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Resumo 

O futebol foi organizado pela primeira vez na Inglaterra em 1863 e rapidamente se espalhou 

para o resto do mundo, apresentando-se como uma das primeiras manifestações da 

globalização. Hoje em dia, o futebol não é mais apenas um desporto, desempenhando um papel 

importante nos atuais mecanismos gerais das nossas vidas socioeconómicas. Portanto, como se 

pode perceber, prever o resultado final de um jogo, decodificar o desempenho das equipas e, 

adicionalmente, prevenir potenciais ferimentos dos atletas, é visto pela comunidade científica 

como uma espécie de "Santo Graal". O estado da arte mostra que embora muitos autores tenham 

apresentado metodologias para entender e, até certo ponto, prever os resultados de um jogo 

de futebol, nenhum deles explora todas as características relevantes que influenciam o 

desempenho dos atletas e, por consequência, podem determinar o sucesso, ou falta dele, 

durante um jogo de futebol. Como tal, nesta tese de mestrado propomos o desenvolvimento de 

uma arquitetura para a previsão no futebol, capaz de estimar vários parâmetros que 

influenciam grandemente o funcionamento normal de um jogo de futebol, incluindo a posição 

do atleta, as ações e o estado de saúde. Para este fim, sinais provenientes de várias fontes, 

nomeadamente, sinais cinemáticos e fisiológicos, serão obtidos a partir de dois dispositivos 

wearable e integrados na arquitetura final.  

Os métodos do Cálculo Fracionário e das Redes Neurais Recorrentes foram utilizados para 

estimar as coordenadas dos atletas ao longo do tempo, concluindo que o último leva a erros 

menores. Por outro lado, a classificação das ações dos atletas e a deteção da fadiga muscular 

foram realizadas usando dados fisiológicos, tendo sido estes recolhidos por um novo dispositivo 

portátil TraXports V2, aqui desenvolvido. Em relação à classificação das ações, foi demonstrado 

que quando comparado a classificadores simples, como Naïve Bayes, Redes Neurais Artificiais, 

Máquinas de Vetor de Suporte e o K-Vizinho Mais Próximo, a abordagem proposta, o método de 

fusão dinâmica de modelos, aumentou claramente o desempenho geral dos resultados da 

classificação, com uma precisão total de 76% e uma sensibilidade total de 74%. No que diz 

respeito à deteção da fadiga, foi possível visualizar as diferenças existentes entre os músculos 

não fatigados e fatigados, corroborando a utilidade e a viabilidade do dispositivo TraXports V2. 

Os resultados obtidos mostraram o grande potencial da arquitetura para a previsão de 

futebol, no entanto, algumas modificações ainda precisam ser implementadas para criar um 

sistema completamente confiável. 
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Abstract 

Association football was first organized in England in 1863 and spread rapidly to the rest 

of the world, presenting itself as one of the first manifestations of globalization. Nowadays, 

football is not just a sport anymore, playing an important role in the current overall 

mechanisms of our socio-economic lives. Therefore, as one may realize, predicting the final 

outcome of a match, decoding the teams’ performance, and additionally preventing any 

potential athletes’ injuries, is seen by the scientific community as a kind of ‘Holy Grail’. The 

state of the art shows that although many authors have been presenting methodologies to 

understand and, to some extent, predict the football match outcomes, none of them explores 

all the relevant features that influence athletes’ performance and that, by consequence, 

might determine the success, or lack of it, during a football match.  

As such, in this Master thesis we propose the development of a framework for football 

prediction, capable of estimating various parameters that highly influence the normal 

functioning of a football match, including athlete’s position, actions and muscle fatigue. For 

this aim, signals from several sources, namely kinematic and physiological signals, were 

retrieved from two wearable devices and integrated in the final architecture.  

Fractional Calculus and Recurrent Neural Networks were used to estimate the athletes’ 

coordinates over time, concluding that the latter leads to minor errors. On the other hand, 

the classification of athletes’ actions and the detection of muscle fatigue was performed by 

using physiological data, which was collected by a new wearable device TraXports V2, herein 

developed.  

Regarding actions’ classification it was demonstrated that when compared to simple 

classifiers such as Naïve Bayes, Artificial Neural Networks, Support Vector Machines and K-

nearest Neighbour, the proposed approach, Dynamic Bayesian Mixture Model, clearly increased 

the overall performance of the classification results, with a total precision of 76% and a total 

recall of 74%. As regards of fatigue detection, it was possible to visualize the existent 

differences between a non-fatigued and a fatigued-muscle, corroborating the utility and 

viability of the device TraXports V2. 

The results obtained showed the great potential of the architecture for football 

prediction, however, further improvements are still needed to be implemented in order to 

create a completely reliable system. 
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Chapter 1  

 

Introduction 

Association football, or football, is a team sports endowed with seemingly unpredictable 

and unrepeatable actions, wherein athletes aim at a superior collective performance in order 

to maximize the number of scored goals and prevent the opposing team from doing the same. 

Despite being much studied throughout the years, football is still considered a great subject of 

study, since there are still many parts that can be further explored. For example, one subject 

that has for long intrigued researchers is prediction in football. In fact, due to its difficulty and 

since the outcome of a football match is dependent on many factors [1], [2], from the point of 

view of researchers, predicting the results of sports matches is seen as a fascinating problem. 

However, prediction in football is usually quite complex, since this can be affected by the 

presence of several sources of variation for which a predictive model must account. For 

instance, team abilities may vary from year to year due to changes in personnel and overall 

strategy. In addition, team abilities may vary within a season due to injuries, team psychology, 

and players’ transfers. Moreover, team performance may also vary depending on the site of a 

game [3].  

Therefore, given the broad subjectivity of football in general, three questions can be 

raised: i) How can we predict the outcomes of football matches? ii) What data should we use 

and how should we use it? and iii) How accurate can a model to predict football game outcomes 

be?  

Indeed, there are nearly infinite variables that one could put into a model to predict 

football games. For instance, the proficiency of a player’s actions during a soccer match is 

determined by the response to cognitive, physiological, technical and tactical stressors under 

a high situational unpredictability. So, the prediction of performance during a match play, 

based on general and soccer-specific capacities, is limited by its own complex nature during 

competition [4]. Hence, football performance is, in fact, a construct based on many different 

performance components and their interaction at both individual and collective level, requiring 

the individual team members’ harmonization into an effective unit to achieve the desired 

outcome [5]. 

Many authors have been presenting methodologies to predict the football match outcome, 

from which a considerably large number of studies has been published over the past decade, 

though none explores all relevant features that influence players’ performance and that might 



 

2    Introduction 

 

 

determine success, or lack of it, during a match [6]–[8]. Bearing these ideas in mind, one can 

state that, as there is a wide range of variables that influence the football game outcome, all 

of them should be taken in account and studied as a whole and not in parts (e.g., result of the 

match over time, individual performance of players, injuries, playing home or away, among 

others). Also, the market has been offering disruptive technologies that can extract a wide 

range of variables. These approaches, combined with the adequate technology, are important 

mainly in a coaching perspective [7]. 

Thus, as one may realize, predicting the final outcome of a match, decoding the teams’ 

performance, and additionally preventing any potential athletes’ injuries, is seen by the 

scientific community as a kind of Holy Grail [9]. Under this premise, coaches, observers and 

researchers are looking for objective answers to understand how professional teams can behave 

under such complex and dynamic triad of factors, including: i) win the match; ii) present the 

best performance in the field; and iii) succeed in different and varied contexts (e.g., high 

number of successful passes, superior ball possession, etc.).  

As such, based on these insights, we propose the development of an architecture for 

football prediction, capable of not only estimating athlete’s position and action but also giving 

relevant information about its health status. For this aim, this architecture integrates 

information from several sources, namely positional and physiological data of each player.  

This thesis is integrated in a national project, denominated ARCANE – Augmented 

peRCeption ANalysis framEwork for Football, which has as the main objective the development 

of an architecture for assisting coaches, in terms of player’s and team’s performance 

interpretation, during football matches. Thus, it is our expectation that the proposed approach 

will play an important role in the development of ARCANE, by contributing with pose, action 

and health status estimation. 

This master thesis was performed within an academic environment, in the Engineering 

Faculty from Porto University, and a corporative environment, in collaboration with 

Ingeniarius, Lda. 

1.1 - Ingeniarius  

Ingeniarius is a company founded in 2014, specialized in research and technological 

development in the many fields of engineering, including robotics and automation, as well as 

all components within human society, namely the quality of life, sports and health. Besides 

providing consulting and outsourcing, Ingeniarius also provides training services related to 

engineering. Furthermore, it organizes and promotes other events, such as, scientific/technical 

conferences and entertainment, educational and promotional events of technological nature 

[10]. 

1.2 - ARCANE 

ARCANE is a project that aims to promote an augmented perception of team performance 

in sports, which resulted from a joint effort of three different institutions, namely, The 

Laboratory of Expertise in Sport (SpertLab) from the Faculty of Human Kinetics at University of 

Lisbon, The Centre for Sports Engineering Research from Sheffield Hallam University and 

Ingeniarius. To fulfil the goals, the framework developed under the ARCANE project, will 
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provide not only an interpretation of athletes’ positional data but also information regarding 

their physiological signals, allowing, by consequence, to assess athletes on-the-fly and, to some 

extent, predict the health and performance outcomes. As such, the framework should be able 

to retrieve both positional and physiological data of athletes in real-time, which requires the 

development of novel wearable technologies. This acquired information is useful for coaches 

and for the technical support team to the extent that it iteratively provides a ‘probabilistic 

tendency’ of what comprises a game over time. Figure 1.1 provides a general overview of 

ARCANE. 

Thus, we can describe the main objectives of ARCANE as follows:  

1. Develop a novel wearable tracking system, capable of estimating the position of 

athletes in real-time. 

2. Design a multi-sensor fusion algorithm in order to receive and to analyse data from 

multiple entities in real-time, including athlete’s postural state (i.e., position and orientation) 

and athlete’s state of mind. 

3. Perform biosignal monitoring by integrating physiological sensors (e.g., heart rate 

monitors) within the wearable device. 

4. Mathematical formulation of a framework for online match analysis and prediction 

based on players’ position and physiological data over time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 - General overview of ARCANE: a) Real-time contextual data acquisition; b) Data sent to 
internet server to benefit from cloud computing; c) Data cleaning and filtering techniques administered 
to pre-process and compute biosignals and athlete’s pose; d) Pre-processed data feed multiple state of 

the art performance methods; e) Methods iteratively feed a macroscopic probabilistic model [11]. 
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1.3 - Objectives 

The key objectives defined for this Master Thesis project are aligned with the ARCANE 

project and can be stated as follows: 

1. State of the art revision regarding the factors that most influence football match 

as well as regarding the most used classifiers and features for biosignals. 

2. Construction and validation of a wearable device capable of measuring the 

electromyography (EMG) data from athletes.  

3. Data acquisition and preprocessing of relevant athlete’s data, by integrating 

positional and physiological information of players.  

4. Recognition of athlete’s position within the football field in order to perform Pose 

Estimation.  

5. Recognition of athlete’s actions (e.g., running and ball kicking). 

6. Comparison of the classification results between several approaches encountered 

in the literature. 

7. Detection of muscle fatigue in athletes. 

The ultimate goal is to contribute towards the development of a predictive architecture 

for football, namely ARCANE project, not only to estimate the performance of teams, but also 

to prevent injuries that might occur during the match. 

1.4 – Main Contributions 

Due to the increasing interest in the use of wearable devices in the context of athletes’ 

monitoring, specially, during football games, the development of architectures, such ARCANE 

has a great potential. Thus, overall, the main contributions herein presented are the following: 

1. Construction of a wearable device capable of measuring the EMG data from athletes 

and further validation within a group of people. 

2. Development of an architecture for classification of athletes’ actions according to 

their EMG signals.  

3. Introduction to injury prediction by exploring the first steps for detecting muscle 

fatigue. 

1.5 - Structure 

In this subsection, the overall structure of the document is presented. This master thesis is 

divided into seven chapters: 1- Introduction, 2- Preliminaries, 3- State of the Art, 4 – Project 

Overview, 5- Kinematic Data, 6- Physiological Data and 7– Conclusion. Furthermore, a brief 

introduction of each chapter is, hereinafter, presented.  

 

Chapter 2 

In Chapter 2, a review regarding the most common classification methods is presented, in 

which these methods are classified in two different groups. Firstly, the Non-Sequential 

Methods, including the K-nearest Neighbour (KNN), Bayesian Networks, Support Vector 

Machines (SVMs) and Artificial Neural Networks (ANNs) are addressed, following the Sequential 
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Methods, in which Recurrent ANNs are included. Finally, a discussion concerning trajectories 

estimation is performed, in which Fractional Calculus (FC) is introduced, being explained in 

detail how it can be applied in the context of a football match. 

 

Chapter 3 

In this chapter, the state of the art concerning computational performance assessment and, 

more particularly, prediction in football is discussed. Thus, we start by discussing the main 

theme of this thesis, which is Prediction in Football. As such, in order to understand how we 

can predict the outcomes of a football match, firstly, a review regarding the factors that 

influence football prediction is presented, in which these are divided in match statistics and 

situational variables or on-the-fly variables. Moreover, a review concerning machine learning 

research for football prediction is, then, presented. Furthermore, we discuss the importance 

of some signals, including kinematic and physiological signals, for football prediction, defining 

the most common features and classifiers for each type of signal. 

Finally, we present several technologies used for football prediction that are currently 

available on the market. 

 

Chapter 4 

In this chapter, the overall methodology for this project is addressed. Moreover, a brief 

description regarding the data used for kinematic data collection is presented. Additionally, 

the construction of the wearable device used for physiological data collection is explained in 

detail. Finally, the software used for analysing both kinematic and physiological data is also 

presented. 

 

Chapter 5 

In Chapter 5, the results regarding trajectories’ estimation with kinematic data are 

presented and discussed. For that aim, firstly, a detailed explanation concerning the process 

of data collection and the choice of features for feature extraction is presented. Afterwards, 

the FC is used for coordinates’ estimation as well as for the calculation predictability and 

stability coefficients, being also studied the influence of different frequencies in these 

features. Then, after having decided about the frequency that produces the most suitable 

features, the data corresponding to this frequency is used for the implementation of several 

recurrent neural networks (RNNs). Finally, a comprehensive study in which the performance of 

several RNNs and the performance of FC are compared. 

 

Chapter 6 

In here, all of the work performed with physiological data is presented, being this chapter 

divided in three main parts. Firstly, a detailed explanation about the process of data collection, 

the pre-processing methods and the choice of features is made, being this phase common to 

the other two parts. As such, in the second part of this chapter, the results regarding actions’ 

classification are presented. In here, an extensive study is made, in which a comparison 

between the performance of individual classifiers under different constraints. Afterwards, the 

Dynamic Bayesian Mixture Models (DBMM) approach is implemented, being its performance 

discussed and compared with the previous results. Finally, in the last part of this chapter, the 

EMG data collected with the wearable device TraXports V2 is used for detecting muscle fatigue 

in athletes. 
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Chapter 7 

Finally, in Chapter 7, the conclusions of this thesis are presented and a brief discussion 

regarding future works is made.  
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Chapter 2  

Preliminaries 

This chapter presents several theoretical concepts in order to better understand the work 

herein demonstrated. More specifically, we will present two types of methods for classification, 

the Non-Sequential Methods, which include the KNN, Bayesian Networks, SVMs and ANNs. 

Additionally, a method of Ensemble Classification, namely the DBMM, will be explained in 

detail. Finally, the FC approach for the context of a football match is introduced. 

2.1 - Classification Methods for Pattern Recognition 

Humans are naturally capable of recognizing patterns without worrying about the 

conditions of the environment, such as illumination variations, facial rotation, facial 

expressions and facial biometrical changes [12], [13]. However, when it comes to artificial 

recognition, the plot thickens as commanding a machine to do this as well as humans is a very 

complex task. Hence, a new artificial intelligence field emerged enabling the possibility of 

making artificial recognition something conceivable. This field, known as Pattern Recognition, 

studies the relation between machines and the environment by analysing how they are able to 

learn to distinguish various patterns of interest from its background and make reasonable 

decisions about its categorization. Pattern recognition can be applied to various areas, such as 

speech and face recognition, classification of handwritten characters and medical diagnosis 

[14].  

In general, pattern recognition requires four stages (Figure 2.1): i) data acquisition; ii) pre-

processing (filtering and normalization); iii) features extraction; and iv) classification - chosen 

according to the type of label output [15] - and it can be achieved by computing machine 

learning algorithms. These can be divided in two different types - supervised or unsupervised 

learning. Supervised classification designates each input pattern as a member of a predefined 

class that is previously learnt from supervised training data. In here, training examples are, 

first, used to train a classifier by determining the descriptor for each class, i.e., the set of 

common features for the example provided. Put it differently, data from the surrounding 

environment is acquired by sensors, digitizing machines or scanners and then preprocessed by 

either removing noise from the data or by extracting patterns of interest from the background. 

Afterwards, the most relevant features from the processed data are extracted, forming a 
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collective entity that is then classified in the last step, according to pre-trained classifiers. 

When this step is completed, the rule of classification is formulated being this used after to 

predict in each class where an object that was not trained yet should be put. So essentially, 

supervised learning is a method that learns with the past to predict the future [16]–[18]. 

Figure 2.1 - Pattern Recognition Process. 

On the other hand, with unsupervised learning it is only known the input data and not the 

corresponding output variables. As such, in this self-guided learning algorithm, given a set of 

data, the goal is to model the underlying structure or distribution in the data in order to learn 

more about it. Although there are several unsupervised learning tasks, the most commonly 

addressed is Clustering, in which the task is to establish the existence of clusters in the data. 

As classes are not previously defined, the system needs to observe the examples and recognize 

groups by its own. This results in a set of classes’ descriptors (one for each class). Basically, 

given several input patterns, the system determines the similarities between them and clusters 

them.  

There are several algorithms that can be used for pattern recognition. As such, in the 

following subsections a review is presented, being that we will first discuss various methods 

suitable for non-sequential data, where observations are assumed to be independent. 

Afterwards, methods based on sequential and ensemble classification will be also analysed. 

Finally, a new approach for estimating trajectories will be discussed. 

2.1.1 - Non Sequential Methods 

2.1.1.1 - K-nearest Neighbours 

The KNN algorithm is a simple machine learning method for classifying objects based on a 

similarity measure (e.g., distance functions), being these assigned to the class which is most 

common amongst its KNNs [19]. In here, the classification starts with neighbours with the 

known classification. Although this may be considered as a training set, no explicit training 

step is required.  

The choice of k should be done wisely since this parameter is highly dependent of the data 

itself. For example, for larger values of k, the effect of noise on classification is reduced, 

however, the boundaries between classes become less distinct. Moreover, for a 1-NN approach, 

where k=1, the object is simply assigned to the class of the closest neighbour. On the other 

hand, by performing a KNN approach, the k closest training points are found, in the majority 

of times, accordingly with Euclidean distance metrics. To find out the most suitable value of 

k, a method of cross-validation can be performed [20]. 

The KNN algorithm is vastly used in statistical estimation and pattern recognition as a non-

parametric technique due to its simplicity [14]. 

2.1.1.2 – Bayesian Models 

The Bayesian theory is a fundamental statistical approach for the problem of pattern 

recognition, which consists in a mathematical model that calculates the probability of an 
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unknown given sample belonging to each of the possible classes, grouping it in the more likely 

class [21]. This represents the relation between a conditioned probability and its inverse. 

As such, given two events A and B, 

Being P(A) and P(B) the a priori probabilities of A and B, respectively,  𝑃(A|B) and 𝑃(B|A) 

represent the conditioned probability (or a posteriori) of A and B, respectively [22].  

Bayesian Networks are probabilistic models based on the Bayesian Theory [23]. These 

correspond to a graphical model structure known as Directed Acyclic Graph (DAG) which are 

structures where each graph’s node represents a random variable containing the probabilistic 

information of each event, and the edges between nodes represent probabilistic dependencies 

among the corresponding random variables, being these estimated by using known statistical 

and computational methods. Therefore, a DAG can be represented by two different sets, more 

specifically, the set of nodes (vertices) and the set of directed edges, being that the first 

represents random variables and is drawn as a circle and labelled by variables’ name, whereas 

the other set represents direct dependence among the variables and is drawn by arrows 

between nodes [24]. Due to its mathematical rigour and effective representation they are 

becoming more popular not only in the fields of statistics but also in machine learning and 

artificial intelligence.  

In modelling dependence a Bayesian Network must have inherent assumptions about 

dependence and independence between variables. In the real world, two variables are virtually 

never truly and completely independent. However, in order to reduce the algorithm’s 

complexity and cost it is necessary to simplify the Bayesian Networks and assume complete 

independence. In line with this, Naïve Bayes (NB) Model was developed. The basic principle of 

this classification can be termed as an “independent feature model”, as it considers that the 

effect of a feature’s value over a certain class is independent from the values of the other 

features. Such an assumption is called class conditional independence. Bayesian classifiers only 

need a small portion of already classified data, called training data, to estimate all the 

necessary parameters to proceed to classification. Then, based on this data, the algorithm 

receives as input a new non-classified sample, returning as output the most likely class for that 

sample accordingly to the probabilistic calculations [25], [26].  

2.1.1.3 – Support Vector Machine 

The standard SVM algorithm is a non-probabilistic binary linear classifier that performs 

pattern recognition through a supervised learning process [27]. In the traditional SVM approach, 

data classes are separated by building an N-dimensional hyperplane, separating them optimally 

into two categories (Figure 2.2). Given the set of training examples, where each one is marked 

as belonging to one of the two categories, the SVM training algorithm builds a model that 

assigns new examples into one category or the other. Basically, SVM classifies data by finding 

be most suitable hyperplane to separate one class from the other, being the best hyperplane 

the one with the largest margin between the two classes [14], [28]. In terms of use, this is one 

of the most popular machine learning methods since it is easy to use and usually offers good 

performance results. 

P(𝐴|𝐵) =  
𝑃(𝐵|𝐴) ⋅ 𝑃(𝐴)

𝑃(𝐵)
 

(2.1) 
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Figure 2.2 - Linear SVM example [29]. 

Support vectors are the data points that are closer to the separation hyperplane. As the 

traditional SVM is a linear classifier, when data is non-linearly separable, a mapping from the 

entrance space to a 𝑙-dimensional space can be made, thus allowing classes to be separated by 

a hyperplane. To make this mapping possible, a kernel is used, being that its choice is crucial 

to incorporate the a priori knowledge about the application [30]. This can be defined as a 

function, in which the similarity between observations is computed. By that, kernels offer an 

alternative to the traditional machine learning algorithms, since by using them there is no need 

to establish the vector of features. To do this, the data from the input space X is mapped into 

a high-dimensional feature space 𝒳 as follows [31]. 

As such, the actual function Φ does not need to be known, as the kernel function k calculates 

the inner product in the feature space. 

 

According to Schõlkopf [32], it is possible to demonstrate that the kernel function k(x,y) 

can be interpreted as a measure of similarity, since the kernel function defines a distance d on 

the input space by 

 

There are several kernel functions that can be used for machine learning problems, being 

some of them presented below. 

1. Linear kernel: This is the most simple kernel function and is represented by 𝑘(𝑥, 𝑦) =

𝑥 ⋅ 𝑦. 

Φ ∶ 𝑋 → 𝒳 
(2.2) 

k(x, y) = Φ(x) ⋅ Φ(y) (2.3) 

𝑑2(x, y) = (Φ(x) − Φ(y))2 = 𝑘(𝑥, 𝑥) − 2𝑘(𝑥, 𝑦) + 𝑘(𝑦, 𝑦) (2.4) 
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2. Radial Basis Function Kernel: This is in the form of a radial basis function, more 

specifically, a Gaussian function and is defined by 𝑘𝛾(𝑥, 𝑦) = 𝑒𝑥𝑝[−𝛾‖𝑥 − 𝑦‖2], 

where 𝛾 is the parameter that sets the “spread” of the kernel. 

3. Fourier Kernel: This is a kernel commonly used for the analysis of time series data, 

since it uses the Fourier Transform. It can be represented by 𝑘𝐹(𝑥, 𝑦) =

1−𝑞2

2(1−2𝑞𝑐𝑜𝑠(𝑥−𝑦))+𝑞2 , with 0<q<1.  

2.1.1.4 – Artificial Neural Networks 

ANNs are computational models inspired in the central nervous system of humans – more 

precisely, in the natural neurons of the human brain - in which simple subunits (neurons) 

organize to form an enormous parallel structure [33]. These artificial neurons are basically a 

logical and mathematical structure that consists of inputs (identical to synapses), which are 

further multiplied by a parameter known as weight (strength of each signal), and then 

computed by a mathematical function which determines the activation of the neuron [14]. 

Then, the computation of the artificial neuron’s output is performed, enabling the formation 

of artificial networks by combining these artificial neurons to process information. As such, the 

ANN can then be considered a network of weighted directed graphs in which the artificial 

neurons are the nodes and the connections between the several nodes are directed edges with 

weights [34]. The interconnection between neurons of an ANN is executed in different layers 

of each system. The first layer is composed by input neurons that send data to the second 

neurons’ layer through synapses, being this repeatedly performed until the data get to the last 

layer of neurons, i.e., the output layer, as it is illustrated in Figure 2.3 [35]. 

 

 

 

 

 

 

 

 

Figure 2.3 - Representation of the Activation Function in an ANN. Adapted from [36]. 

There are several neural networks-based algorithms being these defined depending on the 

following: 

1. The type of connection model between the different layers of neurons and the allowed 

direction of information flow; 

2. Learning process to update the weights of connections;  

3. The activation function that converts the input in an output [37]. 

Regarding the first point, ANNs can be classified in two main categories: feedforward and 

RNNs. In the first case, the information flows strictly forward from inputs towards the outputs 
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(Figure 2.4) and does not keep record of its previous output values, whereas in the second one, 

the information can flow on both directions [38]. The latter is presented in Section 2.1.2.2. 

Figure 2.4 - Architecture of a feedforward ANN. Adapted from [36]. 

The learning process of an ANN can be either supervised or unsupervised [39]. In supervised 

learning, there is an external agent that iteratively assesses how much the network is close to 

an acceptable solution, adapting the weights between neurons during training so that a 

desirable classification is obtained. As the weights are adjusted through the learning process, 

these are responsible for pattern memorization. On the other hand, in unsupervised learning, 

as there is no a priori knowledge of the networks’ output, the algorithm tries to form classes 

by detecting similar patterns and by clustering them. In here, the network is adjusted 

accordingly to the statistics of the input data, being this a method that learns through 

observation. 

Typically, up to a certain extent, the performance of neural networks increases with the 

number of hidden layers and the number of neurons in each layer. Yet, it is important to 

maintain a balanced trade-off between size of network and the complexity it brings; the 

algorithm should have a number of neurons large enough to represent the problem domain, but 

small enough to allow generalizing the training data [17]. 

Due to its ability of learning complex nonlinear input-output relationships and changing its 

weight iteratively accordingly to the data, neural networks are able to provide efficient results 

in the field of classification [40], [41]. Moreover, their low dependence on domain-specific 

knowledge and availability of efficient learning algorithms led this type of model to gain an 

increasing popularity in the field of pattern recognition [15]. 

2.1.2 - Sequential Methods 

Despite of the already proved utility of non-sequential methods, such as SVMs, logistic 

regression (LR) and feedforward networks, these are not capable of modelling time, which, 

accordingly to the literature, is a key element in countless learning tasks, including image 

captioning, speech synthesis (that require models capable of producing outputs in the form of 

sequences), time series prediction, video analysis and musical information retrieval (that 

require models that can learn from inputs in the form of sequences), and others, such as 

translating natural language and robot’s control (that often demand both capabilities) [42]. As 
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a result, new models that are capable of dealing with sequential data were developed, being 

two of them presented below. 

2.1.2.1 - Recurrent ANNs 

Although Markov Models and their hidden counterpart have already proved to be efficient 

in several areas, these are still quite limited since their states must be drawn from a discrete 

state space S with small dimensions, which leads to high computational costs, especially for 

HMM, when the set of possible hidden states is large. Furthermore, each hidden state can be 

only dependent on the previous state. As a result, a new ANN approach emerged [42]. 

As it was already presented before, recurrent ANNs, or RNNs, are a class of ANNs formed 

by a feedback connection structure. Besides the typical flow of information from the inputs to 

the outputs, it has additional connections that allow to either connect directly to the same 

layer or even to lower layers, enabling the flow of information from the outputs towards the 

inputs (Figure 2.5) [38].  

 

 

 

 

 

 

 

 

 

Figure 2.5 - Architecture of a feedback ANN (RNN) [38]. 

These non-forward connections are termed as recurrent connections, having a time-delay 

of usually 1 time step (discrete time), which allows the model to be aware of its previous inputs 

[43]. Moreover, with this feedback architecture, besides the normal weight, each neuron 

possesses one additional weight as an input, allowing an extra degree of freedom when trying 

to minimize the training error. By having such structure it allows to keep the memory of the 

previous state so that the next state will depend not only on the input signals, but also on the 

previous states of the network, allowing to perform temporal processing and learn sequences 

[38]. 

 Hence, unlike feedforward neural networks, RNNs are capable of using their internal 

memory in order to process arbitrary sequences of inputs. Furthermore, as RNNs are dynamic, 

their state is always changing until they reach an equilibrium point, being that they are 

unaffected until the input changes and a new equilibrium needs to be achieved [42]. Moreover, 

unlike the HMMs, RNNs are capable of capturing long-range time dependencies, i.e., although 

in this model each state also depends only on the current input and the state of the network 

at the previous time step, RNNs’ hidden state can contain, at any time step, information from 

a nearly arbitrarily long context window [42]. 

Therefore, RNNs are considered effective models for sequential data, having already 

demonstrated to be computationally more powerful and biologically more plausible when 

compared to other adaptive approaches, such as feedforward networks, SVMs and HMMs [44]–
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[46]. Moreover, as these allow to model relationships between a set of variables, they are 

considered to be very appropriate for any functional mapping problem. RNNs can be used for a 

range of applications, including adaptive robotics and control, handwriting recognition, 

keyword spotting, protein analysis, stock market prediction and many other sequence problems 

[47]–[49]. 

2.1.3 - Ensemble Classification 

Due to the increasing interest in the machine learning field a new concept started to 

emerge, the Ensemble Classification. This can be defined as the use of learning algorithms that 

construct a set of classifiers, which can be based on different approaches, and then classify 

new data points by taking a weighted vote of their predictions, resulting in more accurate and 

precise results. The first ensemble method developed was the Bayesian averaging, which led 

to the development of further algorithms [50]. 

2.1.3.1 – Dynamic Bayesian Mixture Models 

One example is the DBMM introduced in [51] and in [52], which is designed to combine 

multiple classifiers in a dynamic way, by combining the outputs of the different conditional 

probabilities of the different classifiers. To do this, a weight is assigned to each of the 

classifiers, according to previous knowledge, by using an uncertainty measure as a confidence 

level, which can be updated locally during online classification. When the local weight is 

updated, it assigns priority to the classifier that presents more confidence along the temporal 

classification, since this can vary along the different frame classifications. Figure 2.6 depicts 

an overview of the DBMM architecture applied to the human activities recognition by using body 

motion from RGB-D images, in which the base classifiers are integrated as weighted posterior 

distributions. 

Figure 2.6 – DBMM architecture for activities’ recognition [51]. 

The DBMM assumes a Markov property of first order that includes the temporal information 

as a simple dynamic probabilistic cycle and, similarly to the Hidden Markov Model, this 

architecture accepts the matrix of state transition probability. 

Moreover, the set of dynamic probabilistic classifiers considers the Bayesian probability as 

a means of classification, in which each model contributes to the inference result in the 

proportion of its probability. By other word, this fusion model is directly presented as a 



                                

2.1 - Classification Methods for Pattern Recognition 15 

 

 

weighted sum of the distributions, where it is possible to obtain the combination of different 

models in one. 

Thus, the DBMM combines a set of models A= {A1
m,A2

m, …,AT
m} where At

m is a model with m 

attributes, such as, variables or features, in the time t={1,2,…,T}. The global model of DBMM 

can be expressed as follows: 

Where: 

 Mtrans is the model for the state transition probability between the variables class, or 

states, over time. This model can represent a priori in DBMM, as a dynamic probabilistic 

cycle, where the present a posteriori becomes the new a priori, or may represent the 

state transition matrix. Thus, Mtrans is calculated as a dynamic a priori information of 

the model. 

 Pi(A|Ct) is the a posteriori result for the base classifier i at the instant of time 𝑢, which 

becomes the probability i of the mixing model, with i = {1, ..., N} and N being the total 

number of classifiers considered in the model. 

 The weight wi
t is estimated by using a measure of confidence that is based on entropy. 

 The normalization factor is defined by  

The global function of probability distribution can be expressed by the following equation: 

Where P(Ct|Ct-1) represents the distribution of the transition probability between the 

variables of each class over time. 

Note that class C in time t is conditioned to the class in time t-1. This step describes the 

non-stationary behaviour that is recursively applied, in which the posterior of the anterior time 

of each class becomes the present prior in order to reinforce the classification in the timestep 

t, by using the information regarding the timestep t-1. 

2.1.3.1.1 – Weights’ Assignment for the fusion model using entropy 

In DBMM, Hi(L) represents the level of confidence used to assign weights wi
t to the base 

classifiers and, by consequence, to update the probabilistic model. Thus, the weights are 

calculated considering the entropy for each base classifier Hi(L), through the analysis of the 

previous results. The entropy of the posterior probabilities can be expressed by the following 

equation: 

𝑃(𝐶𝑡|𝐴) = 𝛽 𝑥 𝑀𝑡𝑟𝑎𝑛𝑠 𝑥 ∑𝑤𝑖
𝑡𝑥 𝑃𝑖(𝐴|𝐶𝑡)

𝑁

𝑖=1

 

(2.5) 

𝛽 =
1

∑ (𝑃(𝐶𝑗
𝑡|𝐶𝑗

𝑡−1)𝑥 ∑ 𝑤𝑖
𝑡𝑥𝑃𝑖(𝐴|𝐶𝑗

𝑡))𝑁
𝑖=1𝑗

 
(2.6) 

𝑃(𝐶𝑡|𝐴) = 𝛽 𝑥 𝑃(𝐶𝑡|𝐶𝑡−1) 𝑥 ∑𝑤𝑖
𝑡  𝑥 𝑃𝑖(𝐴|𝐶𝑡)

𝑁

𝑖=1

 
(2.7) 

𝐻𝑖(ℒ) = −∑ℒ𝑖

𝑠

𝑗

 𝑥 log (ℒ𝑖) 
(2.8) 
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Where ℒ represents the set of conditional probabilities Pi(C|A) which are given by their 

base classifier i and j is the index for the set of posteriors of a specific base classifier. Thus, 

knowing Hi, the weight wi
t for each base classifier can be obtained by, first, calculating the 

global value of the weight: 

Where Hi= Hi(L) is the present value of entropy. Then, the weight wi
t is normalized as 

follows: 

This step assures that Σiwi=1. 

During the process of classification, the base classifiers can alter their performance frame by 

frame. By that way, a local update of the weights during the classification allows to produce a 

better confidence, assigning priority to the base classifiers with more confidence over the 

previous classification. Assuming a system memory as a Markov property during the online 

classification, it is possible to obtain temporal information from the set of posteriors for each 

base classifier. This information is then used along with the weights in the instance w i
t-1 in 

order to update the weights of each base classifier during the classification of each frame, as 

follows: 

Where wi
t is the estimated weight that is updated by each base classifier in each instance and 

wi
t-1 is given by the previous calculated error in t-1. 

2.2 - Fractional Calculus 

FC is a field of mathematics that goes beyond the traditional definitions of integral calculus 

and derivative operators, by considering the possibility of generalizing the operation of 

differentiation to non-integer orders, such as real number powers, real number fractional 

powers and complex number powers [53]. As such, by operating as a natural extension of the 

integer derivatives, fractional derivatives are capable of acting as an excellent tool for the 

description of memory and hereditary properties of processes [54]. Furthermore, another 

property that is usually highlighted is that while an integer-order derivative just implies a finite 

series, the fractional-order derivative requires an infinite number of terms [55]. 

Although there are several approaches described in the literature [53], for the purpose of 

this thesis we will only focus on the Grünwald–Letnikov formulation, which approaches the 

problem from the derivative side. As such, taking into consideration the fundamental definition 

of a derivative. 

∀𝑤𝑖, 𝑤𝑖
𝑡 = [1 − (

𝐻𝑖

∑ 𝐻𝑖
𝑁
𝑖=1

)] 
(2.9) 

𝑤𝑖
𝑡 =

𝑤𝑖
𝑡

∑ 𝑤𝑖
𝑡𝑁

𝑖

 
(2.10) 

𝑤𝑖
𝑡 =

𝑤𝑖
𝑡−1 𝑥 𝑃(𝑤𝑖𝑛𝑒𝑤

|𝐻𝑖(ℒ))

∑ 𝑤𝑖
𝑡−1 𝑥 𝑃(𝑛

𝑖=1 𝑤𝑖𝑛𝑒𝑤
|𝐻𝑖(ℒ))

 
(2.11) 

𝑓′(𝑥) = lim
ℎ→0

 
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

(2.12) 
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By applying this formula again, we can easily obtain the second derivative. 

When h=h1=h2, the expression simplifies to 

Thus, for the nth derivative, we can summarize this formulation, in which the operator Dn 

is used to represent the n-repetitions of the derivative.  

The gamma function is intrinsically tied to FC by definition, being considered a simple 

generalization of the factorial for all real numbers. Let the gamma function be Γ, this can be 

defined as follows [53]: 

For integer numbers it can be expressed as follows: 

Equation 2.16 can be generalized for non-integer values for n with α ∈ R if the binomial 

coefficient is understood as using the Gamma Function in place of the standard factorial. Thus, 

the expression Dα[x(t)] given by 

is said to be the Grünwald–Letnikov fractional derivative of order 𝛂, α ∈ ℂ, of the signal x(t). 

This formulation can be readjusted for discrete time calculation as it is presented below: 

𝐷𝛼[𝑥[𝑡]] =
1

𝑇𝛼
∑

(−1)𝑘Γ[𝛼 + 1]

Γ[𝑘 + 1]Γ[𝛼 − 𝑘 + 1]
𝑥[𝑡 − 𝑘𝑇]

𝑟

𝑘=0

 (2.20) 

Where T is the sampling period and r is the truncation order, is the approximate discrete 

time Grünwald–Letnikov fractional difference of order α, α ∈ ℂ, of the discrete signal x[t]. 

It is possible to extend an integer discrete difference, i.e., classical discrete difference, to 

a fractional-order one, using equation 2.21 [56]. 

𝑓′′(𝑥) = lim
ℎ→0

 
𝑓′(𝑥 + ℎ) − 𝑓′(𝑥)

ℎ
= 

(2.13) 

lim
ℎ1→0

lim
ℎ2→0

𝑓(𝑥 + ℎ1 + ℎ2) − 𝑓(𝑥 + ℎ1)
ℎ2

− lim
ℎ2→0

𝑓(𝑥 + ℎ2) − 𝑓(𝑥)
ℎ2

ℎ1
 

(2.14) 

𝑓′′(𝑥) = lim
ℎ→0

 
𝑓(𝑥 + 2ℎ) − 2𝑓(𝑥 + ℎ) + 𝑓(𝑥)

ℎ2
 

(2.15) 

𝐷𝑛[𝑥(𝑡)] = lim
ℎ→0

[
1

ℎ𝑛
∑(−1)𝑘 (

𝑛
𝑘
) 𝑥(𝑡 − 𝑘ℎ)

𝑛

𝑘=0

] 
(2.16) 

Γ(𝑘) = ∫ 𝑒−𝑢
∞

0

𝑢𝑘−1du for all z ∈  ℝ 
(2.17) 

Γ(𝑘 + 1) = kΓ(k), when k ∈ ℕ+,                  Γ(𝑘) = (𝑘 − 1)! 
(2.18) 

𝐷𝛼[𝑥(𝑡)] = lim
ℎ→0

[
1

ℎ𝛼
∑

(−1)𝑘Γ(𝛼 + 1)

Γ(𝑘 + 1)Γ(𝛼 − 𝑘 + 1)
𝑥(𝑡 − 𝑘ℎ)

+∞

𝑘=0

] 
(2.19) 
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∆𝜛𝑥[𝑡] = {

𝑥[𝑡]                                       , 𝜛 = 0

𝑥[𝑡] − 𝑥[𝑡 − 1]                  , 𝜛 = 1

∆𝜛−1𝑥[𝑡] − ∆𝜛−1𝑥[𝑡 − 1],𝜛 > 1

, 
(2.21) 

Where ϖ ∈ ℕ0 is the order of the integer discrete difference.  

Hence, one can extend the integer-order ∆ϖx[t] assuming that the fractional discrete 

difference satisfies the following inequalities: 

𝜛 − 1 < 𝛼 < 𝜛 (2.22) 

Thus, FC is a mathematical tool suitable for describing many phenomena, such as 

irreversibility and chaos, because of its inherent memory property. With this in mind, one can 

easily understand the potential of FC in the dynamic phenomena of player’s trajectory. As 

such, in the following subsection, FC approach for the study of football players’ trajectories 

will be discussed. 

2.2.1 - FC approach for football player’s trajectories estimation 

During a football match, to track football players, whether we use a manual or an automatic 

system, a matrix containing the planar position of each player 𝑛 of team 𝛿 over time is 

generated, called positioning matrix 𝑋𝛿[𝑡]. 

𝑋𝛿[𝑡] = [

𝑥1[𝑡]
⋮

𝑥𝑁𝛿
[𝑡]

] ,  𝑥𝑛[𝑡]  ∈  ℝ2, 
(2.23) 

Wherein Nδ represents the current number of players in team δ at sample/time t. Xδ[t], 

wherein row n represents the planar position of player n of team δ at time t. It is also 

noteworthy that each element from xn[t] is independent from each other as they correspond 

to the (x, y) coordinates of the nth player planar position. 

Taking into consideration that a football team has 11 players, we have 𝑁𝛿 = 11. Finally, 

using the equations presented previously and considering players’ dynamics one can define an 

approximation of player 𝑛 to next position, i.e., 𝑥𝑛
𝑠[𝑡 + 1], as: 

𝑥𝑛
𝑠[𝑡 + 1] = 𝑥𝑛

0 + 𝑥𝑛[𝑡] − 𝑥𝑛[𝑡 − 1] −
1

𝑇𝛼
∑

(−1)𝑘Γ[𝛼 + 1]

Γ[𝑘 + 1]Γ[𝛼 − 𝑘 + 1]
𝑥[𝑡 + 1 − 𝑘𝑇]

𝑟

𝑘=0

 
(2.24) 

Wherein xn[t] = 0, ∀ t < 0 in such a way that  xn[0] = xn
0 corresponds to the initial tactical 

position of player n in the field, xn
0 ∈  ℝ2.  

Since players may not be able to drastically change their velocity between two consecutive 

samples, it is important to choose an adequate sampling period, more specifically, a small one 

(e.g., 𝑇 ≤ 1 second). However, by doing this the memory requirements increase, since the last 

𝑟 positions of each player, i.e., 𝒪[𝑟𝑁𝛿] are always being memorized. Nonetheless, the 

truncation order 𝑟 does not need to be too large and will always be inferior to the current 

iteration/time 𝑡, i.e.,  𝑟 ≤ 𝑡. Moreover, by analysing Equation 2.24 one can conclude that the 

influence of past events (i.e., previous positions) of a given players depends on the fractional 

coefficient 𝛼. Thus, analysing carefully the fractional coefficient may be very helpful to 

understand the level of predictability of each player. 
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Furthermore, during a football match, each athlete plays a different role (e.g., defender, 

goalkeeper, midfielder), having, by consequence, a more restricted intervention region, which 

provides some organization to the team’s collective dynamics. As such, despite the different 

movements that a player might do to support the defensive and offensive phases, he will always 

return to his main tactical region (TR) due to his positional role.  

Note that regardless on its size, the geometric centre of the TR of player 𝑛, herein denoted 

as tactical position 𝑥𝑛
0, can be defined as a specific planar position a player converges during 

the game, since it is directly dependent on the player’s tactical mission [55]. 

As it is possible to observe in equation 2.24, the player’s trajectory is dependent on the 

fractional coefficient α, meaning that its estimation can only be achieved by adjusting the 

coefficient along time. Thus, the best fitting α for player n at time t, i.e., α_n [t] based on its 

last known positions so far, can be formulated by the following minimization problem: 

 

min
𝛼𝑛[𝑡]

𝑑𝑛
𝑚𝑖𝑛(𝛼𝑛[𝑡 + 1]) = |−𝑥𝑛[𝑡 + 1] + 𝑥𝑛[𝑡] − 𝑥𝑛[𝑡 − 1] −

−
1

𝑇𝛼
∑

(−1)𝑘Γ[𝛼𝑛[𝑡+1]+1]

Γ[𝑘+1]Γ[𝛼𝑛[𝑡+1]−𝑘+1]
𝑥[𝑡 + 1 − 𝑘𝑇]𝑟

𝑘=0 |                                              

,𝑠. 𝑡  𝛼𝑛[𝑡 + 1] ∈ [0, 1]                                      

(2.25) 

During a football match, in order to be able to estimate players’ trajectories it is important 

to not only have information about each player’s predictability but also about its stability 

within the field. As such, the classification of players as stable or unstable can be formulated 

by the following equation. 

𝛽𝑛
𝜏[𝑡] =

𝑣𝑛
𝜏 [𝑡]

𝑣𝑛
𝜏 [𝑡−1]

=
𝑥𝑛
𝜏 [𝑡]−𝑥𝑛

𝜏 [𝑡−1]

𝑥𝑛
𝜏 [𝑡−1]−𝑥𝑛

𝜏 [𝑡−2]
 , ∈ [0, 1]. (2.26) 

2.3 - Summary 

In this chapter the theoretical concepts necessary to understand the work herein presented 

were discussed. There are several classification methods for pattern recognition, which can be 

divided in two different types: Non-Sequential Classification Methods that comprise simple 

machine learning algorithms, including KNN, Bayesian Models, DTs, SVM and ANNs, and that do 

not take in consideration the factor time and Sequential Classification Methods, such as Markov 

Models and RNNs, which were developed for modelling time and, thus, dealing with sequential 

data. It is noteworthy that the methods previously discussed can be further enhanced by using 

ensemble classification approaches, i.e., performing the fusion of multiple classification 

methods. Finally an introduction to a possible approach for trajectories estimation was 

performed, in which FC was presented. 
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Chapter 3  

State of the art 

This chapter presents a literature review regarding Prediction in Football, in which the 

following concepts are addressed: Factors that influence Football Prediction, Machine Learning 

for Football Prediction and Relevant Signals for Football Prediction. Concerning the latter, an 

extensive discussion regarding the most common features and classifiers used for biosignals is 

presented. Finally, some examples of current technologies for football monitoring are 

presented. 

3.1 - Prediction in Football 

The problem of modelling football data has become increasingly popular in the last few 

years. Several models have been proposed with the purpose of estimating the characteristics 

that bring a team to lose or win a match or to predict the final score. Undeniably, predicting 

the outcome of football matches is very motivating as a research problem, not only because of 

its intrinsic challenge, but also because the result of a football match relies on many factors, 

or contextual information [7]. Concerning this, in this section it is first presented a review 

regarding the main factors that should be considered when trying to forecast football results. 

Then, a literature review concerning the implementation of machine learning algorithms for 

football prediction is presented. Finally, a brief discussion regarding the choice of the most 

relevant signals for football prediction is made. 

3.1.1 - Factors that influence football prediction 

According to the literature one reasonable way to forecast future match results is to use 

the information already known from past results combined with relevant information such as 

the scoring frequency [57]. However, when developing models for football prediction, the 

history of matches should not be the only factor to be taken in account [58]. 

As a result, in order to understand which factors should be considered during the 

development of an architecture for football prediction, the following subsection will present a 

discussion regarding several factors that, according to the literature, influence teams’ 

performance. 
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3.1.1.1 - Match Statistics and Situational Variables 

According to Courneya and Carron [59], home advantage can be defined as “the consistent 

finding that home teams win over 50% of the games played under a balanced home and away 

schedule”. In fact, during the last years, several authors have demonstrated evidences that 

home advantage is real and that indeed influences the outcome of a football match [60], being 

this subject of analysis of statistical companies from all over the world. One example is 

presented in Figure 3.1. In here, match results comparisons were made, revealing that not only 

home teams are more likely to win matches but also that the concept of home advantage is 

present in most of all sports. These types of observations allowed analysts to understand the 

real role of home advantage in football prediction, being already established that playing at 

home stadium indeed provides a major advantage in football.  

Figure 3.1 - Influence of Home and Away Games in match results. Adapted from [61]. 

Up to now, one may understand that the concept of home advantage is undeniable. 

However, the reasons for this event are still not clearly known. Although there are several 

explanations, the literature highlights the influence of the crowd as the main plausible one 

[62]. In this context, Schwartz and Barsky [63] investigated the influence of the crowd factor, 

hypothesizing that this exists because of the greater social support to home teams, not only in 

terms of adepts but also in terms of local networks that usually give more audience to the 

home team. Another reason regarding the crowd effect was presented in the study of Greer 

[64] in which he concluded that the home crowd may also have an influence in referees’ actions 

as the crowd has the power of intimidating them. Concerning this, Neville et al. [65] randomly 

allocated forty qualified referees to either a noise group or a silent group and ask them to 

review 47 challenges and incidents recorded during an English Premier League game between 

Liverpool (home) and Leicester (away) from the 1998/1999 season in order assess if they were 

legal (no foul) or illegal (foul), being that in the case of a foul they should also assess if it was 

a home foul or an away foul. Basically, the referees had to choose between four categorical 

response variables (1) home foul (2) away foul (3) no foul and (4) uncertain, in the case of 

uncertainty. The experimental results showed that the referees from the silent group 
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demonstrated a higher certainty in their responses, awarding a greater number of fouls against 

home players. On the other hand, the group of referees that was subjected to crowd noise 

awarded 15.5% fewer fouls against home players. Thus, this study allowed to conclude that 

rather than penalising away players more, the dominant effect of crowd noise influenced 

referees to penalise home players less. Additionally, it was also found out that the referee’s 

experience also plays an important role in the course of the game, as it can positively affect 

the number of fouls awarded. Despite the apparent insignificance of this factor, the reality is 

that this kind of ‘refereeing edge’ can be crucial in sports, as simple decisions as awarding a 

penalty can significantly alter the course of a match [62]. 

Another factor that was pointed out as a great influencer of teams’ performance, and thus 

in results forecasting, is the team’s participation in external cups, being one of the 

explanations for this based on the existence of financial incentives. In order to understand why 

external cups can influence teams’ performance, Goddard and Asimakopoulos [66] evaluated 

the Football Association Challenge Cup’s effect on the top four English football leagues, 

demonstrating that the possibility of having success in external cups provides a significant 

morale boost, having by consequence a positive effect on the overall league’s performance. In 

this study, the authors also identified that other factors, such as championship, promotion and 

relegation issues, are determinants of the match results in football.  

In addition to that, football experts argue that models for football prediction should not 

only take into consideration the team’s previous matches and results, but also the past results 

between opponents, since it is possible that some teams may be more motivated to win against 

a particular opponent [58]. 

Finally, another factor that may influence teams’ ability is the occurrence of managerial 

changes, new transfers or depreciation of current team fundamentals. In the work presented 

by Audas et al. [67], the real impact of these factors on team performance is shown, concluding 

that, on average, teams that changed their manager during an ongoing season performed worst 

over the following three months of games. This could be explained by the fact that new 

managers can sometimes adopt playing styles that are inconsistent with the current playing 

staff and also because it is common sense that when a team is underperforming, there is usually 

a change in the manager, which may also affect the state of mind of the players. 

3.1.1.2 On-the-fly Match Analysis 

According to Rusling [68], the epidemiological research in English football has shown that 

each professional footballer experience an average of 1.3 injuries per season. Of all the injuries 

sustained, 38% are the result of contact mechanisms and 58% of non-contact mechanisms. In 

line with this, a 7-year European study found that teams suffered an average of 2 injuries per 

player per season, which equates to an injury incidence of 8 injuries for each 1000 training and 

match hours. Furthermore, injury incidence for English youth academy footballers was initially 

indicated to be lower, with data indicating that teams suffer around 0.4 injuries per player per 

season, wherein each player would sustain about 2.23 injuries per 1000 hours of total exposure. 

Contact based injuries resulted from uncontrollable extrinsic factors, such as tackles, and were 

then considered to be unpredictable. Conversely, non-contact injuries, such as low back pain 

or injuries due to running, were considered to be theoretically predictable [69], [70]. 

Nevertheless, there are many factors that may cause injuries during a football match, being 

the most common ones poor training methods, structural abnormalities, weakness in muscles, 

tendons, ligaments and unsafe exercising environments [71]. Moreover, sports injuries are 
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associated with a wide range of hardly quantified parameters/situations, namely the quality of 

sports and training equipment, the prior years of sports training and experience under certain 

competition, the inadequate warm-up (whether insufficient or excessive), the nutritional and 

hydroelectric imbalances, etc. [72], being that a significant percentage of injuries (9%-34%) 

happens due to overuse [68]–[70]. The majority of these injuries happen during competition, 

being most of them described as traumatic, with 29% being due to foul play [9]. Additionally, 

fatigue greatly influences the occurrence of injuries. Although localized muscle fatigue (LMF) 

can sometimes contribute to good results, for example, it can promote muscle growth (as 

observed in bodybuilders), most of the times fatigue can cause serious injuries, especially when 

the level of fatigue is high, being this due to the fact that fatigued muscles are not capable of 

absorbing so much energy since they are stretched [73].  

A challenge that medical teams face is their inability to successfully predict the occurrence 

of injuries and the recovery time of an injured player. Undoubtedly, providing an accurate 

prediction would be helpful for the coach and technical teams [70]. Hence, a number of 

different methodological approaches have been used to describe the reasons for sports injuries. 

These include interviews of injured athletes, analysis of video recordings of actual injuries, 

clinical studies, in vivo studies and simulation of injury situations. On the other hand, some 

authors, such as Drawer and Fuller [74], went beyond these traditional methods by studying 

the effect that injuries have on the collective performance of the football team. By measuring 

the team quality as a sum of player quality scores from a sample of five seasons of the English 

Premier League, the authors showed that the injuries of key players were significant in 

explaining team performance. Concerning this problem, Rusling et al. [68] highlighted the use 

of tools, as the Functional Movement Screen (FMS), to predict individuals at heightened risk of 

injury within collective sports. However, the current literature does not allude to whether or 

not FMS has a role in predicting injuries on-the-fly, i.e., during a match. Moreover, the number 

of evidences assessing the FMS in determining injury risk within individuals specifically for 

football is rather limited. Thus, further investigations need to be conducted to obtain more 

solid and relevant results. 

As it is shown, injuries play a crucial role in the overall collective performance of the team, 

and studying them may allow to go beyond the classical predictive analysis, as one may be able 

to not only predict the outcome of the football match, but also when a given player might be 

susceptible to get injured, for example, by implementing an automated system capable of 

predicting and detecting fatigue in football players and, consequently, acting as a warning 

device, thus promoting a better performance and avoiding unnecessary injuries [75]. However, 

to do this, a real-time measurement of changes in LMF is required [75]. 

Although the occurrence of injuries greatly influences the final result of a football match, 

this is not the only factor that contributes to the overall performance of the team. In fact, 

many other on-the-fly factors have been discussed in the literature. In this context, in order to 

evaluate the influence of physiological factors in player’s performance, Faude et al. [76] 

proceeded to an extensive analysis of 360 videos of goals occurred in the first German National 

League, detecting that in the majority of goals scored anaerobic actions were observed, both 

for the scoring player and the assisting one. Moreover, in the work presented by Rampinini et 

al. [77], a significant decline in Italian Series A player’s performance between the first and 

second half was observed, being these demonstrated to be a consequence of poor physical 

preparation. In fact, several game analysis have already revealed the existence of a reverse 

relationship between ball possession and distance covered, meaning that in the majority of 
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situations, teams that possess superior technical skills perform the games at lower relative 

work rates when compared to their opponents. Such analysis led several authors to conclude 

that besides of increasing the probability of a player developing an injury, fatigue also affects 

scoring frequency [73], [78], [79], which ultimately influences football prediction. 

Furthermore, usually athletes are under great pressure during a match, exhibiting various 

emotional reactions not only during [80] but also before a competition [81]. Although some of 

the emotions felt can have positive effects on the athletes, such as confidence and motivation, 

others, including tension, anger, fatigue and depression can negatively affect players’ 

performance. In fact, several studies regarding the mood states of athletes – estimated by EEG 

[82] or event-related potentials [83] - have proven that there are differences in the 

characteristics of information processing, brain function and the brain nerve cell metabolic 

node of athletes between different sport events and between athletes with different technical 

skills, confirming the influence of emotional state on players’ performance. 

In Table 3.1, we summarize the main factors that influence the outcome of a football match 

and, by consequence, football prediction. 

Table 3.1 - Summary regarding the factors that influence Football Prediction. 

3.1.2 - Football Prediction: a scientific overview 

For many authors, such as Hale [84], the result of a football match is considerably difficult 

to predict due to its inherent variability, which raises the following question: How can we make 

predictions under such variability?  

Igiri & Okechukwu [2] highlight the many techniques that have been used to predict the 

result of the football match, such as ANN, NB, KNN, SVM, among others. Adducing further 

contributions to these techniques, in the early 2000, Koning [85], started to explore a Bayesian 

approach with Markov chains and the Monte-Carlo method, estimating the quality of football 

teams. Similarly, Rue et al. [9] suggested a Bayesian dynamic generalized linear model to 

estimate the time-dependent skills of football teams and to predict football matches. Crowder 

et al. [86] modeled, to some extent, the 92 teams of the English Football Association League 

using refinements of the independent Poisson model to predict the probabilities of home win, 

draw or away win. Andersson et al. [87] estimated the expected number of goals in a football 

match based on the scoring intensity to predict the probability that a team has to win a 

TYPE OF FACTOR 

MATCH STATISTICS AND SITUATIONAL 

VARIABLES 

ON-THE-FLY MATCH ANALYSIS 

Home or away game 

Previous Results 

Scoring Frequency 

Number of matches in a week 

Weather 

Teams’ players 

Number of injured key players 

Bookings (yellow and red cards) 

Age of players 

Players’ Managers 

 

Players’ performance 

Teams’ performance 

Injuries 

Motion 

Physiological State 
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tournament using the estimated scoring intensities. Goddard et al. (2004) [88] proposed a 

regression model to forecast the English Football Association League results. Halicioglu [89] 

statistically analyzed football matches and recommended a method to predict the winner of 

the Euro 2000 football tournament. Rothstein et al. [90], combined fuzzy logic with genetic 

and neural optimization techniques to formalize football predictions. 

In 2011, Buursma attempted to ascertain the most relevant features necessary to predict 

the football match end-result for betting purposes, exclusively considering previous results 

[91]. The author employed seven different machine learning algorithms to classify the matches 

into home win, draw or away win. The results demonstrated that any of the classifiers was able 

to present an accuracy above 55% and, because of that, the author suggested that an improved 

system should be considered to include additional features besides the results from previous 

matches, such as bookings (yellow and red cards), the teams’ players, their managers and so 

on. In Nivard and Mei’s report [92], five predictive models of the football end-result are 

presented: i) toto-models; ii) multi-independent score model; iii) single-independent model; 

iv) dependent score model; and v) pseudo least-square estimator score model. Although those 

models are named as match models, as the previous works, they are built to predict only the 

end-result of football matches. The author applied each of these models considering the 

number of goals of each opposing team and the number of goals scored by the home and away 

teams, tested in the English Premier League between 2007-2008 and 2010-2011. Unfortunately, 

although the models, in general, were able to predict the winner correctly in over 50% of the 

matches during a season, they were unable to accurately predict the final score in more than 

15%.  

In a more comprehensive fashion, Min et al. [1] proposed a framework for sports prediction 

using Bayesian inference and rule-based reasoning, together with an in-game time-series 

approach. These authors developed a football result predictor called Football Result Expert 

System. This was based on a Bayesian hierarchical model and depicted reasonable and stable 

predictions. The authors applied a procedure to estimate the value of the main effect, which 

was used to explain the scoring rate. Although their predictions were 95% accurate, their work 

only highlighted the teams with the highest propensity to score or concede goals, which is a 

major limitation of this study.  

Later on, Farzin et al. [7] followed a Bayesian-based approach to predict the results of 

football matches, considering the influence of physiological and non-physiological factors in 

Futbol Club Barcelona (FCB) in the 2008-2009 Spanish League. Consequently, authors divided 

the dataset into two dimensions: i) non-physiological factors (e.g., weather, history of five 

previous matches, results against / for team, home game and players’ psychological state); 

and ii) physiological factors (e.g., average age of the players, the number of injured key 

players, average number of matches in a week, key players’ performance, team performance, 

and average number of goals for all home and away matches). The NETICA software was used 

to build the model, which yielded values for average age of the players as a medium, history 

of the last five games to win, injured main players, psychological state of players and weather 

conditions during the match. According to the authors, the obtained prediction accuracy to 

predict the 2008-2009 season FCB results was 92%. Nevertheless, the whole model was tuned 

for the specific case of the FCB, without describing a solid methodology, both technologically 

and scientifically, to assess the main factors that affect the final result, namely the 

physiological factors.  
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Alternatively to the previous authors, Igiri and Okechukwu [2] used the prediction system 

for football match results using both ANN and LR techniques, with the Rapid Miner Predictive 

Analytics Platform as a data mining tool. The authors highlighted several factors impacting the 

result of a football match, including home advantage and injuries, showing that the latter, 

especially in key players, play a significant role on the team’s performance. This approach 

yielded 85% and 93% prediction accuracy for ANN and LR methods, respectively. However, not 

only the authors exclusively focused in the qualitative end result of each match (i.e., win, 

draw, loss), as it is unknown how the authors compute the learning rate and weights.  

All these works put together allowed to confirm that many factors, such as state of mind, 

player’s performance and physical capacity play an important role in algorithms for football 

prediction. Despite that, from all the previously presented variables the literature has been 

focused at to model the football game, physiological factors have been the least explored. 

Concerning this, Kramer et al. [93] proposed a muscle fatigue indicating parameter, regarding 

the changes that occur in surface electromyography (sEMG), that could be computed  in real 

time by a simple analogue device, allowing real-time fatigue measurement for example for 

monitoring players during a football match. 

Wavelet coefficients can be used in non-stationary and time-varying signal processing. Since 

EMG contains electrical signals related to muscle activity and the amplitude of these wavelet 

coefficients coincides with muscle fatigue development, these can also be proposed as features 

for identifying muscle fatigue for both static and dynamic contractions. As a result, Moshou et 

al. [94] proposed the implementation of an automatic method for muscle fatigue detection by 

using neural networks, in which a self-organizing map (SOM) was used to visualize the variation 

on the approximation wavelet coefficients, enabling the detection of muscle fatigue over time, 

by separating EMG signals from fresh and fatigued muscles. 

Still around the physiological aspect of the game, but in a completely different perspective, 

Serfntein [95] proposed a statistical predictive equation comprising biomechanics, balance and 

proprioception, namely plyometric strength ratios of non-dominant leg plyometrics / bilateral 

plyometrics, dominant leg plyometrics / bilateral plyometrics, and non-dominant leg + 

dominant leg plyometrics / bilateral plyometrics, as well as previous injuries, all combined to 

determine a youth soccer player’s risk of injury occurrence in the lower extremity. This study 

showed that it was possible to create a predictive model for noncontact youth soccer injuries 

based on a pre-season biomechanical, plyometric and proprioceptive evaluation, along with a 

previous injury history questionnaire. 

These investigations allowed researchers to understand that prediction in football is more 

complex than as it seemed at first, depending not only on non-physiological factors, such as 

the history of team’s results and players’ performance in the field, but also depending on 

physiological factors, such as player’s muscular activity [96]. Nevertheless, being able to 

identify the adequate data to be extracted and processed is of the outmost importance, namely 

to avoid falling within the Big Data phenomenon and move from a data-driven focus to a data-

informed approach to improve athletic performance [11]. Next section highlights the most 

relevant signals for football prediction. 

3.1.3 - Relevant Signals for Football Prediction 

Due to the recent developments in sensor technologies, sport teams have now the 

possibility of using wearable support and monitoring tools in order to improve their results. 

From these, different time-varying signals, such as physiological and kinematic data, are 
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acquired providing essential tips to physiologists, coaches and players about team’s 

performance [97]. Hence, due to the recognition of the importance of these signals in the 

outcome of a football match, in the next subsections we will discuss in more detail their 

acquisition, analysis and classification. However, since researches directly applied to football 

are still much reduced, we will start by performing a more comprehensive discussion in which 

several works using these biosignals are presented, regardless of its applications. 

3.1.3.1 Kinematic Signals 

The study of the human body kinematics relies on the analysis of a wide range of parameters 

extracted from the movement, wherein the most important ones are the acceleration, the 

velocity and the position of the body joints, which can be measured using a wide range of 

technologies available in the market [98]. From these technologies, one can highlight time-of-

flight cameras, infrared cameras with active and passive markers, and wearable sensors. In 

terms of ecological validity, wearable sensors tend to be an appropriate technology for the 

kinematic analysis of human movement over infrastructures of cameras that can only be of use 

if the person is constrained to a specific location [99].  

3.1.3.1.1 Trajectory’s Estimation  

Although there are several studies regarding kinematics analysis, only a few have been 

reported within sport sciences literature [100]–[103]. In fact, it was only in a more recent study 

presented by Couceiro et al. [100] that a method to overcome automatic tracking problems of 

football players was proposed. In here, an adaptive FC approach was used to improve the 

accuracy of tracking methods by estimating the position of players based on their trajectories 

so far. The accuracy of the proposed approach was evaluated under different sampling periods 

of 250, 500 and 1000 ms, during one half-time of an official football match. Moreover, the 

authors studied the influence of using adaptive fractional coefficients 𝛼𝑛[𝑡] when compared 

with predefined 𝛼𝑛 values, demonstrating not only that adaptive 𝛼𝑛[𝑡] generally results in a 

higher performance but also that smaller sampling periods result in better outcomes (Figure 

3.2). Thus, they found out that dynamic FC is a viable approach for the study of football players’ 

trajectories, increasing also the autonomy of tracking systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 - Comparing adaptive fractional coefficients 𝜶𝒏[ ] with predefined values 𝜶𝒏 [100]. 
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Meanwhile, Couceiro et al. [55] studied the predictability and stability levels of players 

during an official football match, since these are important concepts to fully characterize the 

variability of the whole team. As such, considering that FC can be very useful to understand 

player’s motion, since it is a prediction method based on the memory of past events, a FC 

approach to define player’s trajectory was considered. As such, to compare the variability that 

is inherent to the player’s process variables (e.g., distance covered) and to assess his 

predictability and stability, entropy measures were considered. For this aim, the variability of 

the fractional coefficient over time was used in order to provide relevant information about a 

player’s predictability whereas the stability was obtained by assessing the number of times 

that a player left his TR. Experimental results showed that despite being the most unstable 

player, the goalkeeper is the most predictable one. Moreover, they found out that the 

midfielders are the most unpredictable players and that lateral defenders are the most stable 

ones. This observations allowed to conclude that it is possible to observe that one player can 

be highly predictable (in terms of trajectory) while unstable (going outside of his TR) and vice-

versa.  As such, the authors further studied the relationship between predictability and stability 

(Figure 3.3), concluding that the level of predictability varies significantly with the positional 

main role of players. Note that the points are divided into four cluster, where the red circle 

corresponds to the goalkeeper, the blue triangles the defenders, the green lozenges the central 

players and the purple squares correspond to the forwards. 

 

Figure 3.3 - Relationship between predictability 𝛼𝑛 and stability 𝛽𝑛
𝜏 (Red circle – goalkeeper; Blue 

triangles – defenders; Green lozenges - central players; Purple squares - forwards) [55]. 

Later on, in the study presented by Copete et al. [104] a method for estimating the 

trajectories of soccer players during ball motion and the direction of the ball after being kicked 

was proposed, by using dynamical prediction to estimate the future position of both players 

and ball. For this aim, the authors employed deep neural networks in order to represent the 

complex dynamics of temporal sequences of player positions and a one-hidden-layer neural 

network for estimating the orientation of the ball movement. To evaluate the proposed model, 

the authors used data from the RoboCup 2D Soccer Simulation League, concluding that the 

future movement directions of the players and of the ball can be successfully estimated. 

Finally, in a more recent work [105], Lee and Kitani proposed a model for predicting the 

trajectories of the wide receiver in the game of American football. For this aim, the authors 

built a computational model which took into consideration not only prior knowledge about the 
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game (e.g., route trees, defensive formations) but also short-term predictive models of how 

the environment changes over time. Since prior knowledge about the game is an information 

easy to access, the main goal here was to build predictive models of the environment. To do 

this, several models were proposed being the wide receiver modelled with a Markov Decision 

Process, in which the reward function is a linear combination of static features (prior 

knowledge) and dynamic features (short-term prediction of opponent players). Their results 

demonstrated that is possible to achieve better trajectories’ estimation when we use more 

informed predictive models. 

3.1.3.2 Physiological Signals 

Due to the high physical demands of a match, the optimal physical and mental preparation 

of football players is now becoming an essential part of the game, being the focus of interest 

of many professional football associations. Besides of depending on player’s motion, the 

performance of players in football matches also depends on other factors, such as player’s 

technical and tactical skills. However, accordingly to several studies, when trying to improve 

teams’ performance, physiological capabilities of players should also be considered [106], 

[107]. As a result, in the last few years, the analysis of physiological signals from players as a 

way to improve teams’ results has gained a particular interest.  

Physiological signals, like the heart rate (HR) or the galvanic skin response (GSR), are 

generated by the human body and they can be used to assess mental and physical stress of a 

person while (s)he is performing tasks or is involved in specific situations as they are often not 

consciously perceived and cannot be controlled by the person [108]. In this work, we will focus 

on the EMG signals. As such, in the following subsection a brief introduction to this type of 

signal is made. 

3.1.3.2.1 – Electromyography 

EMG is a technique used for recording and analyzing myoelectric signals. These correspond 

to the electrical potential (motor unit action potential) which is generated by the nerve cells 

that control muscle cells when they are electrically or neurologically activated [109]. There 

are several techniques for extracting the electrical signals from muscles, being these divided 

in surface EMG and intramuscular EMG, which is an invasive technique that measures the muscle 

activity by using a needle electrode directly into the muscle. Thus, EMG signals basically reflect 

the muscle contractions over time. Due to its simplicity, the EMG activity can be used in several 

areas and for various purposes. For example, it can be used to provide information about 

muscle health and diagnosis or even to study the functional movements, work conditions and 

postural tasks [110]. 

3.1.3.2.1.1 – Signal Characteristics 

The typical amplitude for sEMG signals lies between 1-10 mV. This is a very low value, 

meaning that, usually, in order to collect data it is necessary to implement an amplifier. 

Regarding its frequency, the signal is between 0-500 Hz, being dominant mainly between 50-

150 Hz. The peak frequency is typically located between 50 and 80 Hz. From that point the 

spectrum curves decreases and reaches zero between 200 and 250 Hz. Figure 3.4 illustrates the 

typical frequency power spectrum for EMG signals. 
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Figure 3.4 – Example of a typical Frequency spectrum for an EMG signal [111]. 

The sEMG is a signal highly influenced by noise, which can come from two main sources. 

Firstly, from ambient noise that is caused by electromagnetic radiation sources, like radio 

transmission devices. Secondly, EMG noise can be caused by movement artifacts. Because of 

that, the phase of filtering in EMG signals is of extreme importance [112]. 

3.1.3.2.2 – Actions’ Classification 

Over the past decade, the possibility of human movements detection and recognition has 

triggered an increased interest from many authors [113]–[115]. The analysis of human 

movement is of high practical interest in several areas, such as in sports and healthcare. In this 

context, motion recognition can be used to provide feedback to the user about his/her physical 

activity, thus, promoting a more active life [116]. Moreover, motion recognition based on 

wearable technology can be used to achieve optimal physical preparation of elite athletes [96], 

being that real-time monitoring can provide even more valuable information, allowing a higher 

performance and consequently increasing the chances of having good results. Yet, as every 

person performs movements differently, mainly due to their experience and ecological 

dynamics at stake, the recognition rate of human activities highly depends upon multiple causes 

[117], being that these recognition rates can be improved by adopting a careful selection of 

descriptive features.  

Although the majority of research regarding actions’ classification and motion recognition 

has been based on kinematics and kinetics data, the use of physiological data for this type of 

classification is now emerging as a viable alternative. 

Regarding this, Chan et al. [118] proposed a fuzzy approach as a method of EMG signals’ 

classification for a multifunctional prosthesis control. For this aim, time segmented features 

were clustered in an unsupervised method accordingly to the Basic Isodata algorithm in the 

training phase, being these results used to initialize the fuzzy system parameters. Then, fuzzy 

rules were trained by using the back-propagation algorithm. By comparing the fuzzy approach 

with an ANN method on four subjects, authors were able to conclude that although the 

classification results were quite similar, ranging from 70% to 90% depending on the subject, the 
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fuzzy approach was considered superior to the latter in some points, as it demonstrated a 

slightly higher recognition rate, insensitivity to overtraining and higher reliability. 

In another work, Jeong et al. [119] recognized EMG signal patterns of lower limb muscles 

by implementing neural networks during the recovery of postural balance of human body. Thus, 

features such as zero crossing, integral absolute value, spectral energy, central frequency and 

variance of central frequency were extracted from EMG signals and then used to classify the 

signals into five different categories, including forward perturbation, backward perturbation, 

lateral perturbation and two oblique perturbations. The motions were recognized with mean 

success rates of 75%. 

Meantime, in the work presented by Joshi et al. [120], EMG from lower limbs was used in 

order to classify the eight different gate phases of a person.  In here, four time domain 

features, namely, the mean absolute value (MAV), WL and variance slope sign changes, were 

used as well as the 4th order Autoregressive model in order to get the feature vector. The Linear 

Discriminant Analysis (LDA) was used for classification and a 50 ms second window was chosen. 

The results regarding the classification from both legs demonstrated a very low mean accuracy 

of 52.62%. Thus, in order to improve the classification results, time-synchronization and the 

Bayesian Information Criteria segmentation algorithm were applied, having resulted in an 

overall increase of the mean accuracy (75.32%). 

In the context of football players, motion recognition usually involves a range of data 

collection techniques that comprise live observation and post-event video analysis, in which 

player’s performance is manually assessed through its movement patterns. Due to the 

considerable time required to manually collect and analyse this data, the use of automated 

tracking technology in football teams is now becoming a more popular tool. However, 

inadequate video and computational facilities available at sports venues represent major 

challenges for the successful implementation of such technology. Moreover, since athletes are 

more quick and agile they tend to exhibit more complex movements with many unpredictable 

changes in direction as well as frequent collisions with other players. This type of behaviour 

violates the assumptions of smooth movement on which computer tracking algorithms are 

typically based. 

Despite there are still few research for actions’ classification based on physiological data, 

this is becoming an emerging area able to provide the basic tools to develop several potential 

applications for football matches, such as measuring team organization, planning tactics and 

strategies, providing objective measures of intervention effectiveness and providing 

meaningful physiological feedback, being this beneficial to the entire football club [121]. 

3.1.3.2.3 – Fatigue Detection 

In the last three decades it has become quite common to evaluate LMF by means of sEMG 

signal processing [110], [122], [123]. Indeed, neuromuscular fatigue can be induced by 

sustained muscular contractions, being these usually accompanied by external manifestations 

such as the inability to maintain a desired force output, muscular tremors and localized pain 

[110]. 

When the muscle is fatigued the EMG signal displays two typical characteristics. Firstly, a 

change in amplitude, illustrated in Figure 3.5, due to the recruitment of additional motor units 

by the central nervous system, in order to maintain the required power output.  
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Figure 3.5 – Typical increase in EMG amplitude (represented on the y axis as integrated EMG (IEMG), 
µV.s) with time (s) at constant intensities (275, 300, 350 and 400 watts) [110]. 

Additionally, the power frequency spectrum suffers a leftward shift, i.e., the frequency 

properties decrease, as it is illustrated in Figure 3.6. This change in the frequency spectrum 

indicates the recruitment of more fatigue-resistant motor units to cope with the task 

constraint. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 – Typical changes in EMG power frequency spectrum (Hz) of a muscle during a fatiguing 
contraction [110]. 

3.1.3.3 - Features and Classifiers for Biosignals  

Modelling and selecting the features are steps of major importance that allow to provide 

accurate and opportune information about human motion, being through these steps that one 

can optimize classifiers for improved results. Although different classification methods may 

provide different levels of accuracy and precision, the choice upon the most adequate features 

may significantly propel the classification result to a completely different level. In this context, 
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Avci et al. [124] presented a review regarding the most common techniques used for activity 

recognition using inertial sensors, exploring not only the main features used but also the most 

common classifiers. Regarding this, they divided the features in five types: i) Time Domain, ii) 

Frequency Domain, iii) Time-Frequency Domain, iv) Heuristic Features and v) Domain Specific, 

concluding that features such as mean, variance and spectral energy are very commonly used. 

In a similar work, Lara and Labrador [125] presented a review about different features 

extraction methods, divided into time domain, frequency domain and others. In the time 

domain, these authors used the most traditional features, such as mean, standard deviation, 

variance, interquartile range, mean absolute deviation, and others, such as the correlation 

between axes, entropy, and kurtosis. In the frequency domain, they referred the FFT and 

discrete cosine transform, though others were also discussed, such as the principal component 

analysis, LDA, autoregressive model, and Haar-like features. In another work presented by Bao 

and Intille [113], several features such as mean, energy, entropy, and correlation were used to 

assess which are the best methods of classification. To do this, the authors tested multiple 

classifiers, such as decision trees, instance-based learning, DT, and NB classifiers, concluding 

that DTs offer a higher classification accuracy for recognizing the chosen human activities. 

Similarly, Hyunn [114] explored the use of the same features, but with the addition of 

frequency-based features, such as the FFT, showing that the latter are enough to recognize 

some basic activities, like walking, standing, and sitting. To classify the activities, Hyunn chose 

SVMs, HMMs and NB. Furthermore, Zhang and Sawchuk [126] used a mobile phone with a sensory 

technology, considering features such as mean, variance, correlation, and entropy. Besides 

concluding that the worst classification methods were the KNN and the NB classifier, they also 

demonstrated that SVM was the method that depicted a superior performance. The work of 

Faria et al. refers other features extracted from a depth camera (RGB-D), such as the well-

known Microsoft Kinect, which are modelled in such a way to characterize daily activities [52]. 

The authors considered energy-based features using the joint velocities, log-energy entropy-

based features using skeleton poses, and sample autocorrelation-based features using the 

distances of skeleton poses in different time instants.  

In another work, Jensen et al. [127] studied the performance of a set of generic features 

in two classification problems regarding biosignal analysis. To do this, two datasets were used, 

being that the first was built from physiological electrocardiography (ECG) data in order to 

assess activity levels of an athlete, whereas the second one was built from kinematic sensor 

data for the purpose of assessing experience level of a golf player. The feature set consisted 

of statistical moments, including Mean, Standard Deviation, Variance, Kurtosis and Skewness, 

and additional simple signal characteristics, such as Minimum, Maximum, Energy and Median. 

Then, several methods were used to classify the feature set, being these AdaBoost, LDA, NB, 

KNN and SVM with a linear kernel. The results obtained, showed LDA demonstrated the highest 

performance in both ECG data (88.8%) and kinematic data (90.2%) when using a generic set of 

features. Despite that, it was also visible a good performance by the other classifiers for the 

first dataset, since they all presented a classification rate equal or superior to 80%. Meanwhile, 

Mohd et al. [128] evaluated the performance of three different features of the Time Domain 

in the classification of EMG signals, concluding that standard deviation has the best overall 

performance when compared to the maximum amplitude of the signal and the root mean square 

(RMS). Meantime, Sharma et al. [129] presented a review concerning the definition of several 

methods and approaches suitable for extracting the features from EMG signals. The authors 

concluded that there are various efficient methods, such as Wavelet Transform approach or 
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Autoregressive methods. Moreover, they concluded that in the time-frequency domain, the 

most common features used are the Power Spectral Density, the spectral magnitude averages, 

the Thompson transform and the Short Time Fourier Transform.  

Accordingly to Raez et al. [122], one of the ways to classify sEMG signals is by measuring 

the Euclidean distance between the motor unit action potentials (MUAPs) – electrical activity 

measured by the EMG [111] – waveform, in which a shimmer is generated in the representation 

of time-triggered and non-overlapping MUAPs. In another work, Boca and Park [130] suggested 

the implementation of a real-time application of an ANN, capable of accurately recognize the 

myoelectric signal signature. In here, signal’s features were first extracted through Fourier 

analysis and then clustered by using the fuzzy c-means algorithm. Then, data was automatically 

targeted and sent to a multilayer perceptron (MLP) type neural network. Finally, a digital signal 

processor operated over the resulting set of weights, allowing the mapping of the incoming 

signal in real-time. The experimental results demonstrated that this approach produces highly 

accurate discrimination of the control signal over interference patterns.  

Based on the literature, the use of ANN to classify EMG signals is one of the most popular 

methods within the scientific community. According to this,  Al-Mulla and Sepulveda [131] 

suggested an evolved feature to predict the time to LMF by using supervised ANN, being this 

algorithm composed of five training inputs and one testing signal. To calculate the inputs’ rate 

of change the first 20% of the evolved feature signal were used, enabling the simplification of 

this rate and, thus, promoting a faster ANN training. To adjust its training weights, the ANN 

used time to fatigue for the five training signals, allowing it to predict the time to fatigue by 

using only 20% of the total sEMG signal. The results presented in this study revealed an average 

prediction error of 9.22% for time prediction. 

Concerning the use of EMG signals to detect muscle fatigue, the literature shows that the 

parameters normally used are the amplitude and the frequency of the signal [123], [132]. On 

the one hand, the amplitude of EMG signals increases progressively as a function of time when 

the fatigue increases. On the other hand, mean frequency (MF) and median frequency (MEDF) 

decrease with fatigue. Thus, muscle fatigue can be monitored by analysing changes in the EMG 

frequency properties [133]. As such, MF and MEDF are currently the most useful and popular 

frequency-domain features and frequently used for the assessment of muscle fatigue in surface 

EMG signals [123]. 

A summary of the most used features and classifiers is presented on Table 3.2 and 3.3. 
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Table 3.2 - Most common used features for biosignals. 

TYPE FEATURE REFERENCES 

Time Domain Mean, RMS [113]–[116], [126]–[128], [133]–

[137] 

Standard Deviation, Mean 

Absolute Deviation and 

Variance 

[113]–[116], [126]–[128], [135]–

[137] 

Skewness, Entropy and 

Kurtosis 

[113], [114], [125]–[127] 

Frequency 

Domain 

Fourier Transform [114], [126], [129], [137], [138] 

Power Spectral Estimation [113], [114], [136]–[138] 

Power Spectral Density [129] 

Time-

Frequency 

Domain 

Wavelet Transform [129], [138]–[140] 

Autoregressive Models [129], [138] 

Signals EMG [128], [130], [131], [133] 

ECG [127], [141]–[143] 

HR [144], [145] 

GSR [144] 

 

Table 3.3 - Most common classifiers used for biosignals. 

CLASSIFIER REFERENCES 

KNN [113], [114], [124], [126], [127], [140], [142], [146] 

Bayesian Models [113], [114], [124], [126], [127], [147] 

DTs [113], [141], [142], [148], [149] 

SVM [114], [115], [124], [126], [127], [141], [142], [145], 

[146], [150] 

ANNs [116] 

HMMs [114], [115], [124], [126], [146], [151] 

DBMM [152] 

LDA [127], [141]–[143], [150] 

ANNs Traditional [130], [131], [143], [153] 

MLP [130], [150] 

SOM [141] 

 

As it is possible to visualize in the previous tables, there is a set of features and classifiers 

that is more commonly used for algorithms’ implementations with biosignals. However, it is 

important to realize that each problem is different and that what works well in one condition 

may not work under different conditions. As such, and taking into consideration the importance 

of features and classifiers’ selection in the final result, in order to obtain optimized results it 
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is crucial to experiment different combinations of features and/or classifiers. Bellow the 

definition of the most common features is summarized. 
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Where xn denotes the nth sEMG signal sample, N is the length of the signal, fj the signal 

frequency spectrum, Pj the sEMG power spectrum, ai the AR coefficients, wn is the white noise 

or error sequence and p represents the order of the AR model [154]. 
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3.2 - Current Technologies for Football 

Currently, extrinsic feedback information can be provided to coaches and athletes by 

several technologies, being some examples presented in this section. 

3.2.1 - FIRSTBEAT SPORTS 

FIRSTBEAT SPORTS is a platform designed for professional use that not only allows to 

monitor training loads and recoveries but also to increase team’s performance. This technology 

allows coaches to effectively collect, analyse and interpret several performance data from the 

players, being this analysis based on the identification of individualized patterns of player’s 

HR. Besides of providing a physiological analysis from all the players, FIRSTBEAT also 

contributes to injury prevention, being capable of assessing if they are overtraining. Moreover, 

it also allows to see the training progress as well as understand player’s recovery and readiness 

[155].  

Regarding its technical information, as it is depicted in Figure 3.7, FIRSTBEAT SPORTS is 

composed by several components: an interface software capable of operating in Windows 7, 8, 

10 and Vista; a water-proof FIRSTBEAT Team Receiver, capable of collecting data with a 

maximum range of 400 m and a maximum of 80 players at the same time up to 700 hours 

(battery lifetime); a FIRSTBEAT Textile HR Belt, used for measuring player’s HR and a High 

Performance HR variability recorder (Bodyguard) that can be used to record several 

physiological data during a match in order to help coaches to increase team’s performance 

later [156]. 

Currently, this technology is already being used by over 600 professional teams, including 

FC Porto, PSG, Atletico Madrid and Sevilla FC [157]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 - FIRSTBEAT Components [155]. 

3.2.2 - Catapult 

Catapult is currently one of the global leaders on the field of athlete analytics, being the 

only system that is capable of measuring collisions. Besides of effectively monitor athlete’s 

condition, Catapult also enables insight into athlete risk, readiness and return to play, giving a 

reliable tool for performance improvement. Moreover, this technology also offers the 
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possibility of a more specialized monitoring regarding the goal keeper, quantifying with 

precision the dives (direction and intensity), jumps, accelerations and decelerations, changes 

in directions and recovery time, allowing a more personalized approach. 

Catapult operates with a Global Navigation Satellite System, which allows higher accuracy 

rates, a wireless local positioning system to capture movement inside and out and one Inertial 

Movement Analysis for micro-movement analysis [158].  

Due to its great popularity, this system has already been used by various international 

teams, such as SC Braga, Marítimo, Real Madrid and Toronto FC [159]. In Figure 3.8 the 

components of Catapult’s kit are presented. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 - Catapult's Components [158]. 

3.2.3 - GPSports 

GPSports is a sophisticated performance monitoring device that incorporates advanced 

global positioning system (GPS) tracking with HR and accelerometer monitoring, objectively 

assessing athlete’s and team’s loading across a range of intensities for distance, speed, 

acceleration, HR and impacts. As the previous one, GPSports is able to provide accurate 

feedback in real time, allowing coaches to confidently plan trainings and games, regarding 

speed, conditioning, strength and power in order to maximise athletic performance and 

minimise injuries. Moreover, as each session is automatically compared to the athlete’s training 

history, it provides more reliable information to coaches since the load of previous sessions can 

influence athlete’s future performance. Finally, this is capable of determining the team’s pre-

match condition, by using market-leading chronic and acute load analysis, which helps coaches 

to objectively decide whether an athlete is fit or fatigued for a match [160]. GPSports is 

composed by a software that acts as an interface for coaches and by a hardware - SPI HPU -, 

which is currently the smallest and most powerful GPS on the market, delivering accurate and 

critical data from elite athletes. This has a battery life of over 8 hours, being capable of operate 

during 2 sessions per day with one charge [161]. Currently, this technology is been used by 

several teams around the world such as Chelsea Football Club and Valencia C.F. 

3.2.4 - Mbody Pro 

Mbody Pro is another system that can be used for football monitoring. Unlike the previous, 

besides of taking into consideration HR variability it also focus on muscle measurement, having 

as assumption that muscle’s status can have a great impact on training and by consequence, 
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athletes’ performance. Hence, by combining these two outputs, Mbody Pro opens up a new 

dimension in objective muscular performance monitoring, allowing to not only to understand 

what is happening with muscles during a match or a training but also to assess how muscles 

behave under different conditions in order to prevent injuries. 

This technology allows both real-time and post exercise analysis of several parameters such 

as EMG, HR, cadence, distance, balance, stability, relaxation, speed, and coordination. As a 

result, Mbody Pro provides coaches and players a very useful tool to measure, monitor and 

analyse performance, allowing to not only target and optimize their technique, but also to 

define and gain more control over recovery processes and to detect and prevent problems, 

such as imbalances and deviations in the muscular system [162]. In Figure 3.9 a representation 

of the components of Mbody Pro System is presented. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 - Mbody Pro System [163]. 

3.2.5 - STATS 

STATS is one of the world’s leading sports data and technology company, offering various 

solutions according to the needs and budgets of each football club. As such, depending on the 

goal of the team STATS has four different options: Live Video Analysis, Post-Match Analysis, 

Capture Tracking Data and Athlete Monitoring. Regarding the latter, they have two platforms: 

STATS Kinetic and STATS Dynamix. The first one was designed to better prepare players, 

decrease the injury risk and speed up recovery times, by integrating raw spatial, inertial, 

collision and cardio data. The second one is a more affordable online analysis platform designed 

for helping coaching staff optimize athlete’s performance and minimize injury risk. For this 

aim, STATS Dynamix uses spatial data and integrates player tracking data and GPS information 

to allow coaches to compare and analyse data from different training sessions and matches 

[164]. 

3.2.6 - TraXports 

TraXports is a wearable device manufactured by Ingeniarius, Lda. Due to its simplicity and 

comfort, this can be used to study athlete’s performance in their natural competitive 

atmosphere in order to improve team progression. By combining information from an ultra-

wideband (UWB) wireless technology with an inertial measurement unit (IMU) TraXports is able 

to provide players’ position in real-time and over the internet. Figure 3.10 illustrates 

TraXport’s equipment. 
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Figure 3.10 - TraXport's Equipment [165]. 

To estimate player’s position, only four anchors are required (Figure 3.11), which not only 

allows the reduction of time setup but also the complexity of the overall system. The distances 

between anchors and wearable devices are estimated by using multiple wireless measures, 

discarding the need of any GPS. TraXports provides an high positional accuracy (±10 

centimeters), under both indoor and outdoor scenarios, with a frequency update of 30Hz [165]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 - Anchors of TraXports [165]. 

3.3 - Summary 

As presented in this chapter, the state of the art shows that many authors have been 

presenting methodologies to predict the football match outcomes, though none explores 

all relevant features that influence athletes’ performance and that might determine 

success, or lack of it, during a match. Indeed, there is a great potential in using Human-

Machine interfaces to improve player’s performance and therefore increase football prediction. 

However, defining a proper representation for all the input data is not always an easy task, 

since it often requires complex transformations. Besides that, there are still no established 

standard feature sets for low-dimensional biosignals, which increases the difficulty in this field 

[166]. Although this seems irrelevant, the fact is that the literature demonstrates that the 

choice of features and classifiers has a great influence in the final outcome. As such, one can 

easily understand the importance of having an optimization phase within the algorithm’s 

architecture. 
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Moreover, one can conclude that there is a wide range of variables that might influence 

the football game outcome, and all those need to be studied as a whole and not in parts 

(e.g., result of the match over time, individual performance of players, injuries, playing home 

or away, among others). Furthermore, the dynamic interplay of risk factors during sport activity 

and their relationship with injuries needs a comprehensive investigation. In this sense, an 

evaluation of each isolated risk factor does not take into consideration how the athlete 

performs the required functional movement patterns [167]. With a proper comprehensive 

investigation, one may go beyond forecasting the game outcome and be able to prevent sport 

injuries by developing the athletes coping skills and assist coaches in their decision-making 

[168].  

Furthermore, by analysing the literature regarding the main technologies used for the 

context of football matches, one can notice that the majority of them is focused on the 

acquisition and analysis of physiological signals, mainly ECG, and that although there are some 

technologies that consider kinematic data, at the best of the author’s knowledge there is still 

none which considers both kinematic and physiological signals, especially the EMG data from 

athletes. Additionally, none of the current technologies is capable of predicting variables, such 

as, position, actions and injuries, being this the main reason for the implementation of ARCANE. 

As such, taking into consideration ARCANE project, we proposed, herein, to contribute to the 

development of a predictive architecture for football, by estimating athlete’s position, actions 

and health status during a football match.  

Thus, in the following chapters the methodology concerning the architecture for position, 

action and health status recognition is described.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

43 

 

Chapter 4  

Project Overview 

This chapter first presents the overall approach for this master thesis. Afterwards, the 

technology used for collecting both kinematic and physiological data will be addressed. 

Regarding the latter, the construction of the wearable device will be explained in detail. At 

last, a brief description of the software adopted in this work will be also presented. 

4.1 – Overall Methodology 

As previously described, in this thesis we will work with two different signals used for 

different purposes: kinematic and physiological signals. More specifically, kinematical signals 

will be used for estimating the trajectories of football players during a match, whereas the 

physiological signals will be used not only for actions’ classification but also for fatigue 

detection. As such, one can easily understand that it is necessary to establish different 

approaches for each type of signal, since they have different characteristics, thus, requiring 

different treatments. As such, in order to better understand the adopted approach, Figure 4.1 

illustrates the overall methodology.  

 

 

 

 

Figure 4.1 – Overview of the methodology adopted. 
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As depicted in the previous figure, two different approaches were established, one for each 

type of signal. Regarding the first one (kinematic signals collection), two different methods 

will be used for predicting the x and y coordinates of an athlete over time, namely the FC and 

RNNs. Concerning the latter, we will use two different types of RNNs, which only differ in the 

feature array that is fed to the network. Note that since kinematic data will be obtained by 

TraXports, which has already a Kalman filter implemented and, thus, gives as outputs signals 

already pre-processed, the phase of pre-processing will not be necessary for those signals. 

Nevertheless, for physiological signals it will be necessary to build a wearable device, which 

will be explained in detail in subsection 4.2.2. After pre-processing and feature extraction, two 

different approaches will be tested: one for actions’ classification and other for fatigue 

detection. Regarding the first one, two different sets of classifiers will be tested: four 

traditional models, namely, NB, SVM, KNN and ANN and an ensemble model, the DBMM. 

Although, in general, different methodologies were established for each signal, one can 

easily notice that there is a common step between the both signals that is collecting data from 

the athlete. This is a very important step that should be performed with special attention, 

since obtaining a “clean” signal with little to no noise and representative of the data, be it 

kinematic but especially the muscle activity, can be quite challenging. As such, taking into 

consideration the importance of data collection in this project, in the next subsections, we will 

present in more detail the equipment used for collecting each type of data.  

4.2 – Technology for Data Acquisition 

4.2.1 - TraXports 

In this work, data regarding human movement will be provided by TraXports, which was 

previously presented in section 3.2.6. 

TraXports is a “pervasive” positioning system, with the potential to be used in any 

collective sports, under both outdoor and indoor environments. The proposed system 

overcomes the need for GPS signal and any complex infrastructure of cameras, requiring only 

the initial deployment of four stations, externally to the field, just before the match starts, 

thus resulting in a pre-installation time inferior to 15 minutes.  

TraXports technology is based on 6.5 GHz UWB communication, compliant with the IEEE 

standard 802.15.4-2011 UWB, inertial sensors (IMU), and ECG monitor, presenting itself as a 

robust, precise and accurate state of the art positioning system. As it is demonstrated in Figure 

4.2, the system comprises four stations (static nodes placed externally to the field) and a 

countless number of beacons (i.e., mobile nodes worn by the athletes), depending on the 

number of athletes one wishes to track. 
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Figure 4.2 - TraXports positioning system [169]. 

This system is able to estimate the position of a particular athlete, virtually in any location 

due to the multi-sensor fusion between the UWB system, the gyroscope, the magnetometer 

and the accelerometer.  

Each TraXports beacon comes fully integrated in a reduced size and volume wearable vest, 

placed on the athlete’s back, presenting itself as a considerably lower cost solution when 

compared to all alternatives available in the market and previously presented. As the system 

benefits from wireless localization technology, this additionally allows to automatically 

associate TraXports to a cloud service, providing the ability to monitor, in real time and through 

the internet, athletes’ performance during the match. All monitoring is performed intuitively, 

using web applications, that allow to store and analyse the data without any incompatibility 

issues associated with the platform (i.e., computer, tablet or smartphone) nor the operating 

system (i.e., Windows, Linux or MAC OC ) of the operator (e.g., coach, sport analyst, researcher 

or spectator) [165]. 

4.2.2 – Conductive Shorts 

In this project, in order to obtain the data regarding the physiological signals, namely the 

EMG signals, it was necessary to build a new wearable device, which was set up to measure the 

electrical activity from the muscles from the right thigh as a proof-of-concept. In the future, 

this wearable device will be extended to also measure the electrical activity from the muscles 

from the left thigh. 

4.2.2.1 – Acquisition System  

The muscles’ electrical activity was acquired by integrating the MyoWare™ Muscle Sensor 

(AT-04-001), from Advancer Technologies, into the wearable solution (See Appendix A.1). This 

can be directly plugged into 3.3V-5V development boards and allows to measure two different 

outputs, the amplified raw EMG and the EMG linear envelope, being possible to adjust the gain 

for the latter. Additionally, due to its wearable design, Myoware Muscle Sensor can be used in 

two different ways. Either the electrodes can directly snap to the sensor, without the need of 

using extra cables and wires, or the sensor can be combined with other shields to display the 

signal or even to easily supply energy to the sensor. In the case of the latter, a Cable Shield, 
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TAGS
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as well as a set of 3 electrode cables were also used in order to connect the sensor to the 

electrodes that were further away from the main circuit. Note that, since the electrodes herein 

used were made from conductive fabric, the electrodes’ cable was cut to use only the part of 

the cable with the jack entry instead of the heads of the electrodes. Figure 4.3 demonstrates 

the components used with the Myoware Muscle Sensor. 

 

 

 

 

 

 

 

Figure 4.3 – MyoWare Muscle Sensor components. A) Cable Shield; B) EMG sensor; C) Electrodes Cable. 

Since this solution had the requirement of being wearable, it was necessary to use a 

microcontroller that allowed to transmit data without using cables. To do so, the Particle’s 

Photon was used (See Appendix A.2). This is a Wi-Fi connected microcontroller that combines 

a STM32 ARM Cortex M3 microcontroller with a Cypress Wi-Fi chip. The power to the Photon 

can be supplied via on-board USB Micro B connector or directly via the VIN pin. Due to the need 

already addressed before, in this work, the power was directly supplied to the VIN pin by a 550 

mA 3.7 V LiPo rechargeable battery with a typical average current consumption of 80mA and a 

usual time duration of 2 hours. Figure 4.4 illustrates the Photon and the battery herein used. 

 

 

 

 

 

Figure 4.4 – Components of the wearable shorts. A) Photon B) Li-Po Battery. 

In order to illustrate the system’s electronics, the circuits’ schematics is presented in Figure 

4.5. 

 

 

 

 

 

 

 

 

 

Figure 4.5 – Circuits’ Schematics of the wearable shorts. 
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It is noteworthy that the EMG sensor outputs analogue values, being this connected to an 

analogue pin in the microcontroller. As such, to receive as output the real voltage values at 

each instance, the following equation was adopted. 

𝑉 =
𝑆

2𝑏
𝑉𝑐𝑐 [𝑉𝑜𝑙𝑡𝑠] (4.1) 

Where 𝑆 are the sensor analogue readings, 𝑉𝑐𝑐 is the operating voltage (3.3 Volts for Photon) 

and b is the number of bits regarding the resolution of the Analog-to-Digital Converter (12 bits 

for Photon). 

Figure 4.6 shows the integration of components addressed above (Photon, Myoware Muscle 

Sensor, Cable Shield and Li-Po Battery). 

 

 

 

 

 

 

 

 

 

Figure 4.6 - Demonstration of the main electronic components of the wearable shorts. 

As it was already mentioned, the electrodes used for detecting the electrical activity of 

the muscle were made from a conductive fabric, the MedTex130, which is commonly used for 

conducting electrical current in wearable devices (See Appendix A.3). This is formed by silver-

plated nylon that is capable of stretch in both direction, being highly conductive with a surface 

resistivity of < 1 ohm/sq. Figure 4.7 illustrates the conductive fabric used in this project. 

 

 

 

 

Figure 4.7 - Conductive Fabric MedTex130. 

Thus, in order to implement the electronic circuit on the shorts, three rectangular strips of 

conductive fabric were sewed in three specific points, according to the electrodes’ placement 

illustrated in Figure 4.8.  
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Figure 4.8 - Electrodes’ placement for the right lower limb muscle. 

It is noteworthy that the strips were strategically placed to analyse the muscle activity 

from the right tight. One strip was placed in the area above the end of the muscle (in red), the 

other was sewed approximately 1 cm above the former, in the area that corresponds to the 

middle zone of the muscle (in blue), and the final strip was used as reference, being sewed 

distantly from the other two, in this case, above the iliac bone. 

A zigzag stitch was used in order to maintain the fabric’s characteristics, namely its 

stretchiness and flexibility. This is basically an overcast stitch in both directions that allows 

the conductive fabric to stretch in both directions without destroying the fabric. 

Afterwards, the electrode cable snaps were added to the shorts by attaching one male snap 

to each of the conductive fabric strips. This step allows to perform the connection between 

the EMG sensor and the electrical activity of the muscle. 

Note that in order to have a wearable device that could fit the majority of people, medium-

sized shorts were bought. Although they possess electronic components, these can easily be 

washed in a regular washing machine, since the conductive fabric is also washable. 

Figure 4.9 shows the wearable solution developed in the context of this thesis, with the 

conductive fabric sewed and the electronic components connected.  

 

 

 

 

 

 

Figure 4.9 - Conductive wearable shorts used for EMG signal collection. A) Illustration of the electrical 
components. B) Illustration of the electrical components stored in a pocket. 
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Finally, as previously stated, the EMG data was transmitted through wireless 

communication. Particle’s Photon can be programmed in an Arduino-based Particle Integrated 

Development Environment available on Particle’s site [170]. This interface allows to subscribe 

and publish messages, in this case, the EMG voltage values to their Cloud, allowing to store 

data on the internet. However, due to its low capacity for receiving data (255 bytes per second) 

and due to necessity of sending a huge amount of data per second (5000 bytes per second for 

a sampling frequency of 1000 Hz), it was decided to use an external Cloud for sending data. In 

order to do this, the Photon was reprogrammed to connect to the external company’s Cloud, 

namely Ingeniarius Cloud1, which was partially replicated in a Raspberry Pi communicating with 

the Photon over Wi-fi. Thus, instead of transmitting the EMG data to Particle’s Cloud, the 

Photon transmitted the data to Ingeniarius Cloud, which was already prepared for extracting 

data in the .csv format file. However, despite the use of Raspberry Pi for storing the EMG data, 

it was not possible to increase the signal’s sampling frequency to 1000 Hz (the recommended 

frequency for EMG signal’s acquisition), due to the limitations of Wi-fi connectivity and storage 

capability of the Photon. Therefore, it was only possible to ensure a sampling frequency of 100 

Hz. Figure 4.10 illustrates how data circulates over the multiple components of the system. 

 

 

 

 

 

 

 

Figure 4.10 – Illustration of EMG data transmission. 

To visualize the data, a laptop was also connected to the same Wi-Fi network, thus allowing 

to observe the incoming data while the user performs the experiment with the shorts.  Figure 

4.11 shows two different participants wearing the wearable shorts, in which henceforward we 

will call TraXports V2. 

 

 

                                                 

1 https://cloud.ingeniarius.pt/ 

https://cloud.ingeniarius.pt/
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Figure 4.11 – Example of two participants wearing TraXports V2. 

4.2.2.2 – Ecological Validation 

To assess the viability of TraXports V2, for usage in future works, a group of 20 people was 

asked to use this device during a small period (t=5 minutes) while doing physical activities 

(walk, run, jump, etc) and to rate from 1 to 5 several aspects of the device, being 1 very bad 

and 5 excellent. As such, the following factors were assessed: 

1. Ease of use: In here, the participants reflected about the overall usage of the 

conductive shorts, for example, if it was a difficult task to put on the shorts (due 

to the electronic components) and even if it was difficult to perform the several 

different activities while using the shorts. 

2. Comfort: In here, the participants assessed the shorts in terms of comfort, i.e., if 

they felt comfortable while using the device or if they felt discomfort. 

3. Aesthetics: This factor reflects about the overall appearance of the wearable 

device.  

4. Durability: This factor is related to the participants’ point of view regarding the 

overall system capacity of operating with batteries during a long time. Regarding 

the durability of the wearable shorts over time, i.e., after different usages, this 

can only be assessed in a future work. 

5. Material/Fabric: In here, the participants expressed their opinion regarding the 

fabric of the shorts. In this case, it was an elastic fabric, suitable for sports. Thus, 

their answer is related to the questions such as: is the fabric so thick that it does 

not let the sweat evaporate? Or is the fabric so thin that it is possible to see the 

underwear? 

6. Suitable for sports: This factor express the participants’ opinion regarding the 

suitability of this wearable device for sports context. For example, if they feel that 

this is a device with utility or not, if they imagine this kind of device being dressed 

by football players, among others. 
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 Figure 4.12 illustrates the results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12 – Results regarding TraXports V2 viability. 

As it is possible to observe, the overall opinion is that this is indeed a viable device, 

especially in terms of being suitable for sports context, which was the aspect that obtained 

higher score. On the other hand, we can also notice that, from the users’ point of view, this is 

a device that still needs to be improved, mainly in terms of aesthetics and durability. Regarding 

the fabric used, we can conclude that it is a good choice for this type of project, since the 

participants felt that it was a comfortable and good material. Nevertheless, it is unsure how 

its conductive capabilities will change with use, namely with sweat. As this is out of the scope 

of this work, a future exhaustive evaluation of its durability should be carried out. 

4.2.3 – Software  

Matlab is a software developed by MathWorks for engineers and scientists, that provides an 

environment in which it is possible to perform several mathematical computations, such as 

matrix manipulations, functions and data plotting, algorithm’s implementation and interfaces’ 

creation, being also able of interfacing with other programs written in various languages, 

including C, C++, Java and Phyton.  

In this master thesis, all the main work will be performed using Matlab, since this will be 

necessary not only for receiving the signals (kinematic and physiological), but also for analysing 

and classifying them, and for constructing the proposed architecture [171]. 

4.3 - Summary 

In this chapter, the overall methodology for this master thesis was presented, in which it 

was explained that we will work with two different type of signals, namely the kinematic and 

physiological signals. Considering this and the different kind of characteristics that each signal 

has, it was necessary to define two different approaches, one for each type of data. As such, 

regarding kinematic data, we will first use two different methodologies for estimating the 

1- Very Bad; 5- Excellent 
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players’ coordinates, FC and RNNs. However, one should point out that the FC approach is not 

our main target of study, since this has already demonstrated to perform well in this type of 

studies. In fact, our main aim is to use this method to extract suitable features, including the 

predictability and stability coefficient, in order to use them during the implementation of 

several RNNs. On the other hand, for physiological data we will have two main objectives, the 

classification of several athletes’ actions and detection of fatigue in athletes. 

Since the phase of data collection was a big part of this thesis, we then presented the two 

devices that were used to collect both kinematic and physiological data. Note that, for the 

latter, there was no device available. As such, it was necessary to construct a new wearable 

device capable of measuring EMG signals from the right thigh of subjects, being this process 

clearly explained. This was our first contribution to this thesis.  

Finally, the software used for the analysis of all the collected data was presented. 
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Chapter 5  

Kinematic Data 

This chapter addresses the architecture for trajectories’ estimation. Here, we will present 

two main subjects. Firstly, we will describe in detail the data collection process, as well as 

features’ selection, being the latter based on FC. Afterwards, we will implement several RNNs, 

based on the features extracted with the FC method, and we will present a comprehensive 

study in order to compare the performance of FC and RNNs. 

5.1 – Data Collection 

The kinematic signals, namely pose and orientation, were provided by Ingeniarius since 

there was no possibility of using TraXports during the period of this project. As such, Ingeniarius 

provided a dataset acquired with students from the Faculty of Sport Sciences and Physical 

Education of Coimbra during a handball match. The acquisition had a time duration of 

approximately two hours, taking into consideration the setup time. Data collection was divided 

in several periods of 8 to 16 minutes, in which the players successively switched positions 

between each other (e.g., from defence to offensive position). Since the aim here was to 

predict the coordinate of each player in the following second, the x and y coordinates as well 

as the orientation of the player at each second were collected. The kinematic data was 

collected with a sampling frequency of 33 Hz. 

5.2 - Feature Extraction 

The choice of the features for kinematic data was made taking into consideration the state 

of the art presented in subsection 3.1.3.1 and the output given by TraXports. As such, we 

defined the following features: 

1. Pose: 

a. Coordinate x of the player. 

b. Coordinate y of the player. 

2. Predictability (fractional) coefficient, which shows if the player’s trajectory is more 

or less predictable. 

3. Stability Coefficient, which informs about the stability of the player. 
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It is noteworthy that two different sets of features were used. The first one, only uses the 

x and y coordinates and is aimed for the FC approach whereas the other uses all of the features 

and is intended for the RNN approach. Table 5.1 summarizes the choice of features. 

Table 5.1 - Summary of features for kinematic data. 

5.3 – Estimation of athletes’ trajectories 

In the context of ARCANE, during a real time football match, predicting the position of all 

the players, including the opposite team, with a relative advanced time (5-15 seconds) can be 

seen as an advantage. Thus, by receiving this information in real time, the coaches are capable 

of taking more conscious decisions about the flow of the game, being, thus, more susceptible 

to win. 

5.3.1 – Fractional Calculus 

The estimation of players’ trajectories over time through the FC method was performed by 

considering the literature presented in Section 2.2, in which the method of alfa calculation 

(fractional coefficient) and its further optimization is explained in detail. As such, the x and y 

coordinates of each player were calculated for each iteration, as well as the alfa and beta 

(along x and y coordinate) to each player. Note that the FC approach was used, herein, with 

the main goal of extracting meaningful features from the kinematical signals to be used with 

the RNNs, as it is represented in Figure 4.1, since FC is a method that already proved to be 

efficient in trajectories’ estimation [100], [101]. As such, in order to obtain an optimized 

training dataset with the best choice of features, we first analysed the influence of different 

sampling frequencies on coordinates’ estimation with the FC approach. To do that, the original 

dataset was downsampled for the frequencies of 30, 10, 2, 1 and 0.5 Hz and the error in terms 

of mean Euclidean distance (MED) was calculated, according to equation 5.1. 

 

𝑀𝐸𝐷 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 
(5.1) 

 

The results regarding the error between the real and the estimated coordinates for each 

iteration over time and for Player 1 are illustrated in Figure 5.1. 
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Figure 5.1 – Influence of different sampling frequencies on coordinates’ estimation. 

By analysing the graph presented above, it is possible to clearly see that the Euclidean 

distance (error) increases with the decrease of frequency. To assess the overall error for each 

frequency, the mean error of all players during the entire period of time was also calculated, 

being these illustrated in Figure 5.2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 5.2 – Mean error at different sampling frequencies. 

Similarly to the results presented before, in here, one can easily identify a general increase 

in the error for lower frequencies. For example, for frequencies higher than 2 Hz, the mean 

error is less than 0.5 meters. On the other hand, for lower frequencies, such as for 0.5 Hz, the 

overall error is greater than 2 meters, which is not acceptable in a real time football game 

situation. Indeed, for the FC approach in which the only inputs used are the x and y coordinates, 

one can state that it is better to use higher frequencies in order to obtain better results. 

However, since we are assessing which is the best frequency to use for the RNNs approach, we 
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have to take into consideration the variation of alfa and beta over time as well. As such, by 

analysing the definition of alfa and beta, it is possible to infer about its variation with different 

frequencies, taking into consideration that, for higher frequencies, it is likely to have more 

than two consecutive samples with the exact same value (coordinate). For example, with a 

frequency of 30 Hz, the system is acquiring data from the players at each 33 ms, meaning that 

the players would have to move to different positions at each 33 ms in order to have 

consecutive samples with different coordinates, being this not representative of a real match 

situation, meaning that although lower frequencies produce higher errors, these are more 

useful for the context of a football match. From equation 2.24, despite the optimization of 

alfa being dependent on the coordinate at time t-1, if the results between two consecutive 

samples are equal, this will not affect negatively the value of alfa, meaning that there will not 

be values of alfa that are not considered a number (NaN) or that produce infinite values (Inf). 

On the other hand, by analysing the definition of beta (equation 2.25), one can infer that for 

higher frequencies there is a higher chance of getting poor results for beta. As such, although 

higher frequencies proved to produce smaller errors between the real and the estimated 

coordinates, it is also noticeable that they also produce poorest results regarding the stability 

coefficient, since there are several consecutive samples which have the same value. Thus, in 

order to use the whole set of features in the RNNs algorithm it is important to choose a 

frequency that is able to deliver an equilibrium between the error and the beta values. After 

analysing all the data, we chose the dataset that was built at a sampling frequency of 1 Hz, 

not only because it produces acceptable errors and beta values, but also because this is the 

most viable frequency to be used, if we consider a real game situation, i.e., the coach will 

receive the coordinate estimation for each player for the following second. This is a viable 

period of time which is not affected by delays that may happen during the game. 

After assessing the error with the FC approach and defining which was the most viable 

frequency to be used with the RNNs algorithm, the next step was to test the chosen dataset 

with different RNNs. Hence, in the following subsection, an extensive study regarding the 

ability of RNNs to estimate trajectories is presented. 

5.3.2 – Recurrent Neural Networks 

To evaluate the performance of RNNs on coordinates’ estimation during a football game, 

several RNNs were tested, being these divided in Non-linear Autoregressive Network (NAR) and 

Non-Linear Autoregressive Network with External Input (NARX), which only differ on the type 

of data that is fed to the network to estimate the coordinates. As such, for the first case, the 

network only receives as inputs the x and y coordinates of the player over time with the intent 

of estimating the subsequent position of the player, whereas, for the other, besides receiving 

the player’s coordinates, the network is also fed with an external input, which in this case 

were the predictability and stability coefficients. Additionally, since the x and y coordinates 

are not fully representative of the player’s movement, the RNNs were also tested with polar 

coordinates, according to the following equations: 

𝑟 = √𝑥2 + 𝑦2 
(5.2) 

𝜃 = arctan (
𝑦

𝑥
) (5.3) 
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In order to implement the RNNs, the Matlab Neural Network toolbox was used2, defining 

networks with 10 hidden layers and without performing multi-step prediction, i.e., the 

estimation of the coordinates at t+1 took into consideration the previous real coordinates 

instead of the previous estimated coordinates. Note that to simulate the prediction in real 

time, the algorithm was set to successively and cumulatively add more data to the training and 

testing set at each iteration, starting with a training set composed by the first 80 samples and 

the testing set composed by the following 20 samples. At each iteration, 20 new samples were 

added to the training set and the following 20 samples were tested. Moreover, in the case of 

the polar coordinates, the RNNs were fed with the players’ polar coordinates, which were 

converted again to Cartesian ones and compared to the real Cartesian coordinates after the 

RNNs predictions were finished. Thus, we implemented several RNNs, having first performed a 

study with the player’ coordinates in the Cartesian form (N1-N4) and, then, a study with the 

polar coordinates of the player (N5-N8). 

Thus, several RNNs were implemented being these detailed below: 

 N1 refers to the implementation of a network that only uses as inputs the variables 

that we want to estimate. In this case, the variables were the real Cartesian 

coordinates from player 1 over time (x and y coordinates). 

 N2 refers to the implementation of a network that learns to predict the time series (x 

and y coordinates) given past values of the same time series, i.e., the feedback input, 

and another time series, in this case, the predictability and stability coefficients (alfa 

and beta). 

 N3 refers to the implementation of a network that is similar to the previous, only 

differing in the external input given. In this case, in order to understand if the external 

input that was being given was the most accurate, we tested these variables (alfa and 

beta) separately. This networks has only as external input the predictability coefficient 

alfa. 

 N4 refers to the implementation of a network that for x coordinate estimation uses the 

real x coordinate as internal input and the predictability coefficient (alfa) and stability 

coefficient (beta x), whereas for the estimation of y coordinate uses the real y 

coordinate as internal input and the predictability coefficient (alfa) and stability 

coefficient (beta y). 

 N5 refers to the implementation of a network that only receives internal input. In this 

case, since the input were the real polar coordinates of the player, the network 

estimated the polar coordinates as well. Thus, in order to make a meaningful 

comparison, these outputs were then transformed in Cartesian coordinates and the 

respective errors were calculated. 

 N6 refers to the implementation of a network with polar coordinates as internal inputs, 

and the predictability (alfa) and stability coefficients (beta x and beta y) as external 

inputs. 

 N7 refers to the implementation of a network similar to N3, in which the polar 

coordinates are used as internal inputs and the predictability coefficient (alfa) is used 

as external information.  

 N8 refers to the implementation of a network in which the polar coordinate r was used 

as internal input. Regarding the external input, beta x and beta y were first calculated 

                                                 

2 http://www.mathworks.com/products/neural-network/   
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in terms of polar coordinates (See equations 5.2 and 5.3) and then used along alfa as 

external inputs. 

Table 5.2 presents the results obtained regarding the prediction of player’s 1 coordinates 

with different RNNs, in terms of MAV, RMS and the MED. 

 

Table 5.2 - Comparison between the performance of NAR and NARX under different 

constraints.  

 

COORDINATES 

 

NETWORK 

MAV 

(m) 

RMS 

 (m) 

MED 

(m) 

 

 

 

CARTESIAN 

NAR 

(x, y) 

N1 x 0.93 1.48 1.17 

y 0.52 0.95 

NARX 

(x, y, alfa, beta x 

and beta y) 

N2 x 0.86 1.53 1.11 

y 0.50 0.76 

NARX 

(x, y, alfa) 

N3 x 0.10 1.70 1.10 

y 0.45 0.74 

NARX 

(x, alfa, beta x) 

(y, alfa, beta y) 

N4 x 0.83 1.60 0.92 

y 0.38 0.66 

 

 

 

POLAR 

NAR 

(r, teta) 

N5 x 0.80 1.78 0.87 

y 0.12 0.21 

NARX 

(r, teta, alfa, beta x 

and beta y) 

N6 x 0.73 1.22 
 

0.76 

y 0.12 0.19 

NARX 

 (r, teta, alfa) 

N7 x 1.87 0.84 0.83 

y 0.21 0.13 

NARX 

 (r, alfa, sqrt (beta 

x,beta y), atan 

(beta y/beta x)) 

N8 x 0.78 1.22 0.81 

y 0.13 0.22 

 

Besides of testing with the usual combination of features (N1, N2, N5 and N6) we also tested 

different combinations of features to obtain the optimized feature vector. As such, the analysis 

of the results presented on Table 5.2 allows us to better understand the performance of 

different RNNs on coordinates’ estimation. Indeed, as it was expected the networks that do 

not use external inputs produce worst results (MED= 1.17 m for Cartesian coordinates and 

MED=0.87 m for polar coordinates). This results confirm that the predictability and stability 

coefficients are good parameters to be used for football players’ coordinates prediction for 

RNNs approaches. Moreover, when comparing the RMS obtained for the x and y coordinates, it 

is possible to identify that y coordinates always present lower values. This can be explained by 

that fact that the x coordinates presented a higher variability between samples, which leads 

to a more difficult training during the RNNs’ implementation and, by consequence, increases 

the error. 
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Moreover, when comparing the error obtained with the RNNs that were implemented with 

Cartesian coordinates (N1-N4) and the error obtained with the RNNs that were implemented 

with polar ones (N5-N8), one can easily observe that there is a significant decrease of error 

when the RNNs are implemented with polar coordinates, as it is illustrated in Figure 5.3. 

 

Figure 5.3 – Comparison of the MED between different RNNs. 

From this graph, it is also possible to clearly visualize that the network N6 (in green), i.e. 

the NARX that used as input the polar coordinates (r and teta) as well as the fractional and 

stability coefficients (alfa, beta x and beta y), is the best one to estimate the trajectory of 

football players, since it produces the lowest error (MED= 0.76 m). On the other hand, one can 

also see that the network that produced the worst results (MED= 1.17 m) was N1 (in red), which 

corresponds to a NAR that uses as inputs only x and y coordinates. 

Finally, we should also point out that, when comparing these results with the ones obtained 

through the FC approach, which for a sampling frequency of 1 Hz produced a mean error of 

1.26 m (Figure 5.2), one can conclude that the RNNs can still produce better results, since the 

worst result obtained for this method was still slightly lower than the mean error obtained with 

the FC approach. 

5.4 – Summary 

In this chapter, an extensive study regarding the prediction of football players’ coordinates 

during a football game was presented.  

The FC was first used for estimating the athletes’ trajectories during a match, having 

confirmed its efficacy in works under this scope. Additionally, it was also possible to identify 

that the sampling frequency highly influences the final error, being that higher frequencies 

lead to lower errors and vice-versa. This first study was performed to find out the frequency 

that could lead to better results during the RNNs implementation. As such, taking into 

consideration that the stability coefficient (Beta) is very sensitive to samples that are 
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consecutively equal, we chose the sampling frequency of 1 Hz. After having settled the 

sampling frequency, the predictability and stability coefficients were calculated adopting the 

FC approach, previously described in Section 2.2. Then, the x and y coordinates as well as these 

two coefficients were used as feature vector for the implementation of several RNNs, in order 

to discover which type of RNNs could be more viable for this type of work. 

The results demonstrated that in order to have estimations with lower errors, the best RNN 

to be implemented is the one that uses as internal inputs the polar coordinates and as external 

inputs the fractional and stability coefficients. Indeed, this was already expected since polar 

coordinates can represent more accurately the movement of the athlete over time, since it 

correlates each players’ position on plane with a reference point, calculating that distance as 

well as the respective angle. Additionally, with this system, the velocity vector can be directly 

related with the amplitude of the polar coordinates [172]. By that, the RNNs are capable of 

getting more information about the athletes’ motion, which, by consequence leads to better 

results. Due to the better performances demonstrated by the technique of polar coordinates, 

several works have already implemented it in the context of sports [173], [174], for example, 

in Penas and Anguera [174] the polar coordinates technique allowed the authors to produce a 

conceptual map of the motor relations among the members of a soccer team by comparing the 

different associations among players. 

Finally, it was also possible to conclude that, in general, the RNNs perform better than the 

FC approach. 
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Chapter 6  

 

Physiological Data 

This chapter presents the methodology and results concerning the physiological data. As 

such, we will first explain the process of data collection and signal processing. Then, we will 

use the processed EMG signals for the classification of different athletes’ actions. Finally, we 

will evaluate the viability of TraXports V2 by performing muscle fatigue detection. 

6.1 – Data Collection 

In this work, EMG data was provided by TraXports V2 (see Section 4.2.2). This is a wearable 

device developed under the scope of this thesis with the aim of further developing TraXports, 

by allowing not only to measure the pose and the orientation of the player, to perform gait 

analysis and, most importantly, to measure muscle activity. However, since this is still an 

ongoing work, at the moment it is still in a primary phase, being only able to give as outputs 

the raw EMG signal and a processed EMG signal concerning the right thigh of the subject. It is 

noteworthy that since we are using the Myoware Muscle Sensor, which outputs analogue values, 

and, therefore, cannot express the negative voltages of the EMG signal, the sensor is 

programmed to output the EMG signal centered on the V+/2 (3.3V/2) voltage, meaning that, as 

Figure 6.1 illustrates, the raw EMG has its baseline located at 1.57V. In here, it is possible to 

visualize two raw concatenated EMG signals regarding the action walking for the participant 

P1. 
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Figure 6.1 – Example of a raw EMG signal for the action walking without baseline adjustment. 

As such, it was first necessary to adjust the baseline of the EMG signal to 0 Volts. For that 

aim, a Savitzky-Golay smoothing filter of polynomial order 3 was implemented, being the result 

demonstrated in Figure 6.2. 

 

 

 

Figure 6.2 – Example of a raw EMG signal for the action walking after baseline adjustment. 

It is noteworthy that after performing the baseline adjustment, the signal becomes 

immediately “cleaner”, being possible to easily distinguish different muscle contractions, 

which, in this case, happen each time the participant walks. However, we can also notice that 

the muscle contractions happen very close from each other, being this due to the fact that the 

signal is being sampled at a frequency of 100 Hz, which for EMG signals, is very low (see Section 

4.2.2.1).  

6.1.1 – Sample Description 

The acquisition was performed with a sample of 3 participants: one female subject and 2 

male subjects (age: 31.33 ± 1.25 year old; height: 170 ± 4.08 cm; weight: 72.67 ± 8.99 kg). All 
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the participants are personal trainers, being considered healthy, highly physically active and 

with no medical history on nerve damage or motor impairment on any of the lower limbs.  

6.2 - Pre-processing 

According to the literature [111], [122], [175], EMG signals pre-processing comprises three 

main steps: i) Filtering, ii) Rectification and iii) Smoothing. The last two steps consist in finding 

the linear envelope of the EMG signal and can be replaced by using the RMS approach or even 

the Moving Average. However, in this thesis, we will use the first approach (Rectification and 

Smoothing). A more detailed explanation regarding the proposed approach for EMG pre-

processing is presented below: 

6.2.1 - Filtering 

In this phase, the aim is to remove unwanted noise from the original signal. Note that 

filtering is not always necessary. For example, if the device of EMG acquisition already provides 

clear signals, there is no need of performing additional filtering. However, in this case, since 

we chose to use the raw EMG output from the Myoware Muscle Sensor, there is the need of 

performing a pre-filtering. According to the literature [175], usually, a band pass filter is first 

applied to the raw signal, allowing to remove both low and high frequencies from the signal. 

The low frequency cut-off of the band pass filter removes the baseline drift that is usually 

associated with movement, breathing, etc., and the Direct Current offset, being the typical 

values for the low frequency cut-off 5 to 20 Hz. On the other hand, the high frequency cut-off 

of the band pass filter removes high frequency noise and prevents aliasing from occurring in 

the sampled signal, being the values typically between 200 Hz and 1 kHz. 

In spite of this, taking into consideration the sampling frequency allowed by this device 

(Fs=100 Hz) we applied a band pass filter with a low frequency cut-off of 4 Hz and a high 

frequency cut-off of 50 Hz. These frequencies were chosen after observing the signals behavior 

with different frequencies. In Figure 6.3, it is possible to visualize the signal before (raw EMG 

signal) and after being processed (filtered EMG signal). 

Figure 6.3 – Comparison between the raw and filtered EMG signal. 
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6.2.1.1 - Linear Envelope of the EMG signal 

Afterwards, we proceeded to the acquisition of the linear envelope of the EMG signal, which 

comprises two main phases, Rectification and Smoothing. These will be explained in more 

detail hereafter. 

a. Full-Wave Rectification 

The main objective of rectification is to reorganize the signal in a way that standard 

amplitude parameters, such as mean, peak/maximum value and area can be calculated. For 

that aim, this operation converts all the negative values into positive ones [111]. Note that, 

contrary to filtering and smoothing, this procedure does not affect the signal noises, which 

explains the need of the following step. In the following figure (Figure 6.4) it is possible to 

visualize the EMG signal after rectification. 

 

 

Figure 6.4 – Comparison between the filtered and rectified EMG signal. 

b. Smoothing 

This operation allows the creation of a linear envelope in the signal, leaving only the center 

part of it. Like filtering, smoothing also takes out outliers, i.e., data that is considered noise. 

However, while filtering takes into account the muscle activation range, the smoothing 

considers the signal itself [176]. In order to perform this operation we will implement a low 

pass filter, namely a  Butterworth Filter, since, accordingly to the literature, this is one of the 

most used digital filters for decreasing the ratio between the signal and the noise [177], and, 

thus, to smooth the signal. After analysing the behaviour of the signal according to different 

low pass filters a 5 Hz frequency cut-off and 4 order polynomial was implemented. Figure 6.5 

illustrates the EMG signal after smoothing. 
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Figure 6.5 – Comparison between the rectified and smoothed EMG signal. 

6.3 – Actions’ Classification 

In the context of a football match, having a system capable of predicting players’ actions 

during the game may be very useful, since, by that, the coach can understand how each 

opposite player acts during specific situations and teach their players how to behave according 

to each situation, leading to better chances of winning. Thus, the following subsections present 

a detailed description regarding the classification of different activities performed by athletes, 

in which a comprehensive comparison between different classification’s approaches is also 

illustrated. 

6.3.2 - Procedure Description 

Each participant performed 4 different activities, repeatedly, during approximately 20 

seconds each, except in the fourth activity where the participants only performed the 

respective action (ball kicking) once at each time. This procedure was repeated twice. It is 

noteworthy that the activities chosen are actions usually dominant in football matches, 

namely: walk, run, jump and ball kicking, being each of them classified with a numeric label, 

as represented in Table 6.1. For the jump activity, the participants were asked to perform 

several types of jumps, including lateral, backward and forward jumps. All these activities 

highlight the movement of the lower limbs, in which the EMG signal corresponds to the muscle 

activity of the right thigh of each subject. As such, in the end of data collection, for each 

participant four pairs of different signals were acquired, i.e., two signals for each activity, 

meaning that each signal corresponded to the repeatedly execution of one activity during 20 

seconds, except from the last action. Figures 6.6, 6.7, 6.8 and 6.9 show different participants 

executing the activities under study. 

Table 6.1 - Labels for the activities performed by each subject. 

LABEL 1 2 3 4 

ACTIVITY Walk Run Jump Ball Kicking 
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Figure 6.6 – Example of one participant executing the first action (walking). 

Figure 6.7 – Example of one participant executing the second action (running). 

Figure 6.8 – Example of one participant executing the third action (jumping). 
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Figure 6.9 – Example of one participant executing the fourth action (ball kicking). 

As it is possible to visualize in the various figures previously presented, the data collection 

took place in several different locations, including inside and outside facilities, demonstrating 

the viability of TraXports V2 as wearable device. In general, during data collection all the 

participants felt comfortable and did not express any discomfort regarding the electronic 

components.  

6.3.3 - Feature Extraction 

After preparing the EMG signal by following the several processing operations previously 

described, the next step was to perform feature extraction to form the feature vector that was 

going to be used to classify the activities. 

Thus, feature selection for EMG signal was made according to the state of the art presented 

in the subsection 3.1.3.2.  

The following features, already formulated in section 3.1.3.3, were then defined: 

1. The EMG signal: 

a. Raw EMG signal. 

b. RMS, defined as the square root of the mean over time of the square 

of the vertical distance of the graph from the rest state, related to the constant 

force and non-fatiguing contraction of the muscle. 

c. Number of peaks in the processed EMG signal, with a condition of 

minimum peak height of 0.2 V. This reference was chosen after visually 

inspecting the signals referent to different activities. 
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d. Integrated Absolute Value, defined as the area under the curve of the 

rectified EMG signal, i.e., the mathematical integral of the absolute value of 

the raw EMG signal since the beginning of the activity. 

2. Autoregressive feature, described as a linear combination of previous samples 

plus an error term that is independent of past samples. 

3. Waveform Length, defined as the distance over which the wave’s shape 

repeats.  

4. Power Spectrum (Fourier Transform): 

a. MF, defined as the average frequency value that is computed as the 

sum of the product of the EMG power spectrum and frequency, divided by a 

total sum of spectrum intensity.  

b. MEDF, is the frequency value at which the EMG power spectrum is 

divided into two regions with an equal integrated power.   

Note that the feature vector was calculated after signal processing and by following an 

accumulative approach, i.e., at each iteration the feature was calculated by taking into 

consideration all the previous signal values. Note that, in this work, each signal corresponds to 

the execution of one of the activities during approximately 20 seconds. Thus, during this step, 

the extraction of features was performed to each signal separately, meaning that in the end 

we produced four different feature vectors (one for each activity) for each participant. Table 

6.2 summarizes the choice of features for physiological data. 

 

Table 6.2 - Summary of features for physiological data. 

 

According to the literature, feature extraction is of high importance since it can greatly 

affect the classification outcome [178]. As such, it is important to test different sets of features 

and to establish an optimized set. Thus, we first started to test the data with several 

combinations of features, having reached to the conclusion that the set of features presented 

in Table 6.2 is the best choice. This choice was made by performing a visual inspection to a 

larger set of features and by understanding which were the ones that differed more from each 

other. In the following figures, two examples of features are illustrated, in which it is possible 

DOMAIN FEATURE 

Time 

 

EMG Signal Raw EMG signal 

RMS 

Integrated Absolute Value 

Number of Signal Peaks 

Frequency Power Spectrum 

(Fourier Transform) 

MF 

MEDF 

Time-Frequency Autoregressive Features 

Waveform Length 
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to visualize the behaviour of the Raw EMG (Figure 6.10) and a set of two different features, 

namely the Raw EMG and the RMS (Figure 6.11), according to the four different activities 

performed, being visible in the second figure that features of the same class cluster together 

nicely. This heterogeneity in feature selection (distinct clusters for different activities) will 

allow us to identify more accurately the activity being performed. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

Figure 6.10 – Raw EMG for different activities. A) Walking; B) Running; C) Jumping; D) Kicking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 – Raw EMG versus RMS for different activities. 

Once the features for all the activities were correctly stored in the data array, it was 

noticeable that there were some features, namely the IEMG, the MF and the MEDF, which were 

on a relatively larger scale than the others. Since this directly affects the capability of the 

algorithm to accurately classifiy each, we performed a normalization of all of the features’ 

values to confine the data between the range [0,1]. Figure 6.12 demonstrates an example of 

feature normalization. 

 

 

B A 
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Figure 6.12 – Normalization of the feature MF (red: original feature, blue: normalized feature). 

6.3.4 – Classification and Evaluation 

This subsection presents the results regarding actions’ classification by testing several 

classification algorithms. To evaluate the performance of the proposed classifiers, we will first 

use the concepts of precision and sensitivity (recall). The first one is related with 

reproducibility and repeatability, measuring the fraction classified as positive that is truly 

positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(6.1) 

On the other hand, recall measures the fraction of positive examples that are correctly 

labeled [179]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(6.2) 

Where, TP comes from True Positive, FP from False Positive, FN from False Negative and 

FP from False Positive. 

Additionally, to further evaluate the performance of the classifiers, we will also use the 

confusion matrix, which allows to clearly visualize the performance of the algorithm for each 

activity (class). Figure 6.13 illustrates a confusion matrix. 

PREDICTED  

+ - 

REAL + TP FN 

- FP TN 

Figure 6.13 – Example of a confusion matrix. 

Normalized 

Original 
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6.3.4.1 – Simple Classifiers: NB, ANN, SVM and KNN 

In this work, in order to decide about the best choice of classifiers for this type of data and 

to optimize the final classification architecture, we tested several algorithms under different 

conditions. Thus, during the first phase of testing, several simple classifiers were implemented, 

namely NB, ANN, SVM and KNN, firstly, under a k-folds cross validation approach and, 

afterwards, under the leave-one-out approach.  

The ANN was implemented with 30 hidden layers and SVM was implemented according to 

the strategy one versus all. For KNN, 3 neighbours were used accordingly to the Euclidean 

Distance. 

Hence, the feature vector previously defined on Table 6.2 was used to classify the different 

activities under study, being the results demonstrated on the following tables. The 

classification algorithms were implemented by using the Matlab toolbox available on [180]. 

6.3.4.1.1 – Cross Validation  

Firstly, the method of k-folds cross validation was implemented, in which the dataset, 

formed by the features of all 3 participants, is divided in k segments. By that, the algorithm 

uses k-1 segments for the training phase and 1 segment for testing. Three types of cross 

validation were implemented: 5, 10 and 30 folds. The results of precision (Prec) and recall 

(Rec) are presented in terms of percentage in Table 6.3. The column “Total” represents the 

mean of precision and recall for each classifier used. 

Table 6.3 – Overall Precision and Recall obtained for activities’ classification for NB, ANN, 

SVM and KNN according to different k-folds. 

 30-FOLDS 10-FOLDS 5-FOLDS TOTAL 

NB Prec 62.46 62.59 62.68 62.58 

Rec 64.63 64.72 64.80 64.72 

ANN Prec 53.12 54.98 55.17 54.42 

Rec 42.24 47.53 48.15 
45.97 

SVM Prec 61.79 71.75 64.87 66.14 

Rec 61.98 71.85 63.73 65.85 

KNN Prec 68.46 68.39 68.24 68.36 

Rec 68.45 68.35 68.22 68.34 
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Regarding the performance of the classifiers, it is possible to verify that the best classifier 

is KNN, with a total precision of 68.36% and a total recall of 68.34%. On the other hand, the 

classifier that presented a lower performance was the ANN, with a total precision of 54.42% 

and a total recall of 45.97%. In fact, this was not expected, since according to the literature 

(See section 3.1.3.3) the ANNs are considered one of the best classifiers for EMG data. Thus, 

there are two possible explanations for these results: overfitting or underfitting. The first one 

happens when the model describes error or noise instead of the underlying relationship 

between data and usually happens when the model is excessively complex, i.e., has more 

parameters than number of observations, which makes it to overreact to minor fluctuations in 

the training data, and, thus, leading to worst performances. However, since in this case, the 

ANNs were set up to have a validation phase, exactly to prevent overfitting, the results 

obtained might not be due to overfitting. Instead, the most possible explanation is the 

occurrence of underfitting. This happens when the statistical model is not capable of capturing 

the underlying trend of data. In fact, by analysing our data one can infer that the most plausible 

reason for these low results is that underfitting occurred, not only because we fitted a linear-

model to non-linear data but also because of the reduced number of features used. Thus, a 

good strategy to overcome this problem would be to add more hidden layers, increase the 

number of neurons in the hidden layers or add more features to the input space. 

6.3.4.1.2 – Leave-one-person-out  

Despite the performance obtained with the k-folds cross validation approach, one should 

point out that this does not represent a real situation, in which we have the algorithm trained 

for a specific set of people and we want to classify the activities performed by a new person 

that the algorithm does not have knowledge about. As such, in order to represent a real 

classification and to have more suitable data for posterior comparison, we also tested EMG 

dataset by using the leave-one-out approach. In here, the algorithm uses always two 

participants to train the classifier and the other to test it. For example, in the classification 

associated to the first participant, the data used for training were only from the other two 

participants (P2 and P3). The results are demonstrated on Table 6.4. 
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Table 6.4 – Overall Precision and Recall obtained for activities’ classification for NB, ANN, 

SVM and KNN for the different participants. 

 P1 P2 P3 TOTAL 

NB Prec 55.88 44.17 70.45 56.83 

Rec 54.85 49.60 74.32 59.59 

ANN Prec 50.32 34.34 64.39 49.68 

Rec 47.73 31.60 69.68 
49.67 

SVM Prec 58.59 44.39 65.08 55.21 

Rec 55.63 49.25 68.98 57.60 

KNN Prec 61.24 39.08 68.85 56.39 

Rec 59.38 41.03 70.08 56.83 

SUBJECTS’ 

TOTAL 

Prec 56.51 40.50 67.19  

Rec 54.40 42.87 70.77 

 

As it was expected, the overall precision and recall of the different classifiers decreased, 

being this mainly due to the fact that the classifier is using data from a new person. Indeed, 

although, in general, the features do not vary that much for the same person, when we compare 

between different people it is possible to observe greater differences between the same 

features, being these highly dependent on several factors, such as, the gender of the person, 

as well as its age and physical activity. 

We can also observe that NB, SVM and KNN produced similar classification results, all with 

precision above 55%. On the other hand, similarly to the results shown in Table 6.3, the ANN 

was the classifier that produced worst results. Moreover, it is also possible to conclude that 

participant 3 (P3) was the one that produced better results, with a total precision of 67.19% 

and a total recall of 70.77%, and participant 2 (P2) was the one who produced the worst results, 

with a total precision of 40.50% and a total recall of 42.87%. These results highlight the 

influence of different people with different characteristics on the classification, since, for 

example, in this case, P2 and P3 are both male persons, however, P2 is an older participant, 

when compared to P3, meaning that he is probably not as fit as the other participant.  

Finally, one should also point out that, when implementing these type of classification 

algorithms, it is very important to also analyse the resultant confusion matrix, to understand 
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which are the classes that are being better classified and vice-versa. For example, for a final 

precision of 50%, this could mean that all the classes are being half well-classified, or that two 

of the four classes are being 100% well-classified and the other two completely misclassified. 

By that, and taking into consideration that the DBMM approach basically classifies each sample 

according to the best results produced by each individual classifier, we also built the confusion 

matrix for each classifier (Figure 6.14), in order to infer about the possibility of having better 

results with the DBMM approach. Since P2 was the participant which produced worst results, in 

the following figure we present the confusion matrix for each classifier with P2 data used as 

test. 

 

 

  

 

 

 

 

 

 

Figure 6.14 – Confusion Matrix for each individual classifier. 

Black squares mean that the algorithm attributed the majority of the samples to that class, 

whereas white squares mean that the algorithm did not attributed much samples to that 

specific class. 

Indeed, as it is possible to observe, there are some classes that are very well-classified with 

all the algorithms, such as class 2 which refers to the action of running and others that do not 

have that good results, such as class 3 which refers to the action of jumping. 

Overall, it is noticeable that none of these individual classifiers are able to correctly classify 

all of the actions, being that, in general, they can only succeed in two out of the four classes 

herein presented. As such, it is possible to infer that by combining all these classifiers, which 

have good performances under different situations (e.g., different classes), the DBMM approach 

will be a good architecture for this type of data, and therefore, will produce higher precision 

and recall results. 
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6.3.4.2– Ensemble Classifier: DBMM 

Taking into consideration that the results obtained with the individual classifiers are still 

very low, i.e., they are not sufficient for a real-time game situation, it was necessary to 

implement a more complex classification algorithm, namely one that could pick up the best 

results of each classifier and combine them with the intent of producing better classification 

results.  

6.3.4.2.1 – Base Classifiers for DBMM fusion 

The DBMM approach can be used with several different classifiers, since all the outputs are 

converted in probabilities (posterior probabilities). As such, considering this and the results 

obtained in the previous subsection, in this work, we used four different base classifiers, 

namely, the NB, the ANNs, the SVM and the KNN. 

The first classifier considers that the features are independent between each other, given 

the variable class, being the probability density function for each model of features expressed 

as follows: 

𝑃(𝐶𝑖|𝐴) = 𝛼𝑃(𝐶𝑖)∏𝑃(𝐴𝑗|𝐶𝑖)

𝑚

𝑗=1

 
(6.3) 

Where α is the normalization factor and m the number of independent models of features. 

Regarding the ANNs implementation, this was performed by using the Matlab Neural 

Network toolbox. In this case, the activation function of the hidden layer was set to be tangent 

sigmoid (transig) whereas the activation function regarding the output was set as exponential 

normalized (softmax). Thus, the outputs can be interpret as estimations of the class posterior 

probability. 

Then, for the implementation of the linear kernel in a multi-class SVM, a classifier named 

error-correcting output codes (ECOC), available on the regular Matlab’s toolboxes, which allows 

to fit multi-class models for SVMs, was implemented. A Gaussian kernel was defined and the 

SVMs were trained according to the strategy one-vs-one. 

Finally, for the KNN classifier, which predicts labels according to the neighbouring true 

labels, the posterior probability is given by the following equation.  

𝑝(𝐶𝐽|𝑋𝑛𝑒𝑤) =
∑ 𝑊(𝑖)1𝑌(𝑋(𝑖)=𝑗)𝑖𝜖𝑛𝑏𝑑

∑ 𝑊(𝑖)𝑖𝜖𝑛𝑏𝑑

 
(6.4) 

Where W= weights for each point. In here, the number of neighbours was set to 50. 

Thus, the DBMM approach was implemented with the EMG dataset, being the results 

presented in Table 6.5. 
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Table 6.5 – Overall precision and recall of the different activities and participants with the 

DBMM approach. 

 P1 P2 P3 ACTIVITIES’ TOTAL 

WALK Prec 60.18 51.78 94.28 68.75 

Rec 83.36 69.32 66.17 72.95 

RUN Prec 82.34 85.58 91.47 86.46 

Rec 92.39 91.82 99.98 
94.73 

JUMP Prec 53.25 77.30 71.84 67.46 

Rec 66.02 75.54 79.69 73.75 

BALL KICKING Prec 91.23 68.20 86.56 82.00 

Rec 22.85 41.68 94.86 53.13 

SUBJECTS’ 

TOTAL 

Prec 71.72 70.72 86.04 76.16 

Rec 66.16 69.59 85.17 73.64 

 

The results obtained show a clear increase in the classification performance. Similarly to 

the classification results presented in Table 6.4, participant 3 was the one who yielded a higher 

overall classification performance, with a total precision of 86.04% and a total recall of 85.15%. 

Regarding the other two participants, these presented similar classification performances. 

Additionally, it is also possible to conclude that the running activity was the one which 

demonstrated better classification results, with an overall precision of 86.46% and an overall 

recall of 94.73%. On the other hand, the ball kicking activity was the one that produced worst 

classification results, having an overall precision of 82% and an overall recall of 53.13%. 

Concerning this, although the value for precision is relatively high, the value of recall is very 

low, meaning that only 53.13% of the data that was referent to the ball kicking activity was, 

indeed, classified as ball kicking. This can be explained by the fact that the classes were not 

balanced, i.e., the first 3 classes were more populated than the last one, being this decision 

made because of the existent similarity between the signal walking and the more populated 

signal kicking. Basically, since the sensor only detects the electrical activity of the muscle and, 

therefore, is activated by muscular contractions, the action of giving one step becomes quite 

similar to the action of kicking the ball once, being these represented by a peak in the EMG 

signal. Thus, by having a more populated Class 4, this starts to become very similar to the data 
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that represents Class 1, leading to underperforming classification results. On the other hand, 

if we choose to have a less populated Class 4, with only two concatenated EMG signals, the 

algorithm does not possess sufficient amount of information regarding this class in order to 

produce good classification results. As such, during the choice of participants’ data, an 

equilibrium between the amount of data present in Class 4 and the similarity between Class 1 

and 4 was made. To visualize the overall performance of the algorithm, the confusion matrix 

regarding the classification results are presented in Figure 6.15. 

Figure 6.15 – Confusion matrix for the classifier DBMM and EMG data. 

In here, it is possible to visualize more clearly the performance of the proposed approach 

and to better understand why there were some classes that did not perform that well. Indeed, 

by analysing the results obtained in the confusion matrix, it is possible to understand the reason 

behind the low TPs percentage value for the Kick activity (53.13%). Firstly, one can conclude 

that this is a class that is not very well identified since the values for the FNs are also very low. 

One of the reasons for this is the lack of data regarding this class for DBMM implementation. 

Additionally, it is also possible to conclude that the Kick class was often mistaken with two 

other classes, mainly the Walk class, in which 27.85% of data regarding the Kick class was 

classified as Walk. Indeed, this was already expected, due to the abovementioned reasons.  

Regarding the other classes, it is also possible to understand why the Walk class is commonly 

mistaken with the Jump class, and the other way around as well. This can be explained by the 

existent differences between participants, meaning that, for one participant that is more 

muscled, the EMG signal becomes more well-defined, whereas for participants which are less 

muscled, the sensor can sometimes fail to detect the muscle contraction. Additionally, we also 

have to take into consideration the sampling frequency herein used (Fs=100 Hz), which is much 

lower than the advised sampling frequency for EMG data (Fs=1000 Hz) [111]. This means that, 

for example, in the case of the Jump class, since the activity is more intense and quicker, the 

several muscle contractions may not be completely detected. Instead, only half of the muscle 

contractions are detected (by visual inspection), leading the method to misclassify it over the 

Walk class, in which the muscle contractions appear successively one after the other. 

It is noteworthy that, during the classification phase, the DBMM always considers all the 

past classification results in its decision, meaning that its performance for a specific class 

increases over time, leading to a convergence over time towards the correct class. As such, in 

order to better visualize this convergence, Figure 6.16 is presented. 

WALK 72.95 2.24 17.77 7.04 

RUN 1.16 94.73 3.43 0.67 

REAL JUMP 12.23 9.61 73.75 4.40 

KICK 27.85 3.02 16.01 53.13 

 WALK RUN JUMP KICK 

PREDICTED   



 

78    Physiological Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16 – Comparison between the true and the classified labels for each activity. 

Note that in this figure the raw signal referent to the four activities successively performed 

is represented at black, being noticeable four sets of different signals in the figure. Moreover, 

each activity is represented by one colour: violet for Walk, blue for Run, red for Jump and 

green for Kick, being also represented the true labels for each activity in the top line and the 

classified labels for each sample in the bottom line. 

 Finally, as it is shown in Figures 6.17 and 6.18, it is possible to detect an overall increase 

in the performance of activities’ classification, being that all the participants had their 

activities better classified when using the DBMM approach, opposed to the individual classifiers. 

The participant which benefited more from this approach was P2, having increased 30% in its 

overall precision and 27% in its overall recall. On the other hand, P1 was the participant who 

had its results less increased, having increased only 15% in its overall precision and 12% in its 

overall recall. Once again, this highlights the influence of having people that differ very much 

from each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17 – Comparison of the precision obtained with simple classifiers and DBMM. 
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Figure 6.18 – Comparison of the recall obtained with simple classifiers and DBMM. 

Indeed, the DBMM approach produces an overall precision of 76.16% and an overall recall 

of 74.64%, which is by far the best result obtained for this EMG data. Although these results 

seem apparently low, these are concordant with the results encountered in the literature for 

similar works [118]–[120]. Indeed, there are not much literature regarding actions’ 

classification by using only EMG signals from the lower limbs, since besides being a signal that 

does not provide that much significant information for different actions, it is also a place where 

the muscles are more hidden, and therefore, it is more difficult to obtain signals that in fact 

do represent the action. As such, considering that in this work it was only used the EMG data 

for actions’ classification, one can conclude that this in indeed a good result, proving the 

efficiency of the DBMM approach.  

6.4 – Fatigue Detection 

6.4.1 - Procedure Description 

In order to detect muscle fatigue, the EMG signals were collected from each participant while 

they were walking in two different times, once before the execution of an intensive physical 

activity and another time after the physical activity, which, in this case, was a CrossFit class. 

Each data collection had an approximate duration of 20 seconds. 

6.4.2 – Feature Extraction 

According to the findings presented in subsection 3.1.3.2.3, the EMG signal displays two 

different characteristics during muscle fatigue. Firstly, there is a change in the amplitude of 

the EMG signal and, secondly, there is a shift of the EMG power frequency spectrum, i.e., the 

frequency decreases. As such, in order to detect muscle fatigue we will use three features, 

being these detailed in Table 6.6. 
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Table 6.6 – Summary of the features used for fatigue detection. 

 

6.4.3 – Fatigue Detection 

In this subsection, several characteristic features of fatigue will be calculated in order to 

further validate the utility of the wearable device TraXports V2. 

The features were calculated taking into consideration the raw EMG signal. The results 

concerning the IEMG value, the MF and MEDF of the signal before and after the execution of 

the intense physical activity are presented in Table 6.7.  

 

Table 6.7 – Results obtained for the different features before and after the execution of an 

intense physical activity. 

 

 BEFORE FATIGUE AFTER FATIGUE 

P1 IEMG (V) 0.31 0.88 

MF (Hz) 15.80 11.71 

MEDF (Hz) 10.90 6.58 

P2 IEMG (V) 0.28 1.03 

MF (Hz) 13.79 12.90 

MEDF (Hz) 9.02 6.96 

P3 IEMG (V) 0.34 0.59 

MF (Hz) 15.30 12.58 

MEDF (Hz) 10.88 7.92 

 
 

As it is possible to observe from Table 6.7, all of the features behaved according to the 

literature encountered, i.e., the amplitude of the signal suffered a small increase whereas the 

frequency features decreased. Note that the values herein obtain for frequency are lower than 

the typical values for EMG signals (60-100 Hz), being this explained by the fact that our EMG 

data was acquired with a sampling frequency 10 times lower than the normally used (100 Hz 

instead of 1000 Hz). As such, taking that into consideration, one can conclude that these 

DOMAIN FEATURE 

Time EMG Signal Integrated Absolute Value 

Frequency Power Spectrum 

(Fourier Transform) 

MF 

MEDF 



                                

6.4 – Fatigue Detection 81 

 

 

frequency values are still within the expected values. In order to better visualize the existent 

difference between the EMG features, namely the MF, from a non-fatigued muscle and from a 

fatigued-muscle, Figures 6.19-21 are presented. 

 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.19 – MF for the participant 1 before and after the execution of an intensive physical activity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.20 – MF for the participant 2 before and after the execution of an intensive physical activity. 
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Figure 6.21 – MF for the participant 3 before and after the execution of an intensive physical activity. 

 

Moreover, by analysing the previous figures, it is also possible to notice that the participant 

P3 was the less affected by the execution of the CrossFit class. Indeed, this corroborates the 

results obtained in section 6.3, in which, it was demonstrated that this was the participant 

more physically well prepared.  

Finally, with this study, it was possible to validate the utility and success of TraXports V2 

in detecting muscle fatigue. 

6.5 - Summary 

In this chapter, an extensive study regarding the use of physiological data in the context of 

a football match was presented, being this divided in two main parts. 

Firstly, we used EMG data from the right lower limb of several participants in order to 

classify four different actions, including walking, running, jumping and ball kicking. In order to 

compare the performance of the herein proposed architecture, DBMM, we first performed a 

study with four individual classifiers, namely NB, ANN, SVM and KNN, and compared their 

performance under different constraints. Since this approach did not represent a situation of 

real time classification, we then tested the same classifiers under the leave-one-out approach, 

in which for each participant that was tested, the other remaining participants were used as 

training. In here, a clear decrease of the overall precision and recall was noticed, with the 

worst classification performance from the ANNs. Afterwards, the EMG data was used to 

implement the DBMM approach, being demonstrated a clear increase in the overall 

classification performance. Additionally, it was possible to visualize performance differences 

between participants, with participant 3 with the best overall results. This is explained by the 

fact different people have different characteristics (gender, age, musculature) and although 

these participants were all personnel trainers, we can still see that there are some that are 

more physically prepared than others. As such, one should point out that this type of work is 

highly influenced by the choice of participants. Moreover, it was clearly demonstrated that the 

FATIGUED MUSCLE 

NON-FATIGUED MUSCLE 
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activity running was the one which produced better classification results. On the contrary, the 

activity ball kicking did not performed well, being this mainly explained by the existent 

similarity between the walk activity and kick activity. In fact, by analysing the overall confusion 

matrix we can easily visualize that there was an evident confusion between these two 

activities. Additionally, we studied the capacity of DBMM to classify actions over time, 

concluding that it mainly fails to classify the first samples of each class, meaning that its 

performance increases at each iteration (Figure 6.15). Furthermore, when comparing the 

performance obtained with the first implemented methods (four individual classifiers) and the 

DBMM approach it was possible to detect an overall increase in the performance of activities’ 

classification, being also noticeable an increase in the overall classification for each 

participant. Indeed, the implementation of DBMM allowed to produce an overall precision of 

76%, being this concordant with the literature. 

Finally, in the second part of this chapter a study regarding fatigue detection was 

performed. In here, the features that were demonstrated to better indicate fatigue in EMG 

signals, namely the IEMG, the MF and the MEDF were calculated from the raw EMG signals under 

two different situations. Firstly, while performing the walk activity and before an intense 

physical activity. Secondly, while performing the walk activity after performing an intense 

physical activity. The results presented allowed to corroborate the observations described in 

the literature, since there was a clear increase in the amplitude of the EMG signal and a clear 

decrease in the frequency properties, after the muscle being fatigued. Additionally, it was also 

possible to visualize that the participant 3 was the one who was more resistant to fatigue, since 

there was a lower variation between the features before and after fatigue. This is concordant 

to the results obtained for actions’ classification, which indicated that participant 3 was the 

most well physically prepared. 

Although these were good results, we have to take into consideration the final aim of this 

thesis that is to contribute to the implementation of a real time framework for football 

prediction. As such, one should point out that the strategy herein presented, of receiving as 

input the whole signal and classify it accordingly to the accumulative features’ extraction 

method, would not be suitable for a real time classification, despite the nature of DBMM to 

convergence to the right class over time. Thus, for implementation in real time, an approach 

of temporal segmentation should be implemented, i.e., as the signal is received by the 

architecture, this should be able to detect each muscle contraction, extract the corresponding 

features to each muscle contraction, and attribute an action to that muscle contraction 

accordingly to the muscle contractions previously trained.  

This work allowed to confirm the viability and utility of TraXports V2 as a wearable device 

for the context of a football match. 
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Chapter 7  

Conclusion 

In this chapter, first, the overall conclusions for this master thesis are summarized. Then 

some suggestions regarding future works are presented. 

7.1 – Final Remarks 

The ability of predicting the final outcome of a football match, decoding the teams’ 

performance, and additionally preventing any potential athletes’ injuries, is becoming more 

and more a theme of subject within the scientific community. Indeed, football is a very 

competitive sport, in which managers, coaches and even football players try to be always on 

advantage. This can be done by having better players, better conditions or even by owning 

better technology. Thus, having a device capable of providing objective answers to coaches 

regarding the physical and psychological state of each player during a football match is seen 

by the community as a great asset.  

According to the literature, defining an architecture capable of taking into consideration 

not only non-physiological parameters but also physiological ones is of extreme importance. In 

fact, the state of the art shows that many authors have been presenting methodologies to 

predict the football match outcomes, though none explores all the relevant features that 

influence athletes’ performance, being this one of the main explanations for the lack of 

successful machine learning algorithms for football prediction. In line with this, we 

concluded that is crucial to take into consideration both kinematic and physiological 

signals while developing an architecture for football prediction.  

As such, with this project it was intended to contribute to the undergoing project ARCANE 

by developing an architecture for football prediction, capable of estimating both athletes’ 

position and actions as well as to detect fatigue over time. For that aim, three main objectives 

were defined. Firstly, to estimate trajectories of football players, then, to recognize several 

actions performed by a football player, including, walking, running, jumping and kicking, and, 

finally, to detect fatigue. In order to do that, two different types of data were used, kinematic 

and physiological signals. Regarding the latter, it was necessary to build a new wearable device, 

termed TraXports V2, capable of measuring the electrical activity of the right lower limb 
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muscles. This was adequately validated within a group of 20 people, being concluded that it 

was indeed a suitable device for the context of a football match.  

After establishing the most relevant signals, we then discussed about the most used 

classifiers and features for each type of signal, concluding that there is a specific set of 

features and classifiers that produces better results for each type of signal. For example, 

for kinematic data we concluded that the best classifiers were KNN, SVM, HMMs, BM and 

DBMM and the best features where the mean, the variance, the Fourier Transform, the 

Wavelet Transform and the Spectral Entropy, whereas for physiological data we concluded 

that the best classifiers were the ANNs and the best features were the Fourier Transform, 

the Wavelet Transform and the Autoregressive Models. Finally, we also discussed about 

the importance of features and classifiers’ selection in the final result, concluding that it 

highly influences the final result. As such, we reached to the conclusion that it is of extreme 

importance to have a phase of features and classifiers’ optimization within the algorithm’s 

architecture. 

Since different signals have different characteristics, one can easily understand the 

necessity of establishing different approaches for each type of signal. As such, we first used 

kinematic data for the estimation of athletes’ coordinates over time, being implemented two 

different methodologies, FC and RNNs. The FC was used with the main objective of providing 

suitable features for the implementation of the RNNs. For that aim, we first defined the more 

appropriated frequency by analysing the Euclidean distance errors for different frequencies, 

having concluded that the best frequency was 1 Hz. After having defined the optimized 

frequency, the feature vector containing the real x and y coordinates was created and used for 

the implementation of several RNNs, having conclude that the best RNN to be implemented is 

the one that uses as internal inputs the polar coordinates and as external inputs the fractional 

and predictability coefficients. The results also demonstrated that overall RNNs perform better 

than FC. 

Finally, an extensive study regarding the use of physiological data in the context of a 

football match was performed. Concerning actions’ classification, we found out that the use of 

DBMM with EMG data clearly increases the overall classification performance, when compared 

to the classification results of individual classifiers. Additionally, it was also possible to 

conclude that this type of work is highly influenced by the choice of participants. Indeed, 

different people have different characteristics (gender, age, musculature) and although these 

participants were all personnel trainers, we can still see that there are some that are more 

physically prepared than others. Furthermore, we concluded that the running activity was the 

one which produced better results, whereas the ball kicking activity was the one which 

performed worst. Indeed, taking the consideration that in this work we are only using EMG 

signals and that at the sampling frequency herein used (Fs=100Hz) it is very difficult to produce 

adequate signals, one can conclude that the overall precision of 76% and recall of 74% is actually 

a good result and within the expectations. Nevertheless, this system requires to be further 

improved in order to be adapted to a football match, since it was noticeable that it had 

difficulty in correctly classify these simple classes. Thus, when adding more classes, such as, 

different types of shootings and kicking, this architecture will not be capable of accurately 

classify all the activities due to their similar nature. Thus, when the wearable device is 

improved, namely, extract also kinematic data, this architecture will become more suitable 

for being applied in a real time football match. 
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On the other hand, the work related with fatigue detection was performed in order to 

further validate the wearable device TraXports V2. Indeed, there was a clear increase in the 

amplitude of the EMG signal and a clear decrease in the frequency properties, after the muscle 

being fatigued. Additionally, we can also point out that it was possible to understand that the 

participant 3 was the one who was more physically well prepared, since not only presented the 

best classification results but also it was the one who suffered a lower variation between the 

features before and after fatigue. 

In conclusion, we considered that all the proposed objectives were successfully fulfilled, 

having made a significant contribution to the development of a new architecture for football 

prediction. 

7.2 - Future Works 

Although this master thesis has achieved its aims and objectives, we feel that there is still 

space for improvements. As such, the suggestions regarding possible future work will be 

presented hereinafter. 

Firstly, we felt that the wearable device herein produced, TraXports V2, had some 

limitations, mainly in terms of the frequency of data acquisition. As such, in a posterior work, 

the sampling frequency should be increased at a value between the range of 500 and 1000 Hz, 

preferentially 1000 Hz. This can be achieved by using a more powerful Wi-Fi transmitor, for 

example. Still regarding the improvement of TraXports V2, we suggest the implementation of 

more conductive fabric in the shorts, specifically in the left leg and in the area corresponding 

to the calf muscles, in order to have more physiological information regarding the muscles’ 

activity. Furthermore, one of the points that should be further improved is the connection 

between the kinematic and physiological data. As such, we highly suggest the implementation 

of an inertial sensor, for example an accelerometer, in TraXports V2 in order to be able of 

collecting both signals at once. That way, it will be possible to have more accurate data about 

players’ motion and physical state, meaning that the classifiers’ performance will definitely 

increase.  

Regarding the architecture itself, this still needs to be further improved. Firstly, during the 

step of feature extraction the EMG signal should be temporally segmented in order to localize 

each muscle contraction and to only extract features on these locations. Another suggestion 

that should be considered, is the addition of more features and activities for classification, for 

example, different types of shoots, or ball receiving. The use of more base classifiers in the 

DBMM, such as the HMM and RNNs, is also another way of improvement.  

Furthermore, the architecture should be implemented in real time in order to produce a 

viable architecture for real time football prediction. Thus, after having all of this data 

combined, a software operating the algorithm of actions’ classification, trajectories’ 

estimation and fatigue detection should be implemented and tested during a football match. 
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A.3 – MedTex130 Datasheet 

A.3.1 – Technical Specifications 

 
SURFACE RESISTANCE < 5 Ohms/ 

PLATING 99.9 % pure silver 

ABRASION RESISTANCE 10,0000 cycles 

TEMPERATURE RANGE -30 to 90ºC 

TOTAL THICKNESS 0.45 mm 

WEIGHT 140 g/m2 

STRETCH Double stretch direction 

ROLL LENGTHS 50 LY average 

ROLL WIDTH 135 cm 

MATERIAL 78% Nylon + 22% elastomer 
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