
Development of a
simulator of
light-matter
interaction using
GPGPU: from
plasmas to atomic
gases
Miguel Boaventura Teixeira Gomes
Mestrado Integrado em Engenharia Física
Departamento de Física e Astronomia
2017

Orientador
Ariel Guerreiro, Faculdade de Ciências

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, / /

UNIVERSIDADE DO PORTO

MASTERS THESIS

Development of a simulator of light-matter
interaction using GPGPU: from plasmas to

atomic gases

Author:

Miguel Gomes

Supervisor:

Prof. Dr. Ariel Guerreiro

A thesis submitted in fulfilment of the requirements

for the degree of Integrated Master’s in Engineering Physics

at the

Faculdade de Ciências da Universidade do Porto

Departamento de Fı́sica e Astronomia

October 2017

Acknowledgements

I would like to thank my supervisor, Prof. Dr. Ariel Guerreiro, for guiding me through the

development of this thesis, and always being available to help and motivate me during

this endeavour.

I would also like to thank Nuno Azevedo Silva for his support and advice, which were

vital to the materialization of this thesis.

Finally, I would like to thank my friends and colleagues João Costa and Rúben Alves,

who worked on their thesis at the same time and in the same team, and whose help and

friendship was crucial during this thesis.

UNIVERSIDADE DO PORTO

Abstract

Faculdade de Ciências da Universidade do Porto

Departamento de Fı́sica e Astronomia

Integrated Master’s in Engineering Physics

Development of a simulator of light-matter interaction using GPGPU: from plasmas

to atomic gases

by Miguel Gomes

This thesis describes the development of a solver for plasmas and atomic gases, with

the PIC method from Plasma Physics. The software was developed in C++ using GPGPU

computing. The code is also constructed with a modular structure that allows the combi-

nation with other solvers to describe a wide range of phenomena and physical systems.

In this work, we also analyse the analytical and numerical methods used to describe the

electromagnetic field, and fluids of charged and neutral particles. We present the perfor-

mance analysis of our code by comparison with the CPU performance. We also validate

our code with a series of tests, including three test cases that include a direct application

of a PIC code, a simulation of a gas under gravitational interaction, and a dipolar gas

displaying quantum-optomechanical effects. These last two simulations serve to demon-

strate the modularity of the code.

UNIVERSIDADE DO PORTO

Resumo

Faculdade de Ciências da Universidade do Porto

Departamento de Fı́sica e Astronomia

Mestrado Integrado em Engenharia Fı́sica

Development of a simulator of light-matter interaction using GPGPU: from plasmas

to atomic gases

por Miguel Gomes

Esta tese descreve o desenvolvimento de um solver para plasmas e gases atómicos,

com o método PIC de Fı́sica de Plasmas. O software foi desenvolvido em C++ usando

computação em GPGPU. O código também é construı́do com uma estrutura modular

que permite a combinação com outros solvers para descrever uma grande variedade de

fenómenos e sistemas fı́sicos. Neste trabalho, também analisamos os métodos analı́ticos e

numéricos utilizados para descrever o campo eletromagnético, e fluidos de partı́culas car-

regadas e neutras. Apresentamos a análise de desempenho do nosso código em comparação

com o desempenho em CPU. Validamos ainda o nosso código com um conjunto de testes,

incluindo três casos de teste que incluem uma aplicação direta de um código PIC, uma

simulação de um gás sob interação gravitacional, e um gás dipolar exibindo efeitos op-

tomecânicos quânticos. Estas duas últimas simulações servem para demonstrar a modu-

laridade do código.

Contents

Acknowledgements iii

Abstract v

Resumo vii

Contents ix

List of Figures xi

List of Tables xv

Acronyms xvii

1 Introduction 1

2 Physical model 7
2.1 Electromagnetic field . 8
2.2 Particle dynamics and kinetic description . 9
2.3 Fluids in equilibrium . 11
2.4 Conclusions . 13

3 Numerical models 15
3.1 Numerical methods for electrodynamics . 15
3.2 The Finite-Difference Time-Domain method 16

3.2.1 Yee cell and the leapfrog scheme . 16
3.2.2 Initial conditions . 21
3.2.3 Boundary conditions . 22

3.2.3.1 Uniaxial Perfectly Matched Layer (UPML) 23
3.2.3.2 Multiplicative Absorbing Boundary Conditions (MABC) . 24

3.3 Numerical methods for fluids . 24
3.4 The Particle-In-Cell method . 27

3.4.1 Discretization of phase-space . 28
3.4.1.1 Equations of motion for the super-particles 29
3.4.1.2 The shape factors . 30

3.4.2 Particle pusher . 31

ix

x
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

3.4.2.1 Boris pusher . 31
3.4.2.2 Vay pusher . 32

3.4.3 Current deposition . 33
3.4.4 Boundary conditions . 35
3.4.5 The PIC loop . 36

3.5 Conclusions . 36

4 Implementation 39
4.1 GPGPU computing . 39
4.2 Implementation model . 42

4.2.1 FDTD method . 45
4.2.2 Particle push . 47
4.2.3 Particle-grid interaction . 48

4.3 Testing and performance analysis . 50
4.3.1 Fundamental tests . 50
4.3.2 Computing environment . 52
4.3.3 Performance analysis . 53

4.4 Conclusions . 53

5 Physical test cases 57
5.1 Laser-plasma interaction . 58
5.2 Gravitoelectromagnetism: gas accretion . 61
5.3 Transport phenomena in quantum dipolar gases 64
5.4 Conclusions . 67

6 Concluding remarks and future work 71

A The Pseudospectral Time-Domain method 75

B From the Vlasov equation to PIC 77
B.1 First moment along position . 77
B.2 First moment along momentum . 78

Bibliography 81

List of Figures

1.1 The various regimes of the many-body problem for atoms, ions and electrons. 3

3.1 The Yee cell. The electric field components are stored in the centre of the
minimal faces of the cell and the magnetic field components are stored in
the centre of the minimal edges. 17

3.2 Spherical plot of the velocity anisotropy of the Yee cell 19
3.3 Percentage difference between the maximum and minimum velocities in

the Yee cell . 20
3.4 The MAC grid cell. Velocity components are stored in the minimal faces of

the cell and the pressure p is represented at the center. 26
3.5 Diagram of the steps in the PIC loop. Each column contains all the neces-

sary fields and particle quantities at different times, the blue arrows rep-
resent time evolutions related to the electromagnetic field, and the red ar-
rows represent time evolutions related to the particles. The green arrows
are the exchange of information between the field and the particles. Fi-
nally, the grey arrows represent the update of the previous quantities nec-
essary for temporal interpolation and do not encompass any actual calcu-
lations. For the blue arrows, number 1 in the figure corresponds to equa-
tions (3.1a) to (3.1c) or equation (3.10) for the Uniaxial Perfectly Matched
Layer (UPML), number 2 corresponds to equation (2.3) or equation (3.11),
number 3 corresponds to equations (3.2a) to (3.2c) or equation (3.12), and
number 4 corresponds to equation (2.4) or equation (3.13). Numbers 5 and
6, in the blue arrows, match equations equations (3.23a) and (3.23b), respec-
tively. The remaining numbers, 7 and 8, in the green arrows correspond to
the Esirkepov current deposition and the interpolation of the electromag-
netic field. 37

4.1 Comparison between the theoretical performances of CPUs and GPUs in
FLOPS. We can see that the GPUs outperform CPUs, especially for single
precision floating point numbers. Adapted from CUDA Toolkit Documentation
v8.0. 41

4.2 Comparison of the memory bandwidths of CPUs and GPUs. The GPUs
have an higher memory bandwidth, which is of great importance in scien-
tific computing. Adapted from CUDA Toolkit Documentation v8.0. 41

4.3 The CUDA architecture. We can see that a single instruction unit controls
processors. The reduction of the amount of control units permits a larger
percentage of transistors dedicated to data processing. Adapted from CUDA
Toolkit Documentation v8.0. 42

xi

xii
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

4.4 Class structure of our code. The arrows represent the interdependencies of
the classes, with each class requiring an instance of the classes that point
to it. The structure in grey is included for completeness but contains only
some auxiliary classes for the boundary conditions of the FDTD method. . . 44

4.5 Characterization of the attenuation of the MABC as a function of d+x and
α+

x,max, the latter expressed more conveniently in number of cells n = d+x
∆x

.
The blue line matches the value of α+

x,max that minimizes the reflection for
each n . 46

4.6 Comparison between the attenuation of the UPML boundary conditions
and MABC as a function of (A) the thickness of the boundary, and (B) the
angle of incidence of the wave. 47

4.7 Validation test of the FDTD method implemented in the EMF class. A Gaus-
sian pulse was propagated in a 1-dimensional simulation domain with pe-
riodic boundary conditions. The vertical axis represents time in all plots
but the horizontal axis represents the coordinate x in plot (A) and the fre-
quency ω for plots (B) and (C). Figure (A) shows the intensity of the electric
field over two passages in the domain, figure (B) shows the evolution of the
power spectrum of the field (|F {E}|2t) and figure (C) is the variation of the
spectrum over time (|F {E}|2t − |F {E}|

2
0). The variations of the spectrum

represent an relative error of roughly 10−3. 51
4.8 Validity of the Gauss and charge conservation laws of equations (2.1a) and (3.25)

over the simulation time. The top and bottom graphs corresponds to the
Gauss and charge conservation laws respectively. The errors displayed
were calculated by 〈|ε0∇·E−ρ|〉

max{|ρ|} and 〈|∇·J+ρ̇|〉
max{|ρ̇|} , respectively. From these plots

we conclude that the Esirkepov method is far better at maintaining good
agreement with the Gauss and charge conservation laws. 52

4.9 Performance analysis of the four components of the PIC algorithm for the
CPUs and GPUs from system setups from section 4.3.2. Figure (A) features
the time per step of the FDTD method as a function of the number of cells in
a cubic grid, averaged over 100 repetitions with PBC. Figure (B) shows the
time per step of the Vay pusher as a function of the number of particles p
averaged over 10000 steps. Figure (C) displays the time taken to interpolate
a face vector field of dimensions 100 × 100 × 100 onto the positions of p
particles for shape factor order n = 1. The results were averaged over 100
repetitions. Finally, figure (D) shows the time taken to deposit the current
of p particles onto a 100× 100× 100 face vector field with the Esirkepov
current deposition method, again with shape factor order n = 1. 54

4.10 Speedups for the different setups. The blue bars represent the speedup
S = tCPU/tGPU compared with the CPU in the same machine, and the cross
pattern is the comparison with the best CPU (i7-4790K). 55

5.1 State of the simulation with the pulse in its first pass through the plasma,
in the hydrodynamic regime (u. arb.). 59

5.2 State of the simulation after the passage of the pulse, in the hydrodynamic
regime (u. arb.). 59

5.3 State of the simulation after the second passage of the pulse, in the hydro-
dynamic regime (u. arb.). 60

LIST OF FIGURES xiii

5.4 State of the simulation at the middle of the first passage of the pulse in the
snowplough regime (u. arb.). 60

5.5 State of the simulation just after the first passage of the pulse in the snow-
plough regime (u. arb.). 61

5.6 State of the simulation shortly after the pulse traverses the simulation do-
main in the snowplough regime (u. arb.). 61

5.7 Gravitoelectromagnetic simulation of uniform hydrogen gas at times t =
0 s, t = 500.35 s, t = 1000.69 s, t = 1526.06 s, t = 1826.26 s, t = 2151.49 s for
images A, B, C, D, E, and F, respectively. The particles are initialized with
zero velocity and uniformly distributed throughout the simulation domain. 63

5.8 Initial state of a 2-dimensional Gravitoelectromagnetic simulation. The left
tile of each figure shows the magnitude of the electric field in logarithmic
scale, while the right tile shows the particle density. The particles are at rest
and uniformly distributed throughout the simulation domain (u. arb.). . . . 64

5.9 The simulation figure 5.8 after the formation of many small clusters (u. arb.). 64
5.10 Halfway point of the simulation of figure 5.8. The clusters are now less

numerous and larger (u. arb.). 65
5.11 Final state of the simulation of figure 5.8. Only a few large clusters are

observable, and some low density clouds in the intermediate space (u. arb.). 65
5.12 Temporal evolution of the positions of the particles for the case where ω12 =

0.5 2πc
λ . the particles can be seen drifting towards the maxima of the stand-

ing wave. 67
5.13 Temporal evolution of the ẑ component of the electric (A) and polarization

fields (B) for the case where ω12 = 0.5 2πc
λ . 68

5.14 Temporal evolution of the positions of the particles for the case where ω12 =
1.5 2πc

λ . the particles can be seen drifting towards the nodes of the standing
wave. 69

5.15 Temporal evolution of the ẑ component of the electric (A) and polarization
fields (B) for the case where ω12 = 1.5 2πc

λ . 69

List of Tables

3.1 The electron concentration ne, electron temperature Te, Debye length λD,
and number of particles per Debye cube ND listed for several mediums. . . 28

xv

Acronyms

ABC Absorbing Boundary Conditions. 22, 24, 35, 36, 47, 71

ALU Arithmetic Logic Unit. 40

API Application Programming Interface. 40, 49, 53

APIC Affine Particle-In-Cell. 26

CBE Collisionless Boltzmann Equation. 10, 28, 29, 75

CFD Computational Fluid Dynamics. 25

CPU Central Processing Unit. 5, 37, 39, 40, 42, 49, 53

DCT Discrete Chebyshev Transform. 16

DFT Discrete Fourier Transform. 16

DNS Direct Numerical Simulation. 25

DSMC Direct Simulation Monte Carlo. 5, 25–27, 72

FDTD Finite-Difference Time-Domain. 15–17, 20, 22, 25–27, 31, 35, 36, 45–47, 50, 53, 71,

73, 74

FEM Finite-Element Method. 16, 17, 25

FFT Fast Fourier Transform. 16, 21, 22, 40, 74

FLIP Fluid Implicit Particle. 26

GPGPU General Purpose Graphics Processing Unit. 5, 40

GPU Graphics Processing Unit. 5, 6, 15, 35, 37, 39, 40, 42, 49, 53, 72

xvii

xviii
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

MABC Multiplicative Absorbing Boundary Conditions. 22, 45, 46, 71

MAC Marker-And-Cell. 25, 26

MD Molecular Dynamics. 4, 26

MHD Magnetohydrodynamic. 5, 7, 12, 25, 26

NSE Navier-Stokes Equation. 4

ODE Ordinary Differential Equation. 31

PBC Periodic Boundary Conditions. 22, 45

PIC Particle-In-Cell. 5, 6, 15, 25, 27, 28, 30, 31, 33, 35, 36, 47, 48, 50, 61, 62, 71, 72, 75

PSTD Pseudospectral Time-Domain. 16, 73, 74

RBC Reflecting Boundary Conditions. 22

UPML Uniaxial Perfectly Matched Layer. xi, 22, 23, 37, 45, 46

Dedicated to my family for their constant support during this five

years of study.

Chapter 1

Introduction

Many-body systems occur in many branches of physics, from the motion of celestial

bodies to particle physics. They establish a connection between the fundamental princi-

ples that determine the interaction between two objects, typically at a microscopic scale,

and the apparent complexity of macroscopic systems composed of countless and mutu-

ally interacting objects.

Strictly speaking, one usually distinguishes between many-body and n-body systems,

where the first term refers to systems with a large number of interacting particles de-

scribed according to a quantum model, whereas the second is usually used to describe

classical systems, typically associated with the description of the motion of celestial bod-

ies under gravitational interaction.

However, the nature of these types of physical systems is so diverse that it is pos-

sible to find examples that can be modelled by a hybrid description, which combines

both quantum and classical features. Examples of these types of systems are plasmas

and atomic gases. While the position and velocity of the atoms can be described as if

they were classical point particles, the ionization and recombination processes, and the

electronic transitions must necessarily be described using a quantum model.

This thesis addresses these hybrid (or semi-classical) systems and focuses on the in-

teraction between the electromagnetic field and a many-body system composed of atoms,

ions, and electrons. Of course, this is still an extremely loose definition, and many dif-

ferent systems fit this description. The most obvious is a plasma, which is the main

ingredient of the Universe and accounts for 99% of its mass and volume [1]. Naturally,

understanding plasmas becomes crucial in Astrophysics to study stars, the solar wind,

and the accretion disks around black holes, just to give a few examples [2].

1

2
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

Today, research in plasmas ranges over a wide variety of topics and remarkable phe-

nomena in fundamental Physics, such as photon bubbles [3], photon charge [4], and generation

or amplification of laser beams with high orbital angular momentum [5]. They also play

a pivotal role in various technologies that encompass thin film deposition [6], particle ac-

celeration [7], and fusion power research, including both magnetic and laser-based inertial

confinement [8–10].

Neutral fluids are equally rich in phenomenology. Even common phenomena such as

turbulence are still poorly understood [11]. But of special interest is the interaction of in-

tense coherent electromagnetic field with atomic gases, which can give rise to exotic phe-

nomena like electromagnetically induced transparency [12], slow-light [13] and other non-

linear effects [14,15]. Additionally, it is also possible for the field to produce optomechanical

phenomena such as pattern formation in the gas density, and optical trapping. [16,17].

Recently, there has been a growing interest in the study of quantum many-body sys-

tems out of equilibrium, including the research into the processes of thermalization, trans-

port phenomena, and quantum phase transitions. Another important field of research in-

cludes quantum simulations, which refers to the use of controllable physical systems to

mimic the natural interaction of other less tractable systems, thus providing an analogue

quantum simulator [18]. Although all these problems are of great importance, they are also

very difficult to study using a complete quantum description. Therefore, an approach that

is half way between the classical and the quantum approaches may provide a sufficiently

simple yet interesting solution.

Finding exact analytical solutions for many-body problems in both equilibrium and

out of equilibrium situations is extremely difficult and in the majority of cases even im-

possible. This has thwarted a full analytical approach and favoured the introduction of

simplifications, that are often specific to the context of each problem, or the adoption of

numerical methods, given the calculation power of modern computer systems.

An analytical or numerical model can usually be built from first principles, starting

with the most fundamental equations or laws and introducing simplifications until the

problem is tractable. Conversely, it is possible to start with a very simple and broad

description and add features to introduce more detailed effects.

Using a numerical approach allows us to remove simplifications or add more features

beyond what is possible analytically. This extra advance comes at a cost. Numerical

solutions tend to be case specific and give fewer physical insights into broad problems.

1. INTRODUCTION 3

FIGURE 1.1: The various regimes of the many-body problem for atoms, ions, and elec-
trons. The plot is intended to be qualitative but the actual borders were calculated for
a hydrogen gas with the thermal de Broglie wavelength, Saha ionization equation, and

Knudsen number for a length scale of 1 mm.

However, when introducing simplifications in an analytical model, it may not be clear

in which conditions the model remains valid. Verifying the validity of analytical models

through simulation is one of the many uses of numerical analysis.

The collective behaviour of many-body systems, such as plasma and gases, can be

very diverse and exhibit different regimes, as shown in figure 1.1, typically depending on

temperature and particle concentration.

For neutral fluids composed of atoms at normal conditions of temperature and pres-

sure, the electromagnetic force is the main driver behind the dynamics of the atoms. This

interaction force between atoms only becomes significant at close distances, when two

particles collide. In most cases, these collisions force local groups of atoms to acquit veloc-

ities that follow closely the Maxwell-Boltzmann distribution. In these cases, the gas can be

modelled by the hydrodynamic equations, corresponding to the intersection between the

Equilibrium and Neutral regimes in figure 1.1. One aspect not included in figure 1.1 is the

4
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

timescale. In principle, the hydrodynamic equations could be used to study something as

diluted as the interstellar medium, provided we look at a volume sufficiently large over a

period long enough such that a large number of binary collisions can occur [2].

So far we have only considered binary collisions, which are characteristic of ideal

gases, however, the validity of the hydrodynamic equations extends beyond this type

of gases. In fact, since they can be derived exclusively from macroscopic conservation

laws, the actual limitation is that the local distributions of atoms remain in thermody-

namic equilibrium as described by an equation of state (of which the law of perfect gases

is the simplest example).

In situations where the conditions of local equilibrium are no longer maintained, it

is necessary to adopt a description based on the Kinetic Theory, and use the Boltzmann

equation. This equation considers the local distributions of velocities explicitly. In fact,

the hydrodynamic equations can be derived from the Boltzmann equation by taking the

first three moments on momentum space and obtaining the equations of conservation of

mass, conservation of momentum (also known as Navier-Stokes Equation (NSE)), and

conservation of energy, respectively. This process of taking higher order moments could

be continued indefinitely without ever closing the problem. Closing the problem at the

second order moment requires the ad-oc inclusion of a state equation.

Non-equilibrium situations can arise from external forces that act on spatial scales

comparable to or smaller than the mean free path of the particles. As shown in figure 1.1,

the Neutral regime extends beyond the Equilibrium to lower temperatures and concentra-

tions, where the mean free path is larger. However, the Boltzmann equation is statistical

in nature, and still requires a number of particles large enough for this description to be

statistically significant. If we decrease the concentration of particles beyond this limit,

describing each particle individually with Molecular Dynamics (MD) may be the only

option.

If we increase the temperature, the forces involved in the collisions of the atoms will

be large enough for ionization to occur, corresponding to the plasma section of figure 1.1.

A model based on binary collisions is inadequate to describe this state of matter due to the

long-range nature of the interaction between charged particles. As noted by Vlasov, phe-

nomena such as the natural vibrations of electron plasmas, and the anomalous electron

scattering in plasmas, can only be well described after removing the binary collision term

1. INTRODUCTION 5

from the Boltzmann equation, introducing instead the Lorentz force as the main driving

mechanism for charged particles [19].

Unlike neutral fluids, plasmas are harder to describe in local equilibrium due to the

long-range interactions. For most plasmas of interest, it would be necessary to look at

exceedingly large volumes to find a population corresponding to a thermodynamic equi-

librium distribution. Nevertheless, when such conditions are met, the equilibrium de-

scription of a plasma is described by the Magnetohydrodynamic (MHD) equations. Even

in some situations where these descriptions are not completely valid, the MHD equations

still provide good qualitative results and interesting physical insight.

For extremely low temperatures, the thermal de Broglie wavelength of the particles

will become on the order of or larger than the average distance between particles and

the kinetic description is no longer valid. Instead, the Fermi-Dirac or the Bose-Einstein

statistics apply, producing exotic states of matter such as Bose-Einstein condensates and

superfluid Helium. This corresponds to the quantum regime in figure 1.1, where all as-

pects of the gas have a quantum character.

As previously discussed, this thesis is focused on the development of numerical tools

that can simulate many-body systems composed of atoms, ions, and electrons interacting

with the electromagnetic field, based on a classical model for the motion of these particles

but capable of incorporating quantum features. In particular and as a starting point, it is

focused on modelling plasmas through the Particle-In-Cell (PIC) method. Although this

method was devised for plasmas it has enough similarities with other numerical methods,

like Direct Simulation Monte Carlo (DSMC), to be able to simulate more generic systems.

Another important aspect in developing a simulation code is the choice of hardware.

Because PIC codes tend to be extremely demanding in terms of computational power, we

chose to run the simulations on General Purpose Graphics Processing Units (GPGPUs)

(or just Graphics Processing Units (GPUs)), which can provide computing power at a

reduced cost when compared to regular CPUs.

Another objective of this thesis is that the simulation tools must have a modular struc-

ture, constituted by individuals solvers for different physical phenomena that can operate

together. This will allow these modules to be combined in different ways to provide mod-

els for a wide diversity of systems, such as plasmas, atomic gases, and others.

In this thesis we describe the development of a C++ library for the simulation in GPU

of the many-body problem for atoms, ions, and electrons in the classical limit based on the

6
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

PIC method. We develop it in a modular fashion so that it is possible to model other sys-

tems, such as atomic gases interacting with resonant electromagnetic radiation or clouds

of particles under gravitational interaction. In chapter 2 there is a more detailed descrip-

tion of the analytical models to describe these systems, chapter 3 discusses the various

numerical models to simulate them, in chapter 4 the details of the GPU based implemen-

tation are described and finally, several test cases of the code and final conclusion are

presented in chapters 5 and 6 respectively.

Chapter 2

Physical model

Plasmas and atomic gases are composed of numerous and extremely small mutually

interacting particles. The interaction between charged ions and electrons, and neutral

atoms is essentially mediated by the electromagnetic field. For both charged and neu-

tral fluids, we can separate the system into two parts: the electromagnetic field and the

particles. For both charged and neutral fluids, the microscopic descriptions turn out to be

quite similar. The main distinction is that, although the interaction between neutral atoms

is mediated by the electromagnetic field, it is usually treated as an instantaneous collision.

Plasmas, on the other hand, are composed of charged particles whose long-range interac-

tion cannot be ignored. In some cases, cold gases of neutral atoms also have long-range

interactions through higher order electric or magnetic moments.

To begin, we restrict ourselves to a classical description for both the electromagnetic

field and the particles. In the next sections, we look at some of the models to describe

plasmas and neutral gases, both in and out of equilibrium, and choose a model to best

reproduce the microscopic and macroscopic behaviour of these systems. First, we con-

cisely state the Maxwell equations and discuss their validity in section 2.1. For the fluids,

we start with the kinetic description, showing the Boltzmann and Vlasov equations in

section 2.2. Next, we look at the Hydrodynamic equations as a simplification of the Boltz-

mann equation, and similarly, at the MHD equations as a simplification of the Vlasov

equation in section 2.3.

7

8
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

2.1 Electromagnetic field

The classical description of electrodynamics is provided by the microscopic Maxwell

equations

∇ · E =
ρ

ε0

∇ · B = 0

Ḃ = −∇× E

Ė = c2∇× B− 1
ε0

J f ,

(2.1a)

(2.1b)

(2.1c)

(2.1d)

where E is the electric field, B is the magnetic induction field (commonly called just mag-

netic field), J is the current density, ρ is the charge density, ε0 is the vacuum permittivity,

and c is the speed of light. For continuous media it is common to use the macroscopic

Maxwell equations instead

∇ ·D = ρ f

∇ · B = 0

Ḃ = −∇× E

Ḋ = ∇×H− J f ,

(2.2a)

(2.2b)

(2.2c)

(2.2d)

together with the constitutive relations

E =
1
ε0

(D− P) (2.3)

H =
1
µ0

B−M, (2.4)

where D is the electric displacement field, H is the magnetic field, J f is the current den-

sity of free charges, ρ f is the density of free charges, P is the polarization field, M is the

magnetization field, and µ0 is the vacuum permeability.

The classical formulation of electrodynamics provided by either the microscopic or

the macroscopic Maxwell equations fails for fields with very small wavelength λ and for

very large electric field strength |E| [20]. Specifically, these equations are valid for

λ� re =
1

4πε0

e2

mec2 = 2.818 fm,

|E| � 1√
4πε0

e
r2

e
= 5.734× 1024 Vm−1,

where e is the elementary charge, and me is the electron mass. Beyond this range of va-

lidity, it is necessary to adopt a quantum description of the field, which goes beyond the

2. PHYSICAL MODEL 9

scope of this thesis.

2.2 Particle dynamics and kinetic description

Both the microscopic and macroscopic Maxwell equations contain source terms, such

as ρ, J, P, and M, which describe the influence of the particles that comprise a gas or

plasma on the electromagnetic field.

Similarly to the case of the fields, the most fundamental description of the particles

is based on a quantum approach. However, it is possible to adopt a classical description

when the particles have an average distance from each other that is much greater than the

thermal de Broglie wavelength λth

n−
1
3 � λth, (2.5)

where n is the density and the thermal de Broglie wavelength λth for non-relativistic par-

ticles is

λth =
h

2πmkBT
,

where m is the mass of the particles, T is the temperature, h is the Plank constant, and

kB is the Boltzmann constant. The thermal de Broglie wavelength basically describes the

length above which the particles no longer exhibit coherent behaviour. When condition

(2.5) is not met, the particles experience coherent interaction and the gas or plasma may

display a macroscopic quantum behaviour.

The state of this system of particles can now be represented by a set of positions

{r1, r2, ..., rN} and momenta {p1, p2, ..., pN}, with each pair ri, pi being a point in 6-

dimensional phase space. In this context, the evolution of the system follows the dynam-

ical equations

ṙi = vi

ṗi = Fi

(2.6a)

(2.6b)

where Fi is the applied force, and vi is the velocity of each particle. For a fully relativistic

description, the velocity of the particles is given by

vi =
pi

mγi
, (2.7)

10
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

with the Lorentz factor

γi =

√
1 +

(
|pi|
mc

)2

.

With this groundwork, we can now introduce a statistical description of the phase

space by defining a probability density function f , that is defined by

dN = f (t, r, p) d3r d3p,

where dN is the number of particles located within the volume d3r and with momentum

within the volume d3p. The evolution of the system is given by the Collisionless Boltz-

mann Equation (CBE)

ḟ + v · ∇r f + F · ∇p f = 0,

where ∇r and ∇p are the gradients taken only along position and momentum space,

respectively. Boltzmann introduced the binary collision term into the right hand side of

the equation as the main form of interaction between the particles(
∂ f
∂t

)
coll

=
∫

gI (g, Ω)
(

f (t, x, p′1) f (t, x, p′2)− f (t, x, p1) f (t, x, p2)
)

dΩd3p1 d3p2, (2.8)

where g = |p2 − p1|, and I (g, Ω) is the differential cross section.

For charged particles, as Vlasov found, the collision term can usually be discarded in

favour of the long distance interaction through the Lorentz force [19]. Thus, F is replaced

by

F = q (E + v× B) , (2.9)

where q is the charge of the particles. The Lorentz force finally closes the feedback loop

between the particles and the electromagnetic field.

Neglecting collisions and generalising the model to take into account that a plasma

is usually composed of several species of particles (ions, electrons, etc.), a full dynamical

theory for plasma behaviour is given by the following equations

ḟs = −v · ∇r fs − qs (E + v× B) · ∇p fs

Ḃ = −∇× E

Ė = c2∇× B− 1
ε0

∑
s

qs

∞∫
−∞

fsv d3p

2. PHYSICAL MODEL 11

where we introduced the expression for the current density

J = ∑
s

qs

∞∫
−∞

fsv d3p.

The remaining Maxwell equations are unnecessary, as long as they are satisfied at

some initial time. Finally, it is important to notice that, with the exception of the collision

term in equation (2.8), the models in this section are fully relativistic with the definition

in equation (2.7).

2.3 Fluids in equilibrium

In the previous section, we described models for the dynamics of particles in gases

and plasmas that are valid in conditions out of equilibrium. However, when the particle

distributions are in local thermodynamic equilibrium, it is possible to adopt alternative

models which are simpler or provide better physical insight. In equilibrium, we know

that the local momentum distributions will be close to the Maxwell-Jüttner distribution

f (p) =
1

4πm3c3θK2
(1

θ

) exp
(
−γ

θ

)
,

where θ = kBT
mc2 and K2 is the modified Bessel function of the second kind, or in the non-

relativistic limit, the Maxwell-Boltzmann distribution

f (p) =

√
2

πmT3k3
B

p2 exp
(
− p2

2mTkB

)
.

For neutral fluids, the Knudsen number provides a useful heuristic to know whether

an equilibrium description is valid. It is defined as Kn = λ/L, where λ is the mean free

path and L is a representative length scale of the problem. If Kn & 1, the hydrodynamic

model does not provide a good description of the system. On the other hand, for Kn� 1

the equilibrium assumption is valid and it is possible to use the hydrodynamic equations

ρ̇ = −∇ · (ρv)

v̇ = − (v · ∇) v− 1
ρ
∇p +

1
ρ

F +
µ

ρ

(
∇2v +

1
3
∇ (∇ · v)

)
ε̇ = −v · ∇ε +

1
ρ
∇ · (K∇T)− p

ρ
∇ · v

(2.11a)

(2.11b)

(2.11c)

where ρ is the mass density, v is the velocity field, p is the pressure, F is the external force,

µ is the viscosity coefficient, ε is the internal energy, K is the thermal conductivity, and T

12
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

is the temperature. These equations correspond respectively to the conservation of mass,

momentum, and energy.

A common simplification for the fluid equations is the assumption of incompressibil-

ity, mathematically stated as

∇ · v = 0.

This assumption is valid when the flow speed v is much smaller than the speed of sound

of the fluid (corresponding to a low Mach number). In this case, equation (2.11b) simpli-

fies to

v̇ = − (v · ∇) v− 1
ρ
∇p +

1
ρ

F +
µ

ρ
∇2v. (2.12)

Further simplification can be achieved for inviscid flows where the viscosity of the

fluid is close to zero. The validity of this assumption can be substantiated in terms of

the dimensionless Reynolds number, which measures the ratio between the inertial and

viscous forces, and is defined as

Re =
ρvL

µ
,

where ρ is the density, v is the flow velocity, L is the characteristic length scale, and µ is

the dynamic viscosity.

In particular, for fluids with small viscosity, corresponding to Re� 1, the fluid can be

considered inviscid and equation (2.12) further simplifies to

v̇ = − (v · ∇) v− 1
ρ
∇p +

1
ρ

F. (2.13)

In the case of plasmas it is also possible to obtain an equilibrium description, For

example, the ideal MHD equations include equation (2.11a) for mass conservation, and

equation (2.13) for momentum conservation. However, the force term is given by

F = J× B =
(B · ∇)B

µ0
−∇

(
B2

2µ0

)
.

Under these conditions, equation (2.13) becomes

v̇ = − (v · ∇) v− 1
ρ
∇p +

(B · ∇)B
µ0ρ

− 1
ρ
∇
(

B2

2µ0

)
.

This single-fluid model is only applicable in a narrow range of parameters where the

collisions are sufficient to prompt local equilibriums, but do not cause resistivity. Still,

these equations give good qualitative results, and remain a good first approach to study

plasmas [2]. There are several extensions to these equations, including the addition of

2. PHYSICAL MODEL 13

resistive effects and viscosity, as well as two-fluid models, which include the electric field

explicitly, and three-fluid models for plasmas that are not fully ionized.

2.4 Conclusions

This chapter provided a brief discussion of the fundamental models that describe the

interaction between the electromagnetic field and the charged particles in a plasma, or the

neutral atoms in a gas. The phenomenology behind these systems is very rich, allowing

for a wide variety of regimes, and naturally, an equally rich diversity of models to de-

scribe them. Here, we have focused on the fundamental ones, which will be relevant in

the next chapter when we discuss the numerical models used to simulate these systems,

justify the specific choice of the numerical model adopted, and analyse the results of the

simulations.

Chapter 3

Numerical models

The previous chapter presented several physical models that capture the fundamental

dynamics of plasmas and gases. Although all the systems, including the electromagnetic

field, are described by partial differential equations, the models for fluids out of equi-

librium operate in a 6-dimensional space and are very difficult to solve directly in their

normal formulation. Furthermore, as a design objective, the goal is to develop distinct

solvers that can interact with each other and exchange information.

In this chapter, several numerical methods are presented to address the physical mod-

els of chapter 2. The main focus will be on the PIC method from plasma physics. We will

start by looking at the methods available for the the electromagnetic field in section 3.1, fo-

cusing on time-domain methods and more specifically the Finite-Difference Time-Domain

(FDTD) method. In section 3.3, several methods for describing fluid in and out of equi-

librium are discussed and the choice of the PIC method for plasmas is justified. The last

section explores this method in detail.

3.1 Numerical methods for electrodynamics

There is a wide diversity of solvers for the Maxwell equations and choosing a method

can be a challenge. Since the objective is to couple a solver of the Maxwell equations

with solvers of other equations, such as the Vlasov or the Bloch equations, as discussed

in chapter 1, a simple and robust method is desirable. Furthermore, the method must be

parallelizable on GPU.

Frequency-domain techniques make it very difficult to include material nonlineari-

ties, which conflicts with the goal of combining with the Bloch and Vlasov equations [21].

15

16
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

Moreover, assuming a time-domain method, a reasonably regular mesh is preferable since

it will allow for fast interpolation of field quantities in the positions of the particles and

conversely, fast deposition of particle quantities to the grid1. This excludes Finite-Element

Methods (FEMs). We are left with FDTD method as the prime choice. The FDTD method

also has other advantages of which the following are some of the most important [21]:

• FDTD does not require linear algebra solvers as it is a direct method, unlike integral-

equation method and FEM;

• FDTD is robust as the sources of error for this method are well studied and can be

restricted for a wide variety of problems;

• FDTD is systematic in the sense that it is easy to adapt to any problem without

much effort. It does not require, for example, the reformulation of the mesh like

integral-equation method and FEM;

• FDTD handles nonlinearities and impulse responses naturally.

However, there is one other option similar to FDTD that conserves some of the ad-

vantages listed above, while solving the problem of numerical phase velocity anisotropy

found in FDTD: the Pseudospectral Time-Domain (PSTD) method. In FDTD, this anisotropy

can be mitigated by using the different meshes such as the truncated octahedron lattice or

adopting higher order finite-difference derivatives. The PSTD method entirely changes

the way the spatial derivatives are evaluated, using Discrete Fourier Transform (DFT)

with Fast Fourier Transform (FFT), or Discrete Chebyshev Transform (DCT), to obtain an

almost isotropic numerical dispersion relation. However, we chose to foucus on the FDTD

method since it has better performance. A brief discussion of the PSTD method is given

in appendix A.

3.2 The Finite-Difference Time-Domain method

3.2.1 Yee cell and the leapfrog scheme

The FDTD method samples the simulation domain in a regular mesh composed of

many cells, each of which contains values for the components of the electric and magnetic

1A formal definition of depositing particle quantities will be given ahead, but essentially it is the process of
transforming a particle related quantity, such as charge and velocity, and transforming it into a field on the
mesh, like charge density or current density.

3. NUMERICAL MODELS 17

FIGURE 3.1: The Yee cell. The electric field components are stored in the centre of the
minimal faces of the cell and the magnetic field components are stored in the centre of

the minimal edges.

vector fields, as well as, scalar fields such as the charge density, and the dielectric constant.

Each of these values can be sampled at a different location within the cell. In most cells,

the components of the electric and magnetic fields will be positioned so as to ease the

calculation of the curl of one of the fields and placing the result on the other field. Also,

the charge density sampling will usually be aligned with the components of the electric

field to facilitate the application of the Gauss law.

Given that a complex cell shape falls under the same problems of FEMs described

above, the original Yee cell [22] is the best option and can be seen in figure 3.1. Compared

with collocating all components at the centre of the cell, this method reduces the spacing

in the finite-difference by half while not incurring in any additional calculations, thus

maintaining the truncation error.

Equipped with the Yee cell, we can now outline the FDTD method. We consider the

minimal edges and faces, and their respective vector field components, to belong to the

cell indexed with i, j, and k. We also consider the fields
(

Ex|i,j,k , Ey
∣∣
i,j,k , Ez|i,j,k

)
and(

Dx|i,j,k , Dy
∣∣
i,j,k , Dz|i,j,k

)
to be sampled at the faces, the

(
Bx|i,j,k , By

∣∣
i,j,k , Bz|i,j,k

)
and(

Hx|i,j,k , Hy
∣∣
i,j,k , Hz|i,j,k

)
to be sampled at the edges, and scalar fields to be stored at the

centre of the cell. With this scheme we can formulate the temporal evolution of the electro-

magnetic field based on equations (2.2c) and (2.2d) as a set of finite-difference equations

18
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

Dx|t+∆t
i,j,k = Dx|ti,j,k + ∆t

 Hz|
t+ ∆t

2
i,j+1,k − Hz|

t+ ∆t
2

i,j,k

∆y
+

Hy
∣∣t+ ∆t

2
i,j,k − Hy

∣∣t+ ∆t
2

i,j,k+1

∆z
− Jx|

t+ ∆t
2

i,j,k

 (3.1a)

Dy
∣∣t+∆t
i,j,k = Dy

∣∣t
i,j,k + ∆t

 Hx|
t+ ∆t

2
i,j,k+1 − Hx|

t+ ∆t
2

i,j,k

∆z
+

Hz|
t+ ∆t

2
i,j,k − Hz|

t+ ∆t
2

i+1,j,k

∆x
− Jy

∣∣t+ ∆t
2

i,j,k

 (3.1b)

Dz|t+∆t
i,j,k = Dz|ti,j,k + ∆t

 Hy
∣∣t+ ∆t

2
i+1,j,k − Hy

∣∣t+ ∆t
2

i,j,k

∆x
+

Hx|
t+ ∆t

2
i,j,k − Hx|

t+ ∆t
2

i,j+1,k

∆y
− Jz|

t+ ∆t
2

i,j,k

 (3.1c)

Bx|
t+ 3∆t

2
i,j,k = Bx|

t+ ∆t
2

i,j,k + ∆t

 Ez|t+∆t
i,j−1,k − Ez|t+∆t

i,j,k

∆y
+

Ey
∣∣t+∆t
i,j,k − Ey

∣∣t+∆t
i,j,k−1

∆z

 (3.2a)

By
∣∣t+ 3∆t

2
i,j,k = By

∣∣t+ ∆t
2

i,j,k + ∆t

(
Ex|t+∆t

i,j,k−1 − Ex|t+∆t
i,j,k

∆z
+

Ez|t+∆t
i,j,k − Ez|t+∆t

i−1,j,k

∆x

)
(3.2b)

Bz|
t+ 3∆t

2
i,j,k = Bz|

t+ ∆t
2

i,j,k + ∆t

 Ey
∣∣t+∆t
i−1,j,k − Ey

∣∣t+∆t
i,j,k

∆x
+

Ex|t+∆t
i,j,k − Ex|t+∆t

i,j−1,k

∆y

 , (3.2c)

where ∆t is the temporal discretization, and ∆x, ∆y, and ∆z are the spatial discretizations

and side lengths of the Yee cell. Using these equations to evolve the field satisfies auto-

matically equations (2.2a) and (2.2b), as long as they are obeyed by the initial conditions.

The superscripts t− 1
2 , t, t− ∆t

2 and t + ∆t represent the time at which the fields are eval-

uated, and so, the electric and magnetic fields are interleaved both in space and time. As

a result, the time derivatives are centred, thus improving the error fromO (∆t) toO
(
∆2

t
)
.

This technique is called leapfrog.

A full step also includes equations (2.3) and (2.4) whose numerical application is di-

rect. The cycle starts with Dt, Et, Bt+ ∆t
2 , Ht+ ∆t

2 and has the following steps

1. apply equations (3.1a) to (3.1c): Dt → Dt+∆t ;

2. apply equation (2.3): Et → Et+∆t ;

3. apply equations (3.2a) to (3.2c): Bt+ ∆t
2 → Bt+ 3∆t

2 ;

4. apply equation (2.4): Ht+ ∆t
2 → Ht+ 3∆t

2 .

Although this discretization primes for its simplicity, electromagnetic waves evolved

using this algorithm no longer satisfy the normal dispersion relation of electromagnetic

3. NUMERICAL MODELS 19

FIGURE 3.2: Spherical plot of the velocity anisotropy of the Yee cell calculated for λ =
500 nm, ∆x = ∆y = ∆z = λ/50, and ∆t = 0.1∆x/c. The distance from the origin to the
surface represents the velocity of the wave for that direction in space. The values are
renormalized and the distance to the centre is equal to v−min{v}

max{v}−min{v} for velocity v. As
shown, the directions of propagation aligned with the axes of the grid have the lowest
velocity. The velocity increases to its maximum along the the directions (±1, ±1, ±1).

radiation (ω

c

)2
= k2

x + k2
y + k2

z,

following instead a distorted version given by[
1

c∆t
sin
(

ω∆t

2

)]2

=

[
1

∆x
sin
(

kx∆x

2

)]2

+

[
1

∆y
sin
(

ky∆y

2

)]2

+

[
1

∆z
sin
(

kz∆z

2

)]2

.

This dispersion relation causes a spatial anisotropy of the velocity of propagation of waves

along different directions, as shown in figure 3.2. Figure 3.3, on the other hand, shows the

dependence of the anisotropy on ∆x.

20
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

FIGURE 3.3: Percentage difference between the maximum and minimum velocities
vmax−vmin

2(vmax+vmin)
as a function of Nλ = λ/∆x. For small Nλ the velocity anisotropy is very

large, meaning that waves with the same wavelength will propagate with different ve-
locities in different directions. This effect can introduce numerical distortions in complex

wavefronts.

The FDTD method, as outlined above, is only stable if the following Courant relation

is obeyed

∆t ≤
1

c
√

1
∆2

x
+ 1

∆2
y
+ 1

∆2
z

.

The relation is better understood in this simpler form for a cubic cell (∆x = ∆y = ∆z = ∆)

∆t ≤
∆

c
√

3
.

Furthermore, the minimum number of grid points per wavelength Nλ for the smallest

wavelength is considered to be around 10 [23]. There are methods to overcome the Courant

limit but they only apply in situations where the maximum ∆ is limited by the geometrical

features of the simulation [21].

3. NUMERICAL MODELS 21

3.2.2 Initial conditions

As mentioned before, evolving the electromagnetic field through the Faraday and Am-

pere laws (equations (2.2c) and (2.2d)) ensures the validity of the Gauss laws for electric

and magnetic fields (equations (2.2a) and (2.2b)), as long as they are met by the initial

conditions. The initial fields D, E, B, and H can not be uniquely determined for a general

initial situation with charge density ρ, current density J, polarization P, and magnetiza-

tion M. This can be understood by considering the Jefimenko equations, which contain

the retarded time term [24]. Completely determining the fields at the initial time t = 0

would require knowing ρ and J at times t < 0. Since that is impossible, the best option

is to use electrostatic and magnetostatic approximations where the fields can be obtained

by solving four Poisson equations, specifically for a scalar potential φ, and the three com-

ponents of the vector potential A

∇2φ = −ρ f

∇2A = µ0J f ,

and then applying the gradient and curl according to

D = −∇φ (3.3)

B = ∇×A. (3.4)

Numerically, the calculation of equations (3.3) and (3.4) can be done using FFTs as

D = ∇
(
F−1

{
− 1

k2F
{

ρ f
}})

(3.5)

B = ∇×
(
F−1

{
− 1

k2F
{

J f
}})

, (3.6)

where k is the spatial frequency in reciprocal space. This solution will be valid if∣∣ρ f (tr, r′)− ρ f (0, r)
∣∣∣∣ρ f (0, r)

∣∣ � 1∣∣J f (tr, r′)− J f (0, r)
∣∣∣∣J f (0, r)

∣∣ � 1,

with retarded time

tr =
|r− r′|

c
,

for any positions r and r′ in the simulation domain.

22
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

Another option is to create simulation scenarios where the initial conditions corre-

spond to cases with simple solutions. For example, starting with a globally neutral dis-

tribution of particles, where in each point of space there is as much positive as negative

charge by matching charges with opposite signs. Also, when simulating intense electro-

magnetic pulses that will rapidly increase the kinetic energy of the particles, it is possible

to assume that the thermal velocities of the particles are insignificant, and all the charges

are initially at rest. This type of initial condition is known as quiet start.

3.2.3 Boundary conditions

Typically, there are 3 types of boundary conditions that are implemented with FDTD:

• Periodic Boundary Conditions (PBC);

• Absorbing Boundary Conditions (ABC);

• Reflecting Boundary Conditions (RBC).

With PBC, a wave that exits the simulation domain at some boundary immediately reen-

ters the domain in the opposite boundary. This is the easiest boundary condition to im-

plement and is formally equivalent to replacing the indices in equations (3.1a) to (3.1c)

and (3.2a) to (3.2c) according to

i→ i mod Nx, (3.7)

j→ j mod Ny, (3.8)

k→ k mod Nz. (3.9)

where Nx, Ny, and Nz are the number of Yee cells along each dimension. Furthermore,

for the initial conditions, the method outlined using FFTs naturally follows the periodic

boundary conditions.

With the ABC, a wave that exits the simulation domain is absorbed at the boundary

and never reenters the domain again. This type of boundary condition is used many times

to simulate the effects of a physically boundless domain. Here we will look into two

different types of ABC: the Uniaxial Perfectly Matched Layer (UPML), a standard with

the FDTD method but difficult to implement and computationally costly, and a method

we called Multiplicative Absorbing Boundary Conditions (MABC) which was created as

a simple and fast algorithm to obtain some crude results fast. However, we found that

3. NUMERICAL MODELS 23

the method performed surprisingly well (see section 4.2.1). Finally, the RBC are used to

simulate, for example, waveguides, plasmas contained by a confinement field, or other

material boundaries. Although they are not especially difficult to implement, they are

seldom used to simulate models of propagating electromagnetic fields and will not be

considered here.

3.2.3.1 Uniaxial Perfectly Matched Layer (UPML)

Starting with the UPML, the Maxwell equations have to be modified to accommodate

the boundary conditions. Equation (3.1a) becomes

Dx|t+∆t
i,j,k =

(
2ε0κy − σy∆t

2ε0κy + σy∆t

)
Dx|ti,j,k +

(
2ε0∆t

2ε0κy + σy∆t

)
× Hz|

t+ ∆t
2

i,j+1,k − Hz|
t+ ∆t

2
i,j,k

∆y
+

Hy
∣∣t+ ∆t

2
i,j,k − Hy

∣∣t+ ∆t
2

i,j,k+1

∆z
− Jx|

t+ ∆t
2

i,j,k

 .
(3.10)

The constitutive relations also have to be changed

Ex|t+∆t
i,j,k =

(
2ε0κz − σz∆t

2ε0κz + σz∆t

)
Ex|ti,j,k +

(
1

(2ε0κz + σz∆t) ε0

)
×[

(2ε0κx + σx∆t) Dx|t+∆t
i,j,k − (2ε0κx − σx∆t) Dx|ti,j,k − Px|t+∆t

i,j,k

]
.

(3.11)

Equation (3.2a) becomes

Bx|
t+ 3∆t

2
i,j,k =

(
2ε0κy − σy∆t

2ε0κy + σy∆t

)
Bx|

t+ ∆t
2

i,j,k +

(
1

(2ε0κz + σz∆t) ε0

)
× Ez|t+∆t

i,j−1,k − Ez|t+∆t
i,j,k

∆y
+

Ey
∣∣t+∆t
i,j,k − Ey

∣∣t+∆t
i,j,k−1

∆z

 ,
(3.12)

and the final constitutive relation becomes

Hx|t+∆t
i,j,k =

(
2ε0κz − σz∆t

2ε0κz + σz∆t

)
Hx|ti,j,k +

(
1

(2ε0κz + σz∆t) µ0

)
×[

(2ε0κx + σx∆t) Bx|t+∆t
i,j,k − (2ε0κx − σx∆t) Bx|ti,j,k

]
− Mx|t+∆t

i,j,k .
(3.13)

The equations for the missing components can be obtained by permuting the (i, j, k) and

(x, y, z) indices [21].

By inspecting the equations above, it is clear that, outside the borders κx, κy, κz = 1 and

σx, σy, σz = 0, so that the equations simplify to the normal equations from section 3.2. At

the borders, the numerical parameters κx and σx must vary smoothly to avoid numerical

24
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

reflections

kx(x) =


1 +

(
κ−x,max − 1

)
·
(

d−x −x
d−x

)m
, for 0 ≤ x < d−x

1, for d−x ≤ x ≤ Lx − d+x

1 +
(
κ+x,max − 1

)
·
(

x+Lx−d+x
d+x

)m
, for Lx − d+x < x ≤ Lx

(3.14)

σx(x) =


(

d−x −x
d−x

)m
σ−x,max, for 0 ≤ x < d−x

0, for d−x ≤ x ≤ Lx − d+x(
x+Lx−d+x

d+x

)m
σ+

x,max, for Lx − d+x < x ≤ Lx

, (3.15)

where Lx = Nx∆x, d− and d+ are the thicknesses of the boundaries at the start and end

of the simulation domain, and m is an integer power typically chosen to be 3 or 4. Again,

the remaining equations are obtained by cycling through the indices (x, y, z).

With a chosen d, m, and reflection coefficient R, for a wave placed perpendicular to

the boundary, the optimal σx,max is

σx,max = − (m + 1) log(R)
2µ0cd

.

3.2.3.2 Multiplicative Absorbing Boundary Conditions (MABC)

As briefly discussed, this method was created in the course of this thesis as a simple

and fast method to obtain rudimentary ABC, but produced unexpectedly good results, as

will be discussed in section 4.2.1. The method consists of simply multiplying the fields D,

E, B, and H by a spatially varying coefficient

α = αx(x)αy(y)αz(z),

where

αx(x) =


(

d−x −x
d−x

)m
α−x,max, for 0 ≤ x < d−x

0, for d−x ≤ x ≤ Lx − d+x(
x+Lx−d+x

d+x

)m
α+

x,max, for Lx − d+x < x ≤ Lx

, (3.16)

with α−x,max, α+
x,max ∈]0, 1]. The remaining equations are, again, obtained by permuting the

lower indices.

3.3 Numerical methods for fluids

To model the transport dynamics of the fluids, it is necessaary to take into account,

not only the nature of the fluid and whether it is neutral or charged, but also whether the

3. NUMERICAL MODELS 25

conditions of the fluid are close to local equilibriums or not. In the case of neutral fluids

in equilibrium, the field of study of the hydrodynamic equations and their numerical

solutions is usually known as Computational Fluid Dynamics (CFD). When combined

with methods of computational electrodynamics, many of the numerical methods used in

CFD can be adapted to model charged fluids in equilibrium and obtain solutions of the

MHD equations.

For situations that clearly are out of equilibrium, such as the effects produced by ultra-

short laser pulses propagating through a fluid, there are specific approaches. For example,

neutral fluids out of equilibrium are described by the Boltzmann equation, which consid-

ers the evolution of the probability function of finding a particle in a 6-dimensional phase

space. Although direct simulations of the 6-dimensional phase-space are sometimes used,

the main method is DSMC. Finally, charged fluids out of equilibrium are described by the

Vlasov equation, for which the main numerical method is the PIC. Again, direct simula-

tions of the entire phase-space are rarely used.

It is important to note that the intention of this work is to combine a numerical model

describing the fluid with a model for the electromagnetic field, in particular using the

FDTD method. This will automatically exclude the usage of FEMs and other complex

methods and favour finite-difference methods. For the hydrodynamic equations two of

the classical examples of methods are the Marker-And-Cell (MAC) [25] and PIC [26] for in-

compressible and compressible fluids, respectively. The main distinction between these

algorithms and directly integrating the hydrodynamic equations with finite-difference

(Direct Numerical Simulation (DNS)), is the inclusion of free surfaces in the fluid2. Es-

sentially, both methods employ the MAC cell illustrated in figure 3.4, but the particles

play different roles. In the MAC method the particles are moved according to the velocity

field (interpolated to their position) and any cell that contains particles is considered to

contain fluid. This solves the problem of division by zero when dividing by the density

ρ in equation (2.12). In the original PIC method, the particles take a more prominent role

as they actually automatically ensure the conservation of mass (corresponding to equa-

tion (2.11a)) and account for the advection terms, v · ∇v and v · ∇ε, in equations (2.11b)

and (2.11c) by transferring properties from the previous cell to the next as particles move

between them. Although the MAC has become obsolete, the PIC method is still widely

2A free surface in the fluid is a boundary between that fluid and another fluid or vacuum.

26
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

FIGURE 3.4: The MAC grid cell. Velocity components are stored in the minimal faces of
the cell and the pressure p is represented at the center.

used and has several variations, such as Fluid Implicit Particle (FLIP) and Affine Particle-

In-Cell (APIC) [27].

Some numerical methods for MHD adopt methods mentioned above and couple them

with FDTD. Examples of this are the FLIP-MHD method [28] and the MAC-Yee scheme [29],

where the Yee and MAC cells are combined.

Neutral fluids out of equilibrium are usually modelled by the Boltzmann equation. A

direct approach would be to discretize the 6-dimensional phase-space, for example with

finite-differences, and integrate the Boltzmann equation. However, for most situations,

this requires huge amounts of computer memory and consequently very time-consuming

computations. A normally favoured approach is DSMC, where the motion of several

particles is tracked. Up to now, the description of DSMC is indistinct from the methods

of MD. The difference is that in DSMC the number of numerical particles is much smaller

than the number of particles in the fluid, with each simulated particle representing many

real particles. This requires the collision cross section of each numerical particle to be the

sum of the cross sections of the particles it represents, to maintain the overall number

of collisions. The generic DSMC method starts by moving the particles without collision

(in most cases this is a simple rectilinear uniform motion). Afterwards, the simulation

domain is divided into cells with each particle pair in the same cell having a probability

of collision proportional to the cross sections, velocity difference, and time step. The new

velocities after the collision are updated according to a model, for example, the Hard

3. NUMERICAL MODELS 27

Sphere model. The smaller the cells the closer to O(n) the time complexity of algorithm

will be, with n particles. This method is used, for example, in atmospheric vehicle re-

entry, and upper atmosphere dynamics simulations.

Finally, plasmas out of equilibrium can be described by the Vlasov equation, which

also admits a direct approach like the Boltzmann equation. Again, a more efficient method

is based on simulating particles. The PIC method for plasmas, despite sharing its name

with the method for compressible fluids, is very different in its usage of particles. While in

the hydrodynamic PIC the information of the state of the fluid is split between fields and

particles, the plasma PIC uses them to represents all the characteristics of the fluid. Fur-

thermore, the particles have a finite size, which acts as a low-pass filter on the probability

density function f . Despite not being point-like, they can pass through each other, and as

they intersect their mutual interaction decreases, following the collisionless assumption

made by Vlasov. The most common version of this method calculates the electromagnetic

field through a FDTD algorithm. Then, the remaining components are a particle pusher,

algorithms for interpolating the field quantities onto the particles, and conversely, algo-

rithms for depositing the particle properties onto the mesh, for example, charge density

and current density (the latter is the subject of various specialized methods).

In this thesis we chose to focus on the PIC method as it is one of the most general

methods for describing fluids. The usage of particles is in line with the DSMC and adding

collisions is possible with minor adjustments. Furthermore, the PIC method can easily be

adapted to include other forces and potentials between the particles. This scheme will not

be ideal in situations where the particles are in equilibrium but, its generality compensates

for this drawback. The method will be examined in detail in the next section.

3.4 The Particle-In-Cell method

Simulating plasmas by following the paths of several particles began in the late 1950’s

and early 1960’s, partly as an extension of electron beam simulations done during the

1950’s. In PIC codes, each simulated particle actually represents several real particles in

the plasma. This is a necessary reduction of the degrees of freedom since most plasmas

of interest are several Debye lengths λD ∝
√

T/n in size and the number of particles in a

single Debye cube ND = neλ
3
D tends to be very large as seen in table 3.1 [30].

Furthermore, the simulated particles are usually not point-like but are instead a distribu-

tion of charge or cloud, normally called super-particle. This characteristic arises naturally

28
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

TABLE 3.1: The electron concentration ne, electron temperature Te, Debye length λD, and
number of particles per Debye cube ND listed for several mediums.

Plasma ne
(
m−3) Te (K) λD (m) ND

Solar core 1032 107 10−11 10−1

Tokamak 1020 108 10−4 108

Gas discharge 1016 104 10−4 104

Ionosphere 1012 103 10−3 103

Magnetosphere 107 107 102 1013

Solar wind 106 105 10 109

Interstellar medium 105 104 10 108

Intergalactic medium 1 106 105 1015

from the usage of a grid for calculating the charge and current densities from the super-

particles, but is also a useful trait that attenuates inter-particle forces has they overlap,

thus obeying the collisionless assumption made by Vlasov. Of course, depending on the

size of the super-particles, the fine details of the plasma behaviour will be obfuscated,

leaving only the overall features [31,32].

3.4.1 Discretization of phase-space

The PIC method is a form of integrating the Vlasov equations as shown in appendix B.

We start by sampling the 6-dimensional phase space of the CBE with super-particles p each

representing wp real particles

f (r, p, t) = ∑
p

fp (r, p, t) = ∑
p

S
(
r− rp (t)

)
δ3 (p− pp (t)

)
, (3.17)

where S is the shape factor and δ is the Dirac delta function. We will further assume that

1.
∫ +∞
−∞ Si(x) dx = 1 for i ∈ {x, y, z};

2. S (r) = Sx (x) Sy (y) Sz (z);

3. Sx, Sy and Sz are even;

4. lim
i→±∞

Si (i) = 0 for i ∈ {x, y, z}.

Assumptions 2 and 3 simplify the derivations while not affecting the generality of the

results.

3. NUMERICAL MODELS 29

The objective now is to deduce the equations governing rp(t) and pp(t) from the

Vlasov equation. We start with the CBE expressed here in 3D Cartesian coordinates

∂t f + ∑
i

vi∂i f + ∑
i

Fi∂pi f = 0, (3.18)

with i = x, y, z, and restate equation (3.17) in the same form, dropping the time depen-

dence from notation

fp = wp ∏
i

Si
(
i− ip

)
δ
(

pi − pi,p
)

.

The first argument comes from the fact that the CBE is linear (Vlasov’s equation’s nonlin-

earity is due to the force term depending on f). With this argument, we can treat each fp

independently.

Taking the first moment of the CBE along the position by multiplying both sides of

equation (3.18) by position coordinate i and integrating over the entire phase space we

get

wp∂tip − wpvi,p + 0 = 0,

and joining for all i

ṙp = vp.

The next equation comes from taking the first moment along the momentum pi. Ob-

taining

wp∂t pi,p + 0− wiFi = 0

or in vector form

ṗp = F.

The full derivation is shown in appendix B.

3.4.1.1 Equations of motion for the super-particles

Joining the results of the previous section we get

ṙp = vp

ṗp = F,

which is exactly the same as equations (2.6a) and (2.6b). Thus, the super-particles move

as if they were point particles.

30
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

The manipulations of the third term were made assuming that F is constant. Relaxing

this condition to include a dependence of the force on the position, and following through

the same derivation, will yield the system of equations

ṙp = vp

ṗp =

+∞∫
−∞

F(r)S(r− rp)d3r
.

(3.20a)

(3.20b)

3.4.1.2 The shape factors

An appropriate choice for shape factor must meet the conditions already established

earlier, both analytically and under the discretization of the Yee cell. The common choice

is the family of b-spline functions

b0 (x) =


1, if− 1

2 < x 6 1
2

0, else

bn (x) = b0 (x) ∗ bn−1 (x) ,

where ∗ denotes the convolution. Then, the shape factor is

Sn(r) = bn

(
x

∆x

)
bn

(
y

∆y

)
bn

(
z

∆z

)
.

The b-splines ensure that the conversion from continuous space to the Yee mesh does

not change the property

+∞∫
−∞

Sn(r− rp)d3r = 1 → ∑
i,j,k

Sn(rijk − rp) = 1

for any particle position rp, with rijk denoting the positions of the grid points. The most

commonly used in PIC codes are the S0 and S1 as they match nearest point interpolation and

trilinear interpolation respectively, in equation

ϕp = ∑
i,j,k

ϕijk Sn
(

xijk − xp
)

Sn
(
yijk − yp

)
Sn
(
zijk − zp

)
, (3.21)

where ϕ is a generic scalar field, ϕp is the value of the field at the position of the particle,

ϕijk is the sampled value in the Yee cell,
(
xijk, yijk, zijk

)
is the position of the sampling

points, and
(
xp, yp, zp

)
is the position of the particle. For vector fields, this process is

repeated for each component with the correct grid point positions. Conversely, to deposit

3. NUMERICAL MODELS 31

particle quantities onto the mesh the standard method is

ϕijk =
1

∆x ∆y ∆z
∑

p
ϕpSn

(
xijk − xp

)
Sn
(
yijk − yp

)
Sn
(
zijk − zp

)
, (3.22)

where ϕp is the quantity of interest of particle p. Again, for vector quantities, the method

is repeated for each component.

3.4.2 Particle pusher

One of the key components of any PIC code is the particle pusher, used to integrate

the Vlasov equation. Equations (3.20a) and (3.20b) are Ordinary Differential Equations

(ODEs) and many general methods could be used, such as Adams-Bashforth or Runge-

Kutta methods. However, the statistical nature of the phase space sampling does not

justify using high order instances of these methods. Furthermore, the coupling with the

FDTD method calls for a similar method for the particles. The standard discretization, as

established by Boris [33], is

rt+∆t − rt

∆t
= vt+ ∆t

2

γt+ ∆t
2

vt+ ∆t
2
− γt− ∆t

2
vt− ∆t

2

∆t
=

q
m

(Et + v̄t × Bt) ,

(3.23a)

(3.23b)

where v̄t is the the velocity at time t and is obtained as a function of vt− ∆t
2

and vt+ ∆t
2

.

Different pushers will have different definitions for v̄t.

3.4.2.1 Boris pusher

The particle pusher developed by Boris is considered the de facto standard as it con-

serves energy while requiring no linear algebra solvers since it is a direct method [33]. The

closing relation for v̄t proposed by Boris is

v̄t =
γt+ ∆t

2
vt+ ∆t

2
+ γt− ∆t

2
vt− ∆t

2

2
√

1 +
(

γt− ∆t
2

vt− ∆t
2
+ q ∆t

2m Et

) ,

This pusher conserves energy for E = 0 and conserves phase-space volume according

to Liouville’s theorem [34].

Although this pusher is very robust, and is the best choice for non-relativistic PIC

codes, it does present a flaw. When the electromagnetic field and the velocity of the parti-

cle are such that E + v× B = 0, with E, B 6= 0, it results in a spurious force [35].

32
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

3.4.2.2 Vay pusher

The Vay pusher eliminates the spurious force of the Boris pusher by introducing the

alternative closing relation [35]

v̄t =
vt− ∆t

2
+ vt+ ∆t

2

2
.

Substituting in equation (3.23b) yields the following leapfrog pusher

ut = ut− ∆t
2
+

q ∆t

2m

(
Et + vt− ∆t

2
× ut

)
ut+ ∆t

2
= s

(
u′ +

(
u′ · p

)
p + u′ × p

)
,

with the following relations

u = γv

u′ = ut +
q ∆t

2m
Et

t =
τ

γt+ ∆t
2

s =
1

1 + t2

τ =
q ∆t

2m
Bt =

q ∆t

4m

(
Bt− ∆t

2
+ Bt+ ∆t

2

)

γt+ ∆t
2
=

√√√√σ +
√

σ2 + 4
(
τ2 + u∗2

)
2

σ = 1 +
u′2

c2 − τ2

u∗ =
u′ · τ

c
.

This particle pusher can maintain good agreement with analytical results up to γ =

104, while the Boris pusher experiences a significant discrepancy from the analytical so-

lution at γ = 3. There is, however, a larger amount of calculations to be made, which

impacts the run time of this algorithm. The Vay pusher is also reported as not being

volume preserving and as having larger (≈ 102) energy fluctuations [34].

3. NUMERICAL MODELS 33

3.4.3 Current deposition

Using the standard method for depositing particle quantities onto the grid outlined in

equation (3.22), and specifying it for current density J at the faces of the Yee cell (since it

is added to E in equations (3.1a) to (3.1c)), yields

Jx
ijk =

1
∆x ∆y ∆z

∑
p

wpqpvx
pSn

(
xx

ijk − xp

)
Sn

(
yx

ijk − yp

)
Sn

(
zx

ijk − zp

)
Jy
ijk =

1
∆x ∆y ∆z

∑
p

wpqpvy
pSn

(
xy

ijk − xp

)
Sn

(
yy

ijk − yp

)
Sn

(
zy

ijk − zp

)
Jz
ijk =

1
∆x ∆y ∆z

∑
p

wpqpvz
pSn

(
xz

ijk − xp

)
Sn

(
yz

ijk − yp

)
Sn

(
zz

ijk − zp

)
,

where the grid points are located at(
xx

ijk, yx
ijk, zx

ijk

)
=

(
i∆x, j∆y +

1
2

, k∆z +
1
2

)
(

xy
ijk, yy

ijk, zy
ijk

)
=

(
i∆x +

1
2

, j∆y, k∆z +
1
2

)
(

xz
ijk, yz

ijk, zz
ijk

)
=

(
i∆x +

1
2

, j∆y +
1
2

, k∆z

)
.

It is well known that this “naive” method leads to the violation of the equation of

charge conservation [36–39]

ρ̇ +∇ · J = 0, (3.25)

despite the charge itself being exactly conserved as long as no super-particle disappears.

The error in the numerical estimation of the current density J will lead to the violation

of the Gauss equation for the electric field. The first methods developed to tackle this

problem were based on solving the Poisson equation at each step [31] or adding a pseudo-

current [40]. The first method that focused on calculating a charge conserving current density

was devised by Villasenor and Buneman [37], and it was conceived for super-particles of

shape factor n = 0. Later, Esirkepov developed a general deposition method for any

shape factor [38] that has become the standard in many PIC codes [41–43]. There are, how-

ever, other charge conservation methods such as the zig-zag method of Umeda developed for

n = 1, 2 [39,44] and later generalized for any order [45]. In this thesis we chose to work with

the Esirkepov method as it is more general and used by many PIC codes.

34
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

With the Esirkepov method, the current density J is evaluated with the following equa-

tions

Jx
i+1,j,k − Jx

ijk = −
∆x

∆t
Wx

ijk

Jy
i,j+1,k − Jy

ijk = −
∆y

∆t
Wy

ijk

Jz
i,j,k+1 − Jz

ijk = −
∆z

∆t
Wz

ijk,

(3.26a)

(3.26b)

(3.26c)

where

Wx
ijk =

wpqp

∆x ∆y ∆z
∑

p

[
1
3
S
(

xt+∆t
p , yt+∆t

p , zt+∆t
p

)
− 1

3
S
(

xt
p, yt+∆t

p , zt+∆t
p

)
+

1
6
S
(

xt+∆t
p , yt

p, zt+∆t
p

)
− 1

6
S
(

xt
p, yt

p, zt+∆t
p

)
+

1
6
S
(

xt+∆t
p , yt+∆t

p , zt
p

)
− 1

6
S
(

xt
p, yt+∆t

p , zt
p

)
+

1
3
S
(

xt+∆t
p , yt

p, zt
p

)
− 1

3
S
(

xt
p, yt

p, zt
p

)]

Wy
ijk =

wpqp

∆x ∆y ∆z
∑

p

[
1
3
S
(

xt+∆t
p , yt+∆t

p , zt+∆t
p

)
− 1

3
S
(

xt+∆t
p , yt

p, zt+∆t
p

)
+

1
6
S
(

xt
p, yt+∆t

p , zt+∆t
p

)
− 1

6
S
(

xt
p, yt

p, zt+∆t
p

)
+

1
6
S
(

xt+∆t
p , yt+∆t

p , zt
p

)
− 1

6
S
(

xt+∆t
p , yt

p, zt
p

)
+

1
3
S
(

xt
p, yt+∆t

p , zt
p

)
− 1

3
S
(

xt
p, yt

p, zt
p

)]

Wy
ijk =

wpqp

∆x ∆y ∆z
∑

p

[
1
3
S
(

xt+∆t
p , yt+∆t

p , zt+∆t
p

)
− 1

3
S
(

xt+∆t
p , yt+∆t

p , zt
p

)
+

1
6
S
(

xt
p, yt+∆t

p , zt+∆t
p

)
− 1

6
S
(

xt
p, yt+∆t

p , zt
p

)
+

1
6
S
(

xt+∆t
p , yt

p, zt+∆t
p

)
− 1

6
S
(

xt+∆t
p , yt

p, zt
p

)
+

1
3
S
(

xt
p, yt

p, zt+∆t
p

)
− 1

3
S
(

xt
p, yt

p, zt
p

)]
,

(3.27a)

(3.27b)

(3.27c)

with

S(x, y, z) = Sn

(
∆x

(
i +

1
2

)
− x
)

Sn

(
∆y

(
j +

1
2

)
− y
)

Sn

(
∆z

(
k +

1
2

)
− z
)

.

3. NUMERICAL MODELS 35

Here, the method is outlined for multiple particles since this form will be useful latter for

the GPU implementation. It is important to note that the method assumes that∣∣∣xt+∆t
p − xt+∆t

p

∣∣∣ < ∆x∣∣∣yt+∆t
p − yt+∆t

p

∣∣∣ < ∆y∣∣∣zt+∆t
p − zt+∆t

p

∣∣∣ < ∆z.

This is not very limiting considering it leads to a constraint similar to the Courant condi-

tion

∆t <
1
c

min
{

∆x, ∆y, ∆z
}

, (3.28)

and is in fact less limiting for a cubic cell, where it simplifies to

∆t <
∆
c

.

3.4.4 Boundary conditions

For particles, the boundary conditions are simpler to implement than for the electro-

magnetic field. Again, the periodic boundary conditions are the default mechanism and

the other useful boundary type is the ABC.

For the periodic boundaries, first we have to take the new positions
(

xt+∆t
p , yt+∆t

p , zt+∆t
p

)
and replace them, at the end of the PIC loop, by(

xt+∆t
p , yt+∆t

p , zt+∆t
p

)
→
(

xt+∆t
p mod Lx, yt+∆t

p mod Ly, zt+∆t
p mod Lz

)
.

We must be careful, however, not to do this before calculating the current density since

traversing the entire length of the simulation domain, due to the periodicity, will surely

not meet condition (3.28). Next, to obtain the charge density necessary for the initial con-

ditions of the FDTD method, in periodic boundary conditions, we use equation (3.22) but

make the same index replacement of equations (3.7) to (3.9). Finally, for the current den-

sity, equations (3.26a) to (3.26c) are finite-difference equations that require the boundary

condition W(xmin) = W(xmax) = 0. Thus, equations (3.27a) to (3.27c) must have a larger

domain than the simulation by n + 1 at both ends along the indexed dimension, where n

36
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

is the shape factor order

Wx
ijk : −n− 1 ≤ i ≤ Nx + n + 1, xp → xp + ∆x(n + 1)

Wy
ijk : −n− 1 ≤ j ≤ Ny + n + 1, yp → yp + ∆y(n + 1)

Wz
ijk : −n− 1 ≤ k ≤ Nz + n + 1, zp → zp + ∆z(n + 1).

Only after calculating J can we apply the boundary conditions, essentially wrapping the

excess cells onto the other side

Jx,periodic
i+n+1,j,k = Jx

i+n+1,j,k + Jx
i+Nx+n+1,j,k , 0 ≤ i ≤ n + 1,

with similar equations for the remaining dimensions.

For the ABC, the case is simpler and it consists of simply eliminating particles with po-

sitions exceeding the boundaries. The non-physical electromagnetic field resultant from

eliminating the particles should be absorbed by the ABC of the field.

3.4.5 The PIC loop

The equations presented in sections 3.2 and 3.4 to push both the electromagnetic field

and the particles by an interval ∆t are summarized in figure 3.5. This is the best organi-

zation of the steps considering we are using the macroscopic Maxwell equations. If the

microscopic formulation was used, steps 2 and 4 would not be necessary and the equation

of steps 1 and 3 would the microscopic counterparts. Moreover, if the code was not rel-

ativistic, the previous positions of the particles would not be needed since they could be

calculated effortlessly from the velocity. For the relativistic case, since the velocity that is

saved is u = γv3, it is simpler to save the previous positions and reduce the computation

time.

3.5 Conclusions

This chapter revised the main numerical methods used to simulate a plasma or gas, as

a many-body problem involving atoms, ions, and electrons interacting with the electro-

magnetic field. As the result of a comparative study between the different methods, we

have adopted the FDTD and PIC methods for the implementation of this code. We also

3The normalized velocity is employed to use the full range of the floating point representation. Using the
velocity v would squeeze the values of ultra- relativistic particles close to c.

3. NUMERICAL MODELS 37

FIGURE 3.5: Diagram of the steps in the PIC loop. Each column contains all the necessary
fields and particle quantities at different times, the blue arrows represent time evolutions
related to the electromagnetic field, and the red arrows represent time evolutions related
to the particles. The green arrows are the exchange of information between the field
and the particles. Finally, the grey arrows represent the update of the previous quanti-
ties necessary for temporal interpolation and do not encompass any actual calculations.
For the blue arrows, number 1 in the figure corresponds to equations (3.1a) to (3.1c) or
equation (3.10) for the UPML, number 2 corresponds to equation (2.3) or equation (3.11),
number 3 corresponds to equations (3.2a) to (3.2c) or equation (3.12), and number 4 cor-
responds to equation (2.4) or equation (3.13). Numbers 5 and 6, in the blue arrows, match
equations equations (3.23a) and (3.23b), respectively. The remaining numbers, 7 and 8, in
the green arrows correspond to the Esirkepov current deposition and the interpolation of

the electromagnetic field.

analysed the limitations and range of validity of this methods, which are consistent with

the ranges of validity discussed in the previous chapter.

In the following chapter we will discuss how to adopt this numerical model imple-

mented as a parallel algorithm capable of running in either GPUs and CPUs.

Chapter 4

Implementation

The two previous chapters discussed the physical and numerical models used to de-

scribe the dynamical processes in plasmas and neutral atomic gases.

The current chapter summarizes the most important aspects associated with the de-

velopment of the simulation code, including the most relevant technical features. The

outcome of this chapter can be viewed as the result of a software engineering project that

balances constraints, objectives, and technological solutions.

Section 4.1 presents a brief review of the current GPU computing technologies and

software resources used in the development of this code. Section 4.2 addresses the imple-

mentation of the code, by providing details of the different classes and libraries behind its

modular structure, as well as, how they are integrated to function together. Finally, sec-

tion 4.3 discusses the tests used to validate the solver and to determine the performance

increase of GPUs relative to CPUs.

4.1 GPGPU computing

The use of GPUs to perform numerical calculations represented a revolution in sci-

entific computing. On one hand, it allowed to run on a single piece of hardware sim-

ulations that previously required computer clusters or supercomputers, while reducing

the communication latency in the calculations. On the other hand, it reduced the cost of

computing power, thus allowing anyone with a few thousand euros to have a supercom-

puting system on a desktop. This revolution, however, also implied a change in the way

we program simulation codes.

39

40
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

For many years the field of computational physics was mostly dominated by dis-

tributed memory systems, involving several computers or nodes linked in a network.

With the appearance of multi-core processors, numerical simulations evolved into hybrid

parallel computing schemes in order to take advantage of the new technology. The land-

scape of scientific computing changed again with the introduction of GPGPUs [46]. This

type of processor is based on the Single Instruction Multiple Data (SIMD) architecture,

as identified by Flynn’s taxonomy [47], and has arrays of processors that can execute an

instruction on several data entries at the same time. Compared to other parallel comput-

ing technologies, such as multi-core CPUs and clusters of single or multi-core CPUs, the

GPU not only packs more computing power onto a single chip, but it also allows easier

integration of several such devices into a single machine, due to the master-slave relation

with the CPU.

When compared to CPUs, which use the Multiple Instructions Multiple Data (MIMD)

paradigm, GPUs do not have as many control units, which allows the inclusion of more

Arithmetic Logic Units (ALUs) in their place (see figures 4.1 to 4.3). Put simply, the GPU

dedicates more transistors to do calculations than the CPU (see figure 4.3). This type of

processor usually has specialized memories, such as constant memory, which performs

a single access when several processors request the same memory location, and texture

memory which accelerates accesses based on the proximity of the processors and of the

data [48–50]. The devices inside a single machine already work in a distributed memory

scheme but intercommunication can be faster and easier to program, depending on the

particular device and API being used. A second level shared memory parallelism can still

be added using multiple machines.

The two main APIs available are NVidia’s CUDA, and OpenCL. The first is propri-

etary and works only on NVidia GPUs, while the other is open source and works on most

GPUs and CPUs. CUDA was launched in 2007 and is often the choice for scientific com-

puting due to its better support and efficient libraries of numerical methods such as linear

algebra, FFTs, machine learning, and others. OpenCL primes for its portability but is far

more prone to errors.

Programming on either of these APIs involves writing kernel1 code in C/C++ and

1The runtime used by CUDA and other APIs for GPU computing usually rely on master-slave structure
where host (the CPU) runs a “master” program that controls the execution of “slave” programs on the differ-
ent devices which perform the majority of the calculations. The “slave” programs that run on the the device
are commonly called kernels.

4. IMPLEMENTATION 41

FIGURE 4.1: Comparison between the theoretical performances of CPUs and GPUs in
FLOPS. We can see that the GPUs outperform CPUs, especially for single precision float-

ing point numbers. Adapted from CUDA Toolkit Documentation v8.0.

FIGURE 4.2: Comparison of the memory bandwidths of CPUs and GPUs. The GPUs
have an higher memory bandwidth, which is of great importance in scientific computing.

Adapted from CUDA Toolkit Documentation v8.0.

42
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

FIGURE 4.3: The CUDA architecture. We can see that a single instruction unit controls
processors. The reduction of the amount of control units permits a larger percentage of
transistors dedicated to data processing. Adapted from CUDA Toolkit Documentation v8.0.

handling raw memory arrays. To expedite the development of our solver while main-

taining performance, we used the ArrayFire library [51]. The abstraction provided by this

framework allows writing code for a single GPU that is modular and whose components

can be easily integrated with each other to make many distinct simulations. Also, it can

run on the CPU, allowing for easy comparison of performance between the two platforms.

4.2 Implementation model

Although the numerical model and algorithms presented in chapter 3 are paralleliz-

able, they cannot be implemented directly in GPU without adaptations to the specific

characteristics and runtime model of these devices. These adaptations must balance per-

formance, memory requirements, and other tradeoffs which will depend on simulation

parameters, such as the number of particles and Yee cells. Furthermore, the code must

have a modular structure and be able to interact with other simulation models associated

with other physical processes, which lead to the adoption of the library ArrayFire. The

combination of these constraints implies that the numerical model and the implementa-

tion scheme have important differences in structure and organization.

In particular, the SIMD architecture of the GPU forces us to think of programs differ-

ently. For example, the code must be written to take into account the synchronization of

4. IMPLEMENTATION 43

the calculations at each time step and how these calculations are distributed and orga-

nized in the hardware.

To address these issues, the code is built under the imperative and object oriented

programming paradigms. The C++ classes were mostly used to provide abstraction and

automatic error checking to an otherwise imperative code. The classes and their interde-

pendencies are presented in figure 4.4. The classes in grey are auxiliary and shown only

for completeness. The arrows show the interdependence of the classes, each requiring an

instance of the classes that point to it. The main classes in the figure are:

• Units - this class defines the units system in which the simulation is working, The

system of units can be defined by giving a variable representing one of the available

natural units systems or by giving the value of the units of length, mass, time, tem-

perature, and charge in SI. This class also contains the values of the fundamental

physical constants in the chosen units and in SI, the latter being accessible from the

class without an instance, since they are static member functions2.

• YeeMesh - this class defines an Yee mesh from values Nx, Ny, Nz, ∆x, ∆y, ∆z, ∆t,

and an instance of Units. Additionally, it can receive an af::dtype value to choose

floating point precision. This class provides the methods for calculating the sam-

pling locations for fields on the faces, edges and centre of the mesh.

• Field - this class is the basic unit of most calculations in the code. It can either

represent a scalar field sampled at the centre, or a vector field sampled at the centre,

faces, or edges of the Yee mesh. This class includes overloads of most operations

for abstraction, as well as, runtime error catching for unavailable operations such

as adding a centre field with an edge field. Taking this example, there is also the

Field.as method allowing the interpolation between the different types of vector

fields.

• EMF - this class takes an YeeMesh instance and generates the necessary fields to simu-

late the electromagnetic field. Boundary conditions can be added and the evolution

of the electromagnetic field is achieved by calling the method YeeMesh.push that

can take source terms of current density, polarization, and magnetization. This class

also checks the Courant condition from the characteristics of the mesh.
2This means that the functions or members within the class can be called outside the class without first

creating an instance of it.

44
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

FIGURE 4.4: Class structure of our code. The arrows represent the interdependencies
of the classes, with each class requiring an instance of the classes that point to it. The
structure in grey is included for completeness but contains only some auxiliary classes

for the boundary conditions of the FDTD method.

• Particles - this class acts mostly as container for several species of particles, it

requires an EMF instance and a list of Species instances. It also acts as a shortcut for

advancing all the species in time from a single command.

• Species - this class contains the mass, charge, and weight wp of a species of super-

particles, as well as, arrays containing the positions, previous positions and veloc-

ities of the super-particles. Each Species requires a reference to a Particles in-

stance, ultimately having access to the Units class. This class also contains member

functions for the position and momentum pushes (Vay pusher).

The Field and Species classes are the only two to handle numeric arrays directly.

Together with several auxiliary methods such as

• div - for calculating the divergent of Fields,

• curl - for calculating the curl of Fields,

• grad - for calculating the gradient of Fields,

• cross - for calculating the cross product between two vector Fields,

4. IMPLEMENTATION 45

they constitute the core of the numerical calculations and would have to be adapted to

extend the code to different hardware configurations. The abstraction provided by the

object oriented programming would allow the remainder of the code to be unchanged.

Sections 4.2.1 to 4.2.3 detail the various adaptations from the numerical methods to the

program, made respectively for the FDTD method, the Vay pusher, and the interpolation

and deposition of particle and field quantities.

4.2.1 FDTD method

Within the class EMF, the simple electromagnetic push is achieved by applying the aux-

iliary function curl which receives a source Field and a target FieldType and calculates

the curl with first order finite-differences in PBC. Since the EMF automatically initializes D

and E as face fields, and B and H as edge fields, the code

Dfield += dt * curl(Hfield, FieldType::FACE) - Jfield;

Bfield -= dt * curl(Efield, FieldType::EDGE);

summarizes equations (3.1a) to (3.1c) and (3.2a) to (3.2c).

Initializing the simulation of the electromagnetic field is achieved by calling the method

initialize from EMF, and providing the charge density, current density, polarization and

magnetization fields at time t = 0. This will generate the electric and magnetic fields

according to equations (3.5) and (3.6) and advance the magnetic fields to time t = ∆t
2 .

For the boundary conditions, the method addBoundaryCondition from EMF must be

called prior to initialization. In the case of UPMLs, equations (3.10) to (3.13) are used

instead of the regular push, but equations (3.14) and (3.15) only apply to the faces of the

simulation domain chosen by the user. Furthermore, since the UPMLs require 6 scalar

fields to be known at 6 different positions in the Yee cell (equating to 36 scalar fields),

we compute the values of κ and σ at each step instead of saving them in memory. The

MABC, on the other hand, are applied by simply multiplying the fields after the push.

These Boundary conditions only require a single scalar field to be known at 6 locations

in the cell and so we chose to calculate them once and save it in memory. It is important

to note that the EMF class automatically guarantees that two types of boundary conditions

are not placed on the same face.

46
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

FIGURE 4.5: Characterization of the attenuation of the MABC as a function of d+x and
α+x,max, the latter expressed more conveniently in number of cells n = d+x

∆x
. The blue line

matches the value of α+x,max that minimizes the reflection for each n

Figure 4.5 shows the characterization of the MABC. A plane wave was directed per-

pendicularly at the boundary for different values of d+x and α+
x,max in equation (3.16). De-

pending on how much attenuation we want for an incident wave, this plot allows us

to chose the appropriate values. As said before, these boundary conditions performed

surprisingly well and figure 4.6 shows the comparison between them and the UPMLs

for different boundary thickness and angles of incidence of the wave. We observed that

the MABC actually outperformed the UPMLs for a boundary of the same thickness with

optimal parameters for each. Although this result is surprising and the UPMLs did not

perform as reported in the literature [21] we did not find any inconsistencies in our imple-

mentation.

An important tool in FDTD left unmentioned in chapter 3 is the sources of electromag-

netic field. The EMF class includes the method addExternalCurrent which allows adding

external sources of current as defined by three functions (one for each component) that

4. IMPLEMENTATION 47

(A) (B)

FIGURE 4.6: Comparison between the attenuation of the UPML boundary conditions and
MABC as a function of (A) the thickness of the boundary, and (B) the angle of incidence

of the wave.

depend on space and time. This is also the first example of the small scale usage of func-

tional programming in our code.

4.2.2 Particle push

The particles are organized into different species each with a specific charge and mass.

This reduces the memory consumption of saving these constants for each particle and

matches the usual situations in a PIC code where many particles of the same type are used.

The other characteristic of the super-particles is the weight. For simplicity, we also chose to

make the weight a property of the species, although some PIC codes make this a property

of each super-particle within the species [41]. This is beneficial in highly heterogeneous

initial particle distribution.

With these definitions, the Vay pusher is applied directly, according to the equations

in section 3.4.2.2, since all particles are independent of each other. The Particles class

has two methods to apply the Vay pusher: pushPositions and pushVelocities. This is

necessary since these two steps are interceded by the FDTD push, as seen in figure 3.5.

The boundary conditions for the particles are applied automatically after the veloc-

ities are pushed forward in time. For the periodic boundary conditions the application

is direct. For the ABC, the ArrayFire function where is used to locate the indices of the

particles that are inside the simulation domain, and the array indexing is used to create

the new velocity array.

48
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

4.2.3 Particle-grid interaction

There are two situations where the fields and the particles must interact to achieve a

PIC code: interpolations of the fields to the positions of the particles and deposition of

particle quantities onto the grid as fields. For the interpolation we use equation (3.21)

and replace the summation over all cells with a summation only over the cells where the

shape factor of order n is nonzero

∑
i, j, k
−→

i2

∑
i=i1

j2

∑
j=j1

k2

∑
k=k1

,

where

i1 = Xp − n′, i2 = Xp + n′ + 1

j1 = Yp − n′, j2 = Yp + n′ + 1

k1 = Zp − n′, k2 = Zp + n′ + 1,

and

Xp =
⌊

xp
∆x

⌋
, Yp =

⌊
yp
∆y

⌋
, Zp =

⌊
zp
∆z

⌋
, n′ =

⌊ n
2

⌋
.

These equations are applied to every particle p at the same time through the ArrayFire

arrays.

The other interaction, the deposition, is achieved by applying equation (3.22) or equa-

tions (3.27a) to (3.27c). Because several particles may occupy the same space, the equa-

tions can not be applied to every particle at the same time due to data writing collision.

On the other hand, following those equations directly would involve an iteration through

every particle for every Yee cell, when only a small fraction of the particles contributes to

each cell.

When there are no collisions, the deposition would be achieved in ArrayFire by index-

ing an array with another array

phi[indices] += values;

If values had only a single value this could be achieved with the histogram function.

The more general version that we need, essentially a histogram with weighted entries,

is not available. In our solver, we used two different solutions. The first uses CUDA

4. IMPLEMENTATION 49

kernels directly and atomic operations to solve the data collision. The atomic operations

provided by CUDA ensure that the writing collisions in the data are resolved, but we

found several inconveniences. First, atomic operations for double precision floating point

numbers are only available for GPUs of computing capability 6.03 or higher. For lower

values (as is the case for the GPUs we have available) the solution from NVidia, based on

atomicCAS (atomic Compare And Swap), lowers performance considerably. The second

problem appears when using a GPU that is also connected to a display device since for

large simulations the video card driver prompts a timeout due to the kernel taking too

long to run. Solving this problem is possible by dividing the data into several blocks and

running the kernel sequentially for each block, incurring in more loss of performance.

Finally, despite the CPU version being far simpler to implement, we were unable to avoid

memory leaks when transferring the data from ArrayFire to common C++ pointers in the

CPU backend, despite following the documentation available. This would keep us from

running the program on the CPU during development and for comparing performances

between CPUs and GPUs

The second solution is the default mechanism in the code and uses several ArrayFire

functions:

• sort(out keys, out values, keys, values) - places the equally rearranged keys

and values in out keys and out values for sorted keys;

• scanByKey(keys, values) - similar to scan where each value of the returned array

is the sum of all values up to that index of the input array, this function returns the

scan of values while the integers in keys remain the same. When they change the

summation resets;

• where(input) - returns an array with the indices of the entries of inputwith boolean

value true;

• shift(input, n) - returns an array with all entries shifted cyclically by n.

With these functions, the algorithm is as follows

sort(keys_s, vals_s, indices, values);

sbk = scanByKey(keys_s, vals_s);

idx = where((shift(keys_s, -1) - keys_s) != 0);

3The computing capability is the versioning of the NVidia cards. Even if the API is updated the card will
not be able to perform certain operation if they are beyond its computing capability.

50
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

aux = keys_s[idx];

out[aux] += sbk[idx];

This algorithm is expressed only for 1-dimensional arrays but this is enough for any array

by calculating the 1-dimensional indices from the 3-dimensional ones with Column-Major

order.

To complete the Esirkepov current deposition method, after completing the calcu-

lations in equations (3.27a) to (3.27c), we still need to solve the finite-difference equa-

tions (3.26a) to (3.26c). This is done using the scan function (in particular, we used the

exclusive scan)

scan : {a0, a1, a2, ..., ai, ..., an−1} →
{

0, a0, a0 + a1, ...,
i−1

∑
j=0

aj, ...,
n−2

∑
j=0

aj

}
,

along the relevant dimension of the array. This means that even if we only have a single

particle this calculation is still done over the entire simulation domain. Thus, our imple-

mentation is unsuited for small number of particles when compared to the number of Yee

cells. However, this method is more efficient if there are several particles per Yee cell on

average.

This solution allows us to keep all calculations within ArrayFire and outperformed the

previous solution in all the devices we could test.

4.3 Testing and performance analysis

4.3.1 Fundamental tests

To test the validity of this software, several tests were performed. The first test con-

cerns the FDTD methods implemented in the EMF class. Figure 4.7 shows a 1-dimensional

Gaussian pulse propagating and having small oscillations of the spectral content of roughly

10−3, relative to the maximum power of the spectrum. The actual test was done for several

thousand passages through the simulation domain but, for clarity, only two are shown.

However, the oscillations of the power spectrum remain the same even after long simula-

tion times, proving the stability of the method.

The second test concerns the entire PIC method and checks the validity of the Gauss

and charge conservation laws of equations (2.1a) and (3.25), respectively. Moreover, the

4. IMPLEMENTATION 51

(A) (B)

(C)

FIGURE 4.7: Validation test of the FDTD method implemented in the EMF class. A Gaus-
sian pulse was propagated in a 1-dimensional simulation domain with periodic bound-
ary conditions. The vertical axis represents time in all plots but the horizontal axis rep-
resents the coordinate x in plot (A) and the frequency ω for plots (B) and (C). Figure
(A) shows the intensity of the electric field over two passages in the domain, figure (B)
shows the evolution of the power spectrum of the field (|F {E}|2t) and figure (C) is the
variation of the spectrum over time (|F {E}|2t − |F {E}|

2
0). The variations of the spectrum

represent an relative error of roughly 10−3.

test also evidences the improvement made by using the Esirkepov deposition method

discussed in section 3.4.3 over the “naive” method of equation (3.22). Figure 4.8 shows

the validity of the two laws over the simulation time using the two current deposition

methods. We can see that the Esirkepov method (or other charge conserving methods)

is fundamental to get physically valid results in the interaction between the field and the

particles. The initially larger error is due to the normalization used on the calculation of

the errors. Since a quiet start was used, the initial max {|ρ|} and max {|ρ̇|} are very small

and the error measure becomes irrealistically high.

52
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

FIGURE 4.8: Validity of the Gauss and charge conservation laws of equations (2.1a)
and (3.25) over the simulation time. The top and bottom graphs corresponds to the
Gauss and charge conservation laws respectively. The errors displayed were calculated
by 〈|ε0∇·E−ρ|〉

max{|ρ|} and 〈|∇·J+ρ̇|〉
max{|ρ̇|} , respectively. From these plots we conclude that the Esirkepov

method is far better at maintaining good agreement with the Gauss and charge conser-
vation laws.

4.3.2 Computing environment

To test our code and run the simulations we used the following three system setups:

• A) Intel core i7-4930K, NVidia GeForce GTX Titan, 64 GB DDR3;

• B) Intel core i7-4790K, NVidia GeForce GTX 970, 16 GB DDR3;

• C) Intel core i7-6500U, NVidia GeForce 920M, 8 GB DDR3.

They correspond to an high-end desktop, a desktop, and a laptop, respectively. With these

three system we were able to compare the impact on performance of GPU computing for

very different systems.

4. IMPLEMENTATION 53

4.3.3 Performance analysis

Measuring the performance of our code is fundamental to understand the distribution

of computing power among the components of the algorithm, for measuring the change

in performance of different computing devices, and for making predictions on how much

time a particular simulation will take.

In this section, we separate the code into its main components: the FDTD method, the

Vay pusher, the interpolation method, and the Esirkepov current deposition method; and

analyse their performance individually. The results are displayed in figure 4.9. In general,

we used a fixed Yee mesh of 100× 100× 100 cells when we wanted to study the effect of

varying the number of particles.

The particles are obviously the most demanding component of the algorithm, with

the Esirkepov method being the most time consuming, occupying over 95% of the over-

all time for a standard simulation of N = p = 106 on the GTX Titan. This method also

presents a high base time for small p due to the integration of equations (3.26a) to (3.26c)

as already discussed in section 4.2.3. For the standard simulation, figure 4.10 shows the

speedup metric comparing GPUs and GPUs. The results show that even for the low-end

hardware the speedup is over 15, reaching a maximum of 108 for the high-end desktop.

Of course, this comparison is not completely fair since the CPU versions were single-

threaded. However, even if we divide the speedup obtained, by the number of cores of

the CPUs (6, 4 and 2 for i7-4930K, i7-4790K and i7-6500K) we still have an impressive

amount of performance gain. However, the actual performance of a multi-threaded ver-

sion would not be that high, mainly due to the lower memory bandwidth of the CPUs

when compared with the GPUs (see figure 4.2).

4.4 Conclusions

This chapter presented a brief analysis of GPU computing, the different APIs available,

and the main concepts that differ from common processors. The details of the implemen-

tation of our solver were presented and justified within the context of our objective of

modularity, and the GPU technologies available.

Furthermore, the code was validated through a series of physical test such as verifying

the Gauss law and the law of conservation of charge. Finally, the performance of the

various components of the code was presented for the devices available.

54
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

(A) (B)

(C) (D)

FIGURE 4.9: Performance analysis of the four components of the PIC algorithm for the
CPUs and GPUs from system setups from section 4.3.2. Figure (A) features the time per
step of the FDTD method as a function of the number of cells in a cubic grid, averaged
over 100 repetitions with PBC. Figure (B) shows the time per step of the Vay pusher as
a function of the number of particles p averaged over 10000 steps. Figure (C) displays
the time taken to interpolate a face vector field of dimensions 100× 100× 100 onto the
positions of p particles for shape factor order n = 1. The results were averaged over 100
repetitions. Finally, figure (D) shows the time taken to deposit the current of p particles
onto a 100× 100× 100 face vector field with the Esirkepov current deposition method,

again with shape factor order n = 1.

The next chapter uses the implementation described in this chapter to run three dis-

tinct physical test cases that evidence the modularity and plasticity of our code.

4. IMPLEMENTATION 55

FIGURE 4.10: Speedups for the different setups. The blue bars represent the speedup
S = tCPU/tGPU compared with the CPU in the same machine, and the cross pattern is the

comparison with the best CPU (i7-4790K).

Chapter 5

Physical test cases

This chapter presents three examples that correspond to adaptations of the original

simulation software developed during this thesis to model distinct physical problems and

systems, which demonstrate the versatility of the code itself and of its modular structure.

Indeed, while the first application considers the interaction between an ultra-short laser

pulse with a plasma cloud, which corresponds to a situation for which the code was orig-

inally designed, the second and third examples required small adaptations for it to sim-

ulate the gravitational interaction in a gas cloud, and the interaction between light and a

quantum dipolar gas.

In particular, the first application investigates direct electron acceleration produced

by an high-intensity ultra-short laser pulse sweeping through a cluster of ionized atoms

and electrons, and reproduces the results previously identified in the literature [52,53]. In

the second example, the solver of the electromagnetic field was adapted to calculate the

solution of the Einstein field equations of General Relativity in the weak field assumption,

and simulate the process of mass accretion due to gravitational attraction in a cloud of

hydrogen atoms. In the third and final example we coupled our code with a solver of the

optical Bloch equations to investigate quantum optomechanical processes, and transport

phenomena in dipolar gases.

The examples chosen also allow us to explore the range from a fully classical model, as

in the cases of the gravitoelectromagnetism and the plasma, to a hybrid quantum-classical

many-body problem, as in the case of the quantum dipolar gas.

Finally, we emphasize that the objective of this chapter is not to explore all the phys-

ical implications and results provided by these examples, but instead to demonstrate the

versatility, features, and functionalities of our code.

57

58
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

5.1 Laser-plasma interaction

The first example of an application of the simulation software considers the interaction

of an ultra-short laser pulse with a cluster of atoms, and the plasma formed after the lead-

ing part of the pulse hits the cluster. This system has been already studied in the literature,

both experimentally and with simulations, particularly for the production of accelerated

particles via laser-based plasma acceleration [7] as an alternative to cyclotrons in the ex-

citation of radioactive isotopes for medical applications. Therefore, the phenomenology

of this system is well characterized and constitutes a good test to validate the simulation

software.

For simplicity, the simulation scenario considers a 2-dimensional Gaussian distribu-

tion of charged particles where the positive (ions) and negative (electrons) charges are

perfectly matched at each point of the simulation domain, constituting a so called quiet

start, as explained in section 3.2.2. An electromagnetic Gaussian pulse is initialized at

t = 0 on one side of the simulation domain and propagates towards the distribution of

charges. The initial pulse is linearly polarized along the plane of the simulation and is

defined by

Ex (x, t = 0) = E0 sin
(

2πx
λ

)
exp

(
−4 (x− x0)

2 log 2
2σ2

FWHM

)
ŷ

Bx (x, t = 0) =
1
c

Ex (x, t = 0) ẑ,

where x0 is the position of the centre of the pulse, and σFWHM is the full width at half

maximum of the pulse.

For low intensities the main force acting on the charges is the electric field of the pulse.

Then, electrons and ions are pulled in opposite directions resulting in some charge sep-

aration, but few particles are accelerated forward with the pulse. Instead, they oscillate

with the electric field of the pulse as it passes through it (see figure 5.1), and afterwards,

due to the electrostatic attraction between electrons and ions (see figures 5.2 and 5.3). In

practice, electrons and ions behave as two droplets of a charged fluid oscillating around

each other. For this reason, this case is known as the hydrodynamic regime.

Increasing the intensity of the pulse 10 times, a new behaviour emerges that is domi-

nated by radiation pressure. In this case the slope of the intensity profile of the pulse in

the lead is too steep for the particles to begin to oscillate with the field. Instead, the elec-

trons (which are lighter) are ripped from the cluster by the radiation pressure and move

5. PHYSICAL TEST CASES 59

FIGURE 5.1: State of the simulation with the pulse in its first pass through the plasma, in
the hydrodynamic regime (u. arb.).

FIGURE 5.2: State of the simulation after the passage of the pulse, in the hydrodynamic
regime (u. arb.).

in front of the pulse (see figures 5.4 and 5.5), gaining velocities very close to the speed of

light. This is known as the snowplough effect, for obvious reasons.

As the electrons move together with the pulse, they experience a quasi-static electric

field in their own reference frame. This causes them to start moving upwards against this

field.

In the simulations, this motion is described in the rest frame and the motion of the

60
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

FIGURE 5.3: State of the simulation after the second passage of the pulse, in the hydro-
dynamic regime (u. arb.).

FIGURE 5.4: State of the simulation at the middle of the first passage of the pulse in the
snowplough regime (u. arb.).

electrons incorporates both the motion in the direction of the pulse and, to a smaller de-

gree, along the direction of the field, resulting in the small ejection angle observed in

figure 5.5. With more intense pulses the radiation pressure should completely overcome

the direct effect of the electric field. In figure 5.6, the electrons have fallen out of the faster

moving pulse and are attracted back to the cluster of ions, which in turn have not moved

significantly due to their higher mass.

5. PHYSICAL TEST CASES 61

FIGURE 5.5: State of the simulation just after the first passage of the pulse in the snow-
plough regime (u. arb.).

FIGURE 5.6: State of the simulation shortly after the pulse traverses the simulation do-
main in the snowplough regime (u. arb.).

These qualitative results match the results obtained by other PIC codes [52] and by

experimental confirmations [53].

5.2 Gravitoelectromagnetism: gas accretion

For weak fields and slow moving objects, Einstein’s field equations of General Rel-

ativity admit an approximation that looks similar to the Maxwell equations. Gravito-

electromagnetism, as it is called, started as an extension of Newtons gravitation and was

62
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

later deduced from General Relativity in the weak field assumption. Today, Gravitoelec-

tromagnetism admits different formulations, each corresponding to a different type of

approximation and having distinct ranges of validity [54–56]. One of such formulations

allows to recast the Einstein field equations as

∇ · Eg = −4πGρg

∇ · Bg = 0

Ḃg = −∇× Eg

Ėg = c2∇× Bg + 4πGJg

(5.2a)

(5.2b)

(5.2c)

(5.2d)

where Eg is the gravitoelectric field, Bg is the gravitomagnetic field, ρg is the mass density,

and Jg is the mass current density.

Like in the Einstein field equations, the source of the gravitoelectric and gravitomag-

netic fields are the mass density and current density. These fields, in turn, produce forces

that act on mass particles, moving them around, and are described by

Fg = m
(
Eg + 4v× Bg

)
, (5.3)

where m is the mass of the particle.

Clearly, equations (5.2a) to (5.2d) and (5.3) present a striking resemblance with equa-

tions (2.1a) to (2.1d) and (2.9) used in chapter 2 to model a plasma. As a result, it takes

little adaptation to use the PIC code to model a system of particles under gravitational

interaction. Figure 5.7 shows several states of a simulation, of a gas of hydrogen atoms in

a cubic simulation domain with dimensions 1 ua× 1 ua× 1 ua and uniform initial density

n = 1031, an obvious exaggeration aimed at reducing the computation time. The results

of the simulation show the formation of clusters of gas in the early stages. Later, most of

the particles join a single large cloud. For more realistic densities this simulation would

take much more time due to the time step being constrained by the Courant limit. How-

ever, here, we mainly want to show that the code can be easily adapted to model different

physical systems.

Additionally, since the graphical representation of the 3-dimensional gravitoelectric

and gravitomagnetic fields is difficult to interpret, figures 5.8 to 5.11 show the state for a

similar simulation at different times, now in 2-dimensional space. The same clustering is

observed but now we can also see the appearance of intense gravitoelectric fields around

5. PHYSICAL TEST CASES 63

(A) (B)

(C) (D)

(E) (F)

FIGURE 5.7: Gravitoelectromagnetic simulation of uniform hydrogen gas at times t = 0 s,
t = 500.35 s, t = 1000.69 s, t = 1526.06 s, t = 1826.26 s, t = 2151.49 s for images A, B, C,
D, E, and F, respectively. The particles are initialized with zero velocity and uniformly

distributed throughout the simulation domain.

64
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

FIGURE 5.8: Initial state of a 2-dimensional Gravitoelectromagnetic simulation. The left
tile of each figure shows the magnitude of the electric field in logarithmic scale, while the
right tile shows the particle density. The particles are at rest and uniformly distributed

throughout the simulation domain (u. arb.).

FIGURE 5.9: The simulation figure 5.8 after the formation of many small clusters (u. arb.).

the clusters. In particular, in figure 5.11 we can even see the zero field in the centre of

mass of the right upper cluster.

5.3 Transport phenomena in quantum dipolar gases

The next test case deals with neutral gases and includes the internal electronic states

of the atoms, as discussed in chapter 1. To describe the internal degrees of freedom and

5. PHYSICAL TEST CASES 65

FIGURE 5.10: Halfway point of the simulation of figure 5.8. The clusters are now less
numerous and larger (u. arb.).

FIGURE 5.11: Final state of the simulation of figure 5.8. Only a few large clusters are
observable, and some low density clouds in the intermediate space (u. arb.).

their interaction with the electromagnetic field, we use the common approximation of

limiting the state of the atom to a small number of possible electronic states. This model

is a good description of the atom when the field is tuned to the energy gaps between the

electronic states under consideration, or other transitions are forbidden by selection rules.

The quantum model of the electronic state of each atom is given by the Hamiltonian

Ĥ =
p̂2

2me
+ er̂ · E

(
rp
)

,

66
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

where r̂ and p̂ are the position and momentum operators of the optical electron. This

is only valid when the wavelength of the field is much larger than the size of the atom

(dipolar approximation). The state of a large collection of atoms is then described in terms

of the density matrix ρij, which evolves according to the Bloch equations [57,58]

ρ̇ij = ∑
ij

(
iΩijρij + iωijρij + Γijρij

)
,

where i, j ∈ {1, 2, ..., n} and ωij and Γij correspond to the transition frequencies and

decay rates between states i and j, respectively. The quantities Ωij are the instantaneous

Rabi frequencies defined as

Ωij =
µij · E

h̄
,

where the µij = e 〈i |r̂| j〉 represent the dipole moment between states i and j.

The vector µij depends on the orientation of the atom in space that can be affected

by te field. This reorientation can be modelled using the unit vector e as µij = µije and

adapting the Landau-Lifshitz equation [59]

ė = α (e× E)− β (e× (e× E)) ,

where the first and second terms correspond to the precession and damping, respectively.

The parameters α and β are obtained empirically, while the µij can be measured by spec-

troscopic techniques.

The field also produces a dipolar force given by [60]

F = 〈µ̂ · ∇E (r̂a)〉 = −∇
(

∑
ij

ρij

(
µij · E (r)

))
,

which affects the motion of the atoms. The atoms may also affect the field by producing a

local polarization field

P (r) = η (r)∑
ij

µijρij,

where η (r) is the particle density.

The Bloch and Landau-Lifshitz equations are treated numerically using a second or-

der Runge-Kutta method. The Bloch class that handles this physical system was devel-

oped by my colleague João Costa. The modular construction of the entire code allows

the Bloch, EMF, and Particles classes to interact with each other seamlessly. In the sim-

ulation, a gas of 2-level atoms is uniformly distributed on a 1-dimensional domain of

1 µm. Two counter-propagating plane waves are then placed to form a stationary wave

5. PHYSICAL TEST CASES 67

FIGURE 5.12: Temporal evolution of the positions of the particles for the case where
ω12 = 0.5 2πc

λ . the particles can be seen drifting towards the maxima of the standing
wave.

of λ = 500 nm. The transition frequency ω12 of the particles was tested for two different

conditions ω12 = 0.5 2πc
λ and ω12 = 1.5 2πc

λ , corresponding to figures 5.12 and 5.14, respec-

tively. Furthermore, figures 5.13 and 5.15 represent the evolution of the ẑ component of

the electric and polarization fields for the two simulations, respectively.

We can see on the figures that the particles gather at the maxima of the stationary

waves, or the nodes. For the case where ω12 = 0.5 2πc
λ , the field is blue-shifted in relation

to the transition frequency, and the atoms flock to the nodes of the stationary wave, while

for the case where ω12 = 1.5 2πc
λ , the field is red-shifted and the particles gather at the

maxima of the wave. This is in accordance with the existing literature [16,17].

5.4 Conclusions

This chapter illustrated the versatility of our simulation software. The first example

considered the interaction between an ultra-short laser pulse and a plasma cloud, where it

68
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

(A) (B)

FIGURE 5.13: Temporal evolution of the ẑ component of the electric (A) and polarization
fields (B) for the case where ω12 = 0.5 2πc

λ .

was possible to illustrate the transition between two particle acceleration regimes. In the

second example, we have shown how it is possible to model gravitational attraction in a

gas cloud using this code. Finally, in the third example, we simulated the optical trapping

of 2-level atoms in a stationary electromagnetic field, reproducing the dependence on the

detuning observed in experiments [16,17].

Naturally, this is but a small sample of the potential applications of this simulations

software. By combining it with other modules or by making small adaptations in the

existing ones it is possible to go much further.

5. PHYSICAL TEST CASES 69

FIGURE 5.14: Temporal evolution of the positions of the particles for the case where
ω12 = 1.5 2πc

λ . the particles can be seen drifting towards the nodes of the standing wave.

(A) (B)

FIGURE 5.15: Temporal evolution of the ẑ component of the electric (A) and polarization
fields (B) for the case where ω12 = 1.5 2πc

λ .

Chapter 6

Concluding remarks and future work

During the course of this work, we aimed to study many-body systems composed

of atoms, ions, and electrons interacting with the electromagnetic field. Concretely, the

objective was to study the analytical and numerical models available, and develop com-

putational tools to model these systems. To achieve this, we focused on the PIC method

from plasma Physics.

The code was developed in C++ with the ArrayFire library for the CPU and GPU

backends. It contains the following numerical methods: FDTD method, Vay particle

pusher, interpolation methods, Esirkepov current deposition method, and Poisson equa-

tion solver, all available in three dimensions.

The prominent features of our software are its modularity, evidenced by the distinct

physical nature of each test case, and the performance enhancement brought by GPU

computing. Specifically, when we compared an high-end GPU (GTX Titan) and an high-

end CPU (i7-4930K in single thread), we measured a top speedup of 108. Moreover, the

code includes a new type of ABC for the FDTD method, which we named MABC, that

shows promising results.

In chapter 5, some of the possible applications of the code were shown and include:

a direct application of the PIC code for a problem of plasma-based particle acceleration,

transport phenomena in gravitational systems described by the gravitoelectromagnetic

equations, and transport phenomena in quantum dipolar gases. While the first two ex-

amples are almost direct applications of a standard PIC code, the third uses some of the

features of the code, such as the FDTD methods, the Vay pusher and the interpolation

methods, and other components developed by my colleague João Costa to simulate the

71

72
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

internal electronic states of the atoms. The end result is a numerical model capable of

displaying quantum-optomechanical effects.

There are other physical systems that could be studied with our software such as mag-

netic effects using the hybrid PIC-Bloch scheme of the last test case, and meta-materials [61].

Some other physical systems are out of reach for the current state of the code. Nonethe-

less, the modular construction of the code allows the inclusion of other physical processes

such as collisions, useful to model neutral fluids according to the DSMC method. The

other limitation of the code comes from the fact that it can only run on a single GPU.

Extending it to multiple GPUs would be necessary to permit larger simulation domains

and faster run-times. Finally, another essential tool would be better 3-dimensional visu-

alization routines not only in real-time, while the simulation runs, but also for posterior

analysis of the results.

To conclude, this work opens perspectives in the study of quantum many body sys-

tems out of equilibrium. In the approach presented here, the quantum nature of the sys-

tem is restricted to the internal degrees of freedom of the atoms, while motion of the atoms

and the field remain classical. However, this is sufficient to study a wide range of systems

and phenomena, starting from coherent optical effects, and transport phenomena, to non-

linear effects, and many others.

During the development of this thesis I was fortunate enough to work with an ex-

tremely dedicated and friendly team. I was also able to work in computational physics,

an area I intend to continue pursuing, and to see on a computer screen many physical

systems and effects usually hidden from the naked eye.

Publications

• Development of a quantum particle in cell algorithm in GPU for solving Maxwell-

Bloch equations. - M. Gomes, J. C. Costa, R. A. Alves, Nuno A. Silva, A. Guerreiro;

AOP17 Proceedings; 2017.

• Solver of the Einstein equations using GPUs under the gravitoelectromagnetic ap-

proximation. - M. Gomes, J. C. Costa, R. A. Alves, Nuno A. Silva, A. Guerreiro;

AOP17 Proceedings; 2017.

• The analogue quantum mechanical of plasmonic atoms. - R. A. Alves, J. C. Costa,

Miguel Gomes, Nuno A. Silva, A. Guerreiro; AOP17 Proceedings; 2017.

6. CONCLUDING REMARKS AND FUTURE WORK 73

• Solving the multi-level Maxwell-Bloch equations using GPGPU computing for the

simulation of nonlinear optics in atomic gases. - J. C. Costa, M. Gomes, R. A. Alves,

Nuno A. Silva, A. Guerreiro; AOP17 Proceedings; 2017.

• Doppler broadening effects in plasmonic quantum dots. - R. A. Alves, J. C. Costa,

M. Gomes, Nuno A. Silva, A. Guerreiro; AOP17 Proceedings; 2017.

• Fast physical ray-tracing method for gravitational lensing using heterogeneous su-

percomputing in GPGPU. - J. C. Costa, M. Gomes, R. A. Alves, Nuno A. Silva, A.

Guerreiro; AOP17 Proceedings; 2017.

• Tunable light fluids using quantum atomic optical systems. - Nuno A. Silva, R. A.

Alves, J. C. Costa, M. Gomes, A. Guerreiro; AOP17 Proceedings; 2017.

• Pinching optical potentials for spatial nonlinearity management in Bose Einstein

condensates. - Nuno A. Silva, R. A. Alves, J. C. Costa, M. Gomes, A. Guerreiro;

AOP17 Proceedings; 2017.

• Dissipative solitons in 4-level atomic optical systems. - Nuno A. Silva, R. A. Alves,

J. C. Costa, M. Gomes, A. Guerreiro; AOP17 Proceedings; 2017.

• Physical ray-tracing method for anisotropic optical media in GPGPU. - A. Guerreiro,

R. A. Alves, J. C. Costa, M. Gomes, Nuno A. Silva; AOP17 Proceedings; 2017.

• Quantum wires as sensors of the electric field: A model into quantum plasmonics.

- R. A. Alves, J. C. Costa, M. Gomes, Nuno A. Silva, A. Guerreiro; OFS-25 Proceed-

ings; 2016.

Appendix A

The Pseudospectral Time-Domain

method

As described in section 3.2, PSTD is similar to FDTD but the spatial derivatives are

evaluated using spectral methods. For example, the spatial derivatives in the Maxwell

equations can be expressed using Fourier transforms as

Ḃ = F−1




0 ikz −iky

−ikz 0 ikx

iky −ikx 0

F {E}


Ḋ = F−1




0 −ikz iky

ikz 0 −ikx

−iky ikx 0

F {H}
− J f

where F and F−1 are the Fourier transform, and the inverse Fourier transform, respec-

tively. Next, we apply the temporal discretization and the D and E fields are again sam-

pled at different instants from the B and H fields, according to the leapfrog scheme

Dt+∆t
x = Dt

x + ∆t

(
F−1

{
ikzF

{
Ht+ ∆t

2
y

}
− ikyF

{
Ht+ ∆t

2
z

}}
− Jt+ ∆t

2
x

)
Dt+∆t

y = Dt
y + ∆t

(
F−1

{
ikxF

{
Ht+ ∆t

2
z

}
− ikzF

{
Ht+ ∆t

2
x

}}
− Jt+ ∆t

2
y

)
Dt+∆t

z = Dt
z + ∆t

(
F−1

{
ikyF

{
Ht+ ∆t

2
x

}
− ikxF

{
Ht+ ∆t

2
y

}}
− Jt+ ∆t

2
z

)

75

76
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

Bt+ 3∆t
2

x = Bt+ ∆t
2

x + ∆tF−1
{

ikyF
{

Et+1
z

}
− ikzF

{
Et+1

y

}}
Bt+ 3∆t

2
y = Bt+ ∆t

2
y + ∆tF−1

{
ikzF

{
Et+1

x

}
− ikxF

{
Et+1

z

}}
Bt+ 3∆t

2
z = Bt+ ∆t

2
z + ∆tF−1

{
ikxF

{
Et+1

y

}
− ikyF

{
Et+1

x

}}
With PSTD the Yee cell is not necessary but, since the Fourier transform will be cal-

culated with the FFT algorithm, the sampling should still be on a regular mesh. Despite

being able to solve the problem of numerical dispersion, the time complexity of this al-

gorithm is O (n log n) while the FDTD has complexity O (n), where n is the number of

cells.

Appendix B

From the Vlasov equation to PIC

The derivation of each equations of motion for the super-particles in a PIC code is

shown here in detail. The section is divided for the moment along the position and mo-

mentum.

B.1 First moment along position

We take the first moment of the CBE along the position. The first resulting term will

be

wp

+∞∫
−∞

+∞∫
−∞

i∂t

(
∏

j
Sj
(

j− jp
)

δ
(

pj − pj,p
))

d3r d3p =

= wp∂t

 +∞∫
−∞

iSi
(
i− ip

)
di ∏

k

 +∞∫
−∞

Sk
(
k− kp

)
dk

∏
j

 +∞∫
−∞

δ
(

pj − pj,p
)

dpj

 =

= wp∂tip,

where i, j ∈ {x, y, z}, k ∈ {x, y, z}\{i} , and for the last equality the first integral yields the

average of Si while the others evaluate to 1.

For the second term we have

wp ∑
j

+∞∫
−∞

+∞∫
−∞

ivj∂j

(
∏

k
Sk
(
k− kp

)
δ
(

pk − pk,p
))

d3r d3p =

= wp ∑
j

+∞∫
−∞

i∂j

(
∏

k
Sk
(
k− kp

))
d3r

+∞∫
−∞

vj

(
∏

k
δ
(

pk − pk,p
))

d3p =

= wp ∑
j

+∞∫
−∞

i∂j

(
∏

k
Sk
(
k− kp

))
d3r

+∞∫
−∞

pj

m

(
1 +
|p|
mc2

)− 1
2

δ3 (pk − pk,p
)

d3p =

77

78
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

= wp ∑
j

+∞∫
−∞

i∂j

(
∏

k
Sk
(
k− kp

))
d3r vj,p =

= wp

 +∞∫
−∞

i∂i

(
∏

k
Sk
(
k− kp

))
d3r vi,p + ∑

l

+∞∫
−∞

i∂l

(
∏

k
Sk
(
k− kp

))
d3r vl,p︸ ︷︷ ︸

A=0



= wp


 [iSi

(
i− ip

)∣∣+∞
−∞︸ ︷︷ ︸

=0

−
+∞∫
−∞

Si
(
i− ip

)
di

︸ ︷︷ ︸
=1

∏
l

 +∞∫
−∞

Sl
(
l − lp

)
d3r


︸ ︷︷ ︸

=1

vi,p

 =

= −wpvi,p

where i, j, k ∈ {x, y, z}, l ∈ {x, y, z}\{i} , A = 0 because for all j one of the integrals is∫ +∞
−∞ ∂iSj

(
i− ip

)
di = 0, and vi,p relates to pi,p as defined by equation (2.7). It is important

to note here that for relativistic motion only the choice of δ3 for the momentum shape factor

will yield this result.

Finally, the third term yields

wp ∑
j

+∞∫
−∞

+∞∫
−∞

iFj∂pj

(
∏

k
Sk
(
k− kp

)
δ
(

pk − pk,p
))

d3r d3p =

= wp ∑
j

+∞∫
−∞

iFj

(
∏

k
Sk
(
k− kp

))
d3r

+∞∫
−∞

∂pj

(
∏

k
δ
(

pk − pk,p
))

d3p

︸ ︷︷ ︸
=0

= 0

where i, j, k ∈ {x, y, z} and the last equality comes from integrating the derivative of

δ
(

pj − pj,p
)

along j.

B.2 First moment along momentum

The next equation comes from taking the first moment along the momentum pi. The

first term will be similar to the first term in appendix B.1:

wp

+∞∫
−∞

+∞∫
−∞

pi∂t

(
∏

j
Sj
(

j− jp
)

δ
(

pj − pj,p
))

d3r d3p =

= wp∂t

∏
j

 +∞∫
−∞

Si
(

j− jp
)

dj

 +∞∫
−∞

piδ
(

pi − pi,p
)

dpi ∏
k

 +∞∫
−∞

δ
(

pk − pk,p
)

dk

 =

= wp∂t pi,p,

B. FROM THE VLASOV EQUATION TO PIC 79

where, again, i, j ∈ {x, y, z} and k ∈ {x, y, z}\{i} .

The second term is

wp ∑
j

+∞∫
−∞

+∞∫
−∞

pivj∂j

(
∏

k
Sk
(
k− kp

)
δ
(

pk − pk,p
))

d3r d3p = 0

wp ∑
j

+∞∫
−∞

∂jSj
(

j− jp
)

dj

︸ ︷︷ ︸
=0

∏
l

 +∞∫
−∞

Sl
(
l − lp

)
dl

 +∞∫
−∞

pivj

(
∏

k
δ
(

pk − pk,p
))

d3p = 0

where i, j, k ∈ {x, y, z} and l ∈ {x, y, z}\{i} .

At last, the third term evaluates to

wp ∑
j

+∞∫
−∞

+∞∫
−∞

piFj∂pj

(
∏

k
Sk
(
k− kp

)
δ
(

pk − pk,p
))

d3r d3p =

= wp ∑
j

Fj

+∞∫
−∞

+∞∫
−∞

pi∂pj

(
∏

k
Sk
(
k− kp

)
δ
(

pk − pk,p
))

d3r d3p

︸ ︷︷ ︸
A=−δij

= −wiFi,

where A = −δij results from, essentially, a repetition of the rearrangement done for the

second term in appendix B.1.

Bibliography

[1] D. A. Gurnett and A. Bhattacharjee, Space Weather: The Physics Behind a Slogan (Lecture

Notes in Physics) (Springer, 2005) p. 138.

[2] A. R. Choudhuri, The Physics of Fluids and Plasmas: An Introduction for Astrophysicists,

edited by A. R. Choudhuri (Cambridge University Press, 1998).

[3] J. T. Mendonca and H. Tercas, Physics of Ultra-Cold Matter: Atomic Clouds, Bose Einstein

Condensates and Rydberg Plasmas (Springer Series on Atomic, Optical, and Plasma Physics)

(Not Avail, 2014).

[4] J. T. Mendonça, A. M. Martins, and A. Guerreiro, “Field quantization in a plasma:

Photon mass and charge,” Physical Review E 62, 2989 (2000).

[5] J. Vieira, R. Trines, E. Alves, R. Fonseca, et al., “High Orbital Angular Momen-

tum Harmonic Generation,” Physical Review Letters 117 (2016), 10.1103/phys-

revlett.117.265001.

[6] A. Anders, Handbook of Plasma Immersion Ion Implantation and Deposition (Wiley-VCH,

2000).

[7] A. Goers, G. Hine, L. Feder, B. Miao, F. Salehi, J. Wahlstrand, and H. Milchberg,

“Multi-MeV Electron Acceleration by Subterawatt Laser Pulses,” Physical Review

Letters 115 (2015), 10.1103/physrevlett.115.194802.

[8] R. Andreani and M. Gasparotto, “Overview of fusion nuclear technology in Europe,”

Fusion Engineering and Design 61-62, 27 (2002).

[9] Y. Strebkov and V. Belyakov, “Overview of fusion nuclear technology in Russia,”

Fusion Engineering and Design 61-62, 47 (2002).

81

82
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

[10] N. Fleurot, C. Cavailler, and J. Bourgade, “The Laser Mégajoule (LMJ) Project dedi-

cated to inertial confinement fusion: Development and construction status,” Fusion

Engineering and Design 74, 147 (2005).

[11] I. Eames and J. B. Flor, “New developments in understanding interfacial processes in

turbulent flows,” Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences 369, 702 (2011).

[12] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced

transparency: Optics in coherent media,” Reviews of Modern Physics 77, 633 (2005).

[13] G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons

in a cold three-state atomic system,” Physical Review E 72 (2005), 10.1103/phys-

reve.72.016617.

[14] M. Fox, Optical Properties of Solids (Oxford Master Series in Physics) (Oxford University

Press, 2002).

[15] J. ming Liu, Photonic Devices (Cambridge University Press, 2005).

[16] B. L. Schmittberger and D. J. Gauthier, “Transverse optical and atomic pattern for-

mation,” Journal of the Optical Society of America B 33, 1543 (2016).

[17] H. W. Benjamin Bederson, ed., Advances in Atomic, Molecular, and Optical Physics, Ad-

vances in Atomic, Molecular, and Optical Physics, Vol. 42 (Academic Press, 1999).

[18] J. Eisert, M. Friesdorf, and C. Gogolin, “Quantum many-body systems out of equi-

librium,” Nature Physics 11, 124 (2015).

[19] A. Vlasov, Many-particle Theory and Its Application to Plasma (Gordon & Breach Science

Publishers Ltd, 1961).

[20] K. T. McDonald, “Limits on the applicability of classical electromagnetic fields as

inferred from the radiation reaction,” (2000), arXiv:physics/0003062 .

[21] A. Taflove, S. C. Hagness, and M. Piket-May, in The Electrical Engineering Handbook,

edited by A. House (Elsevier BV, 2005) pp. 629–670.

[22] K. Yee, “Numerical solution of initial boundary value problems involving maxwell's

equations in isotropic media,” IEEE Transactions on Antennas and Propagation 14,

302 (1966).

BIBLIOGRAPHY 83

[23] H. Zhao, S. Crozier, and F. Liu, “A high definition, finite difference time domain

method,” Applied Mathematical Modelling 27, 409 (2003).

[24] D. J. Griffiths, Introduction to Electrodynamics (4th Edition) (Pearson, 2012).

[25] F. H. Harlow and J. E. Welch, “Numerical Calculation of Time-Dependent Viscous

Incompressible Flow of Fluid with Free Surface,” Physics of Fluids 8, 2182 (1965).

[26] F. Harlow., The particle-in-cell method for hydrodynamic calculations, Tech. Rep. (Los

Alamos scientific laboratory of the university of california, 1957).

[27] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin, “The affine particle-in-

cell method,” ACM Transactions on Graphics 34, 511 (2015).

[28] J. Brackbill, “FLIP MHD: A particle-in-cell method for magnetohydrodynamics,”

Journal of Computational Physics 96, 163 (1991).

[29] J.-G. Liu and W.-C. Wang, “An Energy-Preserving MAC–Yee Scheme for the Incom-

pressible MHD Equation,” Journal of Computational Physics 174, 12 (2001).

[30] K. Thorne, “The particle kinetics of plasma,” (2003).

[31] C. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer Simulation (Taylor &

Francis Ltd, 2004).

[32] J. M. Dawson, “Particle simulation of plasmas,” Reviews of Modern Physics 55, 403

(1983).

[33] J. P. Boris, Proceeding of the 4th Conference on Numerical Simulation of Plasmas (Naval

Res. Lab., 1970).

[34] A. V. Higuera and J. R. Cary, “Structure-preserving second-order integration of rela-

tivistic charged particle trajectories in electromagnetic fields,” Physics of Plasmas 24,

052104 (2017).

[35] J.-L. Vay, “Simulation of beams or plasmas crossing at relativistic velocity,” Physics

of Plasmas 15, 056701 (2008).

[36] A. B. Langdon, “On enforcing Gauss' law in electromagnetic particle-in-cell codes,”

Computer Physics Communications 70, 447 (1992).

84
DEVELOPMENT OF A SIMULATOR OF LIGHT-MATTER INTERACTION USING GPGPU:

FROM PLASMAS TO ATOMIC GASES

[37] J. Villasenor and O. Buneman, “Rigorous charge conservation for local electromag-

netic field solvers,” Computer Physics Communications 69, 306 (1992).

[38] T. Esirkepov, “Exact charge conservation scheme for Particle-in-Cell simulation with

an arbitrary form-factor,” Computer Physics Communications 135, 144 (2001).

[39] T. Umeda, Y. Omura, T. Tominaga, and H. Matsumoto, “A new charge conservation

method in electromagnetic particle-in-cell simulations,” Computer Physics Commu-

nications 156, 73 (2003).

[40] B. Marder, “A method for incorporating Gauss' law into electromagnetic PIC codes,”

Journal of Computational Physics 68, 48 (1987).

[41] Smilei, “Smilei,” http://www.maisondelasimulation.fr/smilei/algorithms.

html, accessed: 2017-08-27.

[42] P. T. de Abreu, Multiscale High-Performance Computing in Plasma Physics, Ph.D. thesis,

Instituto Superior Técnico de Lisboa (2010).

[43] PIConGPU, “PIConGPU,” https://github.com/ComputationalRadiationPhysics/

picongpu, accessed: 2017-08-27.

[44] T. Umeda, Y. Omura, and H. Matsumoto, in Proceedings of ISSS-7 (2005).

[45] J. Yu, X. Jin, W. Zhou, B. Li, and Y. Gu, “High-Order Interpolation Algorithms for

Charge Conservation in Particle-in-Cell Simulations,” Communications in Compu-

tational Physics 13, 1134 (2013).

[46] D. Luebke, in 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano

to Macro (Institute of Electrical and Electronics Engineers (IEEE), 2008).

[47] M. J. Flynn, “Some Computer Organizations and Their Effectiveness,” IEEE Transac-

tions on Computers C-21, 948 (1972).

[48] N. Corporation, “Cuda toolkit documentation v8.0,” http://docs.nvidia.com/

cuda/ (2016), accesed on 2017-01-26.

[49] R. Banger and B. Bhattacharyya, OpenCL Programming by Example (Packt Publishing,

2013).

[50] J. Sanders and E. Kandrot, CUDA by Example (Addison Wesley, 2010).

BIBLIOGRAPHY 85

[51] P. Yalamanchili, U. Arshad, Z. Mohammed, P. Garigipati, et al., “ArrayFire - A

high performance software library for parallel computing with an easy-to-use API,”

(2015).

[52] M. Eloy, A. Guerreiro, J. T. Mendonça, and R. Bingham, “Hamiltonian formula-

tion of direct laser acceleration in vacuum,” Journal of Plasma Physics 73 (2007),

10.1017/s0022377806006131.

[53] M. Capitelli, A. Casavola, G. Colonna, and A. D. Giacomo, “Laser-induced plasma

expansion: theoretical and experimental aspects,” Spectrochimica Acta Part B:

Atomic Spectroscopy 59, 271 (2004).

[54] B. Mashhoon, F. Gronwald, and H. I. Lichtenegger, in Gyros, Clocks, Interferometers...:

Testing Relativistic Graviy in Space (Springer Berlin Heidelberg, 1999) pp. 83–108.

[55] B. Mashhoon, F. W. Hehl, and D. S. Theiss, “On the gravitational effects of rotat-

ing masses: The Thirring-Lense papers,” General Relativity and Gravitation 16, 711

(1984).

[56] V. Majernik, “Field approach to gravitation and its significance in astrophysics,” As-

trophysics and Space Science 14, 265 (1971).

[57] C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press,

2005).

[58] W. H. Louisell, Quantum Statistical Properties of Radiation (Pure & Applied Optics) (John

Wiley & Sons Inc, 1973).

[59] L. Landau and E. Lifshitz, “On the theory of the dispersion of magnetic permeability

in ferromagnetic bodies,” Phys. Z. Sowjetunion 8, 101 (1935).

[60] A. K. Sarma and P. Kumar, “High and uniform coherence creation in Doppler-

broadened double lambda-like atomic system by a train of femtosecond optical

pulses,” Laser Phys. 25, 056001 (2015).

[61] A. Lopes, Radiation Tension in nonlinear plasma metamaterials, Master’s thesis, Instituto

Superior Técnico (2015).

