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Abstract. The presence of precipitates in metallic materials affects its
durability, resistance and mechanical properties. Hence, its automatic
identification by image processing and machine learning techniques may
lead to reliable and efficient assessments on the materials. In this paper,
we introduce four widely used supervised pattern recognition techniques
to accomplish metallic precipitates segmentation in scanning electron
microscope images from dissimilar welding on a Hastelloy C-276 alloy:
Support Vector Machines, Optimum-Path Forest, Self Organizing Maps
and a Bayesian classifier. Experimental results demonstrated that all
classifiers achieved similar recognition rates with good results validated
by an expert in metallographic image analysis.

Key words: Support Vector Machines, Optimum-Path Forest, Scanning
Electron Microscope, Metallic Precipitates Segmentation, Hastelloy C-
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1 Introduction

Nickel based alloys are an important class of metallic materials especially em-
ployed under severe operational conditions, mainly because of its high temper-
ature strength and resistance to corrosion/oxidation. In this context, Hastelloy
C276 alloy has been notably used as protective coating against corrosion on in-
ner surface in equipments from petroleum and petrochemical industries due to
the high contents of chromium, molybdenum, and tungsten.

Among many manufacturing process used to deposit the coating, the arc
welding process is one of the most important. During the solidification of the
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liquid metal in the weld pool, a phenomenon of microsegregation from solid
dendrite to liquid interdendritic is observed for some elements as molybdenum
and tungsten [14].

In the final stage of solidification, the liquid enriched in Mo (molybdenum)
and W (tungsten) originates a new phase, known as topologically closed packed
(TCP) phase [14], which is detrimental to mechanical properties due to its hard
and brittle nature [1]. Besides that, the resistance to corrosion of these type
of alloys can be decreased by the precipitation of the Mo-rich TCP phase. In
addition, the formation of TCP phases are responsible for the weld metal hot
cracks in Hastelloy C-276 [5]. In order to avoid or minimize these deleterious
phases, it has a consensus about choosing the welding parameters in a properly
manner.

Nonetheless, to verify the effect of welding parameters on the formation of
TCP phases it is often necessary to accurately identify the amount of precip-
itates, which are responsible to decrease the mechanical properties of metallic
materials. Thus, it is very important to have an effective tool to identify and
further quantity the material precipitates and microstrutures, in order to assess
the quality of metallic materials as a whole.

Albuquerque et al. [2] have addressed this problem using image processing
techniques together with machine learning ones in order to speed up the pro-
cess and to make it less prone to errors inherent to human inspection. In that
work, it was presented and evaluated computational solutions for segmentation
and quantification of different types of cast iron microstructures from optical
microscopy images based on Artificial Neuronal Networks with Multilayer Per-
ceptron (ANN-MLP)and Self-Organizing Maps (SOM), which were compared
against a commercial system. As far as we know, only Albuquerque et al. [4]
tackled the problem of material precipitates segmentation using images obtained
from scanning electron microscope (SEM).

Hence, we propose in this work to apply machine learning techniques that
have not been applied to this context up to date, such as: Optimum-Path Forest
(OPF), two different implementations of Support Vector Machines (SVMs), SOM
and a Bayesian classifier. The remainder of the paper is organized as follows. As
the OPF classifier was recently introduced, we dedicated a Section to introduce
its fundaments and learning algorithm (Section 2). Section 3 addresses the
methodology and the used dataset. The experimental results are addressed in
Section 4 and the conclusions are stated in Section 5.

2 Pattern Recognition by Optimum-Path Forest

The Optimum-Path Forest is a framework to assist the development of pattern
recognition techniques based on optimum-path forest [12]. An OPF-based clas-
sifier models the problem of pattern recognition as a graph partition in a feature
space induced by the dataset. Each sample is represented by a set of features
and a distance function measures their dissimilarity in the feature space. The
training samples are then interpreted as the nodes of a graph, whose arcs are
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defined by a given adjacency relation and weighted by the distance function. It
is expected that samples from a same class/cluster are connected by a path of
nearby samples. Therefore, the degree of connectedness for any given path is
measured by a connectivity (path-value) function, which exploits the distances
along the path.

In supervised learning, the true label of the training samples is known and
so it is exploited to identify key samples (prototypes) in each class. Optimum
paths are computed from the prototypes to each training sample, such that each
prototype becomes root of an optimum-path tree composed by its most strongly
connected samples. The labels of these samples are assumed to be the same of
their root. In unsupervised learning, each cluster is represented by an optimum-
path tree rooted at a single prototype but we do not know the class label of the
training samples. Therefore, we expect that each cluster contains only samples
of a same class and some other information about the application is needed to
complete classification.

The basic idea is then to specify an adjacency relation and a path-value func-
tion, compute prototypes and reduce the problem into an optimum-path forest
computation in the underlying graph. The training forest becomes a classifier
which can assign to any new sample the label of its most strongly connected
root. Essentially, this methodology extends a previous approach, called Image

Foresting Transform [8], for the design of image processing operators from the
image domain to the feature space.

Papa et al. [11] presented a first method for supervised classification using
a complete graph (implicit representation) and the maximum arc weight along
a path as connectivity function. The prototypes were chosen as samples that
share an arc between distinct classes in a minimum spanning tree of the training
set [7].

Another supervised learning method was proposed in [10]. In this case, the
arcs connect k-nearest neighbors (k-nn) in the feature space. The distances be-
tween adjacent nodes are used to estimate a probability density value of each
node and optimum paths are computed from the maxima of this probability
density function (pdf). For large datasets, we usually use a smaller training set
and a much larger evaluation set to learn the most representative samples from
the classification errors in the evaluation set. This considerably improves classi-
fication accuracy of new samples. This strategy was assessed with k-nn graphs
in [13]. The accuracy results can be better than using similar strategy with com-
plete graph [11] for some situations, but the latter is still preferred because it is
faster and does not require the optimization of the parameter k.

An unsupervised version of OPF was presented by Rocha et al. [15], which is
quite similar to the supervised one with k-nn graph. The main difference rely on
the estimation of the best k value: in this case, as we do not have information
about labels, the k value chosen is the one that minimizes the minimum cut
over the whole graph. In this paper, we adopted the OPF with complete graph,
since that this version is the most used. For sake of simplicity, any further refer-
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ence to OPF will mean this version. The next sections will details the training,
classification and the learning with pruning procedures for OPF.

2.1 Training

In large datasets, the number of labeled samples for training is usually large.
Therefore, a first strategy to make a classifier more efficient is the use of two
labeled and disjoint sets, Z1 and Z2, |Z1| � |Z2|, being the first the actual
training set and the second an evaluation set. The purpose of the evaluation set
is to improve the quality of the samples in the training set, without increasing its
size, by replacing classification errors in Z2 by non-prototype samples of Z1 [11].
After this learning process, the classifier is ready to be tested on any unseen
dataset Z3. For validation purpose, this process must also be repeated several
times, with different random and disjoint sets Z1, Z2, and Z3, in order to obtain
the average accuracy results.

Let (Z1, A) be a complete graph whose nodes are the samples in Z1 and
any pair of samples defines an arc in A = Z1 × Z1. The arcs do not need to
be stored and so the graph representation is implicit. A path is a sequence of
distinct samples πt = 〈s1, s2, . . . , sk−1, t〉 with terminus t, where (si, si+1) ∈ A

for 1 ≤ i ≤ k − 1. A path is said trivial if πt = 〈t〉. We assign to each path πt

a cost f(πt) given by a path-value function f . A path πt is considered optimum
if f(πt) ≤ f(τt) for any other path τt with the same terminus t. We also denote
by πs · 〈s, t〉 the concatenation of a path πs and arc (s, t).

Training essentially consists of finding an optimum-path forest in (Z1, A),
which is rooted in a special set S ⊂ Z1 of prototypes. As proposed in [11],
the set S is represented by samples that share arcs between distinct classes in
a minimum-spanning tree (MST) of (Z1, A) [7]. For path-value function fmax,
these prototypes (roots of the forest) tend to minimize the classification errors
in Z1, when their labels are propagated to the nodes of their trees:

fmax(〈s〉) =

{

0 if s ∈ S

+∞ otherwise,

fmax(πs · 〈s, t〉) = max{fmax(πs), d(s, t)}, (1)

such that fmax(πs) computes the maximum distance between adjacent samples
in a non-trivial path πs.

The training algorithm for the OPF classifier [11] assigns one optimum path
P ∗

1 (s) from S to every sample s ∈ Z1, forming an optimum path forest P1 (a
function with no cycles which assigns to each s ∈ Z1\S its predecessor P1(s) in
P ∗

1 (s) or a marker nil when s ∈ S). Let R1(s) ∈ S be the root of P ∗
1 (s) (which

can be reached from P1(s)), the OPF algorithm computes for each s ∈ Z1,
the minimum cost C1(s) of P ∗

1 (s), the class label L1(s) = λ(R1(s)), and the
predecessor P1(s). Algorithm 1 implements this training procedure.

Algorithm 1 – Training Algorithm
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Input: A λ-labeled training set Z1 and the pair (v, d) for feature vector and
distance computations.

Output: Optimum-path forest P1, cost map C1, label map L1, and ordered set
Z′

1.
Auxiliary: Priority queue Q, set S of prototypes, and cost variable cst.

1. Set Z′

1 ← ∅ and compute by MST the prototype set S ⊂ Z1.
2. For each s ∈ Z1\S, set C1(s)← +∞.
3. For each s ∈ S, do
4. C1(s)← 0, P1(s)← nil, L1(s)← λ(s), and insert s in Q.
5. While Q is not empty, do
6. Remove from Q a sample s such that C1(s) is minimum.
7. Insert s in Z′

1.
8. For each t ∈ Z1 such that t 6= s and C1(t) > C1(s), do
9. Compute cst← max{C1(s), d(s, t)}.
10. If cst < C1(t), then
11. If C1(t) 6= +∞, then remove t from Q.
12. P1(t)← s, L1(t)← L1(s), C1(t)← cst.
13. Insert t in Q.
14. Return a classifier [P1, C1, L1, Z

′

1].

2.2 Classification

In [11], the classification of each new sample t ∈ Z2 (or Z3) is done based on the
distance d(s, t) between t and each training node s ∈ Z1 and on the evaluation
of the following equation:

C2(t) = min{max{C1(s), d(s, t)}}, ∀s ∈ Z1. (2)

Let s∗ ∈ Z ′
1 be the node s that satisfies Equation (2). It essentially considers

all possible paths πs from S in (Z1, A) extended to t by an arc (s, t), finds the
optimum path P ∗

1 (s∗) · 〈s∗, t〉, and label t with the class λ(R1(s
∗)) of its most

strongly connected prototype R1(s
∗) ∈ S (i.e., L2(t)← L1(s

∗) = λ(R1(s
∗))).

Note that Z1 can be replaced by Z ′
1 in Equation (2) and its evaluation can halt

when max{C1(s), d(s, t)} < C1(s
′) for a node s′ whose position in Z ′

1 succeeds the
position of s. This avoids to visit all nodes in Z ′

1 in many cases and the efficiency
gain increases with the time complexity of d(s, t). Algorithm 2 implements this
scheme for classification procedure.

Algorithm 2 – OPF classification

Input: Classifier [P1, C1, L1, Z
′

1], evaluation set Z2 (or test set Z3), and the
pair (v, d) for feature vector and distance computations.

Output: Label L2 and predecessor P2 maps defined for Z2.
Auxiliary: Cost variables tmp and mincost.

1. For each t ∈ Z2, do
2. i← 1, mincost← max{C1(ki), d(ki, t)}.
3. L2(t)← L1(ki) and P2(t)← ki.
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4. While i < |Z′

1| and mincost > C1(ki+1), do
5. Compute tmp← max{C1(ki+1, d(ki+1, t)}.
6. If tmp < mincost, then
7. mincost← tmp.
8. L2(t)← L(ki+1) and P2(t)← ki+1.
9. i← i + 1.
10. Return [L2, P2].

In Algorithm 2, the main loop (Lines 1−9) performs classification of all nodes
in Z2. The inner loop (Lines 4− 9) visits each node ki+1 ∈ Z ′

1, i = 1, 2, . . . , |Z ′
1|

until an optimum path πki+1
· 〈ki+1, t〉 be found. In the worst scenario, it visits

all nodes in Z ′
1 (Line 4). Line 5 evaluates fmax(πki+1

· 〈ki+1, t〉) and Lines 7− 8
updates cost, label and predecessor of t whenever πki+1

· 〈ki+1, t〉 is better than
the current path πt (Line 6).

2.3 Pruning Irrelevant Patterns

Large datasets usually present redundancy, so at least in theory it should be
possible to estimate a reduced training set with the most relevant patterns for
classification. The use of a training set Z1 and an evaluation set Z2 has al-
lowed us to learn relevant samples for Z1 from the classification errors in Z2, by
swapping misclassified samples of Z2 and non-prototype samples of Z1 during a
few iterations [11]. In this learning strategy, Z1 remains with the same size and
the classifier instance with the highest accuracy is selected to be tested in the
unseen set Z3. In this section, we use this learning procedure (as described in
Algorithm 3) within a method (Algorithm 4) to reduce the training set size by
identifying and eliminating irrelevant samples from Z1.

Algorithm 3 – OPF Learning Algorithm

Input: A λ-labeled training and evaluating sets Z1 and Z2, respectively, num-
ber T of iterations, and the pair (v, d) for feature vector and distance
computations.

Output: Optimum-path forest P1, cost map C1, label map L1, and ordered set
Z′

1.
Auxiliary: Arrays FP and FN of sizes c for false positives and false negatives,

set S of prototypes, and list LM of misclassified samples.

1. Set MaxAcc← −1.
2. For each iteration I = 1, 2, . . . , T , do
3. LM ← ∅ and compute the set S ⊂ Z1 of prototypes.
4. [P1, C1, L1, Z

′

1]← Algorithm 1 (Z1, S, (v, d)).
5. For each class i = 1, 2, . . . , c, do
6. FP (i)← 0 and FN(i)← 0.
7. [L2, P2]← Algorithm 2 (Z′

1, Z2, (v, d))
8. For each sample t ∈ Z2, do
9. If L2(t) 6= λ(t), then
10. FP (L2(t))← FP (L2(t)) + 1.
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11. FN(λ(t))← FN(λ(t)) + 1.
12. LM ← LM ∪ t.
13. Compute accuracy Acc according to [11].
14. If Acc > MaxAcc then save the current instance [P1, C1, L1, Z

′

1]
15. of the classifier and set MaxAcc← Acc.
16. While LM 6= ∅
17. LM ← LM\t.
18. Replace t by a non-prototype sample, randomly selected from Z1.
19. Return the classifier instance [P1, C1, L1, Z

′

1] with the highest accuracy in Z2.

The efficacy of Algorithm 3 increases with the size of Z1, because more non-
prototype samples can be swapped by misclassified samples of Z2. However, for
sake of efficiency, we need to choose some reasonable maximum size for Z1. After
learning the best training samples for Z1, we may also mark paths in P1 used to
classify samples in Z2 and define their nodes as relevant samples in a set R. The
“irrelevant” training samples in Z1\R can then be moved to Z2. Algorithm 4

applies this idea repetitively, while the loss in accuracy on Z2 with respect to
the highest accuracy obtained by Algorithm 3 (using the initial training set size)
is less or equal to a maximum value MLoss specified by the user.

Algorithm 4 – Learning-with-Pruning Algorithm

Input: Training and evaluation sets, Z1 and Z2, labeled by λ, the pair (v, d)
for feature vector and distance computations, maximum loss MLoss

in accuracy on Z2, and number T of iterations.
Output: EOPF classifier [P1, C1, L1, Z

′

1] with reduced training set.
Auxiliary: Set R of relevant samples, and variables Acc and tmp.

1. [P1, C1, L1, Z
′

1]← Algorithm 3 (Z1, Z2, T, (v, d)).
2. [L2, P2]← Algorithm 2(Z′

1, Z2, (v, d)) and store accuracy in Acc.
3. tmp← Acc and R← ∅.
4. While |Acc− tmp| ≤MLoss and R 6= Z1 do
5. R← ∅.
6. For each sample t ∈ Z2, do
7. s← P2(t) ∈ Z1.
8. While s 6= nil, do
9. R← R∪ s.
10. s← P1(s).
11. Move samples from Z1\R to Z2.
12. [P1, C1, L1, Z

′

1]← Algorithm 3 (Z1, Z2, T, (v, d)).
13. [L2, P2]← Algorithm 2 (Z′

1, Z2, (v, d)) and store accuracy in tmp.
14. Return [P1, C1, L1, Z

′

1].

In Algorithm 4, Lines 1 − 3 compute learning and classification using the
highest accuracy classifier obtained for an initial training set size. Its accuracy
is stored in Acc and used as reference value Acc in order to stop the pruning
process, when the loss in accuracy is greater than an user-specified value MLoss

or all training samples are considered relevant. The main loop in Lines 4 − 13
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essentially marks the relevant samples in Z1 by following backwards the optimum
paths used for classification (Lines 5− 10), moves irrelevant samples to Z2, and
repeats learning and classification from a reduced training set until it reaches
the above stopping criterion.

3 Methodology

The material used to evaluate classifiers was a dissimilar metal weld of Hastelloy
C276 alloy on a C-Mn steel substrate. The testing samples were extracted from
the welded plates and subsequently went through a metallographic processing,
which consists in sanding, polishing and electrolytic etching. All samples were
etched using 10% chromic acid, and a 2V tension applied during 15 seconds.

The SEM images were obtained in secondary electron (SE) mode, which
presents an adequate contrast between the precipitates and the matrix, due to
the enrichment of the precipitates by elements with higher atomic weight such
as Mo and W. After the imaging acquisition process, the images were submitted
to the analysis of the machine learning solutions under evaluation.

Regarding machine learning techniques, we used here five implementations:
Self Organizing Maps (SOM), Optimum-Path Forest (OPF), SVM without ker-
nel mapping (SVM-nokernel), SVM with RBF (Radial Basis Function) as kernel
mapping (SVM-RBF) and a Bayesian classifier. For SOM, we used our own im-
plementation with a 5 × 5 neuronal lattice and 10 iterations for learning. The
OPF implementation we used was the one from LibOPF [12], which is a free li-
brary of optimum-path forest-based classifiers. For OPF learning algorithm, we
used the pruning procedure described in Section 2.3. Regarding SVM-nokernel
we adopted LibLINEAR [9] with parameters optimized by cross-validation, and
for SVM-RBF we used SVMTorch [6]. Finally, for Bayesian classifier we used
our implementation.

As we are working with supervised pattern recognition techniques, it is nec-
essary to have labeled data for the learning process. Thus, we asked for an expert
in metallographic image analysis to label an entire image in two classes: fore-
ground (precipitates) and background (matrix). Figure 1 displays the image used
to train the classifiers (a) and its respective labeled image (b), in which the red
pixels mean the precipitates. In this work, each pixel is considered as a sample
to build the dataset, and the feature vector used as input is composed by the
gray value of each pixel.

4 Experimental Results

In this section, we present the experiments realized in order to asses the ro-
bustness of the classifiers, which were conducted in two phases: in the former
(Section 4.1) we used 1% for training and the remaining 99% for classification.
The samples were obtained through the whole image shown in Figure 1. In the
latter round of experiments (Section 4.2), we used the same 1% above to train
the classifiers and further to label another image of the dataset. We conducted
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(a) (b)

Fig. 1. (a) SEM image used in the first round of experiments (Section 4.1) and (b)
after be labeled by an expert.

an extra experiment in Section 4.1 in order to assess the performance of OPF
learning with pruning algorithm described in Section 2.3. For that experiment,
we divided the above 1% in 10% for training and 90% for the evaluating set.
The MLoss variable in Algorithm 4 was set to 0.3. Notice that all these values
were empirically chosen based on our previous experience.

The accuracies are measured by taking into account that the classes may
have different sizes in Z2 (similar definition is applied for Z3). If there are two
classes, for example, with very different sizes and a classifier always assigns the
label of the largest class, its accuracy will fall drastically due to the high error
rate on the smallest class.

Let NZ2(i), i = 1, 2, . . . , c, be the number of samples in Z2 from each class
i. We define the errors ei,1 and ei,2:

ei,1 =
FP (i)

|Z2| − |NZ2(i)|
and ei,2 =

FN(i)

|NZ2(i)|
, i = 1, . . . , c, (3)

where FP (i) and FN(i) are the false positives and false negatives, respectively.
That is, FP (i) is the number of samples from other classes that were classified
as being from the class i in Z2, and FN(i) is the number of samples from the
class i that were incorrectly classified as being from other classes in Z2. The
errors ei,1 and ei,2 are then used to define:

E(i) = ei,1 + ei,2, (4)

where E(i) is the partial sum error of class i. Finally, the accuracy Acc, are
defined as:

Acc =
2c−

∑c

i=1
E(i)

2c
= 1−

∑c

i=1
E(i)

2c
. (5)

4.1 Robustness of Classifiers

Table 1 display the mean results using 1% for training and 99% for classification
after 10 rounds with randomly chosen sets. These experiments were performed
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using a PC with Intel R© Core I5 processor and 4Gb RAM and Linux Ubuntu
10.04 as the operational system.

Table 1. Mean accuracy and mean training and classification times for OPF, SVM-
RBF, SVM-noKernel and SOM.

Classifier Accuracy % Training time [s] Classification Time [s]

OPF 89.86±5.08 0.314 0.594

SVM-RBF 90.84±1.71 0.149 1.672

SVM-noKernel 94.56±2.86 9.965 0.140

SOM 88.87±3.21 0.045 0.065

Bayesian 87.47±1.28 0.025 49.89

Although SVM-noKernel achieved the best results, OPF, SVM-RBF, SOM
and Bayesian were also similar if we consider the standard deviation. The fastest
classifier for training was Bayesian one, and for classification was SOM, and the
best trade-off between efficiency and effectiveness was achieved by OPF, which
was the second faster classifier and 11.129 times faster than SVM-noKernel if
we take into account the whole execution time, i.e., training plus classification.

Concerning the extra experiment, i.e., the one using OPF learning with prun-
ing algorithm, OPF achieved 91.23% of recognition rate and pruned 97.38% of
the training set. Now, the OPF testing time decreased to 0.171 seconds, which
turn OPF with training set pruning 3.45 faster than traditional OPF for classi-
fication. Note that the accuracy also increased, even reducing the training set.

4.2 Automatic Labeling Images

In this second round of experiments, we applied the same 1% training set used
in the previous section to train the classifiers for further labeling another SEM
image of the dataset, as illustrated in Figure 2a.

It is possible to observe, from visual assessment, that all approaches achieved
reasonable results regarding the quality of the segmentation (Figures 2(b)-(e)).
Thus, it feasible to make the Hastelloy C-276 alloy automatic characterization in
a precisely and efficiently manner, since that the human inspection may be prone
to errors due to the subjectivity of this process, as addressed by Albuquerque
et al. [3]. Hence, this work may contribute with a comparison among supervised
pattern recognition techniques in order to obtain fast and reliable results to this
urged and demanded task.

5 Conclusions

In this paper, we addressed the problem of metallic precipitates segmentation
in SEM images, which may affect the material durability and resistance. As
there are very few works in this context, the present one assumes a significantly
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. (a) SEM image used in the second round of experiments and its respectively
classified images by (b) OPF, (c) SVM-noKernel, (d) SVM-RBF, (e) SOM and (f)
Bayesian.

contribution by performing a comparison among the state-of-the-art supervised
pattern recognition to accomplish this task.

We conducted two rounds of experiments: (i) in the former, the accuracy
of two different implementations of SVMs, SOM and OPF were compared in
terms of effectiveness and efficiency for training and classification, and (ii) in
the latter experiment we used the classifiers trained in the previous one to label
a another image of the dataset. Regarding accuracy over the classification set,
all classifiers were similar if we consider the standard deviation, been SOM the
fastest one. Additionally, OPF achieved the best trade-off between effectiveness
and efficiency. Finally, in the second round, we attested that all classifiers pro-
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duced similar results to label an image that did not belong to the training set.
In addiction, these segmentation results were considered feasible by an expert
in in metallographic image analysis.
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