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Abstract: We consider linear sampled–data dynamical systems subject to additive and bounded
disturbances, and study properties of their forward and backward reach sets as well as robust
positively invariant sets. We propose topologically compatible notions for the sampled–data
forward and backward reachability as well as robust positive invariance. We also propose
adequate notions for maximality and minimality of related robust positively invariant sets.
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1. INTRODUCTION

Theoretical and computational aspects of reachability and
set invariance have been subjest to an extensive research
over the last several decades. The prime reasons for aca-
demic and practical interest in these set–valued notions
stem from their intimate relationships with fundamental
aspects of control and systems theory as well as theory of
dynamical systems. A selection of comprehensive and in-
fluential research monographs (Aubin, 1991; Blanchini and
Miani, 2008; Rawlings and Mayne, 2009; Kurzhanski and
Varaiya, 2014), together with numerous references therein,
provides overwhelming evidence that reachability and set
invariance have made a huge impact across a wide spec-
trum of classical fields of dynamics, controls and systems
in general, and deterministic/robust/stochastic optimal
and model predictive control syntheses as well as safety
and stability analyses in particular. The contemporary,
increasingly sophisticated autonomous engineered systems
frequently require a prior–to–operation assurances of, at
least, safe, resilient, secure and fault tolerant operability.
The related high quality dynamical modus operandi can
be realized through utilization of classical reachability and
set invariance notions. For instance, the maximal safe
sets are, in fact, positively invariant sets. Furthermore,
resilience and security can be achieved by using robust
control/positively invariant sets that offer a high degree of
flexibility and robustness to uncertainty. Similarly, fault
tolerance is only possible from certain sets of states. Quite
naturally, reachability and set invariance are highly potent
platforms for developing appropriate analysis and synthe-
sis methodologies for versatile smart autonomous systems.

Classical and modern research have reached, and also ex-
ploited, a well–established conclusion that the analysis of
uncertain constrained dynamics utilizing reachability and
set invariance enables one to guarantee a–priori relevant
strtural properties. Properties of the backward and for-
ward reach sets as well as robust positively invariant sets,
such as monotonicity, compactness, convexity, have been in
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the spotlight due to their instrumental role in characteriza-
tion and computation of the associated maximal and min-
imal robust positively invariant sets. Interestingly enough,
the majority of existing research efforts on the subjects
have been focused almost exclusively on either discrete
or continuous times formulations. A nonexhaustive list of
selected works includes (Bertsekas, 1972; Schweppe, 1973;
Gilbert and Tan, 1991; Aubin, 1991; Artstein, 1995; Kol-
manovsky and Gilbert, 1998; Raković, 2007; Raković and
Kouramas, 2007; Artstein and Raković, 2008; Blanchini
and Miani, 2008; Kurzhanski and Varaiya, 2014).

Despite elaborate literature on, and plethora of results for,
discrete and continuous time reachability and set invari-
ance problems, there is a limited progress on related as-
pects for sampled–data systems. The sampled–data setting
arises naturally in many classical and modern applications,
and it plays a key role for control synthesis carried out
using discrete time techniques with the goal to ensure
constraint satisfaction in continuous time sense. The liter-
ature addressing theory and computations of forward and
backward reach sets as well as robust positively invariant
sets within sampled–data setting is very scarce excluding
a sequence of more recent articles (Mitchell et al., 2012,
2013; Mitchell and Kaynama, 2015; Raković et al., 2016).
A major peculiarity of sampled–data setting is inapplica-
bility, to a prohibiting extent, of discrete and continuous
time reachability and set invariance (Raković et al., 2016).

In this paper, we follow up on our recent research (Raković
et al., 2016), and we first establish key properties of
the related sampled–data forward and backward reach
sets, and then use these properties to introduce topo-
logically compatible notions of robust positive invariance
for sampled–data systems. We consider generalized and
relaxed notions of robust positively invariant families,
that allow for a flexible combination of robust positive
invariance in discrete time sense and safety in continu-
ous time sense. The minimality and maximality of robust
positively invariant families are addressed in the natural
sense of “pointwise–in–time–over–the–sampling–intervals”
minimality and maximality (w.r.t. set inclusion) of sets.



Paper Structure: Section 2 describes basic setting and
preliminaries. Sections 3 and 4 focus on key topologi-
cal properties of the forward and backward reach sets.
Section 5 discusses generalized notions of robust positive
invariance as well as related notions of minimality and
maximality of robust positively invariant sets. A summa-
rizing discussion is provided in Section 6.

Nomenclature and Definitions: The sets of nonneg-
ative integers and real numbers are denoted by Z≥0
and R≥0, respectively. Any given sampling period T ∈
R≥0, T > 0 induces sequences of sampling instances π
and sampling intervals θ both w.r.t. R≥0 specified via:

π := {tk}k∈Z≥0
and θ := {Tk}k∈Z≥0

, where ∀k ∈ Z≥0,
tk+1 := tk + T with t0 := 0 and Tk := [tk, tk+1).

ρ(M) denotes the spectral radius of a matrix M ∈ Rn×n.
For any two sets X and Y in Rn, the Minkowski set
addition is specified by

X ⊕ Y := {x+ y : x ∈ X , y ∈ Y},
while the Minkowski set subtraction (a.k.a. the Pontryagin
or geometric set difference) is specfied by

X 	 Y := {z : z ⊕ Y ⊆ X}.
Given a set X and a real matrix M of compatible dimen-
sions the image of X under M is denoted by

MX := {Mx : x ∈ X},
while the preimage of X under M is denoted by

M−1X := {x : Mx ∈ X}.
A set X in Rn is a C–set if it is compact, convex, and
contains the origin. A set X in Rn is a proper C–set if it
is a C–set and contains the origin in its interior.

Given any two compact sets X and Y in Rn, their Haus-
dorff distance is defined by

HL(X ,Y) := min
α≥0
{α : X ⊆ Y ⊕ αL and Y ⊆ X ⊕ αL},

where L is a given symmetric proper C–set in Rn inducing
vector norm

|x|L := min
η
{η : x ∈ ηL, η ≥ 0}.

Henceforth, unless stated otherwise, we work with nonempty
sets, fixed sampling period T ∈ R≥0, T > 0 and fixed
sequences of related sampling instances π and intervals θ.

2. SETTING AND OBJECTIVES

Consider a linear system described, for all t ∈ R≥0, by:

ẋ(t) = Ax(t) +Bu(t) + Ew(t) with w(t) ∈ W, (2.1)

where, for any time t ∈ R≥0, x(t) ∈ Rn, u(t) ∈ Rm
and w(t) ∈ Rp denote, respectively, state, control and
disturbance values, while ẋ(t) denotes the value of the
state derivative with respect to time, while the matrices
A ∈ Rn×n, B ∈ Rn×m, E ∈ Rn×p and the set W ⊂ Rp are
known exactly.

The linear system (2.1) is controlled via sampled–data
linear state feedback so that

∀k ∈ Z≥0, ∀t ∈ Tk, u(t) := Kx(tk), (2.2)

where K ∈ Rm×n is a known exactly control gain matrix.
Clearly, the linear sampled–data feedback at each time t
is not a function of the state at time instant t, rather it is
a function of the state at the last sampling instance tk.

For any k ∈ Z≥0, within the sampled–data setting, the
admissible disturbance functions w (·) in (2.1) are, like
the controls u (·), piecewise constant right continuous
functions from time interval [0, tk] to the set W so that

∀k ∈ Z≥0, ∀t ∈ Tk, w(t) := w(tk) ∈ W, (2.3)

i.e., maps w (·) are constant in sampling intervals Tk and
right continuous at sampling instants tk for all k ∈ Z≥0.
Such a class of disturbance maps captures adequately
the actuation errors, noise related errors in sampled–data
measurements in (2.2) and, in fact, it also represents a
reasonably rich model for various types of uncertainty.

To define sampled–data solutions, let, for any t ∈ [0, T ],

Ad(t) := etA, Bd(t) :=

(∫ t

0

eτAdτ

)
B and

Ed(t) :=

(∫ t

0

eτAdτ

)
E, (2.4)

where the related integrals are the standard matrix–valued
integrals, and let also, for any t ∈ [0, T ],

AS(t) := Ad(t) +Bd(t)K and ES(t) := Ed(t) and

AD := AS(T ) and ED := ES(T ). (2.5)

We work throughout this note under the following mild
and natural set of conditions.

Assumption 1. The sampling period T is such that the
matrix pair (Ad(T ), Bd(T )) is strictly stabilizable. The
control matrix K is such that the matrix AD is strictly
stable (i.e., ρ(AD) < 1) and the matrix pair (AD, ED) is
controllable. The set W is a proper C–set in Rp.

In view of (2.1)–(2.3), the sampled–data solutions satisfy
at the sampling instances tk, for all k ∈ Z≥0, k > 0,

x(tk) = AkDx+

k−1∑
i=0

Ak−1−iD EDw(ti) with

x(t0) = x. (2.6)

During sampling intervals Tk, k ∈ Z≥0, the sampled–
data solutions satisfy, for all k ∈ Z≥0 and all t ∈ T0, the
property that

x(tk + t) = AS(t)x(tk) + ES(t)w(tk). (2.7)

Our main objectives are to study the finite– and infinite–
time forward and backward reachability as well as robust
positive invariance for linear sampled–data systems. More
precisely, the note characterizes, and discusses properties
of, the forward reach sets R(X , t) at time t from initial set
X .(These are the sets of all sampled–data solutions/states
that can be reached at time t as the initial state x varies
within a given set of initial states X and the distur-
bance functions w (·) vary within a class of admissible
disturbance maps.) Furthermore, the note also character-
izes, and discusses properties of, the backward reach sets
B(X , t) at time t w.r.t. the target set X . (These are the
sets of all initial states x for which the related sampled–
data solutions/states satisfy given constraints for all times
τ ∈ [0, t) and reach the given target set X at time t
despite the presence and effects of admissible disturbance
functions w (·).) Finally, the note also considers limiting
behaviour of forward and backward reach sets with the
aim to provide flexible and topologically compatible defi-
nitions of ordinary, minimal and maximal robust positively
invariant sets within the considered sampled–data setting.



3. FORWARD REACHABILITY

As already mentioned, the forward reach set R(X , t) at
time t from the set of initial states X is the set of all
sampled–data solutions/states at time t satisfying (2.6)
and (2.7) that can be generated as the initial states x vary
within the set X and the disturbance functions w (·) vary
within the class of admissible disturbance maps (namely,
piecewise constant right continuous disturbance functions
from the time interval [0, t] to the disturbance set W).
Thus, the forward reach sets R(X , t) are essentially values
of the forward reach set map R (·, ·) (that is a function
mapping subsets of Rn and nonnegative time instances
to subsets of Rn) evaluated at time t and set of initial
states X . Since the sampled–data solutions are entirely
characterized by relations (2.6) and (2.7), the forward
reach set map R (·, ·) satisfies, by definition, for all subsets
X in Rn and all sampling instances tk, k ∈ Z≥0, k > 0,

R(X , tk) := AkDX ⊕
k−1⊕
i=0

AiDEDW

with R(X , t0) := X . (3.1)

During sampling intervals Tk, k ∈ Z≥0, the forward reach
set map R (·, ·) satisfies, by definition, for all subsets X in
Rn, all k ∈ Z≥0 and all t ∈ T0,

R(X , tk + t) = AS(t)R(X , tk)⊕ ES(t)W. (3.2)

A direct inspection of (3.1) and (3.2) reveals that the
forward reach set map R (·, ·) is form–wise identical to the
discrete time forward reach set maps at sampling instances
tk, but it is essentially different from the continuous time
forward reach set map during the sampling intervals Tk.
In turn, its topological behaviour is substantially more
complicated, as we summarize next. (A more detailed
discussion can be found in (Raković et al., 2016).)

In light of relations (3.1) and (3.2) and since involved linear
transformations and Minkowski additions preserve both
compactness and convexity, the forward reach set map
R (·, ·) also preserves both compactness and convexity.

Proposition 1. Suppose Assumption 1 holds. The forward
reach sets R(X , t) are compact and convex for all t ∈ R≥0
and for any compact and convex set X in Rn.

Since 0 ∈ X implies directly that 0 ∈ R(X , t) for all
t ∈ Z≥0, the above proposition can be strengthened for
the case of C– and proper C–sets in Rn as follows.

Corollary 1. Suppose Assumption 1 holds. The forward
reach sets R(X , t) are C–sets for all t ∈ R≥0 and for
any C– or proper C–set X in Rn. Furthermore, the
forward reach sets R(X , tk) at sampling instances tk are
guaranteed to be proper C–sets for all large enough k.

Due to periodicity and thanks to the continuity of the
matrices AS (·) and ES (·), the forward reach set map
R (·, ·) is continuous in time w.r.t. Hausdorff distance.

Proposition 2. Suppose Assumption 1 holds and take any
compact set X in Rn. The forward reach sets R(X , t), t ∈
Z≥0 change continuously in time w.r.t. Hausdorff distance.

The first relevant peculiarity of the sampled–data setting is
the fact that the related forward reach set mapR (·, ·) does
not, in general, satisfy semi–group property in a proper
sense. Instead, the following assertions can be verified.

Proposition 3. Suppose Assumption 1 holds. The forward
reach set map R (·, ·) satisfies semi–group property at
the sampling instances (i.e. in discrete time sense). In
particular, for all compact subsets X of Rn, all i ∈ Z≥0
and all j ∈ Z≥0, we have

R(X , ti + tj) = R(R(X , ti), tj). (3.3)

Remark 1. It is worth observing that the forward reach
set map R (·, ·) is not guaranteed to satisfy semi–group
property in the sampling intervals (i.e. in continuous time
sense). In other words, it is generally not possible to
guarantee that

R(X , τ1 + τ2) = R(R(X , τ1)τ2). (3.4)

holds true for all compact subsets X of Rn, all τ1 ∈ R≥0
and all τ2 ∈ R≥0. This absence of generic semi–group
property of the forward reach set map R (·, ·) has been
exemplified in (Raković et al., 2016, Example 2).

The forward reach set map R (·, ·) remains monotone in
the first argument for all t ∈ R≥0.

Proposition 4. Suppose Assumption 1 holds. For any two
compact subsets X and Y in Rn and all t ∈ R≥0 we have

X ⊆ Y ⇒ R(X , t) ⊆ R(Y, t). (3.5)

Due to the absence of the generic semi–group property,
and despite the monotonicity in the first argument, the
forward reach set map R (·, ·) is not guaranteed to en-
tirely preserve positive invariance. However, it certainty
preserves it at the sampling instances as verified by the
following observation.

Proposition 5. Suppose Assumption 1 holds. The forward
reach set map R (·, ·) preserves positive invariance prop-
erty at the sampling instances. In particular,

R(X , T ) ⊆ X ⇒ ∀k ∈ Z≥0, R(X , tk+1) ⊆ R(X , tk). (3.6)

Remark 2. The forward reach set map R (·, ·) is not guar-
anteed to preserves positive invariance property in the
sampling intervals. In particular, the implication

∀τ ∈ [0, δ], R(X , τ) ⊆ X ⇒
∀t ≥ 0, ∀τ ∈ [0, δ], R(X , t+ τ) ⊆ R(X , t) (3.7)

is not guaranteed to hold in general case.

Likewise, the positive anti–invariance is not guaranteed to
be entirely preserved by the forward reach set map R (·, ·).
Proposition 6. Suppose Assumption 1 holds. The forward
reach set map R (·, ·) preserves positive anti–invariance
property at the sampling instnces.In particular,

X ⊆ R(X , T )⇒ ∀k ∈ Z≥0, R(X , tk) ⊆ R(X , tk+1). (3.8)

Remark 3. The forward reach set map R (·, ·) is not guar-
anteed to preserves positive anti–invariance property in
the sampling intervals. In particular, the implication

∀τ ∈ [0, δ], X ⊆ R(X , τ)⇒
∀t ≥ 0, ∀τ ∈ [0, δ], R(X , t) ⊆ R(X , t+ τ) (3.9)

is not guaranteed to hold in general case. The failure of
R (·, ·) to preserve positive invariance and positive anti–
invariance properties has been exemplified in (Raković
et al., 2016, Example 3).

The above outlined properties of the forward reach set map
R (·, ·) provide basis for studying its limiting behaviour as
well as for introducing topologically compatible notions of
ordinary and minimal robust positively invariant sets for
linear sampled–data systems under consideration.



4. BACKWARD REACHABILITY

The backward reach set B(X , t) at time t w.r.t. the target
set X is the set of all initial states x for which the
related sampled–data solutions/states generated by (2.6)
and (2.7) satisfy given constraints for all times τ ∈ [0, t)
(i.e. x(τ) ∈ X where X is a given state constraint set)
and reach the given target set X at time t despite the
presence and effects of admissible disturbance functions
w (·). Henceforth, we invoke an additional and relatively
mild assumption on the state constraint set X of interest.

Assumption 2. The set X is a proper C–set in Rn.

The backward reach sets B(X , t) are essentially values of
the backward reach set map B (·, ·) (that is a function
mapping subsets of Rn and nonnegative time instances
to subsets of Rn) evaluated at time t and the target set
X . The backward reach set map B (·, ·) is specified, for all
compact subsets (target sets) X of Rn and all nonnegative
times t by

B(X , t) := {x ∈ Rn : ∀τ ∈ [0, t), R({x}, τ) ⊆ X and

R({x}, t) ⊆ X}, (4.1)

where R({x}, t) is the forward reach set at time t from
the initial state x as defined in (3.1) and (3.2). In view
of explicit form of the forward reach set map R (·, ·), we
can derive an explicit form of the backward reach set map
B (·, ·). To this end, we observe that, for all k ∈ Z≥0 and
all t ∈ T0, it holds that

R({x}, tk + t) = AS(t)AkDx⊕R({0}, tk + t), (4.2)

where R({0}, tk + t) is the forward reach set at time
tk + t from the origin whose explicit form follows from
(3.1) and (3.2) by setting X = {0} in these relations. A
relatively direct set algebra now yields the desired explicit
form of the backward reach set map B (·, ·). In particular,
let, for all k ∈ Z≥0 and all t ∈ T0,

M(tk + t) := AS(t)AkD, X(tk + t) := X	R({0}, tk + t),

and X (tk + t) := X 	R({0}, tk + t), (4.3)

so that

B(X , tk + t) =
⋂

j∈Z≥0, j≤k, τ∈[0,t)

M−1(tj + τ)X(tj + τ)

⋂
M−1(tk + t)X (tk + t) (4.4)

The structural properties of the forward reach set map
R (·, ·), and the explicit form of the backward reach set
map B (·, ·) allow for a deeper understanding of the struc-
tural properties of the backward reach set map B (·, ·), the
most important of which are now summarized.

In analogy to Proposition 1, the following can be asserted.

Proposition 7. Suppose Assumptions 1 and 2 hold. The
backward reach sets B(X , t) are, possibly empty, compact
and convex for all t ∈ R≥0 and for any compact and convex
set X in Rn.

The analogous statement to Corollary 1 requires additional
hypotheses, while analogous statement to Proposition 2 is
not possible in general since the backward reach set can be
empty and, thus, it can exhibit discontinuous behaviour.
The lack of generic semi–group property of the forward
reach set map R (·, ·) propagates to the backward reach
set map B (·, ·) so that, in analogy to Proposition 3, only

the partial semi–group properties can be established in
general case.

Proposition 8. Suppose Assumptions 1 and 2 hold. The
backward reach set map B (·, ·) satisfies semi–group prop-
erty at the sampling instances (i.e. in discrete time sense).
In particular, for all compact subsets X of Rn, all i ∈ Z≥0
and all j ∈ Z≥0, we have

B(X , ti + tj) = B(B(X , ti), tj). (4.5)

Remark 4. In analogy to Remark 1, it is worth noting that
the backward reach set map B (·, ·) is not guaranteed to
satisfy semi–group property in the sampling intervals (i.e.
in continuous time sense). Namely, the condition that for
all compact subsets X of Rn, all τ1 ∈ R≥0 and all τ2 ∈ R≥0,
we have

B(X , τ1 + τ2) = B(B(X , τ1), τ2) (4.6)

is not guaranteed to hold in general case.

An analogue of Proposition 4 verifies the monotonicity in
the first argument of the backward reach set map B (·, ·).
Proposition 9. Suppose Assumptions 1 and 2 hold. For any
two compact subsets X and Y in Rn and all t ∈ R≥0 we
have

X ⊆ Y ⇒ B(X , t) ⊆ B(Y, t). (4.7)

As in the case of Propositions 5 and 6 relevant for the the
forward reach set map R (·, ·), it is not dificult to show
that the backward reach set map B (·, ·) is guaranteed to
preserve positive invariance and positive anti–invariance
at the sampling instances.

Proposition 10. Suppose Assumptions 1 and 2 hold. The
backward reach set map B (·, ·) preserves positive invari-
ance property at the sampling instances. In particular,

B(X , T ) ⊆ X ⇒ ∀k ∈ Z≥0, B(X , tk+1) ⊆ B(X , tk). (4.8)

Proposition 11. Suppose Assumption 1 holds. The back-
ward reach set map B (·, ·) preserves positive anti–
invariance property at the sampling instances. In particu-
lar,

X ⊆ B(X , T )⇒ ∀k ∈ Z≥0, B(X , tk) ⊆ B(X , tk+1). (4.9)

Remark 5. The question of the preservation of positive
invariance and anti–positive invariance in the sampling
intervals (i.e. continuous time sense) by the backward
reach set B (·, ·) is technically slightly more involved than
in the case of the forward reach set map R (·, ·). The
related discussion is omitted as it does not strictly fall
within the intended scope of this conference paper.

A particularly important set trajectory induced by the
related backward reach set map B (·, ·) is the one initiated
at the state constraint set X. Namely, the backward
reach sets B(X, t), t ≥ 0 form this special set trajectory
{B(X, t) : t ≥ 0}, which is, in fact, “pointwise–in–
time” maximal (w.r.t. set inclusion) set trajectory. More
precisely, for any subset X of X and for all nonegative
times t, it holds that

B(X , t) ⊆ B(X, t). (4.10)

The above outlined properties of the backward reach
set map B (·, ·) provide basis for studying its limiting
behaviour and introducing topologically compatible no-
tions of maximal robust positively invariant sets for linear
sampled–data systems under consideration.



5. ROBUST POSITIVE INVARIANCE

The topological properties of the forward and backward
reach set maps R (·, ·) and B (·, ·) dictate the utilization
of generalized notions of ordinary, minimal and maximal
robust positively invariant sets. In this sense, the preceding
analysis implies that, within the sampled–data setting,
a demand for a subset S of X to be robust positively
invariant at the sampling instances

∀x ∈ S, ∀w ∈ W, ADx+ EDw ∈ S,
equivalently expressed by either of its set–theoretic refor-
mulations

R(S, T ) ⊆ S ⊆ X or S ⊆ B(S, T ), (5.1)

is natural and is, in fact, a minimal requirement to be
imposed. However, the implication is also that a condition
for a subset S of X to be robust positively invariant at the
sampling instances and in the sampling interval:

∀x ∈ S, ∀w ∈ W, ∀t ∈ [0, T ], AS(t)x+ ES(t)w ∈ S,
equivalently expressed by either of its set–theoretic refor-
mulations

∀t ∈ [0, T ], R(S, t) ⊆ S ⊆ X or S ⊆ B(S, t) (5.2)

is not natural and is, in fact, an overly conservative re-
quirement. Consequently, a natural and non–conservative
notion of sampled–data robust positive invariance should
guarantee robust positive invariance at the sampling in-
stances and it should relax robust positive invariance in the
sampling intervals but also facilitate it if it is attainable.
Clearly, it is not possible to guarantee such a flexibility
with utilization of a single set S. Instead, similarly as it is
done for set invariance under output feedback in Artstein
and Raković (2011), we introduce a generalized, and, in
fact, relaxed, notion of robust positive invariance based
on the utilization of a suitable family of sets.

Definition 1. A family of sets

S := {S(t) : t ∈ [0, T ]}, (5.3)

where, for every t ∈ [0, T ], S(t) is a subset of Rn, is
a robust positively invariant family of sets for uncertain
sampled–data linear dynamics, specified via (2.1)–(2.3),
and constraint sets (X,W) if and only if for all t ∈ [0, T ]

(I) S(t) := AS(t)S(0)⊕ ES(t)W and S(T ) ⊆ S(0); and

(II) S(t) ⊆ X. (5.4)

The above generalized notion of robust positive invariance

∀t ∈ [0, T ], S(t) := R(S(0), t) ⊆ X and S(T ) ⊆ S(0).

is, in fact, equivalent to weak positive invariance of the
family of sets S w.r.t. forward reach set map R (·, ·):
∀t ∈ [0, T ], S(t) := R(S(0), t) ∈ S and S(T ) ⊆ S(0) ∈ S.

Clearly, a family of sets S satisfying dynamic relation (I)
of (5.4) can be constructed easily given a subset S in
Rn that satisfies only robust positive invariance at the
sampling instances (i.e. R(S, T ) ⊆ S). To this end, it
suffices to put, for all t ∈ [0, T ],

S(t) := R(S, t) = AS(t)S ⊕ ES(t)W. (5.5)

Finally, when the above sets S(t), t ∈ [0, T ] are subsets
of X, the corresponding robust positively invariant family
of sets S = {S(t) : t ∈ [0, T ]} (more precisely any of its
members S(t)) is implicitly characterized by sets S andW
(and matrices AS(t) and ES(t)), as specified in (5.5).

For typographical convenience, in what follows we simply
use terminology “robust positively invariant family” in-
stead of complete expressions as specified in Definition 1.
Since the sampled–data dynamics and constraint sets are
fixed no confusion should arise.

5.1 Minimality

The limiting behaviour of the set–dynamics induced by
the forward reach set map R (·, ·) plays a key role in
understanding the minimality of generalized sampled–data
robust positively invariant sets. The classical results on the
minimal robust positively invariant set for discrete time
problems (Kolmanovsky and Gilbert, 1998) assert that the
set

X∞ :=

∞⊕
k=0

AkDEDW (5.6)

is a proper C–set in Rn and the unique solution to the fixed
point set equation (Raković, 2007; Artstein and Raković,
2008)

R(X , T ) = X , i.e. ADX ⊕ EDW = X . (5.7)

In addition, for any compact subset S in Rn, the related
sequence of the forward reach sets R(S, tk) at sampling
instances tk, k ≥ 0 converges to X∞ exponentially fast
w.r.t. Hausdorff distance. In fact, the set X∞ is the unique
set that satisfies, for all k ∈ Z≥0,

R(X∞, tk+1) = ADR(X∞, tk)⊕ EDW
= R(X∞, tk) = X∞. (5.8)

The compactness of X∞ and the continuity of the reach
set R (·, ·) in time w.r.t. Hausdorff distance guarantee that
the forward reach sets generated by R (·, ·) starting from
any compact subset S in Rn remain bounded, preserve
compactness and exhibit a well–defined limiting behavior.
In particular, during sampling intervals Tk, we have, for
all t ∈ [0, T ),

R(X∞, tk + t) = AS(t)R(X∞, tk)⊕ ES(t)W
= AS(t)X∞ ⊕ ES(t)W. (5.9)

Consequently, for any fixed t ∈ [0, T ), and any compact
subset S of Rn, the forward reach set R(S, tk + t) con-
verges to AS(t)X∞⊕ES(t)W exponentially fast w.r.t. the
Hausdorff distance (as k and, hence, tk go to infinity).

In view of above analysis, let, for all t ∈ [0, T ],

X∞(t) := AS(t)X∞ ⊕ ES(t)W, (5.10)

and define a collection of C–sets in Rn

X∞ := {X∞(t) : t ∈ [0, T ]}. (5.11)

For any robust positively invariant family of sets S =
{S(t) : t ∈ [0, T ]}, the set S(0) is robust positively in-
variant at the sampling instances. In particular, it satisfies
S(0) ⊆ X and ADS(0) ⊕ EDW ⊆ S(0). These conditions
and the robust positive invariance and minimality (w.r.t.
set inclusion) of the set X∞(0) = X∞ in discrete time sense
(i.e. at the sampling instances) imply that X∞(0) ⊆ S(0),
which, in turn, implies directly that, for all t ∈ [0, T ],
AS(t)X∞(0) ⊕ ES(t)W ⊆ AS(t)S(0) ⊕ ES(t)W. Conse-
quently, it holds that:

∀t ∈ [0, T ], X∞(t) ⊆ S(t). (5.12)

Since, for all t ∈ [0, T ], S(t) ⊆ X, the relation (5.12)
reveals necessary and sufficient conditions for the exis-



tence of robust positively invariant families of sets under
Assumptions 1 and 2.

Proposition 12. Suppose Assumptions 1 and 2 hold. There
exists a robust positively invariant family S = {S(t) : t ∈
[0, T ]} of sets if and only if

∀t ∈ [0, T ], X∞(t) ⊆ X. (5.13)

The equivalent forms of the necessary and sufficient con-
ditions (5.13) are given by either⋂

t∈[0,T ]

(X	X∞(t)) 6= ∅ (5.14)

or
0 ∈

⋂
t∈[0,T ]

(X	X∞(t)). (5.15)

The preceding justifies a natural assumption that discrim-
inates, and enables focus on, a nontrivial case of interest.

Assumption 3. The collection X∞ of C–sets in Rn, spec-
ified by (5.10) and (5.11), is such that the relation (5.13)
holds true.

A natural “pointwise–in–time–over–the–sampling–interval”
notion of the minimal robust positively invariant families,
which is compatible with Definition 1 and preceding anal-
ysis, can be summarized as follows.

Definition 2. A robust positively invariant family

S∞ := {S∞(t) : t ∈ [0, T ]}, (5.16)

of sets is the minimal robust positively invariant family if
and only if for any other robust positively invariant family
S = {S(t) : t ∈ [0, T ]} of sets it holds that

∀t ∈ [0, T ], S∞(t) ⊆ S(t). (5.17)

In light of this definition and Proposition 12, the following
fact can be concluded.

Proposition 13. Suppose Assumptions 1, 2 and 3 hold. The
family of sets X∞, specified by (5.10) and (5.11), is the
minimal robust positively invariant family of sets.

Example. (Minimality Property). Our illustrative exam-
ple is borrowed from our recent paper Raković et al.
(2016), which can be consulted for concrete numerical
values and additional details. This part of the example
illustrates the minimal robust family X∞ and its related in-
variance properties. The forward reach sets R(X∞, t), t ∈

Fig. 1. Minimal Robust Positively Invariant Family X∞.

[0, 5T ] are plotted in Figure 1. using different levels of
gray–scale shading. As expected, the forward reach sets
R(X∞, t), t ∈ [0, 5T ] exhibit periodic behavior and never
leave the minimal robust positively invariant family XS∞.

Under Assumptions 1 and 2, the family of sets X∞, spec-
ified by (5.10) and (5.11), is the minimal robust posi-
tively invariant family of sets for uncertain sampled–data
linear dynamics, specified via (2.1)–(2.3), and constraint
sets (Rn,W). In view of Proposition 12, Assumption 3
ensures existence of a robust positively invariant family of
sets for uncertain sampled–data linear dynamics, specified
via (2.1)–(2.3), and constraint sets (X,W). This, in turn,
identifies nontrivial case, and it also yields Proposition 13.

5.2 Maximality

A central role in identifying maximal robust positively
invariant sets is played by the backward reach sets B(X, t)
and, in fact, their limiting behaviour. The backward reach
sets B(X, t) enjoy stronger topological properties (relative
to behaviour of arbitrary backward reach sets B(X , t)
discussed in Section 4) as summarized next. The explicit
form of the backward reach sets B(X, t) is, in view of (4.4)
given, for all k ∈ Z≥0 and all t ∈ T0, by:

B(X, tk + t) =
⋂

j∈Z≥0, j≤k, τ∈[0,t]

M−1(tj + τ)X(tj + τ)

(5.18)
Proposition 8 yields the following fact.

Lemma 1. Suppose Assumptions 1 and 2 hold. For all
k ∈ Z≥0, it holds that

B(X, tk+1) = B(B(X, tk), T ) = B(B(X, T ), tk). (5.19)

By definition, the backward reach sets B(X, t) are mono-
tonically nonincreasing w.r.t. time.

Lemma 2. Suppose Assumptions 1 and 2 hold. For all
t1 ∈ R≥0 and t2 ∈ R≥0, it holds that

t1 ≤ t2 ⇒ B(X, t2) ⊆ B(X, t1). (5.20)

Lemma 2 verifies that for all k ∈ Z≥0 and all t ∈ T0, it
holds that

B(X, tk+1) ⊆ B(X, tk + t) ⊆ B(X, tk). (5.21)

The above nested set inclusions are very helpful for the
analysis of the limiting behaviour of the backward reach
sets B(X, t) as t goes to ∞. In fact, the above two
Lemmata imply directly that studying limiting behaviour
of the backward reach sets B(X, t) as t goes to ∞ can be
effectively achieved by examining limiting behaviour of the
backward reach sets B(X, tk) at the sampling instances as
k (and, hence, tk) goes to ∞. Proposition 7 asserts that
the backward reach sets B(X, tk), k ∈ Z≥0 are compact
and convex, but possibly empty. Lemma 2 asserts that the
backward reach sets B(X, tk), k ∈ Z≥0 are monotonically
nonincreasing. Thus, the sequence of backward reach sets
{B(X, tk)}k∈Z≥0

converges to a compact and convex set
X∞ that is possibly empty. Indeed, the limit of the
sequence of backward reach sets {B(X, tk)}k∈Z≥0

is the set

X∞ =
⋂
k≥0

B(X, tk). (5.22)

As a matter of fact, the set X∞ is the maximal set (w.r.t.
set inclusion) that is a fixed point of the backward reach
set map B(·, T ) at the sampling instances:

B(X , T ) = X , i.e.
⋂

t∈[0,T ]

M−1(t)X (t) = X , (5.23)

where, for all t ∈ R≥0, X (t) := X 	R({0}, t).



Assumption 3 implies that the backward reach sets B(X, t)
are nonempty for all t ∈ R≥0. In particular, for all k ∈ Z≥0
and all t ∈ T0, it holds that X∞(tk + t) ⊆ X so that, in
turn, X∞(0) ⊆ B(X, tk + t) 6= ∅.
Proposition 14. Suppose Assumptions 1, 2 and 3 hold.
Then, for all t ≥ 0, the backward reach sets B(X, t), and
hence the set X∞ given by (5.22), are nonempty, convex
and compact subsets of X.

A particularly important case is the one of the fi-
nite determination of the set X∞. Similarly to a well–
understood discrete time case (Kolmanovsky and Gilbert,
1998; Raković and Fiacchini, 2008), the existence of a
finite integer k∗ such that X∞ = B(X, tk∗) = B(X, tk∗+1)
can be guaranteed under a slightly stronger version of
Assumption 3.

Proposition 15. Suppose Assumptions 1 and 2 hold and
that the family X∞ of C–sets in Rn, specified by (5.10)
and (5.11), is such that

∀t ∈ [0, T ], X∞(t) ⊆ interior(X). (5.24)

Then, in addition to assertions of Proposition 14, there
exists a finite integer k∗ such that

B(X, tk∗) = B(X, tk∗+1). (5.25)

Moreover, the set X∞, specified by (5.22), satisfies

X∞ = B(X, tk∗). (5.26)

To summarize the preceding analysis, let, for all t ∈ [0, T ],

X∞(t) := AS(t)X∞ ⊕ ES(t)W (5.27)

and define a collection of C–sets in Rn

X∞(t) := {X∞(t) : t ∈ [0, T ]}. (5.28)

In light of above discussion and Definition 1, the family
X∞ of sets is robust positively invariant. Namely, the
sets X∞(t) satisfy X∞(t) = AS(t)X∞ ⊕ ES(t)W ⊆ X
for all t ∈ [0, T ] and X∞(T ) ⊆ X∞(0) = X∞. More
importantly, given any robust positively invariant family
S = {S(t) : t ∈ [0, T ]} of sets, we have, by construction,
S(0) ⊆ B(S(0), T ) ⊆ B(X, T ) so that S(0) ⊆ X∞(0).
The latter relation, in turn, implies that, for all t ∈
[0, T ], AS(t)S(0) ⊕ ES(t)W ⊆ AS(t)X∞(0) ⊕ ES(t)W.
Consequently, it holds that:

∀t ∈ [0, T ], S(t) ⊆ X∞(t). (5.29)

The preceding facts justify a natural “pointwise–in–time–
over–the–sampling–interval” notion of the maximal robust
positively invariant families, which is compatible with
Definition 1.

Definition 3. A robust positively invariant family

S∞ := {S∞(t) : t ∈ [0, T ]}, (5.30)

of sets is the maximal robust positively invariant family if
and only if for any other robust positively invariant family
S = {S(t) : t ∈ [0, T ]} of sets it holds that

∀t ∈ [0, T ], S(t) ⊆ S∞(t). (5.31)

In light of this definition and preceding discussion, the
following fact can be verified.

Proposition 16. Suppose Assumptions 1, 2 and 3 hold. The
family of sets X∞, specified by (5.27) and (5.28), is the
maximal robust positively invariant family.

5.3 Attractivity

We close our analysis by summarizing attractivity prop-
erties of the minimal robust positively invariant family
of sets Xf . To this end, consider the forward reach sets,
specified, for all compact subsets S of the set X∞(0) and
for all k ∈ Z≥0 and all t ∈ T0,

X (tk + t) := R(S, tk + t) with X (0) := S. (5.32)

Proposition 16 implies that, for all compact subsets S of
the set X∞(0) and for all k ∈ Z≥0 and all t ∈ T0,

X (tk + t) ⊆ X∞(t) ⊆ X, (5.33)

so that the forward reach sets , and hence all related
samled–data state trajectories, satisfy state constraint for
all nonnegative times t.

By (Raković, 2007), Assumption 1, ensures that, for all
compact subsets S of the set X∞(0) and for all k ∈ Z≥0,
we have:

HL(X (tk),X∞(0)) ≤ λk HL(X (t0),X∞(0)). (5.34)

Above, L is symmetric proper C–set in Rn and scalar
λ ∈ [ρ(AD), 1) is the minimal scalar such that ADL ⊆ λL.
As shown in Raković (2007), the existence of such a set
L and scalar λ is guaranteed under Assumption 1.

Let, for all t ∈ [0, T ],

η(t) := min
η
{η : AS(t)L ⊆ ηL, η ≥ 0}, (5.35)

and note that η(0) = 0 and η(T ) = λ, while for all
t ∈ (0, T ), 0 ≥ η(t) < ∞. Relations (5.34) and (5.35)
imply that, for all compact subsets S of the set X∞(0)
and for all k ∈ Z≥0 and all t ∈ T0, we have

X (tk + t) ⊆ X∞(t)⊕ λk HL(X (t0),X∞(0))η(t)L
as well as

X∞(t) ⊆ X (tk + t)⊕ λk HL(X (t0),X∞(0))η(t)L
so that, in fact,

HL(X (tk + t),X∞(t)) ≤ λk HL(X (t0),X∞(0))η(t). (5.36)

Thus, for all compact subsets S of the set X∞(0) and for
t ∈ T0, HL(X (tk + t),X∞(t)) vanishes as k (and, hence,
tk) goes to ∞. In turn, it follows that the related forward
reach sets X (t) upper–converge, exponentially fast and in
a stable manner, w.r.t. Hausdorff distance to the family of
sets X∞ as t goes to ∞. In particular, the set–to–family
distance function

d(X (t),Xf ) := min
Y
{HL(Y,X (t)) : Y ∈ X∞} (5.37)

vanishes as t goes to∞ for all compact subsets S of X∞(0).
Indeed, letting η̄ := maxt{η(t) : t ∈ [0, T ]}, we have, for
all compact subsets S of X∞(0) and for all k ∈ Z≥0 and
all t ∈ T0,

d(X (tk + t),Xf ) ≤ λk HL(S,X∞(0))η(t)

≤ λk HL(S,X∞(0))η̄. (5.38)

Now, by construction, λ ∈ [ρ(AD), 1), by compactness, 0 ≤
HL(S,X∞(0)) < ∞ and, by definition, 0 ≤ η̄ < ∞. Thus,
the set–to–family distance function d(X (t),Xf ) vanishes
as t goes to ∞ for all compact subsets S of X∞(0).

Keeping in mind that the minimal robust positively in-
variant family X∞ is weakly positively invariant w.r.t. the
forward reach set map R (·, ·), the above discussion leads
to our concluding summary of attractivity properties.



Proposition 17. Suppose Assumptions 1, 2 and 3 hold. The
family X∞ of C–sets in Rn, specified by (5.10) and (5.11),
is an exponentially stable weak upper–attractor for set–
dynamics whose trajectories are induced by the forward
reach set map R (·, ·) of (3.1) and (3.2) with the basin of
attraction being the family of nonempty compact subsets
of the set X∞(0) specified by (5.27).

Example. (Attractivity Property). This part of the exam-
ple illustrates the above discussed attractivity properties.
The forward reach sets R({0}, t), t ∈ [0, 5T ] are plotted

Fig. 2. Forward Reach Sets R({0}, t).

in Figure 2. using different levels of gray–scale shading
(the darker color indicates the larger time t). In this
example, the convergence occurs in 2 sampling periods
since A2

D = 0. As expected in view of our analysis and
evident by inspection of the figure, the forward reach sets
R({0}, t), t ∈ [2T, 5T ] exhibit periodic limiting behavior.

Remark 6. We close by noting that, under monotonicity
of the reach set map R (·, ·) in the second argument, i.e.,
for all subsets S in Rn, all τ1 ∈ R≥0 and all τ2 ∈ R≥0,

τ1 ≤ τ2 ⇒ R(S, τ1) ⊆ R(S, τ2), (5.39)

the sets X∞(t), t ∈ [0, T ] are all equal to the set X∞
of (5.6) so that the family of sets X∞ can be reduced to
a singleton set X∞ that also becomes a strong attractor
(instead of a weak upper–attractor) for the related set–
dynamics induced by the forward reach set map R (·, ·).

6. CLOSING REMARKS

We studied properties of sampled–data forward and back-
ward reach sets and generalized robust positively invariant
sets for constrained sampled–data systems. We also pro-
posed adequate notions for maximality and minimality of
related robust positively invariant sets.

This note spans several research directions, one of which
is the study of approximate, computationally simpler
“uniform–over–sampling–interval” notions of ordinary, min-
imal and maximal robust positive invariance. Another line
of research would be study, and understand, degree of for
potential utility of well–understood discrete time notions
within the sampled–data setting. Finally, the proposed
notions can be, with relative ease, conceptually extended
to general sampled–data systems, which, in turns, rises
computational applicability of such an extension.
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