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Abstract: Microalgae are well known for their biotechnological potential, namely with 

regard to bioactive lipidic components—especially carotenoids and polyunsaturated fatty 

acids (PUFA), well-known for therapeutic applications based on their antioxidant capacity. 

The aim of this work was to evaluate the influence of four distinct food-grade solvents 

upon extractability of specific lipidic components, and on the antioxidant capacity exhibited 

against both synthetic (2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2′-azinobis-(3-

ethylbenzothiazoline-6-sulfonic acid (ABTS+•)) and biological reactive species (O2
• and 
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•NO). A eukaryotic microalga (Scenedesmus obliquus (M2-1)) and a prokaryotic one 

(Gloeothece sp.) were used as case studies. Concerning total antioxidant capacity, the 

hexane:isopropanol (3:2) and acetone extracts of Sc. obliquus (M2-1) were the most 

effective against DPPH• and ABTS+•, respectively. Gloeothece sp. ethanol extracts were 

the most interesting scavengers of O2
•, probably due the high content of linolenic acid. On 

the other hand, acetone and hexane:isopropanol (3:2) extracts were the most interesting ones 

in •NO assay. Acetone extract exhibited the best results for the ABTS assay, likely associated 

to its content of carotenoids, in both microalgae. Otherwise, ethanol stood out in PUFA 

extraction. Therefore, profiles of lipidic components extracted are critical for evaluating 

the antioxidant performance—which appears to hinge, in particular, on the balance 

between carotenoids and PUFAs. 

Keywords: carotenoid; PUFA; extract; microalga; cyanobacteria; ABTS+•; DPPH•; 

superoxide (O2
•−) assay; nitric oxide (•NO) assay 

 

1. Introduction 

Reactive oxygen species (ROS) naturally occur as byproducts of aerobic metabolism. In microalgae 

under non-stress conditions, the production and scavenging of ROS remain in equilibrium [1]. However, 

several environmental stress factors, such as pollution, drought, high temperature, excessive light 

intensity, and nutritional limitation may increase the production of ROS, thus inducing oxidative stress. 

The formation of these unstable, yet very reactive radicals, can trigger human diseases—e.g., cancer 

and cardiovascular diseases—owing to the damage caused in proteins, DNA and lipids [1,2]. 

Photosynthetic organisms, like microalgae, are able to counteract the aforementioned negative effects 

via a number of enzymatic and non-enzymatic mechanisms [1]. Lipidic components as carotenoids and 

polyunsaturated fatty acids (PUFA) are two examples of non-enzymatic classes of molecules able to 

protect the organism from oxidative damage [2,3]. A particular interest has been received by these two 

families of compounds due their great potential in industrial formulation of nutra- and pharmaceutical 

products [4]. PUFA, found in microalgae as components of polar and neutral lipids, include linoleic 

(18:2), α-linolenic (18:3), arachidonic (20:4), eicosapentaenoic (20:5) and docosahexaenoic (22:6), 

among others; they are valuable for humans due to their physiological roles in cells—as precursors and 

primary preventers of health conditions, e.g., as anti-inflammatory or neuroprotective agents [5–7]. 

Besides being excellent singlet oxygen scavengers suitable for use as food colorants, carotenoids may 

be employed as dietary supplements in cosmetics and nutraceuticals [8]. In particular, lutein has 

proven to alleviate cardiovascular diseases, some types of cancer and degenerative human diseases [9]. 

Hence, combined extraction of these lipidic compounds appears crucial in attempts to maximize their 

extra added value in nutra- and pharmaceutical formulations. 

The mode of recovery of functional ingredients from natural matrices should be carefully addressed. 

There is indeed a need to combine appropriate, selective, cost-effective, and environment-friendly 

extraction procedures with legal requirements regarding use of food-grade solvents and processes. 

Extraction costs of microalgal intracellular metabolites are normally high; the downstream separation 
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stages may account for 50%–80% of the total production costs [10]. Despite the worldwide increasing 

interest in lipidic components of microalgae, there is no optimum standardized method for their extraction. 

It has been established that efficient extraction of lipids is strongly dependent on the polarity of the 

organic solvent or solvent mixture employed [11]; however, other issues such as location of compound 

inside the cell have to be addressed, depending on cell structures complexity. 

Based on their physicochemical characteristics, microalgal lipids can be divided into two major 

types: polar lipids, e.g., phospholipids and glycolipids; and neutral/non-polar lipids, e.g., mono-, di- 

and tri-acylglycerols (TAG) and carotenoids [11,12]. Polar lipids are important structural components 

of cell membranes and organelles, where they apparently operate as signal molecules (or precursors 

thereof). Among non-polar lipids, TAG are the most widespread group of compounds aimed at 

storage—and are accumulated as cytoplasmic oil bodies [7]. 

Carotenoids are hydrophobic molecules that, depending on their role, can be divided in two 

categories—primary and secondary ones. Primary carotenoids—including β-carotene and such 

xanthophylls as lutein, neoxanthin, violaxanthin, antheraxanthin, and zeaxanthin (in Chlorophyta), are 

contained within the non-polar “pouches” of the thylakoid membrane, and are pigment-protein complexes 

of photosynthetic apparatus so they essentially do not interact with the hydrophilic environment [13]. 

Secondary carotenoids, like astaxanthin, are often esterified by fatty acids and accumulated in ester 

form—being accumulated in oil bodies and plastoglobuli [13]. 

Neutral lipids are extracted with relatively non-polar solvents, such as hexane, whereas  

membrane-associated lipids are more polar, thus demanding such polar solvents as ethanol or  

methanol to disrupt hydrogen bonds and electrostatic forces. 

The efficiency of extraction of lipids is highly dependent on polarity of the organic solvent or 

solvent mixture used. In general, solvent mixtures containing a polar and a non-polar component are 

able to extract a greater amount of lipids [12]. Hexane/isopropanol (3:2) has accordingly proven to be 

one of the best non-halogenated solvent mixtures to extract fatty acids in Isochrysis galbana [13].  

By the same token, most extraction methods suitable for carotenoids resort to such organic solvents as 

hexane, ethanol, isopropanol, acetone, methanol, benzene, and petroleum ether [14,15]. Although 

carotenoids can be polar (e.g., lutein) and nonpolar (e.g., β-carotene or carotenoids in ester form), the 

former is easily dissolved in polar solvents (e.g., acetone), while the latter is easily dissolved in 

nonpolar solvents (e.g., petroleum ether or hexane) [16]. 

Therefore, food GRAS (Generally Recognized as Safe) solvents with lower environmental impact 

and toxicity were selected for this work. Ethyl lactate was chosen as alternative to ethyl acetate and 

halogenated solvents. It is environment-friendly and fully biodegradable into CO2 and water. Its use 

has been approved for food products by U.S. Food and Drug Administration, and its miscibility with 

both hydrophilic and hydrophobic compounds make it appropriate to extract a diverse range of 

metabolites, namely carotenoids (in their stereoisomeric forms) and PUFA [17]. Ethanol and isopropanol, 

two short chain alcohols, have been proposed as alternative extracting solvents due to their greater 

safety and lack of regulatory problems, namely for extraction of carotenoids [8]. 

In attempts to cover a large range of polarities consistent with the various lipidic components of 

interest in microalgae, the next five food grade solvents were selected based on literature searches 

including data on their relative polarities: hexane, 0.009; acetone, 0.355; ethyl lactate, 0.460; 
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isopropanol, 0.617; and ethanol, 0.654. Experimentation was conducted with plain ethanol, plain 

acetone, a mixture of hexane/isopropanol (3:2) (v/v) and plain ethyl lactate. 

Due to the absence of a standard extraction method for lipidic components, our motivation was to 

investigate the potential impact of the aforementioned food grade solvents upon extraction, and assess 

the bioactivity potential of the extracts afterwards. The target compounds were carotenoids and PUFA, 

and the tested species were representative of two levels of cell complexity, i.e., Gloeothece sp. 

(prokaryote) and Scenedesmus obliquus (Sc. obliquus) (M2-1) (eukaryote). The antioxidant scavenging 

capacity was measured by four distinct assays: total activity (2,2′-azinobis-(3-ethylbenzothiazoline-6-

sulfonic acid (ABTS+•) and 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radicals), and superoxide (O2
•−) 

and nitric oxide (•NO) radicals. Our findings may be useful in efforts to design more selective 

extraction protocols, and further incorporation of the extract obtained in food or cosmetics formulation 

based on the antioxidant potential attained. 

2. Results and Discussion 

2.1. Microalgae Production and Harvesting 

Microalgae species were selected based on earlier studies by Guedes et al. [18]. They found that 

intracellular extracts of Sc. obliquus (strain M2-1) possess a high antioxidant capacity when compared 

with other strains of Scenedesmus. Moreover, its scavenging activity was well correlated with protective 

effects against DNA oxidative damage, with no mutagenic effects. It was also found that the maximum 

production of antioxidant compounds took place in the plain exponential phase, coinciding with the 

maximum peak production of lutein and β-carotene—thus suggesting a correlation between antioxidant 

capacity and presence of those carotenoids. Additionally, Sc. obliquus (M2-1) was also shown to have 

high content in PUFA, namely linoleic acid C18:2 (n-6) [6,18]. In the same study, Gloeothece sp. was 

revealed to possess antioxidant potential and an interesting profile of PUFA [6,18]. The growth 

conditions selected for biomass production were 25 °C and pH 8, based in an earlier study [19]. 

In order to fold best antioxidant potential of each microalga, culture time was selected based on 

growth curves and evolution in total antioxidant capacity (Figure 1). 

 

Figure 1. Variation in time of biomass expressed as natural logarithm of dry weight  

(Ln DW) (mean ± standard deviation) (—), and variation of intracellular extract 

antioxidant capacity expressed as ratio of trolox equivalent (TE) antioxidant capacity to 

dry weight (DW) (mean ± standard deviation) (---), for Gloeothece sp. (A) and  

Scenedesmus obliquus (M2-1) (B). 
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Inspection of Figure 1 unfolds a maximum antioxidant intracellular capacity of both species in the 

intermediate exponential phase by 14 days of growth; hence, this was established as biomass 

harvesting day for subsequent use in lipidic extraction assays 

2.2. Extracts Characterization 

The principles underlying organic solvent extraction of microalgal lipidic compounds are anchored 

on the basic chemistry concept of “like dissolving like”. Due to the interactions between their long 

hydrophobic fatty acid chains, neutral lipids—such as TAG and carotenoids [11]—contribute to weak 

van der Waals attractions between one another, leading to the formation of globules in the  

cytoplasm [11]. 

A five-step protocol for organic solvent extraction has been proposed by Halim et al. [20], 

applicable to either non-polar or polar solvents. When a microalgal cell is exposed to a non-polar 

organic solvent, such as hexane: (1) the organic solvent penetrates through the cell membrane into the 

cytoplasm; (2) interacts with the neutral lipids via van der Waals forces alike; (3) an organic  

solvent-lipids complex is formed; (4) driven by a concentration gradient, the lipid complex diffuses 

across the cell membrane; and (5) said complex eventually crosses the static organic solvent film 

surrounding the cell into the bulk organic solvent. As a result, the neutral lipids are extracted out of the 

cells and remain dissolved in the non-polar organic solvent. A static organic solvent film is formed 

because the interaction between organic solvent and cell wall remains undisturbed for every rate of 

solvent flow or agitation. Some neutral lipids are, however, found in the cytoplasm complexed with 

polar lipids; such complexes are strongly linked via hydrogen bonds to proteins in the cell membrane. 

The van der Waals interactions between non-polar organic solvent and neutral lipids in the complex 

are insufficient to disrupt the membrane-based lipid-protein associations. Conversely, polar organic 

solvents (e.g., ethanol, isopropanol or acetone) can disrupt the lipid–protein associations by forming 

hydrogen bonds with the polar lipids in the complex [11]. 

The mechanism of extraction of membrane-associated lipids by the mixture of non-polar/polar 

organic solvent follows the same major principles, except for minor differences arising from the solvent 

nature: (1) the organic solvent (both non-polar and polar) penetrates the cell membrane into the 

cytoplasm; (2) the solvent then interacts with the lipid complex—the non-polar organic solvent 

surrounds the lipid complex and enrolls in van der Waals associations with the neutral lipids of the 

complex, while the polar organic solvent surrounds the lipid complex and forms hydrogen bonds with 

the polar lipids in the complex, strong enough to counteract the lipid-protein associations binding the 

lipid complex to the cell membrane; (3) an organic solvent-lipid complex is formed, and dissociates 

away from the cell membrane; (4) the organic solvent-lipid complex diffuses across the cell membrane; 

and (5) said entity crosses the static organic solvent film surrounding the cell into the bulk organic solvent. 

Consequently, the addition of a polar organic solvent to a non-polar organic solvent facilitates 

extraction of membrane-associated neutral lipid complexes. However, the process inevitably leads to 

co-extraction of polar lipids [11]. 

In this regard, it is expected that compound intracellular location affects its extractability by distinct 

solvents. Resorting to the solvents chosen, it was possible to produce extracts with different composition 
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and, consequently, distinct antioxidant capacity, as discussed next in 2.2.1. Antioxidant  

Capacity section. 

Numerous methods are used to assess the antioxidant capacity of natural compounds in biological 

systems. Two free radical scavenging methods commonly used involve ABTS+• and DPPH•, yet both 

such radicals are foreign to biological systems. ABTS+• assays measures the relative ability of an 

antioxidant to scavenge the ABTS+• generated in aqueous and organic solvents, as in ethanol: water 

50:50 (v/v). Conversely, DPPH• is widely used to determine antiradical/antioxidant capacities, but acts 

only upon species generated in a methanol phase. Comparatively, ABTS+• also is more stable, so it can 

be used at different pH levels. DPPH• may also suffer from color interference, for instance in the case 

of anthocyanins or carotenoids, which leads to underestimation of antioxidant capacity; moreover, it 

was reported that this method may be more sensitive to phenolic antioxidants over time [20,21]. 

Therefore, there is some controversy in the applicability of these assays for carotenoid antioxidant 

capacity assessment [4,21,22]. In a report by Müller et al. [22], when comparing several methods to 

evaluate antioxidant capacity of carotenoids, DPPH• did not show any scavenging capacity. However, 

this method seems appropriate to measure antioxidant capacity of poly-unsaturated fatty acids, as is the 

case of conjugated linoleic acid [23]. Therefore, to avoid a misinterpretation of the total antiradical capacity 

of extracts, both DPPH• and ABTS+• assays were performed—thus allowed consistent confirmation of 

the relation between biochemical profile and results of said antioxidant assays (as described in the 

following sections). 

Nitric oxide (•NO−) and superoxide (O2
•−) are two of the six major reactive oxygen species causing 

oxidative damage in the human body [4]. The former is a short-lived free radical endogenously generated, 

involved in different physiological functions [24]. It interacts with lipids, DNA and proteins, via direct 

oxidative reactions or via indirect radical-mediated mechanisms. Hence, any antioxidant scavenging 

capacity against this radical may unfold a similar capacity in vivo and potential to prevent such 

diseases as chronic inflammatory diseases, cancer or neurodegenerative disorders [25]. On the other 

hand, superoxide radical is the first product of oxygen univalent reduction. Its biological significance 

derives from its ability to generate other more reactive species, like hydroxyl radical (•OH) and 

peroxynitrite (ONOO−), and induce major damages in vivo [26]. 

All extracts of both microalgae acted as scavengers of ABTS+•, DPPH•, O2
•− and •NO−, in a 

concentration-dependent manner, with topical exceptions. Data can be compared through calculation 

of inhibitory concentration (IC) values, as acquired by plotting inhibitory scavenging percentages for 

various extract concentrations. Extracts from the two microalgae exhibited distinct behavior for each 

scavenging assay (Table 1). 

Regarding ABTS+•, acetonic extracts of both Gloeothece sp. and Sc. obliquus (M2-1) attained the 

best IC50 values: 63 and 41 μg·mL−1, respectively. On other hand, the most active in scavenging 

DPPH• were the hexane:isopranol (3:2) extract of Scenedesmus obliquus and ethanol the extract of 

Gloeothece sp. (IC25 of 194 and 274 μg·mL−1, respectively). Therefore, with respect to synthetic 

reactive species, Scenedesmus obliquus (M2-1) conveyed the best results compared to Gloeothece sp.; 

however, the other three extracts of the latter displayed the best results in the assay against ABTS+•. 

In what concerns reactive species with biological significance, acetone and hexane:isopranol (3:2) 

extracts of Gloeothece sp. have strong activity against •NO−, both being quite similar (IC25 values of 6 

and 7 μg·mL−1, respectively). On the other hand, only the ethanol and hexane:isopranol (3:2) extracts 



Mar. Drugs 2015, 13 6459 

 

 

of Scenedesmus obliquus (M2-1) exhibited antioxidant capacity against this reactive nitrogen species 

(IC25 values of 15 and 20 μg·mL−1, respectively). Ethanol extracts of Gloeothece sp. and ethyl lactate 

extracts of Scenedesmus obliquus (M2-1) exhibited the best activities against O2
•−, described by IC25 of 54 

and 300 μg·mL−1, respectively. It is thus possible to conclude that each solvent system exerts different 

scavenging activity because of its composition. In order to establish some relationship between the 

observed activity and the lipidic composition, carotenoids and PUFA were quantified. 

Table 1. Comparison of antioxidant capacity of Gloeothece sp. and Scenedesmus obliquus 

(M2-1) extracts, in terms of IC (µg·mL−1) toward radicals ABTS+•, DPPH•, •NO− and O2
•−. 

Antioxidant Activity (µg·mL−1) 

 Solvent 
ABTS+• DPPH• •NO− O2

•− 

IC50 IC50 IC25 IC50 IC25 IC50 IC25

Gloeothece sp. 

Ethanol 75 629 274 - 23 247 54 
Ethyl lactate 129 - 927 82 25 - - 

Acetone 63 850 310 22 6 1394 278 
HI (3:2) 276 - 789 25 7 1183 357 

Scenedesmus obliquus (M2-1) 

Ethanol 87 - 633 - 15 637 416 
Ethyl lactate 195 878 261 - - 520 300 

Acetone 41 - 488 - - 826 620 
HI (3:2) 648 412 194 60 20 1236 513 

HI—Hexane: isopropalnol (3:2) v/v. 

Lipidic Composition 

As explained above, solvent polarity plays an important role on extractability of lipidic compounds 

due to the basic chemistry concept of “like dissolving like”. Moreover, it is important to remember that 

the cell location of the lipidic component is crucial for extraction because it needs to reach the 

compound into the cell. 

As stated before, xanthophylls are relatively hydrophobic molecules typically associated with 

membranes and/or involved in non-covalent binding to specific proteins. Primary carotenoids are 

structural and functional components of the photosynthetic apparatus, typically confined to the thylakoid 

membrane complex—with proteins only being disrupted by polar organic solvents able to form 

hydrogen bonds [14,27]. Secondary carotenoids are produced in large quantities by microalgal cells, 

only after exposure to specific environmental stimuli (carotenogenesis), being usually found in lipid 

vesicles—in either the plastid stroma or the cytosol [28]. 

In prokaryotic microalgae, such as Gloeothece sp., most xanthophylls are associated with 

chlorophyll-binding polypeptides of the photosynthetic apparatus [29]. In most green microalgae, 

carotenes and xanthophylls are synthesized within plastids, accumulating therein only. However, 

secondary xanthophylls in some green microalgae accumulate in the cytoplasm, which raises the 

possibility of an extra-plastidic site for carotenoid biosynthesis. Alternatively, xanthophylls synthesized 

in the chloroplast may be exported, and consequently accumulate in the cytoplasm—so, they may be 

found in essentially all cellular compartments [29]. 
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Prokaryotes and eukaryotes exhibit several structural differences in cell wall in terms of mechanical 

barrier. As it happens with several other members of the Chlorococcales family, the trilaminar structure 

of the outer wall layers of eukaryotic Scenedesmus species is composed of cellulose in the inner wall 

layers, and insoluble, acetolysis-resistant, lipid-containing biopolymerstermed algaenans localized in 

the trilaminar outer layer, thus contributing to cell wall rigidity [30,31]. Furthermore, prokaryotic 

Gloeothece species hold a typical Gram-negative cell wall, mainly of polysaccharide nature, which 

differs in thickness and consistency [32]. 

Besides solvent polarity, the cell structural complexity, including cell location of metabolites, of the 

two microalga under scrutiny affects lipidic component extractability. However, it is possible to propose a 

correlation between affinity of carotenoids for acetone and PUFA for ethanol (Tables 2 and 3). At a first 

glance, Gloeothece sp. extracts entail higher variety of carotenoids and higher total amount of PUFAs 

than their Scenedesmus obliquus (M2-1) counterparts. Species of the Scenedesmus genus possess 

particularly resistant cell walls, so extraction of carotenoids and fatty acids becomes  

notoriously difficult [33]. 

Acetone is a solvent widely used in pigment extraction, as it extracts most photosynthetic pigments 

with a wide range of polarity [28,34,35]. Our results indicate that acetonic extracts are the richest in 

carotenoids, particularly lutein. In Gloeothece sp., the lutein content corresponds to ca. 78% of the 

total quantified carotenoids (1.424 ± 0.079 µglutein·gDryWeight
−1—see Table 2) and in Scenedesmus 

obliquus (M2-1) corresponds to ca. 47% (1.392 ± 0.034 µglutein·gDW
−1—see Table 3). Conversely, 

violaxanthin and neoxanthin possess a significant expression in acetonic extract of Scenedesmus 

obliquus (M2-1), 22.7% and 25.5% of the total quantified carotenoids, respectively (Table 3). 

However, acetone is not selective only for carotenoids, since PUFA are also extracted. In acetonic 

extract of Scenedesmus obliquus (M2-1), the content of PUFA ranges from 50% in the case of oleic 

acid to 71% of linoleic acid in the ethanol extract, and linolenic acid is even more concentrated in 

acetonic extract (Table 3). This provides evidence of the dependence of the solvent ability to extract 

the feedstock species, as emphasized before [14]. 

Ethanol affinity for PUFA is clear; for example, it extracts 3–7.8-fold more linolenic acid from 

Gloeothece sp. than the other solvents (Table 2). Ethanol is also able to extract 10-fold more 

linolelaidic acid from both Gloeothece sp. and Scenedesmus obliquus (M2-1) than ethyl lactate  

(Table 2). Ethanol can extract carotenoids as well, but at a lower rate; for instance, Gloeothece sp. 

ethanol extract contains 1.5–3-fold less carotenoids than its acetonic counterpart, although an 

exception occurs in what concerns to violaxanthin that is extracted to three-fold higher extent than with 

acetone (Table 2). 

Ethanol has a different behavior in extracting carotenoids from Scenedesmus obliquus (M2-1), as it 

extracts three-fold less lutein and 1.7-fold less neoxanthin. Due to its lower affinity for carotenoids, it 

was not possible to quantify the remaining carotenoids. 

Ethyl lactate has been proposed to extract carotenoids, particularly lutein, from plant material [17]; 

however, its performance in the microalgae under the processing conditions used is below expectation, 

in view of the low level of extraction of carotenoids. Still, ethyl lactate showed some selectivity for 

lutein in both species (Tables 2 and 3). Ethyl lactate was able to extract PUFA as γ-linolenic acid from 

Spirulina sp. [36]. Ethyl lactate indeed extracted 6.185 ± 0.265 mgFattyAcids·gDW
−1 from Gloeothece sp., 

55% of that corresponding to linolenic acid; furthermore, it was the only solvent that extracted 
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linolelaidic acid to detectable levels (Table 2). On the contrary, ethyl lactate performance toward 

PUFA extraction from Scenedesmus obliquus (M2-1) rated the poorest—see Table 3. 

Previous studies have proven that hexane:isopropanol (3:2) mixture is one of the best non-halogenated 

solvent mixtures to extract fatty acids [14]. However, it only led to a reasonable result regarding the 

extraction of oleic and cis-vaccenic acid from Gloeothece sp. (Table 2), and, surprisingly, of the 

xanthophyll violaxanthin. With respect to Scenedesmus obliquus (M2-1), this solvent extracted  

1.849 ± 0.156 mgFA·gDW
−1 of total PUFA (Table 3). In addition to carotenoids and PUFA, 

hexane:isopropanol (3:2) has been claimed to extract more non-lipids (e.g., proteins and 

carbohydrates) than plain hexane, due to the polar nature of isopropanol [14]—which may have 

contributed to the low recovery of PUFA and carotenoids. 
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Table 2. Gloeothece sp. extracts lipidic profile in terms of carotenoids (µgcarotenoid·gDry Weight
−1) and PUFA (mgFattyAcids·gDW

−1) (mean ± standard deviation). 

 Carotenoids (µgcarotenoid·gDW
−1)  PUFA (mgFA·gDW

−1)  

Solvent Violaxanthin Neoxanthin Lutein α-Carotene β-Carotene Total Carotenoids Oleic cis-Vaccenic Linoleic Linolelaidic Linolenic Total PUFA 

Ethanol 0.181 ± 0.004 0.114 ± 0.004 0.822 ± 0.021 a 0.018 ± 0.001 0.122 ± 0.006 1.258 ± 0.022 b 0.771 ± 0.064 c - 2.250 ± 0.198 - 10.100 ± 0.212 13.219± 0.233 

Ethyl 

lactate 
0.067 ± 0.002 0.043 ± 0.001 0.424 ± 0.030 - 0.050 ± 0.002 0.584 ± 0.031 1.007 ± 0.192 0.264 ± 0.074 1.267 ± 0.200 0.201 ± 0.046 3.406 ± 0.111 6.185 ± 0.265 

Acetone 0.058 ± 0.005 0.180 ± 0.013 1.424 ± 0.079 0.057 ± 0.004 0.251 ± 0.004 1.806 ± 0.080 0.773 ± 0.054 c - 0.255 ± 0.30 - 1.286 ± 0.064 2.317 ± 0.106 

HI (3:2) 0.220 ± 0.008 0.086 ± 0.004 0.868 ± 0.015 a 0.056 ± 0.003 0.067 ± 0.002 1.301 ± 0.014 b 1.352 ± 0.032 0.689 ± 0.038 0.538 ± 0.098 - 2.631 ± 0.119 5.216 ± 0.126 

a–c Means within the same column, without a common superscript, are significantly different (p < 0.05). HI—Hexane: isopropanol (3:2) v/v. 

Table 3. Scenedesmus obliquus (M2-1) extracts lipidic profile in terms of carotenoids (µgcarotenoid·gDry Weight) and PUFA (mgFatty Acids·gDW
−1) 

(mean ± standard deviation). 

 Carotenoids (µgcarotenoid·g DW
−1) PUFA (mgFA·gDW

−1) 

Solvent Violaxanthin Neoxanthin Lutein β-Criptoxantin α-Carotene β-Carotene Total Carotenoids Oleic Linoleic Linolelaidic Linolenic Total PUFA 

Ethanol - 0.439 ± 0.019 0.464 ± 0.011 a - - - 0.904 ± 0.019 0.889 ± 0.060 1.045 ± 0.097 1.045 ± 0.097 0.932 ± 0.088 2.888 ± 0.078 

Ethyl 

lactate 
- - 0.156 ± 0.012 - - - 0.156 ± 0.012 0.320 ± 0.070 0.465 ± 0.012 0.147 ± 0.021 0.522 ± 0.078 1.454 ± 0.073 

Acetone 0.674 ± 0.057 0.759 ± 0.053 1.392 ± 0.034 0.019 ± 0.001 0.022 ± 0.011 0.100 ± 0.004 2.970 ± 0.068 0.427 ± 0.076 b 0.752 ± 0.22 a - 1.199 ± 0.089 2.381 ± 0.122 

HI (2:1) 0.020 ± 0.001 0.357 ± 0.009 0.420 ± 0.034 a - - - 0.797 ± 0.030 0.518 ± 0.055 b 0.734 ± 0.075 a - 0.577 ± 0.049 1.849 ± 0.156 

a,b Means within the same column, without a common superscript, are significantly different (p < 0.05). HI—Hexane: isopropanol (3:2) v/v. 
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2.3. Relation of Antioxidant Capacity with Carotenoid and PUFA Contents 

There are a number of reports on the evaluation of antioxidant capacity in prokaryotic and 

eukaryotic microalgae compounds from lipophilic and hydrophilic nature [19,37,38], but most of them 

have not performed antioxidant scavenging assays in lipid-rich extracts. An important and well-known 

class of antioxidants from microalgae are carotenoids, and they are already produced to commercial 

scale (e.g., astaxanthin from Haematococcus sp. and β-carotene from Dunaliella sp.) for use as additive 

in food and feed, as well as in cosmetics and as food supplements [39]. Flavonoids, sterol, reducing 

sugars and tannins may also exert antiradical or antioxidant capacities in alcoholic extracts [21].  

Their co-extraction may provide an explanation for some unexpected results of antioxidant capacity 

obtained with ethyl lactate and hexane:isopropanol (3:2) extracts from Scenedesmus obliquus (M2-1).  

One should take into account that synergic or antagonic interactions may occur between the compounds 

found in an extract. Hence, high amounts of a known antioxidant compound do not necessarily imply a 

high antioxidant activity, in view of the crude nature of the extracts obtained. 

ABTS+• assay was used before to evaluate the antioxidant capacity of carotenoid rich extracts 

(namely in lutein and β-carotene [40]. Upon inspection of Tables 1–3, it is possible to reach some 

conclusions: acetonic extracts of both microalgae species attained the best IC50 values in this assay and 

they contain the highest levels of carotenoids, namely of lutein and β-carotene. IC50 values found for 

ethyl lactate extracts and its selectivity to lutein suggests that this xanthophyll may be responsible for 

the main antioxidant capacity of these extracts. 

With regard to results in Tables 1, 2 and 3, one realizes that it is not always possible to make a 

correlation between carotenoids content and antiradical capacity, which is supported by the fact that 

some studies revealed that DPPH• does not detect carotenoids antioxidant capacity [4,21,22]. 

Furthermore, this assay was used to quantify the antioxidant capacity of conjugated linoleic acid [23]. 

Nevertheless, one concludes that ethanol extract of Gloeothece sp. is particularly rich in linoleic and 

linolenic acids, which, besides lutein, may contribute to the best IC25 values attained against O2
•− [23]. 

Ethanolic and acetonic extracts from Gloeothece sp. seem interesting from an antioxidant point of 

view. In terms of scavenging capacity, ethanolic extract attained the best results against DPPH• and 

O2
•−, while acetonic was the most effective against ABTS•+ and •NO−. These extracts have distinct 

contents of carotenoids and PUFA, which may explain the paired results. Ethanol extract is indeed 

richer in PUFA (13.219 ± 0.233 mgFA·gDW
−1—76.4% corresponding to linolenic acid and 17% linoleic 

acid) than in carotenoids (1.258 ± 0.022 µgcarotenoid·gDW
−1—65.3% lutein and 9.7% β-carotene); and 

acetonic extract is richer in carotenoids (1.806 ± 0.080 µgcarotenoid·gDW
–1—78.8% lutein and 13.9%  

β-carotene) than in PUFA (2.317 ± 0.106 mgFA·gDW
−1—55.5% linolenic acid and 11% linoleic acid). 

This pattern was not observed in Scenedesmus obliquus (M2-1) extracts; in fact, each extract exhibited a 

particular antioxidant activity. Acetonic extract was the most interesting in the ABTS•+ assay, possibly due 

to its distinctive content in lutein (1.392 ± 0.034 µgcarotenoid·gDW
−1—46.8% of total carotenoids). On the 

other hand, hexane:isopropanol (3:2) extract exhibited a great activity in the DPPH• assay and ethanolic 

extract in the •NO− assay, but these two extracts have three-fold less carotenoids than the acetonic 

extract, although PUFA within the same magnitude. Ethyl lactate exhibited the best IC25 in O2
•− assay 

(300 µg·mL−1) between Scenedesmus obliquus (M2-1) extracts, perhaps due to the great affinity of this 

solvent to lutein, which may exert an influence on its antioxidant capacity. 
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3. Experimental Section 

3.1. Microorganism Source and Growth Conditions 

Scenedesmus obliquus (M2-1) strain was previously isolated from Portuguese aquaculture biofilters, 

and cultivated using Optimal Haematococcus Medium (OHM) [41]. This species was selected due to 

its high antioxidant capacity [38]. Gloeothece sp. (ATCC 27152) was acquired from ATCC (American 

Type Culture Collection) (USA), and cultivated using Blue Green Medium (BG11) [42]. For each 4 L 

batch biomass production, a pre-inoculum with an initial optical density of 0.1 (at 560 nm or 680 nm 

for Gloeothece sp.) was cultivated for 10 days in 800 mL of buffered OHM or BG11 medium, with 

Tri-(hydroxymethyl)-aminomethane hydrochloride (Tris-HCl) aimed at maintaining a constant pH of 8. 

This pre-inoculum ensured that the microalga is at exponential growth phase by the time  

of inoculation. A continuous illumination with fluorescent BlOLUX lamps, with intensity of  

250 µmolphoton·m−2·s−1, was guaranteed, as well as air bubbling at a flow rate of 0.5 L·min−1. 

3.2. Biomass Quantification 

3.2.1. Optimization of Culture Time 

In order to choose the harvesting day yielding the best antioxidant potential, growth curves and 

associated antioxidant activity were obtained for both Gloeothece sp. and Scenedesmus obliquus. 

Microalga cultures were accordingly settled in triplicate, samples were taken over time, and assayed 

(in duplicate) for optical density (OD) and dry weight (DW). The OD was measured 

spectrophotometrically at 560 and 680 nm for Scenedesmus obliquus, and 680 nm for Gloeothece sp. 

(UV–Vis mini 1800, Shimadzu, Japan); these wavelengths correspond to the maximum and minimum 

culture absorption peaks. On the other hand, DW was determined by first filtering a volume of culture 

through preconditioned GF/C glass fiber filters (Whatman, UK) and drying at 100°C to constant 

weight. For the antioxidant capacity assessment, the procedure has been reported elsewhere [40]. 

3.2.2. Biomass Production 

Following the optimization in Section 2.1., the biomass production was performed as described in 

Section 3.1. for 14 days. It was then collected by centrifugation at 4000 rpm for 10 min, freeze-dried and 

stored under nitrogen at −20 °C prior to analysis. 

3.3. Lipidic Component Extraction 

To evaluate the influence of solvents in lipid extractability, four different solvents/mixtures were 

tested: ethanol (99.6% purity), acetone (99.6% purity), a mixture (3:2) of hexane/isopropanol (99.6 and 

99.8% purity, respectively), and ethyl lactate (97% purity). Each extraction was performed in 

triplicate, in a triple stage extraction at a ratio of 1:60 (wDW/v), at 40 °C and 250 rpm for 20 min.  

To remove cells debris, extracts were then centrifuged at 20,000 rpm for 10 min and filtered by  

0.45-µm pore size. Extracts were stored under nitrogen, at −20 °C in the dark prior to analyses. 
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3.4. Antioxidant Scavenging Capacity Assessment of Extracts 

The antioxidant scavenging activity was ascertained via four different assays: two synthetics that 

measure the total activity (DPPH• and ABTS+•), and two biological reactive species (O2
•− and •NO−). 

DPPH•, O2
•− and •NO− microassays were monitored spectrophotometrically in a Multiskan Ascent plate 

reader (Thermo, Electron Corporation), and ABTS+• assay in a spectrophotometer (Shimadzu). 

Antioxidant scavenging capacity was compared based on their IC50 and IC25 values. IC50 value is 

defined as the concentration of an extract required to achieve half maximal inhibition of radicals, a 

parameter that is indicative of antioxidant capacity. IC values were calculated using GraphPad Prism 

(Version 5.0, 2007) via interpolation of dose-response curves obtained by plotting variation of radical 

scavenging % inhibition (mean ± standard deviation) in function of extract concentration (mg·mL−1) 

for each radical assay tested. 

3.4.1. ABTS+• Scavenging Activity 

Extracts, obtained as described above, were evaporated and the residue re-suspended in 

ethanol:water 50:50 v/v to a final concentration of 10 mg·mL−1. A dilution series was prepared (in 

triplicate), with concentrations ranging from 0.312 to 10 mg·mL−1, in order to assess the IC50 values. 

The radical-scavenging capacity of the extracts was assessed via the ABTS+• radical cation (ABTS+•) 

assay (in triplicate)—following the method described elsewhere [43,44], and recently refined by 

Guedes et al. [40]. For determination of evolution of total antioxidant capacity for both microalgae 

species, the results were expressed as Trolox Equivalent (TE), per unit of biomass, as given by dry 

weight (DW)—where 1 TE unit is the mass of trolox possessing an equivalent antioxidant power. 

3.4.2. DPPH• Scavenging Activity 

Each extract was evaporated and the residue resuspended in methanol to a final concentration of  

10 mg·mL−1. In order to obtain the IC50 and IC25, a dilution series was prepared (in triplicate), with 

concentrations ranging from 0.312 to 10 mg·mL−1, and tested in a 96-well plate. The plates were 

incubated for 30 min at room temperature, after addition of DPPH methanol, and the scavenging 

reaction was monitored 515 nm, as described by Ferreres et al. [24]. 

3.4.3. Superoxide Radical (O2
•−) Scavenging Capacity 

Each evaporated extract was re-suspended in phosphate buffer (100 mM, pH 7.4) with 20% 

dimethyl sulfoxide (DMSO). A dilution series was generated, ranging from 9.8 µg·mL−1 to 10 mg·mL−1, 

and tested in a 96-well plate. The superoxide radical induced by reduction of NBT was monitored 

spectrophotometrically, in kinetic function, at 562 nm. Superoxide radicals were generated by the 

NADH/PMS system as previously reported [24]. 

3.4.4. Nitric Oxide Radical (•NO) Scavenging Capacity 

Each evaporated extract was re-suspended in phosphate buffer with 20% DMSO, and diluted in a 

range series from 4.9 µg·mL−1 to 2.5 mg·mL−1. Samples (in triplicate) were then incubated with 
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sodium nitroprusside, for 60 min at room temperature, in the light. Griess reagent was added 

afterwards, and the chromophore reaction was undertaken in the dark for 10 min, with absorbance 

being read at 562 nm [24]. 

3.5. Chemical Characterization of Extracts 

3.5.1. Determination of Polyunsaturated Fatty Acids Profile 

Fatty acid methyl esters were produced for each extract obtained in Section 3.3. by direct 

transesterification—according to the acidic method described by Lepage and Roy [44], after modifications 

introduced by Cohen et al. [45], using heptadecanoic (C17:0) acid as internal standard and acetyl 

chloride as catalyst. Esters were analyzed in a GC ThermoFinnigan Model gas chromatograph, using a 

flame ionization detector, and quantified with the program Chroma Card data system (2003). A silica 

CP-WAX 52 CB (Chrompac cp 7723) column was used, and helium was employed as carrier gas in 

splitless mode. Injector and detector were maintained at 260 and 280 °C, respectively, and the oven 

heating program consisted on a linear increase of column temperature from 150 to 260 °C, at a rate of 

1 °C·min−1. Chromatographic grade standards of fatty acids in methyl ester form (Sigma) were used 

for tentative identification, based on comparison of retention times: myristoleic, palmitoleic, petroselinic, 

oleic, elaidic, cis-vaccenic, linoleic, linolelaidic, linolenic, cis-11-eicosenoic, arachidonic, erucic,  

cis-4,7,10,13,16,19-docosahexanoicand and nervonic. The mean of the results from the aforementioned 

chemical assays were used as a datum point. 

3.5.2. Determination of Carotenoids Profile 

Carotenoids in each extract were tentatively identified, and then quantified by a HPLC-DAD 

method. Solvent was evaporated in a rotavapor, and the residue re-suspended in methanol LiChrosolv 

(Merck 99.9% purity) to a final concentration of 20 mg·mL−1. 

A Gilson HPLC-DAD with UV-visible photodiode array detector was employed to resolve, detect 

and identify the various chemical compounds of interest in each extract. The stationary-phase was a 

C30 YMC carotenoid column 5 µm, 250 × 4.6 mm (YMC, Japan) maintained at room temperature, 

according to a previously described procedure [46] with modifications. The mobile phase consisted of 

two solvents: methanol (Darmstadt, Germany, Merck) (A) and tert-butyl methyl ether (Chromasolv® 

99.9% purity, Sigma-Aldrich) (B), starting with 95% A and using a gradient to obtain 70% at 30 min, 

50% at 50 min, 0% at 65 min, and 95% at 68 min. The injection volume was 20 µL, and the flow rate 

0.9 mL·min−1. Spectral data from all peaks were collected in the range 200–700 nm, and 

chromatograms recorded at 450 nm. Data were processed on Unipoint System software (Gilson 

Medical Electronics, Villiers le Bel, France). 

Carotenoids were identified by comparing their elution order and UV-Vis spectra with chromatographic 

HPLC-grade standards under identical conditions—lutein, zeaxanthin, β-carotene, fucoxanthin, 

astaxanthin (Sigma-Aldrich—St. Louis MO, USA), β-cryptoxanthin (Extrasynthese—Genay, France), 

astaxanthin, violaxanthin, neoxanthin, anteraxantina, lycopene, ε-carotene, γ-carotene and α-carotene 

(CaroteNature, Lupsingen, Switzerland). 
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3.6. Statistical Analyses 

The experimental data were analyzed using GraphPad Prism V. 5.0. A first diagnostic unfolded a 

non-normal distribution of the data, so one-way ANOVA with Tukey’s multicomparison test was used 

to assess variances between PUFA and carotenoid content for the various solvents tested. Since each 

datum point had been replicated, a representative measure of variability was available in all cases to 

support said statistical analyses. 

4. Conclusions 

Concerning total antioxidant capacity, ethanol Gloeothece sp. extracts performed best results in 

DPPH• and O2
•− assays, possibly due to its content in PUFA (76.4% of linolenic acid) and carotenoids 

(65.3% of lutein and 9.7% of β-carotene). Similarly, the acetonic extract attained good results in 

ABTS+• and •NO− assays, and probably for the same reasons, it content in carotenoids (78.8% of lutein 

and 13.9% of β-carotene) and PUFA (55.5% of linolenic acid and 11% of linoleic acid). Gloeothece sp. 

is a prokaryotic microalga poorly studied so far, so findings of this study may justify further exploitation of 

its antioxidant potential once it appears promising toward nutraceutical formulations. 

Scenedesmus obliquus (M2-1) also seems to be a promising source of antioxidant-rich extracts. 

Acetone extract exhibited the best antioxidant capacity in ABTS+• assay, likely associated with its 

carotenoids content, 47% of which is lutein. Note that the hexane:isopropanol (3:2) extract also 

demonstrated the best result of antioxidant capacity in DPPH• assay. 

Solvents used in extraction of lipidic components seems to be critical for the antioxidant 

performance—which appears to hinge, in particular, on the balance between carotenoids and PUFAs. 

However, further studies are warranted to confirm whether said compounds are by themselves responsible 

for the good performance recorded in antioxidant assays, or some form of interaction/synergism exists 

between them. 

In terms of lipidic components extraction, in general, acetone is the most suitable to extract 

carotenoids, and ethanol stands out in PUFA extraction, regardless of the microalgae species. 
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