.02)	

0.00	
(0.00)	

0.04	
(0.02)	

0.11	
(0.06)	

1.04	
(0.17)	

0.03	
(0.01)	

Dec	11	

M1	 12.67	
(0.83)	

9.21	
(0.13)	

85.67	
(1.53)	

7.49	
(0.19)	

3.33	
(3.06)	

32.78	
(3.47)	

0.12	
(0.06)	

0.35	
(0.03)	

0.01	
(0.00)	

0.05	
(0.01)	

0.09	
(0.03)	

3.18	
(0.47)	

0.02	
(0.01)	

M2	 12.67	
(0.21)	

8.35	
(0.08)	

107.33	
(5.69)	

7.68	
(0.17)	

2.89	
(3.42)	

33.33	
(4.41)	

0.06	
(0.01)	

0.41	
(0.07)	

0.01	
(0.00)	

0.05	
(0.01)	

0.06	
(0.01)	

2.64	
(0.94)	

0.04	
(0.02)	

M3	 12.83	
(0.35)	

9.67	
(0.12)	

500.67	
(3.51)	

7.33	
(0.09)	

2.67	
(1.76)	

105.00	
(35.00)	

0.42	
(0.17)	

0.29	
(0.05)	

0.01	
(0.00)	

0.17	
(0.12)	

0.10	
(0.02)	

3.60	
(0.73)	

0.04	
(0.01)	

L	 13.87	
(0.32)	

8.05	
(0.08)	

676.67	
(40.41)	

6.38	
(0.08)	

0.67	
(1.15)	

18.33	
(0.00)	

0.22	
(0.06)	

0.37	
(0.03)	

0.00	
(0.00)	

0.04	
(0.00)	

0.06	
(0.01)	

0.65	
(0.05)	

0.03	
(0.03)	

Jan	12	

M1	 9.17	
(0.12)	

9.36	
(0.19)	

75.33	
(0.58)	

7.81	
(0.05)	

2.22	
(3.29)	

23.33	
(5.00)	

0.04	
(0.01)	

0.41	
(0.14)	

0.00	
(0.00)	

0.06	
(0.01)	

0.08	
(0.01)	

4.51	
(1.32)	

0.03	
(0.00)	

M2	 9.10	
(0.10)	

9.59	
(0.39)	

105.67	
(0.58)	

7.67	
(0.24)	

0.67	
(1.15)	

42.22	
(2.55)	

0.04	
(0.01)	

0.69	
(0.05)	

0.01	
(0.00)	

0.07	
(0.01)	

0.07	
(0.02)	

3.85	
(0.42)	

0.02	
(0.01)	

M3	 8.67	
(0.15)	

9.27	
(0.33)	

494.00	
(2.00)	

7.53	
(0.02)	

6.67	
(4.67)	

73.33	
(11.67)	

0.05	
(0.01)	

0.47	
(0.05)	

0.01	
(0.00)	

0.09	
(0.03)	

0.07	
(0.04)	

5.05	
(0.21)	

0.03	
(0.02)	

L	 9.23	
(0.06)	

10.72	
(0.42)	

257.00	
(10.54)	

6.61	
(0.01)	

0.22	
(0.38)	

46.67	
(8.33)	

0.02	
(0.02)	

0.37	
(0.03)	

0.00	
(0.00)	

0.07	
(0.01)	

0.08	
(0.02)	

1.14	
(0.20)	

0.01	
(0.01)	

Feb	12	

M1	 9.73	
(0.12)	

9.72	
(0.79)	

77.33	
(0.58)	

7.45	
(0.10)	

1.44	
(0.69)	

24.44	
(2.55)	

0.04	
(0.01)	

0.36	
(0.07)	

0.00	
(0.00)	

0.05	
(0.01)	

0.08	
(0.00)	

3.89	
(0.47)	

0.02	
(0.01)	

M2	 8.50	
(0.20)	

8.87	
(0.71)	

101.33	
(0.58)	

7.82	
(0.04)	

1.78	
(2.04)	

40.56	
(10.18)	

0.05	
(0.03)	

0.50	
(0.05)	

0.01	
(0.00)	

0.09	
(0.02)	

0.06	
(0.05)	

3.93	
(0.61)	

0.01	
(0.01)	

M3	 9.57	
(0.32)	

8.91	
(1.05)	

482.00	
(2.00)	

7.92	
(0.01)	

0.89	
(1.54)	

81.67	
(5.77)	

0.34	
(0.05)	

0.57	
(0.02)	

0.01	
(0.00)	

0.12	
(0.07)	

0.12	
(0.03)	

3.87	
(0.05)	

0.03	
(0.01)	

L	 10.97	
(0.31)	

10.21	
(0.33)	

866.67	
(1.53)	

7.65	
(0.04)	

1.11	
(0.38)	

91.67	
(5.00)	

0.01	
(0.01)	

0.33	
(0.07)	

0.00	
(0.00)	

0.05	
(0.02)	

0.08	
(0.02)	

2.58	
(0.36)	

0.03	
(0.01)	

Mar	
12	

M1	 12.00	
(0.00)	

9.00	
(0.00)	

80.00	
(2.53)	

7.17	
(0.06)	

8.00	
(3.06)	

22.22	
(7.52)	

0.07	
(0.05)	

0.43	
(0.08)	

0.00	
(0.00)	

0.04	
(0.01)	

0.06	
(0.03)	

5.06	
(0.90)	

0.02	
(0.01)	

M2	 12.00	
(0.00)	

8.00	
(0.00)	

100.93	
(6.59)	

7.50	
(0.26)	

7.78	
(3.42)	

36.11	
(5.85)	

0.04	
(0.01)	

0.42	
(0.07)	

0.01	
(0.00)	

0.05	
(0.02)	

0.07	
(0.01)	

2.52	
(0.24)	

0.03	
(0.01)	

M3	 10.67	
(0.58)	

7.00	
(0.00)	

492.00	
(11.28)	

7.50	
(0.10)	

5.78	
(3.91)	

138.89	
(8.39)	

0.07	
(0.03)	

0.34	
(0.07)	

0.00	
(0.00)	

0.09	
(0.07)	

0.09	
(0.01)	

2.57	
(0.12)	

0.01	
(0.01)	

L	 11.67	
(0.58)	

7.00	
(0.00)	

983.00	
(2.53)	

7.40	
(0.10)	

7.33	
(4.16)	

95.00	
(8.82)	

0.08	
(0.01)	

0.24	
(0.02)	

0.00	
(0.00)	

0.04	
(0.03)	

0.04	
(0.02)	

1.82	
(0.19)	

0.02	
(0.01)	

Apr	12	

M1	 11.83	
(0.12)	

10.08	
(0.42)	

93.33	
(1.15)	

7.67	
(0.23)	

6.22	
(3.67)	

56.67	
(0.00)	

0.14	
(0.02)	

0.24	
(0.01)	

0.01	
(0.00)	

0.08	
(0.01)	

0.08	
(0.03)	

2.96	
(0.06)	

0.04	
(0.01)	

M2	 13.37	
(0.06)	

10.51	
(0.13)	

102.33	
(1.15)	

7.66	
(0.01)	

1.33	
(2.31)	

50.56	
(2.55)	

0.17	
(0.09)	

0.47	
(0.02)	

0.01	
(0.00)	

0.06	
(0.02)	

0.10	
(0.02)	

2.63	
(0.08)	

0.07	
(0.05)	

M3	 14.60	
(0.00)	

9.69	
(0.13)	

558.33	
(9.71)	

7.58	
(0.04)	

5.56	
(3.42)	

106.67	
(14.24)	

0.18	
(0.01)	

0.48	
(0.03)	

0.01	
(0.00)	

0.11	
(0.02)	

0.09	
(0.04)	

2.43	
(0.33)	

0.08	
(0.02)	

L	 14.43	
(0.06)	

10.75	
(0.42)	

3316.67	
(90.74)	

7.10	
(0.04)	

5.78	
(2.14)	

285.00	
(6.67)	

0.22	
(0.02)	

0.29	
(0.04)	

0.00	
(0.00)	

0.72	
(0.03)	

0.05	
(0.02)	

5.05	
(0.29)	

0.07	
(0.05)	
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Month Site T DO Cond pH Turb CaCO3 NH4
+ NO3

- NO2
- PO4 C6H6O Si Fe 

May 
12 

M1 13.33 
(0.21) 

7.35 
(0.33) 

88.67 
(7.23) 

6.95 
(0.01) 

3.33 
(2.91) 

46.11 
(0.96) 

0.93 
(0.90) 

0.64 
(0.03) 

0.00 
(0.00) 

0.12 
(0.02) 

0.02 
(0.01) 

5.55 
(0.12) 

0.07 
(0.02) 

M2 14.20 
(0.26) 

6.88 
(0.60) 

96.33 
(1.53) 

7.02 
(0.01) 

5.56 
(3.08) 

36.11 
(6.31) 

0.59 
(0.04) 

0.42 
(0.04) 

0.02 
(0.02) 

0.07 
(0.02) 

0.04 
(0.03) 

3.03 
(0.49) 

0.03 
(0.01) 

M3 13.40 
(0.17) 

6.17 
(0.30) 

138.33 
(2.31) 

6.91 
(0.01) 

1.33 
(2.31) 

27.22 
(11.34) 

0.08 
(0.02) 

0.39 
(0.03) 

0.01 
(0.00) 

0.09 
(0.03) 

0.19 
(0.01) 

4.62 
(0.18) 

0.05 
(0.01) 

L 13.90 
(0.10) 

7.58 
(0.07) 

446.33 
(0.58) 

6.55 
(0.01) 

4.44 
(1.68) 

33.89 
(7.70) 

0.10 
(0.02) 

0.36 
(0.03) 

0.00 
(0.00) 

0.05 
(0.01) 

0.07 
(0.03) 

2.32 
(0.33) 

0.03 
(0.00) 

Jun 
12 

M1 18.10 
(0.17) 

6.52 
(0.04) 

87.33 
(1.15) 

7.27 
(0.03) 

3.33 
(2.40) 

21.67 
(4.41) 

0.03 
(0.00) 

0.23 
(0.02) 

0.01 
(0.00) 

0.03 
(0.01) 

0.03 
(0.01) 

6.17 
(1.22) 

0.04 
(0.02) 

M2 18.27 
(0.06) 

6.94 
(0.01) 

91.67 
(0.58) 

7.50 
(0.11) 

2.22 
(1.68) 

38.33 
(0.00) 

0.93 
(0.33) 

0.21 
(0.04) 

0.02 
(0.00) 

0.06 
(0.02) 

0.08 
(0.02) 

3.11 
(0.02) 

0.05 
(0.01) 

M3 19.00 
(0.00) 

6.53 
(0.01) 

495.67 
(4.73) 

7.17 
(0.01) 

4.44 
(2.14) 

76.11 
(5.85) 

0.18 
(0.03) 

0.35 
(0.03) 

0.01 
(0.00) 

0.06 
(0.01) 

0.07 
(0.01) 

2.66 
(0.13) 

0.05 
(0.01) 

L 14.20 
(0.66) 

6.33 
(0.55) 

404.00 
(2.00) 

6.89 
(0.03) 

2.22 
(1.54) 

258.89 
(33.35) 

0.80 
(0.03) 

0.25 
(0.05) 

0.00 
(0.00) 

0.08 
(0.04) 

0.07 
(0.03) 

1.81 
(0.17) 

0.04 
(0.01) 

Jul 12 

M1 19.60 
(0.10) 

7.70 
(0.17) 

90.00 
(3.46) 

7.08 
(0.07) 

7.78 
(2.52) 

21.11 
(2.55) 

0.11 
(0.03) 

0.22 
(0.01) 

0.01 
(0.00) 

0.05 
(0.00) 

0.06 
(0.01) 

2.08 
(0.33) 

0.04 
(0.02) 

M2 20.30 
(0.10) 

7.66 
(0.55) 

92.67 
(0.58) 

6.86 
(0.20) 

1.33 
(2.31) 

50.00 
(15.28) 

0.07 
(0.01) 

0.31 
(0.01) 

0.01 
(0.00) 

0.07 
(0.02) 

0.07 
(0.01) 

2.07 
(0.30) 

0.05 
(0.04) 

M3 20.63 
(0.15) 

7.09 
(0.10) 

3120.00 
(10.00) 

7.98 
(0.03) 

2.89 
(2.69) 

364.44 
(3.85) 

0.20 
(0.06) 

0.34 
(0.03) 

0.00 
(0.00) 

0.14 
(0.04) 

0.06 
(0.03) 

2.93 
(0.13) 

0.04 
(0.00) 

L 20.57 
(0.06) 

7.22 
(0.01) 

2356.67 
(20.82) 

7.65 
(0.05) 

1.11 
(1.02) 

245.00 
(15.28) 

0.30 
(0.33) 

0.13 
(0.02) 

0.00 
(0.00) 

0.01 
(0.02) 

0.05 
(0.03) 

5.08 
(0.29) 

0.00 
(0.00) 

Aug 
12 

M1 21.90 
(0.10) 

9.21 
(0.13) 

92.67 
(0.58) 

6.47 
(0.08) 

2.89 
(3.01) 

37.78 
(1.92) 

0.11 
(0.01) 

0.25 
(0.01) 

0.01 
(0.00) 

0.05 
(0.01) 

0.08 
(0.05) 

2.51 
(0.44) 

0.06 
(0.03) 

M2 21.93 
(0.06) 

8.35 
(0.08) 

111.67 
(0.58) 

7.10 
(0.77) 

3.56 
(1.54) 

38.89 
(4.19) 

0.19 
(0.03) 

0.24 
(0.01) 

0.01 
(0.00) 

0.07 
(0.02) 

0.08 
(0.02) 

2.59 
(0.22) 

0.03 
(0.00) 

M3 22.70 
(0.10) 

9.67 
(0.12) 

428.67 
(3.21) 

7.31 
(0.12) 

3.33 
(3.33) 

68.33 
(7.64) 

0.03 
(0.01) 

0.25 
(0.01) 

0.01 
(0.00) 

0.09 
(0.01) 

0.13 
(0.05) 

2.01 
(0.26) 

0.02 
(0.01) 

L 21.13 
(0.23) 

7.58 
(0.33) 

8860.00 
(121.24) 

6.11 
(0.05) 

2.00 
(1.76) 

420.00 
(60.09) 

1.86 
(0.32) 

0.27 
(0.03) 

0.00 
(0.00) 

0.05 
(0.02) 

0.10 
(0.06) 

3.30 
(0.07) 

0.02 
(0.00) 

Sept 
12 

M1 19.40 
(0.10) 

9.30 
(0.36) 

82.00 
(2.00) 

7.47 
(0.21) 

2.00 
(2.31) 

29.44 
(7.52) 

0.00 
(0.00) 

0.26 
(0.02) 

0.00 
(0.00) 

0.04 
(0.03) 

0.06 
(0.06) 

3.09 
(0.12) 

0.15 
(0.06) 

M2 21.50 
(0.26) 

9.77 
(0.06) 

107.33 
(0.58) 

7.80 
(0.20) 

2.44 
(2.52) 

30.56 
 (3.47) 

0.03 
(0.01) 

0.25 
(0.01) 

0.00 
(0.00) 

0.11 
(0.02) 

0.14 
(0.06) 

2.78 
(0.08) 

0.03 
(0.01) 

M3 22.33 
(0.06) 

9.39 
(0.41) 

672.00 
(2.00) 

7.27 
(0.25) 

3.56 
(1.54) 

130.00 
(10.93) 

0.10 
(0.02) 

0.44 
(0.01) 

0.01 
(0.00) 

0.12 
(0.00) 

0.09 
(0.03) 

2.88 
(0.12) 

0.12 
(0.02) 

L 20.53 
(0.06) 

9.32 
(0.46) 

6393.33 
(5.77) 

7.59 
(0.40) 

0.67 
(0.67) 

37.78 
(5.36) 

0.15 
(0.16) 

0.19 
(0.02) 

0.00 
(0.00) 

0.06 
(0.02) 

0.08 
(0.02) 

1.73 
(0.40) 

0.07 
(0.06) 

Oct 
12 

M1 16.73 
(0.06) 

9.30 
(0.35) 

84.67 
(2.08) 

7.47 
(0.25) 

6.00 
(3.33) 

30.56 
(9.77) 

0.07 
(0.02) 

0.27 
(0.01) 

0.01 
(0.00) 

0.06 
(0.01) 

0.04 
(0.02) 

6.88 
(0.19) 

0.07 
(0.03) 

M2 19.67 
(0.15) 

7.63 
(0.03) 

103.33 
(0.58) 

7.50 
(0.10) 

1.33 
(1.33) 

180.00 
(10.00) 

0.08 
(0.02) 

0.32 
(0.01) 

0.01 
(0.00) 

0.08 
(0.00) 

0.07 
(0.02) 

3.51 
(0.09) 

0.06 
(0.04) 

M3 20.73 
(0.15) 

8.33 
(0.04) 

1285.00 
(5.29) 

7.30 
(0.10) 

3.33 
(2.91) 

35.00 
(2.89) 

1.41 
(0.05) 

0.24 
(0.00) 

0.01 
(0.00) 

0.09 
(0.02) 

0.09 
(0.03) 

3.45 
(0.25) 

0.04 
(0.00) 

L 17.00 
(0.10) 

7.77 
(0.07) 

5243.33 
(5.77) 

7.27 
(0.06) 

1.33 
(0.67) 

301.67 
(43.11) 

0.03 
(0.03) 

0.23 
(0.02) 

0.00 
(0.00) 

0.07 
(0.02) 

0.22 
(0.29) 

3.36 
(0.49) 

0.07 
(0.03) 

Nov 
12 

M1 16.03 
(0.25) 

7.95 
(0.02) 

100.00 
(1.00) 

6.83 
(0.06) 

1.78 
(3.08) 

81.11 
(6.74) 

0.01 
(0.01) 

0.22 
(0.01) 

0.00 
(0.00) 

0.05 
(0.01) 

0.07 
(0.05) 

1.39 
(0.28) 

0.01 
(0.01) 

M2 16.30 
(0.10) 

7.73 
(0.01) 

98.00 
(1.00) 

7.33 
(0.06) 

5.11 
(3.42) 

35.00 
(4.41) 

0.11 
(0.02) 

0.41 
(0.02) 

0.01 
(0.00) 

0.11 
(0.03) 

0.06 
(0.02) 

3.76 
(0.43) 

0.05 
(0.01) 

M3 16.47 
(0.15) 

8.44 
(0.16) 

574.67 
(0.58) 

7.23 
(0.06) 

2.67 
(1.76) 

80.00 
(5.00) 

0.03 
(0.01) 

0.28 
(0.02) 

0.01 
(0.00) 

0.09 
(0.00) 

0.06 
(0.02) 

4.39 
(0.08) 

0.04 
(0.00) 

L 17.17 
(0.15) 

7.84 
(0.07) 

1058.33 
(3.06) 

6.03 
(0.01) 

0.00 
(0.00) 

36.11 
(2.55) 

0.08 
(0.01) 

0.36 
(0.05) 

0.01 
(0.00) 

0.08 
(0.00) 

0.03 
(0.01) 

2.78 
(0.50) 

0.05 
(0.03) 
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Table IV. 2. Sediments chlorophyll a, b and c values and organic matter percentage for each 

sampling site and month in the tidal freshwater area of M-est and L-est, from October 2011 to 

November 2012. For each parameter, the values are the mean with the corresponding standard error 

within brackets. Chlorophyll a, b and c and the sum of them (Chl a, Chl b, Chl c, and Chltotal, 

respectively, units are µg/l), very coarse sand (VCS, %), coarse sand (CS, %), medium sand (MS, %), 

fine sand (FS, %), very fine sand (VFS %) and silt + clay (S+C, %) for granulometry and organic 

matter (%).  

Month Site OM Chla Chlb Chlc ChlTotal VCS CS MS FS VFS S+C 

Oct 11 

M1 1.60 
(0.15) 

2.16 
(0.62) 

1.39 
(0.25) 

2.41 
(0.33) 

5.96 
(0.70) 

2.25 
(0.26) 

13.97 
(4.51) 

77.83 
(8.57) 

4.25 
(2.00) 

0.97 
(0.46) 

0.35 
(0.09) 

M2 4.58 
(1.42) 

1.31 
(0.31) 

0.98 
(0.21) 

2.15 
(0.16) 

4.44 
(0.66) 

0.72 
(0.31) 

0.27 
(0.03) 

21.74 
(3.42) 

63.18 
(2.47) 

10.84 
(1.25) 

1.74 
(0.48) 

M3 0.73 
(0.09) 

1.18 
(1.08) 

0.58 
(0.51) 

1.50 
(1.31) 

3.26 
(2.88) 

0.65 
(0.45) 

2.95 
(0.57) 

78.66 
(4.71) 

16.25 
(5.35) 

1.00 
(0.19) 

0.26 
(0.07) 

L 1.39 
(0.05) 

3.08 
(1.01) 

0.96 
(0.06) 

2.58 
(0.47) 

6.62 
(0.57) 

20.87 
(2.32) 

32.05 
(1.20) 

39.02 
(3.04) 

3.63 
(0.19) 

2.28 
(0.18) 

1.75 
(0.19) 

Nov 
11 

M1 1.13 
(0.36) 

1.65 
(0.33) 

1.05 
(0.15) 

2.11 
(0.03) 

4.81 
(2.19) 

2.66 
(3.10) 

14.64 
(3.26) 

79.41 
(12.19) 

2.73 
(1.38) 

1.18 
(0.69) 

0.40 
(0.07) 

M2 3.08 
(1.97) 

1.03 
(0.11) 

0.82 
(0.09) 

2.00 
(0.08) 

3.85 
(0.28) 

3.68 
(3.11) 

0.43 
(0.18) 

31.83 
(4.53) 

57.27 
(2.06) 

5.93 
(1.35) 

0.59 
(0.31) 

M3 0.60 
(0.03) 

1.07 
(0.19) 

0.77 
(0.04) 

1.98 
(0.05) 

3.82 
(0.29) 

0.99 
(0.33) 

3.62 
(0.98) 

82.08 
(0.58) 

12.74 
(0.53) 

0.31 
(0.02) 

0.16 
(0.01) 

L 1.67 
(0.43) 

2.59 
(0.62) 

0.92 
(0.08) 

2.21 
(0.09) 

5.72 
(0.77) 

16.31 
(2.25) 

30.89 
(3.73) 

42.92 
(5.31) 

4.09 
(1.45) 

3.01 
(1.79) 

2.56 
(1.25) 

Dec 
11 

M1 1.09 
(0.89) 

1.08 
(0.16) 

0.84 
(0.05) 

2.07 
(0.07) 

3.99 
(0.28) 

10.14 
(6.96) 

15.57 
(4.66) 

69.43 
(13.15) 

2.09 
(1.55) 

0.63 
(0.60) 

0.31 
(0.29) 

M2 1.60 
(0.28) 

0.78 
(0.07) 

0.71 
(0.01) 

1.93 
(0.00) 

3.42 
(0.07) 

10.79 
(7.05) 

0.35 
(0.14) 

30.96 
(8.63) 

51.03 
(6.48) 

5.81 
(1.00) 

0.68 
(0.15) 

M3 4.09 
(0.60) 

1.41 
(0.23) 

0.93 
(0.08) 

2.15 
(0.14) 

4.49 
(0.42) 

3.51 
(2.59) 

6.61 
(1.78) 

53.94 
(22.29) 

11.49 
(4.63) 

15.22 
(8.14) 

8.76 
(5.22) 

L 1.13 
(0.43) 

2.24 
(0.49) 

0.87 
(0.03) 

2.19 
(0.03) 

5.3 
(0.55) 

18.57 
(3.08) 

29.56 
(6.84) 

42.49 
(5.50) 

4.66 
(1.96) 

2.73 
(1.59) 

1.72 
(0.91) 

Jan 
12 

M1 1.01 
(0.12) 

1.31 
(0.39) 

0.85 
(0.07) 

2.10 
(0.07) 

4.26 
(0.79) 

34.41 
(3.00) 

32.33 
(4.41) 

30.22 
(5.09) 

1.10 
(0.34) 

0.85 
(0.17) 

0.79 
(0.16) 

M2 1.17 
(0.02) 

0.95 
(0.12) 

0.73 
(0.02) 

1.98 
(0.06) 

3.66 
(0.68) 

1.32 
(1.97) 

0.19 
(0.03) 

43.65 
(2.64) 

50.67 
(1.15) 

3.64 
(0.52) 

0.49 
(0.17) 

M3 0.71 
(0.10) 

0.89 
(0.08) 

0.73 
(0.01) 

1.96 
(0.01) 

3.58 
(0.57) 

6.24 
(3.22) 

10.45 
(3.07) 

70.26 
(4.53) 

12.20 
(2.82) 

0.50 
(0.17) 

0.17 
(0.06) 

L 1.34 
(0.22) 

1.81 
(0.42) 

0.85 
(0.06) 

2.09 
(0.10) 

4.75 
(2.63) 

21.96 
(0.81) 

33.61 
(3.18) 

38.62 
(2.83) 

2.69 
(0.92) 

1.27 
(0.68) 

1.13 
(0.59) 

Feb 
12 

M1 1.21 
(0.61) 

1.00 
(0.88) 

0.60 
(0.52) 

1.42 
(1.23) 

3.02 
(0.49) 

5.53 
(1.32) 

6.58 
(2.86) 

79.03 
(2.70) 

6.06 
(3.78) 

1.78 
(0.98) 

0.77 
(0.19) 

M2 1.78 
(0.06) 

1.92 
(0.36) 

0.91 
(0.06) 

2.21 
(0.07) 

5.04 
(0.15) 

3.68 
(3.52) 

0.31 
(0.13) 

19.55 
(2.93) 

62.03 
(3.95) 

11.36 
(1.43) 

2.61 
(0.44) 

M3 3.49 
(0.94) 

4.25 
(0.14) 

1.34 
(0.05) 

2.80 
(0.06) 

8.39 
(0.75) 

1.13 
(0.28) 

1.04 
(0.14) 

14.14 
(0.85) 

39.40 
(0.71) 

36.39 
(1.82) 

7.38 
(0.31) 

L 1.92 
(0.32) 

4.74 
(0.70) 

1.44 
(0.05) 

2.62 
(0.13) 

8.8 
(2.72) 

21.13 
(3.02) 

30.08 
(1.11) 

38.98 
(2.60) 

3.77 
(1.30) 

2.77 
(1.28) 

2.62 
(0.87) 

Mar 
12 

M1 1.50 
(0.67) 

2.31 
(1.63) 

1.28 
(0.53) 

2.53 
(0.56) 

6.12 
(0.03) 

1.42 
(0.89) 

9.28 
(1.72) 

86.84 
(1.25) 

1.12 
(0.09) 

0.47 
(0.03) 

0.26 
(0.06) 

M2 0.61 
(0.27) 

0.97 
(0.02) 

0.77 
(0.03) 

1.98 
(0.02) 

3.72 
(1.35) 

15.48 
(6.90) 

0.32 
(0.19) 

25.84 
(3.02) 

50.15 
(6.09) 

6.88 
(1.77) 

1.15 
(0.47) 

M3 1.51 
(0.15) 

6.55 
(1.24) 

1.63 
(0.13) 

3.00 
(0.33) 

11.18 
(2.50) 

8.62 
(4.60) 

5.18 
(1.74) 

11.49 
(2.29) 

48.84 
(3.68) 

20.74 
(4.06) 

4.56 
(0.95) 

L 1.02 
(0.05) 

2.74 
(0.87) 

1.03 
(0.12) 

2.18 
(0.11) 

5.95 
(0.22) 

26.32 
(2.41) 

31.05 
(2.14) 

34.06 
(1.78) 

3.64 
(0.55) 

2.39 
(0.41) 

2.45 
(0.48) 

Apr 
12 

M1 1.37 
(1.13) 

1.39 
(0.19) 

0.96 
(0.05) 

2.09 
(0.02) 

4.44 
(5.36) 

5.16 
(5.21) 

14.15 
(2.85) 

78.42 
(7.27) 

1.07 
(0.18) 

0.47 
(0.07) 

0.32 
(0.06) 

M2 1.37 
(0.14) 

3.50 
(0.19) 

1.09 
(0.50) 

2.51 
(0.77) 

7.1 
(0.94) 

3.21 
(4.14) 

0.53 
(0.12) 

33.50 
(3.70) 

55.87 
(6.11) 

5.32 
(0.92) 

0.71 
(0.18) 

M3 5.65 
(1.10) 

2.68 
(4.11) 

1.26 
(0.16) 

2.56 
(0.17) 

6.5 
(0.71) 

0.36 
(0.01) 

0.74 
(0.09) 

13.65 
(2.29) 

41.43 
(0.83) 

37.16 
(2.37) 

6.15 
(0.44) 

L 4.16 
(2.12) 

3.12 
(0.62) 

1.08 
(0.07) 

2.35 
(0.12) 

6.55 
(1.15) 

22.17 
(1.77) 

29.89 
(1.18) 

34.93 
(1.93) 

4.73 
(0.27) 

3.96 
(0.44) 

4.04 
(0.47) 
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Table IV. 2. Continued… 

 

 

Month Site OM Chla Chlb Chlc ChlTotal VCS CS MS FS VFS S+C 

May 12 

M1 0.99 
(0.05) 

4.96 
(0.53) 

1.51 
(0.12) 

3.27 
(0.32) 

9.74 
(0.16) 

60.07 
(3.76) 

23.91 
(1.97) 

12.96 
(2.48) 

0.77 
(0.05) 

0.95 
(0.01) 

1.13 
(0.18) 

M2 1.88 
(0.73) 

1.31 
(0.71) 

0.79 
(0.05) 

2.32 
(0.15) 

4.42 
(0.12) 

0.07 
(0.03) 

0.12 
(0.03) 

59.90 
(0.55) 

36.89 
(0.48) 

2.47 
(0.24) 

0.42 
(0.16) 

M3 1.04 
(0.20) 

1.27 
(0.05) 

0.81 
(0.03) 

2.27 
(0.06) 

4.35 
(0.3) 

16.16 
(4.62) 

16.66 
(3.11) 

25.21 
(1.12) 

15.29 
(1.63) 

12.63 
(3.93) 

13.48 
(2.96) 

L 11.03 
(13.60) 

2.16 
(0.05) 

1.03 
(0.04) 

2.75 
(0.15) 

5.94 
(0.07) 

19.77 
(2.44) 

29.86 
(0.12) 

38.66 
(3.03) 

2.49 
(0.72) 

1.17 
(0.77) 

0.67 
(0.52) 

Jun 12 

M1 0.87 
(0.10) 

0.68 
(0.23) 

0.16 
(0.02) 

0.25 
(0.01) 

1.09 
(0.06) 

1.90 
(0.75) 

16.39 
(5.35) 

78.69 
(4.94) 

1.66 
(0.86) 

0.74 
(0.16) 

0.33 
(0.05) 

M2 1.34 
(0.12) 

0.36 
(0.07) 

0.05 
(0.01) 

0.11 
(0.03) 

0.52 
(1.53) 

10.51 
(7.47) 

0.72 
(0.08) 

56.56 
(1.96) 

27.90 
(4.31) 

2.57 
(0.85) 

1.42 
(0.57) 

M3 2.79 
(0.39) 

0.98 
(0.03) 

0.26 
(0.26) 

0.37 
(0.41) 

1.61 
(1.00) 

0.85 
(0.55) 

0.98 
(0.26) 

11.10 
(1.30) 

41.65 
(0.38) 

36.84 
(2.31) 

8.30 
(0.93) 

L 1.87 
(0.57) 

1.93 
(0.88) 

0.44 
(0.13) 

0.94 
(0.17) 

3.31 
(1.75) 

21.25 
(1.27) 

34.45 
(2.63) 

36.99 
(1.38) 

3.09 
(0.54) 

1.85 
(0.37) 

2.08 
(0.32) 

Jul 12 

M1 1.17 
(0.16) 

3.17 
(0.74) 

1.27 
(0.29) 

2.71 
(0.27) 

7.15 
(0.27) 

3.79 
(2.62) 

15.45 
(0.72) 

77.99 
(1.15) 

3.10 
(1.24) 

1.40 
(1.39) 

1.06 
(1.48) 

M2 1.23 
(0.06) 

0.78 
(1.20) 

0.75 
(0.05) 

2.09 
(0.14) 

3.62 
(2.91) 

1.79 
(0.09) 

1.29 
(0.05) 

68.74 
(8.14) 

22.47 
(0.82) 

2.33 
(0.46) 

0.89 
(0.26) 

M3 0.66 
(0.06) 

0.97 
(0.08) 

0.66 
(0.59) 

1.67 
(1.47) 

3.3 
(0.66) 

3.73 
(2.99) 

9.40 
(4.82) 

75.21 
(9.12) 

9.12 
(1.60) 

0.37 
(0.09) 

0.28 
 (0.09) 

L 2.49 
(0.12) 

1.88 
(0.85) 

0.92 
(0.07) 

2.32 
(0.13) 

5.12 
(2.57) 

22.46 
(1.53) 

25.21 
(1.44) 

25.37 
(1.52) 

4.10 
(0.79) 

2.89 
(0.70) 

3.36 
(1.12) 

Aug 12 

M1 0.79 
(0.08) 

2.56 
(0.47) 

1.47 
(0.49) 

3.41 
(1.81) 

7.44 
(0.13) 

3.63 
(1.88) 

16.62 
(2.49) 

75.88 
(3.75) 

2.48 
(2.30) 

0.72 
(0.47) 

0.29 
(0.22) 

M2 1.16 
(0.05) 

0.86 
(0.36) 

0.73 
(0.02) 

2.01 
(0.04) 

3.6 
(1.58) 

4.81 
(3.78) 

0.79 
(0.12) 

57.39 
(2.78) 

33.48 
(0.59) 

2.41 
(0.08) 

0.80 
(0.27) 

M3 2.41 
(0.19) 

4.62 
(0.07) 

1.55 
(0.19) 

2.97 
(0.26) 

9.14 
(0.48) 

30.40 
(5.72) 

18.81 
(12.18) 

15.82 
(6.66) 

23.85 
(10.82) 

8.40 
(5.89) 

1.96 
(1.29) 

L 1.28 
(0.12) 

2.09 
(1.13) 

0.90 
(0.05) 

2.20 
(0.08) 

5.19 
(0.20) 

24.45 
(4.60) 

31.72 
(0.86) 

36.17 
(4.32) 

3.49 
(0.95) 

1.89 
(0.74) 

1.92 
(0.71) 

Sept 
12 

M1 0.88 
(0.25) 

1.02 
(0.36) 

0.77 
(0.04) 

1.94 
(0.03) 

3.73 
(0.03) 

13.68 
(1.12) 

14.38 
(0.80) 

69.65 
(1.84) 

1.61 
(0.13) 

0.31 
(0.02) 

0.17 
(0.02) 

M2 1.46 
(0.33) 

0.72 
(0.13) 

0.69 
(0.01) 

1.97 
(0.04) 

3.38 
(0.55) 

0.65 
(0.61) 

0.25 
(0.20) 

31.89 
(7.21) 

67.96 
(12.33) 

3.40 
(0.36) 

0.33 
(0.08) 

M3 3.17 
(0.12) 

2.54 
(0.03) 

1.01 
(0.07) 

2.42 
(0.20) 

5.97 
(0.30) 

0.83 
(0.57) 

1.22 
(0.39) 

19.24 
(2.60) 

40.64 
(0.65) 

31.76 
(1.10) 

6.00 
(0.48) 

L 2.16 
(0.47) 

2.09 
(0.29) 

0.89 
(0.05) 

2.18 
(0.14) 

5.16 
(0.23) 

20.85 
(5.59) 

28.37 
(4.02) 

35.99 
(2.32) 

6.40 
(2.71) 

4.76 
(3.02) 

3.55 
(2.28) 

Oct 12 

M1 0.82 
(0.10) 

1.36 
(0.12) 

0.87 
(0.03) 

2.22 
(0.04) 

4.45 
(0.16) 

15.74 
(0.87) 

17.69 
(0.45) 

63.83 
(2.41) 

1.66 
(0.84) 

0.76 
(0.88) 

0.65 
(0.87) 

M2 1.66 
(0.30) 

0.97 
(0.17) 

0.74 
(0.02) 

2.07 
(0.08) 

3.78 
(1.11) 

6.38 
(1.63) 

0.66 
(0.10) 

49.47 
(5.46) 

42.37 
(3.65) 

3.29 
(0.47) 

0.66 
(0.09) 

M3 3.26 
(0.10) 

4.64 
(0.07) 

1.23 
(0.13) 

2.87 
(0.14) 

8.74 
(0.15) 

1.80 
(0.34) 

1.73 
(0.42) 

15.16 
(2.93) 

43.66 
(0.75) 

30.15 
(3.48) 

6.95 
(0.21) 

L 1.64 
(0.30) 

1.41 
(0.86) 

0.78 
(0.02) 

2.19 
(0.02) 

4.38 
(0.17) 

21.89 
(1.03) 

29.48 
(1.96) 

40.00 
(0.72) 

4.70 
(1.21) 

2.34 
(1.00) 

1.20 
(0.48) 

Nov 12 

M1 1.73 
(0.52) 

2.31 
(0.18) 

1.28 
(0.15) 

2.53 
(0.03) 

6.12 
(0.34) 

3.03 
(1.54) 

4.35 
(0.39) 

67.04 
(3.41) 

15.17 
(2.19) 

5.61 
(1.08) 

2.80 
(0.17) 

M2 1.53 
(0.69) 

0.97 
(0.33) 

0.77 
(0.09) 

1.98 
(0.08) 

3.72 
(0.05) 

5.99 
(4.93) 

0.19 
(0.07) 

37.52 
(3.66) 

52.70 
(4.16) 

2.50 
(0.79) 

0.43 
(0.14) 

M3 1.34 
(0.65) 

6.55 
(0.11) 

1.63 
(0.04) 

3.00 
(0.05) 

11.18 
(3.01) 

0.35 
(0.59) 

1.48 
(0.92) 

87.75 
(1.66) 

8.29 
(0.38) 

0.21 
(0.03) 

0.34 
(0.05) 

L 0.90 
(0.80) 

2.74 
(0.62) 

1.03 
(0.08) 

2.18 
(0.09) 

5.95 
(2.08) 

20.02 
(1.38) 

31.36 
(0.13) 

39.47 
(2.08) 

3.74 
(0.87) 

2.08 
(0.86) 

1.77 
(0.72) 

 

 

 



	

 101	

 

Table IV. 3. Results of the non-parametric Kruskal-Wallis fo the one-way analysis of variance of 

abiotic water and sediment parameters performed to investigate  significant differences among 

sampling sites and among months. Temperature (T), dissolved oxygen (DO), conductivity (Cond), pH 

(pH), nitrites (NO2
-), nitrates (NO3

-), ammonium (NH4
+), phosphates (PO4

3-), silica (SiO2), phenol 

(C6H5OH), iron (Fe), hardness (CaCO3), turbidity (Turb) total chlorophylls (Chltotal) and organic matter 

(OM).   

 

Parameter 
Sampling Month Sampling Site 

df H p df H p 

T 13 51.767 0.000 3 0.704 0.872 

DO 13 41.927 0.000 3 1.901 0.593 

Cond 13 13.719 0.394 3 34.181 0.000 

pH 13 27.978 0.009 3 6.160 0.104 

Turb 13 19.791 0.101 3 6.459 0.091 

CaCO3 13 8.366 0.819 3 20.984 0.000 

NH4
+ 13 17.496 0.178 3 4.017 0.260 

NO3
- 13 26.031 0.017 3 5.836 0.120 

NO2
- 13 2.887 0.998 3 33.390 0.000 

PO4
3- 13 8.643 0.799 3 23.291 0.000 

C6H6O 13 17.933 0.160 3 5.143 0.162 

Si 13 8.404 0.816 3 9.553 0.023 

Fe 13 28.972 0.007 3 0.416 0.937 

OM 13 9.543 0.731 3 7.434 0.059 

VCS 13 7.297 0.886 3 25.600 0.000 

CS 13 2.810 0.999 3 46.770 0.000 

MS 13 7.528 0.873 3 12.033 0.007 

FS 13 3.098 0.998 3 44.656 0.000 

VFS 13 6.457 0.928 3 18.566 0.000 

S+C 13 7.053 0.899 3 14.887 0.002 

Chltotal 13 18.953 0.125 3 8.911 0.030 

 
 

3.2. Gonadal development cycle 

In the present study it was observed individuals with follicles containing only 

oocytes and individuals with follicles containing both oocytes and sperm sometimes 

in the same follicle (Figure IV. 2). Individuals with only male reproductive tissue were 

never observed and, in general male reproductive tissue was less common than 

female tissue. A previous study also observed that male reproductive tissue was less 
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common than female tissue (Kennedy et al 1985) and, according to Houki et al. 

(2011), the occurrence of C. fluminea specimens with male reproductive tissue only 

were never found in populations outside of their native range. Results showed a 

higher percentage of individuals with male reproductive tissue among all sampling 

sites in spring (Figure IV. 2). Kraemaer and Galloway (1986) also observed that 

spermatogenesis is a seasonal phenomenon.  

 

 
Figure IV. 2. Montly variation (October 2011 to November 2012) of the relative percentages of 

Corbicula fluminea individuals with follicles filled with oocytes only (OF), follicles filled with both 

oocytes and sperm cells and/or separated follicles filled with oocytes and with sperm cells in the same 

individual (H), and predominantly empty follicles (EF) estimated in sampling sites of the M-est (M1, 

M2 and M3) and the L-est (L).  

 

 

Hermaphroditism is considered a further adaptation that maximises the 

reproductive output  (Reed et al. 2013) and is particularly important for invasive C. 

fluminea since self-fertilization is their greatest, if not their only, reproductive 

mechanism outside their natural range (Pigneur et al. 2011). Additionally, 

spermatogenesis was already observed to accelerate the reproductive process 
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(Kraemer and Galloway 1986). Concerning sampling sites, results indicate that 

reproductive success may be greater at M1 since it has longer higher percentage of 

hermaphrodites. In fact, Sousa et al. (2008b) suggests that recruitment sites in M-est 

might be located in upstream areas since they only observed juveniles in that areas. 

Contrariwise, a high percentage (90%) of individuals containing only female 

reproductive tissue was observed in M2 in October 2011 (Figure IV. 2). Since self-

fertilization is considered the main reproductive mechanism of C. fluminea outside 

their native range (Pigneur et al. 2011), individuals containing only female 

reproductive tissue cannot succeed in reproducing. M2 is located near the mouth of 

the Louro River, a tributary of the M-est that is one of the most contaminated rivers in 

Galicia (Concha-Graña et al., 2006; Farkas et al., 2007; Filgueiras et al., 2004; 

Lavilla et al., 2010). Since this high percentage was not observed in any other 

location or time of sampling, a punctual discharge of contaminants from the Louro 

River may be diminishing the male tissue production, which probably impair the 

reproduction of C. fluminea. 

Advanced gametes were present in clams through the year as well as oogonial 

and spermatogonial proliferation (Figure IV. 3). A previous study also observed that 

C. fluminea gametogenesis is continuous (Byrne et al. 2000) and different size 

classes of oocytes are always present in the follicles (Kraemer and Galloway 1986). 

 

 
Figure IV. 3. Gonad sections from October (A), December (B), March (C), April (D), May (E) and 

August (F) showing a similar gametogenic state with advanced gametes 

A B C 

D E F 
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  The amount of gonad tissue increased during the breeding season resulting in 

a reduction in the connective tissue space (Figure IV. 4). There was no evidence of 

complete spawning. Thus, further analyses are needed in order to understand the 

alteration of the amounts of the different tissues. 

 

 
Figure IV. 4. Amount of gonad tissue during (A) and after (B) the breeding season resulting in a 

reduction in the connective tissue space. 

 

Although there was no clear seasonal pattern in gametogenesis it was observed 

a seasonal pattern in the relative percentage of hermaphrodites and empty follicles 

most probably indicative of higher reproductive periods. Results showed, in general, 

higher relative percentage of hermaphrodite individuals in autumn and spring (Figure 

IV. 5) which is in accordance with most of the previous studies that observed that C. 

fluminea reproduces twice a year in temperate regions (Mouthon 2001b; Sousa et al. 

2008a; Wittmann et al. 2008). Higher reproductive periods occurred in general at the 

same time in all sampling sites assessed and there were no substantial differences 

between M-est and L-est C. fluminea populations that might explain the differences 

observed between their invasive behaviours. Nevertheless, reproductive output, 

which also includes the number of juveniles formed and released and their survival, 

may be contributing to the differences observed, unfortunately, this study does not 

cover the production and survival of juveniles and further studies are needed in this 

context. 

 

 

A B 
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Figure IV. 5. Graphical representation relative percentage of C. fluminea individuals with follicles filled 

with only oocytes (OF), follicles filled with both oocytes and sperm and/or separated follicles filled with 

oocytes and with sperm observed in the same individual (H) and empty follicles (EF) calculated by the 

monthly (from October 2011 to November 2012) average between all sampling sites in study (M1, M2 

and M3 in M-est and L in L-est) representative of general gonadal development cycle in temperate 

regions. 

 

3.2. Relating gonadal development cycle and environmental parameters 

The reproduction of C fluminea is known to vary greatly according to its location 

suggesting a strong influence of environmental parameters (Rosa et al. 2014). 

Different phases of gonadal development cycle were associated with different 

environmental parameters (Figure IV. 7). Hermaphroditism was closely associated 

with most of the water and sediment parameters included in the analysis: water 

conductivity, hardness and phosphate, nitrite and iron concentrations; and sediment 

organic matter, total chlorophyll content and granulometry. Hermaphroditism was 

closely associated with greater availability of food, in this case a higher concentration 

of total chlorophyll, which in itself is a food source for C. fluminea  (Foe and Knight 

1986; Lauritsen 1986); organic matter that can also be used as a food source by C. 

fluminea (Boltovskoy et al. 1995; Cahoon and Owen 1996; Hakenkamp and Palmer 

1999); and nutrients (phosphate and nitrites) that are important for the quality of 

aquatic ecosystems food since among mineral nutrients, nitrogen and phosphorus 

are particularly important, promoting algal and plankton productivity (Elser et al. 

2000; Sterner et al. 2008), leading to higher food resources for C. fluminea. 

Hermaphroditism is considered a further adaptation that enables the species to 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

Oct 11 Nov 11 Dec 11 Jan 12 Feb 12 Mar 12 Apr 12 May 12 Jun 12 Jul 12 Aug 12 Sept 12 Oct 12 Nov 12 

%
 In

di
vi

du
al

s 

OF 

H 

EF 



	

 106	

maximize their reproductive output (Reed et al. 2013). The number of reproductive 

events and larval survival depends, besides other factors, on the food availability 

(Cataldo & Boltovskoy 1999, Mouthon 2001a,b). Therefore, if there is more available 

food there is a need to become more efficient in the reproductive output, which 

demonstrates the opportunist character of this species that is capable of rapidly 

exploiting favorable conditions (Mouthon 2001b).  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure IV. 6. Redundancy analysis ordination diagram displaying the scores for biological variables 

(represented by triangles) showing correlations with water and sediment parameters (represented by 

straight arrows) and metal concentrations (represented by dotted arrows): the first axis (horizontal) 

significantly explained 56.7% and second (vertical) 43.3% of the variability.  The biological variables 

are: Relative percentage of follicles completely filled with only oocytes (OF), relative percentage of 

follicles completely filled with oocytes and sperm in the same and/or separated follicles filled with 

oocytes and sperm in the same individual (H), empty follicles (EF) and the integrated biomarker 

response index (IBR). The quantitative environmental variables are: temperature (T), dissolved 

oxygen (DO), pH, conductivity (Cond), NH4
+ (Ammonium), NO2

- (nitrites) and NO3
- (nitrates) and the 

concentration of Ni, Cr, Cu and Fe in sediments and Mn, Ni, Cu and Hg in C. fluminea tissues.  
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Empty follicles were closely associated with higher concentrations of copper and 

mercury in C. fluminea tissues.  Mussels can loose up to 70 % of their biomass 

during spawning (Duinker and Mortensen 1999) while metal content can still remain 

the same if not associated with gonad tissue (Philips 1976; Boyden 1977), which can 

explain the close association between these metal concentrations and empty 

follicles. Follicles filled with only oocytes were closely associated with sediment 

nickel concentration. Nickel was already observed to decrease the germinal 

seminiferous epithelium of mice (Lukac et al. 2014), which may explain the 

association between nickel concentration, and the lack of male gonad tissue. The 

restriction of sperm production can inhibit the success of reproduction of this species 

since their mechanism of reproduction is by self-fertilization (Pigneur et al. 2011). A 

previous study also observed that the presence of toxic substances might be 

diminishing the recruitment in populations in the Parana River Delta (Boltovskoy et 

al. 1997). 

 

Conclusion 

Although the gametogenic condition of the follicle did not appear to change over 

the year, the amount of gonad tissue increased during the breeding season resulting 

in a reduction in the connective tissue space and it was observed a seasonal pattern 

in the relative percentage of hermaphrodites and empty follicles most probably 

indicative of higher reproductive periods. Results showed, in general, higher relative 

percentage of hermaphrodite individuals in autumn and spring in accordance with 

most of the previous studies that observed that C. fluminea reproduces twice a year 

in temperate regions. Higher reproductive periods occurred in general at the same 

time in all sampling sites assessed and there were no substantial differences 

between M-est and L-est C. fluminea populations that might explain the differences 

observed between their invasive behaviours. However, reproductive output also 

includes the number of juveniles formed and their release and survival, which may 

be contributing to the invasive behaviour differences observed between M-est and L-

est, unfortunately, this study does not cover the production and survival of juveniles 

and further studies are needed in this context. 

The integrated analysis of data indicated an association between high 

percentages of hermaphroditism and high concentrations of nutrients, organic matter 
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and chlorophylls, suggesting a good synchronism between fertilization/spawning and 

food availability that is crucial for larvae survival and performance. 

Insofar, a study of the C. fluminea gametogenic cycle correlated with the 

environmental variables it is essential to contribute to the knowledge on the 

mechanisms of the successful spread of this species. 
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General Discussion and Final Conclusions 

C. fluminea is one of the 100 worst invasive species in Europe and is well 

known by its rapid and extensive spread (DAISIE 2015). It has several 

characteristics that make it a highly invasive species (Fureder and Pockl 

2007; McMahon 2002; Sousa et al. 2006a; Vohmann et al. 2009), such as 

earlier sexual maturity, short life span, rapid growth and high fecundity. 

Despite the considerable amount of studies that were carried out on C. 

fluminea, the individual environmental factors influencing its invasive 

behaviour and their mode of action are not completely understood (Sousa et 

al. 2008a). Thus, the experimental work done in the scope of this thesis 

contributed to increase the knowledge on how environmental factors, with a 

special focus on pollution, may influence the invasive behaviour of C. fluminea 

populations in tidal fresh waters (TFAs) of South Europe estuaries through 

potential effects on summer induced stress leading to massive mortality 

events, health status along the year, and gonad developmental cycle. The 

general approach used was the comparison of the natural populations of C. 

fluminea inhabiting the TFAs of the estuaries of Minho (M-est) and Lima (L-

est) Rivers (Nw coast of the Iberian Peninsula), which have been showing 

differences in their invasive behaviour (Sousa et al. 2006b, 2007a). 

The environmental characterization of both systems, based on abiotic 

water and physico-chemical sediment parameters (Chapters II, III and IV) 

showed, in general, similar abiotic conditions (temperature, dissolved oxygen, 

conductivity, among others) but higher concentrations of nitrites and nitrates 

in the M-est than in the L-est. The seasonal monitoring study on the sediment 

metal concentrations (Chapter III) showed higher total metal concentrations in 

the L-est than in M-est, with Al, Mn and Se being the metals contributing most 

to the differences found. 

The study on the stress levels of M-est and L-est C. fluminea populations, 

potentially leading to summer massive mortality events, assessed through the 

integrated biomarker response index (IBR) in relation to environmental 

parameters (Chapter II) indicated higher stress of both populations in 

July/August than in September/October. The main environmental factors 

associated with high stress levels in C. fluminea were increased water 
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temperature and conductivity, and nutrients and ammonium concentrations. 

Because the levels of these factors were also associated in July/August in the 

L-est when this population showed the highest levels of stress and no 

massive mortality events were described so far for the L-est population, other 

factors seem to be important for the occurrence of such events. Population 

density may be a particularly important one. In fact, in areas with high 

densities of individuals, demand for food and water oxygen would be higher 

than in areas with less specimens. Because C. fluminea is very sensitive to 

low water oxygen concentrations (Belanger et al. 1991; Johnson and 

McMahon 1998; Matthews and McMahon 1999) that in general occur in the 

summer in both M-est and L-est (Table III.1), a higher density of individuals 

competing for this factor together with the increased water temperature and 

conductivity (potentially indicative of increased concentrations of some 

environmental concentrations such as metals), and water ammonium levels 

(Table III.1) to which C. fluminea is also very sensitive (Cherry et al. 2005), 

likely increases the stress and causes higher mortality than at lower 

population density. This hypothesis may explain why massive mortality events 

occurred in the M-est population that has an extremely high density and 

biomass (Sousa et al. 2005, 2008e) and they were not detected in the L-est 

population that has a considerably lower density and biomass (Sousa et al. 

2006a). Overall, the findings of Chaper II indicate that summer environmental 

conditions increase the stress levels of C. fluminea populations in TFAs of the 

NW Iberian Peninsula estuaries, decreasing their health status and leading to 

massive mortality events when the populations have high densities. 

The study on the seasonal variation of the stress levels of C. fluminea, 

assessed through the IBR in relation to water abiotic and sediment physic-

chemical parameters and the sediment metal concentrations (Chapter III) 

indicated higher stress levels in C. fluminea inhabiting M3 and L sampling 

sites (the most downstream sampling sites in study). The main environmental 

factors associated with higher stress levels were the coarser sands and 

silt/clay fraction and the concentrations of Mn, Al, Se and organic matter in 

sediments, and water temperature, mostly in L-est sampling site. However, 

the metal concentration in the soft body of individuals inhabiting L-est was 

lower suggesting that this population could efficiently detoxify, eliminate 
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and/or avoid excessive concentrations of these particular metals (Baudrimont 

et al. 2002; Marigómez et al. 2002). The mechanisms of metal elimination 

and/or avoidance may probably be inducing higher stress levels (Valko et al. 

2005) levels that could be limiting the invasive behaviour of this population. In 

addition, the lack of the necessary energy for establishment and dispersion of 

the population, which could be redirected to cope with metal contamination, 

might be also contributing for the differences observed between the invasive 

behaviours of C. fluminea inhabiting in L-est and M-est. Overall, the findings 

of the Chapter III indicate higher stress levels in L-est population closely 

associated with Mn, Al, Se sediment concentrations which might be 

influencing the dispersion and establishment of this species in this estuary 

contributing to the differences observed between the invasive behaviours of 

C. fluminea populations inhabiting L-est and M-est. 

The study on the gonadal development cycle in relation to to water abiotic 

and sediment physic-chemical parameters and the sediment metal 

concentrations (Chapter IV) indicate that hermaphrodite individuals was 

present all over the year but with higher percentages in spring an autumn and 

mostly associated with higher quantity of food. Because, in C. fluminea, the 

fertilization requires the simultaneous occurrence of oocytes and sperm, since 

self-fertilization is their greatest, if not their only, reproductive mechanism 

outside their natural range (Pigneur et al. 2011), these findings suggest an 

opportunist character of this species that is capable of rapidly exploiting 

favorable conditions (Mouthon 2001b) by synchronizing the peaks of 

fertilization and the availability of nutritional resources that are crucial for 

larval survival. Higher reproductive periods occurred in general at the same 

time in all sampling sites assessed and there were no substantial differences 

between M-est and L-est C. fluminea populations that might explain the 

differences observed between their invasive behaviours. However, the 

hypothesis that reproductive output could be contributing to the differences 

observed cannot be discarded since it also includes the number of juveniles 

produced and released and their survival. Unfortunately, this study does not 

cover the production and survival of juveniles and further studies are needed 

in this context. Nevertheless, the gonadal development cycle data integration 

with the environmental parameters showed a close association between a 
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higher percentage of individuals with follicles filled with only oocytes and the 

concentration of nickel in sediments which could be impairing the 

development of sperm (Lukac et al. 2014). The restriction of sperm production 

can inhibit the success of reproduction of this species since their mechanism 

of reproduction is by self-fertilization (Pigneur et al. 2011). A previous study 

also observed that the presence of toxic substances might be diminishing the 

recruitment in populations in the Parana River Delta (Boltovskoy et al. 1997). 

Overall, the findings of Chapter IV indicate that despite pollution seem to be 

influencing the success of reproduction of this species, the gonadal 

development cycle does not seem to be contributing to the differences 

observed between the invasive behaviours of M-est and L-est populations 

since both populations showed spawning/fertility peaks in spring and autumn 

in accordance with most of the previous studies that observed that C. 

fluminea reproduces twice a year in temperate regions (Sousa et al. 2008a).  

In conclusion results showed that pollution (metal concentration and 

increased nutrients concentrations) induce higher stress levels in C. fluminea 

possible limiting their invasive behaviour since individuals exposed to these 

stressful conditions have to cope with pollution induced stress instead of 

investing in the population establishment and dispersal. C. fluminea inhabiting 

in both downstream sampling sites (M3 and L-est) showed, in general, higher 

stress conditions than those inhabiting upstream sampling sites. C. fluminea 

individuals inhabiting the most upstream sampling sites in M-est might be 

enough to contribute to the high abundance observed in this estuary, which 

probably does not occur in L-est since C. fluminea individuals were only 

previously observed in sites more downstream when compared with M-est 

population (Sousa et al. 2006a,b). In fact, juveniles were only observed in 

upstream sampling sites in M-est (Sousa et al. 2008b) corroborating this 

hypothesis. Therefore, to achieve the goals posed by The European Union 

Convention on Biodiversity Strategy (European Commission 2011) for 2020, 

to control or eradicate the priority species, eradication and/or control 

measures should be applied upstream in the TFA of estuaries, where it seems 

that this species shows higher reproductive output, in order to reduce the 

probability of a new and rapid dispersion of the species, since C. fluminea 

fecundity is extremely high, estimated at around 35 000 per hermaphroditic 
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individual per breeding season (McMahon 2002). Contrariwise, despite 

pollution seem to be diminish the male tissue production, the gonadal 

development cycle does not seem to be contributing to the differences 

observed between the invasive behaviours of M-est and L-est populations 

since both populations showed similar fertility/spawning peaks. However 

reproduction also involves the number of juveniles produced and their 

survival, important parameters that were not investigated in the present 

Thesis but should be addressed in the future in order to complete the 

information obtained. 

Overall, the findings of the present Thesis increase the knowledge on the 

factors contribution to the invasive behaviour of C. fluminea in TDF areas of 

temperate regions indicating that pollution may be restricting the invasive 

behaviour of C. fluminea by decreasing their health status. In addition, under 

the scenarios of human population exponential growth and global climate 

changes, a better exploration of natural resources and ecosystem services, 

and the improvement of environmental quality are crucial. In the last decades, 

evidences from several studies have been drawing attention to the services 

that some non-indigenous invasive species (NIS), mostly known by the 

negative ecological and economic impacts that they generally cause in 

invaded ecosystems, may provide if an adequate management of their 

invasions is achieved (McLaughlan et al., 2014). The work done within the 

present thesis shows that C. fluminea can be as a suitable indicator of 

environmental quality, since C. fluminea accumulated 7 metals (Cr, Cu, Zn, 

Se, As, Cd, Pb) with bioconcentration factors (BSAF) ranging from ≈ 2 (Cr) to 

≈ 36 (Cu) (Chapter III). In ecosystems invaded by this NIS, the use of natural 

populations of this species in environmental monitoring programmes may help 

to control the invasions and mitigate its negative impacts. Moreover, because 

the species has a high filtration rate (McMahon, 2002; Phelps, 1994) 

removing a considerable amount of microalgae and other organisms and 

particles from the water column, and accumulates several metals (Table III. 

3), natural populations contribute to clean the water and remove toxic 

chemicals from the abiotic component of the ecosystem. Due to these 

properties, the species has also potential for further exploration in relation to 
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bioremediation, as previously suggested by other authors (Rosa et al., 2014; 

Simonit and Perrings, 2011). For instance, in invaded ecosystems, the use of 

C. fluminea in environmental quality monitoring and bioremediation in 

controlled conditions, may help to control and mitigate the adverse effects of 

the invasion by this species, in addition to the direct advantages of other 

services that natural populations may provide. 
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