
A Platform for Electronic Commerce with Adaptive
Agents

Henrique Lopes Cardoso, Eugénio Oliveira

Faculdade de Engenharia, Universidade do Porto, NIAD&R-LIACC
Rua dos Bragas

4050-123 Porto Codex, Portugal
Phone: +351-22-2041849 Fax: +351-22-2074225

hlc@ipb.pt eco@fe.up.pt

Abstract. Market research suggests that organisations, in general, have a
differentiation strategy when approaching Electronic Commerce. Thus, in order
to be useful, agent technology must take into account this market characteristic.
When extending its application to the negotiation stage of the shopping
experience, one should consider a multi-issue approach, from which both
buyers and sellers can profit. We here present SMACE, a layered platform for
agent-mediated Electronic Commerce, supporting multilateral and multi-issue
negotiations. In this system, the negotiation infrastructure through which the
software agents interact is independent from their negotiation strategies. Taking
advantage of this concept, the system assists agent construction, allowing users
to focus in the development of their negotiation strategies. In particular, and
according to experiments here reported, we have implemented a type of agent
that is capable of increasing the performance with its own experience, by
adapting to the market conditions, using a specific kind of Reinforcement
Learning technique.

1 Introduction

Agent technology has been applied to the Electronic Commerce domain, giving birth
to what is known as agent-mediated Electronic Commerce. Many of these online
implementations refer only to the first stages of the Consumer Buying Behaviour
model [9], those of discovering what particular product a shopper should buy (product
brokering) and finding it through the online merchants (merchant brokering). These
automated search engines help the user on finding the best merchant offer, classifying
those offers according to the price that they state. Examples of such systems include
BargainFinder [2] and Jango [10]. In some extent, this is the only presently viable
implementation of agent technology to online shopping, since many of the merchant
sites consist of catalogues, including product and service descriptions and a so called
take-it-or-leave-it way of doing business, which consists of presenting the demanded
price of the good.

Most of the commercial online sites where it is possible to negotiate over the terms
of a transaction consist of auctions, mostly based on the traditional English auction
protocol. In this kind of interaction, it is common to have the shoppers bidding on the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143411331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

price they are willing to pay for a given good, with all the remaining product and
transaction characteristics being fixed. This is what makes these auctions single-sided
mechanisms, in which shoppers compete for limited resources. On the other hand,
double-sided auctions, like the continuous double auction, admit multiple buyers and
sellers at the same time, both parts being able to bid. This possibility enables a way to
implement a more realistic agent-based approach to today’s online shopping
experiences. In fact, the Internet has changed radically the “rules of the game”.
Shoppers have today a virtually world wide marketplace, allowing them to compare
merchant’s offers in a global scale. Thus, the competition among merchants has
increased, and they are obliged to find out new ways of capturing shoppers’ attention.

Some examples of agent technology applied to auctions are the academic projects
AuctionBot [1, 19], which is an auction server where software agents can be created
to participate in several types of auctions, and Fishmarket [8, 14], an electronic
auction house for the Dutch auction.

According to market research [15], from the three well-known generic business
strategies with which organisations may align Electronic Commerce – cost leadership,
differentiation, and focus –, differentiation is the preferred one. This fact poses
questions about the advantages of using the currently available information seeking
agent-based systems applied to the Electronic Commerce domain. In order to be
helpful, this technology should take into account that merchants want to differentiate
themselves, and that shoppers can and want to benefit from that.

In order to build agent-based tools that respond to these requirements, merchants
must provide in their sites multi-issue product and service descriptions that can be
treated in an automatic way. This would enable software agents to search a set of
merchants for the best product offering, while considering their differentiation intent.
This kind of service, besides being an advantage to merchants, can also be seen as a
powerful tool to shoppers as well, since they may compare the merchants’ offers
according to their preferences. The most notable work on defining a common
language that makes the web accessible to software agents is the XML specification
[3], developed by the World Wide Web Consortium (W3C) [18]. XML is a mark-up
language that follows HTML (a presentation format language), making it possible to
represent the semantic content of a document.

One important breakthrough in this area is the project Tête-à-Tête [17]. It provides
a means for the shopper to compare, given its preferences, the multi-featured offers
made by several merchants that sell a particular product. However, this system is not
merely a search engine for shopper assistance. It uses software agents, on both sides
of the bargaining process, which interact in order to encounter the shopper’s desire.

In order to make it possible to automate the negotiation step of the shopping
experience through the use of autonomous software agents, it is necessary to define
both a common ontology to represent product and transaction related knowledge and
a language for agent interaction. A protocol will then define what messages in that
language may be exchanged in what conditions. The greatest effort in defining a
general language for knowledge and information exchange between agents is KQML
[7], developed by the ARPA Knowledge Sharing Effort.

Automated negotiation has been addressed in some relevant research. The Kasbah
[5] marketplace allows the creation of predefined agents with simple time-dependent
negotiation strategies, but considers only the price of a product when negotiating over

it. In [6], negotiation is described as a process where the parties move towards
agreement through concession making. That negotiation is modelled as multilateral
and multi-issued. Agent negotiation strategies are defined as combinations of tactics,
including time-, resource- and behaviour-dependent ones.

Learning in negotiation is an even more recent topic of research. In [12], learning
consists of finding the appropriate tactic parameters and combination in the overall
negotiation strategy. Using genetic algorithms pursues this. In [20] the Bazaar system
is described, a sequential negotiation model that is capable of learning, which is done
by updating the agent’s belief model in a bayesian way, that is, with probabilistic
updates, according to its knowledge of the domain.

This paper presents a multi-layered platform, SMACE, which provides a means for
testing different negotiation strategies. SMACE is a Multi-Agent System for
Electronic Commerce that supports and assists the creation of customised software
agents to be used in Electronic Commerce negotiations. The system has been used for
testing automated negotiation protocols, mainly those based on the continuous double
auction, supporting also a multi-issue approach in the bargaining process. On-line
learning in Electronic Commerce negotiations is another subject also addressed within
SMACE. The system includes two main types of agents: those that consider a strategy
as a weighted combination of several tactics, and those that learn to combine these
tactics in a dynamic way, by means of Reinforcement Learning techniques.

The rest of the paper is organised as follows. Section 2 addresses SMACE, a multi-
agent platform for Electronic Commerce, describing its architecture and negotiation
model employed. Section 3 describes the strategies implemented in the predefined
agents available in the system. In section 4 we present experiments conducted in order
to test the performance of agents enhanced with learning capabilities. Finally, in
section 5, we finalise with some conclusions and we focus on some topics of our
future work.

2 SMACE: a platform for agent-mediated Electronic Commerce

In this paper we present SMACE, a multi-agent system for Electronic Commerce,
where users can create buyer and seller agents that negotiate autonomously, in order
to reach agreements about product transactions.

2.1 Negotiation model

At a particular point in time, each agent has an objective that specifies its intention to
buy or sell a specific product. That objective has to be achieved in a certain amount of
time, specified by a deadline. Negotiation stops when this deadline is reached.

The negotiation model that we adopted is based on the one in [6]. So, we concern
about multilateral negotiations over a set of issues. Multilateral refers to the ability of
buyer and seller agents to manage multiple simultaneous bilateral negotiations with
other seller or buyer agents. In auction terms, it relates to a sealed-bid continuous
double auction, where both buyers and sellers submit bids (proposals) simultaneously
and trading does not stop as each auction is concluded (as each deal is made).

Negotiation is realised by the exchange of proposals between agents. The negotiation
can be made over a set of issues, instead of the single-issue price found in most
auctions. A proposal consists of a value for each of those issues and is autonomously
generated by the agent’s strategy.

The proposal evaluation is based on Multi-Attribute Utility Theory (MAUT). In
order to do that, an agent i must take into account the preferences defined by its
creator for each issue j ∈ {1, …, n} under negotiation:
• a range of acceptable values [mini

j, maxij] , which must be satisfied in order to
accept a proposal;

• a scoring function Vi
j: [mini

j, maxij] � [0, 1], which calculates a normalised score
that agent i assigns to a value for issue j inside the range of acceptable values (the
higher the score, the better the agent’s utility);

• a weight wi
j, which translates the relative importance of the issue j in the overall

negotiation.
Assuming normalised weights (∑j w

i
j = 1), the agent’s utility function for a given

proposal x = (x1, …, xn) combines the scores of the different issues in the
multidimensional space defined by the issues’ value ranges: Vi(x) = ∑j wi

j Vi
j(xj).

After generating a proposal, an agent will decide on sending it upon comparing its
utility to the one associated with the previously received proposal. The one with
highest utility will prevail.

Following [6], the sequence of proposals and counter-proposals in a two-party
negotiation is referred to as a negotiation thread. That thread will remain active until
one of the parties accepts the received proposal or withdraws from the negotiation.
Because of the multilateral nature of de negotiation model (many sealed bilateral
negotiations per agent), after an acceptation the agent will wait for a deal
confirmation from its opponent.

2.2 Architecture

SMACE works as an open environment where buyer and seller agents meet in the
marketplace, as shown in figure 1. This entity facilitates agent meeting and matching,
besides supporting the negotiation process.

Fig. 1. The marketplace

SMACE allows users, through its web user interface, to create buyer and seller
agents that negotiate under the model described in the previous section. The system
was designed in layers, in order to separate the infrastructure components – that
provide the communication and negotiation protocols – from those associated with the
agents’ negotiation strategies. This provides both openness and easy expandability.
As a supporting platform, JATLite [11] was used to provide the communication
infrastructure needed. Figure 2 gives an overview of how such architecture was
implemented.

JATLite

Infrastructure

Plug&Trade

UserInterface

Fig. 2. SMACE architecture

SMACE consists of an API, fully implemented in Java (JDK1.1.4 API), with three
layers built on top of the JATLite packages:
• Infrastructure – this layer contains two fundamental parts:

− MarketPlace: the application that represents the marketplace, as an environment
where the agents meet and trade. It includes message routing and agent
brokering facilities.

− MarketAgent: a template for the creation of market agents, which has already
implemented the negotiation model. Building an agent with this template
requires only assigning it a negotiation strategy.

• Plug&Trade – this layer includes ready-to-use predefined market agents, that were
built using the MarketAgent template:
− MultipleTacticAgent (MTA): a market agent that considers a negotiation strategy

as a combination of several tactics, as described in the next section.
− AdaptiveBehaviourAgent (ABA): a market agent that is able to weight several

tactics in an adaptive way, using Reinforcement Learning techniques, as
described in the next section.

• UserInterface – this layer consists of an application that provides both an HTML
user interface for creating and monitoring the operation of Plug&Trade market
agents and their persistence.

The agents communicate with each other in the MarketPlace, which is an enhanced
JATLite router, facilitating the message routing between the agents and working as an
information centre for the agents to announce themselves and search for contacts.

While accepting agents from anywhere to enter the marketplace and trade
(provided that they use the same negotiation protocol), SMACE allows the user to
launch predefined agents (both of MTA and ABA types) by adjusting their parameters.
In order to do so, one can use the SMACE user interface. Through this interface, the
user can monitor the agents’ activities and change their settings. Taking another path,
the user may create his own agent, with his own strategy, in any programming
language or platform he wishes. The SMACE API Infrastructure package assists
agent building in Java. This package allows the user not to worry about
communication and negotiation protocol details, spending his efforts on building his
own negotiation strategy, that is to say, the agent’s deliberative knowledge.

3 Negotiation strategies

The goal of negotiation is maximising the utility gained in a transaction, and in order
to do so the focus is on how to prepare appropriate proposals as well as counter-
proposals. The negotiation strategy will define the way to do so. There are no
restrictions on the negotiation strategies that can be implemented in the market agents.
However, as discussed in the previous section, SMACE assists the activation of two
kinds of predefined agents.

3.1 Combinations of tactics

The predefined agents already implemented in the SMACE system (MTA and ABA)
use combinations of tactics as the underlying philosophy of implementing their
strategy. A tactic is a function used to generate a proposal value, for a given issue,
based on a given criterion. Tactics can be combined using different weights,
representing the relative importance of each criterion in the overall strategy. The
values that will be part of the proposal will be calculated by weighting accordingly
the values proposed by each one of the tactics used. The tactics implemented were
adopted from [6]:
• Time-dependent tactics: agents vary their proposals as the deadline approaches.

These tactics use a function depending on time that can be parameterised.
• Resource-dependent tactics: agents vary their proposals based on the quantity of

available resources. These tactics are similar to the time-dependent ones, except
that the domain of the function used is the quantity of a resource other than time.

• Behaviour-dependent tactics: agents try to imitate the behaviour of their opponents
in some degree. Different types of imitation can be performed, based on the
opponent’s proposal variations.
Other kinds of tactics can be considered or other variants of the tactics mentioned.

Whereas time-dependent tactics depend on a predictable factor, it is difficult to

foresee the results of applying resource- or behaviour-dependent ones, since they
depend on “run-time variations” of factors.

3.2 Adaptive behaviour through Reinforcement Learning

The MTA predefined market agents are somewhat fixed, in the sense that they will use
the same tactic combination, no matter what the results obtained are, unless the user
specifies otherwise. However, in repeated negotiations, agents should be capable of
taking advantage of their own experience. This consideration led us to the
development of an agent that, enhanced with learning capabilities, can increase its
performance as it experiences more and more negotiations – the
AdaptiveBehaviourAgent (ABA). Tactics provide a way of adaptation, in some degree,
to different situations, considering certain criteria. But it is not clear what tactics
should be used in what situations. The ultimate goal of our adaptive agent is to learn
just that.

The idea is to define a strategy as the way in which the agent changes the tactic
combination over time. In order to do that, we used a kind of automated learning that
can take place online, from the interaction with the environment: Reinforcement
Learning [16]. It is also the most appropriate learning paradigm to dynamic
environments, such as the one we are addressing.

By applying this kind of learning in the adaptive agents, we aimed at enhancing
those agents with the ability of winning deals in the presence of competitors and
increasing the utility of those deals. We intended to check if the agents adapt to a
given market environment, associated with the transaction of a given type of product.

In dynamic environments, such as an electronic market, actions are non-
deterministic, in the sense that they do not always lead to the same results, when
executed in the same state. For this reason, we implemented a specific kind of
Reinforcement Learning – Q-learning – that estimates the value of executing each
action in each state (also known as the quality Q). In our environment, actions are
weighted combinations of tactics that will be used in the proposal generation process.
The characterisation of the states is a major factor to the success of the algorithm
implementation, and will determine the relevance of the results obtained. In our case,
we considered two main variables: the number of negotiating agents and the time
available for negotiation, that is, the time left till the agent’s deadline.

Updating the Q values associated with each action-state pair – Q(s,a) – consists of
rewarding those actions that leaded to good results while penalising the ones that
failed to achieve the agent’s goal. The general Q-learning update formula is the
following:

Q(s,a) = Q(s,a) + α [r + γ maxa’Q(s’,a’) – Q(s,a)] (1)

where α is the learning rate, representing the impact of the update in the current
value; r is the reward obtained by executing action a in state s; γ is the discount factor,
meaning the importance of future Q values (in future states) to the Q currently being
updated; maxa’Q(s’,a’) is the maximum Q value for the actions in the next state.

For the ABA agents, actions leading to deals are rewarded with a function
depending on the deal values’ utility and on the average utility obtained so far. This

allows us to distinguish, from the deals obtained, those that correspond to greater
utilities. Considering the average utility takes into account, when classifying the
goodness of a deal, the characteristics of the environment (the difficulties) that the
agent is repeatedly facing; the same deal in harder conditions should have a greater
reward because it is closer to the best possible deal. Goal failure imposes penalisation
(negative reward) to the last action used.

Action selection is another important aspect of the Reinforcement Learning
paradigm. The simplest rule would be to select the action with the biggest Q value.
Yet, this rule does not consider that there may exist non-executed actions that may
perform better. Furthermore, in dynamic environments and therefore non-
deterministic, actions do not always lead to the same results. In fact, to obtain a
continued reward of great value, the agent should prefer actions that were considered
good in the past, but in order to find them it must try actions that were never selected
before. This dilemma leads us to the need of a compromise between exploitation (to
take advantage of good quality actions) and exploration (to explore unknown actions
or those with less quality). To satisfy this compromise, according to the
Reinforcement Learning literature, two policies are possible, and the adaptive agents
developed support them both: the ε-greedy approach selects uniformly, with a
probability ε, a non-greedy action; the Softmax policy uses a degree of exploration τ
(the temperature) for choosing between all possible actions, while considering their
ranking.

In order to make it possible for the agent to increase the utility obtained in the deals
made, it is necessary that the agent does not prefer the first action leading to a deal.
Before the agent tries enough actions, it has got an incomplete knowledge of the
environment, that is, it might know what action to use to likely get a deal (because
unsuccessful actions are penalised), but not what the best actions are (those that result
in higher utilities). To enforce the agent to try all the actions available before
preferring the best ones, we implemented a Reinforcement Learning technique called
optimistic initial values. This means that all the Q values associated with the actions
are initialised to a value greater than the expected reward for them. This measure
increases, independently of the action selection parameters chosen, the initial action
exploration, since the Q values will then be updated to more realistic lower values.

4 Experiments

The implementation of the learning algorithm intended to enhance the agents with the
capacity of gaining “know how” about the market mechanics in respect to the
transaction of certain kinds of products. This sensibility refers not only to the usual
pattern of appearance of new agents (the market dynamics), but also to the way buyer
and seller agents in a specific environment normally relax their bids. The agent should
improve its performance as it experiences more negotiation episodes.

To represent these market-specific features, which work as a reference to the
adaptation process, we designed four different scenarios, over which we conducted
some experiences. These scenarios did not intend to simulate real-world Electronic

Commerce negotiations, but to illustrate situations where it was possible to observe
the results of applying the learning skills on the adaptive agents.

4.1 Scenarios description

The four basic scenarios are illustrated in figure 3. The negotiation was made over the
single-issue price, since this option does not affect the results; the strategies
implemented do not take advantage of the multi-issue support (each tactic generates a
value for an issue). All agents were configured with time-dependent tactics. The MTA
agents had a single time-dependent linear tactic. The ABA agents had time-dependent
tactics that allowed them to vary their behaviour from an anxious (early concession)
to a greedy (late concession) extremes. In the third scenario, a resource-dependent
tactic, depending on the number of opponents, was added to the adaptive agent, since
one of the opponents was activated only after a period of negotiation time. The
adaptive agent in the fourth scenario had also a resource- and a behaviour-dependent
tactics. Both kinds of agents have a set of other specific parameters whose values are
not described here.

ABA

MTA

ABA

MTA

MTA ABA

MTA

MTA

MTA

ABA

MTA

MTA
III III IV

Fig. 3. Experimental scenarios

In scenario I, we intended to check if the adaptive agent was able to increase its
utility, after a number of negotiation episodes in the same exact environment
configuration. This would allow us to test the learning algorithm. Scenario II
expanded this test to the agent’s ability to win deals over its competitor, and from
those deals, to increase the utility to the best possible value, which was limited by the
opponent’s fixed strategy. Scenario III was configured in a way that it was preferable
to the adaptive agent to achieve deals with the late arriving agent. So, the ABA should
learn to wait, instead of hurrying on making a deal before its competitor. Finally,
scenario IV provided a way of testing the re-adaptation time of the adaptive agent,
since its competitor was modified twice after a significant number of negotiation
episodes.

The most important learning parameters of the ABA agents, which have an impact
on their performance, are: the learning rate (that influences the Q value updating) and
the degree of exploration (which controls the action selection when using the Softmax
approach). In highly dynamic environments, agents should use high learning rates,
allowing for fast adaptation to new environment conditions. On the other hand, a high
degree of exploration will force the agent to select many different actions, which may
also be important in dynamic environments. However, as a consequence of that, the
adaptation process slows down. The ABA agents were configured with a learning rate
of 0.5, a middle value that allows for quick adaptations (notice that scenarios I and II
are fixed, and so this parameter becomes more important in scenarios III and IV). The

degree of exploration was set to a low value of 0.2, since that the initial exploration
was already assured by the use of optimistic initial values (see subsection 3.2).
However, exploration is still needed after the initial adaptation period (namely in
scenarios III and IV). The next subsection presents the results obtained by using such
values for these parameters.

4.2 Results

In general, the results obtained were satisfactory. That is, the adaptive agent
performed well but, for its current implementation, in some cases it took too long to
achieve a good result. The scenarios described were run over 2000 negotiation
episodes.

In all scenarios illustrated, the adaptive agent tended to achieve the predicted
results. Figure 4 shows the utility evolution of the adaptive agent in each one of the
scenarios. In scenario I, the agent was able to continuously increase the utility
obtained in the deals, by waiting for its opponent to concede. Scenario II was more
limited in terms of utility increasing, but the ABA could, besides winning the majority
of deals over its competitor, increase the average utility of those deals very close to
the highest possible in that situation. Results in scenario III allowed us to conclude
that the adaptive agent learned to wait and prefer dealing with the late arriving
opponent, which enabled it to achieve higher utilities. In scenario IV, we observed
that despite the considerable adaptation of the adaptive agent to an initial situation,
after changing the agent’s competitor it readapted relatively quickly to the new
environment conditions.

Fig. 4. Utility results

These results show us that, under some circumstances, it is possible to endow
software agents with capabilities that allow them to improve their performance with
their own experience. The task that now raises is to adapt this mechanism to situations
closer to real Electronic Commerce transactions, where the real negotiating parties
(the agents’ creators) can benefit from negotiation “know how” stored in their
software agents.

5 Conclusions and Future Work

Software agents can help users to automate many tasks. In our case, we focus on
automating Electronic Commerce activities, namely those of buying and selling
products. There exist several applications of information seeking agents applied to
this domain that help users on finding the best price for a given product. As explained
above, in order to be helpful, such tools should take into account the multi-issue trend
of doing online business today.

The automation of the negotiation process is more critical, since it implies the
usage of negotiation strategies that will determine the wins and loses of delegating
shopping tasks in autonomous software agents. According to [4], the intelligence or
sophistication level that buying or selling software agents may possess is not
restricted by Artificial Intelligence limitations, but by user trust considerations.

We have developed SMACE, a platform that includes an infrastructure framework
over which it is possible to build agents with different negotiation strategies. The
mass development of agent-mediated negotiations in Electronic Commerce will
depend on the adoption of standards in this domain, related both to the ontologies
used to represent semantically the objects of negotiation and to the software agent's
interaction.

As negotiation strategy examples, we implemented two kinds of agents, with the
assistance provided by the lower layer of the SMACE system, and made some
experiments that involved interactions between these agents. Our results claim that it
is possible to build negotiation strategies that can outperform others in some
environments.

Directions of our future work include implementing strategies that take effective
advantage of multi-issue negotiations, by correlating those issues. In respect to the
agents’ adaptation capabilities, we intend to refine our learning algorithm, to compare
it to other learning approaches, and to continue our research on the practical
applications and effective benefits of learning processes.

In regard to increasing the open nature of our system, we consider adopting some
of the emerging standards in the Electronic Commerce domain, namely the XML
specification for agent's communication. The negotiation model that we are using
might also need to be optimised, to include support to interactions that may be
beneficial, following what is described in [13] as a critique.

References

1 AuctionBot. URL: http://auction.eecs.umich.edu/
2 BargainFinder. URL: http://bf.cstar.ac.com/bf
3 Bosak, J. (1997), “XML, Java, and the future of the Web”, Sun Microsystems.
4 Chavez, A., D. Dreilinger, R. Guttman and P. Maes (1997), “A Real-Life Experiment in

Creating an Agent Marketplace”, in Proceedings of the Second International Conference on
the Practical Application of Intelligent Agents and Multi-Agent Technology (PAAM'97).

5 Chavez, A, and P. Maes (1996), “Kasbah: An Agent MarketPlace for Buying and Selling
Goods”, in Proceedings of The First International Conference on The Practical Application
of Intelligent Agents and Multi-Agent Technology (PAAM’96), pp. 75-90.

6 Faratin, P., C. Sierra and N.R. Jennings (1998), “Negotiation Decision Functions for
Autonomous Agents”, International Journal of Robotics and Autonomous Systems, 24 (3-4),
pp. 159-182.

7 Finin, T., Y. Labrou and J. Mayfield (1997), “KQML as an agent communication language”,
in Software Agents, J. M. Bradshaw (editor), MIT Press.

8 Fishmarket. URL: http://www.iiia.csic.es/Projects/fishmarket/
9 Guttman, R.H., A.G. Moukas and P. Maes (1998), “Agent-mediated Electronic Commerce:

A Survey”, Knowledge Engineering Review.
10 Jango. URL: http://www.jango.com/
11 JATLite. URL: http://java.stanford.edu
12 Matos, N., C. Sierra and N.R. Jennings (1998), “Determining Successful Negotiation

Strategies: An Evolutionary Approach”, in Proceedings, Third International Conference on
Multi-Agent Systems (ICMAS-98), pp. 182-189, IEEE Computer Society.

13 Parsons S., C. Sierra and N.R. Jennings (1998), “Agents that reason and negotiate by
arguing”, in Journal of Logic and Computation, 8 (3), pp. 261-292.

14 Rodríguez-Aguilar, J.A., P. Noriega, C. Sierra and J. Padget (1997), “FM96.5 A Java-based
Electronic Auction House”, in Proceedings of the Second International Conference on The
Practical Application of Intelligent Agents and Multi-Agent Technology (PAAM'97).

15 Romm, C.T. and F. Sudweeks (1998), Doing Business Electronically, London: Springer-
Verlag.

16 Sutton, R.S. and A.G. Barto (1998), Reinforcement Learning: An Introduction, Cambridge:
MIT Press.

17 Tête-a-Tête. URL: http://ecommerce.media.mit.edu/Tete-a-Tete/
18 World Wide Web Consortium. URL: http://www.w3.org
19 Wurman, P.R., M.P. Wellman and W.E. Walsh (1998), “The Michigan Internet AuctionBot:

A Configurable Auction Server for Human and Software Agents”, in Proceedings of the
Second International Conference on Autonomous Agents (Agents’98), K.P. Sycara and M.
Wooldridge (editors), pp. 301-308, ACM Press.

20 Zeng, D. and K. Sycara (1996), “How Can an Agent Learn to Negotiate?”, in Intelligent
Agents III, J. P. Muller et al. (editors), pp. 233-244, Springer-Verlag.

