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Abstract. We consider impulsive semiflows defined on compact metric spaces and give
sufficient conditions, both on the semiflows and the potential functions, for the existence
and uniqueness of equilibrium states. We also generalize the classical notion of topological
pressure to our setting of discontinuous semiflows and prove a variational principle.
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1. Introduction

Impulsive dynamical systems may be interpreted as suitable mathematical models of
real world phenomena that display abrupt changes in their behavior, and are described
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by three objects: a continuous semiflow on a metric space X; a set D ⊂ X where the
flow experiments sudden perturbations; and an impulsive function I : D → X which
determines the change on a trajectory each time it collides with the impulsive set D. See
for instance reference [20], where one may find several examples of evolutive processes
which are analyzed through differential equations with impulses.

Dynamical systems with impulse effects seem to be the most adequate mathematical
models to describe real world phenomena that exhibit sudden changes in their states. For
example, the theoretical characterizations of wormholes [27], also called Einstein-Rosen
bridges, seem to fit the description of the traverse effects an impulsive function I acting on
a set D induces on a semiflow, thereby possibly creating odd shortcuts in space-time [28].
While at present it appears unlikely that nature allows us to observe a wormhole, these
hypothetical entities, with unusual and inherently unstable topological, geometrical and
physical properties, show up as valid solutions of the Einstein field equations for the gravity.
We also refer the reader to the reference [20], where other examples of nature evolution
processes are analyzed within the new branch of differential equations with impulses; in
addition, see [3, 8, 13, 14, 16, 18, 21, 22, 26, 29].

For many years the achievements on the theory of impulsive dynamical systems con-
cerned the behavior of trajectories, their limit sets and their stability; see e.g. [5, 6, 10, 11,
19] and references therein. The first results on the ergodic theory of impulsive dynamical
systems were established in [1], where sufficient conditions for the existence of invariant
probability measures on the Borel sets were given. Afterwards, it was natural to look for
some special classes of invariant measures. So far, a useful approach has been to use poten-
tial functions and finding equilibrium states. However, as the classical notion of topological
entropy requires continuity and impulsive semiflows exhibit discontinuities, it became nec-
essary to introduce a generalized concept of topological entropy, and this has been done
in [2]. Moreover, it was proved that the new notion coincides with the classical one for
continuous semiflows, and also a partial variational principle for impulsive semiflows: the
topological entropy coincides with the supremum of the metric entropies of time-one maps.

Our aim in this paper was to extend the results of [2] in two directions. Firstly we
establish a variational principle for a wide class of potential functions; then we present suf-
ficient conditions for the existence and uniqueness of equilibrium states for those potential
functions. Once more, due to the discontinuities of the impulsive semiflows, we needed
to define a generalized concept of topological pressure; and again we show that this new
definition coincides with the classical one for continuous semiflows.

1.1. Impulsive semiflows. Consider a compact metric space (X, d), a continuous semi-
flow φ : R+

0 ×X → X, a nonempty compact set D ⊂ X and a continuous map I : D → X
such that I(D) ∩ D = ∅. Under these conditions we say that (X,φ,D, I) is an impul-
sive dynamical system. The first visit of each φ-trajectory to D will be registered by the
function τ1 : X → [0,+∞], defined as

τ1(x) =

{
inf {t > 0: φt(x) ∈ D} , if φt(x) ∈ D for some t > 0;

+∞, otherwise.
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The impulsive trajectory γx and the subsequent impulsive times τ2(x), τ3(x), . . . (possibly
finitely many) of a given point x ∈ X are defined according to the following rules: for
0 ≤ t < τ1(x) we set γx(t) = φt(x). Assuming that γx(t) is defined for t < τn(x) for some
n ≥ 1, we set

γx(τn(x)) = I(φτn(x)−τn−1(x)(γx(τn−1(x)))).

Defining the (n+ 1)th impulsive time of x as

τn+1(x) = τn(x) + τ1(γx(τn(x))),

for τn(x) < t < τn+1(x), we set

γx(t) = φt−τn(x)(γx(τn(x))).

We define the time duration of the trajectory of x as Υ(x) = supn≥1 {τn(x)}. Since we are
assuming I(D) ∩ (D) = ∅, it follows from [1, Remark 1.1] that we have Υ(x) = ∞ for all
x ∈ X. Thus we have the impulsive trajectories defined for all positive times. This allows
us to introduce the impulsive semiflow ψ of an impulsive dynamical system (X,φ,D, I) as

ψ : R+
0 ×X −→ X
(t, x) 7−→ γx(t),

where γx stands for the impulsive trajectory of x determined by (X,φ,D, I). It was proved
in [4, Proposition 2.1] that ψ is indeed a semiflow, though not necessarily continuous. In
what follows, for each t ≥ 0 we will denote by ψt the time-t map of the semiflow ψ.

Remark 1.1. It is known that the function τ1 is lower semicontinuous on the set X \D; see
[9, Theorem 2.7]. Since we are assuming that I(D) ∩ (D) = ∅ and I(D) is compact, then
there exists some η > 0 such that for all x ∈ X and all n ∈ N we have τn+1(x)− τn(x) ≥ η.

Now we state some conditions about the continuous semiflow φ on the sets D and I(D)
which will be useful for the statements of our main results. We define for t > 0

Dt =
∪
x∈D

{φs(x) : 0 < s < t}. (1.1)

Given ξ > 0, we say that φ is ξ-regular on D if

(1) Dt is an open set for all 0 < t ≤ ξ;
(2) if x ∈ X \Dξ and φt(x) ∈ Dξ for some t > 0, then φs(x) ∈ D for some 0 ≤ s < t.

We say that φ satisfies a ξ-half-tube condition on a compact set A ⊂ X if

(1) φt(x) ∈ A ⇒ φt+s(x) /∈ A for all 0 < s < ξ;
(2) {φt(x1) : 0 < t ≤ ξ} ∩ {φt(x2) : 0 < t ≤ ξ} = ∅ for all x1, x2 ∈ A with x1 ̸= x2;
(3) there exists C > 0 such that, for all x1, x2 ∈ A with x1 ̸= x2, we have

0 ≤ t < s ≤ ξ ⇒ d (φt(x1), φt(x2)) ≤ C d (φs(x1), φs(x2)).

In our main results we will assume that φ satisfies a ξ-half-tube condition on the compact
sets D and I(D). In particular, the first condition in the definition of ξ-half-tube for A = D
implies that τ1(x) ≥ ξ > 0 for all x ∈ D. Given ξ > 0 we define

Xξ = X \ (Dξ ∪D).
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Since D is compact, I is continuous and I(D) ∩D = ∅, we may choose ξ small enough so
that I(D) ∩Dξ = ∅. Therefore, the set Xξ is forward invariant under ψ, that is

ψt(Xξ) ⊆ Xξ, ∀t ≥ 0. (1.2)

For future use, we introduce the function

τ ∗ξ : Xξ ∪D → [0,+∞]

defined as

τ ∗ξ (x) =

{
τ1(x), if x ∈ Xξ;

0, if x ∈ D.

For latter reference we gather as (C1)-(C5) all the properties that we need about impulsive
dynamical systems in the list below. We assume that there exists ξ0 > 0 such that for all
0 < ξ < ξ0 we have:

(C1) I : D → X is Lipschitz with Lip(I) ≤ 1 and I(D) ∩D = ∅;
(C2) I(Ωψ ∩D) ⊂ Ωψ \D, where Ωψ denotes the set of non-wandering points of ψ;
(C3) φ is ξ-regular on D;
(C4) φ satisfies a ξ-half-tube condition on both D and I(D);
(C5) τ ∗ξ is continuous.

Notice that conditions (C3)-(C4) hold, for instance, when φ is a C1 semiflow on a mani-
fold for which D and I(D) are submanifolds transversal to the flow direction. Moreover,
condition (C2) ensures that Ωψ \D is invariant by ψ (cf. [1, Theorem B]) and conditions
(C2) and (C5) are essential to guarantee that Mψ(X) ̸= ∅ (cf. [1, Theorem A]).

1.2. Expansiveness. Here we recall the classical definition of expansiveness for a contin-
uous semiflow and introduce an adapted version for an impulsive semiflow.

Continuous semiflow. Let φ be a continuous semiflow on a metric space (X, d). We say
that φ is positively expansive on X if for every δ > 0 there exists ε > 0 such that, if
x, y ∈ X and a continuous map s : R+

0 → R+
0 with s(0) = 0 satisfy d (φt(x), φs(t)(y)) < ε

for all t ≥ 0, then y = φt(x) for some 0 < t < δ.

Impulsive semiflow. Let ψ be the semiflow of an impulsive dynamical system (X,φ,D, I).
Given ε > 0, consider Bε(D) the ε-neighborhood of D in X. We say that ψ is positively
expansive on X if for every δ > 0 there exists ε > 0 such that, if x, y ∈ X and a continuous
map s : R+

0 → R+
0 with s(0) = 0 satisfy d (ψt(x), ψs(t)(y)) < ε for all t ≥ 0 such that

ψt(x), ψs(t)(y) /∈ Bε(D), then y = ψt(x) for some 0 < t < δ.

1.3. Specification. Let ψ be a semiflow on a metric space (X, d). We say that ψ has the
specification property on X if for all ε > 0 there exist L > 0 such that, for any sequence
x0, . . . , xn of points in X and any sequence 0 ≤ t0 < · · · < tn+1 such that ti+1 − ti ≥ L for
all 0 ≤ i ≤ n, there are y ∈ X and r : R+

0 → R+
0 constant on each interval [ti, ti+1[, whose

values depend only on x0, . . . , xn, that also satisfy

r([t0, t1[) = 0 and |r([ti+1, ti+2[)− r([ti, ti+1[)| < ε,
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for which

d (ψt+r(t)(y), ψt−ti(xi)) < ε, ∀ t ∈ [ti, ti+1 − L[ ∀ 0 ≤ i ≤ n.

The specification is said to be periodic if we can always choose y periodic with the minimum
period in [tn+1 − t0 − nε, tn+1 − t0 + nε].

1.4. Equilibrium states. Let ψ be a semiflow on a compact metric space (X, d). In what
follows we will denote by Mt

ψ(X) the set of probability measures defined on the σ-algebra
of the Borel subsets of X which are invariant under ψt, and set

Mψ(X) =
∩
t≥0

Mt
ψ(X).

An equilibrium state for a continuous potential function f : X → R is a probability measure
µf ∈ Mψ(X) which maximizes the map

µ ∈ Mψ(X) 7−→ hµ(ψ1) +

∫
f dµ,

where hµ(ψ1) stands for the metric entropy of the time-one map of the semiflow ψ with
respect to the measure µ. One of the main issues concerning equilibrium states is to
determine an appropriate space of potential functions. We consider again the cases of
continuous and impulsive semiflows separately.

Continuous semiflow. Given a continuous semiflow φ on X, denote by V (φ) the space of
continuous maps f : X → R for which there are K > 0 and ε > 0 such that for every t > 0
we have ∣∣∣∣∫ t

0

f(φs(x)) ds−
∫ t

0

f(φs(y)) ds

∣∣∣∣ < K, (1.3)

whenever

d (φs(x), φs(y)) < ε, ∀s ∈ [0, t].

It was proved in [17] that each f ∈ V (φ) has a unique equilibrium state if φ is continuous
and satisfies positive expansiveness and periodic specification. The same conclusion was
obtained in [12] under slightly different assumptions.

Remark 1.2. Actually, the results in [17] are proved for flows, but it is straightforward
to check that, after modifying the notion of expansiveness as done in Subsection 1.2, the
argument still holds for semiflows.

Impulsive semiflow. Consider now ψ as the semiflow of an impulsive dynamical system
(X,φ,D, I). In this context we need to restrict the set of potential functions for which we
are going to find an equilibrium state, introducing a slightly more demanding version of
the space of potential functions. We define V ∗(ψ) as the set of continuous maps f : X → R
for which

(1) f(x) = f(I(x)) for all x ∈ D;
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(2) there are K > 0 and ε > 0 such that for every t > 0 we have∣∣∣∣∫ t

0

f(ψs(x)) ds−
∫ t

0

f(ψs(y)) ds

∣∣∣∣ < K, (1.4)

whenever d (ψs(x), ψs(y)) < ε for all s ∈ [0, t] such that ψs(x), ψs(y) /∈ Bε(D).

For instance, constant potential functions belong to V ∗(ψ). The aim of our first result
is to extend Franco’s Theorem [17] on the existence and uniqueness of equilibrium states
for potential functions in V ∗(ψ). As in [17], to ensure uniqueness we need to assume some
finite dimensionality condition on the metric space X; see e.g. [15, Chapter 3]. Here we
also need a uniform control on the number of preimages under the impulsive function I.

Theorem A. Let X be a compact metric space and ψ the semiflow of an impulsive dy-
namical system (X,φ,D, I) for which (C1)-(C5) hold. If ψ is positively expansive and has
the periodic specification property in Ωψ \D, then any potential function f ∈ V ∗(ψ) has an
equilibrium state. Moreover, if dim(X) < ∞ and there is k > 0 such that #I−1({y}) ≤ k
for every y ∈ I(D), then the equilibrium state is unique.

In particular, taking f the null function, we deduce that the impulsive semiflow ψ has a
probability measure of maximum entropy, which in some cases is unique.

1.5. Topological pressure. Here we briefly recall the classical definition of topological
pressure for continuous semiflows (see [17] for details) and generalize this concept to im-
pulsive semiflows.

Classical definition. Let (X, d) be a compact metric space and φ : X × R+
0 → X be

a continuous semiflow. Given ε > 0 and t ∈ R+, a subset E of X is said to be (φ, ε, t)-
separated if for any x, y ∈ X with x ̸= y there is some s ∈ [0, t] such that d (φs(x), φs(y)) >
ε. Given f : X → R a continuous potential function, define

Z(φ, f, ε, t) = sup

{∑
x∈E

e
∫ t
0 f(φs(x)) ds : E is (φ, ε, t)-separated

}
,

P (φ, f, ε) = lim sup
t→+∞

1

t
log Z(φ, f, ε, t).

The topological pressure of f with respect to φ is defined as

P (φ, f) = lim
ε→0

P (φ, f, ε).

New definition. Let (X, d) be a compact metric space and ψ : R+
0 × X → X a semiflow

(possibly not continuous). Consider a function T assigning to each x ∈ X a sequence
(Tn(x))n∈A(x) of nonnegative numbers, where either A(x) = N or A(x) = {1, . . . , ℓ} for
some ℓ ∈ N. We say that T is admissible if there exists η > 0 such that for all x ∈ X and
all n ∈ N with n+ 1 ∈ A(x) we have

(1) Tn+1(x)− Tn(x) ≥ η;
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(2) Tn(ψt(x)) =

{
Tn(x)− t, if Tn−1(x) < t < Tn(x);

Tn+1(x), if t = Tn(x).

For each admissible function T , x ∈ X, t > 0 and 0 < δ < η/2, we define

JTt,δ(x) = [0, t] \
∪

j∈A(x)

]Tj(x)− δ, Tj(x) + δ[.

Observe that JTt,δ(x) = [0, t], whenever T1(x) > t. Given ε > 0 and t ∈ R+, we say that

E ⊂ X is (φ, δ, ε, t)-separated if for any x, y ∈ X with x ̸= y there is some s ∈ JTt,δ(x) such
that d (φs(x), φs(y)) > ε. Given a continuous potential function f : X → R, we define

ZT (φ, f, δ, ε, t) = sup

{∑
x∈E

exp

(∫ t

0

f(φs(x)) ds

)
: E is finite and (φ, δ, ε, t)-separated

}
,

P T (φ, f, δ, ε) = lim sup
t→+∞

1

t
log ZT

t (φ, f, δ, ε),

P T (φ, f, δ) = lim
ε→0

P T (φ, f, δ, ε).

Finally, the T -topological pressure of f with respect to φ is defined as

P T (φ, f) = lim
δ→0

P T (φ, f, δ).

Notice that, as in the classical case, the T -topological pressure is well defined, because

(1) if 0 < ε1 < ε2, then Z
T (φ, f, ε1, δ, t) ≥ ZT (ψ, f, ε2, δ, t);

(2) if 0 < ε1 < ε2, then P
T (ψ, f, ε1, δ) ≥ P T (ψ, f, ε2, δ);

(3) if 0 < δ1 < δ2, then P
T (ψ, f, δ1) ≥ P T (ψ, f, δ2).

The next result shows that for continuous semiflows the classical and new notions of topo-
logical pressure coincide.

Theorem B. Let X be a compact metric space, φ a continuous semiflow on X and T an
admissible function. If f : X → R is a continuous potential function, then P T (φ, f) =
P (φ, f).

The previous result motivates our definition of topological pressure for an impulsive
semiflow. First of all observe that given ψ the impulsive semiflow of an impulsive dynamical
system (X,φ,D, I), the function τ assigning to each point in X its sequence of impulsive
times is admissible (recall Remark 1.1). Therefore, we may define the topological pressure
of a potential function f : X → R with respect to an impulsive semiflow ψ as P τ (ψ, f). In
the sequel we establish a variational principle which generalizes [2, Theorem C]. Actually,
for the particular choice of f = 0 the next result gives [2, Theorem C].

Theorem C. Let X be a compact metric space and ψ the semiflow of an impulsive dy-
namical system (X,φ,D, I) for which (C1)-(C5) hold. Then for any potential function
f ∈ V ∗(ψ) we have

P τ (ψ, f) = sup
µ∈Mψ(X)

{
hµ(ψ1) +

∫
f dµ

}
,
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where ψ1 stands for the time one map of the semiflow ψ.

Under both expansivity and specification assumptions, it follows from Theorem A that
the supremum in this last result is attained. As Ωψ1 ⊆ Ωψ and for any probability measure
µ ∈ Mψ(X) we have µ(D) = 0 (see [1, Lemma 4.7]), then

hµ(ψ1) +

∫
f dµ = hµ(ψ1|Ωψ\D) +

∫
Ωψ\D

f dµ,

for any µ ∈ Mψ(X), and so it follows from Theorem C that

P τ (ψ, f) = P τ (ψ|Ωψ\D, f |Ωψ\D).

2. Classical and new pressure

Here we prove that the modified definition of topological pressure coincides with the clas-
sical one for continuous semiflows and continuous potential functions defined on compact
metric spaces, thus proving Theorem B.

Let (X, d) be a compact metric space, φ a continuous semiflow on X and f : X → R a
continuous potential function. Given T admissible, consider η > 0 as in the definition of
an admissible function and fix constants 0 < δ < η/2, ε > 0 and t > 0. Notice that for
every x ∈ X we have

ZT (φ, f, δ, ε, t) ≤ Z(φ, f, ε, t),

and so
P T (φ, f) ≤ P (φ, f).

We will now prove the reverse inequality. We start by stating a useful lemma whose proof
can be found in [2, Lemma 2.1].

Lemma 2.1. Let φ be a continuous semiflow on a compact metric space X. For each ε > 0
there is α > 0 such that d(φs(x), φu(x)) < ε for all x ∈ X and s, u ≥ 0 with |s− u| < α.

Consider an arbitrary ε > 0. By Lemma 2.1 there exists α > 0 such that for all z ∈ X
and all s, u > 0 with |s− u| < α, we have

d(φs(z), φu(z)) < ε/4. (2.1)

Hence, if x, y ∈ X and s ≥ 0 satisfy

d(φs(x), φs(y)) > ε, (2.2)

then, for every u ∈ (s− α, s+ α), we get

d(φs(x), φs(y)) ≤ d(φs(x), φu(x)) + d(φu(x), φu(y)) + d(φu(y), φs(y))

which, together with (2.1) and (2.2), implies

d(φu(x), φu(y)) > ε/2. (2.3)

Consider now E ⊆ X being (φ, t, ε)-separated. As φ is continuous, the set E is finite. By
definition, for every x, y ∈ E, x ̸= y, there exists s ∈ [0, t] such that

d(φs(x), φs(y)) ≥ ε.
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Choose 0 < δ < min{η, α/2, ε} and 0 < ε′ < ε/2. By (2.3), if u ∈ (s− 2δ, s+ 2δ), then

d(φu(x), φu(y)) > ε/2 > ε′.

If s ∈ JTt,δ(x) for some t > 0, then y /∈ BT (x, φ, δ, ε′, t), where

BT (x, φ, δ, ε′, t) =
{
z ∈ X : d(ψs(x), ψs(z)) < ε′, ∀s ∈ JTt,δ(x)

}
.

Otherwise, JTt,δ(x)∩(s−2δ, s+2δ) ̸= ∅, and then y /∈ BT (x, φ, δ, ε′, t). So, E is (φ, T, δ, ε′, t)-
separated. Hence

Z(φ, ε, t) ≤ ZT (φ, δ, ε′, t),

and so
1

t
logZ(φ, f, ε, t) ≤ 1

t
logZT (φ, f, δ, ε′, t).

Taking the upper limit as t→ +∞, we get

P (φ, f, ε) ≤ P T (φ, f, δ, ε′).

Now, taking ε′ → 0 we obtain

P (φ, f, ε) ≤ P T (φ, f, δ).

Noticing that δ → 0 when ε→ 0, we have

P (φ, f) ≤ P T (φ, f).

This finishes the proof of Theorem B.

3. Refinements and semiconjugacies

Given T and T ′ two admissible functions inX, we say that T ′ refines T , and write T ′ ≻ T ,
if for all x ∈ X and n ∈ N there existsm = m(n, x) ∈ N such that Tn(x) = T ′

m(x). Our new
concept of topological pressure is monotone with respect to the refinement of admissible
functions and invariant by semiflow equivalences that respect the fixed admissible functions.
The proofs of these properties are given in the two lemmas below and differ only in minor
details from analogous results in [2, Section 2.2].

Lemma 3.1. Let ψ be a semiflow on X. If T and T ′ are admissible functions such that
T ′ ≻ T , then P T (ψ, f) ≥ P T ′

(ψ, f) for any continuous potential function f : X → R.

Proof. Given ε, t > 0, 0 < δ < η/2 and a finite (ψ, T ′, δ, ε, t)-separated subset E, as T ′ ≻ T ,
the set E is a (ψ, T, δ, ε, t)-separated as well. Therefore

ZT ′
(ψ, δ, ε, t) ≤ ZT (ψ, δ, ε, t),

which clearly yields our conclusion. �
Given two semiflows ψ : R+

0 × X → X and ψ′ : R+
0 × X ′ → X ′, acting on the metric

spaces (X, d) and (X ′, d′), and two admissible functions T and T ′ defined on X and X ′,
respectively, we say that a uniformly continuous surjective map h : X → X ′ is a (T, T ′)-
semiconjugacy between ψ and ψ′ if

(1) ψ′
t ◦ h = h ◦ ψt for all t ≥ 0;
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(2) T ′(h(x)) = T (x) for all x ∈ X.

Lemma 3.2. Let h : X → X ′ be a (T, T ′)-semiconjugacy between the semiflows ψ and ψ′

on X and X ′, respectively, such that the pre-image of each point under h is finite. Then
P T (ψ, f ◦ h) ≥ P T ′

(ψ′, f) for any continuous potential function f : X ′ → R.

Proof. Let ψ : R+
0 ×X → X and ψ′ : R+

0 ×X ′ → X ′ be two semiconjugate semiflows and
h be such a semiconjugacy. As h is uniformly continuous, given ε > 0 there exists ε′ > 0
such that for a, b ∈ X

d(a, b) < ε′ ⇒ d′(h(a), h(b)) < ε.

Fix t > 0 and 0 < δ < η/2, and consider a finite (ψ′, T ′, t, ε, δ)-separated set B ⊆ X ′.
Then A = h−1(B) is finite, although it may have a cardinal bigger or equal than the one
of B. Moreover, A is a (ψ, T, t, ε′, δ)-separated set of X. Indeed, for all a, b ∈ A, there are
tn ∈ JT

′

t,δ(h(a)) and sn ∈ JT
′

t,δ(h(b)) such that

d′(ψ′
tn(h(a)), ψ

′
tn(h(b))) ≥ ε and d′(ψ′

sn(h(a)), ψ
′
sn(h(b))) ≥ ε

that is,
d′(h ◦ ψtn(a), h ◦ ψtn(b)) ≥ ε and d′(h ◦ ψsn(a), h ◦ ψsn(b)) ≥ ε.

Therefore,
d(ψtn(a), ψtn(b)) ≥ ε′ and d(ψsn(a), ψsn(b)) ≥ ε′.

Taking into account that, by definition of semiconjugacy, tn ∈ JTt,δ(a) and sn ∈ JTt,δ(b), we
deduce that

ZT (ψ, f ◦ h, δ, ε′, t) ≥ ZT ′
(ψ′, f, δ, ε, t).

Noticing that ε′ → 0 when ε→ 0, we finally conclude our proof. �

4. Quotient dynamics

Given an impulsive dynamical system (X,φ,D, I), consider the equivalence relation ∼
on X given by

x ∼ y ⇔ x = y, y = I(x), x = I(y) or I(x) = I(y). (4.1)

Let X̃ denote the quotient space, x̃ the equivalence class of a point x ∈ X and π : X → X̃

the natural projection. It follows from [1, Lemma 4.1] that X̃ is a metrizable space.

Actually, if d denotes the metric on X, a metric d̃ on X̃ that induces the quotient topology
is given by

d̃ (x̃, ỹ) = inf {d (p1, q1) + d (p2, q2) + · · ·+ d (pn, qn)},
where p1, q1, . . . , pn, qn is any chain of points in X such that p1 ∼ x, q1 ∼ p2, q2 ∼ p3, ...
qn ∼ y. In particular, we have for all x, y ∈ X

d̃ (x̃, ỹ) ≤ d (x, y). (4.2)

In general, an inequality in the opposite direction is much more complicated. In the case
that I does not expand distances we have the following result whose proof may be found
in [2, Lemma 4.1].
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Lemma 4.1. If Lip(I) ≤ 1, then for all x̃, ỹ ∈ π(X) there exist p, q ∈ X such that p ∼ x,

q ∼ y and d(p, q) ≤ 2 d̃ (x̃, ỹ).

Now take ξ > 0 such that conditions (C1)-(C5) hold. Since I(D) ∩ D = ∅, then each
point in the set Xξ = X \ (Dξ ∪D) has a representative of its equivalence class in X \Dξ.
This implies that

π(Xξ) = π(X \Dξ), (4.3)

and by the ξ-regular condition (C3) this is a compact set. As we are assuming that φ
satisfies a ξ-half-tube condition, then Xξ is invariant under ψ; recall (1.2). With no risk of
confusion, the restriction of ψ to Xξ will still be denoted by ψ.

Given x, y ∈ Xξ we have x ∼ y if and only if x = y. So π|Xξ induces a continuous
bijection from Xξ onto the set

X̃ξ = π(Xξ)

that we shall denote by H. The map H allows us to introduce a semiflow ψ̃ on X̃ξ given
by

ψ̃(t, x̃) = H ◦ ψ(t, x), (4.4)

for all x ∈ Xξ and t ≥ 0. Since the impulsive semiflow ψ satisfies conditions (C1) and

(C5), it follows from [2, Lemma 4.2] that the semiflow ψ̃ is continuous. Moreover, H gives
a semiconjugacy between the semiflows, i.e.

ψ̃t(H(x)) = H(ψt(x)) (4.5)

for all x ∈ Xξ and t ≥ 0.
We are looking for measures of maximal entropy for the impulsive semiflow ψ and, more

generally, equilibrium states for potential functions in V ∗(ψ). The strategy is to bring toX,

via H, equilibrium states for the continuous quotient dynamics ψ̃ defined on the compact

quotient metric space X̃ξ. For this purpose, we will need to carry the expansiveness and

periodic specification properties from the impulsive semiflow ψ to the quotient semiflow ψ̃.
However, condition (C3) is incompatible with the periodic specification property for ψ
in Xξ (cf. Section 7). This is why we will restrict the impulsive semiflow ψ to Ωψ \D, a set
that is contained in Xξ for every 0 < ξ < ξ0. Recall that, as ψ is not continuous, its non-
wandering set Ωψ, although closed, may be not ψ-invariant. Yet, condition (C2) guarantees
that Ωψ \D is ψ-invariant (see [1, Theorem B]) and, moreover, that π(Ωψ \D) = π(Ωψ).

In what follows we will consider ψ̃ restricted to the compact set

Ỹ = π(Ωψ \D).

Lemma 4.2. Let ψ be an impulsive semiflow.

(1) If ψ : R+
0 × (Ωψ \ D) → Ωψ \ D is positively expansive, then ψ̃ : R+

0 × Ỹ → Ỹ is
positively expansive.

(2) If ψ : R+
0 × (Ωψ \ D) → Ωψ \ D has the (periodic) specification property, then

ψ̃ : R+
0 × Ỹ → Ỹ has the (periodic) specification property.
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Proof. (1) Suppose that ψ is expansive on Ωψ \D. Given δ > 0, consider ε > 0 associated

to δ as in the definition of expansiveness for the impulsive semiflow ψ. Let x̃, ỹ ∈ Ỹ and a

continuous map s : R+
0 → R+

0 with s(0) = 0 satisfying d̃(ψ̃t(x̃), ψ̃s(t)(ỹ)) < ε/2 for all t ≥ 0.
Letting x = H−1(x̃) and y = H−1(ỹ), we have for all t ≥ 0

ψt(x) = H−1(ψ̃t(x̃)) and ψs(t)(y) = H−1(ψ̃s(t)(ỹ)).

Recall that the equivalence classes of ψs(x) and ψs(y) are reduced to a single point. Then,
if ψt(x), ψs(t)(y) /∈ Bε(D), it follows from Lemma 4.1 that d (ψt(x), ψs(t)(y)) < ε. Therefore,

y = ψt(x) for some 0 < t < δ. This implies that ỹ = ψ̃t(x̃), and so ψ̃ is expansive.
(2) Assume now that ψ has the (periodic) specification property on Ωψ \D. Given ε > 0,

consider L > 0 assigned to ε by the specification property. For each sequence x̃0, . . . , x̃n in

Ỹ and each sequence 0 ≤ t0 < · · · < tn+1 such that ti+1 − ti ≥ L for all 0 ≤ i ≤ n, we have
x0, . . . , xn the unique representatives in Ωψ \ D in the equivalence classes of x0, . . . , xn,
respectively. Then, as ψ has the (periodic) specification property in Ωψ \ D, there are a
(periodic) point y ∈ Ωψ \D and a function r : R+

0 → R+
0 constant on each interval [ti, ti+1[

satisfying

r([t0, t1[) = 0 and |r([ti+1, ti+2[)− r([ti, ti+1[)| < ε,

for which

d (ψt+r(t)(y), ψt(xi)) < ε, ∀ t ∈ [ti, ti+1[ ∀ 0 ≤ i ≤ n.

Therefore, the ψ̃-orbit of ỹ is well defined (and periodic) and, using (4.2), we get

d̃ (ψ̃t+r(t)(ỹ), ψ̃t(x̃i)) ≤ d (ψt+r(t)(y), ψt(xi)) < ε, ∀ t ∈ [ti, ti+1[ ∀ 0 ≤ i ≤ n,

thus proving that ψ̃ has the (periodic) specification property. �
Letting i : Ωψ \ D → X be the inclusion map and the subscript ∗ stand for the push-

forward of a measure, the next result follows from [1, Theorem A] and [2, Lemma 4.7].

Lemma 4.3. The map i∗ : Mψ(Ωψ \D) → Mψ(X) is a bijection.

The following lemma is a straightforward consequence of the previous considerations
concerning the map H together with the fact that H−1 is measurable by [24].

Lemma 4.4. The map H∗ : Mψ(Ωψ \D) → Mψ̃(Ỹ ) is a bijection.

5. Existence and uniqueness of equilibrium states

Here we finish the proof of Theorem A. In the next result we show that H preserves
some good properties of the potential functions.

Lemma 5.1. If f ∈ V ∗(ψ), then f ◦H−1 ∈ V (ψ̃).

Proof. By definition of V ∗(ψ), we have f continuous and f(x) = f(I(x)) for all x ∈ D.
Recalling the definition of the equivalence relation ∼, we can easily see that f ◦ H−1 is
continuous. We are left to check that condition (1.3) holds.
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Given f ∈ V ∗(ψ), there are constants K > 0 and ε > 0 for which (1.4) holds whenever

d (ψs(x), ψs(y)) < ε for all s ∈ [0, t] such that ψs(x), ψs(y) /∈ Bε(D). Consider x̃, ỹ ∈ Ỹ

and t > 0 such that d (ψ̃s(x̃), ψ̃s(ỹ)) < ε/2 for all s ∈ [0, t]. Letting x = H−1(x̃) and
y = H−1(ỹ), we have for all s ∈ [0, t]

ψs(x) = H−1(ψ̃s(x̃)) and ψs(y) = H−1(ψ̃s(ỹ)). (5.1)

Observe that the equivalence classes of ψs(x) and ψs(y) are reduced to a single point. Then,
if ψs(x), ψs(y) /∈ Bε(D), it follows from Lemma 4.1 that d (ψs(x), ψs(y)) < ε. Therefore,∣∣∣∣∫ t

0

f(ψs(x)) ds−
∫ t

0

f(ψs(y)) ds

∣∣∣∣ < K. (5.2)

Recalling (5.1), we have∣∣∣∣∫ t

0

f(H−1(ψ̃s(x̃))) ds−
∫ t

0

f(H−1(ψ̃s(ỹ))) ds

∣∣∣∣ = ∣∣∣∣∫ t

0

f(ψs(x)) ds−
∫ t

0

f(ψs(y)) ds

∣∣∣∣ ,
which together with (5.2) gives the desired conclusion. �

Given a potential function f ∈ V ∗(ψ) and considering f̃ = f ◦ H−1, it follows from

Lemma 5.1 that f̃ ∈ V (ψ̃). Therefore, we may use [17] and obtain an equilibrium state µ̃f̃
for f̃ (with respect to ψ̃); recall Remark 1.2. Taking µf = i∗H

−1
∗ µ̃f̃ , we are going to verify

that µf is an equilibrium state for f (with respect to ψ). Firstly notice that it follows from
Lemmas 4.3 and 4.4 that for every ν ∈Mψ(X) we have∫

f̃ dH∗i
−1
∗ ν =

∫
f ◦H−1 dH∗i

−1
∗ ν =

∫
f d i−1

∗ ν =

∫
f d ν, (5.3)

and also that, using (4.5) we get

hν̃(ψ̃1) = hν
(
ψ1|Ωψ\D

)
= hν (ψ1) , (5.4)

where ν̃ = H∗i
−1
∗ ν. From (5.3) and (5.4) we deduce that

sup

{
hν(ψ1) +

∫
f dν : ν ∈Mψ(X)

}
= sup

{
hν̃(ψ̃1) +

∫
f̃ dν̃ : ν ∈Mψ(X)

}
= sup

{
hη(ψ̃1) +

∫
f̃ dη : η ∈Mψ̃(Ỹ )

}
, (5.5)

where the last equality is due to Lemmas 4.3 and 4.4. As µ̃f̃ is an equilibrium state for f̃
and (5.4) holds for ν = µf , we conclude that

hµf (ψ1) = sup

{
hν(ψ1) +

∫
f dν : ν ∈Mψ(X)

}
.

Additionally, assuming that dim(X) <∞ and #I−1({y}) ≤ k for every y ∈ I(D), it follows

from [15, Theorem 3.3.7] that dim(Ỹ ) < ∞, and so µ̃f̃ is unique by [17, Theorem 2.15].

Since we have µf = i∗H
−1
∗ µ̃f̃ , the equilibrium state µf is unique as well.
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6. Variational principle

According to [17], given a continuous semiflow φ on a metric space X and a continuous
potential function f : X → R, the topological pressure of f may be described thermody-
namically as

P (φ, f) = sup
µ∈Mφ(X)

{
hµ(φ1) +

∫
f dµ

}
. (6.1)

The aim of this section is to prove a generalization of this equality to impulsive semiflows,
replacing the classical notion of topological pressure by the new one (cf. Section 1.5).

Consider a compact metric space (X, d), an impulsive dynamical system (X,φ,D, I) sat-
isfying conditions (C1)-(C5) and τ the admissible function of the corresponding impulsive
times. The assumptions on I(D) ensure that the function that assigns to each x ∈ X
the sequence of visit times to I(D), say θ(x) := (θn(x))n∈N, is an admissible function with
respect to I(D). Moreover, as I(D)∩D = ∅, we may re-index the sequences τ(x) and θ(x)
in order to assemble them in a unique admissible function τ ′, where τ ′n(x) is either τm(x)
or θm(x), for some m. This way, we have τ ′ ≻ τ .

Lemma 6.1. For every continuous potential function f : X → R, we have P τ (ψ, f) =
P τ ′(ψ, f).

Proof. Let f be a continuous potential function in X. As τ ′ ≻ τ , by Lemma 3.1 we have

P τ ′(ψ, f) ≤ P τ (ψ, f).

Concerning the other inequality, it follows from the proof of [2, Lemma 3.1] that, given t > 0
and small enough ε > 0 and δ > 0, then a set E which is finite and (ψ, τ ′, δ, ε, t)-separated
is (ψ, τ, δ, ε/2, t)-separated as well. Therefore

Zτ (ψ, δ, ε, t) ≤ Zτ ′(ψ, δ, ε/2, t)

and so P τ (ψ, f) ≤ P τ ′(ψ, f). �
As the distance between the compact sets D and I(D) is strictly positive, fixing η > 0

(recall Remark 1.1) and ξ0 > 0 associated to the conditions (C3)-(C5), we may choose

0 < ξ < min {η/4, ξ0/2} (6.2)

small enough so that I(D)∩Dξ = ∅. The next result shows that, with this suitable choice
of ξ, the τ and τ ′-topological pressures of the semiflows ψ and ψ|Xξ coincide for potential

functions in V ∗(ψ).

Lemma 6.2. If f ∈ V ∗(ψ), then there is 0 < ξ < ξ0 such that P τ ′(ψ, f) = P τ ′(ψ|Xξ , f).

Proof. Consider a potential function f ∈ V ∗(ψ). As Xξ ⊂ X, then P τ ′(ψ|Xξ , f) ≤
P τ ′(ψ, f). We are left to prove the other inequality. It follows from the assumption that
D satisfies condition (C3) and the proof of [2, Lemma 3.2] that, given t > 0 and small
enough ε > 0 and δ > 0, if a set E ⊂ X is finite and (ψ, τ ′, δ, ε, t)-separated and we take
the subsets

A = E ∩ (D ∪Dξ) and B = E ∩Xξ, , (6.3)
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then B is (ψ|Xξ , τ
′, δ, ε, t)-separated and that there exists ε′ < ε such that ψξ(A) is

(ψ|Xξ , τ
′, δ, ε′, t)-separated. Moreover, #ψξ(A) = #A. Hence, ψξ(A) ∪ B is finite and

(ψ|Xξ , τ
′, δ, ε′, t)-separated.

Since f ∈ V ∗(ψ), there are ρ > 0 and K > 0 such that for every t > 0 we have∣∣∣∣∫ t

0

f(ψs(x)) ds−
∫ t

0

f(ψs(y)) ds

∣∣∣∣ < K,

whenever d (ψs(x), ψs(y)) < ρ for all s ∈ [0, t] such that ψs(x), ψs(y) /∈ Bρ(D). Now, using
Lemma 2.1, we may find α > 0 such that d(φs(x), φu(x)) < ρ for all x ∈ X and s, u ≥ 0
with |s− u| < α. Therefore, choosing 0 < ξ < α, we have

d(ψs(x), ψs(ψξ(x))) = d(φs(x), φs(φξ(x))) < ρ

for all s ∈ [0, t] such that ψs(x), ψs(ψξ(x)) /∈ Bρ(D). Hence,∑
x∈A

exp

(∫ t

0

f(ψs(x))ds

)
=

=
∑
x∈A

exp

(∫ t

0

f(ψs(x))ds−
∫ t

0

f(ψs(ψξ(x)))ds+

∫ t

0

f(ψs(ψξ(x)))ds

)
≤

∑
x∈A

exp

(∣∣∣∣∫ t

0

f(ψs(x))ds−
∫ t

0

f(ψs(ψξ(x)))ds

∣∣∣∣) exp

(∫ t

0

f(ψs(ψξ(x)))ds

)
≤ eK

∑
x∈A

exp

(∫ t

0

f(ψs(ψξ(x)))ds

)
= eK

∑
y∈ψξ(A)

exp

(∫ t

0

f(ψs(y))ds

)
.

On the other hand, recalling (6.3) we may write∑
x∈E

exp

(∫ t

0

f(ψs(x))ds

)
=

∑
x∈A

exp

(∫ t

0

f(ψs(x))ds

)
+
∑
x∈B

exp

(∫ t

0

f(ψs(x))ds

)
.

Therefore, as eK > 1 and ε′ < ε we get∑
x∈E

exp

(∫ t

0

f(ψs(x))ds

)
≤ eK

∑
y∈ψ(A)∪B

exp

(∫ t

0

f(ψs(y))ds

)
,

and so
Zτ ′(ψ, f, δ, ε, t) ≤ eKZτ ′(ψ|Xξ , f, δ, ε′, t).

This implies that P τ ′(ψ, f) ≤ P τ ′(ψ|Xξ , f). As I(D) also satisfies condition (C3), a similar

argument shows that P τ ′(ψ, f) = P τ ′(ψ|Xξ\I(D), f). �

Using the semiconjugacy H between the semiflows ψ and ψ̃, we now project on X̃ξ the
admissible functions τ and τ ′, as done in [2, Lemma 4.5], thus getting admissible functions

on X̃ξ. This way, we may compare the corresponding pressures.

Lemma 6.3. If f ∈ V ∗(ψ), then P τ ′(ψ, f) = P τ̃ ′(ψ̃, f̃).
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Proof. Given f ∈ V ∗(ψ), let 0 < ξ < ξ0 be given by Lemma 6.2. It follows from Lemma 3.2

applied to the semiconjugacy H : Xξ → X̃ξ that P τ̃ ′(ψ̃, f̃) ≤ P τ ′(ψ|Xξ , f). Additionally,

Lemma 6.2 ensures that P τ ′(ψ|Xξ , f) = P τ ′(ψ, f). Thus,

P τ̃ ′(ψ̃, f̃) ≤ P τ ′(ψ, f). (6.4)

Conversely, as H−1 : X̃ξ \ π(D) → Xξ \ I(D) is a (τ̃ ′, τ ′)-semiconjugacy between ψ̃|X̃ξ\π(D)

and ψ|Xξ\I(D), it follows from Lemma 3.2 that P τ̃ ′(ψ̃|X̃ξ\π(D), f̃) ≥ P τ ′(ψ|Xξ\I(D), f). More-

over, as f ∈ V ∗(ψ), from Lemma 6.2 we have P τ ′(ψ|Xξ\I(D), f) = P τ ′(ψ, f). Besides, as

X̃ξ \ π(D) ⊂ X̃ξ, we also know that P τ̃ ′(ψ̃, f̃) ≥ P τ̃ ′(ψ̃|X̃ξ\π(D), f̃). Hence,

P τ̃ ′(ψ̃, f̃) ≥ P τ̃ ′(ψ̃|X̃ξ\π(D)) ≥ P τ ′(ψ|Xξ\I(D), f) = P τ ′(ψ, f),

which together with (6.4) gives the result. �

Let us resume the proof of Theorem C. Given f ∈ V ∗(ψ), it follows from Theorem B
that

P τ̃ ′(ψ̃, f̃) = P (ψ̃, f̃),

which together with Lemma 6.1, Lemma 6.2 and Lemma 6.3 yields

P τ (ψ, f) = P (ψ̃, f̃).

Now, it follows from (5.5) that

sup
η∈Mψ̃(X)

{
hη(ψ̃1) +

∫
f̃ dη

}
= sup

ν∈Mψ(X)

{
hµ(ψ1) +

∫
f dν

}
.

Moreover, equation (6.1) gives

P (ψ̃, f̃) = sup
η∈Mψ̃(X)

{
hη(ψ̃1) +

∫
f̃ dη

}
.

Therefore,

P τ (ψ, f) = sup
ν∈Mψ(X)

{
hµ(ψ1) +

∫
f dν

}
,

which ends the proof of Theorem C.

7. Examples

Here we give two examples of impulsive dynamical systems for which the variational
principle and the existence and uniqueness of equilibrium states hold. This follows from
the simple fact that the impulsive semiflow is uniquely ergodic in the first example. In
the second one we show that the impulsive semiflow is positively expansive and has the
specification property and then use Theorem A and Theorem C.
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7.1. Suspension of a rotation. Here we define an impulsive semiflow on a suspension
of an irrational rotation on S1 which is uniquely ergodic. Consider the unit circle S1 =
{e2πix ∈ C : 0 ≤ x < 1} and an irrational number θ1 ∈ ]0, 1[. Let Rθ1 : S1 → S1 be the
irrational rotation Rθ1(e

2πix) = e2πi(x+θ1) on S1. Consider the cylinder

Y = {(z, u) : z ∈ S1, 0 ≤ u ≤ 1}
and the 2-torus

X = Y/≈,
where ≈ is the equivalence relation in X given by (z, 1) ≈ (Rθ1(z), 0). We define the
suspension flow φ : R+

0 ×X → X over the rotation Rθ1 as

φ(t, (z, u)) =

{
(z, t+ u), 0 ≤ t+ u < 1;

(Rθ1(z), 0), t+ u = 1.

As Rθ1 is uniquely ergodic, the unique invariant probability measure invariant by the
suspension flow φ is Lebesgue measure on X = S1 × S1; see [23, Chapter 6].

Now, take another irrational number θ2 ∈ ]0, 1[ and consider the set

D = S1 ×
{
1

2

}
⊂ X.

Let the impulsive function I : D → X be the map defined as

I

(
z,

1

2

)
=

(
Rθ2(z),

3

4

)
,

where Rθ2 is the irrational rotation of angle θ2. Then define ψ : R+
0 × X → X as the

impulsive semiflow of the impulsive dynamical system (X,φ,D, I). It is straightforward to
check that the impulsive semiflow ψ satisfies conditions (C1)-(C5).

Consider the suspension flow φ̃ on X over the rotation Rθ1+θ2 ; as in the case of φ, the

flow φ̃ is uniquely ergodic. We note that the map F : Ωψ \D → X̃ defined as

F(x, u) =

{
(x, u), 0 ≤ u ≤ 1

2
;

(R−1
θ2
(x), 2u− 1), 3

4
≤ u ≤ 1;

is a continuous bijection. Moreover, F conjugates the flows φ̃ and ψ|Ωψ\D , that is

φ̃t ◦ F = F ◦ ψt
for every t ≥ 0. Consequently, the semiflow ψ is uniquely ergodic and so it has a unique
equilibrium state for any continuous potential function.

7.2. Suspension of a shift. Here we define an impulsive semiflow on a suspension of
a shift which is positively expansive and has the specification property. Let (Σ2, σ) be
the two-sided full shift on 2 symbols. Given two irrational numbers a, b > 3 linearly
independent over Q, let c : Σ2 → R+ be the ceiling function defined as c(x) = a if x0 = 0
and c(x) = b if x0 = 1. Let

Yc = {(x, u) : x ∈ Σ2, 0 ≤ u ≤ c(x)} (7.1)
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and

Xc = Yc/∼c (7.2)

where ∼c is the equivalence relation in Xc given by (x, c(x)) ∼c (σx, 0). We define the
suspension flow φc : R+

0 ×Xc → Xc as

φc(t, (x, u)) =

{
(x, t+ u), 0 ≤ t+ u ≤ c(x);

(σx, 0), t+ u = c(x).

As σ is an expansive map, it follows from [7, Theorem 6] that φc is an expansive semiflow.
It is straightforward to check that c is not cohomologous to a function taking values in βZ
for some β > 0. Therefore, by [25, Proposition 5] the flow φc has the periodic specification
property. Consider

D = Σ2 × {1} ⊂ Xc

and the impulsive function I : D → Xc defined as

I((xn)n, 1) = ((1− xn)n, 3).

Notice that, on the first coordinate, the map I acts as the isometry R : Σ2 → Σ2 that
reverses each digit, so condition (C1) holds. Moreover, Yc ⊂ Σ2 × [0,max{a, b}] is a finite
dimensional metric space; see [15, Theorems 4.1.7, 4.1.21 & 4.1.25]. Since each class of the
equivalence relation ∼c has at most two elements, by [15, Theorem 3.3.7] the dimension of
Xc is finite as well.

Let ψc : R+
0 × Xc → Xc be the impulsive semiflow of the impulsive dynamical system

(Xc, φc, D, I). As

Ωψc \D =
(
{(x, u) : x ∈ Σ2, 0 ≤ u < 1} ∪ {(x, u) : x ∈ Σ2, 3 ≤ u ≤ c(x)}

)
/∼c,

condition (C2) is also valid. Besides, the semiflow ψc satisfies conditions (C3)-(C5) for any
0 < ξ < ξ0 = 2. We are left to verify that ψc restricted to Ωψc \D is expansive and has the
periodic specification property.

Consider the ceiling function c̃ = c ◦ R − 2 and the corresponding spaces Yc̃ and Xc̃

defined as in (7.1) and (7.2), respectively. The suspension flow φc̃ on Xc̃ is expansive, as
in the case of φc; moreover, as R commutes with σ and is an involution, it is not difficult
to show that c̃ is not cohomologous to a function taking values in βZ for some β > 0, and
so the flow φc̃ has the specification property.

Let F : Ωψc \D → Xc̃ be defined as

F(x, u) =

{
(x, u), 0 ≤ u < 1;

(R−1(x), u− 2), 3 ≤ u ≤ c(x).

It is easy to verify that the map F is a continuous bijection. Besides, as I(x, 1) = (R(x), 3)
for all x ∈ Σ2, the map F conjugates the semiflows ψc on Ωψc \ D and φc̃. Hence, ψc is
expansive and has the periodic specification property in Ωψc \D. Therefore, by Theorem A
the semiflow ψ has a unique equilibrium state for any potential function in V ∗(ψ).
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