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a b s t r a c t

Previous epidemiological studies on SIS model have only considered the dynamic evolution of the mean
value and the variance of the infected individuals. In this paper, through cumulant neglection, we use the
dynamic equations of all the moments of infected individuals to develop a recursive method to compute
the equilibria manifold of the moment closure ODE’s. Specifically, we use the stable equilibria of the
moment closure ODE’s to obtain good approximations of the quasi-stationary states of the SIS model. This
is a crucial step when the quasi-stationary distribution is highly skewed.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The stochastic SIS model, introduced by Weiss and Dishon [24],
is used to study endemic diseases that do not confer immunity,
such as malaria (see Bailey [1], Brauer and Castillo-Chavez [3],
Brauer et al. [4], Renshaw [20]). Other practical applications in-
clude well-known diseases such as tuberculosis and meningitis
(see Hethcote [6]). Typically these diseases are transmitted by bac-
terial and protozoan agents. The stochastic SIS model is equivalent
to the well-known stochastic logistic model in population dynam-
ics (see Nåsell [13]). In this paper we focus mainly on how epidem-
ics spread in small environments, like schools, and on population
dynamics of small neighborhoods.

The stochastic SIS model is a birth-and-death process with a fi-
nite state space corresponding to the number of infected individu-
als IðtÞ, at time t, and susceptible individuals SðtÞ ¼ N � IðtÞ, where
N is the total number of individuals. Since the state IðtÞ ¼ 0 is the
only absorbing state, the stationary distribution is degenerated
with a probability of one at this state. Since the time to reach the
equilibrium IðtÞ ¼ 0 can be quite long, the stationary distribution
is non-informative and therefore it is critical to compute the qua-
si-stationary distribution, i.e. the stationary distribution of the sto-
chastic process conditioned to the non-extinction of the infected
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individuals (see Kryscio and Lefevre [7], Nåsell [12]). The quasi-
stationary distribution does not have an explicit form because
when it is applied the moment generating function to both sides
of the Kolmogorov forward differential equation of the SIS process,
the differential equation with respect to the m moment of infected
individuals depends on the ðmþ 1Þ moment. Moment closure
methods can be applied to do the replacement of the ðmþ 1Þ mo-
ment in the differential equation of the m moment by an expres-
sion containing only lower-order moments. Usually moment
closure methods are based on the assumption of specific distribu-
tion families or on cumulant truncation (see Matis and Guardiola
[10], Matis and Kiffe [11], Singh and Hespanha [21]), although
there are no specific distribution families beyond the normal distri-
bution such that all high cumulants are zero (see Lukacs [9]).
Hence, each moment closure method determines a way to close
the dynamics of the moments, which leads to different results.

Nåsell [15] studied the first 3 cumulants for the stochastic SIS
model. In the cases where the basic reproduction ratio is distinctly
larger than 1, and the population size N is large, the closure method
used consisted in setting the third cumulant equal to zero based
upon the assumption that the distribution is asymptotically nor-
mal. In the cases where the distributions are skewed, the closure
method used consisted in using cumulant truncation by setting
the fourth cumulant equal to zero. Krishnarajah et al. [8] explored
the use of mixture distributions, based on a mixture of a point
mass at zero representing extinction of the process, and log-normal
and beta-binomial distributions to approximate the distribution
conditional upon non-extinction. Clancy and Mendy [5] found that:
(i) in the subcritical region, a geometric distribution approximation
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to the quasi-stationary distribution of an SIS model is preferred; (ii)
in the supercritical region, a beta-binomial distribution is pre-
ferred. Here, we attempt to improve the approximations by trun-
cating at higher order cumulants. To accomplish this we
developed a recursive method to compute the equilibria manifold
of the m moment closure ODE’s, for every m. We show that for high
values of m this method provides better approximations when the
quasi-stationary distribution is highly skewed, which is more likely
the case when either the population size is small or the infection
rate is small or both.

2. The stochastic SIS model

We consider the stochastic SIS (Susceptible-Infected-Suscepti-
ble) model that describes the evolution of an infectious disease
in a population of N individuals, where each individual can be
either infected or susceptible. Denoting the global quantity of sus-
ceptible individuals by SðtÞ and the infected quantity by IðtÞ, at
time t, we obtain that SðtÞ þ IðtÞ ¼ N. The stochastic SIS model is
a birth-and-death process with a finite state space, correspondent
to the number of infected individuals IðtÞ 2 f0;1;2; . . . ;Ng at time t.
The birth rate b is the probability, per unit of time, of one infected
individual to have a contact with a susceptible one and to transmit
the disease. The death rate a is the probability, per unit of time, of
one infected individual to recover and become susceptible again. In
an epidemiological context, the rate b is known as the infection
rate and a as the recovery rate. Thus, in the SIS model the spread-
ing of the epidemic can be illustrated by

Sþ I!b I þ I and I!a S:

Let pðI; tÞ denotes the probability of having I infecteds at time t. The
time evolution of the pðI; tÞ is given by the master equation of the
SIS model

d
dt

pðI; tÞ ¼ b
N � ðI � 1Þ

N
ðI � 1ÞpðI � 1; tÞ þ aðI þ 1ÞpðI þ 1; tÞ

� b
N � I

N
I þ aI

� �
pðI; tÞ ð1Þ

with I 2 0;1; . . . ;Nf g. The master equation is a gain-loss term equa-
tion, also known as the differential form of the Chapman–Kolmogorov
equation, described for general Markov processes in Bailey [2] and
especially applied to chemical reactions in van Kampen [23].

2.1. Quasi-stationary distribution

The state IðtÞ ¼ 0 is the only one absorbing and is attained for a
finite time, i.e., the stationary distribution of the stochastic SIS
model is degenerated with probability one at the origin

pðI� ¼ kÞ ¼
1; if k ¼ 0;
0; if k – 0;

�
However, the time to reach the equilibrium IðtÞ ¼ 0 can be so long
that the stationary distribution is non informative and the interest
goes to the quasi-stationary distribution. The quasi-stationary dis-
tribution is the stationary distribution of the same stochastic pro-
cess conditioned to the non-extinction of the infected individuals

fIðtÞ ¼ i j IðtÞ > 0g; i ¼ 1;2; . . . ;N;

and therefore supported on the set of the transient states. Denoting
by ~qiðtÞ the probability of having i infecteds in the conditioned pro-
cess, at time t, we obtain

~qiðtÞ ¼ pðIðtÞ ¼ i j IðtÞ > 0Þ ¼ pðIðtÞ ¼ iÞ
1� pðIðtÞ ¼ 0Þ ; i ¼ 1;2; . . . ;N

Hence, the quasi-stationary distribution is the solution of the equa-
tion d

dt
~qiðtÞ ¼ 0. Let qi denote these solution probabilities. Observing
that d
dt pðIðtÞ ¼ 0Þ ¼ apðIðtÞ ¼ 1Þ and applying the master equation

we obtain that

ki�1qi�1 � kiqi þ liþ1qiþ1 ¼ �aq1qi; ð2Þ

where

ki�1 ¼ b
N � ði� 1Þ

N
ði� 1Þ; ki ¼ b

N � i
N

iþ ai

and liþ1 ¼ aðiþ 1Þ

We observe that the system Eq. (2) can not be solved explicitly be-
cause of the product q1qi in the right-hand side of Eq. (2), but we
can put all qi probabilities depending on q1. Hence, qi satisfies the
relation

qi ¼ cðiÞaðiÞRi�1
0 q1; i ¼ 1;2; . . . ;N; ð3Þ

where R0 ¼ b=a,

cðiÞ ¼ 1
i

Xi

k¼1

1�
Pk�1

l¼1 ql

aðkÞRk�1
0

; ð4Þ

aðiÞ ¼ N!

N � ið Þ!Ni
; ð5Þ

and

q1 ¼
1PN

i¼1cðiÞaðiÞR
i�1
0

: ð6Þ

Eqs. (3)–(6) do not define explicitly the quasi-stationary distribu-
tion. However, we can use iterative methods to approach the qi val-
ues (see Nåsell [14]). One possible method starts with an initial
guess for q1 and uses Eq. (3) to determine the other qi. Then q1

can be actualized using Eq. (6). This process should be repeated un-
til successive iterations are close enough. This iterative method con-
verges because the quasi-stationary distribution qi is a left
eigenvector of a matrix AQ (see Nåsell [12]), that has real and dis-
tinct negative eigenvalues (see Picard [17]), and the correspondent
eigenvalue is the dominant one.

2.2. Approximating the quasi-stationary distribution

Since the quasi-stationary distribution of the stochastic SIS
model does not have an explicit form, it is useful to approximate
the model in order to obtain explicit approximations of the qua-
si-stationary distribution. Two possible approximations were stud-
ied by Kryscio and Lefevre[7] and by Nåsell [12,13]. One is given by
the stationary distribution of the SIS model with one permanently
infected individual and the other is obtained from the SIS model
with the state IðtÞ ¼ 0 removed, i.e., the recovery rate is zero when
there exists only one infected individual while all the other transi-
tion rates stay unchanged. The stationary distribution of this last
process can be determined explicitly and gives

pj ¼
N!

j N � jð Þ!Nj

b
a

� �j�1

pð0Þ; j ¼ 1;2; . . . ;N; ð7Þ

where pj ¼ PðI� ¼ jÞ and pð0Þ is defined by

pð0Þ ¼ 1PN
j¼1

N!

j N�jð Þ!Nj
b
a

� �j�1 : ð8Þ

This stationary distribution defines a good approximation of the qua-
si-stationary distribution of the SIS model when the basic reproduc-
tion ratio is distinctly larger than 1, i.e., the infection rate b is
distinctly greater than the recovery rate a, and N !þ1 (see Nåsell
[13]). In Fig. 1, we compare the mean value of infecteds that arises
from the quasi-stationary distribution hIiQS with the mean value
hIiQS;Apx of the approximated distribution presented in Eq. (7). The
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Fig. 1. (a) Comparison between the quasi stationary mean value of infecteds hIiQS and the approximated value hIiQS;Apx , for different infection rates b. (b) Distance between hIiQS

and hIiQS;Apx . Parameters used: N ¼ 100 and a ¼ 1.

128 J. Martins et al. / Mathematical Biosciences 236 (2012) 126–131
quasi-stationary mean value was computed iteratively from Eqs. (3) to
(6) with a precision of 15 digits. The parameters used are N ¼ 100 and
a ¼ 1.

3. The m moment closure SIS ODE’s

We will derive the dynamics of the m first moments of infecteds
hIi; hI2i, . . . ,hImi, for the m moment closure ODE’s through cumulant
truncation and we will compute the stable equilibria manifold. We
will study when the stable equilibria hIi�m;b can be a good approxima-
tion of the quasi-stationary mean value of infecteds hIiQS;b.

3.1. Moment closure

Let hIni denote the nth moment of the state variable I that is gi-
ven by

hIniðtÞ ¼
XN

I¼0

InpðI; tÞ: ð9Þ

The ODE of the nth moment of infecteds, derived from the master
equation, (see Krishnarajah et al.[8]) is given by

d
dt
hIni ¼ fnðhIi; hI2i; . . . ; hIniÞ � b

N
nhInþ1i; ð10Þ

where

fn hIi; hI2i; . . . ; hIni
� �

¼
Xn

j¼1

n
j

� �
bþ ð�1Þja
� �

Inþ1�j
D E

� b
N

Xn

j¼2

n
j

� �
Inþ2�j
D E

: ð11Þ

–The characteristic function p : R! C of the state variable I is de-
fined by

pðkÞ ¼ eikI
	 


¼
XN

I¼0

eikIpðI; tÞ; ð12Þ

and the nth cumulant of I is the constant kn defined implicitly by

ln pðkÞ ¼
X1
n¼1

kn
ðikÞn

n!
: ð13Þ

We denote the nth cumulant of I by kn ¼ hhInii. There is a relation
between cumulants and moments (see Smith [22], Papoulis [16])
given by
hhInþ1ii ¼ hInþ1i �
Xn

j¼1

ðnjÞhIji; hhInþ1�jii; n P 1; ð14Þ

where the first cumulant is equal to the mean value of the infecteds
hhIii ¼ hIi. To apply the cumulant truncation technique, we will use
the following Lemma that is proved in A.

Lemma 1. Assuming that hhImþ1ii ¼ 0, there is a polynomial function
gm hIi; hI2i; . . . ; hIm�1i
� �

such that

hImþ1i ¼ gm hIi; hI2i; . . . ; hIm�1i
� �

þ ðmþ 1ÞhIihImi: ð15Þ
The moment closure technique was introduced by Whittle [25].

The mth moment closure approximation consists in assuming that
the state variables are normally distributed, hence hhImþ1ii ¼ 0 for
m P 2, and therefore in replacing the moment hImþ1i in Eq. (10) by
the expression given in Eq. (15). This moment closure technique is
known by cumulant truncation or cumulant negletion. Hence, the
m moment closure ODE’s for the m first moments of infecteds
hIi; hI2i, . . . , hImi, after applying the cumulant truncation technique,
is as follows:

� for n ¼ 1; . . . ; m� 1, the ODE’s of hIniare as presented in Eq.
(10);
� the ODE of hImi is given by
d
dt
hImi ¼ fm hIi; hI2i; . . . ; hImi

� �
� b

N
m gm hIi; hI

2i; . . . ; hIm�1i
� �

þ ðmþ 1ÞhIihImi
h i

ð16Þ

where fm and gm are as presented in Eq. (11) and Lemma 1,
respectively.

The resulting m moment closure ODE’s are therefore given by

d
dt
hIi ¼ ðb� aÞhIi � bhI2i

N

d
dt
hI2i ¼ ðbþ aÞhIi þ 2ðb� aÞhI2i � b

N
hI2i � 2

b
N
hI3i

:::

d
dt
hImi ¼ fm hIi; hI2i; . . . ; hImi

� �
� b

N
n gm hIi; hI2i; . . . ; hIm�1i

� �h
þ mþ 1ÞhIihImið �: ð17Þ
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Fig. 2. The stationary mean value of infecteds for the m moment closure ODE’s, presented in Eq. (17), for different values of b. In (a), we consider the dynamic of the first five
moments of infecteds m ¼ 5 and therefore the system Eq. (17) has 5 equations. In (b), we consider m ¼ 11. The thick lines correspond to the stable equilibria and the others to
the unstable. The parameters a ¼ 1 and N ¼ 100 were used.
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3.2. Equilibria manifold

To solve system Eq. (17) in stationarity for any dimension m we
use the following recursive process:

Step 1: Solve the first equation in the second moment
d
dt
hIi ¼ 0() hI2i� ¼ 1� a

b

� �
NhIi�
and substitute the result in the following equations;
Step 2: Solve the second equation in the third moment
d
dt
hI2i ¼ 0() hI3i� ¼ a

b
þ 1� a

b

� �2

N

 !
NhIi�
and substitute the result in the following equations;
. ..

Step m� 1:
Solve the ðm� 1Þth equation in the mth moment
d
dt
hIm�1i ¼ 0() hImi� ¼ hImi� hIi�ð Þ
and substitute the result in the last equation.

In the end, we obtain a ðmþ 1Þth order polynomial function in
the first moment of infecteds

hIi� cmhIi�m þ . . .þ c1hIi� þ c0
� �

¼ 0; ð18Þ

that is numerically solved for fixed values of a; b and N. Further-
more, all the higher moments hIni�; n P 2, at equilibria are deter-
mined by the first moment of infecteds hIi�. We will denote by
hIi�m;b the solutions of Eq. (18), i.e., the stationary mean value of in-
fected individuals for the m moment closure ODE system. In Fig. 2,
we present the real zeros of the polynomial function given by Eq.
(18) for m ¼ 5 and m ¼ 11 and different infection rate values b.
The values used for the parameters a and N are a ¼ 1 and
N ¼ 100. There are multiple equilibria and we present in thick lines
the stable equilibria and in thin lines the unstable ones. We observe
that the stable equilibrium is the equilibrium with the largest value
of hIi� because is the only one for which the jacobian matrix of sys-
tem Eq. (17) has all eigenvalues with negative real part.

Let ½bm;þ1Þ be the interval of the infection rate b for which there
is a stable equilibria for the m moment closure ODE’s. We observe
that the value bm tends to þ1 when m tends to þ1. Furthermore,
letting the critical value of the infection rate bcðmÞ be the smallest
value of b such that the equilibrium hIi� ¼ 0 turns into an unstable
equilibrium, for the m moment closure ODE’s, we also observe that
bcðmÞ tends toþ1when m tends toþ1. These critical infection rate
values bcðmÞ can be computed using the jacobian matrix of system
Eq. (17) at the equilibrium hIi� ¼ hI2i� ¼ . . . ¼ hImi� ¼ 0, that has a
characteristic aspect given by

J¼

b�a � b
N 0 0 0

bþa 2ðb�aÞ� b
N �2 b

N 0 0

b�a 3ðbþaÞ� b
N 3ðb�aÞ�3 b

N �3 b
N 0

bþa 4ðb�aÞ� b
N 6ðbþaÞ�4 b

N 4ðb�aÞ�6 b
N �4 b

N

. .
.

2
666666664

3
777777775
:

4. Results and discussion

Nåsell [15] indicates that the stable equilibria of the 1 to 3 mo-
ment closure ODE’s in cumulant truncation can be used to give a
good approximation of the quasi-stationary mean value of infect-
eds hIiQS;b for high values of the population size N. Here, we study
how this approximation can improve using higher moment closure
ODE’s. In Fig. 3, we present the distance jhIi�m;b � hIiQS;bj between the
first moment of infecteds obtained by the successive m moment
closure ODE’s hIi�m;b and the quasi-stationary mean value of infect-
eds hIiQS;b for the distribution presented in Eq. (7). In Fig. 3 a), we
consider a relatively small infection rate b ¼ 1:6, above the critical
mean field threshold bc ¼ 1, taking a ¼ 1 and N ¼ 100. We observe
that the distance jhIi�m;b¼1:6 � hIiQS; b¼1:6j decreases with m while the
equilibria hIi�m;b¼1:6 are stable (up to m ¼ 5). In Fig. 3 b), we consider
other infection rate values and we observe that the distance
jhIi�m;b � hIiQS;bj decreases with m up to a certain mth moment clo-
sure approximation that can even occur before the break down
of the stable equilibria for the value of the infection rate b under
consideration (see simulations for other transition rates in Pinto
et al.[18,19]). Similar approximations are observed for the higher
moments of infected individuals hIni�; n P 2.

5. Conclusions

Nåsell [15] studied the first 3 cumulants for the stochastic SIS
model. Here, we improved the approximations by truncating at
higher order cumulants. To accomplish this we developed a recur-
sive method to compute the equilibria manifold of the m moment
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closure ODE’s, for every m. We showed that for high values of m
this method provides better approximations when the quasi-sta-
tionary distribution is highly skewed, which is more likely the case
when either the population size is small or the infection rate is
small or both.
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Appendix A. The moment closure function

Proof (Proof of Lemma 1). We know that if I is a random variable
with the n first moments hIki, k 2 f0;1; . . . ;ng, then it has cumu-
lants of the same order that can be computed by the recursive
formula given in Eq. (14) (see Smith [22], Papoulis [16]). Hence,
assuming that hhImþ1ii ¼ 0 we obtain that

hImþ1i ¼
Xm

j¼1

ðmjÞhIjihhImþ1�jii

¼ mhIihhImii þ
Xm�1

j¼2

ðmjÞhIjihhImþ1�jii þ hImihhIii: ðA:1Þ

Applying the recursive formula given in Eq. (14) to compute the
cumulant hhImii, it follows that

hImþ1i ¼ mhIi hImi �
Xm�1

j¼1

m�1
j

� �
hIjihhIm�jii

 !

þ
Xm�1

j¼2

m
j

� �
hIjihhImþ1�jii þ hImihhIii: ðA:2Þ

We observe that only the first and the last terms of the previous
expression depends on the mth moment. Hence, Eq. (A.2) can be
reorganized in order to join the terms with this moment and we
obtain

hImþ1i ¼ �mhIi
Xm�1

j¼1

m�1
j

� �
hIjihhIm�jii þ

Xm�1

j¼2

m
j

� �
hIjihhImþ1�jii

þmhIihImi þ hImihhIii: ðA:3Þ

Defining the function gm by

gm hIi; hI2i; . . . ; hIm�1i
� �

¼ �mhIi
Xm�1

j¼1

m�1
j

� �
hIjihhIm�jii

þ
Xm�1

j¼2

m
j

� �
hIjihhImþ1�jii; ðA:4Þ

we obtain for the moment hImþ1i the equality

hImþ1i ¼ gm hIi; hI2i; . . . ; hIm�1i
� �

þ ðmþ 1ÞhIihImi; ðA:5Þ

as presented in Lemma 1. h
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