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Abstract

Networks are ubiquitous representations of many real-world systems. As such, there
is a need to develop tools and methods to analyze them, so as to gather information
of their underlying systems. In the large set of techniques that were developed on
the last few decades, methods that rely on looking into the frequency of certain small
subgraphs, like frequent subgraph discovery, network motif discovery and graphlet
based metrics, were extensively studied and improved. At the core of these techniques
is one common problem: counting subgraphs, which is formally known as the subgraph
census problem. In this problem we are given a graph and are asked to compute the
frequency of a set of subgraphs. This is a hard problem, closely related to the subgraph
isomorphism problem, a known NP-Complete problem.

We looked into this problem from two different complementary perspectives: a static
one and a dynamic one. From the static point of view, we developed two algorithms
that directly tackle this problem by finding all subgraphs of a given size k. The first
one computes this exactly, whereas the second one computes an approximation of
the real value, by obtaining an unbiased sample of the full set of subgraphs. From
the dynamic point of view, we first built an algorithm that updates the frequency of
subgraphs when the input graph has an edge added or removed. Furthermore, we
defined the dynamic isomorphism problem as the problem that consists of finding the
isomorphism information (or a canonization) of a graph in a stream, that is, has edges
being added or removed.

Finally, we thoroughly analyzed each technique, comparing it with the appropriate
past approaches and relevant baselines, in order to establish their meaningfulness and
to show they live up to what was theorized about them and also that they outperform
their corresponding past approaches.

Keywords: Graph Algorithms, Graph Mining, Subgraph Counting, Graph Isomor-
phism



Resumo

Redes são representações ubíquas de vários sistemas do mundo real. Assim, existe
uma necessidade para desenvolver ferramentas e métodos para as analisar, com o
objetivo de adquirir informação sobre os sistemas subjacentes. Do leque de técnicas
que foram desenvolvidas durante as últimas décadas, métodos que olham para a
frequência de certos subgrafos pequenos, como frequent subgraph mining (análise de
subgrafos frequentes), network motif discovery (descoberta de motivos de redes) e
métodos baseados em graphlets (subgrafos pequenos), foram estudados e melhorados
extensivamente. No centro destas técnicas surge um problema comum: contar subgrafos,
que é formalmente conhecido como o problema do censo de subgrafos. Neste problema é
nos dado um grafo e pedem-nos para calcular a frequência de um conjunto de subgrafos.
Este é um problema computacionalmente difícil, relacionado com o problema de
isomorfismo de subgrafos, um problema conhecido por ser NP-Complete.

Olhámos para este problema de duas perspetivas complementares: uma estática e uma
dinâmica. Da perspetiva estática, desenvolvemos dois algoritmos que abordam este
problema diretamente, ao encontrarem todos os subgrafos de um dado tamanho k. A
primeira calcula o anterior de uma forma exata, enquanto que o segundo calcula uma
aproximação do valor real, através de uma amostra sem enviesamento do conjunto
total de subgrafos. Do ponto de vista dinâmico, primeiro construímos um algoritmo
que atualiza a frequência de subgrafos quando removemos ou adicionamos uma aresta
ao grafo objetivo. Para além disso, definimos o problema do isomorfismo de grafos
dinâmico como o problema que consiste em encontrar informação de isomorfismo (ou a
canonização) de um grafo em stream, ou seja, quando lhe são adicionadas ou removidas
arestas.

Finalmente, analisámos cada técnica, comparando a com o conjunto apropriado de
métodos pré existentes e com patamares base relevantes, com o objetivo de estabelecer
a sua significância e mostrar que confirmam o que foi teorizado sobre elas e que
representam melhorias em relação ao corpo de trabalho que as precede.

Palavras-chave: Algoritmos em grafos, Análise de grafos, Contagem de subgrafos,
Isomorfismo de grafos
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Chapter 1

Introduction

As technology progresses, we tend to get ever more interconnected. As such, we often
turn to networks or graphs as models of a lot of different complex physical systems in
a multitude of fields, like in biology, sociology or medicine [11]. Why graphs? Graphs
are very simple structures, yet they can contain a lot of information on their complex
and convoluted inner topology. Hence, when one develops a new method or tool to
analyze and extract meaningful information from a graph it translates into a new way
of shedding light on our world and potentially having a big impact on society.

It was with this motivation that the area of graph mining developed over the past
decades. One way of studying networks is to search for interesting groups of nodes.
These groups may have a relatively large size, as is the case with community detection
[14], however, they can also be of smaller sizes, like it is the case on frequent subgraph
discovery [31], network motif discovery [40] or graphlet based metrics [46]. We focus
on the latter.

These methodologies have been applied with success to a wide range of real systems,
such as in the social networks domain, where motifs have been used, for instance, to
characterize and classify co-authorship networks [9] or wikipedia edition networks [59].
Likewise, graphlets have been used to provide a complete characterization of social
networks, allowing the selection of an adequate graph model [23]. These methodologies
have also been successfully applied to other domains, such as biological networks [2, 53],
engineering systems like electronic circuits [22] and also on software architecture [54].

1



2 CHAPTER 1. INTRODUCTION

In Figure 1.1 we show a representation of a real complex networks, that models
collaborations between a set of Jazz musicians. Its analysis can tell us, for example,
how these collaborations emerged and how similar they are to other human relationship
networks, like a network of friends in a certain location. However, even though this is
a relatively small network, it is almost impossible to extract any relevant information
just by looking into its visual representation, which suggests computational method
are a must. This particular network will be used as a benchmark in a later analysis in
Chapter 5.
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Figure 1.1: A network of Jazz musicians collaborations.

Underneath many of these techniques we can pinpoint a common problem: the subgraph
census problem. In this problem, we are given a graph and are asked to compute the
frequency of a set of different (in terms of isomorphism) subgraphs. This set can be all
the subgraphs with a certain number of nodes k, a single subgraph or any random set.
In this thesis we focus specifically on the first situation.

The subgraph census problem has been thoroughly studied over the past two decades
[27, 40, 45, 48, 58]. This is a hard problem, since at its core it is related to the
subgraph isomorphism problem and, by consequence, the graph isomorphism problem.
The former is a well-known NP-Complete problem [10]. Consequently, the only
approaches we have are experimental ones, that try to reduce as much as possible the
amount of performed computation. Additionally, due to the combinatorial explosion of
occurring subgraphs, all known algorithms can only support finding frequencies of very
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small subgraphs, with a number of nodes not exceeding 9 or 10 (if we consider simple,
undirected graphs).

The previous discussion focuses on a problem which is (in the way we defined it) static,
meaning our input graph or structure is fixed. However, in the real world almost
everything is in motion, constantly changing. Thus, there is an interest in studying
graph problems on a dynamic or streaming environment, that is, an environment where
our input is changing, evolving.

There are multiple models of streaming graphs [36], that consider different types of
updates, usually either edge additions, deletions or both. Particularly in the graph
mining realm, there has been an increasing interest in studying dynamic graphs
problems, namely, by introducing or altering known metrics to suit temporal graphs
(graphs where edges have timestamps that represent intervals of time where they are
active) [20, 29, 49, 55].

With this is mind, in this thesis we will take somewhat of a journey around the
subgraph census problem. We start by concentrating on the static version of the
problem and we will walk towards a dynamic version. In each stop, we will also discuss
different approaches and variants of the problem. The ultimate goal is to provide novel
algorithms and methods for the discussed problems so as to facilitate the analysis of
networks using techniques that rely on these problems.

1.1 Goals and contributions

As mentioned, our goals roam around the subgraph census problem. To ease their
presentation, we divided our work into four parts, tied into two main groups: one
concerning static approaches and one concerning dynamic approaches.

For the static approaches, we propose two algorithms: the first is an algorithm that finds
the exact frequency of all subgraphs of a given size k; the second is an approximation
algorithm for the same problem, which obtains an unbiased sample of subgraphs in
order to estimate the correct count.

For the dynamic approaches, again we propose two algorithms: the first is a variant
of the presented static algorithm that updates the frequency computations when a
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single edge is either added or removed; the second is an algorithm that solves a related
problem called the dynamic graph isomorphism problem.

We summarize our contributions on the following list:

• We propose an efficient algorithm that determines the exact frequency of all
subgraphs of a given size k and show that it outperforms its known main past
approaches. This was originally published in [42];

• We propose a version of the previously mentioned exact algorithm that approxi-
mates the frequency of subgraphs, trading accuracy for speed, by obtaining an
unbiased sample of the total subgraphs. Also, we analyze its behavior, from
runtime to convergence of the approximation. This was originally published in
[43];

• We propose a version of the previously mentioned exact algorithm that efficiently
updates the frequency of subgraphs when an edge of the original graph is either
added or removed. This was originally published in [51];

• We describe a new problem, which we called the dynamic graph isomorphism
problem, that amounts to finding a canonization of a graph and then updating it
when it suffers edge additions or removals. We also show its usefulness in the
context of the subgraph census problem. This is unpublished work;

• We propose an efficient algorithm that solves the dynamic graph isomorphism
problem in a streaming-aware fashion for small graphs. We also thoroughly
analyze its properties in terms of memory usage and runtime. This is unpublished
work;

1.2 Thesis outline

This thesis is structured as follows:

• Chapter 2 - Preliminaries sets a consistent notation and terminology and
briefly discusses some background concepts and past work on the topic of this
thesis;
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• Chapter 3 - A Static Approach focuses on the two proposed algorithms that
target the static version of the subgraph census problem;

• Chapter 4 - A Dynamic Approach focuses on the two proposed algorithms
that target dynamic variants of the subgraph census problem;

• Chapter 5 - Experimental Analysis shows the efficiency and the properties
of the proposed methods;

• Chapter 6 - Conclusion summarizes the presented material and also wraps
up this thesis;

So, without further ado, we shall delve into what matters.





Chapter 2

Preliminaries

This chapter will cover all the background theory that the thesis will use. First, we
define some notation and terminology we will consistently use in all of the following
chapters. We then discuss a problem closely related to the main focus of this thesis,
namely the graph isomorphism problem. More than a related problem, it is a central
primitive in most algorithms that tackle the subgraph census problem, our focus in this
thesis. We follow with the latter problem, by formally defining it, as well as discussing
some of the more important past approaches to the problem. We close with a note on
network motifs, which are one of the main reasons why there is an interest in solving
the subgraph census problem.

2.1 Notation and terminology

A network or graph G is a pair (V (G), E(G)), where V (G) is a set of vertices and E(G)
a set of edges, represented by pairs (a, b) where a, b ∈ V (G). We call each vertex in
an edge an endpoint. We define the size of G, denoted by |V (G)|, as the number of
vertices. A graph with size k is denoted as a k-graph. A graph G is called undirected
if ∀u, v ∈ V (G), (u, v) ∈ E(G)↔ (v, u) ∈ E(G) and directed otherwise. The degree of
a vertex v is the number of unique edges that have v as one of its endpoints, which we
denote by δ(v). In the case of directed graphs, we distinguish between indegree and
outdegree of v, respectfully δ(v)i and δ(v)o, as the number of unique edges that have v
as the second endpoint and as the first endpoint.

7



8 CHAPTER 2. PRELIMINARIES

In this thesis we only consider simple graphs, with no multiple edges between two
vertices and no loop, and directed graphs with no multiple edges between the same
endpoints and no loops. We assume every graph is labeled so that every vertex of a graph
G is assigned a distinct integer from 1 to |V (G)|. We denote the label of a vertex v by
L(v). Graph equality between two graphs G and G′ with the same number of vertices,
denoted by G = G′, is observed if and only if for all u, v ∈ V (G) and u′, v′ ∈ V (G′)
such that L(u) = L(u′), L(v) = L(v′), then (u, v) ∈ E(G)⇔ (u′, v′) ∈ E(G′).

A subgraph Gk of a graph G is a k-graph where V (Gk) ⊆ V (G) and E(Gk) ⊆ E(G).
This subgraph is induced if and only if ∀u, v ∈ V (Gk) : (u, v) ∈ E(G)↔ (u, v) ∈ E(Gk)
and is called connected if all vertex pairs are connected by a sequence of edges. The
neighborhood of a vertex v ∈ V (G) is defined as N(v) = {u : (u, v) ∈ E(G) ∨ (v, u) ∈
E(G)} and similarly we define the neighborhood of a set of vertices S ⊆ V (G) of G,
denoted as N(S), as the set of all of the neighbors of vertices in S not included in
S. The exclusive neighborhood of a vertex v in a graph G relative to a set of vertices
S ⊆ V (G) is defined as: Nexc(v, S) = {u : u ∈ N(v) ∧ u /∈ N(S) ∧ u /∈ S}.

A permutation π is an element of the symmetric group Sn, with its usual composition
operation ◦. We denote the image of an integer x under the permutation π by πx. For
a permutation π, we denote by π the inverse of π, that is the permutation such that
π ◦ π = 1, where 1 is the identity permutation. A transposition is a permutation that
only swaps two elements and fixes all the others. Given a graph G with vertex set
V (G) = {v1, v2, . . .} with L(vi) = i, and a permutation π, we denote by Gπ the graph
with the same vertex set but with L(vi) = πi, meaning we permute the labels of the
vertices. To simplify notation, for a given vertex v of a graph G with label i and a
permutation π, we write πv to denote the vertex in Gπ with label πi.

Two graphs G1 and G2 are said isomorphic if there is a permutation π such that
Gπ

1 = G2, we denote this by G1 ∼= G2. The isomorphism graph class of a graph G is
the equivalence class of G in the relation of isomorphism of graphs. For a particular
k-subgraph, Gk, of a graph G, we denote the set of all subgraphs of G that belong to the
same isomorphism graph class of Gk by S(Gk, G) and we call frequency to the number
of subgraphs of G that belong to that class and denote it as: F (Gk, G) = |S(Gk, G)|.

An automorphism of a graph G is a permutation π such that Gπ = G. We define
Aut(G) as the set of automorphisms of G. The orbits of a graph G are the equivalence
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classes of vertices of G under the action of automorphisms, this means two vertices u, v
have the same orbit if there is π ∈ Aut(G) such that πu = v or πv = u. A canonical
function is a function C that, given a graph G, C(G) ∼= G and for any π ∈ Aut(G) we
have C(Gπ) = C(G).

For a subgraph Gk of a graph G, an estimator of the value of F (Gk, G) is denoted as
F̂ (Gk, G). It is called unbiased if its expected value, denoted as E(F̂ (Gk, G)), is equal
to F (Gk, G) and biased if not.

A graph changing operation of cardinality n is a pair (x1, x2), where x1 and x2 are
distinct integers between 1 and n. The application of a graph changing operation
∆ = (x1, x2) of cardinality n over a graph G with |V (G)| = n is the graph G′ = G∆
with the same vertex set of G, where, if v, u ∈ V (G) are such that L(v) = x1 and
L(u) = x2: if (v, u) /∈ E(G) then E(G′) = E(G) ∪ {(v, u)}; if (v, u) ∈ E(G) then
E(G′) = E(G) \ {(v, u)}. Thus, the application of a graph changing operation (x1, x2)
is equivalent to toggling on or off the edge between the two vertices with labels x1 and
x2. A graph stream S of cardinality n is a sequence of graph changing operations with
the same cardinality. We call the size of a stream |S| to the number of elements in S.
The application of a graph stream S = [∆1,∆2, . . .] with cardinality n over a graph
G with |V (G)| = n is a sequence of graphs [G,G∆1, G∆1∆2, . . .], denoted by S(G).
For a given stream S over a graph G, if we are only interested in every other k graph,
meaning S(G)1, S(G)1+k, S(G)1+2k, . . . , we say the stream S has step k.

2.2 The graph isomorphism problem

The Graph Isomorphism problem (GI) consists in finding a bijection between the vertex
sets of two graphs that preserves the vertex adjacency or state that one does not exist.
It is a widely studied problem in several domains. Its theoretical interest arises from
the fact that GI is trivially in NP but is still unknown whether it is NP-Complete
or in P, even though it is considered unlikely that GI is NP-Complete [16]. Recently,
the upper bound on the complexity was improved to quasipolynomial time [5].

From a practical point of view, it is used as a primitive for several methods that tackle
different problems, like frequent subgraph discovery [31], graph matching [17] and our
friend, the subgraph census problem [58]. As such, efficient practical methods that
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compute isomorphism information were developed [24, 38] based on several heuristics.
One of the most well-known algorithms is called nauty [38], an exponential algorithm
that performs exceptionally well in most inputs.

The Graph Canonization problem (GC) is a variant of graph isomorphism that consists
of finding a canonical labeling (also called a canon) for a graph in a way that ensures
that two graphs have the same canonical label if and only if they are isomorphic.
Solving GC implies solving GI, since after knowing the canonical labels of two graphs
determining if they are isomorphic is simply checking if the two labels are equal.
However, in general, GI is not known to be equivalent to GC [4]. The most common
practical approach to GI is by solving GC [38], since it is better suited for most
applications where a collection of graphs needs to be sorted for isomorphism class.

We now provide a formal definition of the canonization problem.

Definition 1. In the canonization problem we are given a graph G and are asked to
provide a canonical labeling of G, such that for any π ∈ Aut(G), Gπ has the same
labeling.

This problem is a known problem and will be used as a primitive in this paper. We
use nauty [38] throughout this thesis whenever we need a method that solves this
problem. However, note that any method that returns the canon of a graph could be
used instead of nauty.

2.3 The subgraph census problem

This problem is the focus of this thesis. We will look into this problem and some of its
variants (which we will present and discuss throughout this thesis), but in its essence
its formal definition is the following:

Definition 2 (Subgraph Census Problem). Given an integer k and a graph G,
determine the frequency of all different connected induced k-subgraphs of G. Two
occurrences of a subgraph are considered different if they have at least one node that
they do not share.

It is important to notice that we are only concerned with subgraphs that are both
connected and induced. However, both are computationally equivalent, since it is
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possible to apply a simple linear transformation to obtain non-induced frequencies from
induced frequencies, and vice-versa [45]. Note, also, how we distinguish occurrences.
Other frequency concepts do exist and have been tested [50], but here we use the
standard definition. This has direct implications on the number of existing subgraphs,
with no downward closure on the frequencies, since a subgraph may appear more times
than a subgraph contained in it. Figure 2.1 exemplifies a subgraph census for k = 3 a
graph G with five nodes.

Figure 2.1: An example 3-subgraph census.

Also relevant is the distinction between a subgraph census and a subgraph enumeration,
since both will be mentioned multiple times throughout this thesis. Even though some
subgraph census algorithms perform an enumeration, this is not the case for the full
range of existing techniques. An enumeration implies exhaustively generating or listing
each subgraph occurrence. There are works such as [13] that focus on efficiently doing
this explicitly, but that is not our focus.

We can divide the main algorithms that tackle this problem into three main groups
related to their conceptual approach. Network-Centric algorithms, such as ESU [58] or
Kavosh [25], compute the frequency of all possible k-sized subgraphs in the original
network. By contrast, Subgraph-Centric algorithms, such as the one by [18], search
for one single specific subgraph. Finally, the Set-Centric approach of g-tries [48] is
conceptually in the middle, allowing for computing the frequency of a customized set
of subgraphs.

In this thesis we focus mainly on network-centric approaches. As such, whenever
we want to mention the subgraph size of a census, we will always use the variable
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k. Note that for this problem, subgraph-centric methods would still be able to do
the full enumeration, albeit they would need to search individually for all possible
k-sized subgraphs. Likewise, set-centric methods would need to receive as input the
same set of all possible k-sized subgraphs, regardless of having no guarantees that
all possible subgraph types will appear on the network being analyzed. One possible
network-centric approach can be summarized through two major steps: enumeration
of connected sets of k nodes and isomorphism tests to determine to which subgraph
type each enumerated set belongs to. Classical approaches do this independently: the
enumeration part gives origin to sets of k nodes and afterward each one of this sets
is inputted into an isomorphism computation (typically by calculating a canonical
labeling) so that the correspondent subgraph type frequency can be incremented. This
means that the number of performed isomorphism tests is equal to the number of
occurrences of subgraphs, even though the actual number of existent subgraph types is
generally much smaller.

2.4 Subgraph census algorithms

In the network-centric realm, the two main enumeration algorithms that existed before
our work were ESU [58] and Kavosh [25]. Even though they are conceptually similar,
since they both work by iterating through all k-subgraph occurrences incrementally and
in the end perform isomorphism tests, they use two different underlying approaches.
Although their execution times are usually pretty close, past tests have shown that
Kavosh performs slightly better on average [25]. An improvement over these approaches
is the QuateXelero algorithm [27]. It avoids having to do one isomorphism test per
occurrence by storing the underlying topology of the subgraphs being enumerated in a
quaternary tree. Our own work (which we will present in Chapter 3), FaSE [42] displays
a similar strategy, and was originally published at the same time as QuateXelero. FaSE
differs from QuateXelero because it uses a different underlying topological structure,
the g-trie, which is more general in its applicability as we will see.

A different improvement approach is followed by NetMODE [34], that considers only
very small subgraph sizes and either caches the results of isomorphism tests or builds
a customized isomorphism test of a particular subgraph size. In this thesis, we are
aiming at a more complete generality, with no rigid restrictions on the subgraphs size.
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Regarding subgraph-centric approaches the work of [18] stands out. It works by taking
a single subgraph type and computing its frequency on the input network by breaking
symmetries. We would like to point out that this approach is conceptually different
from the one taken in this work, since a full subgraph census would require a separate
computation per subgraph and pre-generated set of subgraphs.

As for the set-centric approach, the state-of-the-art is the usage of g-tries [48]. Like
in the subgraph-centric approach, this algorithm makes use of symmetry breaking
conditions to enumerate not one, but a set of subgraphs. Note that a data-structure we
will present later in this thesis is similar to these g-tries (and that is why we used the
same name), however, ours does not use symmetry conditions and is network-centric
in its nature, since it does not require a pre-generated set of subgraphs to search for.

Another possible assumption is to only consider certain types of graphs and thus explore
specific combinatorial features of that graph type, as was done in [35]. More recently,
a series of algorithms have been proposed that combinatorially explore the shared
structures of subgraphs and are thus applicable to all graphs. Works like [1, 19, 45],
create a series of linear equations based on different properties of the graph (like the
degree of each node, the number of triangles that contain a certain node and the
frequency of smaller subgraphs) that relate the frequency of each subgraph with all the
others. Then, by finding the frequency of a single subgraph (usually the clique), solving
the linear system yields the subgraph frequencies for all subgraphs. These methods
hitherto are limited by the size of the subgraphs being counted, since the equations
are determined manually and these are directly proportional to the number of different
isomorphism-wise subgraphs. Our work differs from these types of approaches since it
aims at generalness and applicability in all types of graphs.

We will now discuss in some detail the some of the previously mentioned approaches
that are more relevant to this work, namely the ESU [58], Kavosh [25], QuateXelero [27]
and ESCAPE [45] algorithms, as the main representatives of their algorithmic approach.

2.4.1 ESU

The ESU algorithm works by enumerating all k-subgraphs of a network and in the
end performing an isomorphism test per enumerated occurrence. The enumeration
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step is thus the most important one and the breakthrough it brought, in relation to
the existing approaches prior to its development, was the ability to enumerate all
occurrences once and only once.

It keeps two vertex sets, which we will call VS and VE. The former represents the
subgraph being currently enumerated and since we are enumerating induced subgraphs,
we only require a vertex list. The latter is a list of vertices that neighbor any vertex in
the current subgraph and can be added to the subgraph being enumerated, that is VS.

The method repeats the same procedure for each vertex v in the input network G.
Initially, it sets VS = {v} and VE = N(v). Then, for each vertex u in VE, it removes
it from VE and makes VS = VS ∪ {u}, effectively adding it to the subgraph being
enumerated and VE = VE ∪ {u ∈ Nexc(u, VS) : L(u) > L(v)} (where v is the original
vertex to be added to VS as stated in the beginning of the paragraph). The Nexc here
makes sure we only grow the list of possibilities with vertices not already in VS and
the condition L(u) > L(v) is used to break symmetries, consequently preventing any
subgraph from being found twice. This process is done several times until VS has k
elements, which means VS contains a single occurrence of a k-subgraph.

Since ESU works recursively in a set incrementation fashion, it creates an implicit
recursion search tree. In each node we consider a certain VS and VE representing the
partially (or fully if it is a k-subgraph) enumerated subgraph. Figure 2.2 exemplifies
this implicit enumeration tree for a 3-subgraph census, where A and B represent the
two distinct simple graphs with 3 vertices.

Figure 2.2: An example induced ESU search tree leading to eight different 3-subgraphs occurrences.
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After the enumeration, the nauty [37] algorithm is used for isomorphism testing, so
that each occurrence is attributed to the correct isomorphism class and the respective
frequency is incremented.

2.4.2 Kavosh

Like ESU, the core idea of the Kavosh is to find all subgraphs that include a particular
vertex, then remove that vertex and continue from there iteratively. It differs, however,
because it builds an implicit tree rooted at the chosen vertex (with tree children
being network neighbor vertices), and then generates all combinations with the desired
number of nodes. For instance, if we are searching for 3-subgraphs, and considering
that at the tree root level we can only have one vertex, we could have the combinations
with pattern 1-2 (one vertex at root level 0, two vertices at level 1) or with pattern
1-1-1 (one vertex at root level 0, one at level 1 and one at level 2). In an analogous way,
4-subgraphs would lead to patterns 1-1-1-1, 1-1-2, 1-2-1 and 1-3. Figure 2.3 exemplifies
this combinatorial search, by showing all patterns emerging from a single root node
(the first number of the pattern is omitted, 1-1 represents 1-1-1 and 2 represents 1-2).

Figure 2.3: Kavosh combinatorial search tree starting on node 1 leads to five different 3-subgraphs
occurrences.

The combinations are done using a revolving door algorithm [30] and, as in ESU, the
isomorphism detection is done using nauty [37]
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2.4.3 QuateXelero

The QuateXelero algorithm goes a step further in relation to the previous two
algorithms. Instead of delaying the isomorphism testing, which is the heaviest bottleneck
of the previous two methods, to the end of the enumeration process, it uses the
information gathered during the enumeration to reduce the amount of computation
needed to determine the isomorphism classes. QuateXelero can be built upon any set
incremental enumeration algorithm, but to simplify this discussion we will focus on
ESU, as did the authors of QuateXelero in [27].

To assist in this process, QuateXelero implements a data structure similar to a
quaternary tree. Each node in the tree represents a graph, that can be built by looking
into the nodes from the path from it to the root of the tree. Additionally, all graphs
represented by a single node belong to the same isomorphism class. Thus, by storing
the frequency information in this data structure, QuateXelero only requires using
nauty to compute isomorphism classes once per leaf of the quaternary tree, instead of
one per occurrence, like in ESU.

To fill the tree, we initially set a pointer to the root of the tree. Whenever a new vertex
is added to VS during the ESU procedure, QuateXelero looks into the existing edges
between the newly added node and the previously existing nodes in VS and stores its
information in the quaternary tree. For each node in VS, depending on whether there
is no edge, an inedge, an outedge or a biedge between it and the newly added vertex,
the pointer is assigned to one of its four children, creating it if it was nonexistent.

In Figure 2.4 we show an example of an enumeration of 3-subgraphs using the
quaternary tree used by Quatexerelo. The figure shows three enumeration steps
and the corresponding state of the quaternary tree. In the first quaternary tree we
show the meaning of each of the 4 children of each node. Also, each edge has a curved
line pointing to its corresponding edge (the dotted line in the final subgraph represents
a nonedge).

The technique this method makes use of is very similar to the technique employed by
the method we will describe in Section 3.1 of Chapter 3. Both methods were original
published at the same time, but the method proposed in Section 3.1 can be considered
a generalization of QuateXelero, since instead of using a quaternary tree, it uses a
more flexible data structure.
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Figure 2.4: Example quaternary tree along with enumeration

2.4.4 ESCAPE

ESCAPE is the most recent combinatorially based algorithm to be published and currently
stands as the fastest subgraph census algorithm for undirected graphs with k up to
5. Contrary to the previously described algorithms, it directly counts non-induced
subgraphs and in the end uses them to compute the induced frequencies.

Its main idea is to breakdown subgraphs into smaller subgraphs and determine a
mathematical expression that relates their frequencies. In [45], this is done by
establishing a cutting framework that given a cut set of a graph H computes the
frequency ofH in a larger graphG using only the frequency of the connected components
of H produced by removing the vertices of the cut set. Since every graph, except the
complete graph, has a cut set, this can be done for all graphs except the complete
graph.
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Now we only need to select the appropriate cut set for each graph and apply the
expression given by the cutting framework. If we do this for all graphs and then count
the frequency of cliques separately, using an efficient clique counting algorithm, we
have the frequency of all k-subgraphs. Note that applying the expression to all graphs
of size k involves manually manipulating the expression, which is too time consuming
for k > 5 or for directed graphs.

As an example, if we want to count the frequency of the 5-star, the 5 vertex graph star
(a graph with a single vertex connected to all other 4 and no other connection), if we
choose the center vertex as the only element of the cut set needed to apply the cutting
framework, we obtain the following expression for its frequency:

∑
v∈V (G)

(
δ(v)

4

)

2.5 Approximated subgraph census algorithms

We now turn our attention to approximated or sampling based approaches to the
subgraph census problem. For these approaches, one of the first to appear was [26], an
algorithm that provided a biased estimator by doing a random walk on the network.
To correct the bias it calculated the probability to sample each subgraph and used it
to weight each sampled subgraph. As an extension of the ESU algorithm there exists
Rand-ESU [58], which works by placing probabilities in each level of the enumeration,
thus giving an unbiased estimator for the number of subgraphs of each isomorphism
class. We drew upon this idea on the method we discuss on Section 3.2. Another
extension of an exact method are Rand-gtries [47], which work in a similar fashion
to Rand-Esu.

GUISE [8] works by using a Markov Chain Monte Carlo sampling method. However, it
is also more specialized on a specific census, namely undirected subgraphs of sizes 3
to 5. More recently, works like Moss [56] focus on applying combinatorial features of
the graph to accelerate the search. As in the exact algorithms, there are approximate
approaches that are geared only towards certain subgraph types and try to exploit
specific properties of those types. For instance, Fascia [52] provides an approximate
count of non-induced tree-like subgraphs. Our work differs from the last three because
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right from the start we aim towards total generalization and we support both directed
and undirected networks of any size for which we have enough memory to store the
subgraph classes.

We will now discuss in some detail some of the previously mentioned approaches that
are more relevant to this work, namely the Rand-ESU and the Moss algorithms [56, 58].

2.5.1 Rand-ESU

The approximate version of ESU is very similar to the exact one. The idea behind it is
very similar to the one we will present on Section 3.2 of Chapter 3, since the underlying
structure of both algorithms is very similar.

For each level of the enumeration tree, the algorithm places a probability of descending,
meaning it will only go on exploring that branch with that particular probability. This
results in only a fraction of all subgraphs occurrences being enumerated, where each
occurrence is sampled with the same probability (we will address and prove this later).
Thus, it is possible to have an unbiased estimator for the number of occurrences in
each isomorphism class.

In Figure 2.5 we show the same situation as in Figure 2.2, but with probabilities on
each depth and some prunings, meaning branches that we discarded randomly, which
are marked with a red cross.

Figure 2.5: Example of Rand-ESU induced search tree with prunings
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2.5.2 Moss

The main idea of Moss is very similar to the core idea of [26], which is to perform some
kind of random walk and then correct any surging bias by considering the probability
of sampling that subgraph in relation to others with the same size. However, since
Moss focuses individually on 4 and 5 subgraph census, it is able to obtain more specific
and efficient methods.

The idea of sampling 4 or 5 subgraphs is similar: start by obtaining a 4 or 5 size path,
where the probability of each step is given by specific probability functions described
in [56]. One then manually calculates how each frequency value needs to be corrected,
based on the chosen probability function used to perform the random walk. The final
result is an efficient O(|E(G)|+ l log |V (G)|) algorithm to sample l subgraphs of size 4
or 5 (there are some other parameters on the 5 subgraph method).

The main advantage of this method is that it allows us to devise a method that is
biased towards certain subgraphs and thus reduce the variance of sampling them. If
we want to target low occurring subgraphs, like the clique, this method can reduce the
variance of the sampling for normally critical subgraphs.

2.6 Dynamic approaches to subgraph census

The transition of the subgraph census problem to the dynamic realm has only recently
started to boom.

One of the earliest works is [29], which suggests a notion of temporal motifs, over-
represented temporal patterns in a graph, in order to classify and study certain
networks.

Another early notion that surged related to subgraphs in dynamic networks was the
investigation of triadic closures, which is the theory of how triangles form in a temporal
graph. A known property of many complex networks (especially social networks) is
that they have high clustering coefficients, meaning that if a is connected to b and
c, there is a high probability that b and c are also connected. In [20], these were
investigated in temporal social networks, with the ultimate goal of predicting which
links were going to be formed in the future.
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In [49], an algorithm was described that counts 4-subgraphs in a network stream, were
nodes and edges are changing. This was used to classify streams of networks and
predict future behavior. The authors show that this method has a very large speedup
when compared to snapshot-based methods.

To investigate the evolution of networks, [41] proposes an edge based metric of temporal
motifs in temporal graphs and proposes an algorithm to efficiently count them.

In our work, we focused on two main problems. The first one is very similar to the
problem targeted by [49], however, we only consider edge modifications and provide a
general method, useful in directed and undirected graphs for multiple subgraph sizes.
The second one is a dynamic isomorphism problem, which is a problem we propose as
a stream based extension of the canonization problem described in Definition 1.

2.7 Network motif analysis

One of the main applications of a subgraph census is computing network motifs. In
a nutshell, these are over-represented patterns in a network, which can be used as a
fingerprint or feature vector of the network. This fingerprint can then be used as the
representation of a graph in many graph mining tasks, like classification, prediction, etc.
As we have seen on the previous sections, many works describe multiple frameworks
of these graph mining tasks that have as the core concept the calculation of over-
represented subgraphs [9, 22, 59].

This concept of building blocks of networks was first described by Milo et al. in [40] as
patterns of inter-connections occurring in numbers that are significantly higher than
what one would expect. To simplify notation, we will refer to network motifs simply as
motifs.

A determined subgraph is considered significant if its frequency in the original graph
is exceptionally high in comparison with its frequency on random networks under a
certain null model. To assess exceptionality, one computes the probability that the
number of times the subgraph appears on a randomized network is lower than on the
original network and then compares it with a certain threshold P . This probability
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can be estimated using Z-scores on a standard normal distribution, by computing the
standardized difference between the observed and expected frequency.

To be classified as a motif, according to the original definition [40], it is also required to
fulfill two other properties. For a given subgraph, let fo be the frequency of the subgraph
on the original network and fr the average frequency of the same subgraph on random
networks with an unspecified null model. The first constraint is minimal frequency,
that is, fo has to have a minimum value of U , to ensure a quantitative minimum. The
second constraint is minimal deviation, that is, fo needs to be significantly larger than
fr, to prevent the detection of motifs that have a small difference between these two
values but have a narrow distribution in the random networks. This can be stated has
fo − fr > D · fr, where D is a proportionality threshold.

With this information, we can give a formal definition of motif. Given a set of
parameters {P,U,D}, a subgraph of a given graph is considered a motif if:

• P (fr > fo) ≤ P (over-representation)

• fo ≥ U (minimal frequency)

• fo − fr > D · fr (minimum deviation)

We can see in Figure 2.6 an example of a plot of motif fingerprints for several networks.
Networks with similar sources, for example social, semantic or biological, are grouped
together to show that similar source networks have very similar fingerprints, but distant
from one another. Its this separation property that allows this method to be used as a
preprocessing step for graph mining tasks.
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Figure 2.6: Example of motif fingerprints, adapted from [39]





Chapter 3

A Static Approach

In this chapter we will focus on discussing two algorithms with different approaches to
the static subgraph census problem. We start by discussing a network-centric exact
algorithm that we first presented in [42]. We follow with an approximated version of
the former algorithm, that samples the search space in order to estimate the frequency
of subgraphs, which we first presented in [43].

3.1 Exact fast subgraph census

To tackle the base subgraph census problem, we try to explore the underlying structure
of networks to decrease the amount of computation needed to classify each occurrence
in its isomorphism class. The goal is to separate all occurrences in intermediate
classes that have two important properties: they can be calculated quickly; each
occurrence in the same intermediate class is in the same isomorphism class. Following
the complete enumeration of subgraphs in the network it is only necessary to compare
a single representative subgraph per intermediate class, hence decreasing the number
of isomorphism tests required.

To accomplish that, our algorithm, which we called FaSE (from FAst Subgraph
Enumeration), is composed of two processes closely integrated with each other:
enumeration and encapsulation. The former pertains to the fundamental process
of actually finding each individual occurrence of a subgraph in the original network.

25
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This is required to be done by an incremental growth of a connected set of vertices.
The encapsulation process is where the isomorphism classes are obtained by storing the
topological features of the subgraph. Whenever a vertex is added to the current set of
enumerated vertices, we generate a label that describes the relation of the newly added
vertex to the already added ones. This corresponds to the partitioning in intermediate
classes mentioned above. To actually accomplish this, we use a generic process we called
LS-Labeling that categorizes each subgraph’s intermediate class. The actual storage of
the labels and subgraphs is done using a tree data structure that acts as a customized
g-trie in which the LS-Labeling works as the divider, that is, it is responsible by the
tree’s edges. The following sections describe these techniques thoroughly.

3.1.1 Subgraph enumeration

The enumeration process is not constrained, allowing different approaches. As long as
it counts every occurrence of each subgraph once and only once and provided that it
does so in an incremental fashion (meaning node by node) any enumeration algorithm
can serve as the enumeration step of FaSE. The goal here is to enforce that the process
transitions from state to state adding a single new node at a time. This permits that
each enumerated subgraph is labeled according to the transitions it took to reach the
final state.

Consequently, it is possible to use any modern enumeration algorithm. As described
in Chapter 2, two of best that accomplish this task are ESU [58] and Kavosh [25] and
they can both be integrated in FaSE since they follow the required behavior.

3.1.2 Encapsulating isomorphism information in a tree

As the enumeration process is running, we need to use the information provided by
this procedure. The reason to do so is to take advantage of the topology of subgraphs,
which in practice is separating the subgraphs into said intermediate classes. Thus, we
require a data structure that is adapted to the behavior of the enumeration step, but
also compact and benefiting from the common topology given by the labels. A good
candidate must follow these parameters and also fit the idea of hierarchical construction
of the enumeration. The actual data structure we use is based on an existing data
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structure called a g-trie [48], which can be thought of as “prefix trees of graphs”,
although FaSE’s setup is somewhat altered. To avoid ambiguity, throughout the rest
of this paper, we will use nodes to refer to tree nodes (in our g-trie) and vertices to
network and subgraph vertices.

3.1.2.1 G-Tries

Our custom g-trie works as a tree whose nodes represent graphs. This is done in an
order that respects the topology of the subgraphs, meaning if a certain node is parent
of another node, then the graph represented by the former is a subgraph of the latter
(in this particular case, with only one additional vertex). Each node stores two pieces
of information: a frequency, which is the number of subgraphs of the original network
that are of that particular type; a label information regarding its topological structure.
The idea is to start off with an empty graph and sequentially add new vertices. For
each vertex added, a label that portrays its relation with the previous added vertices is
calculated and used to determine its node on the g-trie. Each vertex addition follows a
new node on the g-trie. Note that this is a deterministic process, meaning that if the
same subgraph is added twice the resulting label is the same. In terms of the g-trie
correspondence, the calculated label establishes the node to follow (and the due edge).
If this node is nonexistent, both the node and the edge are created. As a result, if two
different subgraphs are processed and end up on the same g-trie node, it is assured
that they are isomorphic, thanks to the label requirements. An example g-trie can be
visualized in Figure 3.1.

Figure 3.1: An example g-trie with some graphs up to 4 vertices. The dark vertices represent newly
added vertices.
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Regarding how the g-trie actually accomplishes this, it works by keeping a current
node that represents the partial subgraph being enumerated, which is initially the
root node (corresponding to the empty graph). It uses two procedures to progress:
Deepen and Jump. The first one inserts a new vertex into the current graph by moving
along the g-trie to the corresponding node, a process which lowers the current node
(“deepening”). Additionally, it creates the new node and edge if they were previously
nonexistent and augments the frequency count of that particular node by one. It uses
the label generated for the added vertex, which is assigned to a determined edge, to
decide where to go in the tree. This is implemented using a prefix tree (or “trie”) to
ensure linear time search of the new node on the length of the label. Contrary to this,
the Jump procedure sets the current vertex to its parent, thus going up in the g-trie.

To actually insert graphs into this g-trie, it is possible to take advantage of the common
topologies inherent to the enumeration of the subgraphs. Whenever a new vertex is
selected by the enumeration process, a labeling algorithm assigns a new label to this
vertex in relation to the already selected ones and uses this information to perform
a Deepen operation on the g-trie. After the recursive call made to enumerate all the
subgraphs that exist from the current subgraph, a Jump call is performed to go back to
the previous node in the g-trie. The reason this works (and why it is done) is because
all subgraphs achieved from a particular state (corresponding to a node in the g-trie)
will share a common topology related to the partial enumerated set (the state) and
therefore share the same label information to that point.

Summarizing the previous paragraphs, it is possible to conclude that this setup is the
one of a simple tree regulated by the labels assigned in each step. The consequence
of this is that it ends up representing graphs simply because the label is designed in
that way. Hence, this is a very general data structure adaptable to different labeling
algorithms.

3.1.2.2 LS-Labeling

The generic labeling algorithm is called LS-Labeling. As already mentioned, it is
the core of the g-trie and it is also directly related with the branching factor of the
tree since it governs the different edges, thus it is associated with both the algorithm
running time and the used memory.
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It needs to fulfill two conditions: first, that it deterministically partitions the different
subgraphs occurrences in classes where no two non-isomorphic subgraphs share the same
class; second, that it does so incrementally (emulating the behavior of the enumeration
step) using only information regarding the newly added vertex and its relationship with
the already added ones. From these conditions one could idealize that this labeling
algorithm could simply be a procedure that actually calculated isomorphisms, thus
rendering the point of the tree useless. However, as was said in Chapter 2, this is a
computationally hard problem and so its use is exactly what we are trying to avoid.
Thus it makes sense to ensure another condition: that the algorithm runs in polynomial
time. This behavior sets up a trade off regarding the time spent labeling the various
subgraphs and the time spent on the actual g-trie (which includes the final isomorphism
test time).

We tried two intuitive labeling algorithms which are called the “adjacency list” label
and the “adjacency matrix” label, coming from the corresponding graph data structures.
When a new vertex is added, the algorithms act on the current subgraph and the vertex
to be added. For simplicity we will consider the undirected case first when adding
the k-th vertex and then distinguish the directed one. In the case of the adjacency
list, the label corresponds to a ordered list of at most k − 1 integers where the value i
(1 ≤ i ≤ k) is present if there is a connection from the newly vertex to the i-th added
vertex. Similarly, in the adjacency matrix case a list of k − 1 boolean values is kept,
each one indicating if there is a connection between the newly added vertex and each
vertex added before in order of addition, which corresponds to a segment of the actual
adjacency matrix of those vertices. We show an example of both labels in Figure 3.2.

Figure 3.2: Two different valid LS-Labeling schemes on two example graphs. Dark vertices are the
ones being added.
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To prove the correctness of these two labels options, first notice that they are
methodically equivalent and only change the way they represent the information.
Thus, to prove its correctness it suffices to show that two subgraphs labeled equally
belong to the same isomorphism class. To show that, we need to find a bijection
between the two subgraphs. This is achieved simply by following the order in which
each vertex was enumerated, which is implicitly represented on the actual label, and
map the vertex in each position of the order to one another. Hence, any two subgraphs
labeled equally belong to the same isomorphism class and we have our correctness
proof.

This method scales pretty easily to the directed case, where instead of just keeping
one list, in both cases we keep two, one pertaining to the ingoing connections and the
other two the outgoing (in practice a separator value is also used on the adjacency list
case to separate the ingoing from the outgoing list).

Having described all components of a g-trie, in Figure 3.3 we show a visual representation
of one with the labels associated with each edge using the “adjacency list” label.

Figure 3.3: An example g-trie with list LS-Labeling after searching for 4-subgraphs.

We are aware that there are more possibilities for this operation that we did not
previously address. One of them is what we called the “nth-neighbor” label, which
instead of simply considering the connections between the already added vertices
and the newly added, also considers the connections from the nodes at distance of a
maximum of n from the corresponding vertices. Obviously, these connections augment
exponentially and if they are all considered it corresponds to a full isomorphic label.
However, a simple “2nd-neighbor” label could, in some cases where the subgraph
fingerprint is more heavily populated with certain subgraphs, decrease the run time
and memory used. Since this method is not so simple as the previous ones it would
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probably have greater costs on the general case and thus we did not experiment with
it.

Note also that since the LS-Labeling is being used as an intermediate classifier, the
g-trie will end up having more leaves than there are different isomorphism classes.
This affects the overall run time , since we need to perform an isomorphism test
per intermediate class. Although, in the case of both the adjacency list and matrix
label, the number of leaves is directly correlated to the different automorphisms of a
same graph. Thus it ends up being just a very small fraction of the total number of
occurrences in any practical example, as can be seen in detail later on Chapter 5, and
so there is a significant gain of computation time. Also, since we only create the nodes
we visit, there is a trivial upper bound in the number of leaves that is the total number
of occurrences, but it is almost never the case where this upper bound is strict.

We conclude this section by highlighting the flexibility the LS-Labeling generic algorithm
displays. Since it only enforces a small number of conditions, it allows for the trade
off referred earlier to be adjusted by changing the type of LS-Labeling. Perhaps more
importantly, it is adaptable to different formulations of the problem, as was possible
to observe with the case of directed graphs. The algorithm is still the same, but the
labeling is tuned to suit this particular instance. So it could be easily extended to other
problem formulations such as colored graphs, weighted graphs or even multigraphs.

3.1.3 The FaSE algorithm

We present an overview of the whole FaSE in Algorithm 1. This incorporates the
enumeration step, the g-trie and the LS-Labeling. We use the expression += to denote
“increment by a value”.

This algorithm puts together all the discussed parts of FaSE. The procedure Enumer-
ateAll() iterates through all subgraphs of all sizes up to k, incrementing the counter
when the size is k. The frequencies are stored internally by the g-trie. However, since
the LS-Labeling does not give the final classes, it is necessary to accumulate the results
from each g-trie node and perform an isomorphism test to a representing graph. In
the original implementation we do so resorting to nauty [37], a third-party efficient
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Algorithm 1 The FaSE Algorithm
Input: A graph G and a subgraph size k
Result: Frequencies of all k-subgraphs of G

1: procedure FaSE(G, k)
2: EnumerateAll(G, k, ∅, 0)
3: for all n in GTrie.leaves() do
4: frequency[CanonicalLabel(n.Graph)] += n.count

5: procedure EnumerateAll(G, k, S, d) . S:subgraph; d:depth

6: if d = k then
7: GTrie.current.count += 1
8: else
9: while nS ← EnumerateNext(S) do

10: w ← nS.NextNode()
11: nL← LSLabel(S,w)
12: GTrie.Deepen(nL)
13: nS.Subgraph← nS.Subgraph ∪ w
14: EnumerateAll(G, k, nS, d+ 1)
15: GTrie.Jump()

isomorphism toolkit we mention in Chapter 2, although any algorithms that create a
canonical label (that is, a label that represents isomorphism classes) will work.

Note also that in our original implementation (and in any practical implementation)
we hard coded the enumeration step into the EnumerateAll() function to increase
efficiency and explore low level features of the algorithm.

3.2 Approximate fast subgraph census

We now turn to the second algorithm of this chapter and consequently to a different
approach to the subgraph census problem. An interesting feature of the FaSE algorithm
is that it can be adapted to an approximation algorithm to estimate the frequency of
each subgraph type in a network by obtaining a sample of subgraphs. It is possible to
tune the algorithm to trade accuracy for time, which allows it to be run in a wider
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range of real networks, which are usually too large for a complete exact enumeration for
higher subgraph sizes. The actual method we use is very similar to the one presented
in [58] but we will provide our analysis and discussion.

Since each subgraph is enumerated once and only once in the exact version, we can
use that to only find a sample of the total number. To do so, we will introduce a
probability pd at each depth d (d varies from 0 to k − 1, where k is the desired size of
the enumerated subgraphs) of the enumeration (which can conceptually be easier to
imagine in the g-trie). To clarify the previous sentence, the depth here is the order of
the vertex being currently added to the partial set, which is equivalent to the size of
the partially enumerated subgraph. The idea is to instead of always processing each
newly enumerated vertex (which corresponds to lines 10 - 15 in Algorithm 1), do it
with probability pd at each level d.

We can easily observe that the probability of a particular subgraph on the network being
sampled is the probability of the first vertex being chosen (at level 0) which is p0, times
the probability of the second vertex being chosen and so on, which equals ∏0≤d<k pd.
We will call this value the sampling percentage, and denote it as: η = ∏

0≤d<k pd.

We denote the total number of subgraphs of size k (the leaves in the induced ESU

search tree) in graph G by T (G). It is possible to show that the average number of
sampled subgraphs is η · T (G). To do so, first note that each k-subgraph has the same
probability of η of being sampled. Since there are T (G) subgraphs and each one has
the same probability of η of being sampled, the average number of sampled subgraphs
is η · T (G).

We will call Fsample(Gk, G) to the frequency of subgraphs of G sampled by the algorithm
that are from the same isomorphism class as Gk. This definition allows us to define an
estimator for the value of F (Gk, G) as follows:

F̂ (Gk, G) = Fsample(Gk, G)
η

Note that, since all the isomorphism classes are disjoint, to obtain an estimator for
the total number of subgraphs it suffices to sum all the F̂ (Gk, G), one per different
isomorphism class.
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3.2.1 Uniform sampling

To start the theoretical discussion of the approximation, we will first prove the estimator
is an unbiased estimator. To do so, observe that since the probability of sampling each
subgraph is the same, η, the expected value of Fsample(Gk, G) is simply η · F (Gk, G).

To calculate the expected value of F̂ (Gk, G), we observe that since the expected value
is a linear operator, this corresponds to the previously calculated value divided by η.
Plugging this into the formula of the estimator gives:

E(F̂ (Gk, G)) = E(Fsample(Gk, G))
η

= F (Gk, G)

Thus we conclude that F̂ (Gk, G) is an unbiased estimator for F (Gk, G).

Using this information, Algorithm 2 shows the adapted algorithm, which from now on
we will call Rand-FaSE to distinguish from the exact version of FaSE.

Note that in all practical implementations the actual probability call should be hard
coded, since it can prevent some unneeded work done in the EnumerateNext() function.

3.2.2 Performance analysis

Before we conclude, we will reason about the variance of the estimator and how the
choice of each individual value of pd affects it and thus the quality of the estimation.

First of all, notice that the number of subgraphs sampled of a certain type depends on
the structure of the enumeration tree. If it were perfectly balanced and each subgraph
type were evenly distributed along the tree, then the individual values would not
matter but only their product (what we called the sampling percentage). However,
this is not the case in any of the presented enumeration algorithms. Even though for
instance the ESU enumeration tree is naturally skewed, since it enforces an order on the
enumeration, it is highly unlikely that any algorithm generates a balanced enumeration
tree since this is very input dependent.

Since the enumeration tree is not balanced, the choice of parameters influences the
quality of the sample and run time. If lower values for pd are chosen for levels of
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Algorithm 2 The Rand-FaSE Algorithm
Input: A graph G and a subgraph size k
Result: Frequencies of all k-subgraphs of G

1: procedure FaSE(G, k)
2: EnumerateAll(G, k, ∅, 0)
3: for all n in GTrie.leaves() do
4: frequency[CanonicalLabel(n.Graph)] += n.count

5: procedure EnumerateAll(G, k, S, d) . S:subgraph; d:depth

6: if d = k then
7: GTrie.current.count += 1
8: else
9: while nS ← EnumerateNext(S) do
10: with probability pd do
11: w ← nS.NextNode()
12: nL← LSLabel(S,w)
13: GTrie.Deepen(nL)
14: nS.Subgraph← nS.Subgraph ∪ w
15: EnumerateAll(G, k, nS, d+ 1)
16: GTrie.Jump()
17:

the tree nearer to the root, this will increase the variance of the results, since it is
possible to branch out a sub-tree with more occurrences of a certain type. However,
the run time of the algorithm is decreased in exchange for the increase of variance.
This decrease is two-fold: on one hand, the amount of subgraphs sampled has a higher
variance, which results in fluctuations in run time; on the other hand, since a subgraph
that is not going to be sampled is pruned earlier in the tree, we can avoid most work on
its partial enumeration, which is costly since it involves traversing the g-trie, generating
its label through the LS-Labeling and doing the actual enumeration.

A consequence of the unbalance of the enumeration tree is that even if given the values
for pd, calculating the variance is hard since it is highly dependent on the input network.
It is possible to draw some conclusions though, the most important one being that the
variance is higher in relative value for lower F (Gk, G) values. To explain this recall
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that the average number of sampled subgraphs in S(Gk, G) is: η ·F (Gk, G). When this
value is small (specially when it approaches 1 or is smaller than 1) since the number of
sampled subgraphs is a discrete quantity, the actual value of Fsample(Gk, G) is going to
be rounded down or up. This means the variance will be higher in relative value, since
for high values of F (Gk, G) the continuous approach is a good approximation.

There are ways of decreasing the variance while keeping the estimator unbiased. In [58],
the author suggests that, instead of simply continuing with a certain probability, from a
node (of the enumeration tree) with x children at depth d randomly choose x′ = dx · pde
with probability x ·pd−bx · pdc or choose bx · pdc with probability (1−(x ·pd−bx · pdc)).
The idea is to choose a fixed number of children instead of taking each one with a certain
probability, ensuring that there is always a collection of nodes that will be followed.
The author also showed that this leads to a lower variance. In our implementation,
which we will discuss on Chapter 5, we did not include this because even though this
improves the quality of the sample on average, for lower values of F (Gk, G) it usually
results in a decrease, particularly when dx · pde rounds to 0, where depending on the
input network, the algorithm would not sample any subgraphs of a certain isomorphism
class.

3.2.3 Further discussion

To conclude the discussion about sampling, we will mention two important aspects
regarding the sampling’s application and how to improve it.

Naturally, the main purpose of doing a sample in place of a full enumeration is to use
it in inputs that would take too much time to calculate using the exact approach. On
these cases are included networks with a high number of vertices and edges. Therefore,
the data structure used to represent the network can not be a simple adjacency matrix,
since it would draw too much memory and thus would be unfeasible. The obvious
substitute is an adjacency list, but due to the fact that FaSE requires a way of knowing
if two certain vertices are connected (in the LS-Labeling and in the isomorphism test),
the adjacency list will hurt time performance compared with the simple matrix (which
implements this operation in constant time). There are multiple ways of targeting this
issue and although it is a rather well known problem in general, we provided an in
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depth study of the problem applied to subgraph census in [44], but it is outside the
scope of this thesis.

Another aspect that could improve the quality of the sample would be to automatize
the choice of the individual probabilities pd. This could be achieved through an
adaptive sample, that would start out with very low parameters and over multiple
runs only explore the enumeration tree where needed. This works since for high values
of F (Gk, G) the estimator result converges rather quickly whereas for lower values it
does not. So exploring this could significantly improve the sample.

3.3 Other approaches

We have now discussed the two approaches of interest in this chapter, however, we will
complement them with a brief note.

As was mentioned in Chapter 2, there is a possibility of extending a lot of the know
methods to different environments. A well-known one that can be applied to the FaSE
algorithm is parallelism. With that in mind, in [3] we provided a shared memory
parallel version of FaSE and tested its performance and efficiency.

Another variation we worked on will be extensively studied on the next chapter, namely
focusing on temporal or dynamic graphs.





Chapter 4

A Dynamic Approach

We now turn to a different focus: subgraph census on temporal or dynamic networks.
Unlike in the static case, where the problem is very well defined, in the dynamic case
there are multiple definitions available depending on the goal of the census. In this
chapter we will discuss two different methods that perform two very different tasks.

Firstly, we look into updating the frequency results of a census. Given a network and a
series of edge modifications, what is the frequency of subgraphs after each modification.
Afterwards, we look into a more general problem: the dynamic graph isomorphism
problem. Given a network and a series of edge modifications, what is the resulting
graph’s isomorphism class. We will also argue why this problem is relevant to the
subgraph census problem by providing a brief case study.

4.1 Updating a census

Before we turn to the algorithm, we give a formal definition of the problem we aim to
solve:

Definition 3 (Updating Subgraph Census Problem). Given an integer k, a graph G
and a graph stream S with step t, determine the frequency of all connected induced
k-subgraphs of S(G).

Given this definition, note that a trivial method would simply compute the frequency
of k-subgraphs for each element of S(G) independently. However, this is inefficient and

39
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can be improved by only updating what is actually changed by each graph changing
operation. Thus, we will alter the FaSE algorithm, described in the previous chapter,
to only count subgraphs that touch the edge given by a graph changing operation.

Our method to efficiently update frequency counts works by altering the enumeration
algorithm to count frequencies starting on edges. When adding an edge, the algorithm
first counts all subgraphs that use the edge’s two ends and decrements their frequency.
Afterwards, it adds the new edge and counts all subgraphs that touch that edge.
To remove an edge we do an analogous process. Our method is based on the ESU

enumeration algorithm, altering it to start on a given edge.

For a given edge to add (a, b), the algorithm first considers as initial sets VS = {a, b}
and VE = (N(a) ∪N(b)) \ {a, b} and only uses these as initial sets (meaning it does
not recurse on other initial VS and VE). The rest of the procedure is similar to the
original ESU algorithm, but the symmetry breaking is removed, that is, when adding
a node u′ to VE, there is no comparison with a: if u′ belongs to Nexc(u, Vs) it will be
added to VE.

In Figure 4.1 we show which subgraphs touch two distinct edges (showed in dotted
red) of the same graph, using the method based on our updated enumeration method.
The sets for each graph represent the initial VS and VE as in the previous discussion.

Figure 4.1: Subgraphs that touch two edges

To prove that this method is correct we use the original correction proof of the ESU

algorithm. If a is the minimal node of the graph (that is, for every node v, L(a) ≤ L(v)),
all subgraphs that include a will be enumerated on the first iteration of the algorithm.
For that iteration, if b is the first element of Next, then it will be removed and the next
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iteration has VS = {a, b} and VE = (N(a) \ {b})∪Nexc(b, {a}) = (N(a)∪N(b)) \ {a, b}.
Since this is the only recursion path that will include a and b (since b was the first node
to be removed from the initial Next), all subgraphs that contain a and b will be counted
on this recursive subtree. Since this is analogous to our method, its correctness implies
the correctness of our method.

A short overview of the whole method in Algorithm 3. The parameter increment
indicates the enumeration method if it should increase or decrease the frequency of the
found subgraphs.

Algorithm 3 The Update FaSE Algorithm
Input: An edge e and a graph G
Result: The updated frequencies of subgraphs

1: procedure AddEdge(G, e = (a, b))
2: EnumerateEdge(G, a, b,−1) . We assume there is no current edge (a, b)
3: AddEdgeToGraph(G, e)
4: EnumerateEdge(G, a, b, 1)

5: procedure RemoveEdge(G, e = (a, b))
6: EnumerateEdge(G, a, b,−1) . We assume there is a current edge (a, b)
7: RemoveEdgeFromGraph(G, e)
8: EnumerateEdge(G, a, b, 1)

9: procedure EnumerateEdge(G, a, b, increment)
10: RunESU(G, {a, b}, (N(a) ∪N(b)) \ {a, b}, increment)

4.1.1 Random graphs with given subgraph frequencies

The method above was first introduced in [51] as a subprocedure of a method that
generated random graphs with fixed subgraph frequencies. This method is given as
input a set of subgraph frequencies and outputs a graph that matches these subgraph
frequencies up to a certain given percentage.

The method works by applying an optimization algorithm based on simulated anneal-
ing [28]. It sets up an optimization scheme that will randomly perturb an initially
randomly generated network (using any other random graph model) and accept or
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reject each change according to how far way from the preferred subgraph frequencies
the resulting graph is. To govern the accept/reject method, a decreasing temperature
value is used to provide an acceptance probability function. The step of interest here
is how the random perturbations are performed and how to update the subgraph
frequencies after a perturbation.

In [51], two Markov chain edge swap methods were used, which were based on selecting
edges from the graph and swapping them (connecting their opposing incident vertices).
This operation is equivalent to removing two edges and adding two new ones, thus
we can apply the method described in this section four times to update the subgraph
frequencies. We will show the improvements this technique allowed in Chapter 5.

4.2 Dynamic graph isomorphism

We now turn to the second part of this chapter, where we look into a more general
problem: the dynamic graph isomorphism problem. We will look into how this can be
applied to a temporal subgraph census in the end of this section, but for now we first
formally define the problem we are tackling.

Definition 4. In the dynamic canonization problem we are given a graph G with n
vertices and a graph stream S of cardinality n, and we are asked to provide a canonical
representation for each graph in S(G).

Note that, with this formulation, we fix the number of vertices and only vary the edge
set.

We propose a method to approach this problem that is focused on the isomorphism of
small graphs (we will better define how small later in this section), which are in the
usual range of subgraph sizes the subgraph census problem applies to.

Our method explores the dimension of the total number of graphs of a certain size to
build a data structure that compresses the relationship between their topologies. This
data structure is analogous to a deterministic finite automaton (a finite-state machine),
where each node represents a different graph and transitions represent additions or
deletions of edges. The result is an algorithm that solves the dynamic canonization
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problem in an online fashion. We will first describe how the automaton works and how
to use it, then we follow up with how to build the automaton efficiently.

To avoid ambiguities, we use “node” and “transition” to refer to properties of the
automaton and “vertex” and “edge” to refer to properties of the graphs represented by
the automaton.

4.2.1 The automaton

As mentioned above, we use a data structure that is analogous to an automaton to
support our algorithm. This will be used as we iterate through each graph in S(G) to
follow the isomorphism graph class.

For our purposes, an automaton is a finite-state machine, defined as a set S of states,
with an initial state s0, and a set of transitions T : S → S. We will augment each
transition with other information useful for our method, but fundamentally this is all
we need to define our automaton. We will refer to nodes of the automaton by bold
uppercase letters, like A.

The node set of the automaton represents the different isomorphism graph classes of
a fixed number of vertices n. For each different class, we fix one label function and
associate to it a single node of the automaton. This equates to fixing a permutation
per isomorphism class and using it as a canonical labelling. For each node, there is
one transition coming out of it per possible pair of two vertices of the underlying
graph. Each one of this transitions represents an edge toggle, meaning an addition or
removal of an edge (which can be written as a pair of graph labels) to the represented
graph, which depend on whether the two vertices of this transition are connected or
not on the represented graph. Thus, the destination of each transition is the node
whose isomorphism graph class is the one of the altered graph. We portray a pictorial
representation of this object in Figure 4.2.

Since every change between two consequent graphs in S(G) is described by a single
pair of vertices it is natural to use the described automaton to follow the isomorphism
graph class of each graph by walking through the automaton. On each step, we use the
transition that is associated with the pair of vertices on the current graph changing
operation. Initially, the automaton starts on the node that represents the empty
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Figure 4.2: An automaton representing undirected size 3 graphs

graph with n vertices. To find the node that represents G, we build G by following all
transitions that represent the pairs of vertices on each edge of the graph, in any order.
Subsequently, each graph changing operation results in following one transition.

However, this is not enough to actually apply the automaton, since the order of vertices
that was fixed on a certain node may not be the same as the one the current graph
we are considering from S(G). Thus, we keep a permutation πp that tells us how to
change the order of vertices of the current graph in order to have the same graph as
the one the current node represents. If we think about labels, let Gc be the current
graph and Gn be the graph represented by the current node (by definition we have
Gc ∼= Gn), πp has the following property: L(Gc) ◦ πp = L(Gn), since the label function
works like a permutation from vertices to indices and taking ◦ as regular permutation
composition.

To accommodate this change, we also need to update how the transitions work, since
after following a transition the relation between the current graph and the graph
represented by the current node may change. Thus, we associate a permutation with
each transition that informs on how to update πp. If the permutation for a certain
transition is p, then the new π′p is obtained by π′p = πp ◦ p. Initially, πp is set to the
identity permutation, since the initial node represents the empty graph (where every
permutation is valid). Note that in Figure 4.2 the permutations were omitted for
brevity.

The resulting automaton represents all different graphs of size n and can be used to
keep track of the canonical representation of a graph after each vertex pair change by
following a transition and composing a permutation. If we are applying a change of
vertex pair (a, b), note that we follow the transition related to (πap , πbp), since we always
work on top of the representation the automaton gives.
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4.2.2 Building the automaton

Now that we have described how the automaton works and how to use it, we will
specify how to build it. There are two important aspects here that not only heavily
influence the complexity of the building process, but also the complexity of using the
automaton. The first is how to fix the graph each node represents. The second is when
to build the automaton, since we can pre-build it or build it as we process the graph
stream. We will answer the first question through the following explanation and also
point out why it is a relevant question. Regarding the second, we will first describe an
on-the-fly method and then a method that pre-builds the automaton but leads to a
more efficient representation.

4.2.2.1 On-the-fly method

In order to fix a canonical order for each node, we use the representation nauty provides,
since running it returns an adjacency matrix, which can serve as the canonical order.
Our method to dynamically build the automaton is based on following the supposed
transitions as the stream is processed. Whenever we find ourselves on a non existing
node, we run nauty to know where we should be and either create a new node or
point the transition to the correct destination. Additionally, we fill the transition
permutations accordingly.

The only node we pre-build is the node that represents the empty graph. Afterwards,
we will process each new vertex pair (a, b). Let ap = πap and bp = πbp. On processing a
new pair, we first check if the transition of (ap, bp) was already created. If not, we first
run nauty on the transformed graph, that is, if G is the current graph after adding or
removing the edge induced by (a, b), we do so on G′ where L(G′) = L(G) ◦πp, meaning
the graph from the current node altered by the pair (ap, bp). We do so because nauty
not only returns the canonical adjacency matrix that we will use to represent the
automaton node, but also a permutation P that transforms the graph represented by
the canonical adjacency matrix into G′. We can then create a new transition by (ap, bp)
from the current node C to the new node N (found with nauty) with permutation p,
since this permutation transforms the graph on C with added vertex pair (ap, bp) into
the graph on N , which is the same that nauty returns.
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This was implicit in the previous paragraph, but we also need a bookkeeping mechanism
to store the node representations, so as to avert having a duplicated node representing
the same graph class. This can be done using a dictionary data structure that maps
canonical representations, as obtained through nauty, to automaton nodes (if they
exist). Since the graph representation is fixed by the nauty canonical representation,
the method described in the previous paragraph is exactly the same whether the
destination node (N , in the previous paragraph’s notation) has to be created or not.
If the node is missing, we simply create a new node and feed it to the bookkeeping
dictionary.

Using the previous paragraphs notation, when processing a change (a, b), let p be the
permutation nauty returns, C be the initial automaton node and N the destination
node. Since p transforms graphs in the C representation to the N representation, the
converse is also true, that is, P transforms graphs in the N representation to the C.
Thus, we can use this information to right away fill another transition, p, from N to
C. However, since the representation changed, the vertex edge associated with this
transition is not (ap, bp) but rather (pap , pbp), since this is the corresponding edge pair
in N .

It is important to note that the real temporal bottleneck of using this automaton lies
on the application step rather than the building step, as we will observe in Chapter 5.
This means that the advantage of using a dynamic building method is only observable
if the full automaton is impossible to be generated. For example, if we are applying the
method in an instance graph with a high number of vertices, but where we know the
total number of different graph types in the stream is low, using the dynamic building
method we only build a partial automaton, according to the input.

Consequently, it is useful to optimise the automaton underlying representation and
methodology if this improves the runtime of applying, even if it worsens the building
procedure. With this in mind, we can compress the permutations associated with each
transition in order to avoid iterating n integers. By observing the different canonical
representations given by nauty, one can observe that they are fairly regular, meaning
that often if two graphs differ by a single edge, their adjacency matrix only differ
in one (or two, in the undirected case) entries. This implies that the permutation
associated with the transition between the two is simple, often either the identity or a
single transposition. Thus, we can compress these cases to a special representation
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that instead of composing a permutation with πp, either does nothing or simply swaps
two entries of πp. We will see a detailed analysis of the effect of this in Chapter 5, but
theoretically this would lower the complexity of following a transition.

4.2.2.2 Pre-building method

There are not many points to improve related to the actual on-the-fly building process,
since this method does the bare minimum to know where each transition leads to.
Consequently, our pre-building method works very similarly to the on-the-fly method,
but it does a depth-first search on the automaton in the beginning, in order to generate
all possible nodes and transitions.

However, the advantage of doing a method that pre-computes the automaton is that
it is easier to fix a different representation of graphs per node, since there is no need
to follow the canonical representation given by nauty (or to have one that works
regardless of the order with which we build the automaton). This is important since
changing the underlying representation changes the permutations associated with each
edge and this has a direct effect on their compressibility and thusly on the runtime.

It is easy to prove that composing a permutation to the graph of each node does not
change the correctness of the algorithm, as long as we update the transitions accordingly,
since we are simply projecting the automaton to a different space. Hence, it is easy
to change the underlying representation of each node by composing a permutation to
the permutation nauty returns during the create new transition procedure, as long as
we compose the same permutation to each transition coming into the same node. In
practice, we are simply changing the representation given by nauty to one that better
suits our goals.

All that is left is to choose which permutations to compose with. Instead of focusing
on individual permutations, one can determine the underlying representation and
choose the permutation that generates this representation. To choose a representation,
we can choose a building order, that is, choose the order under which we initially
traverse the automaton to pre-build it and use the first graph to touch each node as
its representation. To implement this, the permutation we compose with each node
is simply p (borrowing from the previous subsection’s notation), where we fix the
permutation p obtained on the first time we visit that node (which is when we actually
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create the node). This results in choosing the identity permutation as the permutation
from C to N on the first visit to the node.

Different orders were tested, with the goal of increasing the percentage of transitions
whose permutation was either the identity permutation or a single transposition. It
would be possible to implement an optimisation algorithm here, like a local search
algorithm, that would repeatedly perturb the traversal order. Although, this would
be computationally heavy and would probably not yield much better results than a
simply greedy approach. Consequently, we chose an altered edge lexicographical order,
that is, we first follow all pairs that create edges before any pair that removes edges
and we break ties choosing the lexicographical first transition vertex pairs. We tested
different approaches, but this one yielded the better results. In Chapter 5 we will show
more details regarding its performance.

Note that, for graphs with 4 or more vertices, it is impossible to build an automaton
where each transition permutation is either the identity permutation or a single
transposition. Note that this is equivalent to saying the adjacency matrix of graphs in
two adjacent nodes (adjacent in the sense there is a transition between both) differ
by only one (or two, if the graph is undirected) entries, which means they differ by at
most one edge. To prove the impossibility premise, we will assume that it is possible
to build an automaton for 4 vertex undirected graphs. Consider Figure 4.3, which
represents a partially constructed automaton for 4 vertex graphs. We omit the multiple
transitions between nodes and simply fix each node’s graph representation and show
the relationships between nodes (where one or more transitions would be present).

In this example, there is a mismatch between nodes G and H, since their graph’s
adjacency matrices differs by more than an edge. We can show that this example is
“canonical”, meaning that all possible automata for 4 vertex graphs are equivalent to
this example. Node A is always the same, by definition. For node B, since all one edge
graphs of 4 vertices are isomorphic, then the choice of which two vertices to connect is
irrelevant. In node C we could have multiple representations. After fixing node C,
nodes D and E are also fixed, since we can only add one edge to get that isomorphism
class. From nodes D and E we also fix node H , since it needs to have all edges D and
E have. Node F is also fixed by fixing node B, since this is the only edge we can add
to get that isomorphism class. Node G is fixed if we know C and F . The only free
parameter here is choosing node C, but notice that regardless of which extra vertex



4.2. DYNAMIC GRAPH ISOMORPHISM 49

Figure 4.3: A partial automaton representing undirected size 4 graphs

pair we choose to connect, the adjacency matrices of nodes G and H always differ by
more than one edge. Thus, this contradicts the assumption that it is possible to build
an automaton for 4 vertex undirected graphs where all the graphs of all adjacent nodes
differ by at most one edge. Since the 4 vertex automaton is a subset of the n vertex
automaton for n ≥ 4 (we can add extra vertices that are not connected to any other
vertex), this proves the nonexistence of an automaton where each transition is either
the identity permutation or a transposition.

4.2.3 Optimising the automaton

In this section we will discuss a few optimisations to improve the automaton. We will
start by a few notes on the representation of the various elements of the automaton
and finish with a method to optimise the building method and the compressibility of
permutations.

Since we are working with a low number of vertices, the representation of permutations
can be trivially compressed to a 64 bit integer, by assigning 4 bits to each element of
the permutation. Additionally, implementing the transposition compression can be
done by simply fixing the first two bits to different values to represent either a full
permutation, the identity function or a transposition. Representing automaton nodes
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as pointers also proved more efficient than using an array of nodes, since following a
transition is simply assigning a variable representing the current node and requires no
look up into memory. Finally, we use an array to represent the automaton transitions
by indexing each vertex pair to an integer from 1 to the number of possible vertex
pairs.

We now turn to a more interesting discussion regarding optimising the actual methods.
First of all, it is easy to observe that we can use multiple possible permutations to
represent the transition between some nodes. If we think about the 3 vertex undirected
automaton (like the one in Figure 4.2), the transition permutation between the initial
node and the node with a single edge between vertices 1 and 2 can either be the
identity permutation or the transposition between 1 and 2. This works because, in
this case, 1 and 2 share the same orbit in the destination graph. We can use this fact
to improve the way we build the automaton and to increase the compressibility of
transition permutations. Given any transition permutation π to a certain node N ,
if a set of vertices {v1, v2, . . . , vk} have the same orbit, then we can interchange their
position in π to obtain another valid transition permutation. If we try to greedily
reorder their positions to decrease the number of transpositions in π, we will obtain
another valid transition permutation that may be compressible by our previous metric.
This does not entail any extra work, since nauty also returns the orbits of the objective
graph.

Another optimisation made possible by the use of orbits is obtainable if we notice that
if adding (or removing) an edge between two vertices results in a graph G, then adding
(or removing) an edge between any two other vertices with the same orbits (excluding
self loops, in case the two vertices have the same orbit) results in a graph G′ where
G ∼= G′. With this, after completing a transition permutation for vertex pair (a, b) (as
described in the on-the-fly algorithm from Section 4.2.2) we can guess permutations for
other vertex pairs (a′, b′) that have the same orbits as the original pair by considering
the original permutation and swapping a with a′ and b with b′. This does not generate
a correct permutation all the times, since we could have permuted the rest of the
topology (for example, if other orbit equivalent vertices are permuted), but we can
check its correctness by comparing the adjacency matrices of the objective graph with
the initial graph after applying the guessed permutation. Empiric tests showed we
guess the correct permutation at least 10% of the time.
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4.2.4 Theoretical analysis

Here we discuss some important theoretical considerations regarding the spacial and
temporal complexity of our automaton method and its variants.

Let Gn denote the set of different graphs with n vertices (note this is an agnostic
analysis, since it works for both undirected and directed graphs). Let En be the
maximum number of edges for a graph with n vertices, that is, En = n2 for directed
graphs and En = n(n+ 1)1

2 for undirected graphs. Since the automaton has one node
per different isomorphic graph and each node has a transition per possible pair of
vertices, it has |Gn| nodes and |Gn|En transitions. These pose as the main bottleneck
of the automaton method, since they are directly related with memory usage, where
each node holds a canonical label and each transition a permutation and destination
node. Since Gn grows rapidly with n, this method is only appropriate to small graphs,
depending on the available memory.

For the base building on-the-fly method, we run nauty once per transition pair (since
we build a transition and its reverse per nauty call), thus we call it |Gn|En 1

2 times. To
follow a transition of the automaton, assuming it exists, it is necessary to compose
a permutation, which takes at most O(n) time for a graph with n vertices. This is
true if we have the default representation, if the permutation to compose with can be
compressed, then the time needed is only O(1).

4.2.5 Subgraph census estimation in temporal graphs

We now turn to a possible application of our automaton method. This case study
illustrates how the dynamic graph isomorphism problem is tied to the subgraph census
problem.

Let a G be a temporal graph, that is, a graph where each edge is augmented with a
time interval that indicates when that edge is active. We want to analyse how patterns
evolve in this network and for that we will focus on how a determined induced subgraph
of G in a certain timestamp evolves through time. Thus, given two graph types H1

and H2 (with the same number of vertices), we want to know the percentage of times
that a set of nodes in a certain timestamp in G is isomorphic to H1 and in a future
timestamp isomorphic to H2. If we do this for all possible graphs H1 and H2 of a
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certain size n, then we get a Markov chain of temporal subgraph transitions that can
be used as a fingerprint of the network and be further used for multiple graph mining
tasks, such as graph classification, link prediction, . . . . This technique is similar to
what was done in [20], but here only patterns of at most 3 vertices were studied, and
to what was done in [41], but here this was done in a edge oriented fashion and with a
slightly different formulation.

Doing a complete search of all possible patterns and transitions is possible, but very
heavy, even for a relatively small network. Because of that, we only consider connected
induced subgraphs. Furthermore, we propose an approximated approach to this
problem.

We will first sample a single connected induced subgraph H from G in any timestamp.
Afterwards, we follow the vertex set of H through time in G. To do so, we use our
automaton method to first represent H and then for each edge that we either turn
off or on when its time interval expire or begin, we introduce that change in the
automaton. We fix a time step λ, such that whenever λ units of time have passed, we
record the current isomorphism class and add a transition on the Markov chain table
from the previous isomorphism type to the current one. By doing so, we can follow
the isomorphism information of that particular vertex set throughout the whole life
time of G. If we repeat this procedure enough times, we have effectively sampled a
portion of the temporal transition space.

We did not further expand this example application of our automaton method, but on
Chapter 5 we will show its improvement over a simple non-streaming aware method.



Chapter 5

Experimental Analysis

We will now turn to the experimental analysis of our work. Our goal is to show each
proposed method has a meaningful contribution to its field. We divide this analysis
in four parts, similarly to what was done in the core of this thesis: we first analyze
the FaSE algorithm, described in Section 3.1 in the context of exact subgraph census;
we follow with the Rand-FaSE algorithm, described in Section 3.2 in the context of
approximated subgraph census; then, we focus on the updating census variant of FaSE,
described in Section 4.1 in the context of efficiently updating a subgraph census on
edge modifications; finally, we close with the analysis of our automaton based method
for the dynamic graph isomorphism problem, described in Section 4.2, also, we briefly
explore the case study mentioned in Section 4.2.5.

In each part, we first describe the experimental setup we used, including any used
datasets, and then follow with the obtained results.

All used datasets are undirected and directed networks. In all networks, weights,
self-loops and multiple edges were either ignored or nonexistent.

All tests related with the first two parts (Sections 5.1 and 5.2) were performed on
a Linux machine with an Intel Core 2 6600 (2.4GHz) and 2GB of memory. For the
remaining two parts (Sections 5.3 and 5.4), we used a Linux machine running Fedora
20 on a AMD Opteron(tm) with 2.30 GHz processor, with 4GB of RAM.

All methods were implemented in C++ compiled with GCC 4.8.3. The source codes
are all publicly available:

53
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• FaSE and Rand-FaSE are available as a joined tool in: https://github.com/

ComplexNetworks-DCC-FCUP/fase.

• The updating version of FaSE is available in: https://github.com/ComplexNetworks-DCC-FCUP/
fase/tree/temporal.

• The automaton based method for dynamic graph isomorphism is available in:
https://github.com/ComplexNetworks-DCC-FCUP/streaming-small-isomorphism.

5.1 Exact fast subgraph census

To test the performance of the exact approach, we ran FaSE with different subgraph
sizes and different networks and compared the execution times to ESU, through its
publicly available tool, and Kavosh, through its original source code. We chose these
algorithms since at the time of publication of its original paper [42] they were the main
previous approaches. The networks used are summarized in Table 5.1.

Network Directed Nodes Edges Avg. Degree Type Source

StarWars No 51 157 3.08 Social Our Own [42]
Jazz No 198 2,742 13.85 Social Arenas [15]

Neural Yes 297 2,359 7.94 Biological Newman [57]
Foldoc Yes 13,356 120,700 9.04 Semantic Pajek [7]

Table 5.1: Networks used for the exact subgraph census experimentation

We implemented both the adjacency list and matrix LS-Labeling methods, but the two
had very similar execution times, although the list method ended up having slightly
better results most of the time, so we opted to only show the results obtained using it.
As stated in Section 3.1, we used the third party tool nauty [37] to efficiently perform
the isomorphism classifications.

We measure the time each algorithm took to perform a complete k-subgraph census
on all networks, with k varying from 3 to 9. Due to time constraints, we only show

https://github.com/ComplexNetworks-DCC-FCUP/fase
https://github.com/ComplexNetworks-DCC-FCUP/fase
https://github.com/ComplexNetworks-DCC-FCUP/fase/tree/temporal
https://github.com/ComplexNetworks-DCC-FCUP/fase/tree/temporal
https://github.com/ComplexNetworks-DCC-FCUP/streaming-small-isomorphism
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execution times up to 5 hours. All the results as well as statistics about the number
of subgraphs per network and how many leaves of FaSE’s g-trie used are shown in
Table 5.2.

Network K
Subgraphs found FaSE ESU Kavosh

Types Occurrences Time (s) Leaves Time (s) Speedup Time (s) Speedup

StarWars

3 2 1,449 <0.01 3 <0.01 — <0.01 —
4 6 12,958 <0.01 17 0.04 23.5 0.03 17.6
5 21 98,426 0.01 171 0.39 30.7 0.21 16.5
6 106 630,369 0.08 2,406 3.12 38.0 1.90 23.1
7 699 3,445,808 0.58 26,692 21.95 38.0 13.26 23.0
8 5,601 16,320,648 3.55 203,687 133.34 37.6 78.18 22.0
9 41,790 67,883,236 19.08 1,133,749 (*) — 395.90 20.7

Jazz

3 2 67,414 <0.01 3 0.14 31.8 0.06 13.6
4 6 1,833,618 0.15 17 4.24 28.9 2.55 17.4
5 21 49,500,654 4.65 171 143.64 30.9 89.3 19.2
6 112 1,266,953,062 140.84 3,113 (**)3,630.00 25.8 2,912.43 20.7
7 853 30,166,157,456 3,946.81 106,417 >5h — >5h —

Neural

3 13 47,322 0.01 45 0.09 16.7 0.04 7.4
4 197 1,394,259 0.13 1,846 2.21 17.5 1.71 13.5
5 7,072 43,256,069 4.73 76,214 102.14 21.6 91.03 19.3
6 286,376 1,309,307,357 170.96 2,499,645 (**) 4,420.00 25.9 4,636.43 27.1

Foldoc
3 13 2,553,830 0.35 45 3.97 11.2 2.17 6.1
4 198 228,272,189 27.80 2,304 903.39 32.5 308.78 11.1
5 8,345 29,621,881,964 3,735.20 141,115 >5h — >5h —

(*) ESU accepts only 8 as the maximum subgraph size.
(**) Overflow problem in its own reported enumeration time and so we used elapsed time.

Table 5.2: Detailed experimental results for the 4 networks used for the exact setup.

Analyzing the results, the general trend is that FaSE obtains better results in all setups
than both ESU and Kavosh, as was expected. Moreover, it was always an order of
magnitude faster, except for a couple of outliers. Another observation in order is that
there is a tendency for the speedup to increase as k increases, which means there is a
larger speedup in setups where the total execution time is higher, which are the ones
where a faster algorithm is more critical. This is a sensible outcome, since the speedup
comes mainly from the isomorphism tests avoided, which is directly related to the
ratio between the total number of subgraphs and number of g-trie leaves and this is a
quantity that generally increases for smaller subgraph sizes and larger networks (as
is possible to observe in the results table). The actual values are very much network
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dependent and there is no “external” measure (number of nodes, edges . . . ) that allows
a prediction of the actual execution times in any order of accuracy, since it heavily
depends on combinatorial features of the network.

It is also important to notice that the major bottleneck of a network-centric approach
to subgraph census that relies on enumeration is isomorphism testing, which is what
the algorithm aims to improve. To check that FaSE addresses this and is not a somehow
faster implementation of the ESU algorithm, we ran it without the g-trie functionality,
simulating the actual ESU algorithm functioning. The result proved to be slightly
better than the original ESU code, but was still roughly an order of magnitude slower
than FaSE’s normal functioning. Furthermore, the contribution of the enumeration
process was compared to the final execution time by running the algorithm without
the isomorphism tests, meaning we only ran the enumeration algorithm. Obviously,
this does not allow to compute the actual census. The results indicate that the
actual enumeration is only a tiny fraction (less than 1%) of the whole execution time,
confirming what we stated above.

The final aspect we want to highlight is that the number of leaves used by the g-trie
has a heavy influence on the memory used by the algorithm. This implies that it is
impossible to run it with much larger subgraph sizes than the ones tested in this work.
Even though the super exponential growth of the number of subgraph types eventually
makes it impossible to even store the individual frequencies of each type, this is still
prohibitive and actually potentially slightly affects the execution time.

5.2 Approximated fast subgraph census

We divided the tests in this section into three parts with different aims. We first
compared the approximated algorithm with its exact approach, in order to assess
the accuracy of the approximation for different sampling values. Then we compared
it with previous work, by testing how many subgraphs were sampled per second, so
as to evaluate the time efficiency of the approximation. Finally, we tested how the
approximation converges to the exact values by measuring the error and standard
deviation displayed through various sampling percentages.
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Network Directed Nodes Edges Avg. Degree Type Source

Jazz No 198 2,742 13.85 Social Arenas [15]
Yeast No 2,361 6,646 2.81 Biological Pajek [7]

AstroPh No 18,772 198,050 10.55 Social SNAP [32]

Metabolic Yes 453 2,025 4.47 Biological Arenas [15]
Foldoc Yes 13,356 120,700 9.04 Semantic Pajek [7]
Neural Yes 297 2,359 7.94 Biological Newman [57]

Table 5.3: Complex networks used in the Approximation tests

We summarize the networks we used in this analysis in Table 5.3. Note that we
repeated some networks used in the previous section, but we included them in this
table for completeness.

Recall that we called η to the sampling percentage, the percentage of subgraphs we
want to sample. Since our algorithm requires choosing the multiple probabilities per
level, pd, for a given η, we opted for the following three setups, that explore the
sampling properties differently:

High: p0 =1, . . . , pk−3 =1, pk−2 =η, pk−1 =1

Medium: p0 =1, . . . , pk−4 =1, pk−3 =√η, pk−2 =√η, pk−1 =1

Low: p0 =1, p1 = k−2
√
η, . . . , pk−2 = k−2

√
η, pk−1 =1

Note that we always considered p0 and pk−1 to be 1 since due to the way we implemented
our algorithm having pk−1 6= 1 means it will do all the work enumerating a certain
subgraph and then discard it with probability 1 − pk−1 and having p0 6= 1 means
discarding a whole branch of the enumeration recursive tree, which means a whole
isomorphism class could be discarded.

5.2.1 Comparison with the exact approach

To compare with the exact approach, we first ran Rand-FaSE with two different
input networks, Yeast and Metabolic, with different sampling percentages. We used
these two for this particular test since they are average sized directed and undirected
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networks and so allow us to perform more time demanding tests that would otherwise
be unfeasible on larger networks. To measure the accuracy of the approximation, we
calculated the percentage of isomorphism classes correctly estimated by the algorithm
over a single run and considered the frequency of an isomorphism class to be correctly
estimated when the approximated value is within 15% of the real value (calculated
through the exact approach) for the three sampling setups described above (high,
medium and low). We did not consider isomorphism classes where the expected number
of subgraphs sampled is smaller than 10, the reason being that in these cases the error
associated would be too large to estimate the real value in any practical scenario. The
obtained results are graphed in a semi-log plot displayed in Figure 5.1.
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Figure 5.1: Accuracy of Rand-FaSE for the undirected Yeast Network and directed Metabolic

Network for size 5 subgraphs.

Excluding a few outliers, both plots are approximately a line (they both eventually
converges to 100% correctness). Since this is a semi-log plot, this means that it is
approximately a logarithmic function, that is, multiplying by 10 the number of samples
should roughly double the correctness of the approximation. Of course this result is
dependent on the way we measured correctness and thus is not fit for all scenarios.

Another observation to make is that, as expected, since the high setup places the
probabilities in lower levels it should have a lower variance, which results in overall
better results. Likewise, since the low setup distributes the probabilities more evenly
it has the highest variance and obtains the overall worse results. There were a few
outliers on the lower probabilities, but it was probably due to the fact that for lower
sampling percentages the variance is obviously higher and so there are a lot more
fluctuations in the results.
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To have a better understanding on how the sampling works for individual isomorphism
class sizes, we ran the algorithm with different sampling percentages and with subgraph
size equal to 3 in the foldoc network and measured the relative error to the real value.
We used the foldoc network to showcase this since it is a rather dense network and
thus for the particular subgraph size chosen, it has at least a subgraph of each existing
type. Thus it is clearer how our algorithm behaves for lower and higher frequency
subgraph classes. The results are showcased in Table 5.4.

Subgraph Type
Number Number Error Number Error Number Error Number Error
Exact 50% Sample 10% Sample 1% Sample 0.1% Sample

178,812 179,364 0.3% 177,400 0.8% 186,500 4.3% 184,000 2.9%

167,053 166,736 0.2% 170,820 2.3% 159,100 4.8% 138,000 17.4%

420,580 423,762 0.8% 437,710 4.1% 371,400 11.7% 311,000 26.1%

1,354,914 1,353,372 0.1% 1,348,450 0.5% 1,321,900 2.4% 1,534,000 13.2%

30,118 30,448 1.1% 29,420 2.3% 27,400 9.0% 29,000 3.7%

13,783 13,870 0.6% 14,280 3.6% 13,300 3.5% 7,000 49.2%

65,626 65,616 0.0% 64,570 1.6% 57,700 12.1% 62,000 5.5%

676 698 3.4% 670 0.7% 500 25.9% 0 100.0%

2,254 2,222 1.2% 2,180 3.1% 1,700 24.4% 0 100.0%

262,620 263,238 0.2% 270,730 3.1% 268,500 2.2% 237,000 9.8%

29,963 29,972 0.0% 29,130 2.8% 28,000 6.5% 42,000 40.2%

7,401 7,484 1.2% 7,550 2.1% 5,500 25.6% 5,000 32.4%

20,030 19,942 0.4% 19,940 0.4% 19,500 2.6% 22,000 9.8%

Total 2,553,830 2,556,724 0.1% 2,572,850 0.7% 2,461,000 3.6% 2,571,000 0.7%

Table 5.4: Results obtained for different sampling percentages for the directed Foldoc network for
size 3 subgraphs with setup high.

Taking a closer look at the table confirms that the relative error for isomorphism
classes with fewer subgraphs is higher, specially for the smaller sampling percentages.
Furthermore, for the 0.1% there were even isomorphism classes that did not get any
subgraphs sampled at all.
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5.2.2 Temporal comparison with the previous approaches

Comparing our algorithm with the previous approaches was done by analyzing the
runtime performance. We compared our algorithm with Rand-ESU, the approximated
version of the ESU algorithm. Since the functioning of Rand-ESU is conceptually similar
to Rand-FaSE and uses the idea of probabilities per level, when comparing with it we
used the same probabilities in the same depths. Note however, that we did not enforce
pk−1 = 1 in Rand-ESU’s tests since its implementation places the probability before
performing the enumeration, contrary to how Rand-FaSE does it (as explained above).
Even though in Section 5.1 we compared with Kavosh, it does not own an approximate
version, as far as we know, so we did not consider it in this section.

We first ran our algorithm against the Rand-ESU in the Jazz network and the Neural
network for a 10% sampling percentage and recorded the number of subgraphs sampled
per second. We used this instead of the raw execution time since the actual number of
sampled subgraphs oscillates and thus it does not represent the quality of the algorithm
speed-wise. We chose these two networks to both vary the type of tested networks and
the average degree. The results obtained are plotted in Figure 5.2.
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Figure 5.2: Sampling runtime comparison for a 10% sample for the undirected Jazz Network and
directed Neural Network.

The principal aspect to take note is that Rand-FaSE always outperforms Rand-ESU,
being roughly an order of magnitude faster. This result is consistent with the one
obtained in the exact approach. However, the speedup is expected to be slightly less
in the sampling version, since the speedup derives from the number of enumerated
subgraphs that do not require an isomorphism test, thus by reducing the number of
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subgraphs that are actually enumerated, the speedup will tend to decrease. Nevertheless,
the results on these networks show that it is not a noticeable decrease.

Other important observation is that our algorithm, as well as Rand-ESU, appear to
scale well with the increased subgraph size. As it increases, a small drop is detectable,
however it is a very subtle one.

To evaluate how the approximation method runtime compares to the exact method
runtime, we ran Rand-FaSE on the networks of Subsection 5.2.1 and plotted the
execution time for various sampling percentages in relation to the time the exact
approach took, on a 5-subgraph census in Figure 5.3. By using the same networks here
as in the previous subsection we get an idea of how runtime performance compares
with accuracy for the same setups.
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Figure 5.3: Comparing the execution time of various sampling percentages with the exact approach
for the undirected Yeast Network and directed Metabolic Network for size 5 subgraphs.

The result display a roughly linear growth behavior (since the graph is in a semi-log
scale, the exponential represents a linear growth). However, even though for both
networks a 50% sample takes approximately 50% of the time the exact approach takes,
a 1% sample takes 3% of the time the exact approach, for the high setup. This effect
worsens as the sampling percentage drops and ends up stabilizing at about 2% of the
time the exact approach takes, regardless of the sampling percentage. The reason
for so is that, thanks to the way the high setup is designed, it ends up enumerating
all subgraphs up to size k − 1. For the medium setup a similar effect is noticeable,
but much subtler, since in this case we are enumerating all subgraphs up to size
k − 2. Obviously, the low setup does not display this behavior, but likewise, as the
sampling percentage decreases the relation between time of the approximation and
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time of the exact deviates more from an exponential. For example, a 0.1% sample
takes approximately 0.2% of the time the exact approach does.

Since the main goal of running an approximation algorithm is to apply it to a network
where the exact approach is unfeasible, we tested our algorithm using the ideas discussed
in Subsection 3.2.3 in an undirected network with 1, 134, 890 nodes and 2, 987, 624
edges that represents the network of a Youtube community taken from SNAP [60]. We
ran a 0.1% sample for 4-subgraphs with setup high, which took about 20 minutes to
complete. Based on tests on enumerations on 3-subgraphs of the same network and
the results of this section, it should take about a full day to run the exact approach.
The results allow us to have an idea of the total number of subgraphs as well as the
distribution of the different subgraph types having run for only a very small fraction
of the time that the exact approach is expected to take.

5.2.3 Measuring convergence

To bring this section to an end, we performed some tests to assess the convergence
of our algorithm. In Subsection 5.2.1 we could observe the percentage of correctly
estimated values converging towards the optimal value, so we consolidate this with a
more detailed view over the percentage of error and the standard deviation. We ran
Rand-FaSE with the astroPh network with setup high for various sampling percentages
and measured both the relative error and the standard deviation normalized by the
real value. We used this network since it is of a larger size and thus allows us to better
observe the convergence and standard deviation evolution. The results are plotted in
Figure 5.4. Note that “Sub1” refers to the “L” shaped size 3 subgraph and “Sub2”
refers to the triangle (size 3 complete graph). The number of subgraphs of type “Sub1”
and “Sub2” in the astroPh network is of the same order of magnitude.

As expected, both the relative error and the standard deviation decrease towards 0. It
is interesting to notice that above the 10% sampling percentage the relative error and
standard deviation stabilize and decrease very slowly, with little fluctuations.
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Figure 5.4: Testing convergence through % of error to the real value and standard deviation (normalized
by the real value).

5.3 Updating a census

Since there are no known approaches that efficiently update a subgraph census, in
order to avail the performance of our census updating variant of FaSE, we ran it against
a baseline method that runs FaSE from scratch after each edge modification. To do so,
we chose 4 different networks that are listed in Table 5.5 and compared the runtime of
both approaches.

Network Directed Nodes Edges Avg. Degree Type Source

Jazz No 198 2,742 13.85 Social Arenas [15]
Power No 4,941 6,594 1.33 Geo-spacial Newman [57]

MCortex Yes 30 311 10.37 Neurobiological Paper [53]
MVisCortex Yes 71 746 10.51 Neurobiological Paper [53]

Table 5.5: Complex networks used in the updating subgraph census tests

Since these are static networks, we needed a stream of edge modifications in order to
be able to perform the experiments. Instead of choosing random edges, we chose to use
the random graphs with given subgraph frequencies of the case study [51] mentioned
in Subsection 4.1.1. We fix a set of parameters that made sense in the context of
the random graph model and ran two implementations of this model: one with the
updating method and the other without. Table 5.6 shows the average execution time,
in seconds, for each network, comparing the efficient update against running a full
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census after each edge modification. We perform a 4-subgraph census for the MCortex
and MVisCortex networks and a 5-subgraph census for Jazz and Power.

Jazz Power MCortex MVisCortex

Efficient Update (s) 1,034.06 239.56 64.85 0.22
Full Census (s) 2,5102.0 4,274.47 103.58 12.35

Speedup (× faster) 24.3 17.8 1.6 56.1

Table 5.6: Average execution time, in seconds, and speedup, of the efficient update in comparison
with the full census.

For the MCortex, on average, each network took nearly twice as much to perform
the full census after each edge modification than using our efficient updating method.
However, for the jazz and power networks, on average, each network was 1 order of
magnitude faster using the efficient update technique and the MVisCortex was about
2 orders of magnitude faster.

Clearly, both directed networks are outliers of efficiency, probably because they are
both small dense networks. Our updating method works best for larger sparse networks,
because in this case, on average, the number of subgraphs that change after a single
edge addition or removal is only a small fraction of the total number of subgraphs. In
this sense, the jazz and power networks are better fits for this model, as are most
social networks.

Also, note that these speedups are influenced by the graph generation method runtime.
In principle, performing the subgraph censuses is the bottleneck of the graph generation
method, however the rest of the method can have a relevant weight on the total runtime.
This might also have been one of the reasons for such a low speedup on MCortex.

5.4 Dynamic graph isomorphism

Our analysis focuses on two main themes: the compressibility of the transition
permutations and the runtime of using the automaton versus using a simpler base
approach, namely recalculating the isomorphism class for every instance using nauty.
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We define two notions of compressibility: C0 is the zero compressibility of an automaton,
meaning the percentage of transition permutations that are the identity permutation;
C1 is the one compressibility of an automaton, meaning the percentage of transition
permutations that are either a single transposition or the identity permutation. In
Table 5.7 we show the C0 and C1 values for some automata of different sizes, both
undirected and directed, for the two building methods. We omit the results pertaining
to automata that were too memory intensive to compute (the directed size 6, 7 and 8
automata).

On-the-fly Pre-build
Undirected Directed Undirected Directed
C0 C1 C0 C1 C0 C1 C0 C1

3 25% 75% 31% 73% 33% 78% 34% 69%
4 18% 52% 25% 62% 24% 53% 29% 56%
5 14% 39% 20% 53% 20% 44% 26% 46%
6 12% 29% - - 15% 30% - -
7 9% 21% - - 11% 22% - -
8 6% 15% - - 11% 19% - -

Table 5.7: Values of C0 and C1 for different automata and build methods

It is clear that the pre-build method achieves better compressibilities, specially C0

compressibilities, which are more critical in terms of runtime. If we discount the
building time, which is slightly higher for the pre-build method (but constant), in
general, this results in a speedup of up to 2 times, for most input graph streams.
However, the increased building time means that for higher vertex numbers (from 8
up) the runtime advantage only becomes noticeable for larger stream sizes. This result
was obtained empirically using the graph streams used in the analysis of the following
paragraphs.

To compare the temporal behaviour of our method with the base nauty recomputation
method we generated several synthetic networks, with different goals and variants.
Here we use the version using the on-the-fly building method. We selected 13 graph
stream descriptions with different properties and for each one studied the runtime
of our method and of the base recomputation method for several stream sizes. We
summarise them in Table 5.8 and will explain the origin of each one next.



66 CHAPTER 5. EXPERIMENTAL ANALYSIS

Designation Direction |V (G)| Origin Step

ER-6 Undirected 6 ER Model 1
ER-7 Undirected 7 ER Model 1
ER-8 Undirected 8 ER Model 1
PR-6 Undirected 6 PR Model 1
PR-7 Undirected 7 PR Model 1
PR-8 Undirected 8 PR Model 1
SW-5 Undirected 5 SWAP Model 4
SW-6 Undirected 6 SWAP Model 4
SW-7 Undirected 7 SWAP Model 4
dER-4 Directed 4 D-ER Model 1
dER-5 Directed 5 D-ER Model 1
dPR-4 Directed 4 D-PR Model 1
dPR-5 Directed 5 D-PR Model 1

Table 5.8: Graphs used for the experimental analysis

The designation is used to identify the graph description in the following analysis, the
direction is the graph type (directed or undirected), |V (G)| represents the number of
vertices, the origin is the model used to generate the stream, the step is the number of
graph changing operations between each canonization request, that is, if the step of a
graph stream description is k then we are only interested on the canonization of every
other k element of S(G), as defined previously.

The following list summarises each model used to generate graph streams:

• ER Model, is a simple model generation based on the Erdos-Rényi [12] random
graph model, where each graph changing operation is chosen uniformly at random
from all the possible vertex pairs. Its directed version, the D-ER Model is
analogous.

• PR Model, is a model based on a preferential attachment rule for networks [6]
where each vertex pair is chosen as a graph changing operation depending on
the degree of each of its vertices. Its directed version, the D-PR Model is
analogous.
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Figure 5.5: Comparison of our method versus the base method for multiple streams. A prefix of B-

indicated this result is related to the base recomputation method and a prefix of O- indicated this
result is related to our method

• SWAP Model, is a model that simulates edge swapping operations, each 4
contiguous graph changing operation represent swapping two edges (chosen
uniformly at random). It has a step of 4 because we are only interested in the
graphs after each swap.

To study each one we generated multiple streams with increasing sizes, from 104 to
107 and observed the runtime of both methods. We plot the results of that analysis in
Figure 5.5 (note that the X axis is in logarithmic scale). The top left figure pertains
to the undirected models, the top right figure directed models, the bottom left figure
contains all streams based on the SWAP model and the bottom right figure represents a
growing step experiment that will be further explained bellow. The dashed lines with
square points always represent times obtained using the base method, and the solid
lines with circular points were obtained using our method.

It is noticeable that our method greatly outperforms the base method on all streams.
Furthermore, the asymptotic behaviour of our method suggests that for even greater
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stream sizes the benefit is only going to increase. The same applies to the speedups
obtained by the method. For the unit step streams, the speedup grew approximately
linearly from about one up to 15 times. For the SWAP model the speedup was more
stable, varying between 2.7 and 3.1. It is also interesting to note that our method
had very similar results for different stream models with the same number of vertices,
whereas the base method was much more input dependant, which shows that our
method is agnostic to the input source.

In the bottom left figure, regarding the SWAP model, it is interesting to note that,
even though there is a step of 4, our method still maintains a good speedup when
comparing to the base method. Note that the higher the step the worse is the benefit
of our method, since the base method only performs computation when it is required
to return a canonical label whereas our method has to update the automaton after
each change operation.

There is a clear tipping point observable in the data, which represents the minimum
stream size for which it is more beneficial to use our method instead of the base
method. For the top left figure, it appears to be around 105. This value is related
to the automaton size and with the number of times that the method needs to run
nauty in the building time. We can extrapolate from here and estimate for different
streams sizes and different inputs (even with a number of vertices higher than memory
restrictions would allow) and estimate how good our method is going to be in relation
to the base method.

Building on this tipping point argument, the bottom right figure shows a growing
step experiment. We used the ER model to generate various networks with 6 vertices
and artificially vary the step from 1 to 6 (each integer in the figure legend indicates
the step of that measure, using a similar notation as in the other three figures). It is
important to point out that for all different steps, our method outperformed the base
method, with decreasing speedups. Additionally, as we increase the step, the mentioned
tipping point of efficiency also increases. Further similar experiments indicate that
there is always a tipping point when the step is of the order of O(n), which means our
method is useful as long as the average number of edge modifications between required
canonical labels is in the order of the number of vertices.
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5.4.1 Case study: subgraph census estimation in temporal
graphs

We implemented a basic version of the method mentioned in Subsection 4.2.5 (which
is available on the public source code in the Examples directory) and ran it using both
the base method and our method as the underlying isomorphism tool. To compare
the runtime of both methods, we ran them on a small set of complex networks with
1,000,000 samples, which we list in Table 5.9.

Designation Name Direction |V (G)| |S(G)| Origin

email email-eu-core Directed 986 332,334 Communication [33]
college college-msg Directed 1,899 20,296 Communication [33]
infectious infect Undirected 410 17,298 Social [21]
arxiv arxiv-hep-th Undirected 22,908 2,673,133 Coauthorship [33]

Table 5.9: Graphs used for the case study

The runtimes obtained for multiple subgraph size n are shown in Table 5.10. These
runtimes include the time for sampling and performing other supporting computation,
which lower the speedup in relation to the runtimes obtained in the beginning of this
section.

Using the base method Using our method
Mean Speedup

email college infect arxiv email college infect arxiv

3 10.86 8.81 8.33 32.81 6.62 5.08 3.19 31.52 1.75×
4 22.55 17.12 17.81 66.72 10.73 8.62 4.98 60.48 2.19×
5 34.45 30.01 34.36 113.95 16.24 13.34 8.56 98.74 2.39×

Table 5.10: Runtimes, in seconds, for the case study analysis





Chapter 6

Conclusion

And so we reach the end of our journey.

We first looked into FaSE, an algorithm that performs an exact subgraph census. By
making use of the common topology of the enumerated subgraphs and encapsulating
this information in a tree structure called a g-trie, FaSE is able to discard most of the
isomorphism tests required to correctly identify each subgraph type, which is the main
bottleneck of the problem it aims to solve. Hence, it achieves much better results than
any of the past approaches that tackle the same problem, which is shown by the results
found by comparing all approaches.

Thanks to FaSE’s use of LS-Labeling, the algorithm is very generic and allows for various
different LS-Labeling functions. This means that the algorithm can be easily adapted
for different scenarios such as colored graphs or multigraphs. In these more complex
setups, network-centric approaches have a clear advantage over other approaches
that require a pre-generated set of subgraphs as input since the addition of colors or
multiedges vastly increments the number of possible subgraphs types. Network-centric
algorithms naturally only count the existing types, which are normally a very small
fraction of the total number of possibilities.

Subsequently, we turned to a sampling version of FaSE, appropriately named Rand-

FaSE. It acts as a logical extension and works by sampling only a percentage of the
total number of subgraphs. By placing a probability in each depth of the enumeration
tree and only continuing the enumeration at each branch if a drawn random number is

71
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smaller than that depth’s probability, the algorithm gives an unbiased estimate of the
real frequency of each subgraph type in the original network.

We then described a technique to efficiently update the frequency of subgraphs after
an addition or removal of a single edge. In summary, our updating FaSE algorithm
works by searching all the subgraphs that touch the edge’s endpoints and updates their
frequency. We showed that, on average, it is at least 2 times faster and in many cases
orders of magnitude faster than running the full networks census from scratch on a
particular case study related to generating random networks with prescribed subgraph
frequencies.

Finally, we introduced a new problem that inserts the known problem of graph
isomorphism on a dynamic or streaming environment. It consists on computing
isomorphism information for several graphs in a stream. We focused on fully dynamic
streams, meaning between each iteration we can insert or delete edges.

We presented an efficient algorithm that tackles this problem using a data structure
similar to a discrete finite automaton to represent the full space of different isomorphism
classes. Compared to a simple non-streaming-aware approach of recomputing the
solution for each iteration of the stream, the automaton method and its variations
obtained a much better performance, with speedups increasing with the stream size.
We also briefly studied the applicability of our method, studying how the stream
parameters (the stream size, the stream step, . . . ) vary while keeping the usefulness of
our method in relation to the simpler approach.

In terms of potential future work that can be drawn from this thesis, we first note that
there is not much improvement to be made on top of our exact algorithm. Currently,
the focus of the field is geared towards combinatorial algorithms like [1, 19, 45], which,
even though can only target small subgraph sizes, are much more efficient that general
methods like FaSE. It is highly unlikely, if not impossible, that a general method
that enumerates all occurrences is ever able to match the efficiency of combinatorial
approaches. However, it is also unlikely that these combinatorial approaches can be
generalized in a way that is more efficient that methods like FaSE for larger subgraph
sizes. So both methods will most likely coexist, albeit only new combinatorial methods
have been proposed since the publication of FaSE.
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If we look into approximated approaches the coexistance scenario is similar, since there
are also new sampling methods that use combinatorial properties of graphs, like [56].
Fortunately, there is still a lot of improvement to be made on both, from adaptive
sampling approaches (that adapt the sampling percentages depending on the density of
the input graph) to methods that analytically compute frequencies based on different
null models of graphs.

The brighter future, in our opinion, is reserved to the dynamic methods. As we saw on
Chapter 2, there are very few works that target any variant of the subgraph census
problem on a dynamic environment, so much so that, as far as we know, we were the
first to describe and tackle the dynamic isomorphism problem. There is still a lot
of low hanging fruit on several levels, for example, there is no known combinatorial
approach that updates frequencies of subgraphs when there are edge modifications.
Furthermore, applying these techniques to real temporal networks can lead to a lot of
new insights that were previously harder to obtain. We can also think of extending
the currently known techniques to parallel or distributed environments.
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