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Abstract. We show that, for every pseudovariety of groups H, the
pseudovariety H̄, consisting of all finite semigroups all of whose sub-
groups lie in H, is irreducible for join and the Mal’cev and semidirect
products.

1. Introduction

Since the establishment of Eilenberg’s correspondence between varieties
of regular languages and pseudovarieties of semigroups [5], the theory of fi-
nite semigroups has evolved mostly in the direction of their classification in
pseudovarieties. The most recent account on this topic is [15], which con-
tains a wealth of results, centered on the Krohn-Rhodes complexity theory,
but not limited to it. The typical problem, motivated by the origins of this
research area, consists in determining whether the membership problem for
a given pseudovariety is decidable. The difficulty lies in the fact that, very
often, pseudovarieties are given by generators, rather than by characteristic
structural properties of their members. The generators are often obtained by
applying some natural algebraic construction to members of given pseudova-
rieties. For instance, the direct and semidirect products of semigroups lead
respectively to the join and semidirect product of pseudovarieties, while the
existence of a congruence whose idempotent classes lie in a given pseudova-
riety and whose quotient lies in another pseudovariety leads to the Mal’cev
product. The interest in such operators on pseudovarieties is that they allow
to decompose, in the pseudovariety sense, complicated finite semigroups in
terms of simpler ones. For example, the Krohn-Rhodes decomposition the-
ory concerns building arbitrary finite semigroups from finite simple groups
and finite aperiodic semigroups using semidirect products.

Thus, a key ingredient in the theory of pseudovarieties of semigroups is
to break them up, when possible, into simpler pseudovarieties using natural
operators. There are two ways in which this might be achieved: through
a finite decomposition, or through an iterated decomposition, providing a
filtration of the pseudovariety in terms of subpseudovarieties which admit
finite decompositions, as in the Krohn-Rhodes complexity theory.

In this paper, we improve on earlier results of Margolis, Sapir and Weil
[8] and Rhodes and Steinberg [14, 15] concerning the pseudovarieties of the
form H̄, consisting of all finite semigroups all of whose subgroups lie in a
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given pseudovariety of groups H. In [8], Koryakov’s embedding approach [6]
is improved to show that H̄ is finitely indecomposable in terms of Mal’cev
and semidirect products and joins, provided H is closed under semidirect
product. In [14], a stronger form of join indecomposability (called finite join
irreducibility) is established for H̄ in case H contains some non-nilpotent
group, the technique being the construction of so-called Kovács-Newman
semigroups. In both works, it is proposed as an open problem to determine
whether every pseudovariety of the form H̄ is join indecomposable. This also
appears in [15] as Problem 47.

We give an affirmative solution to those problems. Our approach is sim-
ilar to that of [8] but uses a Rees matrix-like construction to obtain an
improved embedding of free pro-H̄ semigroups, which does not require that
H be closed under semidirect product. This allows us to use the arguments
of [8] to show that H̄ is indecomposable, in the stronger sense, with respect
to both join and the Mal’cev and semidirect products. In fact, we show that
every pseudovariety that is closed under our construction is join indecom-
posable in the weaker sense. The construction leads to a new operator at
the level of pseudovarieties, which we call the bullet. We have not found
any pseudovarieties other than those of the form H̄ which are closed under
bullet.

2. Preliminaries

We assume familiarity with the basic theory of pseudovarieties of semi-
groups, including the role played by free profinite semigroups, in particular
through Reiterman’s theorem [10], defining pseudovarieties by pseudoiden-
tities. The reader is referred to [1, 2, 15] for a few alternative introductions
to this subject.

For a pseudovariety V, ΩAV and ΩnV denote the pro-V semigroups freely
generated respectively by the set A and a set of cardinality n. Elements of
such semigroups will be called pseudowords.

We adopt the usual conventions for semigroup pseudoidentities such as
that u = 1 and u = 0 are, respectively, abbreviations of the pseudoidentities
ux = x = xu and ux = u = xu, where x is a variable that does not occur
in u.

For the reader’s convenience, the following is a catalog of pseudovarieties
of finite semigroups that play a role in this paper. For each of them, besides
a, sometimes incomplete, verbal description, a well-known definition in terms
of pseudoidentities is also provided.

• I: trivial (Jx = yK).
• LZ: left zero (Jxy = xK).
• RZ: right zero (Jxy = yK).
• RB: rectangular bands (Jxyx = xK).
• A: aperiodic (Jxω+1 = xωK = Bω,1).
• S: all (Jx = xK = Bω,ω).
• N2: null (nilpotency index at most 2, Jxy = 0K).
• D: definite (Jxyω = yωK).
• Kn: reverse definite of index n (Jx1 · · · xny = x1 · · · xnK).
• K: reverse definite (Jxωy = xωK).
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• Ab: Abelian groups (Jxω = 1, xy = yxK).

Let V be a pseudovariety of semigroups. A homomorphism ϕ : S → T
between two finite semigroups S and T is said to be a V-homomorphism if
ϕ−1(e) ∈ V for every idempotent e ∈ T .

We also need the following operators on pseudovarieties of semigroups:

• Mal’cev product : V©m W is the pseudovariety generated by all finite
semigroups S for which there is a V-homomorphism ϕ : S → T into
a semigroup T ∈ W;

• semidirect product : V ∗ W is the pseudovariety generated by all
semidirect products of the form S ∗ T with S ∈ V and T ∈ W;

• bar : for a pseudovariety H (of groups), H̄ is the pseudovariety con-
sisting of all finite semigroups all of whose subgroups belong to H;

• localization: for a pseudovariety V, LV consists of all finite semi-
groups S such that, for every idempotent e in S, the local subsemi-
group eSe belongs to V.

It is well known that V ∗W is also generated by the wreath products of the
form S ◦T with S ∈ V and T ∈ W, a fact which may be used to deduce that
the semidirect product of pseudovarieties is associative.

The Basis Theorem for the Mal’cev product of pseudovarieties [9] states
that, if V = Jui(x1, . . . , xni

) = vi(x1, . . . , xni
) : i ∈ IK then V ©m W is

defined by the pseudoidentities of the form ui(w1, . . . , wni
) = vi(w1, . . . , wni

)
where the wj are pseudowords such that W satisfies the pseudoidentities
w2
1 = w1 = · · · = wni

(i ∈ I).

3. A Rees matrix extension construction

Let S and T be semigroups and f : S1 → T 1 be a function. The set

M(S, T, f) = S ⊎ S1 × T 1 × S1

is endowed with the multiplication defined by the following formulas for all
s ∈ S, si, s

′
i ∈ S1, and t, t′ ∈ T 1:

s1 · s2 = s1s2

s · (s1, t, s2) = (ss1, t, s2)

(s1, t, s2) · s = (s1, t, s2s)

(s1, t, s2) · (s
′
1, t

′, s′2) = (s1, tf(s2s
′
1)t

′, s′2).

The S1 × T 1 × S1 portion of M(S, T, f), which constitutes an ideal, is a
special case of the well-known Rees matrix semigroup construction that can
be found in most of the literature on the algebraic theory of semigroups (see,
for instance, [3]). The semigroup M(S, T, f) has recently been used in [4]
for rather different purposes. Similar constructions have been extensively
used in the synthesis theory of Rhodes [13, 11, 12].

The following lemma contains some preliminary observations about this
algebraic structure.

Lemma 3.1. The set M(S, T, f) is a semigroup for the above operation.

All its subgroups are isomorphic to subgroups of either S or T .
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Proof. From the definition, it is clear that S is a subsemigroup and that,
its complement, the subset R = S1 × T 1 × S1 constitutes a Rees matrix
subsemigroup. Moreover, the formulas indicate that S acts both on the
left and on the right of R, respectively by left multiplication on the first
component and right multiplication on the third component. Therefore, the
two actions commute. Hence, the only case of the associativity law that
remains to be considered is

(

(s1, t, s2) · s
)

· (s′1, t
′, s′2) = (s1, t, s2) ·

(

s · (s′1, t
′, s′2)

)

,

and it is easily checked that both sides are equal to (s1, tf(s2ss
′
1)t

′, s′2).
Let H be a subgroup of M(S, T, f). Since R is an ideal, H must be

contained in either S or R, and it suffices to consider the latter case. Let
(s1, t, s2) be the idempotent of H. Then tf(s2s1)t = t and e = tf(s2s1) is
an idempotent of T 1. Let G be the maximal subgroup of T 1 containing e.
Consider the mapping ϕ : H → T 1 which sends each element (s1, t

′, s2) to
t′f(s2s1). It is routine to check that ϕ is an injective homomorphism which
takes its values in G. �

Given two pseudovarieties of semigroups U and V, we denote by U • V

the pseudovariety generated by all semigroups of the form M(S, T, f), with
S ∈ U and T ∈ V. For lack of a better name, we call bullet this operation
on pseudovarieties. We say that V is a bullet idempotent if V •V = V. Note
that, in view of Lemma 3.1, every pseudovariety of the form H̄ is a bullet
idempotent, provided H is a pseudovariety of groups.

The following embedding theorem is the core of our irreducibility results.
It may be viewed as a strong generalization of the coding statement given
by [8, Proposition 2.4].

Theorem 3.2. Let V be a pseudovariety which is a bullet idempotent. Let A
and B be finite sets and suppose that θ : B → ΩAV is an injective function.

Then the unique continuous homomorphism ψ : ΩBV → ΩA⊎{z}V such that

ψ(b) = θ(b)z is injective.

Proof. Arguing by contradiction, let u, v ∈ ΩBV be such that ψ(u) = ψ(v)
and u 6= v. Let τ : ΩBV → T be a continuous homomorphism into a semi-
group T from V such that τ(u) 6= τ(v). Let σ : ΩAV → S be a continuous
homomorphism into a semigroup S from V such that the mapping σ ◦ θ is
injective. Let f : S1 → T 1 be the function defined by f(σ(θ(b))) = τ(b),
and f(s) = 1 for all other s ∈ S1. Since V is a bullet idempotent, there is
a unique continuous homomorphism ϕ : ΩA⊎{z}V → M(S, T, f) such that
ϕ(a) = σ(a) for a ∈ A and ϕ(z) = (1, 1, 1). We claim that the equality

(1) ϕ(zψ(w)) = (1, τ(w), 1)

holds for every w ∈ ΩBV. This will complete the proof since it contradicts
the initial assumptions ψ(u) = ψ(v) and τ(u) 6= τ(v).

Since the mappings ϕ, ψ and τ are continuous, it suffices to prove (1) in
case w ∈ B+, which we establish by induction on |w|. Suppose first that
w = b ∈ B. Then we have

ϕ(zψ(b)) = ϕ(zθ(b)z) = ϕ(z)ϕ(θ(b))ϕ(z)

= (1, 1, 1)σ(θ(b))(1, 1, 1) = (1, f(σ(θ(b))), 1) = (1, τ(b), 1).
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Suppose next that b ∈ B and w ∈ B+ satisfies (1). Then we may compute

ϕ(zψ(bw)) = ϕ(zθ(b)zψ(w)) = ϕ(z)ϕ(θ(b))ϕ(zψ(w))

= (1, 1, 1)σ(θ(b))(1, τ(w), 1) = (1, f(σ(θ(b)))τ(w), 1)

= (1, τ(b)τ(w), 1) = (1, τ(bw), 1),

which completes the induction step and establishes the claim. �

Recall that a pseudovariety V is monoidal if it contains the monoid S1

whenever it contains the semigroup S.

Lemma 3.3. Every bullet idempotent is monoidal.

Proof. Let T be an arbitrary semigroup from V and consider the associated
semigroup U = M({1}, T, f), where f : {1} → T 1 maps 1 to 1. Then
{1}×T 1 ×{1} is a subsemigroup of U which is isomorphic with T 1. Hence,
T 1 belongs to V • V and, therefore, also to V. �

We say that a pseudovariety V has finite index if it satisfies a pseudoiden-
tity of the form xm = xm+ω with m a positive integer. In this case, the
smallest such m is called the index of V. If there is no such m, then V is
said to have infinite index.

Lemma 3.4. Every bullet idempotent contains LI and, in particular, it has

infinite index.

Proof. Let V be a bullet idempotent. As a pseudovariety, it must contain the
trivial semigroup I = {1} and, therefore, also the two-element semilattice
S =M(I, I, f). For the constant mapping f with value 0, the subsemigroup
of M(S, S, f) given by S × {0} × S is a 2 × 2 rectangular band, while the
subsemigroup {1} × S × {1} is a two-element null semigroup. Hence V

contains RB = LZ ∨ RZ and N2.
Let A be a finite alphabet and let Kn = ΩAKn. It is well known that

Kn may be represented by the set A≤n of nonempty words of length at
most n, with multiplication given by concatenation followed by truncation
to the prefix of length n if the resulting word has length greater than n.
By induction on n, we prove that Kn ∈ V. The case of n = 1 follows from
the above since K1 = LZ. Assuming that Kn ∈ V, consider the semigroup
U = M(ΩAN2,Kn, f), where f : (ΩAN2)

1 → Kn maps each free generator
a ∈ A of ΩAN2 to the corresponding free generator of Kn. Noting that
ΩAN2 = A⊎ {0}, the set T = A×Kn ×{1} is a subsemigroup of U and the
mapping T → Kn+1 which sends each triple (a,w, 1) ∈ T to aw is an onto
homomorphism, we deduce that Kn+1 ∈ V.

The preceding paragraph entails that K is contained in V. Dually, so is D
and, therefore so is LI = K ∨ D. �

We adopt the same terminology as in [15, Definition 6.1.5] for various
irreducibility notions in a lattice. In particular, we say that

• a pseudovariety V is strictly finite join irreducible (sfji) if V = U∨W

implies V = U or V = W;
• a pseudovariety V is finite join irreducible (fji) if V ⊆ U∨W implies
V ⊆ U or V ⊆ W.
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Theorem 3.5. Every bullet idempotent is sfji.

Proof. Let V be a bullet idempotent and let U and W be pseudovarieties of
semigroups such that U ∨W = V. We claim that V must be contained (and
therefore be equal) to at least one of U and W. Otherwise, by Reiterman’s
theorem, there are pseudoidentities u1 = u2 and v1 = v2 such that U sat-
isfies u1 = u2, W satisfies v1 = v2, and V fails both pseudoidentities. We
may assume that each of the pseudoidentities u1 = u2 and v1 = v2 involves
the minimum possible number of variables so that, in particular, every pseu-
doidentity which is obtained from them by identifying variables is valid in V.
Without loss of generality, we further assume that the number of variables
n involved in u1 = u2 is at least the number of variables involved in v1 = v2.

Consider first the case where n ≥ 2 and let B = {x1, . . . , xn} be the set
of variables involved in the pseudoidentity u1 = u2. We may assume that
the pseudoidentity v1 = v2 is written on a disjoint set C of variables and
we let A = B ∪ C. We further consider a new variable z. Since V contains
all finite rectangular bands by Lemma 3.4, we deduce that the mapping
θ : B → ΩAV sending xi to vi for i = 1, 2 and fixing all other xj is injective.

By Theorem 3.2, the unique continuous homomorphism ψ : ΩBV → ΩA∪{z}V

such that ψ(xi) = θ(xi)z is also injective. Since the pseudoidentity u1 = u2
fails in V, it follows that so does the pseudoidentity

(2) u1(v1z, v2z, x3z, . . . , xnz) = u2(v1z, v2z, x3z, . . . , xnz).

Note the pseudoidentity (2) is valid in U, being an obvious consequence of
u1 = u2. It is also valid in W since this pseudovariety satisfies v1 = v2, so
that W satisfies (2) if and only if it satisfies the pseudoidentity

u1(v1z, v1z, x3z, . . . , xnz) = u2(v1z, v1z, x3z, . . . , xnz),

which, by the assumption on the minimality of the number n, is valid in V,
whence also in W. Hence U ∨ W satisfies the pseudoidentity (2), while V

does not, which contradicts the assumption that V = U ∨W.
It remains to consider the case where n = 1. In this case, the pseudoiden-

tity u1 = u2 involves only one variable. Then, u1(x)u2(y) = u2(x)u1(y)
is still a pseudoidentity valid in U. It fails in V since V is monoidal by
Lemma 3.3. We may then apply basically the same argument as in the
case n ≥ 2 to the pseudoidentity u1(x)u2(y) = u2(x)u1(y) playing the role
of u1 = u2. The only difference in the argument concerns the verification
that the pseudoidentity (2) holds inW, which is now trivial since, in the pres-
ence of v1 = v2, (2) is equivalent to u1(v1z)u2(v1z) = u2(v1z)u1(v1z). �

In view of Lemma 3.1, Theorem 3.5 applies to the pseudovarieties of
the form H̄, which gives an affirmative solution to the first part of [15,
Problem 47]. However, we prove in Section 4 that in fact H̄ is fji, which
provides an affirmative answer also to the second part of [15, Problem 47].

4. An improved finite join irreducibility result

In this section we prove that every pseudovariety of the form H̄ is irre-
ducible not only for the join (fji) but also enjoys the analogous properties for
both the Mal’cev and semidirect products. This improves the main results
of [8].
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Theorem 4.1. Let H be a pseudovariety of groups. If H̄ is contained in

V©m W, then it is contained in at least one of V and W.

Proof. Suppose that H̄ ⊆ V©mW and that H̄ is contained in neither V nor W.
By Reiterman’s theorem, there are pseudoidentities u = v and w = t that
fail in H̄ but hold respectively in V and W. By [6, Theorem 1], we may
assume that u, v ∈ Ω2S. Let A be a finite set such that w, t ∈ ΩAS and
choose z /∈ A. Note that the pseudoidentity
(3)
u
(

(wz)ω(tz)ω, (wz)ω(tzwz)ω(tz)ω
)

= v
(

(wz)ω(tz)ω, (wz)ω(tzwz)ω(tz)ω
)

holds in V ©m W. Indeed, this pseudovariety is generated by all finite semi-
groups S for which there exists a homomorphism f : S → T into a semigroup
from W such that f−1(e) ∈ V for every idempotent e from T . For a continu-
ous homomorphism ϕ : ΩAS → S, since W satisfies the pseudoidentity w = t
and T ∈ W, f(ϕ((wz)ω(tz)ω)) and f(ϕ((wz)ω(tzwz)ω(tz)ω)) are the same
idempotent e. Thus, ϕ((wz)ω(tz)ω) and ϕ((wz)ω(tzwz)ω(tz)ω) are both el-
ements of the subsemigroup f−1(e) of S, which in turn belongs to V. Hence
ϕ maps both sides of the pseudoidentity (3) to the same element of S.1

It remains to show that the pseudoidentity (3) fails in H̄. Indeed, it is
shown in the proof of [8, Proposition 3.1] that, since the pseudovariety H̄ is
monoidal and it fails the pseudoidentity u = v, it also fails the pseudoidentity

(4) u(xωyω, xω(yx)ωyω) = v(xωyω, xω(yx)ωyω).

Let p : Ω{x,y}S → Ω{x,y}H̄ and q : ΩA∪{z}S → ΩA∪{z}H̄ be the natural

continuous homomorphisms. To apply Theorem 3.2, let θ : {x, y} → ΩAH̄

be the function that maps x to q(w) and y to q(t). Note that θ is injective
because the pseudoidentity w = t fails in H̄. Let ψ : Ω{x,y}H̄ → ΩA∪{z}H̄ be
the resulting injective continuous homomorphism defined in Theorem 3.2.
Since, for s ∈ Ω{x,y}S,

ψ
(

p
(

s(xωyω, xω(yx)ωyω)
)

)

= q
(

s
(

(wz)ω(tz)ω, (wz)ω(tzwz)ω(tz)ω
)

)

and ψ is injective, from the fact that the pseudoidentity (4) fails in H̄ it
follows that so does (3). �

From Theorem 4.1, one may adapt the arguments used in [8, proofs of
Corollaries 3.3 and 3.4] to deduce the following results. The adaptation
consists in dropping the hypothesis that the pseudovariety of groups H is
closed under extensions, and noting that in all cases the arguments yield
finite irreducibility rather than just strict finite irreducibility. The short
proofs are included for the sake of completeness.

Corollary 4.2. Let H be an arbitrary pseudovariety of groups. If H̄ is

contained in a semidirect product V ∗W, then it is contained in at least one

of the factors V and W.

Proof. By [15, Corollary 4.1.32], we have V ∗ W ⊆ LV ©m W. From the
hypothesis and Theorem 4.1, we deduce that H̄ is contained in at least one

1This argument, which is included here for the sake of completeness, is basically the
easy part of the proof of the Pin and Weil Basis Theorem for Mal’cev products [9].
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of the Mal’cev factors LV and W. In the former case, since H̄ is monoidal, it
follows that it is contained in V. �

Corollary 4.3. If H is an arbitrary pseudovariety of groups, then H̄ is fji.

Proof. It suffices to note that V ∨W ⊆ V ∗W and apply Corollary 4.2. �

The special case of Corollary 4.3 where H is a pseudovariety of groups con-
taining some non-nilpotent group is part of [15, Corollary 7.4.23], which is
based on the construction of so-called Kovács-Newman semigroups. Corol-
lary 4.3 solves [15, Problem 47]. The strict version of that problem, as well
the Mal’cev and semidirect products counterparts had already been pro-
posed in [8]. The following result is an immediate application of strict finite
join irreducibility of H̄.

Corollary 4.4. Let H be an arbitrary pseudovariety of groups. Then H̄ con-

tains no maximal proper subpseudovariety.

Proof. Since no pseudoidentity of the form xn = xω+n with n a positive
integer holds in H̄, this pseudovariety cannot be finitely generated. The
result now follows from [15, Corollary 7.2.17], which states that every sfji
pseudovariety that is not finitely generated has no proper maximal subpseu-
dovariety. �

For pseudovarieties of groups H containing Ab, Corollary 4.4 had previ-
ously been proved by Margolis [7].

5. Conclusion

We have extended the irreducibility results on pseudovarieties of the form
H̄ to the case of an arbitrary pseudovariety of groups H, thereby proving the
superfluousness of extra hypotheses that were previously considered in the
literature. Theorem 3.5 actually establishes a weaker form of irreducibility,
namely sfji, for possibly more general types of pseudovarieties, the bullet
idempotents, but it remains open whether the theorem applies to any other
pseudovarieties than those of the form H̄. More generally, it remains an open
problem to determine all sfji and all fji pseudovarieties of semigroups.
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