

Faculdade de Engenharia da Universidade do Porto

Mestrado de Engenharia da Informação

REINFORCEMENT LEARNING FOR

PRIMARY CARE APPOINTMENT SCHEDULING

Tiago Salgado de Magalhães Taveira-Gomes

Supervisor

Jaime S Cardoso

Porto 25th September 2017

REINFORCEMENT LEARNING FOR

PRIMARY CARE APPOINTMENT SCHEDULING

Tiago Salgado de Magalhães Taveira-Gomes

Mestrado em Engenharia da Informação

Approved by

__

President

__

Referee

__

Porto, 25th September 2017

Resumo
O agendamento de consultas é uma tarefa complexa, que desempenha um papel

fundamental na qualidade dos serviços de saúde. O agendamento eficiente evita a

insatisfação dos médicos e dos pacientes, sendo assim um determinante relevante da

qualidade dos cuidados prestados. Ainda assim, essa tarefa é frequentemente

realizada ad hoc, sem consideração por aspetos que determinam o tempo de consulta

e eventuais tempos de espera. Uma vez que neste contexto o agendamento é

realizado para cada doente à vez, o problema não é facilmente resolvido através de

métodos de otimização. Acresce ainda que a natureza de evolução constante dos

Cuidados de Saúde Primários implica que heurísticas gerais não alcancem bons

resultados, tornando o problema de agendamento automático custoso, e de um modo

geral inviável.

O presente trabalho pretende desenvolver uma plataforma para a criação de ambientes

de agendamento de consultas totalmente configuráveis, e estudar a performance do

algoritmo de aprendizagem por reforço Advantage Actor-Critic sobre um conjunto de

ambientes de agendamento de dificuldade crescente, comparando a sua performance

com heurísticas determinísticas simples.

Para esse efeito foi desenvolvida uma plataforma baseada em micro serviços, que

permite a criação e teste de quaisquer ambientes de agendamento, sobre os quais

podem ser desenvolvidos e testados agentes. A plataforma permite o

acompanhamento em tempo real das ações dos agentes e da medição da sua

performance, bem como a colheita de métricas de performance para posterior análise.

Permite ainda a interação de agentes humanos. A plataforma foi concebida para correr

localmente ou na nuvem.

Foram desenvolvidos sete ambientes que implementam os requisitos básicos do

agendamento nos Cuidados de Saúde Primários e foi estudada a performance do

algoritmo referido. Foi demonstrado que este algoritmo é capaz de aprender as regras

que governam os ambientes de agendamento e cuja manipulação foi necessária para

atingir os resultados ótimos ou quási ótimos observados, tornando-o assim um

candidato promissor para utilização em ambiente de produção.

Abstract
Patient scheduling is a complex task that plays a crucial role in the quality of care.

Effective scheduling avoids patient and physician dissatisfaction, and as such, is an

important determinant of care. However, the task of patient scheduling is traditionally

done ad hoc, with disregard of potential aspects that may determine appointment

duration and overall waiting time. Since scheduling in this setting is frequently done one

patient at a time, the problem cannot be readily solved by optimization methods.

Furthermore, the constant changing nature of clinical settings implies that one-fits-all

heuristic scheduling approaches would generally be poor, rendering the task of

automated patient scheduling resource intensive, costly to maintain, and thus, generally

unfeasible.

The present work aims to develop a framework to create fully configurable patient

scheduling environments, study the performance of the Advantage Actor-Critic

reinforcement learning algorithm to schedule appointments in a set of increasingly

challenging environments, and benchmark it against a set of simple deterministic

heuristics.

A micro-service application was developed to create and test any scheduling

environments over which to develop and test agents. The platform enabled online

monitoring of the agent performance and data collection for posterior analysis. It also

enabled humans to work as agents. The platform was developed in such a way that it

can be run in local machines or cloud infrastructure.

We devised and developed a set of seven specific appointment scheduling

environments that implement the basic requirements of scheduling in Primary Care, and

studied the performance of RL agents implemented using the A3C algorithm.

Finally, we have shown that RL agents are able to learn the underlying rules that govern

such environments, that needed to be considered to arrive at optimal or near optimal

scheduling solutions, and thus are promising algorithms for production environments.

Foreword
Teaching and learning are critical subjects, that undermine the success of civilizations.

Innovative teaching and learning methods have led individuals and institutions to build

the world we live in today by overcoming ever greater challenges.

In the digital era, where the massive volumes of information largely surpass the analysis

capability of the human intellect, teaching and learning have gone beyond methods

aimed at people, and now also seek to create intelligent learning machines, able to

extract patterns, and reason from large amounts of data.

Having conducted research on strategies and factors influencing effective teaching and

learning in the healthcare setting, it seemed particularly interesting to transition to the

creation of machines that learn, in hopes that many redundant, cumbersome and error-

prone tasks that are frequently performed by healthcare professionals can be mastered

by such systems, freeing individuals to invest their time to deepen skills on tasks that

humans should preferably perform, such as providing quality healthcare to patients.

Acknowledgements

To Professor Jaime Cardoso,

for the invaluable teachings, support, understanding and inspiration.

To my Parents,

To my Grand Parents,

To my Brother,

To my Dear Love Isabel,

And finally,

to Mother Isabel and Father José Joaquim,

for their support throughout this great endeavor.

Contents
Introduction .. 1	

Overview ... 1	

Motivation .. 1	

Objective ... 2	

Contributions ... 2	

Structure of the Dissertation .. 2	

Patient appointment scheduling .. 4	

Scheduling .. 4	

Scheduling in Healthcare ... 4	

Patient scheduling ... 5	

Appointment structure in Primary Care .. 7	

Scheduling opportunities in Primary Care .. 9	

Scheduling requirements for Primary Care ... 10	

Reinforcement Learning .. 13	

Machine learning overview ... 13	

Deep learning .. 15	

Reinforcement Learning Overview .. 22	

Reinforcement Learning Methods .. 27	

Concluding remarks .. 36	

Scheduling Framework ... 39	

Environment modelling .. 39	

Agent configuration ... 44	

Simulation .. 46	

Software architecture considerations ... 48	

Final remarks ... 54	

Scheduling environments and agent performance .. 55	

Dummy environment A .. 57	

Dummy environment B .. 59	

Dummy environment C .. 61	

Dummy environment D .. 64	

Dummy environment E .. 67	

Dummy environment F ... 71	

Real daily environment ... 75	

Discussion and Future Work ... 81	

References ... 86	

List of Acronyms
A3C – Asynchronous Advantage Actor-Critic

ANN - Artificial Neural Networks

AWS – Amazon Web Services

CreLU – Concatenated ReLU

DNN – Deep Neural Network

DQN – Deep Q Network

ELU – Exponential Linear Unit

FFN – Feed Forward Network

HQL – Hive Query Language

HTTP – Hypertext Transfer Protocol

JDBC – Java Database Connection

LSTM – Long Shor-Term Memory

MLP - Multi-Layer Perceptron

MDP – Markov Decision Process

PCA – Principle Component Analysis

POMDP – Partial Observable Markov Decision Process

ReLU – Rectified Linear Unit

RL – Reinforcement Learning

RNN – Recurrent Neural Network

S3 – Simple Storage Service

SQL – Structured Query Language

TanH – Hyperbolic tangent

TCP – Transmission Control Protocol

TD – Temporal Difference

WS – Web Socket

List of Algorithms
Algorithm 1 – RMSProp algorithm ... 20	
Algorithm 2 - Temporal Difference learning using tabular method 30	
Algorithm 3 - Temporal Difference learning using function approximation 31	
Algorithm 4 – REINFORCE algorithm .. 32	
Algorithm 5 – Actor-Critic algorithm .. 33	
Algorithm 6 - Asynchronous Advantage Actor Critic (A3C) algorithm 36	
Algorithm 7 - Scheduling environment reward computation .. 43	
Algorithm 8 - Near optimal solution heuristic ... 47	

List of Equations
Equation 1 – Feed forward neural network. ... 16	
Equation 2 – Rectified linear unit activation function. ... 17	
Equation 3 – Softmax activation function. ... 17	
Equation 4 – Recurrent neural network. .. 17	
Equation 5 – Sigmoid activation function. ... 18	
Equation 6 – Implementation of long short term RNN cell ... 18	
Equation 7 – Cross entropy cost function. .. 19	
Equation 8 – Regularized cost function ... 20	
Equation 9 – L2 parameter regularization. .. 21	
Equation 10 – L1 parameter regularization. .. 21	
Equation 11 – Dropout regularization. ... 22	
Equation 12- Dynamic programming value function. ... 25	
Equation 13 - Value iteration equation. ... 26	
Equation 14 - Q function. .. 26	
Equation 15- Bellman optimality equation ... 26	
Equation 16 - Policy iteration equation. ... 26	
Equation 17- Advantage function estimation. .. 34	
Equation 18 - Regularized policy gradient cost function using advantage estimation. .. 35	

List of Tables
Table 1 - Dummy environment feature summary ... 56	
Table 2 - RL Agent A1, A2 and A3 configuration for dummy environment A and B 57	
Table 3 - RL Agent A1, A4 and A5 configuration for dummy environment C 62	
Table 4 - RL Agent A5, A6 and A7 configuration for dummy environment D 65	
Table 5 - RL Agent A6, A8 and A9 configuration for dummy environment E 68	
Table 6 - RL Agent A9, A10, A11 and A12 configuration for dummy environment F 72	
Table 7 - RL Agent A13 and A14 configuration for Real daily environment 77	

List of Figures
Figure 1 - Simplified scheduling model of a Primary Care clinic 7	
Figure 2 – Example schedule diagram of a typical primary care doctor schedule 9	
Figure 3 – Comparison between classical machine learning and deep learning 14	
Figure 4 – Machine learning development cycle .. 15	
Figure 5 - Example of shallow and deep learning networks ... 15	
Figure 6 – Structure of a Markov Decision Process and Partially Observable MDP 24	
Figure 7 – Overview of RL algorithms and implementation contexts 28	
Figure 8 – Intersection between RL method approaches .. 29	
Figure 9 - High level view of the asynchronous RL method ... 34	
Figure 10 – Asynchronous Advantage Actor Critic (A3C) topology 37	
Figure 11 – Slot environment configuration ... 40	
Figure 12 - Task environment definition .. 41	
Figure 13 - Reward configuration and additional parameters 44	
Figure 14 - A3C neural network architecture and role of structure parameters 45	
Figure 15 - Dashboard for simulation setup .. 46	
Figure 16 - Dashboard with running simulation ... 48	
Figure 17 - High level system architecture .. 49	
Figure 18 - High level simulation classes and relationships .. 50	
Figure 19 - Structure of the interaction between agent and environment 51	
Figure 20 - Internal representation of environment data .. 52	
Figure 21 - Data collection pipeline ... 54	
Figure 22 - Dummy environment goals ... 55	
Figure 23 - Dummy environment configuration parameters ... 56	
Figure 24 - Dummy environment A configuration .. 57	
Figure 25 - Reward results on dummy environment A ... 58	
Figure 26 - RL Agent losses on dummy environment A ... 59	
Figure 27 - Optimal solution for environment A ... 59	
Figure 28 - Dummy environment B configuration .. 60	
Figure 29 - Reward results on dummy environment B .. 60	
Figure 30 - RL Agent losses on dummy environment B .. 61	
Figure 31 - Optimal solution for environment B ... 61	
Figure 32 - Dummy environment C configuration .. 62	

Figure 33 - Reward results on dummy environment C .. 63	
Figure 34 - RL Agent losses on dummy environment C .. 63	
Figure 35 - Solution evolution on dummy environment C for agent A5 64	
Figure 36 - Dummy environment D configuration .. 65	
Figure 37 - Reward results on dummy environment D .. 66	
Figure 38 - RL Agent losses on dummy environment D .. 66	
Figure 39 - Optimal solutions on dummy environment D ... 67	
Figure 40 - Dummy environment E configuration .. 68	
Figure 41 - Reward results on dummy environment E ... 69	
Figure 42 - RL Agent losses on dummy environment E ... 70	
Figure 43 - Examples of optimal on dummy environment E ... 70	
Figure 44 - Dummy environment F configuration ... 72	
Figure 45 - Reward results on dummy environment F ... 73	
Figure 46 - RL Agent losses on dummy environment F ... 74	
Figure 47 - Optimal solutions for dummy environment F ... 74	
Figure 48 – Real daily environment slot structure .. 76	
Figure 49 – Real daily environment task attribute structure ... 77	
Figure 50 - Reward results on real daily environment .. 78	
Figure 51 - RL Agent losses on real daily environment .. 78	
Figure 52 - Optimal solutions for real daily environment .. 79	

Chapter 1 – Introduction 1

Chapter 1

Introduction

Overview
Patient scheduling is a complex task that plays a crucial role in the quality of care.

Patient scheduling takes many forms, from allocating resources to patients in need of

exams and allocation of surgery rooms to on-demand appointment scheduling with

Family Doctors working at Primary Care clinics. Effective appointment scheduling avoids

patient and physician dissatisfaction, and as such, is an important determinant of care.

However, the task of patient scheduling is traditionally done ad hoc, with disregard of

potential aspects that may determine appointment duration and overall waiting time.

Since appointment scheduling in this setting is frequently done sequentially, one patient

at a time, the problem cannot be readily solved by optimization methods. Furthermore,

the constant changing nature of clinical settings implies that a one-fits-all heuristic

scheduling approach would generally perform poorly, rendering the task of automated

patient scheduling resource intensive, costly to maintain and thus, generally unfeasible.

Motivation
The patient scheduling issue has a large impact in the effectiveness of provided care,

on one hand through the potentially increasing medical error when professionals are

under the pressure of increasing patient waiting times, and on the other, due to the

decreasing compliance of unsatisfied patients. Thus, developing intelligent algorithms

that can learn near optimal ways of scheduling patients, without the need of human

intervention, whether in development, maintenance or production environments,

becomes very relevant.

The recent advances in Machine Learning attributed to Deep Learning, together with

the stronger intertwine with Reinforcement Learning, namely the Asynchronous

Advantage Actor Critic algorithm, makes assessing the performance of such algorithms

on patient scheduling problems worthwhile. Because of their learning ability, they

become interesting as they can perform resource intensive training in context-specific

problems offline, and then used online in real-time.

Chapter 1 – Introduction 2

The task of scheduling patients requires not only appointment time, but also shifting the

doctor focus from the realm of case-based clinical problem solving, to the realm of

resource planning problems. Shifting between disparate problem realms, taking

decision in short time, and the lack of adequate information, increases the odds of poor

scheduling decisions, despite the cost imposed by such cognitive effort. Transferring

the scheduling responsibility from the doctor to an intelligent and trained agent would

keep the doctor focused on case-based clinical problem solving, lessen the doctor

cognitive load, and potentially result in near optimal schedules, less prone to put both

doctor and patient under the pressures of unmet time constraints.

Objective
The present work aims to develop a framework to create fully configurable patient

scheduling environments, and study the potential of Reinforcement Learning techniques

to schedule appointments in a set of increasingly challenging environments, and

benchmark it against a set of deterministic heuristics.

Contributions
The present work has provided the following contributions:

• It Implemented a software-as-service web-based application that can be

deployed in the cloud to create, develop and test configurable scheduling

environments and reinforcement learning agents, and monitor their performance

in real-time;

• It studied the application on Asynchronous Advantage Actor Critic algorithm in

scheduling environments in Healthcare, namely in the Primary Care, describing

implications to the general class of task scheduling problems;

• It extends the number of environments made publicly available by the Open AI

initiative, and thus enabling a new set of problems that can be useful to

benchmark reinforcement learning agents in general.

Structure of the Dissertation
This Dissertation introduces the problem of patient scheduling in Chapter 2 and

discusses different formulations of the problem, recent research in the field and

highlights the main advantages and drawbacks of strategies employed to solve such

problems. Afterwards, Chapter 3 generally considers the field of machine learning

Chapter 1 – Introduction 3

before focusing on the formal definition of deep neural network structure, error

optimization and regularization strategies. It then proceeds to introduce reinforcement

learning and describes the evolution of algorithms up to the state-of-art Asynchronous

Advantage Actor-Critic algorithm. Chapter 4 formulates the scheduling problem as a

reinforcement learning environment and presents its structure and implementation as a

set of micro-services. Chapter 5 presents a set of dummy scheduling environments,

their underlying rules, and reports the candidate agents quantitative and qualitative

performance for each environment, along with a small discussion. Chapter 6 discusses

major findings, and presents the conclusions.

Chapter 2 – Patient appointment scheduling 4

Chapter 2

Patient appointment scheduling

Scheduling
Scheduling can be described as the process of assigning jobs to resources for some

duration. Scheduling problems are ubiquitous, ranging from computer systems and

networks, to production factories and patient appointments. Many of such problems

are either solved by manual operation or using heuristics specifically designed to the

context.

When such heuristics are designed the common approach is the following [1]:

1. Use business knowledge to model a simplified version of the problem;

2. Come up with a clever heuristic for the problem through experimentation;

3. Test and tweak the heuristic to achieve good performance.

Such heuristics must be reviewed whenever any of the underlying assumptions of the

model changes becoming costly and difficult to maintain.

Multiple factors explain why development of scheduling solutions is challenging:

1. The system is complex and often impossible to model accurately [2], [3];

2. The algorithm usually has to decide on noisy input or incomplete information [4];

3. The objective measurement is hard to optimize in a principled manner [5].

Thus, scheduling optimization problems are costly and challenging. In addition, because

the state space for this class of problems grows exponentially, it belongs to the NP-

Hard problem class [6] that are often computationally intractable [7]. Poor decisions on

such problems can lead to adverse outcomes, for example, in healthcare, non-urgent

patients that experience prolonged wait before their appointment adhere less to

treatments, and are prone to miss future appointments [8], [9].

Scheduling in Healthcare
Healthcare providers are stimulated to reduce operation cost while improving the quality

of service. This has led to a shift to preventive medicine in order to avoid disease,

lessening the demand for emergency department and hospital stays [10], therefore

Chapter 2 – Patient appointment scheduling 5

reducing the cost of care. This shift was accompanied by an increase in outpatient

services, that are increasingly being transferred from the outpatient hospital setting to

primary healthcare clinics, that are able to provide healthcare services tailored to

regional needs [11].

As this shift takes place, the problem of patient scheduling becomes increasingly

relevant. Two major end-points are patient waiting times and waiting-room congestion,

whose improvement through well-designed appointment systems is worthwhile [10]. In

the outpatient setting, such systems have the potential to increase access to medical

resources while reducing cost, as well as staff and patient dissatisfaction derived from

unmet schedule constraints. Indeed, surveys indicate that patients dissatisfaction is

related to waiting times [12], and that patient adherence is improved by shortening such

time [13].

Research regarding scheduling in healthcare has focused on development and analysis

of algorithms to specific problems, such as optimal allocation of resources for patient

rehabilitation [14], maximization of operation room block times [15], optimal patient

scheduling subject to patient no-shows and appointment cancelations [16], allocation of

diagnostic resources in hospital settings [17], and outpatient appointment scheduling

[18].

Thus, studying outpatient scheduling mechanics and factors that influence it becomes

relevant. The development of strategies for automated or semi-automated scheduling

through scheduling suggestions could be a relevant step in improving the efficiency of

patient appointment scheduling and directly impact patient and doctor satisfaction.

Patient scheduling
The goal of optimal patient scheduling is to find an appointment strategy for which a

particular measure of performance is optimized under uncertain conditions [10]. This

formulation is applicable in different healthcare settings, from scheduling treatment

procedures to patient appointments in the primary care setting, the latter being the

focus of this work. Patient appointment scheduling can be classified into three

processes [19]:

Chapter 2 – Patient appointment scheduling 6

Single Batch Process

Appointment scheduling decisions are not made until after receiving all appointment

requests for a given period. This model is commonly used in surgery starting times [19],

and allows scheduling with complete information, so that a perfect or near perfect

solution can be found through discrete optimization or heuristic methods.	

Unit Process

Appointments are assumed to come one at a time and are scheduled at the time of the

request arrival [19]. Through this process, a perfect solution will unlikely be found, but

may be approximated if the distribution of appointment request types is learned.

Periodic Process

Appointment requests are kept in a buffer of fixed size and are scheduled once the

buffer is full. [19]. This allows a better approximation to the optimal solution by

considering optimal or near optimal solutions at each period.

An outpatient clinic in the context of Primary Care can be modelled as a first-in-first-out

queuing mechanism, in which the size of the buffer determines the nature of the

underlying process, as shown in Figure 1.

There is a vast body of literature on scheduling formulations considering single batch

processes [10]. These have focused on studying the impact of design decisions such

as appointment spacing and duration [20], patient arrival at the beginning of the day

versus at appointment time, as well as how doctor and patient no show rates affect

appointment waiting times [21]. However, the unit process which is required for

scheduling appointments in the Primary Care setting is not studied as much.

The single batch process is not feasible in the context Primary Care, where

appointment requests arrive continuously and the scheduling must be performed either

immediately or in very short batches, depending on the channel of appointment

request. In addition, during an appointment additional appointments may be scheduled.

Thus, the unit and periodic processes are at play in such setting.

Chapter 2 – Patient appointment scheduling 7

Figure 1 - Simplified scheduling model of a Primary Care clinic

FIFO – First in first out queueing policy.

Appointment structure in Primary Care
Primary Care clinics are intended to serve the specific health needs of a given

population, and serve as a gateway to additional healthcare resources, available at

hospitals and other specialized institutions. Doctors in the Portuguese Primary Care

clinics are assigned to several families of the serviced population - up to 1900 patients -

and take care of the health needs of such families from birth to death. Clinics usually

encompass 5 to 8 doctors, nurses and clerks, among other professionals, and may

provide additional services aside from medical appointments, such as x-ray imaging

and lab tests. This proximity to the population bestows upon the Primary Care doctors

the role of gatekeepers of the healthcare system [19].

Chapter 2 – Patient appointment scheduling 8

Appointments usually take slots of 10, 20 or 30 minutes, with 20 minutes being the

standard slot duration. Each doctor schedule is segmented according to appointment

type, so that appointments requiring common resources or similar clinical management

strategies are grouped together at a time of the day. Appointments can also take longer

than standard slot duration to complete, as is the case for new-born and children

appointments, among others. Schedules usually span five working days, totalling

around 30 hours for appointments, and are usually designed by the doctors working at

the clinics. Appointments can usually be scheduled 20 to 30 weeks in advance, but

clinics are usually required to ensure a maximal scheduling delay for appointments

requested by the patients, which in Portugal is set in 15 calendar days.

In addition, Primary Care clinics offer a variable number of daily slots to accommodate

appointment requests for urgent situations, that may require prompt treatment [22].

Scheduling such type of appointments is out of the scope of the current work.

In the Portuguese Primary Care clinics, the following are the main appointment types

that are usually scheduled, and their usual duration:

• Child health – 30min

• Adult health – 20min

• Hypertension – 20min

• Diabetes – 20min

• Open access – 10min

• Family planning – 20min

• Oncological screening – 20min

• Low risk pregnancy – 20min

There are other appointment types created to model patient accessibility constraints,

which are also out of the scope of this work. A typical primary care doctor schedule has

a structure like the example in Figure 2.

Clinics allow patients to schedule appointments on demand, directly at the clinic clerks,

through email, telephone or via websites. The doctor or the clerk may also schedule

appointments for the patient on their behalf, in case the patient has chronic disease that

requires periodic monitoring, or if the patient missed important appointments. Thus,

there are several concurrent actors and scheduling processes taking place at a time.

Chapter 2 – Patient appointment scheduling 9

Figure 2 – Example schedule diagram of a typical primary care doctor schedule

White space indicates space unavailable for scheduling.

Scheduling opportunities in Primary Care
The current scheduling process in the Portuguese Primary Care is ill-defined, presenting

several drawbacks that are also opportunities for improvement.

Scheduling is an overlooked ad-hoc process

Primary care appointment scheduling is often an overlooked task carried ad-hoc with

little regard for planning and thus, far from optimal. Furthermore, because the subject

requesting the appointment can vary between the doctor, the clerk and the patient, the

criteria considered in each situation may differ substantially and conflict in their goal.

Slot schedules and appointment types are not aligned with appointment

frequency

Appointment demand can be modelled as a stochastic non-stationary process. The

nature of such process implies that the assumptions considered when designing

schedules must be periodically revised. Such task imposes additional administrative

overhead, not only because of the implied periodic revision of the schedule, but also

because when scheduling, health professionals require additional effort to consider the

Chapter 2 – Patient appointment scheduling 10

changes. These circumstances make schedule design far from optimal and rapidly

outdated.

Slot times can be further targeted to specific population needs

Because scheduling is usually done manually, the more appointment types are defined,

the harder it becomes for a human agent to schedule appointments, because the

number of rules to consider increases, overwhelming the agent. Scheduling by human

agents undermines further segmentation of appointment types and schedule structure,

which could otherwise be tailored to meet population needs and take into consideration

more variables that influence slot requirements, such as advancing age, existing

comorbidities, among others. Creating automated scheduling systems can leverage

such complexity as the increasing number of rules may not impact scheduling

performance.

Scheduling requirements for Primary Care
So far, we have seen that there are many ways in which the current method of patient

appointment scheduling may be improved by creating scheduling algorithms under the

assumption that the process can be modeled either as a unit or periodic process.

Such system must meet three main challenges:

• It must continuously adapt to the underlying changes in the appointment

distributions without the need for human intervention;

• It must be able to schedule appointments with incomplete information about the

sampling of the appointment request distribution;

• It must execute in real-time so that it can be incorporated into the daily workflow

of Primary Care clinics without introducing delay.

In addition, such system must be subject to the following constraints:

• It should prefer slots at specified times according to configurable slot costs;

• It should allocate enough slots to meet the requirement for each appointment

type;

• It should group similar appointments together;

• It should avoid leaving empty slots between appointments;

• It should avoid appointment overlap.

Chapter 2 – Patient appointment scheduling 11

Because this is a combinatorial problem that is subject to a variable number of soft

constraints, it is NP hard, implying that optimal solutions cannot be computed in real-

time except for small dummy settings, since as the problem space grows, the problem

becomes computationally intractable.

Next, we will consider existing methods to solve this class of problems.

Methods of discrete optimization and relaxation techniques

Discrete optimization techniques cannot handle this problem easily. Classical, predictive

approaches to solve task scheduling problems have covered disjunctive programming,

branch-and-bound algorithms, shifting bottleneck heuristic [23], among others [24].

These techniques iteratively explore the state space one solution at a time, looking for

optimal solutions. To reduce the number of search states, the constraints can be

relaxed through techniques such as backtracking, that assess whether given state

subspaces need not be searched by computing context-dependent heuristics that

determines whether all states in that subspace are suboptimal. When in presence of

soft constraints, even backtracking does not help, firstly because the heuristic is

context-dependent and may need revision when underlying assumptions change, a

secondly, since the problem formulation poses no predetermined upper or lower

bounds, no heuristic can determine if large subspaces can be skipped, and thus, the

problem remains intractable.

Implementations considering metaheuristic approaches

Metaheuristics are high-level general heuristics inspired in natural phenomena,

developed to find heuristics that may provide sufficiently good solutions to optimization

problems, particularly in settings of limited resources or information [25]. Such

algorithms sample sets of solutions from spaces that otherwise were too large to be

sampled. Because they do not make many assumptions about the underlying structure

of the problem to be solved, they can be applied to problems of different nature [26].

Techniques such as simulated annealing [27], tabu search [28] and genetic algorithms

[29] have been employed in task scheduling problems. In particular, genetic algorithms

have been applied to appointment scheduling problems in the context of healthcare

with success [14]. The main drawback of such approaches for the problem at hand is

that finding near optimal solutions is time consuming and resource expensive, and thus

cannot be performed in real-time.

Chapter 2 – Patient appointment scheduling 12

Machine learning methods
Another class of methods that have been used for the development of scheduling

algorithms in clinical practice comes from the machine learning field. Such methods

seek to approximate functions from data that can be used to predict outcomes to drive

decision [30]. Supervised methods have been employed using annotated scheduling

examples to train machine learning systems to output viable scheduling options [18].

A class of machine learning algorithms seems well suited for the scheduling problems,

namely reinforcement learning (RL) algorithms. Such algorithms acquire experience to

perform a task from trial and error [31] and improve online performance through a

balance between exploration and exploitation of the environment with which they

interact [31]. Because such agents learn online against an environment, they seem well

suited for the scheduling problem, since such environments can be easily created by

defining a schedule, appointment attributes, and appointment request probabilities can

be estimated from observed appointment frequencies. In addition, the fact that they

learn from experience means that they can be trained to perform under a scheduling

context before being used online, where they are able to solve problems in real-time.

In fact, such agents have been used to solve scheduling problems such as scheduling

of robotic arm movements [32], general task scheduling problems [33], among others,

with success. However, to our knowledge, such algorithms have not been applied in

the context of appointment scheduling in Primary Care.

Considering the limitations of other algorithm classes, it becomes worthwhile to assess

whether RL agents can solve appointment scheduling problems in Primary Care.

Chapter 3 – Reinforcement Learning 13

Chapter 3

Reinforcement Learning
Reinforcement Learning (RL) consists in having an agent algorithm, capable of

interaction with an environment, to learn an optimal policy through trial and error [34].

RL has a strong connection with neural networks, and more recently deep networks,

with major breakthroughs such as deep the Q-network [35], AlphaGo [36], and

asynchronous architectures [37]. These breakthroughs have enabled RL agents to

perform certain tasks at human level, or even beyond human level.

Deep learning potentiates RL because the modelling capability of deep neural networks

enables the representation of compound functions that may map observed states to

policies effectively. Thus, it is relevant to briefly discuss deep learning in the context of

machine learning before delving into RL.

Machine learning overview
Machine learning is broad a field composed of methods and algorithms that are

generally employed to extract patterns from data. Machine learning problems are

usually classified into the following three categories:

Supervised learning

The algorithm is given labelled data and is trained to predict the labels, such as

regression or classification.

Unsupervised learning

The algorithm is given unlabeled data and is intended to find hidden structure in the

data, such as clustering.

Reinforcement learning

The algorithm is given unlabeled data in the form of an observation and performs an

action that potentially transforms the environment, plus a reward. The algorithm is

intended to learn to act given the observed state, through a learned policy and reward.

Because reward in RL problems can be delayed, the agent is expected to learn to

maximize cumulative reward, which may require taking suboptimal actions in the way

[38].

Chapter 3 – Reinforcement Learning 14

Model training and development

In the case of supervised learning the algorithm is developed using training and

validation datasets, and later performance measured against a testing dataset. In

reinforcement learning data is sequentially generated from the interaction with the

learning environment, and learning is interweaved with execution, which makes

development and training of reinforcement learning algorithms distinct from others.

Learning is typically achieved through loss function minimization using gradient descent

methods.

Model performance

While in supervised learning model performance is assessed through a measure of error

rate in the test set, and in unsupervised learning structure is assessed through internal

or external fitness measures, in RL the cumulative reward attained by the agent, and the

consistency of its actions are ways of measuring model performance.

There are many different machine learning algorithms that can learn models by

approximating functions of different nature to observed data. The term deep learning

intends to contrast with shallow learning algorithms such as logistic regression, support

vector machines, decision trees, among others in which is a single transformation layer

and all potentially interesting features must be prepared and engineered beforehand

[38] as depicted in Figure 3 in order for the model to achieve good results.

Figure 3 – Comparison between classical machine learning and deep learning

In classical machine learning pipelines features extraction play a relevant role in overall performance. Deep

learning neural networks learn composable feature representations that render feature extraction less
relevant.

Adapted from [39].

To develop successful machine learning algorithms, it is very important to rapidly iterate

over different algorithm developments and test its behaviour, which will likely bring

Chapter 3 – Reinforcement Learning 15

about ideas on how to tweak the algorithm to achieve better results. Fast iteration along

this cycle is very important to achieve good results in a timely fashion.

Figure 4 – Machine learning development cycle

Idea, development and testing iteration for machine learning.

Deep learning
Deep learning, which corresponds to the use of deep neural networks (DNN) with many

hidden layers, and can be used for supervised, unsupervised and RL. In deep learning,

between input and output layers, there are one or more hidden layers as shown in

Figure 5.

Figure 5 - Example of shallow and deep learning networks

Adapted from [39].

These networks learn intermediate representations from granular features passed as

input automatically. The composite nature of feature representation is a central idea in

deep learning, implying that a feature may be represented by a combination of multiple

inputs, and a given input may contribute to computation of multiple features. It

becomes the role of the units in the hidden layers to find composite features that map

Chapter 3 – Reinforcement Learning 16

the input to the desired output. Stacking multiple layers enables powerful feature

composition.

Feedforward neural networks

Different Artificial Neural Networks (ANN) architectures can be composed to provide

different tasks. Deep Feedforward Neural Networks, often referred as Feed-Forward

Neural Networks (FFN) or Multi-Layer Perceptron (MLP), are commonly used deep

learning models. A Feedforward Neural Network defines a function of 𝒚𝟎, the vector of

input values, parametrized by q , 𝒚($) = 𝜑 𝒚𝟎, q , or for a lighter notation, 𝒚($) = 𝜑 𝒚𝟎 .

The parameter vector q, learned by the FFN, seeks to minimize approximation error,

through the composition of simpler functions in each unit of each layer. These models

are called networks because they compose together many different nodes and layers.

They are called feedforward because the data flows forward from the input nodes,

through the hidden nodes to the output nodes. There are no cycles, loops in the

network or feedback connections. The term Deep Learning thus arises because we

usually have 𝑳 functions 𝜑+, 𝜑,, … 𝜑$ connected in chain structures of neural networks,

with an overall length 𝑳 , known as the depth of the model, to form 𝜑 𝒚𝟎 =

𝜑$(𝜑$.+ … (𝜑, 𝜑+ 𝒚𝟎 …)) . FNNs can be modelled by iterating the following

equations:

𝒉 0 = 	𝑾 0 𝒚 0.+ + 𝒃 0

𝒚(0) 	= 	𝜑(𝒉(0))	

Equation 1 – Feed forward neural network.

where 𝑙	 ∈ 	 {1, . . . , 𝐿} denotes the 𝑙 th layer, 𝒉(0) ∈ ℝ<= is a vector of preactivations of

layer 𝑙, 𝒚(0.+) 	 ∈ 	ℝ<> is the output of the previous layer (𝑙	 − 	1) and input to layer 𝑙,

𝑾(0) 	 ∈ 	ℝ<=×<A is a matrix of learnable weights of layer 𝑙 , 𝒃(0) ∈ ℝ<= is a vector of

learnable biases of layer 𝑙, 𝒚(0) 	 ∈ 	ℝ<= is the output of layer 𝑙, 𝒚(B) is the input to the

model, 𝒚($) is the output of the final layer 𝐿 of the model, and 𝜑 is a nonlinear activation

function applied element-wise.

In modern FFNs, the default recommendation is to use the Rectified Linear Unit (ReLU)

[40], [41] defined by the rectifier activation function show below

Chapter 3 – Reinforcement Learning 17

𝜑(ℎD
(0)) 	= 	𝑚𝑎𝑥(0, ℎD

(0))	

Equation 2 – Rectified linear unit activation function.

where ℎD(0) represents the 𝑖 th component of 𝒉 0 . This function has advantages over

other activation functions, such as computational simplicity and faster learning

convergence, which is a major requirement for networks with hundreds or thousands of

layers [41].

To provide probabilistic interpretations to the model, the output the final layer of the

network usually computes a softmax nonlinearity instead of other nonlinear activation

functions, as given by the equation below,

𝜑 ℎD
0 = 	𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ℎD

$ =
𝑒O=

(P)

𝑒OQ
(P)R

ST+

Equation 3 – Softmax activation function.

where 𝐾 represents the number of output classes of the 𝐿th layer corresponding to the

last one. However, this function must be stabilized against underflow and overflow

errors.

Recurrent Neural Networks	
In contrast with FFNs, Recurrent Neural Networks (RNN) include feedback connections.

RNNs process sequential inputs, element by element, and make use of hidden units to

store history of past elements [42]. They extend the notion of typical FFN by adding

inter-layer and self-connections to units in the recurrent layer [43]. This makes such type

of architectures particularly suitable for tasks that involve sequential inputs such as

speech. They can be modelled according to the next equation,

𝒉V
(0) = 	𝑾W

(0)𝒚V
(0.+) +𝑾X

(0)	𝒔V.+
(0) + 𝒃(0)

Equation 4 – Recurrent neural network.

where 𝑡 denotes the time step, 𝒉V
(0) ∈ ℝ<= is a vector of preactivations of layer 𝑙 at time

step 𝑡, 𝒚V
(0.+) 	 ∈ 	ℝ<> is the output of the previous layer (𝑙	 − 	1) at time step 𝑡 and input

to layer 𝑙 at time step 𝑡, 𝑾W
(0) ∈ 	ℝ<=×<A is a matrix of learnable weights of layer 𝑙, 𝒔V.+

(0) ∈

ℝ<A is the state of layer 𝑙 at the previous time step (𝑡	 − 	1), 𝑾X
(0) ∈ 	ℝ<=×<A is a matrix of

learnable weights of layer 𝑙, and 𝒃(0) ∈ ℝ<= is a vector of learnable biases of layer 𝑙. For

Chapter 3 – Reinforcement Learning 18

recurrent architectures, sigmoid functions, such as the logistic function, s(𝑥), presented

in the next equation, as well as the hyperbolic tangent (TanH) function, are frequently

used as activation unit functions, instead of ReLU, since the latter amplifies the

exploding gradient problem due to their unbounded nature [44].

𝜑 ℎD
0 = s ℎD

0 =
1

1 + 𝑒.O=(Z)

Equation 5 – Sigmoid activation function.

A popular variant of the recurrent architectures is the Long Short-Term Memory (LSTM)

[45], which uses an explicit memory cell to represent long-term dependencies more

effectively. An LSTM network computes a mapping from an input sequence to an

output sequence by calculating the network unit activations using the following

equations iteratively from 𝑡 = 1 to 𝑡 = 𝑇:

𝒊𝑡
(𝑙) = 𝜎 𝑾𝑖𝑦𝒚𝑡

(𝑙−1) +	𝑾𝑖ℎ𝒉𝑡−1
(𝑙) +	𝑾𝑖𝑐𝒄𝑡−1

(𝑙) + 𝒃𝑖
(𝑙) 	

𝒇𝑡
(𝑙) = 𝜎 𝑾𝑓𝑦𝒚𝑡

(𝑙−1) +	𝑾𝑓ℎ𝒉𝑡−1
(𝑙) +	𝑾𝑓𝑐𝒄𝑡−1

(𝑙) + 𝒃𝑓
(𝑙) 	

𝒄𝑡
(𝑙) = 𝒇𝑡 ⊙ 𝒄𝑡−1

(𝑙) +	𝒊𝑡 ⊙ 𝑡𝑎𝑛ℎ 𝑾𝑐𝑦𝒚𝑡
(𝑙−1) +	𝑾𝑐ℎ𝒉𝑡−1

(𝑙) + 𝒃𝑐
(𝑙) 	

𝒐𝑡
(𝑙) = 𝜎 𝑾𝑜𝑦𝒚𝑡

(𝑙−1) +	𝑾𝑜ℎ𝒉𝑡−1
(𝑙) +	𝑾𝑜𝑐𝒄𝑡

(𝑙) + 𝒃𝑜
(𝑙) 	

𝒉𝑡
(𝑙) = 𝒐𝑡

(𝑙) ⊙ 𝑡𝑎𝑛ℎ 𝒄𝑡
(𝑙) 	

Equation 6 – Implementation of long short term RNN cell

where 𝜎 is the logistic sigmoid function, 𝒊, 𝒇, 𝒐 and 𝒄 are the input gate, forget gate,

output gate and cell activation vectors respectively, all of which are the same size as the

cell output activation vector 𝒉. The 𝑾 terms denote weight matrices from input gates to

the input, 𝐖fg is the matrix of weights from the forget gate to the input 𝒚V
(0.+), and are

all diagonals such that each element in each gate vector only receives input from the

same element of the cell vector [46].

Learning
Optimization algorithms used for training deep models differ from traditional optimization

algorithms in several ways. Machine learning usually acts indirectly. In most machine

learning scenarios, we care about some performance measure 𝑃, that is defined with

respect to the test set and may also be intractable. We therefore optimize 𝑃 only

indirectly. We reduce a different cost function 𝐶(φ 𝐲𝟎, 𝜽, 𝐲 m) in the hope that doing

Chapter 3 – Reinforcement Learning 19

so will improve 𝑃. This contrasts with pure optimization, where minimizing 𝐽 is a goal in

and of itself.

There are many different cost functions that can be selected, but for illustration the

cross-entropy cost function [47] is defined as:

𝐶(𝜑 𝒚𝟎, 𝜽, 𝒚 $) = 𝑦o𝑙𝑜𝑔	(
R

oT+
𝑦o
($))	

Equation 7 – Cross entropy cost function.

where 𝑦 ∈ {0, 1}o, is a one-of-𝐾 encoded label and 𝒚($) is the output of the model.

The gradients are computed by differentiating the cost function with respect to the

model parameters using a mini-batch of m examples from the training set, 𝒙+, . . . , 𝒙r	 ,

with corresponding targets 𝒚(0) and back propagated to prior layers using the

backpropagation algorithm [48]. Training recurrent architectures requires modification to

the backpropagation algorithm to compute the gradients with respect to the

parameters and states of the model, which is known as the backpropagation through

time algorithm [49].

These algorithms provide parameters that can be used to control the behavior of the

learning algorithm, called hyperparameters. The learning rate is the most important

hyperparameter because it has a significant impact on model performance.	The values

of hyperparameters are not adapted by the learning algorithm itself, though we can

design a nested learning procedure where one learning algorithm learns the best

hyperparameters for another learning algorithm, or carry a search procedure to find a

near-optimal value for the learning rate. The cost is often highly sensitive to some

directions in parameter space and insensitive to others. The momentum algorithm can

mitigate these issues somewhat, but does so at the expense of introducing another

hyperparameter, 𝑣 that plays the role of velocity. It is the direction and speed at which

the parameters move through parameter space. The velocity is set to an exponentially

decaying average of the negative gradient.

However, since the directions of sensitivity are somewhat axis-aligned, using separate

learning rates for each parameter and automatically adapt these learning rates

throughout the course of learning seems worthwhile. Gradient descent or one of its

Chapter 3 – Reinforcement Learning 20

variants is used to update the parameters of the model using the gradients computed.

A per-parameter adaptive variant of gradient descent called RMSProp [50] which uses

gradient information to adjust the learning rate can be implemented as shown in

Algorithm 1.

Algorithm 1 – RMSProp algorithm

while stop criteria not met do
sample a mini-batch of 𝑚 examples from the training set, 𝒙+, . . . , 𝒙r	 , and targets 𝒚(0)
compute gradient: 𝒈 ← +

r
∇w 𝐶(𝜑 𝒙(0), 𝜽, 𝒚 0)0

accumulate squared gradient: 𝒓 ← 	𝜂𝒓 + 1 − 	𝛼 𝒈⊙ 𝒈
compute parameter update ∆𝜽 = − |

}~𝒓
	⊙ 	𝒈

apply update 𝜽 ← 𝜽 + ∆𝜽
end

Implementation of RMSProp algorithm
𝜽 is the initial parameters vector; 𝜂 and 𝛼 are hyperparameters denoting the decay rate and the learning rate

respectively;
d is a small constant usually 10-6 to stabilize divisions by small numbers; 𝒓 is a vector that accumulates squared gradient.

Regularization
Regularization is any modification made to a learning algorithm that is intended to

reduce its generalization error but not its training error. Deep neural networks

demonstrate excellent results on tasks with complex classification functions and

enough training data. However, since DNN models have large numbers of parameters,

they easily overfit when the amount of training data is not large enough. Thus,

regularization techniques for neural networks are crucially important to make them

applicable to a wide range of problems. There are several methods of regularization for

deep learning. The most widely used methods being Parameter Norm Penalties and

Dropout.

Parameter Norm Penalties

Many regularization approaches are based on limiting the capacity of models by adding

a parameter norm penalty 𝛺(𝜽) to the cost function. In this condition, the regularized

cost function is given by Equation 8,

𝐶 𝜑 𝒚𝟎, 𝜽, 𝒚 $ = 𝐶 𝜑 𝒚𝟎, 𝜽, 𝒚 $ + 𝛼𝛺(𝜽)	

Equation 8 – Regularized cost function

Chapter 3 – Reinforcement Learning 21

where 𝛼𝜖 0, +∞ is a hyperparameter that weights the relative contribution of the norm

penalty term, 𝛺(𝜽), relative to the standard cost function 𝐶 𝜑 𝒚𝟎, 𝜽, 𝒚 $. When 𝛼 =

0 there is no regularization. The parameter norm penalty 𝛺 penalizes only the weights of

the affine transformation at each layer and leaves the biases unregularized. The biases

typically require less data to fit accurately than the weights. In addition, regularizing the

bias parameters can introduce a significant amount of underfitting. A vector 𝒘 is used

to indicate the weights that should be affected by a norm penalty, and the vector 𝜽

denotes the parameters, including both 𝒘 and the unregularized parameters.

L2 parameter regularization, commonly known weight decay,	is the most common form

of weight decay. The regularization strategy drives the weights closer to origin by

considering the following [51] Equation 9:

𝛺 𝜽 =
1
2 𝒘 ,

, =
1
2𝒘

�𝒘	

Equation 9 – L2 parameter regularization.

 L1 parameter regularization on the model parameter 𝝎 is defined show in Equation 10

[51]:

𝛺 𝜽 = 𝒘 + = 𝑤D
D

	

Equation 10 – L1 parameter regularization.

L1 regularization results in frequently sparse solutions since some parameters may have

optimal value of 0. This sparsity property induced by L1 regularization serves as a

feature selection mechanism. Feature selection simplifies the learning problem by

reducing dimensionality. Since the L1 penalty causes a subset of the weights to become

0, such features can be discarded.

Dropout

Dropout is another method recently developed and ubiquitously used to train DNNs.

This method is of simple implementation and frequently leads to significant performance

improvement of DNNs. It consists in randomly removing neurons from the layer with a

probability 1 − 𝑝, making neuron output values equal to 0. Unlike other regularization

techniques that modify the cost function, dropout modifies the architecture of the

model. Using dropout, the feed forward operation is changed into the following [52]:

Chapter 3 – Reinforcement Learning 22

𝑟S
0 ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝 	

𝑦(0) = 	 𝒓(0) ⊙ 𝒚(0)	

𝒉(0~+) = 	𝑾(0~+)𝒚(0) + 𝒃(0~+)	

𝒚(0~+) 	= 	𝜑(𝒉(0~+))	

Equation 11 – Dropout regularization.

where 𝒓(0) is a vector of Bernoulli random variables each of which has a probability 𝑝 of

being 1. This vector is sampled for each layer and multiplied element-wise with the

outputs of that layer,	𝒚(0), to create the pruned outputs y(0), the inputs of the next layer.

For learning, the derivatives of the cost function are back propagated through the

pruned network. At test time, the weights are scaled as 𝑾V�XV
0 = 𝑝𝑾0 and with such

weights considered in place of using dropout.

Reinforcement Learning Overview
The general task of machine learning is to teach a machine to produce a desired output

for a given input. As previously described, ML can be divided into three classes that

differ in the external feedback to the system during learning, namely Supervised

Learning, Unsupervised Learning, and Reinforcement Learning.

RL learns in response to a scalar reward – hence reinforcement – that is given in

response to the goodness of a sequence of actions. Experience is accumulated from

triplets of input states, output actions and corresponding reward. Thus, RL is a class of

computational algorithms that specify how an artificial agent can learn to select a

sequence of actions that together maximize total reward. RL is frequently considered in

between supervised and unsupervised learning methods.

Classically, RL techniques were developed in the realm of dynamic programming (DP)

methods, considering concepts such as value and policy iteration [53]. Even though

ANNs have been widely used in RL, a crowning achievement of deep learning has been

its application to RL [38]. A RL problem can be described by considering the following

items.

Environment

Corresponds to any kind of system that models a RL task. It defines the state and

actions available to the RL agent, and implements the logic through which actions

Chapter 3 – Reinforcement Learning 23

transform state. At each step 𝑡, it provides a reward 𝒓V to the agent, which serves as

evaluation criteria for the action from previous states. The environment state 𝒔V can be

discrete or continuous.

Agent

Represents the controller of the system. It can observe either the full or partial state 𝒔V

of the environment. It interacts with the environment by performing actions 𝒂V given

state 𝒔V, and in return retrieving reward 𝒓V, which it can use to improve its policy.

Actions

Actions are ways through which the agent affects the environment state. They generally

represent discrete actions that transform the system is some way, or continuous control

parameters that need to be regulated. According to the problem setting, actions can be

discrete or continuous, and one or multiple actions can be taken at each step. This

creates a credit-assignment problem, derived from the sequence of actions taken and

how each contributed to the total reward, in the case such reward is delayed in time

[54].

Policy

The mapping from states of the environment to the action to be taken in the current

state is called a policy 𝜋. Thus, a policy is formed from a sequence of actions and

reflects the learnt behavior of the agent at a given time. Since in most application the

goal is to optimize the behavior on a system for a given period, instead of a one-step

optimization, one tries to determine an optimal policy regarding an overall objective,

given by cumulative reward. As put by Sutton and Barto, the policy is the core of a

reinforcement learning agent in the sense that it alone is sufficient to determine behavior

[55].

Reward

The reward function specifies the overall objective of the RL problem. It depicts the

immediate reward the agent receives for performing a certain action at a given system

state. Consequently, it defines the desirability of a state and action for the agent.

Generally, the simple immediate reward is only of minor interest, because high

immediate rewards do not necessarily lead for maximum cumulative reward in the

future. Instead, one is usually interested in the discounted value of collected rewards in

the long run.

Chapter 3 – Reinforcement Learning 24

Markov Decision Process
The Markov decision process (MDP) provides the base mathematical formulation for RL

problems. The MDP describes the development of a controllable dynamical system

whose state is fully observable, or partially observable (POMDP). The MDP is defined by

a tuple (𝑆, 𝐴, 𝑇, 𝑅) with the following composition [18, 41, 65]:

• The state space of the environment 𝑆; 

• The action space 𝐴 with sets 𝐴(𝒔V) of available or allowed actions in state 𝒔V ∈

S; 

• A deterministic or stochastic state-transition function 𝑇 𝒔V~+ 𝒔V, 𝒂V) , which

defines the probability of arriving at state 𝒔V~+ from state 𝒔V by applying action

𝒂V with 𝒔V, 𝒔V~+ ∈ S and 𝒂V ∈ A(𝒔V);

• A reward function 𝒓V ← 𝑅(𝒔V) denoting a one-step reward for being in state 𝒔V.

The given entities are related in every one-step transitions, such that being in an

arbitrary state 𝒔V, the agent selects action 𝒂V, causing the system to transform into next

state 𝒔V~+, according to the transition function 𝑇, and computing a one-step reward

𝑅(𝒔V~+) [56]. Assuming the process is modelled as a MDP, the next state 𝒔V~+ depends

only on the current state 𝒔V and the applied action 𝒂V [56], [57], and thus it is

independent of its history. The Markov property in discrete time can be modelled

according to Figure 6 [57]. The actions the agent chooses are defined according to a

learnt policy or at random.

Figure 6 – Structure of a Markov Decision Process and Partially Observable MDP

Adapted from [58].

Chapter 3 – Reinforcement Learning 25

Partially Observable Markov Decision Process
POMDPs differ from MDPs in the fact that the state space 𝑆 is not fully observable. This

is usually the case of most real-world applications, such as patient scheduling in

Primary Care. The RL agent receives an observation 𝒙V	that proxies the current system

state 𝒔V, in which 𝒙V is generally not Markovian. A POMDP can be described by a tuple

(𝑆, 𝑋, 𝐴, 𝑇, 𝑅), where 𝑋 represents the space observable by the agent, which, while not

necessarily a subspace of 𝑆, should contain enough information for the agent to learn a

model of 𝑆 and develop good policies, as represented in Figure 6.

Dynamic programming
Dynamic programming refers to a group of algorithms that can solve multi-state

decision processes if they are provided a perfect model of the environment, such as an

MDP [55]. These are based in Bellman principle of optimality, defined as follows [59].

Let {𝒂B∗ , 𝒂+∗ , 𝒂,∗ , …	𝒂<∗ , } be an action sequence resulting from an optimal policy π∗ for a

fully observable problem, and that by using π∗ a given state 𝒔V occurs at time 𝑡 with

positive probability. Consider the sub-problem γ�.�R(𝐬�~+)�
�T� 	whereby one is at 𝒔V at

time 𝑡 and wishes to maximize the cumulative reward from time 𝑡 onwards with a

discount factor 𝛾 ∈ [0, 1] . Then, the truncated action sequence {𝒂V∗, 𝒂V~+∗ ,

𝒂V~,∗ , …	𝒂V~<∗ , } is optimal for the sub-problem.

This implies that if the solution to the sub-problem was not optimal, then the total

reward of the problem could be increased by switching to optimal policy when at state

𝒔V. Hence, π∗ would not be optimal [60]. Furthermore, it implies an optimal policy can

be determined by solving a step-by-step tail sub-problem, which is the basis of

dynamic programming [60].

Based on this principle, DP operates on a value function 𝑉¢(𝒔V) that represents the

expected cumulative reward [60] for each system state 𝒔V	given a policy 𝜋 as follows:

𝑉𝜋 𝒔𝑡 = 	𝐸 𝛾𝜏−𝑡𝑅(𝒔𝜏+1)
∞

𝜏=𝑡
	

Equation 12- Dynamic programming value function.

The DP algorithm, also known as value iteration, seeks to maximize the value function

through a backward iteration (𝑘	 ∈ 	𝑁) as show in the following equation [60]:

Chapter 3 – Reinforcement Learning 26

𝑉o~+ 𝒔𝒕 = 	 𝑚𝑎𝑥
𝒂¨∈(𝒔¨)

𝑇(𝒔V~+|𝒂V, 𝒔V
𝒔¨ª«

𝑅 𝒔V~+ + 𝛾𝑉o(𝒔V~+) 	

Equation 13 - Value iteration equation.

The value function converges to 𝑉∗ leading to the optimal policy 𝜋∗ [59]. The

maximisation of 𝑉 is done on policy space since the dynamics of the state action space

are dependent of the problem to solve. In addition, an intermediate step can be taken

to evaluate the goodness of each state-action value pair, through the Q-function,

defined by Equation 14:

𝑄¢ 𝒔V, 𝒂V = 	 𝑇(𝒔V~+|𝒂V
𝒔¨ª«∈­

, 𝒔V) 𝑅 𝒔V~+ + 𝛾𝑄¢ 𝒔V~+, 𝜋(𝒔V~+) 	

Equation 14 - Q function.

Furthermore, 𝑉¢(𝒔V) 	= 	𝑄¢ 𝒔V, 𝜋(𝒔V) . Analogue to 𝑉∗, the optimal Q-function can be

defined as shown in Equation 15, which is the Bellman optimality equation [59].

𝑄∗ 𝒔V, 𝒂V ← 𝑇(𝒔V~+|𝒂V
𝒔¨ª«∈­

, 𝒔V) 𝑅 𝒔V~+ + 𝛾𝑉∗ 𝒔V~+ 	

= 	 𝑇(𝒔V~+|𝒂V
𝒔¨ª«∈­

, 𝒔V) 𝑅 𝒔V~+ + 	𝛾 𝑚𝑎𝑥
𝒂¨ª«∈®(𝒔¨ª«)

𝑄∗ 𝒔V~+, 𝒂V~+ 	

Equation 15- Bellman optimality equation

The optimal policy 𝜋∗ is the one that maximizes Q-function 𝜋∗ 𝒔V =

	𝑎𝑟𝑔	𝑚𝑎𝑥
𝒂¨∈®(𝒔¨)

	𝑄∗ 𝒔V, 𝒂V .

A variation to value iteration previously defined in Equation 13 is the policy iteration [55],

[59], which takes the policy directly into account. The value function is determined by

doing a policy evaluation for a given policy 𝜋D	(𝑖, 𝑘 ∈ 𝑁) as shown in Equation 16:

𝑉o~+
¢= 𝒔V = 𝑇(𝒔V~+|𝒂V

𝒔¨ª«∈­

, 𝒔V) 𝑅 𝒔V~+ + 𝛾𝑉o
¢= 𝒔V~+ 	

Equation 16 - Policy iteration equation.

This corresponds to the expected infinite discounted reward, which is obtained by

following policy π¯. Usually the equation is iterated until |𝑉o~+
¢= 𝒔V − 𝑉o

¢= 𝒔V | < 𝜀, with

𝜀 > 0. In a second step, the policy iteration method determines whether this value could

Chapter 3 – Reinforcement Learning 27

be improved by changing the immediate action taken. This results in the following policy

update:

𝜋D~+ 𝒔V = 	𝑎𝑟𝑔	𝑚𝑎𝑥
𝒂¨∈®(𝒔¨)

𝑇(𝒔V~+|𝒂V
𝒔¨ª«∈­

, 𝒔V) 𝑅 𝒔V~+ + 𝛾𝑉¢= 𝒔V~+ 	

The two steps are iterated until π¯ = 𝜋D~+ which means that the policy has become

stable.

Since the methods presented require a perfect model, they are of limited utility for

application in extensive real-world RL problems. Despite this fact, they serve as the

cornerstone for more robust methods that take into consideration FFNs [53], and thus,

can be regarded as the foundation of RL [55]. By means of DL, it is possible to learn

value and policies through function approximation using gradient optimization. The

following sections describe classical and recent RL implementations using DNN, as

summarized in Figure 7.

Reinforcement Learning Methods
Several different RL methods have been developed over the last years [55]. For

illustration purposes, some of those methods will be briefly discussed. There are various

ways to classify RL methods, however an important distinction exists between table-

based and function approximation methods.

Chapter 3 – Reinforcement Learning 28

Figure 7 – Overview of RL algorithms and implementation contexts

TD – Temporal difference; DQN – Deep Q network; AC – Actor Critic.

Table based methods

These methods store the value of each state-action combination within a table.

Because the table dimensions impose computational constraints, namely concerning

memory, these methods can only be successfully applied to problems of discrete low-

dimensional space. Multiple methods were initially implemented in such a way, namely

Temporal Difference (TD) Learning and Q-Learning.

Function approximation

These methods replace the state-action value table with a device that learns a function

mapping state-action pairs to value. Such methods display higher scalability and

portability, thus can be applied to higher dimensional problems composed of

continuous state and action spaces. Table based methods can be upgraded into

function approximation methods can be seen from Algorithm 2 and Algorithm 3.

Another important difference between RL methods regards whether the method is

model-free of model-based. Model-free methods learn a controller without learning a

model, which is to say, without requiring the transition function 𝑇 . Thus, they learn

directly from the available data without building a model. This makes such algorithms

generally fast and easy to implement. Model-based methods first learn a model which in

turn is used to derive a controller [55]. This requires additional computation but makes

Chapter 3 – Reinforcement Learning 29

them more data-efficient. TD-learning and Q-learning are model-free whereas DP is

model-based.

Moreover, as shown in Figure 8, methods can be classified according to value and

policy:

• Value-based methods estimate a value function;

• Policy-based methods estimate a policy function;

o Actor-critic methods estimate both value - the critic - and policy - the

actor.

Figure 8 – Intersection between RL method approaches

The dashed line for value based methods in contrast with the full line for policy based methods indicates

that actor-critic methods are often considered within the scope of policy based methods.

Finally, RL methods can be considered classified based on how they execute learnt

policy:

• On-policy methods learn the value of the policy by performing it at every step.

The agent always follows the policy that it is learning.

• Off-policy methods learn the value of the policy without necessarily performing

it at every step. Such agents may choose to explore the environment using

other strategies instead of the policy, and use experience gathered to update its

value.

Value gradient methods
Temporal difference learning

Temporal Difference (TD) learning [61] results from a combination of DP and Monte-

Carlo methods [62]. It directly learns from raw experience without a model of the

Chapter 3 – Reinforcement Learning 30

dynamics and thus is model-free [55]. The transition function 𝑇 is not explicitly

considered in the calculations. TD-Learning served as base for many other methods.

The update rule for TD-learning is defined as 𝑉 𝒔V ← 𝑉 𝒔V + 𝛼 𝑅 𝒔V~+ + 𝛾𝑉 𝒔V~+ −

𝑉 𝒔V 	with a learning rate 𝛼	 ∈ 	 [0, 1], which can either be fixed or variable [55].

TD-learning can either be table-based or use function approximation [34], [63].

Algorithm 2 presents an implementation of TD learning with immediate reward

collection.

Algorithm 2 - Temporal Difference learning using tabular method

initialize 𝑉 arbitrarily for all states
for each episode do

initialize state 𝑠 	
for each step of episode, state 𝑠 is not terminal do

Perform 𝑎 according to policy π ∙ 𝑠
Receive reward 𝑟´ and state 𝑠´
𝑉 𝑠 ← 𝑉 𝑠 + 𝛼 𝑟´ + 𝛾𝑉 𝑠´ 	− 	𝑉 𝑠
𝑠	 ← 	 𝑠´

end
end

𝛼 controls step size such that 𝛼 > 0. Adapted from Sutton and Barto [55].

This algorithm can be extended to use function approximation as shown in Algorithm 3.

This way TD-Learning can be implemented using FFN. For that purpose the

approximate value function is parameterized as 𝑉(𝑠, 𝜽𝒗) , where 𝜽¶ is a vector of

weights. The gradient of 𝑉(𝑠, 𝜽𝒗) with respect to 𝜽¶ is given by ∇𝜽·𝑉(𝑠, 𝜽𝒗), and the

update rule is 𝜽¶ ← 𝜽¶ + α R 𝐬�~+ + γ𝑉(𝒔V, 𝜽¶) 	− 	𝑉(𝒔V~+, 𝜽¶) ∇𝜽·𝑉(𝒔V, 𝜽¶).

Chapter 3 – Reinforcement Learning 31

Algorithm 3 - Temporal Difference learning using function approximation

Input: the policy 𝜋 to be evaluated
Input: a differentiable value function 𝑉(𝑠, 𝜽𝑣), 𝑉 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙, ∙ = 	0
Output: value function 𝑉(𝑠, 𝜽𝑣)
initialize value parameters 𝜽¶ arbitrarily
for each episode do

initialize state 𝑠 	
for each step of episode, state 𝑠 is not terminal do

Perform 𝑎 according to policy π ∙ 𝑠
Receive reward 𝑟´ and state 𝑠´
𝜽¶ ← 𝜽¶ + 𝛼 𝑟´ + γ𝑉(𝑠´, 𝜽¶) 	− 	𝑉(𝑠, 𝜽¶) ∇𝑉(𝑠, 𝜽¶)
𝑠	 ← 	 𝑠´

end
end

𝛼 controls step size such that 𝛼 > 0. Adapted from Sutton and Barto [55].

Unfortunately, the combination of simple online RL algorithms with DNN was revealed

to be fundamentally unstable, since the sequence of data encountered by an RL agent

is non-stationary and RL updates are strongly correlated [37]. To circumvent the issue,

multiple solutions have been proposed to stabilize learning, by storing data into an

experience replay memory that can be batched [64], [65] or randomly sampled [66], [67]

from different time steps. This aggregation tapers non-stationarity and decorrelates

updates, but can only be applied to off-policy methods [37]. However, such construct

led to significant performance improvements, as was the case of the Q-Learning

algorithm implemented using FFN which was named Deep Q-Network (DQN), briefly

explained next.

Q-Learning

Q-learning [68] is an off-policy version of the TD-algorithm, considered one of the most

important achievements in RL [55]. This algorithm was developed as table-based but

has also been updated to use function approximation. In its table-version form, the

algorithm stores Q-values in a table updated at every step. The FFN version of Q-

Learning, DQN, has shown remarkable results in most standard test environments. The

algorithm learns the value of the policy by comparing the followed policy with the value

expected from performing a greedy policy, expected to return maximum immediate

reward [68], [55]. The algorithm keeps past-time transition triplets (𝒔V, 𝒂V, 𝒔V~+) in

batches which are provided as training inputs to the FFN. Training is performed at the

end of the steps when the buffer holding the triplets is filled with a batch. Triplets are

then released and the buffer is emptied. This process of training, called experience

Chapter 3 – Reinforcement Learning 32

replay [64], significantly improved learning quality and data-efficiency of the method

compared to its predecessors.

Policy gradient methods
In contrast with Value-based methods, policy-based methods parameterize the policy

as 𝜋(𝑎|𝑠; 	𝜽º) and update parameters 𝜽º in order to arrive at optimal policy. In this

section, we present two policy based methods, which also consider value function

parameterization and thus introduce the actor-critic approach by estimating both value

a policy.

REINFORCE algorithm

The REINFORCE [69] is a policy gradient method, that updates 𝜽 in the direction of

∇𝜽»	log	𝜋(𝒂V|𝒔V, 𝜽º)𝒓V . Usually a baseline 𝑏V(𝒔V) , is subtracted from the reward to

reduce the variance of gradient estimates making it stable yet unbiased, to yield the

gradient direction ∇𝛉	log	𝜋(𝒂V|𝒔𝒕, 𝜽º)(𝒓V 	− 	𝑏V(𝒔V)). Using 𝑉(𝒔V) as the baseline 𝑏V(𝒔V),

we have the advantage function 𝐴(𝒂V, 𝒔V) 	= 𝑄(𝒂V, 𝒔V) − 𝑉(𝒔V), since 𝒓V is an estimate

of 𝑄(𝒂V, 𝒔V). Thus, in this algorithm the advantage function is used in place of 𝑄 𝒂V, 𝒔V .

This approach can be viewed as an actor-critic architecture where the policy 𝜋 is the

actor and the baseline 𝑏V is the critic [34], [70]. The following presents the pseudo code

for REINFORCE algorithm for the case of immediate reward collection.

Algorithm 4 – REINFORCE algorithm

initialize policy parameters 𝜽º and value parameters 𝜽¶ arbitrarily
repeat

generate an episode 𝒔B, 𝒂B, 𝒓+, . . .		𝒔�.+, 𝒂�.+, 𝒓�.+, following 𝜋(· | ·, 𝜽º)
for each step 𝑡 of episode 0,···, 𝑇 − 1 do

𝒓V ← return from step 𝑡
𝛿	 ← 	 𝒓V − 𝑉(𝒔V, 𝜽𝒗)
𝜽¶ 	← 	𝜽¶ + 𝛽𝛿∇𝜽·𝑉(𝒔V, 𝜽¶)
𝜽º 	← 	𝜽º + 𝛼𝛾V𝛿∇𝜽»	log	𝜋(𝒂V|𝒔V, 𝜽º)

end
end

𝛼 and 𝛽 control step size such that 𝛼 > 0, 𝛽 > 0. Adapted from Sutton and Barto [55]

Actor-critic algorithm

In actor-critic algorithms, the critic updates action-value function parameters, and the

actor updates policy parameters, in the direction suggested by the critic. An actor-critic

algorithm learns both a policy and a value function, and the value function is used for

Chapter 3 – Reinforcement Learning 33

updating a state from subsequent estimates, to reduce variance and accelerate learning

[55]. The implementation for the actor-critic algorithm is presented in Algorithm 5.

Algorithm 5 – Actor-Critic algorithm

initialize policy parameters 𝜽º and value parameters 𝜽¶ arbitrarily
repeat

initialize the first state of the episode 𝑠
𝐼 ← 1 
for 𝑠 is not terminal do

Perform 𝑎 according to policy π 𝑎 𝑠, 𝜽º
Receive reward 𝑟´ and state 𝑠´
𝛿	 ← 	𝑟	 + 	𝛾𝑉 𝑠´, 𝜽¶ − 	𝑉 𝑠, 𝜽¶ , if 𝑠′ is terminal 𝑉(𝑠′, 𝜽¶) ≐ 0
𝜽𝒗 	← 	𝜽𝒗 	+ 	𝛽𝛿∇𝜽·𝑉(𝑠, 𝜽¶)			
𝜽º ← 𝜽º + 	𝛼𝐼𝛿∇𝜽»	log	𝜋(𝑎|𝑠, 𝜽º)	
𝐼	 ← 	𝛾𝐼	
𝑠	 ← 	𝑠′

end
end

𝛼 and 𝛽 control step size such that 𝛼 > 0, 𝛽 > 0. Adapted from Sutton and Barto [55]

Asynchronous Advantage Actor Critic
Using asynchronous methods, parallel actors interact with their own copy of the

environments to stabilize training, and share access to a global network which

accumulates gradient updates of the worker instance networks that interact with the

environment copies, as show in Figure 9. Different from most deep learning algorithms,

asynchronous methods can run on a single multi-core CPU. Particularly, when

asynchronous actors are implemented using actor-critic and use the advantage

estimation equation to estimate rewards [37], we arrive at the Asynchronous Advantage

Actor Critic (A3C) algorithm, which has been shown to outperform DQN and other RL

methods over many standardized environments [71], both in speed and policy

performance.

Chapter 3 – Reinforcement Learning 34

Figure 9 - High level view of the asynchronous RL method

Dashed stacked layers represent multiple local network worker instances interacting with the global

network.

Indeed, multiple actor learners running in parallel are likely to be exploring different parts

of the environment which makes learning and experience more diverse [37]. In addition,

different exploration policies can be used in each actor-learner to maximize this

diversity. Thus, by running different exploration policies in different threads, the overall

changes being made to the parameters by multiple actor-learners applying online

updates in parallel are likely to be less correlated in time than a single agent applying

online updates.

A3C maintains a policy 𝜋(𝒂V|𝒔V, 𝜽º) and an estimate of the value function 𝑉(𝒔V, 𝜽¶),

being updated with a set of state, action and return tuples, after every 𝑡rÇÈ actions or

when reaching a terminal state [37]. The gradient update is given by the expression,

𝛻w»Ê 𝑙𝑜𝑔 𝜋 𝒂V 𝒔V, 𝜽º´ 𝐴 𝒔V, 𝒂V; 	𝜽º, 𝜽¶ 	

in which the term A 𝐬�, 𝐚�; 	𝛉Ì, 𝛉Í stands for the advantage function shown next in the

Equation 17.

𝐴(𝒂V, 𝒔V; 	𝜽º, 𝜽¶) = 𝛾D𝒓V~D + 𝛾o𝑉(𝒔V~o, 𝜽¶) − 𝑉(𝒔V, 𝜽¶)
o.+

DTB

	

Equation 17- Advantage function estimation.
The term 𝑘 is up-bounded by 𝑡rÇÈ. Adapted from [37].

Chapter 3 – Reinforcement Learning 35

While 𝜽º and 𝜽¶ function parameters are represented separately, in practice the

parameters are shared by most layers of the DNN. Typically, such DNN has one

softmax output for the policy π 𝒂V 𝒔V, 𝜽º and one linear output for the value function

𝑉 𝒔V, 𝜽¶ with all non-output layers shared [37].

Furthermore, it has been shown that adding the entropy of the policy 𝜋 to the objective

function improves exploration by discouraging premature convergence to suboptimal

deterministic policies [72]. The gradient of the policy cost function, including the entropy

regularization term with respect to the policy parameters is given by Equation 18:

𝛻w»Ê 𝑙𝑜𝑔	𝜋 𝒂V 𝒔V, 𝜽º´ 𝒓V 	− 	𝑉 𝒔V, 𝜽¶ 	+ 	𝛽𝛻w»Ê 𝐻 𝜋 𝒔V, 𝜽º´ 	

Equation 18 - Regularized policy gradient cost function using advantage estimation.
𝐻 stands for the entropy function. 𝛽 is a regularization term such that 𝛽 ∈ [0,1]. Adapted from [37].

where 𝐻 is the entropy function. The hyperparameter 𝛽 controls the regularization term.

The A3C algorithm can be implemented as shown in Algorithm 6.

Using this mechanism, experience replay can be discarded because this way parallel

actors can work on-policy using different policies and thus stabilize learning, which was

the aim of using experience replay in the DQN training algorithm that worked off-policy

[37]. Furthermore, using multiple parallel actor-learners leads to a reduction in training

time roughly linear to the number of parallel actor-learners [37], and enables usage of

on-policy RL methods over DNN.

The overall architecture for the A3C is represented in Figure 10.

Chapter 3 – Reinforcement Learning 36

Algorithm 6 - Asynchronous Advantage Actor Critic (A3C) algorithm

Initialize shared global parameter vectors 𝜽¶ and 𝜽º arbitrarily
Initialize thread parameter vectors 𝜽¶´ and 𝜽º´ arbitrarily
Initialize global shared counter 𝑇 = 0
Initialize thread step counter 𝑡 ← 1
for 𝑇 ≤ 𝑇rÇÈ do

Reset gradients 𝑑𝜽º ← 0, 𝑑𝜽¶ ← 0
Synchronize thread-specific parameters 𝜽º´ = 	𝜽º and 𝜽¶´ = 	𝜽¶
𝑡XVÇÑV = 𝑡
Get state 𝒔V
for 𝒔V is not terminal or 𝑡 − 𝑡XVÇÑV < 𝑡rÇÈ do

Perform 𝒂V according to policy π 𝒂V 𝒔V, 𝜽º´
Receive reward 𝒓V and state 𝒔V~+
𝑡 ← 𝑡 + 1
𝑇 ← 𝑇 + 1

end

𝑅 =
0																	for	terminal	𝒔V													
𝑉 𝒔V, 𝜽¶ 	for	non − terminal	𝒔V

for 𝑖 ∈ 𝑡 − 1, … , 𝑡XVÇÑV do
𝑅 ← 𝒓D + 𝛾𝑅
// Accumulate gradients with respect to 𝜽º´

𝑑𝜽º ← 𝑑𝜽º + ∇w»Ê log	𝜋 𝒂D 𝒔D, 𝜽º´ 𝒓D 	− 	𝑉 𝒔D, 𝜽¶´ 	+ 	𝛽∇w»Ê 𝐻 𝜋 𝒔D, 𝜽º´
// Accumulate gradients with respect to 𝜽¶´
𝑑𝜽¶ ← 𝑑𝜽¶ + ∇w·Ê 𝒓D 	− 	𝑉 𝒔D, 𝜽¶´

,
	

end
Perform asynchronous updates of 𝜽º using 𝑑𝜽º and 𝜽¶´ using 𝑑𝜽¶´

end

adapted from Mnih et al [37].
𝐻 is the entropy function. 𝛽 is a regularization term such that 𝛽 ∈ [0,1].

Concluding remarks
RL methods seem particularly suitable for scheduling problems due to their exploration

and exploitation nature, that renders them capable of acquiring experience from

interaction with the environment and use it to decide on future actions. The A3C model

seems particularly interesting for application in patient appointment scheduling

problems in Primary Care:

• It is an on-policy model-free model that was demonstrated to outperform other

RL methods namely DQN in standard test environments [37] which the previous

state of the art method;

• It overcomes the problem of learning stability by employing multiple actors and

global network that accumulates gradients from the actors [37];

Chapter 3 – Reinforcement Learning 37

• The training speed scales roughly linearly with the number of parallel actors [37];

• It surpassed DQN within half of training time [37];

• It effectively runs on non-specialized hardware [37].

Taking into consideration the ground-breaking results achieved by the A3C framework,

we selected it as a candidate RL method to learn to schedule appointments in Primary

Care, as it will be presented in Chapter 4 and Chapter 5.

Figure 10 – Asynchronous Advantage Actor Critic (A3C) topology

Each network serves as basis for policy and value gradient computation accumulated by the global

network. Updated to the global network are performed asynchronously. The composition of the hidden
layers of each network instance has the same arbitrary structure, upon which a softmax layer is used for

obtaining policy estimations and a scalar output is used for the value estimation. In case of the local worker
networks, the policy is plugged to a final action layer that outputs the desired action to perform on its own

environment copy.
The dashed connector in the right indicates connection to an arbitrary number of local networks.

Chapter 4 – Scheduling Framework 39

Chapter 4

Scheduling Framework
To study and develop RL agents that can perform scheduling tasks for Primary Care, it

is worthwhile to develop a platform that allows the creation of such environments,

development and configuration of multiple agents, and assess the effect of environment

parameters, RL agent hyperparameters and structure parameters in learning

performance. Benchmarking of the algorithm is also paramount to assess its fitness.

Such a platform can dramatically decrease iteration time to develop algorithms for

different scheduling tasks.

In this Chapter, we present the conceptual and functional framework developed for the

creation and simulation of RL agents in patient scheduling environments, illustrated with

screenshots from the implemented software system. Finally, software development and

architecture design considerations of the solution are discussed.

Environment modelling
A scheduling environment consists of the following components:

• Schedule slots;

• Composable task attributes that can be assigned to tasks.

Schedule configuration
Schedule slots are placeholders for tasks at a given time. The array of slots that

compose a schedule is given by the following variables:

• Number of slots per day;

• Number of days on a week;

• Number of working weeks;

• Slot duration.

While the first three parameters define the schedule structure, in the context of this

work the last one is used simply to build a user-friendly timetable representation of the

slots. In addition, each slot has a cost attribute, so that slots with lower cost may be

chosen with precedence over the higher cost slots. This conveys useful information

Chapter 4 – Scheduling Framework 40

when deciding which slot to schedule. Finally, the schedule requires two additional

variables:

• Number of tasks to schedule;

• Number of visible tasks to schedule – Number of scheduling tasks visible to the

agent. The type of scheduling process depends on this parameter:

o When equal to 1, it is a unit process;

o When between 1 and number of tasks to schedule, it is a periodic

process;

o When equal to the number of tasks to schedule, it is a single batch

process.

Figure 11 illustrates the user interface for configuration of the mentioned parameters.

Figure 11 – Slot environment configuration

Left – List of available environments and access to general, slot and task configuration;

Right – Slot configuration inspector. Slot cost is color-coded to aid in configuration by the user.

Task attribute configuration
For a given environment, tasks of arbitrary nature should be defined. To achieve this

requirement, an attribute tree was created. Each tree node holds the following

information:

Chapter 4 – Scheduling Framework 41

• Slot factor – Controls how many slots a task with the given attribute requires;

• Sampling probability – Probability of picking an attribute given the parent

attribute. In the context of Primary Care clinics, this probability should be

estimated from appointment attribute frequencies on a yearly or monthly basis;

• Child attributes – Child attribute nodes under a given node;

• Name and Abbreviation – Used as task labels in the task definition editor and

in schedule representations, respectively.

All attribute nodes are under a root node with probability 1. The algorithm then

randomly picks a child attribute given their conditional probabilities and recursively

repeats the process on its child attributes. The collected sequence of attributes defines

a task. Figure 12 shows the hierarchical nature of task attributes and its parameters.

Figure 12 - Task environment definition

Attribute nodes hold name, abbreviation, slot factor and conditional probability as well as child nodes.
Left – List of available environments and access to general, slot and task configuration; Right – Task configuration

inspector.
Attribute Icons: Tag - Attribute name; Rectangle – Abbreviation; Clock – Slot factor; Pattern – Conditional probability.

Considering the task attributes presented in Figure 12, the following example tasks can

be sampled into the task buffer: Baby, Adult | Pregnant, Elder | Diabetes. The slot factor

for a task is given by the product of slot factors of its attributes.

Chapter 4 – Scheduling Framework 42

Reward configuration
The environment is expected to reward agent actions. Since reward plays a central role

in the training of RL agents, the ability to tweak the parameters that govern reward is

crucial for a good environment and RL agent. Several factors were taken in

consideration to calculate the reward according to the requirements presented in

Chapter 2:

• Base Reward – Reward for picking and empty slot;

• Overlap Penalty – Penalty for picking a filled slot;

• Common Neighborhood Factor – Multiplies the bonus for grouping similar

tasks. The bonus corresponds to the fraction of common attributes between the

scheduled task and its previous neighbor. For example, if task A|B follows task

A|Z, it will receive a bonus of 0.5.

• Partial Overlap Factor – Multiples the penalty received when there is a partial

overlap between tasks. As an example, when a task that requires 2 slots is

scheduled immediately before another task, it will receive a penalty of 1.

At each training episode, the agent interacts with the environment for a predefined

number of steps. An additional factor controls the maximum number of steps that can

be taken before the episode finishes:

• Max Step Factor – Multiples by the number of slots to fill, to define how many

actions the agent can take before the training episode finishes.

This indirectly controls reward since there will be uncollected reward if an agent fails to

schedule all tasks in the task buffer. An episode will finish when all tasks are scheduled,

or when the maximum number of steps is reached. At the end of an episode, the

reward is calculated according to Algorithm 7. In any other step, reward is 0, such that

RL agents refrain from strategies of non-terminal states that could otherwise yield high

reward.

Chapter 4 – Scheduling Framework 43

Algorithm 7 - Scheduling environment reward computation

total_reward = 0

if not is_episode_complete: return total_reward

for slot in slot_buffer:

 if is_slot_empty(slot): continue

 reward = base_reward

 reward = reward – get_cost_for_slot(slot)

 overlap_with_previous_task = compute_overlap_with_previous_task_for_slot(slot)

 reward = reward – partial_slot_overlap_factor × overlap_with_previous_tas

 similarity_with_previous_slot = compute_similarity_with_previous_slot(slot)

 reward = reward – common_neighbour_factor × similarity_with_previous_slot

 total_reward = total_reward + reward

total_reward = total_reward – count_stale_slots()

Reward is always 0 except in the last step of each episode.
Written in Python pseudo-code.

Additional parameter configuration
Figure 13 presents two additional parameters that control environment representation:

• Reuse task buffer - Determines whether the same task buffer is considered

across training episodes and environment instances, thus becoming fixed

during training;

• Embed task vector - Controls whether a task representation should be reduced

when it takes more than 3 dimensions to represent. This is useful because task

space may be very sparse, since attribute trees can be very different.

Efficiently representing tasks

To illustrate to problem of representing task attributes, let 𝑀 be an example task

attribute space for task attributes 𝐴 and 𝐵. Such attributes can be encoded using a

two-dimensional vector as [1,0] and [0,1], respectively. The general rule is to consider a

space composed of one binary dimension per each task attribute. However, since task

attributes are nested, part of the space represents invalid tasks. Let 𝑁 be another task

attribute space that originates the tasks 𝐴|𝐴1, 𝐵|𝐵1, 𝐵|𝐵2. It will require 5 dimensions

to represent attributes 𝐴, 𝐴1, 𝐵, 𝐵1 and 𝐵2. However, because combinations such as

𝐴|𝐵1 and 𝐴|𝐵2 are invalid, some regions of space 𝑁 are obsolete. By enabling task

vector embedding, the task vectors will be transformed using Principle Component

Analysis (PCA) into 3 dimensional vectors, that preserve as much variance as possible.

This way, tasks 𝐵|𝐵1 and will still be more alike to 𝐵|𝐵2 than to 𝐴|𝐴1 while saving

space.

Chapter 4 – Scheduling Framework 44

Figure 13 - Reward configuration and additional parameters

Left – List of available environments and access to general, slot and task configuration;

Right – Reward and additional parameter configuration inspector.

Agent configuration
The system provides the following set of agents:

• Human – Passes control to the user interface so that a human agent can

interact;

• Random – Picks a random action from the action space;

• Algorithm – Picks one from the set of actions the yield the highest reward;

• A3C – RL agent that implements the A3C algorithm [37] using TensorFlow [73].

In the case of the A3C agent, additional parameters can be defined to build and tune

the neural network that serves as basis for the agent. These parameters enable

exploration of different network architectures for A3C as shown in Figure 14.

Chapter 4 – Scheduling Framework 45

Figure 14 - A3C neural network architecture and role of structure parameters

Input and output vector dimensions are matched to observation and action vector dimensions.

RNN – Recurrent neural network

Configuration of network structure parameters
The available structure parameters are the following:

• Activation Function – Pick from implementations available on the TensorFlow

library [73], namely ReLU, Exponential Linear Unit (ELU), Concatenated ReLU

(CreLU), Sigmoid, TanH, among others;

• Workers – Controls the number of local networks;

• Dropout probability – Controls the dropout probability of keeping nodes at

any layer. A value of 0 means dropout is not applied;

• Hidden layers – Controls the number of hidden layers in each network;

• Layer size – Controls the number of hidden units on each layer;

• RNN size – Controls the number of cells on the RNN component of the

network;

Configuration of network hyperparameters
A set of hyperparameters that govern learning are also exposed:

• Learning rate – The learning rate considered by optimizer RMSProp [74];

• Standard deviations for value and policy network initializations:

• Gamma – Controls the weight of reward discounting;

• Experience buffer size – The size of the batch used to train the RL agent;

Chapter 4 – Scheduling Framework 46

• Loss regularization factor – Controls the weight of the loss regularization

term;

• Entropy regularization factor – Controls the weight of the entropy

regularization term. It affects the degree for preferring exploration over

exploitation;

• Gradient clip – Clips the gradients to the specified amount to avoid big steps

that can lead to gradient overshooting and learning instability.

These parameters allow the creation and tweaking of networks of very diverse nature.

Figure 15 presents the interface that allows such parameterization.

Figure 15 - Dashboard for simulation setup

Top left - Environment, agent and episode setup. Bottom left – Hyper-parameter and structure settings for the A3C

agent.

Simulation
The system allows running simulations for any given environment and agent.

Max reward heuristic
At the beginning of each training episode the system resets the environment and uses

the heuristic in Algorithm 8 to find a good approximation of the best reward that can be

collected when scheduling all the tasks in the task buffer.

Chapter 4 – Scheduling Framework 47

Algorithm 8 - Near optimal solution heuristic

sorted_task_buffer = sort(task_buffer)

for task in sorted_task_buffer:

 slot_indexes = pick_slot_indexes_that_yield_highest_reward_for_task(task)

 slot_index = slot_indexes[0]

 schedule_task_at_slot_index(slot_index, task)

Sorting the task buffer increases the odds of finding an optimal solution.
Written in Python pseudo-code.

Because the full task buffer is sorted prior to scheduling, the probability that any other

better solution is found decreases, and thus considering only an item at a time likely

provides a better approximation of the optimal reward than the implementation of the

algorithm agent.

This implementation models the problem as a single batch process presented in

Chapter 2. This algorithm is meant to approximate an upper bound to the best possible

reward, even though it depends on information that may not be available to the agent.

The heuristic is run every iteration since the reward depends on the tasks to schedule.

During runtime, the system provides the following simulation information in real-time:

• Relative reward for each episode – Percentage between the reward

achieved by the agent and the best computed reward using the previously

presented heuristic. Values for the last 100 episodes are plotted in a bar char;

• Relative reward running average – Measures the average relative reward for

the last 100 episodes;

• Best relative reward – Best relative reward since the beginning of training;

• Max reward – Maximum reward achieved by the heuristic for the current

episode;

• Episode count – Current episode number.

Figure 16 presents the interface created to convey the simulation status during runtime.

In addition, the system displays the schedule and the tasks to schedule, and updates it

in real-time with the actions taken by the agent. At the beginning of each episode the

task buffer filled with tasks created from random sampling task attributes from the

attribute tree. The visible tasks are displayed in a column on the right side of the screen.

Then at each step, the first task on the task buffer is moved from the buffer to the

selected slot.

Chapter 4 – Scheduling Framework 48

Figure 16 - Dashboard with running simulation

Left - Reward statistics and the top 5 solutions found by the agent; Center - Current simulation state, updated in real-

time with the agent actions; Right - Task buffer with visible tasks to schedule.

The screen updates at each time step so that actions can be tracked. In case of the

human agent, the action to be performed is indicated by clicking in the desired slot.

Software architecture considerations
The application was implemented as a software-as-a-service, designed to run both on

local machines and distributed cloud systems. The application is composed as a set of

3 micro-services, composed of 4 main elements:

o Backend to run simulations;

o Frontend user interface for environments creation and simulation setup;

o Middleware for routing between multiple backends and frontends;

o Simulation data collection pipeline for post hoc analysis.

The components communicate over Hypertext Transfer Protocol (HTTP), Web Socket

(WS) and Transmission Control Protocol (TCP), such that actions are dispatched from

the frontend to the corresponding backend, and the backend broadcasts simulation

data to the frontend for real-time rendering of the simulation.

Chapter 4 – Scheduling Framework 49

Each service is deployed using Docker technology [75], which allows applications to be

run inside containers – light weight Linux virtual environments that contain all code and

dependencies necessary to install, mount and run services in local or cloud platforms.

The overall architecture is depicted in Figure 17. Components are next described in

detail.

Figure 17 - High level system architecture

AWS – Amazon Web Services; HTTP – Hypertext Transfer Protocol; JDBC - Java Database Connectivity;
PUSH/PULL – Push pull socket pair; REQ/REP – Request reply socket pair; S3 – Simple storage service;

TCP – Transmission control protocol; WS – Web Socket.

Backend
The backend service was written in the Python language. It exposes services through a

TCP interface implemented using the ZeroMQ library [76]. This interface listens for

requests to configure and run simulations through one socket, and broadcasts

simulation updates over another socket into the middleware service.

The backend uses the environment and agent configurations to instantiate

Environment and Agent classes that are kept in memory during each simulation.

Thus, the backend becomes stateful. The agents are implemented as subclasses of an

AbstractAgent. The available agent classes can be listed through a service. Additional

agents can be created and registered for usage in simulations by simply sub-classing

Chapter 4 – Scheduling Framework 50

the AbstractAgent Class. The main classes and their relationships to run the

simulations are presented in Figure 18.

Figure 18 - High level simulation classes and relationships

Grey text indicates property data types.

The simulation loop passes control to the agent, that iteratively calls an

environment.step(action) method on the environment and returns a reward. The

agent then requests the new environment state through environment.get_obs().

This state and the reward can then be used by the agent to decide which action to take

next. This loop will run until all tasks are scheduled or the maximum number of actions

is taken, as previously described. At the end of the episode, environment.reset() is

called and a new episode is started. The simulation will execute for as many episodes

as configured. The simulation loop executes as shown in Figure 19.

Chapter 4 – Scheduling Framework 51

Figure 19 - Structure of the interaction between agent and environment

This interaction takes place at every step of the simulation.

The environment state that is passed as observation is a vector that results from the

concatenation of a matrix representing the schedule slots and the visible portion of the

task buffer. The resulting matrix is flattened to a vector that is passed to the agent to

compute the desired action. That action is then fed into the environment to update the

schedule slot buffer and the task buffer. The size of these matrices depends on the

schedule factors that affect schedule size, and on the size of the vectors needed to

represent the tasks.

The internal representation of these buffers, their combination into and observation and

the effect of taking an action in the environment is presented in Figure 20.

RL Agent Implementation

The RL Agent was implemented using the A3C algorithm [37] previously presented

using TensorFlow library [73]. The agent networks are built dynamically by considering

the structure definition and hyperparameters passed as configuration.

Chapter 4 – Scheduling Framework 52

Figure 20 - Internal representation of environment data

Environment internal representation of task buffer, slot buffer and action vectors and the dynamics of their
update and transformation into observation fed to agents. The size of the vector used to represent tasks

varies according to the number of possible attributes. If the embed task vector option is enabled, the vector
size is fixed at 3 and vector values change from binary to floats.

Frontend
The frontend application allows environment creation, setup and visualization of all

aspects of the simulations. It is implemented using Type Script [77] and the Vue.js

framework [78]. It makes use of a state store that centralizes all possible state

transitions in the web interface. This architecture makes it easy to separate business

logic from component rendering and allows data to flow from the middleware services

to the components that are updated as needed, resulting in a fluid user experience and

reactive user interface that can accommodate large simulation data flows with a low

memory footprint. This way the simulations can be inspected in real-time, best solutions

can be collected and algorithm behavior can be analyzed as it progresses. The frontend

service is exposed on a container running Nginx webserver [79]. It responds to requests

from the browser requiring frontend static assets, and proxies remaining data requests

to the middleware service. It also pipes WS messages to the middleware service.

Middleware
The middleware is responsible for bridging communications between the backend and

frontend services. As illustrated in Figure 17, it converts HTTP requests coming from the

frontend into TCP requests to the backend, and converts TCP requests from the

Chapter 4 – Scheduling Framework 53

backend into WS messages that are pushed into the frontend for real-time refresh of

the simulation visualization. This service is also written in Python and makes use of the

Flask framework to handle HTTP and WS traffic [80]. The middleware exposes

additional endpoints for environment configuration persistence into a Simple Storage

Service (S3) bucket on AWS Web Services. S3 is a distributed filesystem service that

allows long term data storage in the AWS cloud. This form of persistence easily allows

the simulator to be run at any scale and at any infrastructure and reuse existing

configuration.

Data collection
Finally, the system also employs a mechanism for data collection for post hoc analysis.

This is relevant because the volume of data produced during the simulation cannot be

stored by the machine running the simulation, nor by the frontend service because it

can easily outgrow available memory resources on local machines. Thus, it becomes

relevant to collect data from across all machines running simulations into a centralized

store, that can later be used to run analytical queries and data analysis. The data

pipeline is implemented as depicted in Figure 21.

Using this architecture pattern, data is continuously sent to the centralized store and

freed from memory in each machine running the simulation. Data is stored in json

format which can easily be queried using Hive technology that exposes a Hive Query

Language (HQL), a query language similar to Structured Query Language (SQL), used in

relational databases. This provides a simple interface to run queries over structured

data files without the need to comply to a predefined database schema [81]. This

software is made available as a service through AWS Athena, and can feed on data

available on AWS S3. Thus, the backend periodically dumps simulation data to S3, that

can later be queried and analyzed on any client that supports the service Java

Database Connection (JDBC) drivers. For the purpose of this work, data was analyzed

using the R language [82] as depicted in Figure 17.

Chapter 4 – Scheduling Framework 54

Figure 21 - Data collection pipeline

HTTP – Hypertext transfer protocol; S3 – Simple storage service; TCP – Transmission control protocol.

Infrastructure specifications
All services ran as single Docker container instances on the Dinghy [83] virtual machine

via Virtual Box [84] with shared access to 2Gb RAM and 1 CPU Core of a MacBook Pro

(13-inch, 2016) with a 2.9 GHz Intel Core i5 and 8 GB 2133 MHz LPDDR3.

Final remarks
By leveraging this infrastructure, it became possible to easily create, maintain and

upgrade a set of environments over which to develop and test RL agents. This platform

enables the desired rapid development iteration as depicted Figure 4, thus making

research and development faster. Environments and RL agent performance is

presented next.

Chapter 5 – Scheduling environments and agent performance 55

Chapter 5

Scheduling environments and
agent performance
A set of basic environments was created to study whether RL agents can learn the

rules governing each environment. In this chapter, we present a set the environments

and the results of candidate RL agents. Environments were created considering

incremental state spaces, in which reward rules are incrementally added. They serve to

test whether RL agents can learn the underlying rules and are depicted in Figure 22. In

addition, a real single day environment was created and used to test algorithm

performance.

Figure 22 - Dummy environment goals

Challenges of incremental difficulty are implemented on each environment.

For each environment, the following agents were run:

• Random agent ran for 1000 episodes, to estimate the average reward that can

be obtained by chance;

Chapter 5 – Scheduling environments and agent performance 56

• Algorithm agent ran for 1000 episodes, to estimate average reward that can

be obtained for a given task attribute distribution by picking the best slot at each

step;

• RL agents with different network structure ran in each environment until

convergence. The following parameters were fixed for all agents:

o Activation function - ReLU

o Reward discount gamma - 0.99

o Policy weight initialization standard deviation - 0.1

o Value weight initialization standard deviation - 1.0

o Loss regularization factor - 0.5

o Entropy regularization factor - 0.1

As environments grew in complexity, the best performing agent from an environment

was taken to the next environment, and served as template to create other agents.

Summaries of the dummy environments are presented in Table 1. Dummy

environments shared a set of fixed parameters shown in Figure 23.

Table 1 - Dummy environment feature summary

Schedule Tasks Slot attributes States

Code Shape Fill Vis Count Factor ¹ 1 Possible Optimal Ratio

A 1x1x3 2 1 1 no 7 1 1.43×10-1

B 1x3x3 2 1 1 no 46 1 2.17×10-2

C 1x1x12 4 1 1 no 794 3 3.78×10-3

D 1x2x12 4 1 1 yes 12 951 40 3.09×10-3

E 1x2x12 4 1 2 no 62 103 12 1.93×10-4

F 1x2x12 8 1 4 yes 176 986 730 4 2.26×10-8
Count – Number of different task attributes; Factor ¹ 1 – Whether there are attributes with a slot factor other than 1;
Fill – Number of tasks to fill; Optimal – Number of optimal states. There may be more than one number of optimal

states, depending on the attribute distributions; Possible – State space size; Shape – nº weeks × nº days/week × nº
slots/day;

Vis – Number of visible tasks; % - Ratio between possible and optimal states expressed as percentage of possible
states.

Figure 23 - Dummy environment configuration parameters

These parameters are shared across all dummy environments.

Chapter 5 – Scheduling environments and agent performance 57

In the following sections, we will briefly explain the rationale of each environment and

present the hyperparameters and structure for the candidate RL agents. Firstly, the

results of the simulation were analyzed quantitatively, for which the performance results

for the RL agent are shown in 25, 50 and 75 percentile plots for the reward obtained

per batch of episodes. In addition, plots are presented for value loss, policy loss and

entropy loss of the RL agents. For other agents and for the environment max reward

heuristic, the mean reward attained is plotted as labelled horizontal lines. Secondly, a

qualitative analysis of the results follows through the presentation of specific solutions.

Finally, each section ends with a brief discussion of the overall performance for each

environment.

Dummy environment A
This environment is meant to assess whether the RL Agent can learn to prioritize

scheduling according to slot cost in a minimal state space. The environment

configuration is presented in the Figure 24 and candidate RL agents are presented in

Table 2.

Figure 24 - Dummy environment A configuration

Bottom fields: Tag - Attribute name; Rectangle – Abbreviation; Clock – Slot factor; Pattern – Conditional probability.

Table 2 - RL Agent A1, A2 and A3 configuration for dummy environment A and B

Structure

Name 𝛼 Clip Workers Hidden Nodes RNN

A1 .0100 40 2 2 8 0

A2 .0100 40 2 2 8 1

A3 .0100 40 2 2 8 2

Varying parameters between the candidate RL agents are displayed using bold typeface.
𝛼 – Learning Rate; Clip – Gradient clip; Hidden – Number of hidden layers;

Nodes – Number of nodes per hidden layer; RNN – RNN size; Workers – Number of workers;

Chapter 5 – Scheduling environments and agent performance 58

Quantitative analysis
RL agents learned to perform perfectly, reaching the maximum possible reward of 1.

The reward by random action is set close to -1. Figure 25 shows that around episode

80 all agents performed perfectly. The agent A1 learned the rule faster than agent A2

and A3.

Figure 25 - Reward results on dummy environment A

Reward per training epoch for RL agents on environment A.

Lines plot percentile 50 and the shaded areas plot the space between the percentile 25 and 75 for each RL agent.

Figure 26 shows that the losses for value, policy and entropy have steadily fallen across

sessions for all agents with agent A1 converging faster. Agent A2 converged poorly,

showing high value loss variability until episode 70, time at which A1 had already

converged. The charts show that there was still room for further minimizing losses for

agents A2 and A3.

Qualitative analysis
All agents arrived at the optimal solution depicted in Figure 27, in which the cheapest

slots are preferred over the most expensive one.

Chapter 5 – Scheduling environments and agent performance 59

Figure 26 - RL Agent losses on dummy environment A

From left to right, value, policy and entropy losses across episodes for RL agents in dummy environment A.

Figure 27 - Optimal solution for environment A

All agents applied optimal policy consistently.

Discussion
The agents successfully learned the intended rule. However, agents A2 and A3 took

more time to converge, and did not minimize losses steadily. It seems that adding

LSTM cells to the neural network to model a recurrent component is not helpful to this

type of task. In fact, the decision at any step depends exclusively in the current

observed state, and not in past states. As such the problem is formulated as a MDP.

For that reason, considering past states to act becomes a hindrance.

Dummy environment B
This environment is also meant to assess whether the RL Agent can learn to prioritize

scheduling according to slot cost on a larger state space. It poses the additional

challenge of putting tasks together to bring additional bonus, but that will not make up

for higher slot costs. The expected result is that the agent prefers the two cheapest

slots presented in Figure 24. Candidate RL agents are presented in Table 2.

The RL Agents developed for environment A were used to solve environment B.

Chapter 5 – Scheduling environments and agent performance 60

Figure 28 - Dummy environment B configuration

Bottom fields: Tag - Attribute name; Rectangle – Abbreviation; Clock – Slot factor; Pattern – Conditional probability.

Quantitative analysis
Both three implementations learned to perform well, with the learning converging

around episode 330. Figure 29 shows that the agent A1 converged faster than the

remaining agents and kept a consistent behavior ever since, in contrast with the other

agents that took suboptimal actions frequently.

Figure 29 - Reward results on dummy environment B

Reward per training epoch for RL agents on environment B.

Lines plot percentile 50 and the shaded areas plot the space between the percentile 25 and 75 for each RL agent.

Chapter 5 – Scheduling environments and agent performance 61

Figure 30 shows that losses were also minimized more effectively by agent A1. Value

and policy loss approached 0 for agent A1 around episode 90, meaning that the

network rapidly became very confident on how to value actions and which action to

take. Agent A3 displayed a similar but slower evolution, while agent A2 was unable to

minimize losses as much. Entropy flattening around episode 240 for agents A1 and A3,

indicates that the agents took the exploitation action known to maximize reward with

very high frequency.

Figure 30 - RL Agent losses on dummy environment B

From left to right, value, policy and entropy losses across episodes for RL agents in dummy environment B.

Qualitative analysis
All agents arrived at the optimal solution depicted in Figure 31, in which the two

cheaper slots are preferred over the remaining slots.

Figure 31 - Optimal solution for environment B

All agents applied optimal policy consistently.

Discussion
Environment B was more challenging than environment A since the state space

increased substantially, as well as the reward interval. Agents learned the underlying

environment rule, however the LSTM cells still seem a hindrance for performance.

Dummy environment C
Environment C was developed to check whether the agent can learn to group task

together to get higher reward. The agents were expected to group the tasks without

Chapter 5 – Scheduling environments and agent performance 62

spacing in any sequence of cheap slots. Figure 24 presents dummy environment C

structure, and candidate RL agents are presented in Table 3.

Figure 32 - Dummy environment C configuration

Bottom fields: Tag - Attribute name; Rectangle – Abbreviation; Clock – Slot factor; Pattern – Conditional probability.

Table 3 - RL Agent A1, A4 and A5 configuration for dummy environment C

Structure

Name 𝛼 Clip Workers Hidden Nodes RNN

A1 .0100 40 2 2 8 0

A4 .0100 40 2 3 8 0

A5 .0100 40 3 2 8 0

Varying parameters between the candidate RL agents are displayed using bold typeface.
𝛼 – Learning Rate; Clip – Gradient clip; Hidden – Number of hidden layers;

Nodes – Number of nodes per hidden layer; RNN – RNN size; Workers – Number of workers;

Quantitative analysis
Agents learned to perform optimally spanning from random reward levels to maximum

reward in around 140 episodes as shown in Figure 33. Agent A4 and A5 learned the

rule faster that agent A1.

Chapter 5 – Scheduling environments and agent performance 63

Figure 33 - Reward results on dummy environment C

Reward per training epoch for RL agents on environment C.

Lines plot percentile 50 and the shaded areas plot the space between the percentile 25 and 75 for each RL agent.

Figure 34 shows that the 3 agents minimized value, policy and entropy in a similar

fashion. Initial loss variance is higher in agent A5 due to the increased number of

workers. Agent A5 minimized losses faster than the other agents and led to the

development and application of a consistent policy for environment C.

Figure 34 - RL Agent losses on dummy environment C

From left to right, value, policy and entropy losses across episodes for RL agents in dummy environment C.

Chapter 5 – Scheduling environments and agent performance 64

Qualitative analysis
Figure 35 depicts the evolution of solution for agent A5 which progress in total reward

along episodes. Interestingly, having arrived at different policies that return maximal

reward, agents stick to that single optimal policy and consistently perform it.

Figure 35 - Solution evolution on dummy environment C for agent A5

All agents applied optimal policy consistently.

Left – solution at episode 10; Center – solution at episode 40; Right - solution at episode 70.

Discussion
The networks were kept small despite a substantial increase in state space from

environment B to environment C. Note that in this environment, the size of input and

output vectors (17 and 16, respectively) became larger the number of nodes per hidden

layer (8). This increase in state space accounted for an increase in the number of

training epochs until good solutions were found. Agent A5 effectively explored the

environment by amassing varied observations brought by its 3 worker networks, leading

to the discovery of an optimal rule faster, which is in accordance other reports [37]. It is

interesting to note that varying experience boosts learning more than adding additional

hidden layers. This means that when a network has a structure large enough to

represent the optimal mapping functions from observation to action, increasing

observation variability through multiple workers has substantial benefit over increasing

network structure. Finally, even though there was more than one optimal solution, it was

sufficient to learn only one policy to achieve consistently perfect score, and so the

networks stick to a single policy.

Dummy environment D
This environment was created to assess whether the agents learn to space tasks by the

amount specified by the slot factor parameter. It the case of this environment, it was

expected that the agents in Table 4 learned to place 3 tasks with 1 slot spacing in a

day, and 1 task in the other day, while avoiding the costly slots depicted in Figure 36.

Chapter 5 – Scheduling environments and agent performance 65

Figure 36 - Dummy environment D configuration

Bottom fields: Tag - Attribute name; Rectangle – Abbreviation; Clock – Slot factor; Pattern – Conditional probability.

Table 4 - RL Agent A5, A6 and A7 configuration for dummy environment D

Structure

Name 𝛼 Clip Workers Hidden Nodes RNN

A5 .0100 40 3 2 8 0

A6 .0100 40 3 2 16 0

A7 .0100 40 3 3 8 0

Varying parameters between the candidate RL agents are displayed using bold typeface.
𝛼 – Learning Rate; Clip – Gradient clip; Hidden – Number of hidden layers;

Nodes – Number of nodes per hidden layer; RNN – RNN size; Workers – Number of workers;

Quantitative analysis
Figure 37 shows that the three agents learned the rule well. Agent A6 reached optimal

action by episode 90, while agents A5 and A7 reached optimal by episode 120 and

150. Agent A7 displayed less consistent performance when compared to the other

agents. Figure 38 shows that while the three agents minimized value and policy in a

similar fashion, agent A7 entropy loss decreased at a slower pace, displaying a

significant drop around episode 110. Similar abrupt drops happened to the other

agents sooner.

Chapter 5 – Scheduling environments and agent performance 66

Figure 37 - Reward results on dummy environment D

Reward per training epoch for RL agents on environment D.

Lines plot percentile 50 and the shaded areas plot the space between the percentile 25 and 75 for each RL agent.

These drops were also observed in value and policy losses, for agents A5 and A7 that

displayed abrupt drops in value loss variance in 100 and 110 respectively. Agent A6

displayed a smoother minimization of both value and policy losses, which accounts for

the steady growth in reward per epoch it presented until convergence around episode

90.

Figure 38 - RL Agent losses on dummy environment D

From left to right, value, policy and entropy losses across episodes for RL agents in dummy environment D.

Chapter 5 – Scheduling environments and agent performance 67

Qualitative analysis
The 3 agents arrived at optimal solutions shown in Figure 39, scheduling the 4 tasks in

adjacent slots as intended. Again, agents displayed preference for a single optimal

solution as soon as it was discovered, and consistently applied it across episodes.

Figure 39 - Optimal solutions on dummy environment D

All agents applied optimal policy consistently.

Discussion
Small hidden layer structure was enough to learn the rule. Interestingly, in environment

D the number of possible states increased beyond the number of iterations before

reaching the optimal rule. In fact, the complete state space is 12 951 and all agents

consistently applied optimal policy, after visiting less than 1200 states with repetition.

The addition of more nodes to the hidden layers benefitted the network more than

incrementing the number of hidden layers, which implies that the increasing number of

layers created excess complexity in the network that was unnecessary to represent the

problem and required additional learning episodes to minimize error. The agents kept

sticking to the single optimal state that they found, since for this environment it was still

good enough to learn a single policy to reach maximum reward.

Dummy environment E
This environment sought to assess whether the agent learns to group the tasks by

attribute. The expected behavior is to schedule tasks A and B in order in a single group.

The size of the task buffer becomes relevant in this environment since different tasks

may be observed, but only one will be known at a time, according to the unit process

definition presented in Chapter 2. Figure 40 presents dummy environment E structure,

and candidate RL agents are presented in Table 4. This environment poses additional

challenges to the agents due following factors increasing state complexity:

• The observation vector doubles to represent the 2 task attributes A and B;

Chapter 5 – Scheduling environments and agent performance 68

• The agent must learn to distinguish task attributes A and B;

• The task buffer is populated at random and all sequences are equally likely.

Figure 40 - Dummy environment E configuration

Bottom fields: Tag - Attribute name; Rectangle – Abbreviation; Clock – Slot factor; Pattern – Conditional probability.

Table 5 - RL Agent A6, A8 and A9 configuration for dummy environment E

Structure

Name 𝛼 Clip Workers Hidden Nodes RNN

A6 .0100 40 3 2 16 0

A8 .0095 40 3 3 16 0

A9 .0090 40 4 2 16 0

Varying parameters between the candidate RL agents are displayed using bold typeface.
𝛼 – Learning Rate; Clip – Gradient clip; Hidden – Number of hidden layers;

Nodes – Number of nodes per hidden layer; RNN – RNN size; Workers – Number of workers;

Quantitative analysis
Figure 41 shows small differences between the max reward heuristic and algorithm

agent, which are due to, the fact that sequential slot ordering may not always deliver the

best result for all possible task samples, and thus introduce a small variation. Regarding

Chapter 5 – Scheduling environments and agent performance 69

the RL agents, they took significantly more episodes to converge, with only agent A9

having achieved consistently optimal results.

Figure 41 - Reward results on dummy environment E

Reward per training epoch for RL agents on environment E.

Lines plot percentile 50 and the shaded areas plot the space between the percentile 25 and 75 for each RL agent.

Figure 42 demonstrates that value and policy losses were largely minimized by the

agents shortly after the beginning of training, however entropy suffered an abrupt drop

in the first 150 episodes, after which it flattened for agent A8, and kept slowly dropping

for agents A6 and A9, the latter in a steeper fashion. The fact that entropy losses keep

dropping indicates that there is potential room for reward improvement by increasing

certainty for exploitation rather than exploration, which explains the variability indicated

by percentiles 25 and 50, specially for agent A9.

Chapter 5 – Scheduling environments and agent performance 70

Figure 42 - RL Agent losses on dummy environment E

From left to right, value, policy and entropy losses across episodes for RL agents in dummy environment E.

Qualitative analysis
Figure 43 demonstrates possible optimal solutions found by the RL agents. Note that in

this environment the agent must learn more than one optimal policy because optimal

solution varies with sampled tasks. An optimal policy for a task buffer composed of A

tasks, may not be the same for a mixed buffer. The order in which tasks appears also

affects the possible optimal solutions given the tasks that were already scheduled.

Figure 43 - Examples of optimal on dummy environment E

To consistently maximize reward, the agent A9 learned more than one optimal policy.

Discussion
The complexity of environment increased substantially with comparison to the previous

ones. Learning rates of A8 and A9 agents needed adjustment to avoid gradient

overflows that appeared for higher learning rates. Once again it was demonstrated that

network structure of layers much smaller that the observation vector can accurately

map observations to optimal actions, which indicates that underlying rules are still

simple, despite the increasing state space complexity which reached 62 103 possible

states.

Chapter 5 – Scheduling environments and agent performance 71

Furthermore, the addition of a fourth worker was necessary to achieve higher learning

rates and stabilize learning, as was demonstrated by agent A9. The optimal policies

were applied in more than half of the cases. This is explained in one hand by the

additional variability introduced by random task buffer sampling which requires the

network to learn more than one optimal solution, and in the other, by the additional

challenge in minimizing entropy losses which depend on the complexity of the state

space. Despite this fact, if such networks would be applied in production environment,

where the agent will solely exploit what it learnt, rather than switching between

exploitation and exploration in hopes to refine its strategy, a more consistent

performance would be observed.

Dummy environment F
This final dummy environment tests learning of prior rules to schedule task of 4 types.

The environment is presented in Figure 44 and the candidate agents in Table 6.

The following are the additional challenges posed by the environment:

• Task buffer sequences are longer and not equally likely;

• Task attributes are embedded in vectors of size 3 using floats obtained by PCA,

instead of using binary values;

• For any given task buffer sequence, it is possible to deterministically reach

maximum reward, however there are intermediate states that hinder maximum

reward. The underlying general assumption to guide policy is: at every step,

select the policy that maximizes total cumulative reward, so that selection of

immediate action considers not only potential the immediate reward, but also

the reward of policies for future tasks.

Chapter 5 – Scheduling environments and agent performance 72

Figure 44 - Dummy environment F configuration

Bottom fields: Tag - Attribute name; Rectangle – Abbreviation; Clock – Slot factor; Pattern – Conditional probability.

Table 6 - RL Agent A9, A10, A11 and A12 configuration for dummy environment F

Structure

Name 𝛼 Clip Workers Hidden Nodes RNN

A9 .0001 40 4 2 16 0

A10 .0001 20 12 2 64 0

A11 .0001 10 16 2 128 0

A12 .0001 5 16 3 128 0

Varying parameters between the candidate RL agents are displayed using bold typeface.
𝛼 – Learning Rate; Clip – Gradient clip; Hidden – Number of hidden layers;

Nodes – Number of nodes per hidden layer; RNN – RNN size; Workers – Number of workers;

Quantitative analysis
Figure 45 demonstrates that the algorithm heuristic now underperforms the max reward

heuristic, since the choice of slot for a task may impact tasks downstream on the task

buffer, the algorithm will generally underperform when compared to the max reward

heuristic that sorts the task buffer before scheduling. Regarding the RL agents, the four

Chapter 5 – Scheduling environments and agent performance 73

took many more training episodes to train, but reached high scores, particularly the A12

agent, that applied optimal policies in 25% of the cases, and near optimal policies in

more than 50% of the cases.

Figure 46 demonstrates that value and policy losses were minimized and converged to

particularly small and less variant values for agents A11 and A12 which used 16

workers. All the agents minimized entropy, but still had room for convergence to steady

state, despite having reached near optimal solutions for agent A12 around episode

6500. Agent A9 entropy loss flattened around episode 6500.

Figure 45 - Reward results on dummy environment F

Reward per training epoch for RL agents on environment F.

Lines plot percentile 50 and the shaded areas plot the space between the percentile 25 and 75 for each RL agent.

Chapter 5 – Scheduling environments and agent performance 74

Figure 46 - RL Agent losses on dummy environment F

From left to right, value, policy and entropy losses across episodes for RL agents in dummy environment F.

Qualitative analysis
For most situations, agent A12 learned to maximize cumulative reward and find policies

that do not limit future reward, and thus frequently achieving maximum reward through

policies depicted in Figure 47. Note that learning multiple optimal policies paramount to

reach sustained maximum reward.

Figure 47 - Optimal solutions for dummy environment F

Agent A12 learned more than one policy to reach maximum reward consistently.

Discussion
Even though the state spaces increased by 4 orders of magnitude to 176 986 730

potential states, however the agents learned to perform well. Decreasing the learning

rate was once again necessary to prevent gradient overflows and stabilize learning.

Because of the increasing complexity of state space, additional network structure was

necessary for proper representation, and additional workers were necessary to increase

learning variability and increase the odds of observing less likely task buffer sequences.

The global increase in worker instances, hidden layers and layer nodes accounted for

the results obtained by algorithm A12. There was still room for further training and

improvement of the results as seen by the entropy loss evolution, however the results

obtained by the best agent were demonstrated to perform as well as, or possibly better

Chapter 5 – Scheduling environments and agent performance 75

than the heuristics, thus, being able to automatically capture the underlying structure of

the scheduling problems, and effectively amassing such knowledge to guide decision

and arrive at globally good quality solutions.

Real daily environment
This real environment tests whether the RL agent can perform on a real-world problem

setting. The environment is presented in Figure 44 and the candidate agents in Table 6.

The following are determinants of increasing state space complexity in the real

environment relative to Dummy Environment F:

• The task buffer increased from 8 to 18;

• Task attributes increased from 4 to 5;

• The total number of slots increased from 24 to 72.

This implies an increase in state space by many orders of magnitude. The environment

employs a set of real tasks attributes from the Portuguese Primary Care Setting, whose

frequencies were estimated from a full-year of appointments at a Primary Care Clinic.

The schedule is composed of 10 minute slots, that can be used to hold tasks that

required either 2 or 3 of those slots, thus requiring 20 and 30 minutes respectively. The

total number of appointments sums up to between 6 and 9 working hours, rendering

common working time schedules for Primary Care Doctors. The slots structure is

presented in Figure 48, and the task attribute structure in Figure 49. Table 7 presents

the structure of the candidate agents that were used to perform the task. Because of

overflow problems the activation functions of these algorithms a few of the common

settings of changed as follows:

• Activation function – TanH was used to prevent gradient overflows;

• Loss regularization factor – 0.25 was used to prevent underfitting;

• Entropy regularization factor - 0.01 was used to prevent underfitting.

Finally, because of the real-world complexity of this environment, the performance of a

human agent with expert knowledge on Primary Care scheduling was also assessed.

Chapter 5 – Scheduling environments and agent performance 76

Figure 48 – Real daily environment slot structure

Chapter 5 – Scheduling environments and agent performance 77

Figure 49 – Real daily environment task attribute structure

Slots of 10 minutes are assumed. Task time factor and probabilities were estimated from Primary Care

data.
Tag - Attribute name; Rectangle – Abbreviation; Clock – Slot factor; Pattern – Conditional probability. Bottom fields:

Tag - Attribute name; Rectangle – Abbreviation; Clock – Slot factor; Pattern – Conditional probability.

Table 7 - RL Agent A13 and A14 configuration for Real daily environment

Structure

Name 𝛼 Clip Workers Hidden Nodes RNN

A13 .0001 20 12 3 256 0

A14 .0001 20 12 4 256 0

Varying parameters between the candidate RL agents are displayed using bold typeface.
𝛼 – Learning Rate; Clip – Gradient clip; Hidden – Number of hidden layers;

Nodes – Number of nodes per hidden layer; RNN – RNN size; Workers – Number of workers;

Quantitative analysis
Figure 50 shows that the unit process effect of the scheduling problem in Primary Care

makes the algorithm and the human agent significantly underperform relative to the max

heuristic that executes under perfect information. In addition, we can see that both

agents were able to achieve performance levels compared to the algorithm agent, in

particular agent A13. Figure 51 indicates that RL Agents minimized the losses for value

and policy, however entropy still did not level off for both algorithms, indicating that

there was still room for improvement, mainly for algorithm A14. Finally, since state

complexity grew notably for this environment, the number of training sessions to

achieve good performance also grew significantly, surpassing the 21000 mark for the

presented tests. In addition to the plotted results, the average computation time for a

single instance of the RL agent versus the algorithm agent were respectively 120ms and

56000ms. This denotes an increase in speed of more than 400 times of the RL agent

against the greedy heuristic of the algorithm agent.

Chapter 5 – Scheduling environments and agent performance 78

Figure 50 - Reward results on real daily environment

Reward per training epoch for RL agents on environment F.

Lines plot percentile 50 and the shaded areas plot the space between the percentile 25 and 75 for each RL agent.

Figure 51 - RL Agent losses on real daily environment

From left to right, value, policy and entropy losses across episodes for RL agents in dummy environment F.

Qualitative analysis
Both algorithms A13 and A14 arrived at good solutions frequently, even though they did

not know beforehand what type of tasks would they be required to schedule. The

algorithm groups similar tasks together and leaves enough space between

appointments. Some appointments are spaced far apart in a failed attempt make room

for similar tasks that could have arrived in the future but that did not. Because leaving

Chapter 5 – Scheduling environments and agent performance 79

empty slots did not yield high penalties, the algorithm prioritizes grouping and avoiding

overlaps over blank spaces.

Figure 52 - Optimal solutions for real daily environment

Agent A13 arrived at nearly optimal solutions frequently.

Chapter 5 – Scheduling environments and agent performance 80

Discussion
Even though the state spaces increased substantially RL agents learned to perform

nearly the same level as the algorithm agent. Changing the activation function was

crucial for stable learning, since other agents exhibited significant overflow problems

around episode 6000 which rendered further learning impossible. To balance training

stability and performance in the face of a different activation function, the number of

worker instances was lowered to 12. This was shown to be the minimum required to

avoid RL agent instability and consequential forgetting of the learning rules, which also

became quite common in the longer training sessions. Further improving the number of

instances would stabilize learning and reduce the overall episode count, however the

total training time increased substantially due to the increased parallel work. It was also

seen that training for A14 could be extended for further episodes to reach better results,

as can be seen by the both the reward curve profile that did not level off, and from the

entropy chart. To some extent, prolonging A13 training could possibly yield marginally

better results.

Even though the RL agent performance approached the algorithm and the human

performance but did not surpass it, it was seen that it takes 400 times less time than

the algorithm agent to arrive at good enough solutions presented in the qualitative

analysis, thus making it feasible to use in a real-time setting, where computation time is

an important constraint. While the algorithm agent, decision time grows exponentially in

relation to task buffer size, and linearly with slot buffer size, the RL agent grows at most

linearly to the network, implying that for more complex environments, the algorithmic

agent may become unfeasible due to high computation costs.

Chapter 6 – Discussion and future work 81

Chapter 6

Discussion and Future Work
In the present work, we have formulated the problem of task scheduling and applied it

in the context of Primary Care appointment scheduling. We defined the requirements

for feasible solutions for this problem, considering appointment scheduling models

according to the unit process, and suggested RL agents as promising algorithms.

Afterwards, we devised and developed a set of micro-services that compose an

integrated platform for creation, development and testing of specific appointment

scheduling environments, and studied the performance of RL agents in a set of

predefined environments of increasing difficulty. Finally, we have seen that RL agents

are able to learn the underlying rules that govern such environments that need to be

considered to arrive at optimal or near optimal scheduling solutions and meet

computation time constraints that simple heuristics failed to meet. Some issues were

raised along this path which we present below.

Patient scheduling is a POMDP requiring only knowledge of the current state

The formulation of this type of patient appointment scheduling is a POMDP. Indeed,

only knowledge of the present state is required to select an action and transition to the

next. Using RNN seemed interesting since it could allow experience from the past

states to influence the decision process in the next states. However, we have seen that

assumption does hinder the ability of the RL agent to learn. Because the action to

select depends only on the current state space, training the weights of the current

network without linking to past states results in a better approximation of the function

that maximizes learning.

Dummy environments demonstrated RL agent ability to maximize cumulative

reward

The increasing difficulty of the environments that were created exposed the need for the

model to learn to maximize global reward in place on immediate step reward. One

factor that contributed to such learning was giving reward only at the end of each

episode. That way the network had to create its own representation of the

accountability of reward of each decision it took. This design decision seems good,

since giving reward to the agent at every state may not lead to a generalized long-term

Chapter 6 – Discussion and future work 82

reward maximization strategy and let the agent focus on the relative benefit of each

task, and possibly converge to local optima corresponding to policies that would prefer

intermediate states for which not all tasks on the buffer were scheduled. In addition, this

formulation of the problem as rewarding global action instead of providing reward along

the steps is also aligned with the nature of the problem that the RL agent is intended to

surpass, which is that of probabilistic decision given incomplete information. The RL

agent demonstrated the ability of amassing such knowledge and take decision

considering that overarching goal.

Decision space is much lower dimensional than state space

We have also seen that the network structure required to achieve optimal and near-

optimal policy learning is small when compared to state space. This indicates that the

network learns to represent rules and policies instead of intermediate spaces, since

such spaces would could not possibly be represented in such small networks. We have

also seen that too small networks develop suboptimal policies that consistently lead to

a suboptimal result, and that small increments in layer numbers or duplication of nodes

per layer was enough to represent optimal and near-optimal policies.

Increasing the number of worker networks stabilizes and speeds up learning

Finally, we have seen that incrementing the number of workers frequently yielded faster

convergence to optimal policy. This in line with the findings that the increase in number

of instance networks of the A3C algorithms drops training time in a linear way [37]. This

makes utilization of hardware resources more efficient, and makes it possible to train RL

agents with optimal performance in commodity hardware. In addition, such approach

also decreases overall iteration development iteration time, making the development

process more efficient than with other implementations.

Furthermore, while the real daily environment presented complexity levels real Primary

Care daily schedules, further improvements are needed to completely model the

scheduling problem for suitable used in production setting. Next, we present the steps

and challenges that need to be considered in future work to develop RL agents for real

world application.

Development of predefined schedule templates

We have devised a problem in which the RL agent learns to schedule tasks on an

empty schedule. Even though the agent does need to learn actions for intermediate

Chapter 6 – Discussion and future work 83

schedules to arrive at the final solution, a well-trained RL agent could be use in practice

to develop and suggest schedule templates, that could be used to effectively schedule

appointments taking into consideration appointment frequencies and requirements. This

would be useful because even though schedules need to be reviewed frequently, they

should ideally change in a step-wise fashion and not in a continuous fashion, to better

serve the needs of doctors and avoid the novelty and surprise that continuously

updating schedule structure would create.

Training agents to act on partially filled schedules

After having created scheduling templates, scheduling task could be extended to take

two steps. Before selecting a slot from the schedule, the RL agent should choose from

a set of pre-filled schedules, that correspond to each working week. This two-step

approach would have the benefit of providing the RL agent with additional opportunities

to find the best scheduling solutions, and it would also map directly to the scheduling

task performed by the doctors during appointments, in which the doctor needs to

consider the problem of scheduling the patient in a slot, as well as spacing the

appointments for the patient within the recommended or required timeframe.

Environment reward design

Environment reward plays a key role in the ability of the RL agent to learn. Poor reward

design decisions may result in the agent not learning the underlying environment rules,

of choosing suboptimal action. Because in real-world scenarios the number of slots is

expected to be much larger than in the dummy environments presented, the number of

steps per episode is bound to increase by one order of magnitude. This poses a

challenge for the algorithm to weigh the accountability of each single action to reach the

reward. As such, it might be important to consider intermediate checkpoints where

reward is given at a specified number of steps of an episode and training is performed

not only at the end, but also during the episode. In addition, a stale slot factor should be

added to control the weight of the penalties incurred by leaving empty slots, which

becomes relevant in real-world schedules composed of slots of short duration and

tasks taking numerous slots.

Same-day appointments and multiple doctor schedules

The model can also be enriched to accommodate same-day appointments. Because

the challenges of scheduling same-day appointments have mainly to do with how

Chapter 6 – Discussion and future work 84

same-day appointment slots are distributed across doctors to provision adequate

demand during the day, considering this problem also requires development of

scheduling algorithms that take on multiple schedules at once. That goal can be

achieved using the number of weeks to model multiple separate schedules for each

doctor, and current additional reward rules needed to be designed to compute bonus

or penalties of solutions that provision same-day slots as required by the observed

distribution of same-day appointment demand.

Lateness, no-shows and interruptions

An additional variable that can be taken into consideration when creating task attributes

is the probability for lateness and no-show. Such probabilities would allow the model to

design scheduling schemes that incorporate relevant factors that drive increasing

waiting times and doctor and patient dissatisfaction. In addition, interruptions can be

modeled as slot attributes that indicate the probability of interruption and interruption

duration at a given time. That way the RL agent could also consider moving

appointments that are prone to take longer away from the moments in which

interruptions are likely to appear. Small slot costs, implemented in the current system

could also be used to model the problem.

Assess transfer learning as means to adapt agents to small environment shifts

Because the task attribute probabilities and slot costs can suffer small changes

overtime, it is worthwhile to assess how pre-trained algorithms adapt to these changes

and how much time they require to achieve optimal performance in comparison to

training the algorithms from scratch. More complex changes may need additional

training since policies very different from the ones the RL agent learned may be needed

to reach good results.

Online performance assessment

Finally, online agent performance assessment becomes necessary. That is because the

agent is expected to learn during offline training phase, and then perform tasks in

production without trying to learn new strategies. Provided that appointment attributes

and distributions come from real-world data, it is expected that when exploiting, the RL

agent performs equally well in both environments. However, if the agent can learn online

in production environment, the balance between exploitation and exploration may

hinder performance in real world, if the agents chooses to explore different actions.

Chapter 6 – Discussion and future work 85

Thus, not only does an RL agent performance needs to be measured when solely

exploiting, to estimate the fitness for a production environment, but also, it should

refrain from learning, and apply only the acquired knowledge. That way the performance

of the agent is expected to increase and become more consistent.

RL agent algorithm upgrades

Recent advances have hypothesized that variations in the structure of the A3C

algorithm may further increase its learning speed and overall performance. Namely, it

seems that making A3C instances synchronous may yield faster learning than A3C, an

algorithm named A2C [85].In addition, using trust region optimization leads to

consistent improvement, and the use of a distributed Kronecker factorization method

seems to improve sample efficiency and scalability, yielding and algorithm named Actor

Critic using Kronecker-factored Trust Region [85]. Upgrading the current A3C algorithm

with such methods may also improve the overall performance of RL agents in this

setting.

Taking these considerations to extend the present work may lead to production-ready

RL agents able to effectively replace doctors and clerks in scheduling appointments in

the Primary Care setting, and ultimately improve the quality of provided healthcare.

References
[1] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource Management with

Deep Reinforcement Learning.,” in HotNets, 2016, pp. 50–56.

[2] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and QoS-aware cluster

management,” in ACM SIGPLAN Notices, 2014, vol. 49, pp. 127–144.

[3] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella, “Multi-resource

packing for cluster schedulers,” ACM SIGCOMM Comput. Commun. Rev., vol.

44, no. 4, pp. 455–466, 2015.

[4] Y. Sun et al., “Cs2p: Improving video bitrate selection and adaptation with data-

driven throughput prediction,” in Proceedings of the 2016 conference on ACM

SIGCOMM 2016 Conference, 2016, pp. 272–285.

[5] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56, no. 2, pp.

74–80, 2013.

[6] S. Sahni and Y. Cho, “Complexity of scheduling shops with no wait in process,”

Math. Oper. Res., vol. 4, no. 4, pp. 448–457, 1979.

[7] M. C. Gombolay, R. Jensen, J. Stigile, S.-H. Son, and J. A. Shah, “Apprenticeship

Scheduling: Learning to Schedule from Human Experts.,” in IJCAI, 2016, pp. 826–

833.

[8] S. M. Kehle, N. Greer, I. Rutks, and T. Wilt, “Interventions to improve veterans’

access to care: a systematic review of the literature,” J. Gen. Intern. Med., vol. 26,

no. 2, p. 689, 2011.

[9] S. D. Pizer and J. C. Prentice, “What are the consequences of waiting for health

care in the veteran population?,” J. Gen. Intern. Med., vol. 26, no. 2, p. 676, 2011.

[10] T. Cayirli and E. Veral, “Outpatient scheduling in health care: a review of literature,”

Prod. Oper. Manag., vol. 12, no. 4, pp. 519–549, 2003.

[11] J. Goldsmith, “The hospital as we know it is too costly, too unwieldly, and too

inflexible to survive. A radical prescription for hospitals.,” Harv. Bus. Rev., vol. 67,

no. 3, pp. 104–111, 1988.

[12] X.-M. Huang, “Patient attitude towards waiting in an outpatient clinic and its

applications,” Health Serv. Manage. Res., vol. 7, no. 1, pp. 2–8, 1994.

[13] A. Jackson, “A waiting time survey in general practice.,” Aust. Fam. Physician, vol.

20, no. 12, pp. 1744–7, 1991.

[14] C.-F. Chien, F.-P. Tseng, and C.-H. Chen, “An evolutionary approach to

rehabilitation patient scheduling: A case study,” Eur. J. Oper. Res., vol. 189, no. 3,

pp. 1234–1253, 2008.

[15] J. Canet et al., “Development and validation of a score to predict postoperative

respiratory failure in a multicentre European cohort: A prospective, observational

study,” Eur. J. Anaesthesiol., vol. 32, no. 7, pp. 458–470, Jul. 2015.

[16] N. Liu, S. Ziya, and V. G. Kulkarni, “Dynamic scheduling of outpatient appointments

under patient no-shows and cancellations,” Manuf. Serv. Oper. Manag., vol. 12,

no. 2, pp. 347–364, 2010.

[17] J. Patrick, M. L. Puterman, and M. Queyranne, “Dynamic multipriority patient

scheduling for a diagnostic resource,” Oper. Res., vol. 56, no. 6, pp. 1507–1525,

2008.

[18] J. Strahl and others, “Patient appointment scheduling system: with supervised

learning prediction,” 2015.

[19] D. Gupta and B. Denton, “Appointment scheduling in health care: Challenges and

opportunities,” IIE Trans., vol. 40, no. 9, pp. 800–819, 2008.

[20] N. P. H. Trust and U. of Bristol, Studies in the Functions and Design of Hospitals:

The Report of an Investigation Sponsored by the Nuffield Provincial Hospitals Trust

and the University of Bristol. Oxford University Press, 1955.

[21] J. F. Rockart and P. B. Hofmann, “Physician and patient behavior under different

scheduling systems in a hospital outpatient department,” Med. Care, pp. 463–

470, 1969.

[22] M. Murray and C. Tantau, “Same-day appointments: exploding the access

paradigm,” Fam. Pract. Manag., vol. 7, no. 8, p. 45, 2000.

[23] Y. Arzi, “On-line scheduling in a multi-cell flexible manufacturing system,” Int. J.

Prod. Res., vol. 33, no. 12, pp. 3283–3300, 1995.

[24] S. Russell, P. Norvig, and A. Intelligence, “Artificial Intelligence, a modern

approach,” Prentice-Hall Englewood Cliffs, vol. 25, p. 27, 1995.

[25] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr, “A survey on

metaheuristics for stochastic combinatorial optimization,” Nat. Comput., vol. 8, no.

2, pp. 239–287, 2009.

[26] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview and

conceptual comparison,” ACM Comput. Surv. CSUR, vol. 35, no. 3, pp. 268–308,

2003.

[27] D. Sun and L. Lin, “A dynamic job shop scheduling framework: a backward

approach,” Int. J. Prod. Res., vol. 32, no. 4, pp. 967–985, 1994.

[28] S. Nakasuka and T. Yoshida, “Dynamic scheduling system utilizing machine

learning as a knowledge acquisition tool,” Int. J. Prod. Res., vol. 30, no. 2, pp.

411–431, 1992.

[29] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda, “Purposive behavior

acquisition for a real robot by vision-based reinforcement learning,” Mach. Learn.,

vol. 23, no. 2, pp. 279–303, 1996.

[30] R. Kohavi and F. Provost, “Glossary of terms,” Mach. Learn., vol. 30, no. 2–3, pp.

271–274, 1998.

[31] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst, Reinforcement learning and

dynamic programming using function approximators, vol. 39. CRC press, 2010.

[32] R. Glaubius, T. Tidwell, C. Gill, and W. D. Smart, “Real-time scheduling via

reinforcement learning,” ArXiv Prepr. ArXiv12033481, 2012.

[33] M. E. Aydin and E. Öztemel, “Dynamic job-shop scheduling using reinforcement

learning agents,” Robot. Auton. Syst., vol. 33, no. 2, pp. 169–178, 2000.

[34] R. S. Sutton and A. G. Barto, Reinforcement learning: An overview, vol. 1. MIT

press Cambridge, 1998.

[35] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature,

vol. 518, no. 7540, pp. 529–533, 2015.

[36] D. Silver et al., “Mastering the game of Go with deep neural networks and tree

search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[37] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,” in

International Conference on Machine Learning, 2016, pp. 1928–1937.

[38] Y. Li, “Deep reinforcement learning: An overview,” ArXiv Prepr. ArXiv170107274,

2017.

[39] “Log Analytics With Deep Learning And Machine Learning,” Hackernoon, 12-May-

2017. .

[40] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann

machines,” in Proceedings of the 27th international conference on machine

learning (ICML-10), 2010, pp. 807–814.

[41] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in

Proceedings of the Fourteenth International Conference on Artificial Intelligence

and Statistics, 2011, pp. 315–323.

[42] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Netw.,

vol. 61, pp. 85–117, 2015.

[43] A. Graves, M. Liwicki, H. Bunke, J. Schmidhuber, and S. Fernández,

“Unconstrained on-line handwriting recognition with recurrent neural networks,” in

Advances in Neural Information Processing Systems, 2008, pp. 577–584.

[44] H. M. Fayek, M. Lech, and L. Cavedon, “Evaluating deep learning architectures for

Speech Emotion Recognition,” Neural Netw., 2017.

[45] S. Hochreiter and J. Schmidhuber, “LSTM can solve hard long time lag problems,”

in Advances in neural information processing systems, 1997, pp. 473–479.

[46] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep recurrent

neural networks,” in Acoustics, speech and signal processing (icassp), 2013 ieee

international conference on, 2013, pp. 6645–6649.

[47] L.-Y. Deng, The cross-entropy method: a unified approach to combinatorial

optimization, Monte-Carlo simulation, and machine learning. Taylor & Francis,

2006.

[48] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations

by error propagation,” California Univ San Diego La Jolla Inst for Cognitive

Science, 1985.

[49] P. J. Werbos, “Backpropagation through time: what it does and how to do it,” Proc.

IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[50] Y. Dauphin, H. de Vries, and Y. Bengio, “Equilibrated adaptive learning rates for

non-convex optimization,” in Advances in neural information processing systems,

2015, pp. 1504–1512.

[51] A. Y. Ng, “Feature selection, L 1 vs. L 2 regularization, and rotational invariance,” in

Proceedings of the twenty-first international conference on Machine learning,

2004, p. 78.

[52] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting.,” J. Mach.

Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[53] D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-dynamic programming: an overview,” in

Decision and Control, 1995., Proceedings of the 34th IEEE Conference on, 1995,

vol. 1, pp. 560–564.

[54] R. S. Sutton, “Temporal credit assignment in reinforcement learning,” 1984.

[55] R. S. Sutton and A. G. Barto, Reinforcement learning: An overview, 2nd Edition (In

Preparation)., vol. 1. MIT press Cambridge, 2017.

[56] E. A. Feinberg and A. Shwartz, Handbook of Markov decision processes: methods

and applications, vol. 40. Springer Science & Business Media, 2012.

[57] A. Markov, “Extension of the limit theorems of probability theory to a sum of

variables connected in a chain,” 1971.

[58] A. M. Schäfer, “Reinforcement learning with recurrent neural networks,” 2008.

[59] M. L. Puterman, Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons, 2014.

[60] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas, Dynamic

programming and optimal control, vol. 1. Athena scientific Belmont, MA, 1995.

[61] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Mach.

Learn., vol. 3, no. 1, pp. 9–44, 1988.

[62] N. Metropolis and S. Ulam, “The monte carlo method,” J. Am. Stat. Assoc., vol. 44,

no. 247, pp. 335–341, 1949.

[63] G. Tesauro, “Td-gammon: A self-teaching backgammon program,” in Applications

of Neural Networks, Springer, 1995, pp. 267–285.

[64] M. Riedmiller, “Neural fitted Q iteration-first experiences with a data efficient neural

reinforcement learning method,” in ECML, 2005, vol. 3720, pp. 317–328.

[65] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy

optimization,” in Proceedings of the 32nd International Conference on Machine

Learning (ICML-15), 2015, pp. 1889–1897.

[66] V. Mnih et al., “Playing atari with deep reinforcement learning,” ArXiv Prepr.

ArXiv13125602, 2013.

[67] H. Van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning with Double

Q-Learning.,” in AAAI, 2016, pp. 2094–2100.

[68] C. J. C. H. Watkins, “Learning from delayed rewards,” King’s College, Cambridge,

1989.

[69] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist

reinforcement learning,” Mach. Learn., vol. 8, no. 3–4, pp. 229–256, 1992.

[70] T. Degris, M. White, and R. S. Sutton, “Off-policy actor-critic,” ArXiv Prepr.

ArXiv12054839, 2012.

[71] A. Nair et al., “Massively parallel methods for deep reinforcement learning,” ArXiv

Prepr. ArXiv150704296, 2015.

[72] R. J. Williams and J. Peng, “Function optimization using connectionist

reinforcement learning algorithms,” Connect. Sci., vol. 3, no. 3, pp. 241–268,

1991.

[73] M. Abadi et al., “Tensorflow: Large-scale machine learning on heterogeneous

distributed systems,” ArXiv Prepr. ArXiv160304467, 2016.

[74] T. P. Vogl, J. Mangis, A. Rigler, W. Zink, and D. Alkon, “Accelerating the

convergence of the back-propagation method,” Biol. Cybern., vol. 59, no. 4, pp.

257–263, 1988.

[75] J. Fink, “Docker: a software as a service, operating system-level virtualization

framework,” Code4Lib J., vol. 25, 2014.

[76] P. Hintjens, ZeroMQ: messaging for many applications. O’Reilly Media, Inc., 2013.

[77] G. Bierman, M. Abadi, and M. Torgersen, “Understanding typescript,” in European

Conference on Object-Oriented Programming, 2014, pp. 257–281.

[78] M. Piispanen, “Modern architecture for large web applications,” 2017.

[79] W. Reese, “Nginx: the high-performance web server and reverse proxy,” Linux J.,

vol. 2008, no. 173, p. 2, 2008.

[80] M. Grinberg, Flask web development: developing web applications with python.

O’Reilly Media, Inc., 2014.

[81] A. Thusoo et al., “Hive: a warehousing solution over a map-reduce framework,”

Proc. VLDB Endow., vol. 2, no. 2, pp. 1626–1629, 2009.

[82] R Core Team, R: A Language and Environment for Statistical Computing. Vienna,

Austria: R Foundation for Statistical Computing, 2013.

[83] “Dinghy faster, friendlier Docker on OS X,” 25-Sep-2017. .

[84] J. Watson, “Virtualbox: bits and bytes masquerading as machines,” Linux J., vol.

2008, no. 166, p. 1, 2008.

[85] Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba, “Scalable trust-region method

for deep reinforcement learning using Kronecker-factored approximation,” ArXiv

Prepr. ArXiv170805144, 2017.

