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Abstract

Two important technological aspects of the Big data paradigm have been the emergence of mas-

sive scale Online Social Networks (OSNs) (such as Facebook and Twitter), and the rise of the

open data movement that has resulted in the creation of richly structured online datasets, such as

Wikipedia, Citeseer and the US federal government’s data.gov initiative. The examples of OSNs

and online datasets cited above share the common feature that they can be thought of as Online

Information Graphs, in the sense that the information embedded in them has a natural graph

structure.

In this thesis, we consider using this underlying Online Information Graph as a statistical prior

to enhance classification accuracy of some hard machine learning problems. Specifically, we look

at instances where the graph is undirected and propose using the graph to define an Ising -

Markov Random Field (MRF) prior. To begin with, we validate the Ising prior using a novel hy-

pothesis testing framework based approach. Having validated the Ising prior, we demonstrate its

utility by showcasing Network Aided Vector classification (NAC) of real world data from fields

as varied as vote prediction in the US senate, movie earnings level classification (using IMDb

dataset) and county crime-level classification (using the US census data). We then consider a

special case of the classification problem which involves Network Aided Detection (NAD) of a

global sentiment in an OSN. To this end, we consider Latent Sentiment (LS) detection as well as

Majority Sentiment detection. We analyze the performance of the trivial sentiment detector for

LS detection using a novel communications-oriented viewpoint, where we view the underlying

network as providing a weak channel code that transmits one bit of information (the binary

sentiment) and perform error exponent analysis for various underlying graph models. We also

address the problem of optimal Maximum A posterior Probability (MAP) detection of majority

sentiment in the highly noisy labels weak network effect (NW) scenario, deriving the High Tem-

perature (HT) expansion formula for the partial partition function of the Ising model using the

code-puncturing idea from coding theory and then proposing an approximate MAP detector that

outperforms the Maximum Likelihood (ML) detector and the trivial detector.
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Chapter 1

Introduction

1.1 Online Information Graphs

The emergence of the so called Big data paradigm and its disruptive potential has been has an

extensively researched area of late [2–4]. This entails platforms of engagement where the scale of

consumption and contribution of data is happening at a scale hitherto unseen in human history.

One important technological artifact of this Big data paradigm has been the emergence of mas-

sive scale Online Social Networks (OSN) such as Facebook [5], Twitter [6] and Discus [7] with

each having hundreds of millions of users engaging actively sharing, contributing and utilizing

richly formatted data spanning textual forms, images, music and pictures. Parallel to this new

mode of social engagement, we have has also been the rise of the Open data movement that has

resulted in the creation of a plethora of online datasets, such as Wikipedia [8], Citeseer [9], Open

Government sets (such as New York state’s OPEN-NEWYORK data portal - [10] and the US fed-

eral government’s DATA.GOV initiative [11]). This has already had far-reaching effects in the

domains of fostering economic growth and innovation , championing of environmental issues,

improving public health, sharing scientific research and preserving cultural heritage [12].

With such massive data at our disposal, it is only natural that a lot of research is currently un-

derway to help make sense of this explosion of data in terms of both utilizing it for human good

as well as understanding the explanatory science behind some of the interesting details that have

emerged in these data repositories.
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Figure 1.1: Online Information Graph model using an MRF prior.

This thesis is an attempt to contribute towards harnessing these massive repositories, such as

OSNs, that have a graph structure associated with them.

The examples of OSNs and online datasets cited above all share the common feature that they

can be thought of as Online Information Graphs, in the sense that the information embedded in

them has a natural graph structure (See Figure 1.1). For example, in the case of Twitter, the graph

vertices are the individuals and the graph edges are the follower/followee links. In Wikipedia,

the graph vertices are the Topic pages while the graph edges are the hyperlinks relating the

pages. In Open Government datasets, the graph can be obtained from the geographical locations

of counties or states.

In this thesis , the focus is not on studying the science of these graphs from a complex networks

viewpoint [13–15] or look at engineering problems such as efficient data retrieval. Rather, we fo-

cus on utilizing this underlying graph as an additional information source that helps solve some

hard machine learning problems, specifically with regard to classification and detection of data.

We begin by motivating a real world example from Twitter.
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Figure 1.2: #iloveobamacare network

1.1.1 A real world example: Hashtag Hijacking

Seen in Figure 1.2 is the social graph of Twitter users who tweeted in response to the #iloveobamacare

hashtag campaign initiated by the official Twitter account of the president of United States [16]

seeking support towards the Patient Protection and Affordable Care Act (PPACA) [17], nick-

named as Obamacare (See Figure 1.3). What followed was a deluge of Twitter users voicing their

support of this campaign through positive tweets and also many Twitter users that attacked the

#iloveobamacare hashtag with a series of sharp and sarcastic tweets resulting in what is called

Hashtag-Hijacking [16]. With regard to Figure 1.4, we see that a certain Twitter user with the

handle @trodadumsoutgrl used sarcasm to voice her opposition to the hashtag campaign but

a machine learning tweet sentiment-algorithm such as umigon ( [1]) which was trained using

textual features failed to sense the sarcasm and wrongly classified it as a positive tweet. How-
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Figure 1.3: Twitter snapshot of the tweet announcing of the #iloveobamacare hashtag cam-

paign

ever, a look at the underlying social graph reveals that two of her neighbors in the social graph

had (re)tweeted tweets that were classified correctly as being negative. Now using the notion

of homophily1 ( [18, 19]), one can argue that it is quite unlikely that the misclassified tweet was

indeed positive. Thus, the network acts as an error correcting mechanism (or code) that can be

harnessed as a statistical prior to help tackle hard classification and detection problems such as

sarcasm detection as we just witnessed.

Extending this example, we posit that the classification performance of a purely features

driven machine learning algorithm can be improved by noticing that the graph (of follower/followee

links) between the users can provide a Bayes prior distribution to use for detection. If this prior

can be learned (i.e., the model identified), it can be used to design more accurate detectors for

many classification questions in Twitter (and other Online Information Graphs).

Keeping in mind the above Twitter example, we now go ahead and present the thesis set-up.

1Homophily or love of the same is defined as the tendency of individuals to associate and bond with similar others.
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Figure 1.4: Tweet sentiment classification using just the textual features [1]

1.2 Markov Random Fields as label priors

We begin this section with a brief introduction in to Markov Random Fields, a member of the

Undirected Graphical Models (UGM) family, which is used to define the network prior in this

thesis.

In general, the formalism of Probabilistic Graphical Models (PGMs) serves as a unifying and

rigorous framework for translating this loose notion of graph based correlation amongst data into

a well defined probability distribution while elegantly capturing complex dependencies among

random variables, and allowing building scalable large-scale multivariate statistical models [20,

21]. PGMs have found a lot of success in fields varying from bioinformatics, sensor networks

[22], statistical physics, combinatorial optimization, signal and image processing, communication
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theory, information retrieval and statistical machine learning [20, 21].

1.2.1 Markov Random Fields: A brief introduction

PGMs involve graphs, undirected or directed, in which nodes represent random variables, and

the edge set of the graph captures the statistical dependence structure between random vari-

ables [23]. Simply put, they provide a compact representation of joint probability distributions.

In our application, a node i in the representative graph G(V, E), represents the related label dis-

crete random variable xi (taking values in its alphabet X ).

In scenarios where directionality of links holds no conceptual significance (such as spatial adja-

cency links), we propose to use a specific member of the graphical models family, namely the

pair-wise Markov Random Fields (MRFs) [23]. The three Markov properties enumerated below

help MRFs formalize the idea that the graph somehow encodes probabilistically, the statistical

dependence between the related label random variables.

A given probability distribution p(x) is said to be Markov with respect to a graph G(V, E) if it

satisfies the following three Markov properties.

1. Global Markov Property: Given two sets of nodes A, B ⊂ V separated by S ∈ V, the

associated random vectors, xA and xB are conditionally independent given xS.

p(xA, xB|xS) = p(xA|xS)p(xB|xS). (1.1)

2. Local Markov Property: For any given node i with neighborhood, Ni, xi is independent of

the rest of the other variables x\i, conditioned on the variables in Ni. Often, the neighbor-

hood set of a node is termed as the node’s Markov blanket.

p(xi|x\i) = p(xi|xNi). (1.2)

3. Pair-wise Markov property: For any given 2 nodes i and j, we have xi and xj being inde-

pendent conditioned on the rest of the variables, x\{i,j} if there is no edge connecting nodes

i and j in the graph.

p(xi, xj|x\{i,j}) = p(xi|x\{i,j})p(xj|x\{i,j}). (1.3)
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In our framework, we choose to use the pair-wise MRF [23] whose probability distribution

can be written as,

p(x1, x2, ..., xn) = p(x) =
1
Z ∏

(i,j)∈E
ψij(xi, xj), (1.4)

where

Z = ∑
x∈X n

∏
(i,j)∈E

ψij(xi, xj)

is the so-called partition-function which helps normalize the probability distribution and
{

ψij(xi, xj)
}

(i,j)∈E

are the edge-potential functions. Equation (1.4), essentially captures the side-information brought

about by the network as a probability prior, which we will incorporate in our framework in the

ensuing section.

1.2.2 The homogeneous Ising prior with constant external field

We begin this subsection by choosing the following specification of the edge-potential function

ψij(xi, xj) = exp{θxixj} and a signed binary label set, X = {−1, +1}. This results in a specific

type of MRF called the homogeneous Ising model [24] , which is given by,

p(x) =

exp

{
θ ∑

(i,j)∈E
xixj

}

Z(θ)
=

exp
{

θxT Ax
}

Z(θ)
. (1.5)

Now consider this Ising prior on an undirected graph2 with n user vertices V, as shown in Figure

1.5 with 6 user vertices. As an example, the user vertices could be Twitter individuals. The

edge-set E of this sub-graph may be obtained using Twitter’s follower/followee relationships, or

in some cases, using the @-mentions in the tweets [25].

In the figure, x ∈ {−1, +1}n is the binary vector of n user labels. In Twitter, these could

be the sentiments of the individuals towards some event, with xi = +1 (or xi = −1) modeling

the positive (or negative) sentiment of the ith individual. Let t ∈ {−1, +1} be a uniformly

distributed binary latent variable which homogeneously influences every user of the network

as a local field of strength γt. In the Twitter example, this could be the sentiment bias of the

2The graph G is undirected since it models correlation, rather than influence flows.
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Figure 1.5: Online Information Graph model using an MRF prior.

population. (Setting γ = 0 eliminates t from consideration.) The user labels are assumed to be

sampled from an underlying MRF prior. Thus, the conditional distribution of x given t is,

p(x|t) =
exp

{
θxT Ax + γteTx

}

∑
x

exp {θxT Ax + γteTx} , (1.6)

where A is the upper triangular adjacency matrix of user sub-graph vertices (Aij = 1 if (i, j) ∈
E, i < j, else Aij = 0). (·)T is vector transpose and e is the vector of all-ones. θ is called the inverse

temperature (Gibbs) parameter or simply the global edge-potential. User label correlation increases

when θ increases. Notice that from a communications perspective, x is a codeword randomly

chosen in response to bit t. Let y be a noisy measurement of x. In Twitter, it may be estimated

from the features extracted from the user profiles or could even be the label vector estimated by

a sophisticated classifier algorithm from user tweets, such as the ones in [26] and [27]. Since the

above measurements are made separately for each vertex, the channel from x to y is memoryless,

so that

p(y|x) =
n

∏
i=1

p(y(i)|x(i)). (1.7)

The measurements could be discrete or continuous. If the measurements are binary, or if (in the

continuous case) the noise is Gaussian, the joint distribution may be written as an Ising model,

p(t, x, y) =
1

2 Z(t)
exp

{
θxT Ax + εyTx + γteTx

}
, (1.8)

Z(t) = (2 cosh(ε))n ∑
x

exp
{

θxT Ax + γteTx
}

, (1.9)
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where ε depends inversely on the measurement noise variance.

To showcase the potential applications of the model, Figure 1.6 contains six diverse real-world

scenarios that can be modeled by (1.8). (Only the sub-graph G of user vertices carrying the labels

(x) is shown for clarity. The latent variable and measurement vertices are not shown.) Figure

1.6(a) represents the #-Obamacare Twitter network dicussed earlier in this chapter.

Figure 1.6(b) shows a US Senator joint Press Release Network (PRN) of the 110th Congress be-

ing used to define the MRF prior. The PRN is constructed based on joint press releases by

senators. Measurements include party affiliation, political leanings and pre-declared ideological

positions [28]. This graph can be harnessed to predict the votes cast by the Senators during a

Roll call vote on legislation.

Figure 1.6(c) shows an application using a graph constructed based on geographical adjacency of

the 48 contiguous states of the United States. This can be used to predict the Lung-and-Bronchus

cancer levels in the state (as being ‘Hi’ or ’Lo’) [29] using state-level adult smoking rate measure-

ments.

Figure 1.6(d) represents an application where the vertices represent movies obtained from the

IMDB movie database [30]. An edge is drawn between 2 movies if they share a common pro-

duction house. The inter-movie graph thus constructed is used to define the MRF prior. The

measurements are the lemmatized textual features extracted from the script of the movies (via the

IMDB database) using the Bag-of-words model [31].

Figure 1.6(e) shows a graph constructed based on geographical adjacency of the 102 contiguous

counties of the Illinois state being used to define the MRF prior. Measurements are average in-

come, voting tendencies and health statistics from openly available data sources such as census

surveys [32]. In the world of currency finance, financial experts often analyze a basket of curren-

cies with respect to a standard currency such as US dollar by constructing a Minimal Spanning

Tree (MST) graph, as shown in Figure 1.6(f). This tree is constructed based on correlation of the

daily time series of the exchange rates of the currencies [33], and thus, shows the financial de-

pendence of countries on each other. Measurements include financial data (GDP, inflation, etc.)

of the countries. This model can be used, for example, to detect weakening economies.

Having specified the graphical model of choice in (1.8) and looked at the myriad of Real world

examples of the graphs, we now move on to present the thesis outline in the form of a chapter
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map which provides a visual diagrammatic representation of the work presented here.

1.3 Thesis Outline

The use of a prior distribution is a rather contentious one and invokes fierce debates in the statis-

tics community [34,35]. However, in the machine learning community, as long as using the prior

results in substantial improvement of classification accuracy, a conjecture based justification for

the prior is tolerated3. Ostensibly, this approach comes with the innate risk that a misspecified

prior whose validity is not ascertained a priori to its usage might result in classification accuracy

being much worse than not using the prior at all. Hence, there is clearly a need for a pre-processing

step where we subject the prior to some tests which will validate its utility.

In Chapter 2, we explore this very issue of coming up with the hypothesis testing based frame-

work to justify the usage of the homogeneous ferromagnetic Ising prior of (1.5) (which we repeat

here for clarity),

p(x) =

exp

{
θ ∑

(i,j)∈E
xixj

}

Z(θ)
.

As seen Figure 1.7, if the hypothesis testing framework fails to validate the prior, then the prac-

titioner is advised to explore other options of exploiting the suspected correlation amongst the

labels or just stick to the prior assumption and use the likelihood maximization approaches for

his machine learning problem.

Should the hypothesis testing framework validate the prior, we move on to Chapter 3 where we

consider the Network Aided Classification (NAC) problem which is defined thus.

Network Aided Classification (Chapter 3): In this problem, the objective is to obtain an estimate

x̂ of the true labels, given the measurement vector y. An example is to use the IMDB information

graph (Figure 1.6(d)) to predict which movies will be commercial hits, or to use the inter-county

adjacency graph (Figure 1.6(e)) to predict, crime-levels in individual counties of the state. The

estimate x̂ can be obtained as a MAP estimate or Maximum Posterior Marginal (MPM) [37] on

the model (1.8),

3This cultural split in explored in depth in [36]
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x̂map = arg max
x∈{−1,1}n ∑

t
p(t, x, y), (1.10)

x̂i,mpm = arg max
x(i)∈{−1,1} ∑

t,x\i

p(t, x, y). (1.11)

In chapters 4 and 5, we explore the Network Aided Detection (NAD) problems of Latent senti-

ment detection and Majority sentiment detection.

Latent sentiment detection (Chapter 4): This is the problem of classifying the latent variable t

as ±1. The classifier t̂ = ±1 can be obtained from the a posteriori probability ratio, l(y),

l(y) =
∑
x

p(t = 1, x, y)

∑
x

p(t = −1, x, y)
. (1.12)

The model (1.8) is applicable to several real-world latent variable classification scenarios. We

begin by assuming that there exists a latent sentiment (t ∈ {−1, +1}), which will cause a certain

concrete event in the future. This event may be the passage (or defeat) of a bill in the Senate, or

an up (or down) movement of the stock market, when t = +1 (or −1, respectively). The goal is

to automatically predict this future event using the expressed sentiments gathered from Twitter

tweets (y in our model), such as in Figure 1.6(a). Of course, in the Twitter example of Obamacare,

one can do this knowing side-information such as the political stance of the individuals. Auto-

matic detection aims to use y alone, without requiring human intervention through specialized

side information. (It was later revealed in a national survey conducted by the Pew Research

Center and USA TODAY [38], that 63% of liberally-minded voters supported Obamacare, i.e.,

t = +1.)

Majority vote or sentiment classification (Chapter 5): Another problem related to latent vari-

able classification is that of majority vote or sentiment classification. Here, the goal is to estimate

m = sign(eTx). Practical scenarios relating to this model would be predicting the passing (or

failing) of a certain bill in the Senate at the end of a Roll Call Vote (RCV) in Figure 1.6(b)(b),

or evaluating the net-trend or the majority opinion of a group of Twitter-users tweeting about

a certain trending topic of interest. In this case, the joint distribution of labels x and measure-

ment vector y is the same as (1.8) with γ = 0. The optimal Maximum Aposteriori Probability
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(MAP) [39] majority vote or sentiment detector m̂ = ±1 uses the ratio,

lm(y) =
∑

x:eTx≥0
p(x, y)

∑
x:eTx<0

p(x, y)
.

The thesis summary and suggestions for future work is presented in Chapter 6.

1.3.1 Mathematical notation in the thesis

In this thesis, we use the following notation.

• x, θ: (Lower case) a realization of a scalar random variable or a deterministic variable

depending on the context .

• x,θ: An n-dimensional vector of values.In this thesis vectors are considered to be column

vectors, i.e., of dimension n× 1 unless stated otherwise.

• xi : the ith component value of the vector x.

• A or C: (Upper case) A matrix of scalars.

• X : (Upper case - calligraphic). Denotes a set. Typically, X = {−1, +1} otherwise men-

tioned.

• xT, AT : The superscript T here indicates the transpose of the column vector x or the

transpose of the matrix A .

• xTy: The inner product of x and y, i.e.,
n
∑

i=1
xiyi

• g(x): some scalar-valued function g of the vector x.

• y = Ax:(Matrix-vector multiplication) If A has dimension n× d and x has dimension d× 1,

then x has dimension n× 1.

• p(x): The probability mass function (pmf) of the random vector x.

• p(x|y), p(x|y): The conditional distribution (or density) of the random variable X given

that variable Y takes value y (generalizes to vector arguments x and/or y naturally).
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• E[g(x)]: the expectation of the function g(x) with respect to the probability distribution

p(x). That is, E[g(x)] = ∑
x

p(x)g(x).

• m̂, x̂: An estimate of the variable m or the vector x.

•
n
∏
i=1

: The product from i = 1 to i = n.

•
n
∑

i=1
: The sum from i = 1 to i = n.

For partial derivatives, we use the following notation, ∂l(θ,εεε)
∂θ = l1

θ , ∂l(θ,εεε)
∂εi

= l1
εi

, ∂2l(θ,εεε)
∂ε2

i
= l2

ε2
i
, ∂2l(θ,εεε)

∂θ2 =

l2
θ2 and ∂2l(θεεε)

∂εi∂θ = l2
εiθ

.

1.4 Related work

Broadly speaking, this thesis is a contribution to the growing body of literature in the broad field

of Network Science4.

In this section, we review the distinct avenues under which research has been carried out which

helps differentiate our contributions.

1.4.1 Complex networks: Study of the underlying graph structure

Many empirical studies conducted showed that real world networks, both man-made as well as

naturally occurring ones, exhibited certain topological characteristics such as scale-free degree

distribution, high transitivity and low graph diameter [13–15]. This lead to an explosion of in-

terest under the banner of study of complex networks where a complex network was defined to

be a graph with highly non-trivial topological features that are not expected to occur in simple

networks such as lattices or Erdos-Renyi random graphs [40]. Many generative toy models such

as the Watts-Strogatz Small World model [41], the Barabasi-Albert scale-free model [42] and the

Exponential Random Graph Models [43] were proposed with a statistical physics narrative in

order to explain the formulation of such networks and a plethora of modifications have been put

4The United States National Research Council defines network science as “the study of network representations of

physical, biological, and social phenomena leading to predictive models of these phenomena.”
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forth for each of these models to fit certain idiosyncratic observations in specific sub-domains of

interest (See [44–47]).

Some important applications of these studies include characterization of different notions of

vertex-rankings (or centrality measures) [19, 48–50], understanding of different community for-

mation models [51–53], link prediction models [54,55], models pertaining to the temporal evolu-

tion of networks [56,57], techniques to compress the graph adjacency matrix [58,59] and innova-

tive visualization paradigms [60–63] that would lead to meaningful abstraction of a complicated

graph containing millions of vertices.

In contrast, this thesis does not study the graph topology in isolation, but rather as it relates to

the problem of classification.

1.4.2 Gossip and Epidemiology: Information processes on graphs

In this line of research, human engineered networks such as sensor networks, peer-to-peer (P2P)

networks and mobile ad-hoc networks, as well as human-to-human contact networks are ana-

lyzed. The basic onus lies on solving a global constrained optimization problem by allowing the

nodes to communicate locally with each other (gossip) and performing distributed local compu-

tations. This line of research also entails studying the spreading of information processes (such

as beliefs, rumor, traits and infections) on these graphs all while placing strong constraints on the

order of neighborhood of communicability of the nodes, the computational resources available

and synchronizability of the nodes [64–66].

The basic differentiating factor that sets this thesis apart is that in the studies listed above, the

existence of an edge entails, literally, a physical link (such as in sensor networks, P2P networks,

road networks, human-to-human contact networks etc), which places constraints on communi-

cability between the nodes, whereas in our framework the presence of an edge entails capturing

conditional dependence between the entities (nodes), an idea formalized by the Markov Random

Field prior.

With this background in mind, we now delve in to our contributions, beginning with the hypoth-

esis testing framework we use to validate the Ising prior specified in (1.5).
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(a) #iloveobamacare graph of Twitter sentiments. (b) Press Release Network of US senators.

(c) US Geo-adjacency graph. (d) IMDB movie co-production graph.

(f) Graph of correlation of currencies.
(e) Illinois inter-county crimel level graph
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Figure 1.6: Examples of Online Information Graphs.
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Chapter 2

Model Validation

2.1 Introduction

Recently, in the context of Gaussian Markov Random Fields (GMRF), the authors of [67] consid-

ered the problem of hypothesis testing against independence in the special case of the acyclic

dependency graph, and derived the expression for the log-likelihood ratio of detection. This

would serve as pre-inference model validation step before employing the GMRF as a prior for

further inference.

However, in applications where discrete MRFs, such as the Ising model, are used as statistical

priors [24,39,68,69], the justification for its usage is provided in the form of an intuitive assumption

or a hunch which is eventually vindicated by the improvement in the classification error proba-

bility of the inference task at hand.

We have noticed during our research endeavors that modeling the underlying network as an

Ising prior even when it seems reasonable may yield classification error rates worse than one ob-

tains without the network on account of model mismatch. So now, the question is: Is there a

reasonably rigorous and quick way of ascertaining whether the underlying network can indeed be modeled

as a (ferromagnetic) Ising prior?

In order to answer this, we use tools from the hypothesis testing framework developed by the

statisticians over the years [70, 71].

Doing so will empower to use the (ferromagnetic) Ising prior for both classification and detection

17



in Chapters 3-5.

2.2 The homogeneous ferromagnetic Ising prior

The aim of this chapter is to harness this hypothesis testing framework to vindicate the usage

of the homogeneous ferromagnetic Ising prior which is used in the forthcoming chapters and is

specified by (1.5) in the Chapter 1, which is,

p(x) =
exp

{
θxT Ax

}

Z(θ)
, (2.1)

where θ is the common Ising edge potential, A is the upper triangular adjacency matrix and Z(θ)

is the partition function defined as,

Z(θ) = ∑
x

exp
{

θxT Ax
}

. (2.2)

We gather from (2.1) that this Ising prior belongs to the one-parameter exponential family, de-

fined by,

pθ(x) = c(θ)exp{Q(θ)T(x)}h(x), (2.3)

with Q(θ) = θ, the sufficient statistic, T(x) = xT Ax, c(θ) = 1/Z(θ) and h(x) = 1, ∀x. Note

that pθ(x) in (2.3) above reads as probability distribution of x parameterized by θ where θ is a

deterministic variable ( [72]).

2.2.1 Testing against the uniform (i.i.d) prior

In this chapter, we look at the hypothesis testing problem with the Ising prior being the alterna-

tive hypothesis benchmarked against the null hypothesis which is the uniform (θ = 0) prior.

H0 : x ∼ p0 (x) =
(

1
2

)n

∀ x ∈ {−1, +1}n

H1 : x ∼ p1(x) =
exp

{
θxT Ax

}

Z(θ)
, θ > 0.

(2.4)

Another way of representing (2.4) is as follows ( [71]),

H0 : θ = 0 vs H1 : θ > 0. (2.5)
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Figure 2.1: Definitions of type-I and type-II errors

2.3 Definitions

Consider the problem of testing

H0 : x ∼ p0(x) vs H1 : x ∼ p1(x). (2.6)

p0(x) is termed the null hypothesis distribution and p1(x) is termed the alternative hypothesis dis-

tribution.

If the null and the alternative hypothesis distributions p0(x) and p1(x) are parameterized by a

single parameter, say, θ, the hypothesis testing problem in (2.6) is recast as

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1. (2.7)

If Θ0 = {θ0} and Θ1 = {θ1} (where θ0 and θ1 are scalars), then the hypothesis test is said to be a

simple hypothesis test. Else, the hypothesis test is said to be a composite hypothesis test.

Upon observing x, we take a decision in favor of either the null hypothesis or the alternative

hypothesis using φ(x), which is termed as the decision rule, critical function or simply, test, defined

as,
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φ(x) =





1 if H1 chosen

0 otherwise.
(2.8)

The size of a test φ is the type-I error rate or error-rate of the first kind, which is the probability of

incorrect rejection of a true null hypothesis and is given by, (see Figure 2.1),

α = sup
θ∈Θ0

Eθ [φ(x)], (2.9)

where Eθ [.] denotes the expectation taken with regard to pθ(x).

The power of a test φ, denoted by β, is defined to be (1− type-II error rate), where type-II error

rate is the probability of failure to reject a false null hypothesis (see Figure 2.1) . That is,

β(θ) = Eθ [φ(x)], ∀ θ ∈ Θ1. (2.10)

Definition If the family of densities {pθ : θ ∈ [θ0, θ1] ⊂ R}, with sufficient statistic, T(x), is

such that pθ′(x)/pθ(x) is nondecreasing in T(x) for each θ < θ′ , then the family is said to have

monotone likelihood ratio (MLR).

It is a well known result [70, 71] that for the one-parameter exponential family in (2.3), if Q(θ) is

nondecreasing, then this family has the MLR property.

Definition Let Cα ≡ {φ : φ is of size α}. A test φ* is uniformly most powerful of size α (or UMP

of size α) if it has size α (according to (2.9)) and if Eθ [φ*(x)] ≥ Eθ [φ(x)] for all θ ∈ Θ1 and all

φ ∈ Cα.

Theorem 2.3.1 (Karlin - Rubin [70]). If x has density pθ(x) with MLR in T(x),

1. Then there exists a UMP level α test of H0 : θ = θ0 vs H1 : θ > θ0 which is of the form

φTth(x) =





1 if T(x) > Tth

γ if T(x) = Tth

0 if T(x) < Tth

(2.11)

with Eθ0 [φTth(x)] = α.
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2. β(θ) = Eθ [φTth(x)] is increasing in θ for β < 1.

3. For all θ′, this same test is the UMP level α′ ≡ β(θ′) test of H0 : θ = θ′ vs H1 : θ > θ′.

Now, for the hypothesis test specified in (2.5), we design the Karlin-Rubin test of (2.11) as

follows. Firstly, we set the size α, to an acceptably low value (typically, α = 0.05). Then, we solve

for the threshold test statistic Tth to be plugged in to (2.11) by solving, Eθ0 [φTth(x)] = α.

A more general approach advocated in statistics [70, 71] is to compute the p-value for the data

observed and benchmark it with the fixed α and claim that the alternative hypothesis (of the Ising

prior) can be favored with strong statistical significance. This leads us to the following section of

defining this p-value and looking at methods to compute the same for our scenario.

2.4 p-value

In statistics [70, 71], the size α is used to set the bar for how extreme the data must be before we

can confidently reject the null hypothesis. On the other hand, p-value is calculated to indicate

how extreme the data really is. The p-value is defined as the probability, under the assumption

of the null hypothesis H0, of obtaining a test statistic equal to or more extreme than what was

actually observed. If xobs is the single observation, then, p-value is defined as,

p = P0(T(x) ≥ T(xobs). (2.12)

Here, P0(T(x) ≥ T(xobs) denotes the probability with which the event I [[T(x) > T(xobs)]] = 1

occurs when x is sampled from the null distribution (x ∼ p0(x)).

So, with respect to the hypothesis test of (2.5),

p = P0

(
xT Ax > xT

obs Axobs

)

=
∑
x

I
[[

xT Ax > xT
obs Axobs

]]

2n .

(2.13)

For small n, we see that we can compute the p-value by brute force. For large n, the exponential

sum over all x ∈ X n makes it infeasible to compute it exactly, in which case we will have to resort

to either approximating the p-value by sampling or by upper-bounding it.

Now, we look at both of these strategies.
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2.4.1 Approximating the p-value using sampling

One way to approximate p in (2.13) is by obtaining Ns samples from the uniform prior in (2.4)

and computing,

psamp =

Ns

∑
s=1

I
[[

xT
(s)Ax(s) > xT

obs Axobs

]]

Ns
. (2.14)

2.4.2 Upper bounding the p-value

In certain scenarios, we also demonstrate that the p-value upper-bound can be quickly calculated

for graphs of certain topology (planar graphs). If the upper-bound thus evaluated is found to be

sufficiently low, then we can be assured that the null hypothesis of the uniform prior is rejected

in favor of the Ising prior as the true p-value can only be lower than the upper-bound estimate.

Now, we describe the upper-bounding procedure. Given an observation, xobs, we see that using

the Chernoff-bound in (2.13), we get,

p 6 min
c>0

(
E0
(
exp

{
cxT Ax

})

exp
{

cxT
obs Axobs

}
)

. (2.15)

Here,

E0

(
exp

{
cxT Ax

})
= ∑

x
p0 (x) exp

{
cxT Ax

}
=

Z(c)
2n , (2.16)

where Z(c) is the Ising partition function defined in (2.2). Thus,

p 6
1
2n min

c>0

(
Z(c)

exp
{

cxT
obs Axobs

}
)

. (2.17)

From (2.17), we see that computing the upper bound of the p-value entails computing the Ising

partition function, a challenging computational problem which is tackled below.

p-value upper bounding for planar graphs using Kasteleyn construction based exact inference

In [73], Schraudolph and Kamenetsky presented a polynomial-time algorithm for the exact com-

putation of the partition function of binary undirected graphical models defined on planar graphs

using the Kasteleyn’s dimer covering procedure [74].
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Denoting this exact computation of the partition function under the graph planarity assump-

tion to be, Zplanar(c), and plugging this in (2.17), we have,

pplanar :=
1
2n min

c>0

(
Zplanar(c)

exp
{

cxT
obs Axobs

}
)

. (2.18)

It is noteworthy to mention that the procedure detailed in [73] is a two-phase procedure. The

first phase covers constructing the so called Boolean half-Kasteleyn matrix, which is based on the

geometry of the underlying graph and independent of the edge-potential(s) overlaid on its edges.

The second phase entails factoring in the edge-potentials in to what is termed as the full Kasteleyn

matrix, and computing the partition function from its determinant.

In (2.18), we see that the partition function Z(c) needs to be re-computed for multiple c ≥ 0 but

we only need to execute the second phase for each c chosen as the Boolean half-Kasteleyn matrix is

invariant to changes in c.

p-value upper bounding using Tree-Reweighted Belief Propagation (TRBP)

In case the underlying graph is not planar, we will have to use another upper bounding procedure

to bound the Ising partition function in (2.17).

In [75,76], Wainright and Jordan presented a class of upper bounds on the (log) partition function

of an arbitrary undirected graphical model based on solving a convex variational problem (See

Appendix). Denoting this upper bound by, Ztrbp(c) > Z(c), and plugging this in (2.17), we have,

ptrbp :=
1
2n min

c>0

(
Ztrbp(c)

exp
{

cxT
obs Axobs

}
)

. (2.19)

2.5 Results with real world data

In this subsection, we deal with real world data where the underlying graph is the spatial inter-

county geographical adjacency graph which is planar by nature. All the counties whose average

per-capita income is higher than the median are labeled +1 and −1 otherwise. The data regarding

the per-capita incomes was mined from [77].

Now, we look at some states with n < 20 counties where brute-force computation of the p-value

in (2.13) is possible.
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Figure 2.2: The inter-county graph for Massachusetts -(Blue: Above median, Green:Below Me-

dian)

Figure 2.3 contains the plot of brute force p-value calculations (denoted by pbrute− f orce) for 7 states

of USA of AZ, CT, MA, ME, NH, NV and VT (For abbreviations used, the reader is referred to

table 2.1) along with their observed sufficient statistics (T(xobs)). The labeling used for the x-axis

in the sub-plots details the state abbreviation with the number of counties in it.

As seen, of these 7 states, a low p-value of 0.07 was obtained in the case of MA (Figure 2.2).

Now, moving on to the case of n > 20, we evaluate p-values using the three procedures

derived in (2.14),(2.18) and (2.19) respectively (Indicated by ’Samp’, ’planar’ and ’TRBP’ in the

tables in Figure 2.4). The results are as tabulated in Figure 2.4.

We categorize the states into 3 categories. The first category of states (included in TABLE-I on

the left hand side of the figure (Figure 2.4)) are those states where the p-values obtained from

all the 3 procedures were < 0.01, thereby providing strong evidence in support of usage of these

priors as ferromagnetic Ising models. The second category of states (table-II) are those where
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Figure 2.3: Brute force p-value calculations for 7 states of USA [AZ,CT,MA,ME,NH,NV and VT]

the p-values obtained were > 0.1 thereby providing an important reality check that one cannot

simply assume the Ising prior based on a reasonable hunch. Specifically, looking at the state

of WV, we see that it visually appears as if there seems to be some level of network effect in the

sense that a lot of neighbors seem to share the same label, but when subjected to the p-value test

reveals that the obtained p-value is too high to statistically justify using the Ising model.

Interestingly, we found a few states (listed in TABLE-III) where the p-value computed by using

the Kamanetsky construction of (2.18) and the sampling approach of (2.14) reveals that the p-

values are indeed low but the TRBP based upper bound of (2.19) is so high (> 0.1) that it might

motivate the practitioner into concluding that the null model (of the uniform prior) cannot be

rejected with confidence. This reveals an important lesson that one cannot really reject a dataset

because it yielded a very high p− value using the TRBP based upper bounding method. This

is of very important significance to scenarios where the underlying graph is not planar and the

Kasteleyn based exact inference method is not possible.
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With reference to TABLE-I and TABLE-III, we see that there exists a large number of instances

where the p-value is low enough (≤ 0.05) to reject the uniform prior null hypothesis in favor of

the Ising prior, which now provides us with a strong footing to use this Ising prior in classification

tasks in the upcoming chapter.

2.6 Chapter Summary

In this chapter, we have used the p-value based hypothesis testing framework to validate the

homogeneous ferromagnetic Ising prior. We also showcased real world data where the null hy-

pothesis of the data emanating from the uniform prior distribution is rejected with high statistical

significance when benchmarked with the alternative hypothesis being the Ising prior. This paves

the way for utilizing the ferromagnetic Ising prior in the forthcoming chapters for both network

aided classification as well as network aided detection.
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AL Alabama NE Nebraska

AZ Arizona NV Nevada

AR Arkansas NH New Hampshire

CA California NJ New Jersey

CO Colorado NM New Mexico

CT Connecticut NY New York

DE Delaware NC North Carolina

FL Florida ND North Dakota

GA Georgia OH Ohio

ID Idaho OK Oklahoma

IL Illinois OR Oregon

IN Indiana PA Pennsylvania

IA Iowa RI Rhode Island

KS Kansas SC South Carolina

KY Kentucky SD South Dakota

LA Louisiana TN Tennessee

ME Maine TX Texas

MD Maryland UT Utah

MA Massachusetts VT Vermont

MI Michigan VA Virginia

MN Minnesota WA Washington

MS Mississippi WV West Virginia

MO Missouri WI Wisconsin

MT Montana WY Wyoming

Table 2.1: Abbreviation of state acronyms
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GA    0.0068    0.0001    0.0001
OH    0.0020    0.0003    0.0029
PA    0.0063    0.0001    0.0664
TX    0.0043    0.0003    0.0031
OH   0.0001    0.0001    0.0029
PA    0.0004    0.0004    0.0664
KY    0.0122    0.0001    0.0037

IA    0.4314    0.4345    1.0000
KA   0.1747    0.1615    0.8641
WV  0.1910    0.2039    0.9015

CA    0.0041    0.0181    0.4363
IL      0.0020    0.0006    0.1700
IN     0.0020    0.0013    0.2132
MO   0.0124    0.0004    0.1564
NY    0.0904    0.0783    0.7123

SampPlanar TRBP

Planar

Planar

Samp

Samp

TRBP

TRBP

ALAMEDA

ALPINE

AMADOR

BUTTE

CALAVERAS

COLUSA

CONTRA COSTA

DEL NORTE

EL DORADO

FRESNO

GLENN

HUMBOLDT

IMPERIAL

INYO

KERN

KINGS

LAKE

LASSEN LOS ANGELES

MADERA

MARIN

MARIPOSA

MENDOCINO

MERCED

MODOC

MONO
MONTEREY

NAPA

NEVADA

ORANGE

PLACER

PLUMAS

RIVERSIDE

SACRAMENTO

SAN BENITO

SAN BERNARDINO

SAN DIEGO

SAN FRANCISCO

SAN JOAQUIN

SAN LUIS OBISPO

SAN MATEO

SANTA BARBARA

SANTA CLARA

SANTA CRUZ

SHASTA

SIERRA

SISKIYOU

SOLANO

SONOMA

STANISLAUS

SUTTER

TEHAMA

TRINITY

TULARE

TUOLUMNE

VENTURA

YOLO

YUBA

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ADAMS

ALLEGHENY

ARMSTRONG

BEAVER

BEDFORD

BERKS

BLAIR

BRADFORD

BUCKS

BUTLER

CAMBRIA

CAMERON

CARBON

CENTRE

CHESTER

CLARION

CLEARFIELD

CLINTON

COLUMBIA

CRAWFORD

CUMBERLAND

DAUPHIN

DELAWARE

ELK
ERIE

FAYETTE

FOREST

FRANKLIN

FULTON

GREENE

HUNTINGDON

INDIANA

JEFFERSON

JUNIATA

LACKAWANNA

LANCASTER

LAWRENCE

LEBANON

LEHIGH

LUZERNE

LYCOMING

MCKEAN

MERCER

MIFFLIN

MONROE MONTGOMERY

MONTOUR

NORTHAMPTON

NORTHUMBERLAND

PERRY

PHILADELPHIAPIKE

POTTER

SCHUYLKILL

SNYDER

SOMERSET

SULLIVAN

SUSQUEHANNA

TIOGA

UNION

VENANGO

WARREN

WASHINGTON

WAYNE

WESTMORELAND

WYOMING

YORK

BARBOUR

BERKELEY

BOONE

BRAXTON

BROOKE

CABELL

CALHOUN

CLAY

DODDRIDGE

FAYETTE

GILMER

GRANT

GREENBRIER

HAMPSHIRE

HANCOCK

HARDY

HARRISON

JACKSON

JEFFERSON

KANAWHA

LEWIS

LINCOLN

LOGAN

MARION

MARSHALL

MASON

MCDOWELL MERCER

MINERAL

MINGO

MONONGALIA

MONROE

MORGAN

NICHOLAS

OHIO

PENDLETON

PLEASANTS

POCAHONTAS

PRESTON

PUTNAM

RALEIGH

RANDOLPH

RITCHIE

ROANE

SUMMERS

TAYLOR

TUCKER

TYLER

UPSHUR
WAYNE

WEBSTER

WETZEL

WIRT

WOOD

WYOMING

(A) PA

(C) CA

(B) WV

TABLE-I

TABLE-II

TABLE-III

Figure 2.4: p-value comparisons for real world data sets involving counties of the states of USA
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Chapter 3

Network Aided Classification

3.1 Introduction

In Chapter-2, we proposed a p-value based hypothesis testing framework to validate the homo-

geneous ferromagnetic Ising prior which is,

p(x) =
exp

{
θxT Ax

}

Z(θ)
. (3.1)

We also showed real world examples where the null hypothesis of the data emanating from

the uniform prior distribution is rejected with high statistical significance when benchmarked

with the alternative hypothesis being the Ising prior. Now, the next logical step is to use this

prior defined in (3.1) above and demonstrate its utility in terms of the classification accuracy

improvement obtained on account of using it instead of the uniform prior. To this end, we

dedicate this chapter for showcasing real-world applications that will employ the Network Aided

Classification (NAC) framework.

To assist the reader, we begin this chapter by re-establishing the joint Bayesian model of x ∈ X n,

which is the label vector to be estimated and Y = [yT
1 , ..., yT

n ] ∈ Rn×d, the n× d matrix1 of

observations, features or evidence,

p(x, Y) = p(x)p(Y|x). (3.2)

1(In the previous chapters, we have considered scalar features, yi; i = 1, ..., n, and hence y = [y1, ..., yn]T represented

the n× 1 vector of scalar features. Here, we allow the features to be d× 1 vectors and hence have used Y (in capitals)

to denote the resultant n× d feature matrix).
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Driven by the assumption that the labels are independent and identically distributed (i.i.d), the

modeling and optimization of the likelihood p(Y|x) in (3.2) above is focused strongly in the

machine learning community (See [78, 79]).

3.1.1 Literature Survey of classification techniques for correlated data

Within machine learning, Statistical Relational Learning (SRL) tools have been developed [80] to

addresses the problem of performing probabilistic inference on correlated data. Collective clas-

sification (CC) has emerged as an important SRL sub-category, where related data instances are

jointly classified as opposed to sample-wise classification performed with the i.i.d data assump-

tion.

CC algorithm examples include Relaxation labeling [81], Jensen’s Gibbs sampler based Collective

classifier [82], iterative classification techniques in relational data [83], Taskar’s Discriminative

probabilistic models based collective classifier [84], Getoor’s link based classifier [85] and the

weighted-vote relational neighbor algorithm (wvRN) [86]. The NAC techniques explored in this

chapter can be considered to be in this general collective classification framework.

The NAC framework itself was inspired by two important instances in literature where the un-

derlying graph is used to define a graphical model [23] and used as a statistical prior for the

labels. The first is in the area of image segmentation in computer vision [87] where the nodes

are the pixels and the graph is the 2-D image pixel grid. Secondly, there has also been the use of

web-hyperlink based graph, to classify documents and webpages alike [86, 88].

We would like to emphasize that our goal here is not to claim that the NAC framework being

proposed betters all of the above mentioned instances of collective classification in terms of classi-

fication accuracy or speed of execution. Instead, the onus here is to showcase a wide array of real

world examples where NAC is used in conjunction with a standard off-the-shelf non-specialized

discriminative or generative classifier such as SVM or Bag-of-words text classifier thereby moti-

vating the operational value of employing the MRF or Ising model based prior. These real world

instances also help contextualize the theoretical explorations made in Chapters 4 and 5, involving

latent and majority sentiment classification.

Towards this end, we motivate the idea that network aided enhanced classification opportunities

are indeed ubiquitous and span several domains such as political science, sociology, finance and
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health policy.

Now, we move on to formulate the NAC model as a MAP-MRF problem in the coming section.

3.2 The MAP-MRF model for Network aided classification

3.2.1 The MAP and MPM classifier definitions

The posterior distribution of the labels given the evidence, Y is,

p(x|Y) =
p(Y|x)p(x)

p(Y)
. (3.3)

The labels x are now estimated as the Maximum A posteriori Probability (MAP) [39] configura-

tion (mode of the posterior distribution),

x̂map = arg max
x∈{−1,1}n

{p(x|Y)} (3.4)

which minimizes the hit-loss cost function,

Cmap(x, x̂) = 1− I[[x = x̂]]. (3.5)

There exists some literature [37] that evaluating the Maximum Posterior Marginal (MPM) [37]

configuration, defined as,

x̂i,mpm = arg max
xi∈{−1,1}

{p(xi|Y)} (3.6)

and which minimizes the MPM cost function which is

Cmpm(x, x̂) =
n

∑
i=1
{1− I[[xi = x̂i]]}. (3.7)

provides better results compared to the MAP classifier. In this chapter, we use both and highlight

when there is an appreciable difference seen in the classification error rate.
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3.2.2 Conditional independence in the likelihood

As in [39, 89, 90], conditional independence amongst measurements yi given the true label, xi is

assumed. That is,

p(Y|x) =
n

∏
i=1

p(yi|xi). (3.8)

Many popular classification algorithms including Support Vector Machines (SVM) ( [91]) and

Back-propagation for Neural Networks [92] implicitly make the assumption that the samples in

the data corpus are a collection of independent and identically distributed (i.i.d.) samples. This

assumption leads to solving the problem of label assignment on a sample-by-sample basis.

3.2.3 MAP classification under the i.i.d assumption

Given that the labels themselves are independent of each other, we have the vector MAP assign-

ment problem in (3.4) reducing to,

x̂i = arg max
k∈X

p(xi = k|yi)

= arg max
k∈X
{p(yi|xi = k)p(xi = k)} ; i = 1, ..., n.

(3.9)

In many instances in literature [78, 79], the focus is to try and model the likelihood as a discrim-

inative joint function of the label and feature as p(yi|xi = k) = g(k, yi), to finally solve the label

assignment problem as the solution of the following maximization problem [78, 79],

x̂i = arg max
k∈X
{g(k, yi)} ; i = 1, ..., n. (3.10)

Depending on the nature of data being classified different joint label-feature discriminative

functions (g(k, yi)) are proposed and convex relaxation tricks and other heuristics are used to

solve the final optimization problem.

3.2.4 MAP classification with the Ising prior

Let the underlying graph associated with the dataset {x, Y} be G(V, E). Here, V is the vertex set

(|V| = n) and E denotes the edge set. We now bring in Ising prior for the labels xi ∈ {−1, +1}
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defined in (3.1) in the Introduction section, which is,

p(x) =

exp

(
∑

(i,j)∈E
θxixj

)

Z(θ)
. (3.11)

Here, Z(θ) is the normalizing partition function, which is, Z(θ) = ∑
x

exp

(
∑

(i,j)∈E
θxixj

)
.

Now, plugging in this Ising prior of (3.11) in to (3.4), we have, the MAP classification problem

with the Ising prior to be,

x̂ = arg max
x∈X n





n

∏
i=1

p(yi|xi). exp


 ∑

(i,j)∈E
θ(xixj)





 (3.12)

Now, defining the node potential functions to be

φi(xi) = p(yi|xi); ∀i ∈ V, (3.13)

and edge-potential functions to be

ψij(xi, xj) = exp(θxixj); ∀(i, j) ∈ E, (3.14)

we see that (3.12) reduces into a max-inference problem for an MRF whose potential functions are

as defined in (3.13) and (3.14) respectively. (That is, p(x) = 1
Z ∏

i∈V
φi (xi) ∏

(i,j)∈E
ψij(xi, xj)).

Now, this is a well researched problem in the machine-learning community and has been shown

to be NP-Hard in [93]. Hence, a slew of heuristics have been proposed for perform approx-

imate inference such as Loopy Belief propagation (LBP), Tree-Reweighted Belief Propagation

(TRBP), Mean Field (MF) max-inference algorithm and Iterative Conditional Modes (ICM) algo-

rithm (See [20, 79] for the surveys). In our experiments, we employed the one which yielded

the best accuracy and which is duly noted in the experiment details that follow the real-world

examples to be demonstrated in the upcoming sections.

3.3 ML estimation of θ

As seen, (3.12) requires the knowledge of the Ising edge-potential θ, which is also termed as the

Gibb’s inverse temperature parameter and the global hyper-parameter [89, 90] in literature. As
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seen, θ tunes the balance of influence between the Ising/MRF prior and that of the feature driven

likelihood. This section is dedicated towards estimating the same from the training data based

on the Maximum Likelihood Estimation (MLE) ideas presented in [79].

In this chapter, we have two scenarios. The first is the fully observed scenario, where we learn θ

from a single complete observation xobs ∈ {−1, +1}n pertaining to a year or a certain state and

then use the learned θ̂ml to perform NAC on data pertaining to a different year (or a different

state).

In the second scenario, we have a single snapshot network based dataset whose vertex set is split

into training and testing subsets. The vertices pertaining to the training subset constitutes the

observed labels, xo ∈ {−1, +1}ntrain and the vertices pertaining to the testing subset constitute the

hidden labels, xh ∈ {−1, +1}ntest .

In the subsection, we describe ML estimation of the edge-potential θ covering both the scenarios.

3.3.1 Maximum-Likelihood estimation of θ in the completely observed scenario

The likelihood of obtaining an observation xobs ∈ {−1, +1}n being sampled from a homogeneous

Ising prior parameterized by the global edge-potential θ is,

p(xobs; θ) =
exp

{
θxT

obs Axobs
}

Z(θ)
, (3.15)

and that the log-likelihood function is,

l(θ) = θxT
obs Axobs − log (Z(θ)) (3.16)

Given this observation, the maximum likelihood estimated of θ is,

θ̂ml = arg max
θ

[
θxT

obs Axobs − log (Z(θ))
]

. (3.17)

Given that Ising models are in the exponential family, we know that likelihood function is convex

in θ [79], so it has a unique global maxima which we can be estimated using gradient-based

optimizers.

Taking the derivative with respect to θ and setting it to zero, we arrive at the so called moment

matching condition, which is,

34



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

8

E
θ[x

T  A
 x

]

θ

xobs
T  A xobs=4

θml~0.31

1

2

3

4

5

6

7

8

9

    [1
    -1
    -1
     1
     1
    -1
     1
     1
     1]

 xobs =

xobs
T  A xobs=4

Figure 3.1: ML estimation of θ

xT
obs Axobs = Eθ̂ml

[
xT Ax

]
, (3.18)

where, the expectation Eθ̂ml
[] is defined as,

Eθ̂ml

[
xT Ax

]
= ∑

x

[
p(x; θ̂ml)

{
xT Ax

}]
. (3.19)
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Thus θ̂ml can be estimated by computing the expectation over a certain range of θ and finding

that θ at which the expectation will be meeting the actual observed statistic which is xT
obs Axobs .

Note that when n is small, the expectation can be computed by brute-force. However, when n

is large, we need to resort to computing the expectation via approximation techniques such as

Gibbs sampling based methods.

Figure 3.1 shows the ML estimation of θ̂ml for a 9-node grid-graph with the observation xobs =

[+1,−1,−1, +1, +1,−1, +1, +1, +1]T.

3.3.2 ML Estimation of θ in a partially observed scenario

Let xo ∈ {−1, +1}ntrain denote the observed labels and xh ∈ {−1, +1}ntest denote the hidden labels.

Now, for a particular realization of the hidden variables xh, let us define the concatenated vector

of the observed values and the hidden values as, xoh = [xo; xh] ∈ {−1, +1}n.

We see that the likelihood of the observation xo is obtained by marginalizing over the hidden

variables, leading to,

p(xo; θ) =
∑
xh

[ p̃(xoh; θ)]

Z(θ)
, (3.20)

where p̃(xoh; θ) = exp
{

θxT
oh Axoh

}
is the un-normalized distribution of xoh. This implies that the

log-likelihood function is,

l(θ) = log

(
∑
xh

[ p̃(xoh; θ)]

)
− log (Z(θ)) . (3.21)

As in the fully observed case, the ML estimate of θ is,

θ̂ml = arg max
θ

[l(θ)] = arg max
θ

[
log

(
∑
xh

[ p̃(xoh; θ)]

)
− log (Z(θ))

]
. (3.22)

Now, taking the derivative of the log-likelihood and setting it to zero,and using ∂
∂θ log

(
∑
xh

[ p̃(xoh; θ)]
)

=

Eθ̂ml

[
xT

oh Axoh
]
, we get,

θ̂ml : Eθ̂ml

[
xT

oh Axoh

]

︸ ︷︷ ︸
Clamped - expectation

= Eθ̂ml

[
xT Ax

]

︸ ︷︷ ︸
Unclamped - expectation

. (3.23)

In (3.23) above, the expectation on the LHS (the clamped expectation) is computed by clamping the

visible nodes to their observed values, and the unclamped expectation on the RHS is computed by
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Figure 3.2: Demonstration of the construction of the conditional (truncated) MRF

letting the visible nodes be free.

The clamped expectation can be computed by sampling the hidden variables defined on a con-

ditional (truncated) MRF which can be constructed as follows.

3.3.3 Constructing the conditional truncated MRF

MRFs are closed under conditioning. That is, if we condition on the values of the observed variables

(xo), the resulting conditional distribution, p(xh|xo) will still remain an MRF [21, 79].

We convert an unconditional MRF into a conditional (truncated) MRF by using the following

three step truncation procedure.
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1. Removal of observed nodes: We remove the observed nodes (and corresponding node

potentials) from the unconditional model.

2. Removal of edges between observed nodes: We remove the edges (and corresponding

edge potentials) that exist between the observed node variables from the unconditional

model.

3. Removal of edges between observed nodes and hidden nodes and reweighing the node-

potentials of the hidden nodes: For every edge between an observed node and a hidden

node, we multiply the node potential of the regular node by the relevant clamped edge

potential, and then remove the edge (and corresponding edge potential) from the model.

Denoting Vo to be the subset of nodes associated with the observed variables, Vh denote the

vertex set pertaining to the hidden unobserved nodes and Nv to be the neighboring nodes

of a given variable v, we have, the conditioned (clamped) node potentials of the hidden

node variables (φ(cl)
v ) to be,

φ
(cl)
v (xv) = ∏

j∈{Nv
⋂

Vo}
ψvj(xv, xj); ∀v ∈ Vh. (3.24)

Now let Etruncated denote the edge subset containing the edges between the hidden variable

nodes. Thus, we see that after this step, we are left with a truncated graph G(Vh, Etruncated).

At the end of this procedure, we make three observations. Firstly, we will have no terms left

depending on the observed nodes. Secondly, the edge-potentials between the hidden nodes

remain unchanged. Thirdly, G(Vh, Etruncated) is bound to be sparser compared to the original

graph, G(V, E) and may have a simpler topology (example, a tree), which might allow for exact

inference or sampling, an idea that might be exploited for computing the clamped expectation in

the previous subsection. In Figure 3.2, we have described this truncation procedure for the 9 node

grid graph. In this particular case, we see that the conditional MRF defined over (x1, x2, x3, x5) is

indeed a tree.

To conclude, we now present the final form of the truncated (or conditional) MRF obtained after
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the three step procedure described above.

p (xh|xo) =
p (xh, xo)

p (xo)
=

p (xh, xo)
∑
xh

[p (xh, xo)]

=
∏

v∈Vh

φ
(cl)
v (xv) ∏

(i,j)∈Etruncated

{
exp(θxixj)

}

∑
x

∏
v∈Vh

φ
(cl)
v (xv) ∏

(i,j)∈Etruncated

{
exp(θxixj)

} .

(3.25)

Note that while the above procedure was for the homogeneous Ising prior, defined by,

p(x) =
1
Z ∏

(i,j)∈E
ψij(xi, xj)

=
1

Z(θ) ∏
(i,j)∈E

exp(θxixj),
(3.26)

it also holds for a general MRF with varying node and edge potentials defined by,

p(x) =
1
Z ∏

v∈Vh

φv (xv) ∏
(i,j)∈E

ψij(xi, xj), (3.27)

with

p (xh|xo) =
∏

v∈Vh

φ
(cl)
v (xv) ∏

(i,j)∈Etruncated

ψij(xi, xj)

∑
xh

∏
v∈Vh

φ
(cl)
v (xv) ∏

(i,j)∈Etruncated

ψij(xi, xj)
, (3.28)

where,

φ
(cl)
v (xv) = φv (xv) ∏

j∈{Nv
⋂

Vo}
ψvj(xv, xj); ∀v ∈ Vh. (3.29)

This result is used in the following section when incorporating the feature vector information

into the NAC framework via the node potentials.

Now, we describe the NAC methodology for both the discriminative and generative approaches.

3.4 Methodology

Given the inherent graph-structure in the datasets to follow, the procedure we used to showcase

the utility of NAC deviates from the standard methodology used in classical machine learning

literature. Hence, before showcasing NAC with the real world datasets, in this section, we explain

the 4-fold cross validation methodology used for the single snapshot network based datasets in



detail.(Refer to Pseudo-code 1).

To begin with, we have the graph G(V, E), with n nodes and M edges. We employ random

edge-sampling to split Edge-set E into 4 random equal-sized subsets: E =
4⋃

k=1
Ek : |Ek| ≈ M/4.

3.4.1 Training Phase 1: Extracting the training and testing datasets based on ran-

domly sampled edge subsets

For the kth fold, we obtain the training data and testing data as follows. Firstly, for k ∈ {1, 2, 3, 4},
we set Etest = Ek. Now, we obtain Etrain = E \ Etest

2, using which we extract testing and training

vertex sets as, Vtest = V(Ek), Vtrain = V \Vtest. The function V(Ek) here returns the subset of the

vertices that are connected by the edges in the edge-subset Ek and is defined as,

V(Ek) = {u ∈ V : ∃v ∈ V, (u, v) ∈ Ek|| (v, u) ∈ Ek} . (3.30)

Finally, the training and testing datasets consisting of the feature vectors and labels are con-

structed by,

Dtest = {Ytest, xtest}, Dtrain = {Ytrain, xtrain}, (3.31)

where,

Ytrain = {yv : v ∈ Vtrain} , xtrain = {xv : v ∈ Vtrain}

Ytest = {yv : v ∈ Vtest} , xtest = {xv : v ∈ Vtest} .
(3.32)

3.4.2 Training Phase 2: Maximum-Likelihood estimation of θ

We use the ML estimation technique outlined in subsection 3.3.2 for the partially observed case

thus. The training labels xtrain constitute the observed variables while the variables pertaining to

the testing part are the hidden variables. Using (3.22) and (3.23), we compute θ̂ml .

2Here B \ A = {x ∈ B | x /∈ A} denotes the standard set-difference operation
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3.4.3 Training Phase 3: Training the machine learning classifier.

Generative model based approach

This scenario entails using a generative model for the likelihood parameterized as p(yi|xi =

k; Ωk), where Ωk is the class conditional parameter set. In case the feature vectors are scalars and

we use a 2-class conditional Gaussian model, we have,

p(yi|xi = k) =
1√

2πσ2
k

exp

[
− (yi − µk)

2

2πσ2
k

]
; k = −1, +1, (3.33)

with Ωk = {µk, σ2
k }.

In the case of text classification, p(yi|xi = k; Ωk) is parameterized using the standard bag-of-

words model [31], which represents the document as a word count feature vector pertaining to

a dictionary W = [w1, ..., wd]T. That is, yi = [c(i)
1 , ..., c(i)

d ], where c(i)
w is the count of the wth word

in document i. The model parameter would be the word-probability vector where ρ
(k)
w is the

probability of the word w appearing in the kth class/label. Given that a document yi has a label

k, its word counts are modeled using the standard multinomial distribution model, that is,

p(yi|xi = k) =
d

∏
w=1

(
ρ

(k)
w

)c(i)
w

. (3.34)

As seen, the generative model parameter set in this case is Ωk = {ρ(k)
w ; w = 1, ..., d} ∈ Rd.

The parameters pertaining to (3.33) and (3.34) above can be estimated using the standard

maximum likelihood techniques (as shown in standard machine learning textbooks [78,79]) using

the training dataset Dtrain = {Ytrain, xtrain}.

Discriminative model based approach

To begin with, we split the training data Dtrain in to 2 subsets, Dtrain−1 and Dtrain−2, typically in

the 4:1 ratio.

We then use the first part of the training dataset,Dtrain−1 = {Ytrain−1, xtrain−1} ∈ Rntrain−1×(d+1), to

learn the discriminative function h̄(.) of the chosen discriminative classifier such as the Support

Vector Machine (SVM) [91].
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Then, we use this trained discriminative classifier to predict the labels in the second part of the

training dataset. That is,

x̂train−2,i = h̄(ytrain−2,i); i = 1, .., ntrain−2. (3.35)

Now, the predicted labels x̂train−2,i and the true labels xtrain−2,i are used to estimate the entries of

the confusion matrix, p(x̂i|xi = k), by

p (x̂i = k|xi = l) =

ntrain−2

∑
i=1
{I[[x̂i = k]]I[[xi = L]]}

ntrain−2
, (3.36)

which are then used to replace the likelihood p(yi|xi = k) used in the generative model case by

p(x̂i|xi = k).

3.4.4 Testing Phase 1: Potentiating the truncated conditional MRF

Using the procedure explained in subsection 3.3.3, we firstly construct G(Vtest, Etest). The node

potentials of this truncated conditional MRF are then computed using the testing data for the

generative case (φ(gen)
v (xv)) and the discriminative case (φ(dis)

v (xv)) by,

φ
(gen)
v (xv) = p

(
yv|xv; Ω̂

)
× exp

(
θ̂mlxv

(
∑

j∈{Nv
⋂

Vtrain}
xj

))
; ∀v ∈ Vtest

φ
(dis)
v (xv) = p (x̂v|xv)× exp

(
θ̂mlxv

(
∑

j∈{Nv
⋂

Vtrain}
xj

))
; ∀v ∈ Vtest.

(3.37)

The edge-potentials of the truncated conditional MRF are set to,

ψij(xi, xj) = exp
(
θ̂mlxixj

)
, ∀(i, j) ∈ Etest (3.38)

3.4.5 Testing Phase 2: Solving the MAP-MRF inference problem

Now, finally we estimate the test data labels by solving the MAP-MRF inference problem de-

fined on the truncated conditional MRF defined by the graph G(Vtest, Etest) and node and edge-
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potentials defined by (3.37) and (3.38) respectively. That is,

x̂test,nac−gen = max
x∈{−1,+1}ntest

[
∏

v∈Vtest

φ
(gen)
v (xv) ∏

(i,j)∈Etest

ψij(xi, xj)

]

x̂test,nac−dis = max
x∈{−1,+1}ntest

[
∏

v∈Vtest

φ
(dis)
v (xv) ∏

(i,j)∈Etest

exp
(
θ̂mlxixj

)
] (3.39)

For this, we employ approximate inference algorithms such as LBP, TRBP, ICM or Mean-field

inference which are as detailed in [20]. The estimated and the true test data labels are used to

compute the classification accuracy for the kth cross validation fold as,

acc(k) =
1

ntest

ntest

∑
i=1
{I[[x̂test,i = x̂test,i]]} (3.40)

Now, this procedure is repeated for each of the 4-folds and the final average classification accu-

racy is computed by,

Accuracy =
1
4

4

∑
k=1

acc(k). (3.41)

Figure 3.3 details the explained NAC (generative model based) procedure for the 9-node grid

graph.

Now, we move on to employ this procedure for real world datasets spanning disparate do-

mains.

3.5 Real world examples

In this section, we will showcase examples involving real world data where the NAC frame-

work yields superior classification accuracy compared to the case where the i.i.d. assumption

amongst the labels prevails. To demonstrate the ubiquity of this idea, we showcase examples

from disparate areas such as health policy, political science and finance.

3.5.1 NAC with generative models for likelihood

Now, we describe a real world dataset where MAP classification done according to (3.39) with a

generative model based likelihood that results in superior classification performance compared

to the i.i.d. samples assumption based classification.
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The IMDB project

The aim of this project was to classify movies as hit or flop. A movie was declared to be a hit if

it grossed more than $2 million or as a flop otherwise. The network which is built by linking

movies if they shared a production company was first used in [94] to perform classification using

a node-centric framework utilizing only the graph structure and is as shown in Figure 3.4. The

dataset has 572 hit movies and 597 flops (n = 1169) yielding a baseline accuracy 51.07%. For,

the textual features, we used the movie plots mined from IMDB data dump [30] and a 9457 size

dictionary was derived after stemming, lemmatizing and stop word removal [95]. The generative

likelihood model used was the Bag of words model described in (3.34).

After a 4-fold cross validation procedure described in Section 3.39, the obtained classification

results are as tabulated in Figure 3.4. We used LBP as the approximate inference algorithm

to solve (3.39).As seen, the mean classification accuracy increased from ∼ 60% to about 83%,

thereby indicating that the textual features extracted from the movie plots were weak predictors

of whether a movie made money or not while also vindicating our claim of Network Aided

Classification with the network effect emanating from the co-production network being the more

dominant predictive factor.

3.5.2 NAC with discriminative models for likelihood

The Citeseer project

The CiteSeer dataset, which was extracted from the CiteSeer database [96] had 3312 papers split

into 6 classes labeled Agents, AI, DB, IR, ML and HCI. We bunched together papers labeled

’Agents,’AI, and ’ML’ together as they fell under Class ’I’ (I.2;I.2.7;I.2.11) of the ACM Computing

Classification System [97], and then combined the ’DB’,’IR’ and ’HCI’ papers together as they fell

under Class ’H’ (H.2 ; H.3 and H.5) of the ACM Computing Classification System. This resulted

in a two class dataset with a 1435/1877 split between class ’I’ papers and class ’H’ papers result-

ing in a baseline accuracy of 56.7% After lemmatizing and stop word removal, the dictionary size

was 3718 words.

After a 4-fold cross validation procedure described in Section 3.39, the obtained classification re-

sults are as tabulated in Figure 3.5. We used LBP as the approximate inference algorithm to solve
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(3.39). As seen, the mean classification accuracy increased from ∼ 66% to about 81%, thereby

vindicating our claim of Network Aided Classification even with discriminative classification.

County crime-level estimation project

Besides the Citeseer project, we showcase another scenario where the SVM-based discriminative

classifier’s classification accuracy was improved using the underlying network albeit in a slightly

different setting.

The United States Census Bureau defines four statistical regions (North-East, Mid-West, South

and West), with nine divisions [98] with regard to the 48 contiguous states. This division is as

shown in Figure 3.6. Now, focusing on Division 3: East North Central, we pick two states Illinois

(IL) and Indiana (IA) for our analysis.

Using census data [77], we mined the county level crime rates for counties across the two states

and labeled the county ’Hi’ or ’Lo’ based on whether the county had a crime rate higher than

the population median or not. Now, in order to predict these levels, numerical features such as

Voting rate, Voting tendency, Median household income and Mean Tax rates were used.

The underlying graph used in this NAC framework was the spatial inter-county geographical

adjacency graph.

Unlike, the setting with the citeseer dataset, we trained the SVM with the RBF kernel and also

learnt the Ising global edge potential θ using one state’s data and tested on the neighboring

states’ data. For ML of θ, we used the procedure outlined in section 3.3.1 which caters to the fully

observed snapshot scenario. The results are as shown in Figure 3.7. The SVM alone had made

13 erroneous classifications out of 92 counties for Indiana (IN) when trained on data coming

from the 102 counties of Illinois (IL), which was reduced to 7 errors upon using the Ising prior.

Similarly, the SVM had made 19 erroneous classifications out of 102 counties for Illinois(IL)

when trained on data coming from the 92 counties of IN, which was then reduced to 6 erroneous

classifications upon using the Ising priors. As seen, the θ for both the states nearly matched

(∼ 0.23). We would like to assert that this was not coincidental and these couple of states were

chosen using the a priori knowledge of similarity between the two states, an idea has applications

like lessening the cost of census surveys by harnessing the data of one region and re-using it in

a similar neighboring region using the NAC framework.
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Bipartisan cloture roll call vote prediction project

The application here is that of predicting roll call votes during bipartisan cloture votes in the

United States senate, which is deemed challenging in political science owing to the fact that

senators tend to exude lesser allegiance towards their party and state affiliations during these

votes . We harness the joint press release network (PRN) of these senators (first introduced in

Figure 1.6(b)) to define the Ising prior and perform network aided classification to predict roll

call votes.

Background: In the Unites States senate, a senator is allowed to ’filibuster’ [99] which involves

speaking for an indefinite period of time on any subject whatsoever in order to prevent action

on bills that would otherwise pass with a simple majority. Cloture is the sole counter-procedure

by which the Senate can vote to place a strict fixed time limit on consideration of a bill or other

matter, and thereby overcome a filibuster. Under the cloture rule [100], the Senate may limit

consideration of a pending matter to 30 additional hours, but only by vote of three-fifths of the

full Senate, normally 60 votes. While filibusters appear to be a choice mainly exercised by the

minority party, there have been plenty of instances where the majority party senators have taken

up filibustering, indicating the rather bipartisan nature of the senate itself [101].

Dataset description: In this project, we take up a rather famous cloture vote instance titled

the ”Immigration Reform cloture - Senate Vote on the cloture vote for S. 1348 -Secure Bor-

ders,Economic Opportunity and Immigration Reform Act of 2007”, [102] which was rejected

on June 07, 2007. It was a motion to invoke cloture on a bill to provide for comprehensive immi-

gration reform, including an expansion of the visa waiver program. 11 senators of the majority

(Democratic party) and 38 senators of the minority party (Republican party) voted against the

passing while 38 Democrat senators and 6 Republican senators voted for it. As is clearly evident,

there was severance of party allegiance. Further, it is known that a Senator who votes in favor of

cloture does not necessarily vote in favor of the bill. Similarly, a senator who voted against the

cloture might end up voting in favor of the bill. These issues render the problem of vote predic-

tion particularly challenging to solve [99]. In this project, we harness the undirected inter-senator

PRN as an Ising prior [103] capturing the influence structure that might exist between senators.
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The nodes in this network correspond to the senators and there exists an edge between two sen-

ators if they have organized and addressed a press release together, thereby indicating a strong

level of intellectual compatibility and hence the presence of a strong influential tie between the

two. This PRN for the senate in 2007 (110th congress) has 92 nodes (senators) and 477 edges with

a average degree of 5.1848.

Re-parameterization of the likelihood: We begin by firstly showing the re-parameterization of

the max-inference problem in MRFs in to one of finding the lowest energy state of a Random

Field Ising Model (RFIM) in case the discriminative classifier h̄(.) is such that the probability of

misclassification is symmetric with respect to xi ∈ {−1, +1}.
This is a model which will be extensively used in the upcoming chapters of network aided

detection.

The simple idea is that the symmetric errors allow for two model simplifications. Firstly, in case

of binary labels, they facilitate conceptualizing the discriminative classifier output as a bit at the

output of a Binary Symmetric Channel (BSC) whose input is the true label, which in turn allows

bringing in a classical communications theoretic framework of analysis in to Network Aided

Detection.

Secondly, it also facilitates an Ising-styled parameterization of the node-potentials which can be

used to absorb the observed label(s) as the external field of an Ising model. This is as shown

below.

Specifically, defining p(yi = +1|xi = +1) = p(yi = −1|xi = −1) = qi, we can write the

parameterized node-wise likelihoods as,

p(yi|xi) =
1
2

√
qi(1− qi)

(
qi

1− qi

) xiyi
2

. (3.42)

Combining (3.42) and (3.1), we can re-write the posterior probability as a Random Field Ising

Model (RFIM) [68],

p(x|y; θ) =

exp

(
n
∑

i=1
hixi + θ ∑

(i,j)∈E
xixj

)

Zy(θ)
. (3.43)

The external fields, hi are simply,
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hi = log(
qi

1− qi
)

yi

2
(3.44)

and the posterior partition function Zy(θ) would be,

Zy(θ) = ∑
x

exp




n

∑
i=1

hixi + θ ∑
(i,j)∈E

xixj


. (3.45)

ML estimation of the inverse temperature (θ): In section 3.3, we dealt with MLE of θ when we

have the true labels (x) as the training samples. In this subsection, we describe MLE of θ when

we have an instance of the noisy labels y rather than the true labels (x).

To begin with, let us define the energy of a configuration x to be [103],

ε(x) = ∑
(i,j)∈E

xixj. (3.46)

Now,we can define mean energy under the prior distribution (ε̄0(θ)) and mean energy under the

posterior distribution (ε̄1(y; θ)) for a given inverse temperature θ, to be,

ε̄0(θ) = ∑
x

ε(x)p(x; θ) and

ε̄1(y; θ) = ∑
x

ε(x)p(x|y; θ)
(3.47)

respectively.As shown in [89], [90], the Maximum Likelihood (ML) estimate of θ that max-

imizes the model evidence, that is, θ̂ml = arg max
θ
{p(y; θ)}, coincides with the θ at which the

mean energy under the prior (Mean energy with no data) is equal to the mean energy under the

posterior (Mean energy with no data), or,

ε̄0(θ̂ml) = ε̄1(y; θ̂ml). (3.48)

In Fig.(3.8), we have plotted the Mean configuration energy curves under the prior (no data)

and posterior (with data) for varying θ for the PRN-Ising model . As seen, the θ̂ml,PRN ≈ 0.0474.

Results Now, we presents results that showcase the improvement in terms of classification

performance3 brought about by using the Ising prior.

3which translates to vote prediction in our model
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Essentially, we would like to showcase the network-effect induced improvement in classification

accuracy over the baseline performance which relates to the scenario where we use just the node-

wise features (hi) and not the network. This baseline is provided by the feature-only maximum

likelihood classifier, which in our case would simply be [90],

x̂i,ml = sign(hi); i = 1, ..., n. (3.49)

For finding the MAP state of the RFIM, we used the LBP as the approximate inference al-

gorithm. We tried out other approximate inference algorithms such as Mean Field, Tree Re-

weighted Belief Propagation, Graph-cuts based inference and Simulated annealing but did not

notice any improvement over the performance of LBP. In Fig.(3.9), we have plotted the variation

of classification accuracy of the ML, MPM and MAP solutions obtained on running LBP for vary-

ing θ for the PRN-Ising model. We see that using the PRN prior results in improved performance

over the ML classifier at θ̂ml .

The MPM solution is seen to perform better than the MAP solution over a wide range of θ for

the PRN Ising model. This conveys that the MPM solution here is more robust to the variations

in the use of θ̂. At θ̂ml , the improvement in classification accuracy achieved by the use of the PRN

prior over the ML classifier is to the tune of 5.2%. θ̂best at which best classification accuracy of

84% is achieved turns out to be 0.06. The figure also clearly demonstrates the negative effect of

choosing too large a θ for the PRN Ising model which results in over-smoothed solutions having

worse accuracy than the ML solution. The standard UGM toolbox (2011 version) [104] has been

used for LBP inference and ML estimation of θ.

3.6 SNA inspired community aided classification

One of the important focus areas in the field of Social Networks Analysis (SNA) is the study of

prevalence of community structure in social networks which is basically the division of network

nodes into groups within which the intra-group edge connections are dense, but with the inter-

group edge density being substantially lower. Nodes that are part of a community tend to share

similar properties compared to nodes that do not belong to the community. The definition of

a community is rather loose and has been studied under various stylized frameworks as listed
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in [13].

In this section, we will show how this idea of the underlying graph being split into dense com-

munities can be harnessed in our NAC framework to provide better classification performance.

To begin with, let us assume that the underlying graph G(V, E) is split in to Nc communities. .

That is, the vertex set V can be written as the union of Nc vertex subsets,

V =
Nc⋃

c=1

Vc. (3.50)

Similarly, we can partition the edge set E into

E =
Nc+1⋃

c=1

Ec, (3.51)

where Ec is the edge subset whose each member edge has both the nodes at its ends in the same

cth community and Ec+1 is the edge subset containing all the inter-community edges.

Now, using the idea that all the relationships between the nodes of a given community are

similarly weighed, we make the model assumption that the edge potentials associated with the

edges in a given community can be tied to a common value. Thus, this procedure yields a

natural parametrization of the edge potentials and paves a way for finer characterization of the

Ising prior as,

pcomm(x) =

exp

{
∑

(i,j)∈E

[
Nc+1
∑

c=1
θcI [[(i, j) ∈ Ec]]

]
xixj

}

Z(θcomm)
, (3.52)

where θcomm = [θ1, ..., θNc+1] ∈ RNc+1. Now, this is especially useful in scenarios where tieing all

the edge potentials to a common global edge potential will lead to natural model mismatch. Just

for the reader’s clarity, we present here the homogeneous Ising model with the global common

edge-potential, θ, to be,

pglobal(x) =

exp

{
θ ∑

(i,j)∈E
xixj

}

Z(θ)
. (3.53)

In the following subsection, we will present results from a real world dataset where we showcase

a scenario where this community structure inspired parameterization of the Ising edge potentials

results in enhanced classification accuracy.
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State level Lung and Bronchus Cancer level classification

From [105], we extracted the age-adjusted lung and bronchus cancer rates in each of the 48 states

of the USA for years 2003 to 2008. The demographic chosen was men belonging to all races.

We converted these rates into binary labels based on whether the state was above or below the

population median. The labels mined thus are as shown in Figure 3.10.

For features, we downloaded the cigarette consumption levels in these states from [105] for

these very years and used as 1-D features. The generative model we used for the cigarette

consumption level yi was 2-class Gaussian mixture, defined as,

p(yi|xi = k) =
1√

2πσ2
k

exp

[
− (yi − µk)

2

2πσ2
k

]
; k = −1, +1. (3.54)

Figure 3.13 shows the Histogram plot of smoking level features across different years and Fig-

ure 3.14 shows the estimated class conditional means (µk) and variances σ2
k for the above men-

tioned years.

Now, using the underlying spatial inter-state adjacency matrix as the graph for the Ising prior

(See Figure 3.11), we firstly estimated 7 communities in this graph using the Newman-Girvan(NG)

community detection algorithm ( [106]). The resultant graph is as shown in Figure 3.12(b).

We then used this community information to train the resultant 8 edge potentials using one

year’s data. We repeated the same procedure for community split defined in an alternate way.

As in the crime-level classification application, the United States Census Bureau [98] splits the 48

contiguous states into nine divisions for survey purposes. This split is as shown in Figure 3.12(a).

We used these 9 divisions to provide an alternative community specification which was then used

to train another Ising model with 10 different edge potentials.

Now, a single training year’s features data was used to estimate the class conditional means and

variances, and testing was carried out on another year’s data.

The results are as tabulated in Figure 3.15. The label ’Global’ in the plot refers to the case where

the network prior in (3.53) was used. ’C-9’ and ’C-7’ refer to the cases where the prior used was

from (3.52) with the edge potential vectors being parameterized according to community defini-

tions being derived from the 9 region US census bureau categorization or from the 7 community
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Newman-Girvan approach [106]. The ’ML’ refers to the Maximum Likelihood classifier which is,

x̂(ML)
i = arg max

k∈{−1,+1}
[p(yi|xi = k)] ; i = 1, .., n. (3.55)

From Figure 3.15, we can clearly see that both the community definition inspired Ising prior

based NAC classifiers obtained improvements in classification accuracy compared to the fea-

ture only classifier (denoted by ML in the plots). In train-year/test-year combinations such as

(2005/2007), (2006/2007) and (2007/2008), the ’C-9’ based NAC outperformed the ’C-7’ NAC

variant. However, when the results were averaged across the 15 train-year/test-year combina-

tions, the ’C-7’ NAC variant had the best average classification rate. Figure 3.16 provides the

classification accuracies after averaging over all the 15 train-year/test-year combinations.

3.7 Chapter Summary

We envisage a machine learning practitioner using our NAC framework as a plug-in addendum

to the classification paradigm he is already using, which might be either discriminative model

based or generative model based.

To this end, we demonstrate real world examples from disparate domains such as crime-level

classification, cloture vote prediction and movie income classification where the NAC frame-

work was plugged-in seamlessly with both discriminative as well as generative model based

classifiers to bring about improvement in classification accuracy.

We also demonstrated using the lung-cancer level detection project as to how the community-

structure idea emanating from the SNA research could be neatly incorporated to achieve richer

specification of the Ising prior that will result in lessening the model mismatch that might occur

on account of under-parameterization of the Ising prior and hence result in improved classifica-

tion accuracy.

Finally, in the PRN based cloture vote prediction, we had seen that in case the discriminative clas-

sifier h̄(.) has the probability of misclassification being symmetric with respect to xi ∈ {−1, +1},
we model the discriminative classifier output as a bit at the output of a Binary Symmetric Chan-

nel (BSC) whose input is the true label.
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Now, we move on to Network Aided Detection problems in the forthcoming chapters where

we use this BSC model idea and propose a classical communications theoretic framework of

analysis in to our Network Aided Classification paradigm.
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Pseudo-code 1: Methodology for NAC

Initialize: Split Edge-set into 4 random equal-sized subsets: E =
4⋃

k=1
Ek : |Ek| ≈ M/4;

for k = 1:4 do
1: Etest = Ek, Etrain = E \ Etest, Vtest = V(Ek), Vtrain = V \Vtest, Dtest =

{Ytest, xtest}, Dtrain = {Ytrain, xtrain};
2: Use xtrain to estimate θ̂ml ;

if Discriminative Model based Classification then

1: Split Dtrain into 2 parts; Dtrain−1 and Dtrain−2 in 4:1 ratio ;

2: Use Dtrain−1 to learn the Discriminative Classifier: h̄ : Rd → X ;

3: for i=1: ntrain−2 do

x̂train−2,i = h̄(ytrain−2,i);

end

3: Use x̂train−2 and xtrain−2 to estimate the confusion-matrix probabilities: p(x̂i|xi) ;

(4a) : for i=1: ntest do

x̂test,i,no−nac = h̄(ytest,i);

end

(4b) : x̂test,nac = max
x∈{−1,+1}ntest

[
∏

v∈Vtest

φ
(dis)
v (xv) ∏

(i,j)∈Etest

ψij(xi, xj)

]
;

end

else if Generative Model based Classification then

1: Use Dtrain to learn the generative model parameters Ω̂k;

2: for i=1: ntest do

x̂test,i,no−nac = arg max
k∈X

p(ytest,i|xtest,i = k; Ω̂k);

end

3: x̂test,nac = max
x∈{−1,+1}ntest

[
∏

v∈Vtest

φ
(gen)
v (xv) ∏

(i,j)∈Etest

exp
(
θ̂mlxixj

)
]

;

end

acc(k) = 1
ntest

ntest

∑
i=1
{I[[x̂test,i = x̂test,i]]};

end

Accuracy = 1
4

4
∑

k=1
acc(k);
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Figure 3.3: Demonstration of the NAC methodology on a 9 node grid graph

55



BoW BoW−MRF
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

IMDB dataset

1169 movies. 572 hits (blue); 597 flops 
Baseline Accuracy: 51.07%

Figure 3.4: Movie returns classification using the IMDB dataset
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Figure 3.7: Crime level classification in state counties
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Figure 3.10: MAP showing the age adjusted Lung and Bronchus Cancer incidence rates in states
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Figure 3.11: The spatial adjacency graph of the 48 contiguous states of USA
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Figure 3.13: Histogram plot of smoking level features across different years
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Figure 3.15: Error rate comparisons for across different train-year test-year combinations
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Chapter 4

Latent sentiment detection

4.1 Introduction

In Chapter-3, we introduced the Network Aided Classification (NAC) framework where the fo-

cus was on solving a vector classification problem. We showcased several applications of this

framework with real world datasets and demonstrated an appreciable improvement in the clas-

sification error rate compared to ML based classification. We saw that with the use of the NAC,

the classification error rate was of the order of 15% to 20%, which is certainly an improvement

over the ML classifiers encountered but still very high compared to the error rates typically en-

countered in communication theoretic settings where the Bit Error Rates (BER) encountered are

of the order of 10−k, with k & 3.

In this chapter, we now look at binary detection problem where the focus is using the underlying

network to detect whether the global sentiment prevalent in the social network is either positive

or negative instead of vector of individual sentiments. We term this to be Network Aided De-

tection (NAD). This problem is not just pertinent from a real-world perspective (as we will soon

motivate) but also allows for the detection error rates to be low enough to be comparable to

those encountered in communication theoretic settings. This in turn facilitates importing certain

classical communication-theoretic error probability upper bounding techniques which results in

some interesting theoretical insight emerging from the analysis, an aspect that was lacking in

Chapter-3.
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4.1.1 Sentiment detection in OSNs

As motivated in Chapter-1, Online Social Networks (OSN), such as Twitter1 have come to heavily

influence the way people socially interact.

Recent world events such as the Arab Spring, witnessed cascading democratic revolutions char-

acterized by a strong reliance on online social media such as Twitter and Facebook [107]. Today,

there are about 554 million registered active Twitter users with about 135, 000 new Twitter users

signing up everyday. Around 58 million tweets are tweeted per day and the website attracts over

190 million visitors every month [108]. Such staggering numbers have turned such OSNs into an

invaluable data source for organizations and individuals who have a strong social, political or

economic interest in maintaining and enhancing their clout and reputation. Therefore, extract-

ing and analyzing the embedded sentiment in the microblogs (or Tweets) posted by the tweeters

about these organizations or individuals, or specific issues, products and events related to them

or their competitors, is of great interest to them. Of particular interest is the latent sentiment

(as opposed to individual expressed sentiments), which can be either positive or negative with

respect to a particular position. We explain this latent sentiment in detail in Section 4.2.

4.1.2 Micro-blog /Tweet level sentiment classification

Strict length restrictions (such as the 140 character-limit per tweet), irregular structure of the

microblog content and the usage of sarcasm renders the problem of automatic latent sentiment

detection (classifying latent sentiment as positive or negative) from the microblog contents error-

prone. As evidenced in literature ( [26], [27]), sentiment detection has been approached from an

engineering perspective with the main focus being on sentiment detection algorithms, followed

by empirical performance comparisons using standard datasets such as Stanford Twitter Senti-

ment (STS) dataset and the Obama-McCain Debate dataset [109]. Works such as [110] and [25]

have focused on harnessing the underlying social network to aid in sentiment analysis. [110] used

label propagation to incorporate labels from a maximum entropy classifier trained on noisy labels

in combination with the Twitter follower graph. [25] incorporated a semi-supervised frame-work,

that used either the follower/followee network or the @-mentions network and applied loopy be-

1 https://Twitter.com/
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lief propagation to infer user sentiment labels on unlabeled nodes. In [28], we had considered

a similar problem of network aided detection of votes in the senate harnessing the joint press

release network. In this chapter, we consider the problem of social-network aided sentiment

detection. That is, we use the underlying social network as a graph of sentiment similarity, to im-

prove the performance of latent sentiment detection. In this chapter, we approach such problems

from a relatively scientific perspective. That is, we attempt to answer the following important

question regarding latent sentiment detection in social networks.

• How does the social network structure affect the performance of a trivial sentiment detector that is

oblivious to the presence of an underlying social network?

This analysis helps isolate the influence that is introduced by the network prior alone. For this,

we use the stylized model of latent sentiment detection, based on the Ising prior proposed in

Chapter-1 ((1.8)). We then analyze the performance of the trivial sentiment detector, keeping in

mind the underlying social network structure. For this, we are inspired by a communications-

oriented viewpoint, where we view the underlying network as providing a weak channel code, that

transmits one bit of information, which is the latent sentiment. Accordingly, we are able to ana-

lyze the performance of the sentiment detector by borrowing tools from information theory. We

can then compute and contrast the performance under various stylized social network topolo-

gies, thus providing a comprehensive answer to the question posed above. Thus, we show that

communication theorists can contribute to the growing field of social network analysis. The rest

of the chapter is organized as follows. In Section 4.2, we formally describe the latent sentiment

detection problem, introduce the formal model and motivate its relevance through real-world

scenarios based on Twitter. We also specify the trivial sentiment detector. In Section 4.3, we

perform a communications-oriented analysis of the trivial sentiment detector to derive an up-

per bound on the detection error probability, in terms of an error exponent. We also show how

the exponent can be evaluated numerically for various stylized topologies such as the complete

network, the star network and the (closed) chain network. In Section 4.4, we present numerical

results that show how the error exponent depends on the network topology and other model

parameters. We conclude the chapter in Section 4.5.
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Figure 4.1: Model for latent sentiment detection.

4.2 Latent sentiment detection problem

4.2.1 Model

Here, we present the Ising prior based model first proposed in (1.8) in Chapter-1 (Figure 4.1),

in detail. Let x ∈ {−1, +1}n be the vector of expressed sentiments of the n members of a so-

cial network, with xi ∈ {−1, +1} being the expressed sentiment of the ith member/node. The

social network structure is modeled as an undirected graph G(V, E) characterized by its upper

triangular adjacency matrix A. It may be obtained using the follower/followee relationships,

or in some cases, using the @-mentions in the tweets [25]. The graph is undirected since we

will use it to model correlation, rather than influence flows. The sentiments are assumed to

be sampled from an underlying homogeneous MRF [68] with unit edge potential and inverse

temperature parameter, θ. In this chapter, we assume θ ≥ 0, so that we are restricting our-

selves to attractive/ferromagnetic models, which correspond to homophilic networks. In such

a ferromagnetic model, the neighboring nodes positively correlate with each other, so that the

distribution has more probability in configurations with similar values on the nodes of the graph.
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Let t ∈ {−1, +1} indicate the latent sentiment variable which homogeneously influences every

node of the network as a local field of strength γt. In the absence of any sentiment bias, we

assume t to be equi-probably equal to +1 or −1. Thus, the conditional distribution of x given t,

can be written as,

p(x|t) =
exp

{
θxT Ax + γteTx

}

∑
x

exp {θxT Ax + γteTx} . (4.1)

Notice that from the communications perspective, x is a codeword randomly chosen in response

to bit t. Let y be a noisy estimate of x. It may be estimated from the features extracted from the

user profiles or could even be the sentiment vector estimated by a given classifier algorithm, such

as the ones in [26] and [27]. While the alphabet of each yi can be arbitrary, in this chapter, for

simplicity, we assume that it is binary {−1, +1}. We model y to be the output of n-identical and

independent Binary Symmetric Channels (BSCs) characterized by the equal cross-over probability

pbsc, with the elements of the true sentiment vector x as the input. Therefore, the conditional

distribution, p(y|x) may be written as,

p(y|x) =
1
cn exp

{
εyTx

}
, (4.2)

where ε = 1
2 log

(
1−pbsc

pbsc

)
and c = 2 cosh(ε). The joint distribution of all variables may now be

written as,

p(t, x, y) =
1

2 Z′(t)
exp

{
θxT Ax + εyTx + γteTx

}
, (4.3)

Z′(t) = cn ∑
x

exp
{

θxT Ax + γteTx
}

. (4.4)

4.2.2 Revisiting the #iloveobamacare Twitter network

The model (4.3) is applicable to several real-world latent sentiment detection scenarios. We begin

by assuming that there exists a latent sentiment (t ∈ {−1, +1}), which will cause a certain con-

crete event in the future. This event may be the passage (or defeat) of a bill in the senate, or an

up (or down) movement of the stock market, when t = +1 (or −1, respectively). The intention

is to predict this real-world event in the present using the expressed sentiments gathered from

the twitterverse (y in our model). Thus, it is the same as detecting the value of t (hence the term

latent sentiment detection).
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Figure 4.2: The ’supportive’ #iloveobamacare network (t = +1) scenario
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Figure 4.3: The ’anti-supportive’ #iloveobamacare network (t = −1) scenario

In Chapter-1 we had used the #iloveobamacare Twitter network (Figure 1.2) to motivate net-

work aided classification. Now, we revisit that example, albeit with the a slightly different ap-

proach. As seen in Figure 1.2, the network is composed of two communities of Twitter users who

either opposed or supported the hashtag via their tweets. Now, let us consider these communi-

ties separately here.

Figure 4.2 represents the community of liberal-minded follower/followee networks of Twitter

users, who tweeted in support of the #iloveobamacare hashtag, which was promulgated on

Twitter to galvanize more support.
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Figure 4.3 represents the follower/followee network of conservative-minded Twitter users

who attacked the #iloveobamacare hashtag with a series of sharp and sarcastic tweets result-

ing in what is called Hashtag-Hijacking [16].

The national survey conducted by the Pew Research Center and USA TODAY [38], later con-

firmed the existence of an underlying sentiment of support (t = +1) to the act amongst liberals

and opposition (t = −1) to the act amongst the conservatives, represented by the pseudo-nodes

labeled t = +1 and t = −1 in Figure 4.2 and Figure 4.3 respectively.

The goal would be for an automatic sentiment detector to predict t for each network. Of course,

in this example, one can do this knowing the political stance of the networks, which is side in-

formation. However, automatic detection aims to apply a general method based detector on y

without requiring human intervention through specialized side information. As it later revealed

in a national survey conducted by the Pew Research Center and USA TODAY [38], that 75%

of Republican party members opposed the PPACA and believed it would negatively affect the

country in the coming years, while 63% of Democrats supported it and thought its impact will

be positive.

4.2.3 Trivial sentiment detector

The trivial sentiment detector that does not use the knowledge of either the adjacency matrix A

or the other system parameters, θ, ε and γ is defined as,

t̂ =





+1, eTy ≥ 0

−1, eTy < 0,
(4.5)

where e is the vector of all ones. As we will see in Section 4.4, the performance of this trivial

estimator is still good enough to result in a positive error exponent due to the strong underlying

label dependencies.

In the next section, we analyze the performance of this trivial sentiment detector (4.5). We per-

form a communications-inspired analysis of the probability of error of the detector, using which,

we seek to understand the role played by the underlying network topology in the performance

of the detector.

73



4.3 Communications-inspired analysis for the trivial detector

In this section, we perform an analysis of the error probability of the latent sentiment detector

(4.5). By the symmetry of the model, the error probability is,

Pe = Pe|t=−1

= P(eTy ≥ 0|t = −1)

= ∑
y

p(y|t = −1) I[[eTy ≥ 0]]. (4.6)

As seen, the exponential sum over y ∈ {−1, +1}n makes it infeasible to calculate Pe for large

social networks. So, in the next subsection, we present an upper bound for Pe.

4.3.1 Pe upper bound

The main result of this chapter is the following theorem.

Theorem 4.3.1. For the trivial detector (4.5), an upper bound on the error probability Pe is,

Pe,UB =
1

Z(θ, γ)(cosh(ε))n min
b

A(b), where,

A(b) =
(

cosh(2b) + cosh(2ε)
2

)n/2

Z(θ, β),

β = γ +
1
2

log
(

cosh(b− ε)
cosh(b + ε)

)
,

Z(θ, β) = ∑
x

exp
{

θxT Ax− βeTx
}

and

Z(θ, γ) = ∑
x

exp
{

θxT Ax− γeTx
}

. (4.7)

Proof: The proof relies on Information-theoretic analysis. (See Appendix A).

4.3.2 Computation of the upper bound

From (4.7), we see that computation of the upper bound requires computing the partition func-

tions related to the underlying MRF. This is an #P-complete problem in general [111]. However,
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for certain stylized topologies, such as the complete network (Curie-Weiss prior), the star net-

work, the wheel network and the (closed) chain network, we can compute closed form expres-

sions for the partition function exploiting the geometry.

A note on the Curie-Weiss prior

The Curie-Weiss Ising prior with homogeneous edge-potential θ and constant external

field h, is defined on a complete graph and is given by,

pcw(x) =

exp

{
θ
n ∑

16i6j6n
xixj + h ∑

16i6n
xi

}

Z(θ, h)
.

The 1/n scaling of the edge-potential in the Hamiltonian is to ensure that the edge-wise

contribution, Eedge = θ
n ∑

16i6j6n
xixj is of the order n [112]. While the assumption that the

underlying graph is complete, which in physical systems relates to the assumption of an

infinite-range interaction, is possibly unphysical, it remains a heavily investigated toy model

of choice in statistical physics [112, 113]. The symmetry in the Hamiltonian not only allows

one to derive closed form expressions for the partition function and related quantities such

as the free entropy density (to be defined in the upcoming section), but also allows one to

demonstrate a phase transition in the average magnetization at θc = 1 (called the critical

potential) [113], where the average magnetization is defined as,

M(θ, h) = lim
n→∞

[
∑
x

p(x)m(x)

]
,

where m(x) is termed as the instantaneous magnetization, defined as,

m(x) =
1
n

n

∑
i=1

xi.

In the forthcoming subsection on error exponent (α) variation with respect to θ, we will show

that there is a sharp increase in α when θ is increased beyond the critical edge potential

θc = 1.
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Topology Partition function Z(θ, γ)

Empty (iid) (2 cosh(γ))n

Star exp (γ) (2 cosh (θ + γ))n−1 + exp (−γ) (2 cosh (θ − γ))n−1

Chain λn
+ + λn

−

Wheel exp (γ) Z(n−1)
chain (θ, θ + γ) + exp (−γ) Z(n−1)

chain (θ, θ − γ)

Curie-Weiss
n
∑

m=0


 n

m


uc

(n−2m)2−nvc
(n−2m)

Table 4.1: Table detailing the partition functions for various graph topologies

Now, we present the closed form expressions for the partition functions for these topologies and

list them in Table 4.1. The constants used in the table 4.1 are defined as follows.

u = exp (θ) , v = exp(γ)

uc = exp
(

θ

2n

)
, vc = exp(γ) and

λ± = exp(θ)
{

cosh(γ)±
√

sinh2(γ) + exp(−4θ)
}

. (4.8)

Also, Z(n−1)
chain (θ, θ±γ) refers to the partition function of the chain graph with n− 1 nodes, constant

edge-potential θ and constant external field being set to (θ ± γ).

Thus, the error probability upper bound (4.7) can be evaluated for the above network topolo-

gies, to provide insight into the impact of social network structure on the sentiment detector

performance. Note that, via (4.7), we have reduced the complicated problem of computing an

error probability to a problem of calculating an MRF partition function. The partition function

calculation is a well researched problem in MRF theory [74], [114] [115], and significant effort has

been expended in statistical physics and machine learning to compute it for a variety of graphs.

Thus, our theorem facilitates importing ideas from that literature to obtain the error probability

bound for a variety of graphs.
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4.3.3 Error exponent

For large networks, an error exponent can be defined as,

α = lim
n→∞

inf
{− log Pe

n

}
. (4.9)

Using the bound (4.7), we can show that,

α ≥ log(cosh(ε)) + C(θ, γ)

−min
b

[
1
2 log

(
cosh(2b)+cosh(2ε)

2

)
+ C(θ, β)

]
, where

. (4.10)

β = γ +
1
2

log
(

cosh(b− ε)
cosh(b + ε)

)
and,

C(θ, β) = lim sup
n→∞

1
n

log

(
∑
x

exp
{

θxT Ax− βeTx
})

,

C(θ, γ) = lim inf
n→∞

1
n

log

(
∑
x

exp
{

θxT Ax− γeTx
})

,

are limits of the logarithm of partition (‘log-partition’) functions. This error exponent allows

approximate bounding of the error probability at large n by,

Pe & exp[αn].

4.3.4 Computation of the error exponent

The limit,

C(θ, h) = lim
n→∞

[
log (Z(θ, h))

n

]
,

used in (4.10) has a special physical significance in statistical physics [113] and is termed as the

Free Entropy density of the Ising model.

Now, using the closed form expression for the partition functions listed in 4.1, we can compute

this Free entropy density for these topologies. Table 4.2 enlists the computed free entropy densities.

In Table 4.2, we use H(p) to denote the Shannon-entropy function defined as,

H (p) = −p log p− (1− p) log(1− p).
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Topology Free Entropy Density C(θ, γ)

Empty (iid) log (2 cosh(γ))

Star log (2 cosh (θ + γ))

Chain θ + log
(

cosh (γ) +
√

sinh2 (γ) + exp (−4θ)
)

Wheel θ + log
(

cosh (θ + γ) +
√

sinh2 (θ + γ) + exp (−4θ)
)

Curie-Weiss supm∈{−1,+1}
[
γm + θm2

2 +H
( 1+m

2

)]

Table 4.2: Table detailing the free entropy density for various graph topologies

Computing αiid

When the network is absent (i.i.d scenario), we can still get a positive error exponent. Using

Ciid(θ, h) = log(2cosh(h)) in (4.10), setting the derivative with respect b to 0 and solving for b, we

get,

argmin
b>0

[
C(θ, β) +

1
2

log (cosh(b + ε) cosh(b− ε))
]

=
1
2

log
[

cosh (ε + γ)
cosh (ε− γ)

]
= biid.

(4.11)

Now, using (4.11) in (4.10), we get,

αiid = log(cosh(ε)) + log
(

cosh (γ)
cosh (βiid)

)
−
[

1
2

log (cosh(biid + ε) cosh(biid − ε))
]

, (4.12)

where βiid = γ− 1
2 log

(
cosh(biid+ε)
cosh(biid−ε)

)
. Thus, we can use (4.12) as a benchmark to compare error ex-

ponents obtained for the various network topologies via evaluation of (4.10) which is considered

in the following subsection.

In the following section, we perform these comparisons by plotting the variation of the error

exponent α derived in (4.10) and (4.12) with respect to the model parameters, θ, γ and ε.

4.4 Numerical results: Error exponent of different networks

The aim of this section is to answer the main question raised in the Introduction, that is, demon-

strate the effect that the underlying social network structure has on the performance of the trivial

sentiment detector which is oblivious of its presence.
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Figure 4.4: Variation of error exponent (α) with θ for different network topologies

4.4.1 Variation of error exponent (α) with edge-potential θ for different network

topologies

In Figure 4.4, we set ε = 1 (which maps to flipping probability of ∼ 0.12 for the BSC channels)

and plotted the variation of the of error exponent (α) with respect to the edge-potential θ for

different network topologies. Figure 4.4(a) through Figure 4.4(d) vary in terms of the parameter

γ being increased from 0.01 (weak latent sentiment) to 1 (strong latent sentiment).

In all the four subplots, we see that the error exponent curve for the empty network case (with

legend ’iid’), expectedly remains flat for all values of the edge-potential θ. For all other topologies

there is a monotonic rise in α with increasing θ.

In Figure 4.4(a), we see that when γ was set to 0.01 (weak latent sentiment), we can see that sharp

rise in the error exponent curve of the Curie-Weiss prior around the critical edge-potential θc = 1.
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It is also rather interesting to note that while the star and the chain both have the same edge

density (n− 1 edges), the chain graph’s curve is the one that increases much slower with increase

in edge potential. The wheel graph on account of having greater edge-density (2n − 3 edges)

brings in stronger network effect and hence α increases fastest amongst all other topologies

considered. It is be noted here that while the Curie-Weiss prior does entail the graph being

complete (and hence the most dense topology), the (1/n) scaling in its Hamiltonian ensures that

the increase in α remains sluggish when compared to the wheel graph.

Finally, we see that in Figure 4.4(d) when γ = 1 and ε = 1 (indicating low noise and strong latent

sentiment), the error exponent for all topologies increases quickly towards log(cosh(ε)) = 0.44.

4.4.2 Variation of error exponent (α) with latent sentiment strength γ for different

network topologies

In Figure 4.5, we again set ε = 1 (which maps to flipping probability of ∼ 0.12 for the BSC

channels) and plotted the variation of the of error exponent (α) with respect to the strength of

the latent sentiment γ, with the parameter θ being increased from 0.01 (weak network effect) to

1.5 (strong network effect) in Figure 4.5(a) through Figure 4.5(d).

In all the four subplots, we see that the error exponent curve for the empty network case (with

legend ’iid’), expectedly grows at the same rate with respect to γ irrespective of the edge-potential

θ.

We also observe that all topologies exhibit a monotonic rise in α with increasing γ.

In Figure 4.5(a), we see that when θ was set to 0.01 (weak network effect), all the curves are close

to that of the i.i.d curve. As we increase θ, the curves of α for all topologies are above that of the

i.i.d curve indicating the ferromagnetic network effect coming from the Ising prior.

It is also rather interesting to note that the curves for star and the chain topologies cross each

other at a certain γ. That is, there exists a certain threshold γ above which the chain graph

exhibits a higher error exponent compared to the star graph.

Finally, we see that in Figure 4.5(d) when θ = 1.5 and ε = 1 (indicating low noise and strong

network effect), the error exponent for all topologies increases quickly towards log(cosh(ε)) =

0.44.
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Figure 4.5: Variation of the error exponent (α) with γ for different network topologies

4.4.3 Variation of error exponent (α) with BSC noise level ε for different network

topologies

In Figure 4.6, we set γ = 1 and plotted the variation of the of error exponent (α) with respect

to the noise level parameter of the BSC channel(s) ε, with the edge-potential parameter θ being

increased from 0.01 (weak network effect) to 1 (strong network effect) in subplots Figure 4.6(a)

through Figure 4.6(d). −ε captures the amount of noise in the BSC in dB (with ε → ∞ being the

zero-noise case). Alternately, ε is the accuracy of the detector used to obtain estimated individual

sentiments, y. As expected, increase in ε results in higher α whether the network is present or

not.

In Figure 4.6(a), we see that when θ was set to 0.01 (weak network effect), all the curves are close

to that of the i.i.d curve even at larger ε. As we increase θ, the curves of α for all topologies are
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Figure 4.6: Variation of the error exponent (α) with ε for different network topologies

above that of the i.i.d curve indicating the harnessing of the network effect coming from the Ising

prior.

It is also rather interesting to note that the curves for star and the chain topologies, once again

cross each other at a certain ε. This time however, above a certain threshold noise level, ε, above

which the star graph exhibits a higher error exponent compared to the chain graph.

Finally, we see that in Figure 4.6(d) when θ = 1 and γ = 1 (indicating strong latent sentiment and

strong network effect), the error exponent for all topologies increases quickly with ε and saturate

at different values dependent on the topologies.
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4.5 Chapter summary

In this chapter, we have introduced a novel communications-inspired framework for analyzing

probability of error of a trivial latent sentiment detector in Online Social Networks. Through

this, we have attempted to provide insight into the role played by the network, specifically the

topology, in lowering the probability of error of detection, thereby rigorously characterizing the

worth of the network as a statistical prior. Firstly, we motivate the practical scenarios where

the model is applicable and then provide an analysis of the upper bound on the probability of

error, or equivalently, the error exponent for large networks. Finally, we plot the variation of

this error exponent with respect to model parameters for the complete network, wheel network,

star network and closed chain network topologies, and show the improvement in performance

relative to the scenario where the network is absent.

Now, in the upcoming chapter, we move on to the special case of NAD when γ = 0, that is, there

is no latent sentiment but the onus is on detecting the majority sentiment.
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Chapter 5

Majority sentiment detection

5.1 Introduction

In the previous chapter, we introduced the Network Aided Detection (NAD) framework and

analyzed the problem of latent sentiment detection. In this chapter, we consider a special case

where γ = 0 in (1.8), that is, there is no latent sentiment but the onus is on detecting the majority

sentiment. We’d like to emphasize that while this remains a binary detection problem, the tech-

nical challenges here are quite different compared to the ones encountered in latent sentiment

detection.

With this mind, let us first begin by reviewing the work that has been done under the context of

majority sentiment detection in literature.

5.1.1 Majority sentiment detection: Literature review

The study of the majority sentiment prevailing in a network of individuals or the society at large

has been an active field of research for sociologists, political scientists, financial analysts and

machine learners alike. Research has been carried out in this area under different banners such

as public opinion studies [116–119], market sentiment analysis [120], Voting theory [121] and

Opinion mining1 [122].

1Keeping in mind the richness of jargon across the fields, the terms: vote and sentiment, both point towards the

same quantum of opinion expressed and the three are used interchangeably throughout this chapter. The ambiguity
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Estimating the majority state also emerges as natural computational problem in Epidemiological

studies [123] and in diagnosis of multiprocessor systems [124].

There exists a vast body of literature on Majority sentiment analysis in social networks under the

social dynamics/consensus framework [66, 125, 126]. These analyses assume a distributed sys-

tem of n entities (or nodes) that exchange messages locally according to a pre-devised consensus

protocol or population protocol [127] (synchronously or asynchronously) under the communication

constraints imposed by the underlying graph. After every round of communication, the nodes

are expected to update their opinions based on the message(s) exchanged and the goal here is to

understand the nature of convergence of the nodes to a common majority opinion and its depen-

dence of the underlying topology of the network.

In the majority dynamics setting [125], after each iteration of the dynamics, each node, i ∈ {V},
sets its vote to be the most popular vote (majority vote) among its first order neighbors in the

previous iteration.

Similarly, in the classical DeGroot model [126], every nodes express its opinion as a real number

which is evaluated at each iteration by taking the average of the opinions of its neighbors from

the previous iteration. It has been shown in [128] that the nodes will all converge to the same

number, which would then serve as a good approximation of the average of the initial opinions

when the node-degrees are low.

In sociological research, as succinctly stated in [129], Majority sentiment is the dark matter of the

sociological universe. Because it is amorphous, it is difficult to grasp; yet it exerts a profound influence

upon the selection of problems for research, and therefore upon the character of sociological knowledge.

From the point of view of financial analysis, there exists a vast body of literature dedicated to

understanding and guaging the prevalent mood exuded by the financial investors with regard to

a particular security or the larger financial market being invested in [120]. The flagship problem

here is market sentiment detection, which simply put, entails detecting the direction of swing of the

crowd psychology existent amongst the investors by sifting through the activity records and price

movements of the securities being traded. It targets accurately classifying the market sentiment

as being either bullish (in the case of upward movement of the prices associated) or bearish (in the

case of downward movement) and finally, utilizing this information to make informed buying

is clarified from the application and context in which it is used.
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and selling decisions [130].

Similarly, judicial scholars have conducted rigorous studies to analyze the relationship between

the prevailing majority public sentiment and the judicial selection process [131].

Public policy think tanks such as the Pew Research Center [132], Rand Corporation [133] and

the Brookings Institution [134] regularly undertake public opinion polling surveys in order to

ascertain the proportion of a population that holds a specific viewpoint which can be crucial in

assisting informed inter-cultural dialogue, dismantling of stereotypes and better policy design.

With this background, we now turn our attention to a disruptive new paradigm of social engage-

ment of Online Social Networks (OSNs) that has had profound effects on both the formation as

well as detection of the majority sentiment on various social, commercial and political issues.

In the previous chapter, we surveyed the approaches that researchers have undertaken for tweet

level sentiment detection in OSNs. With this background in mind, we now focus on the problem

set up of majority sentiment detection in the upcoming section.

5.1.2 Problem setup

In many real world scenarios using, for example, Twitter, a tweet corpus is used for estimating the

global majority sentiment prevalent rather tweet level sentiments. For example, the social media

campaign manager of a corporate house who is running a hashtag driven product campaign is

more worried about the general sentiment surrounding the campaign rather than specific tweet

level sentiments of the users of the hashtag. Motivated by this and other similar applications

mentioned is section 5.1.1, in this chapter, we focus the majority sentiment detection problem in

the network aided detection setting.

For this, we reuse the communication-theoretic approach used for latent sentiment detection,

viewing the binary majority sentiment as a bit transmitted via a weak channel code, that is the

underlying social network. Specifically, this entails modeling the true sentiment vector x as

being a codeword sampled from a statistical prior (p(x)), resulting in majority sentiment, defined

as,

m = sign(eTx), (5.1)
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where e is the n× 1 vector if 1’s.

To this end, harnessing the underlying network as a statistical prior merits using the Maximum

A posteriori Probability (MAP) detection framework over the Maximum Likelihood (ML) frame-

work that assumes a uniform prior for x. Simply put, the primary motivation behind using MAP

detection is to exploit the underlying network effect and lower detection error rates.

In developing this MAP framework, we are influenced by two important observations that in-

spire us towards focusing on a specific regime of operation where this network aided detection

paradigm makes practical sense.

Firstly, there exists a vast body of literature emanating from Social Networks Analysis (SNA)

( [135, 136]) that characterize OSNs such as Twitter to be dominated by opportunistic low cost

mildly homophilic weak ties, where the strength of the tie defined in the Granovetter sense 2 [137].

Secondly, as evinced in [109,138], the best of the state of the art machine learning tweet level sen-

timent classifiers typically provide binary classification error rates of about 25% to 35% which is

quite high when benchmarked with the typical eror rates seen in the communications literature.

The combination of the two above stated observations inspired us to fine tune the MAP frame-

work to operate in what we term as the Noisy-Weak network effect (NW) regime. One could also

argue that if the tweet level sentiment classifiers were indeed of high-accuracy and if the net-

work effect was really strong, a trivial detector which would just assign the majority sentiment

amongst the estimated sentiments, y, would suffice to provide a high accuracy estimate of the

true majority sentiment, thus rendering the problem quite trivial to solve.

The rest of the chapter is organized as follows.

In Section 5.2, we introduce the Ising prior based model for majority sentiment detection and

describe the trivial,ML and the MAP) detectors.

In Section 5.3, we motivate the relevance of the Positive part Partition function (PPF) computation

for MAP detection and derive the High Temperature (HT) expansion form using a novel code

puncturing approach.

In Section 5.4 , we derive an approximate MAP detector for the realistic weak network high noise

scenario using second order Taylor series approximation.

In Section 5.5 , we present numerical results comparing the probability of error of majority sen-

2Granovetter in [137] defines strength of a social tie as a measure that captures “a combination of the amount of time,

the emotional intensity, the intimacy (mutual confiding), and the reciprocal services which characterize the tie” .
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timent detection for the trivial , Maximum Likelihood (ML) and the approximate MAP detector

proposed in Section 5.4 under two settings. In the first setting we have a constant noise level

across all the nodes, and in the second scenario, the noise levels are chosen based on the node

degrees. Via these numerical simulations, we demonstrate the superiority of the approximate

MAP detector over the ML and trivial detectors in both the settings.

In Section 5.6, we derive the HT spanning subgraphs expression for a modified Ising model with

a strictly edge-wise energy function which is defined on an appended graph with one extra node.

This appended graph is constructed by introducing an extra pseudo-node which connects to all

the existent n nodes and serves to absorb the node-potentials into edge-potentials on the new

edges thus formed. Using this framework, we provide a geometric interpretation of the Taylor

series approximation of the MAP decision statistic derived in Section 5.4 which provides some

interesting intuitive insights.

In Section 5.7 , we cover several interesting applications of the HT expansion framework derived

in 5.3 and in 5.6. This includes deriving closed form expressions for the exact probability of error

of the trivial detector for various stylized topologies and addressing the problem of generalized

majority detection. We also show that the modified HT expression leads to an alternate lattice

path sum interpretation of the subgraph weight contributions while also providing for interesting

connections between the spanning subgraph weights and Super-Catalan numbers and Krawchuk

polynomials. We recap the main contributions and conclude the chapter in Section 5.8 .

5.2 Model for majority vote detection

The model considered in this chapter is as shown in Figure 5.1. As in [139], the social network

is modeled as an undirected graph G(V, E) characterized by its symmetric adjacency matrix A.

It may be obtained using the follower/followee relationships, or in some cases, using the @-

mentions in the tweets [25]. Here, V = {1, ..., n} is the vertex set and E is the edge-set with

cardinality, |E| = M. We assume n is odd to avoid the ambiguous case of equal positive and

negative sentiments which might to lead to the majority sentiment variable m = 0. Although

the social graph in OSNs such as Twitter is directed, we ignore the directionality of the edges

given that we will use the underlying social graph to capture statistical correlation, rather than
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influence flows.

5.2.1 The non-homogeneous Ising prior

We begin with a more generalized non-homogeneous Ising prior model characterized by the

following probability mass function (pmf),

p(x) =

exp

{
∑

(i,j)∈E
θijxixj

}

Z(θ)
. (5.2)

Here, Z(θ) is the so called partition function (PF), which is,

Z(θ) = ∑
x∈{−1,+1}n

exp



 ∑

(i,j)∈E
θijxixj



. (5.3)
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We still retain the θij > 0 ferromagnetic assumption where the neighboring nodes are positively

correlated with each other, so that the probability distribution is biased towards configurations

with similar values on the nodes of the graph.

The sole reason for allowing this richer specification of the edge-potentials is to facilitate solving

the problem of Positive Part Partition function computation (that we will soon encounter) in a

more generalized setting which might have important ramifications beyond the specific majority

sentiment detection context in which it is being considered.

5.2.2 Revisiting the BSC model for the machine learning classifiers

As in Chapter 4, we model the output of the tweet level machine learning classifier, y, in a clas-

sical communication theoretic sense as the output of n-independent Binary Symmetric Channels

(BSCs) with true sentiment vector x as the input, and whose noise level is decided by the clas-

sification accuracy of the machine learning classifier. This modeling choice thus provides for a

simple way to plug in the tweet level machine learning classifier of choice in to the MAP detection

framework.

Again, assuming that each of the n-independent Binary Symmetric Channels (BSCs) are charac-

terized by a cross-over (bit-flip) probability qi, we define ε i, in terms of qi as follows,

ε i = log

√
1− qi

qi
. (5.4)

5.2.3 The joint Bayesian modeling of x and y

Using (5.4), we can write the conditional probability p(yi|xi) in the exponential form as follows,

p(yi|xi) =
exp {ε iyixi}
(2 cosh(ε i))

. (5.5)
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Given the conditional independence relationship between the observed vector y given the input

vector x, (p(y|x) =
n
∏
i=1

p(yi|xi)), we can write the joint distribution of x and y as,

p(x, y) = p(x)p(y|x) =

exp

{
∑

(i,j)∈E
θijxixj

}

Z(θ)
exp

{
hTx

}
(

2n
n
∏
i=1

cosh(ε i)
) , (5.6)

where hi = ε iyi, 1 ≤ i ≤ n. Note that the main goal behind expressing the BSC conditional

probability in the exponential form is to incorporate the observed vector as the external field

vector of the Ising model (h). It is also instructive to note that this model in (5.6) is a special case

of the general model we introduced in (1.8) with γ = 0.

For simplicity, as stated earlier, we emphasize that the number of nodes, n, is assumed to be odd

so that there are no ties (eTx = 0), thereby making the majority sentiment strictly binary.

5.2.4 Majority sentiment detectors

In this subsection, we describe the three majority sentiment detectors used in this chapter.

Trivial detector:

The trivial majority vote detector is one that declares the majority vote to be the sign of the sum

of the noisy estimates y. That is,

m̂trivial(y) =





+1 if eTy > 0

−1 otherwise.
(5.7)

MAP detector:

The MAP detector is defined as,

m̂MAP(y) = arg max
m∈{−1,+1}

[p(m|y)] .

It is known ( [140]) that the MAP detector maximizes the probability of correct decision for

each observation y compared to any other detector, say (D), and ∀y ∈ {−1, +1}n. That is,
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p(m̂MAP(y) = m|y) > p(m̂D(y) = m|y) ∀(D, y).

It also maximizes the probability of correct decision averaged over all y leading to,

∑
y

p(y)p(m̂MAP(y) = m|y) > ∑
y

p(y)p(m̂D(y) = m|y).

Now, let us define the positive part Partition Function (PPF) of an Ising model with edge potential

vector, θ, and external field h as,

Z+(θ, h) = ∑
x:eTx>0

exp



 ∑

(i,j)∈E
θijxixj + ∑

(i)∈V
hixi



. (5.8)

Now, we see that if x and y are jointly distributed according to (5.6), the MAP detector of the

majority vote m = sign(eTx) given an observation vector y, will take the form,

m̂MAP(y) =





+1 if l(y,θ, εεε) ≥ 1

−1 otherwise,
(5.9)

where the MAP decision statistic, l(y,θ, εεε) is the ratio of the a posteriori probabilities defined as,

l(y,θ, εεε) =
P
(
eTx > 0|y

)

P (eTx < 0|y)
=

P
(
eTx > 0, y

)

P (eTx < 0, y)
. (5.10)

This can further be simplified as,

l(y,θ, εεε) =
∑

x:eTx>0
exp

{
∑

(i,j)∈E
θijxixj + hTx

}

∑
x:eTx<0

exp

{
∑

(i,j)∈E
θijxixj + hTx

} =
Z+(θ, h)

Z+(θ,−h)
(5.11)

where the external field h = εεε.y, with εεε.y being the element-wise Hadamard product of vectors εεε

and y.

ML detector:

The ML detector assumes a uniform prior for x and is a special case of the MAP detector with

θ = 0. That is,

m̂ML(y) =





+1 if lML(y, εεε) ≥ 1

−1 otherwise,
(5.12)
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where

lML(y, εεε) = l(y,θ = 0, εεε).

As seen in (5.11), the MAP detector requires computing the PPF where the external field

h = εεε.y, which turns out to be an extremely challenging computational problem.

In general, for graphs with arbitrary topology, computing the full partition function of an Ising

model is #-P complete [111], with recent efforts geared towards finding tight lower and upper

bounds for the same [20]. However, there exist no previous efforts in machine learning literature

directed towards computing the PPF as defined in (5.8) with external fields hi = ε iyi having

different signs (depending on yi unless in the trivial case of y = ±e). This leads us in to the

forthcoming sections where the onus in on tackling the PPF computation problem by firstly

coming up with a High Temperature (HT) expansion framework for the PPF and harnessing this

to perform Taylor series expansion in the NW regime.

5.3 Positive part Partition function (PPF) and MAP detection

As in seen (5.11), the observations (y) are incorporated as the external field, which implies that

computing l(y,θ, εεε) entails computing the PPF of the Ising prior, given by,

Z+(θ, h) = ∑
x∈X (n)

+

exp



 ∑

(i,j)∈E
θijxixj + ∑

(i)∈V
hixi



, (5.13)

where X (n)
+ =

{
x : x ∈ {−1, +1}n, eTx > 0

}
and hi = ε iyi.

In this section, we present the main result of this chapter, which is the high temperature subgraphs

world representation for the PPF, the motivation for which is as follows .

5.3.1 Motivating the HT framework

In the previous section, we introduced the idea of the natural setting that merits using the MAP

detector in the first place, is the Noisy weak network (NW) setting. Here, we begin by show-

casing the relevance of the so called High Temperature (HT) expansion framework as the logical

starting point for exploring MAP detection in this NW regime.
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In statistical physics literature [113], the Ising prior in (5.2) is specified as a special case of the

Gibbs-Boltzmann distribution which is,

p(x) =
exp

{
− 1

kBTE(x)
}

Z(T)
(5.14)

where T refers to the temperature of the spin system under consideration, E(x) = − ∑
(i,j)∈E

xixj is

the energy function of the spins and kB is the Boltzmann constant. With regards to our model, we

see that the relationship between the common edge potential θ and the temperature parameter

(T) is simply, θ = 1/(kBT). This implies that the high temperature regime of T >> 1 relates to

the θ ≈ 0 (weak network) scenario. Analysis of the partition function in this HT regime usually

entails transforming the summation over the 2n possible spins into a geometrical summation over

all possible sub-graphs using the so called High temperature or character expansion identity, which

is, ea = cosh(a)(1 + tanh(a)), and then performing Taylor series expansion followed by ignoring

higher order terms, a procedure which is replicated in this chapter.

Having thus motivated the HT expansion framework for the PPF, we now present the main result

of this chapter.

5.3.2 Main Result: The HT spanning expansion framework for the PPF

The following theorem provides the main result of the chapter, which is the spanning sub-graphs

world representation of the PPF.

Theorem 5.3.1. The HT expansion expression for the PPF, as defined in (5.8), is given by,

Z+(θ, h) = c(θ, h) [Z1 + Z2] , (5.15)

with

Z1 = 2n−1 ∑
S⊆E


 ∏

(i,j)∈S
λij ∏

i∈odd(V,S)
µi


, (5.16)

and

Z2 = ∑
S⊆E

∑
U⊆V

|U|∈{Zodd
+ }


 ∏

(i,j)∈S
λij ∏

i∈U
µi


w(S, U). (5.17)
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Here, Zodd
+ = {2N + 1} is the set of positive odd integers, S ⊆ E is the edge-set of the spanning sub-graph

G(V, S), λij = tanh(θij), µi = tanh(hi) and Vodd(S) ⊆ V is the subset of odd-degreed nodes in V and

c(θ, h) =

{
∏

(i,j)∈E
cosh(θij)

}{
∏

i∈V
cosh(hi)

}
. The weight w(S, U) is given by,

w (S, U) = ω (n, (|odd(U, S)|+ |even(V −U, S)|)) , (5.18)

where |odd(U, S)| is the number of odd-degreed nodes in the vertex subset, U, with respect to the graph

G(V, S), |even(V −U, S)| is the number of even-degreed nodes in the vertex subset, V −U, with respect

to the graph G(V, S), and the function ω(n, p) is defined as,

ω (n, p) =
n−1

2

∑
i=0

(−1)i


 n− p

i




( n−1
2 )−i

∑
k=0


 p

k


. (5.19)

(In (5.19), with regard to the binomial coefficient indexed by two nonnegative integers , a and b, that is,

(a
b), we assume (a

b) = 0 if b > a).

Proof. The proof utilizes ideas from coding theory involving calculation of weight distribution of

codewords in punctured codebooks and is detailed in Appendix B. We would like to emphasize

that the techniques used in this proof are drawn from the classical communication theoretic

perspective hitherto unseen in machine learning literature.

One important insight we gained from this HT expansion framework is that the non-positivity

of subgraph weights w(S, U) prohibits the formulation of a probability mass function (pmf) over

the subgraphs configuration space. This, in turn, implies that the strategy of sampling spanning

subgraphs based configurations instead of spin-configurations leading to a Fully Polynomial

Randomized Approximation Scheme (FPRAS) ( [141]) for the full ferromagnetic partition func-

tion cannot be replicated for the PPF even when the external fields are all of the same sign.

5.4 MAP detection in the Noisy data Weak network (NW) regime with

homogeneous edge-potential

Having derived the HT expansion formula for the PPF of a generalized non-homogeneous Ising

prior, we now revert back to the homogeneous variant introduced in this thesis in (1.8) in Chapter-
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1 with θij = θ, ∀(i, j) ∈ E.

Now using (5.11) and (5.15), we have the MAP decision statistic l(θ, εεε) to be,

l (θ, εεε) =
Z
′
1 + Z

′
2

Z′1 − Z′2
, (5.20)

with

Z
′
1 = 2n−1 ∑

S⊆E

[
λ|S| ∏

i∈odd(V,S)
µi

]
; Z
′
2 = ∑

S⊆E
∑

U⊆V
|U|∈{Zodd

+ }

λ|S|∏
i∈U

µiw(S, U). (5.21)

(Note that we have dropped y in the argument of the MAP decision statistic l(θ, εεε) for simplicity

of notation).

Now, for the NW scenario, we take the second order Taylor series expansion of the MAP

decision statistic in the neighborhood of (θ, εεε) = (0, 0). Denoting the partial derivatives by the

following notation, ∂l(θ,εεε)
∂θ = l1

θ , ∂l(θ,εεε)
∂εi

= l1
εi

, ∂2l(θ,εεε)
∂ε2

i
= l2

ε2
i
, ∂2l(θ,εεε)

∂θ2 = l2
θ2 and ∂2l(θεεε)

∂εi∂θ = l2
εiθ

, we have,

l̃ (θ, εεε) ≈ l (0, 0) + l1
θ (0, 0)× θ +

n

∑
i=1

[
l1
εi

(0, 0)× ε i

]

+
1
2

[
l2
θ2 (0, 0) θ2 +

n

∑
i=1

[
l2
ε2

i
(0, 0)× ε2

i

]]

+
n

∑
i=1

n

∑
j=1:j 6=i

l2
εiε j

(0, 0) ε iε j + θ
n

∑
i=1

[
l2
εiθ

(0, 0)× ε i
]
.

(5.22)

From (5.11), we see that l (0, 0) = 1. Further, performing the required partial differentiations

at (0, 0), we see that the following partial derivatives are, in fact 0 at (θ, εεε) = (0, 0):

l1
θ (0, 0) = 0, l2

θ2 (0, 0) = 0, l2
ε2

i
(0, 0) = 0, l2

εiε j
(0, 0) = 0. (5.23)

The only partial derivatives that are non-zero turn out to be,

l1
εi

(0, 0) =
2

2n−1 yiω (n, n− 1) ,

l2
εiθ

(0, 0) =
2

2n−1 yi {∆iω (n, n− 1) + (M− ∆i)ω (n, n− 3)} ,
(5.24)

with ∆i being the degree of node i and M being the number of edges while ω(n, p) is as defined

in (5.19).

Now, substituting (5.23) and (5.24) in (5.22) and simplifying, we have,

l̃ (θ = 0, εεε = 0) ≈ 1 + v




n

∑
i=1


yiε i

υi︷ ︸︸ ︷(
1 + θ

∆i (n− 1)−M
n− 2

)




 , (5.25)
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where,

v =
2ω (n, n− 1)

2n−1 =
(n− 1)!

2n−2
(( n−1

2

)
!
)2 . (5.26)

Given that v in (5.26) above is positive for n ≥ 1, we see that the Taylor approximation in (5.25),

l̃ (θ, εεε) > 1 when [
n

∑
i=1

yiυi

]
> 0. (5.27)

That is, the approximate MAP estimate is linear in y where the node-wise weights νi can be

written as the sum of ε i and an additive term that captures the contribution coming from the

network-effect. That is,

υi =
Node−e f f ect︷︸︸︷

ε i +

Network−e f f ect︷ ︸︸ ︷
ε iθ

{
∆i (n− 1)−M

n− 2

}
. (5.28)

It is also clear from (5.28) that, besides M, the number of edges in the network (global graph

statistic), the approximate MAP detector takes in to consideration only the first order network

information (node-degree (∆i)). This renders the approximate MAP detector amenable for dis-

tributed implementation too.

5.5 Probability of error of majority sentiment detection in the NW

regime: Numerical results

In the section, we present simulation results which demonstrate the utility of the approximate

MAP detector, which is defined as,

m̂MAP−TAYLOR(y) =





+1 if l̃(θ, εεε) > 1

−1 otherwise,
(5.29)

in comparison with the Maximum Likelihood (ML) detector which assumes a uniform prior

instead of the Ising model, or in other other words, the MAP detector with θ = 0. We specif-

ically focus on the realistic NW regime which was motivated in the previous sections of this

chapter.From (5.28), we see that this ML detector takes the form,

m̂ML(y) =





+1 if
[

n
∑

i=1
yiε i

]
> 0

−1 otherwise,
(5.30)
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We consider two scenarios. The first scenario is where we set ε i = ε across all nodes. In this case,

the ML detector is the trivial detector in (5.7). In the second scenario, we set ε i for each node

according to its degree (a measure of importance in the network) by,

ε i = εavg × log(∆i + 1), (5.31)

where εavg is akin to the average SNR of the network.

For simulations, we consider the (n1, n2)-Lollipop graph (Figure 5.2), which is obtained by joining

a complete graph G(complete)
n1 with a chain(or path) graph G(chain)

n2 via a bridge edge.

These lollipop graphs have been widely studied in areas such as majority consensus analysis

[127], random walk convergence time analysis [142, 143] and convergence time for quantized

consensus. It has been shown in [144] that lollipop graphs maximize the mean consensus time

under the so called link dynamics update rules and the authors in [143] show that Lollipop graphs

are indeed extremal for commute times. The significance of this topology with regard to complex

networks analysis and social networks analysis is that it captures the extremal case of two highly

topologically imbalanced communities with one being densely connected and the other being

sparse. It has been shown in [145,146], that the street layouts typical of the suburban early sixties

in United States were quintessentially lollipop layouts and this legacy has had deep ramifications

on issues such as safety, transport efficiency and general livability.

With this motivation in mind, we detail the Monte Carlo simulation procedure as follows.

Firstly, we fixed the lollipop graph parameters, n1 = 50 and n2 = 951, (n=1001) and set the

common Ising edge-potential parameter to be θ = 0.1. For each choice of εεε, Ns = 106 samples

were sampled from,

p(x) =

exp

{
0.1 ∑

(i,j)∈Elollipop

xixj

}

Z(θ = 0.1)
, (5.32)

using the Gibbs sampler in [147] (with Burn-In set at 106), and the obtained samples {x(s); s =

1, ..., Ns} were then flipped according to (5.4) to obtain the noisy observations {y(s); s = 1, ..., Ns}.
Then, the detectors as defined in (5.7),(5.29) and (5.30), were used to obtain the majority vote

estimates {m̂(s); s = 1, ..., Ns}, and finally the mean probability of error (P̄err), was evaluated

according to,
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Figure 5.2: The Lollipop graph

P̄err =

Ns

∑
s=1

I
[[

sign
(

eTx(s)
)
6= m̂(s)

]]

Ns
, (5.33)

where I [[.]] is the indicator function. The results are as shown in Figure 5.3 and Figure 5.4,

capturing the homogeneous εεε and varying εεε cases respectively.

5.5.1 Network prior with constant ε

As seen in Figure 5.3, the constant ε across the nodes was varied from 0 to 0.09, which translated

into the bit flip probability of the BSC channels being varied in the high noise regime from 0.5

to 0.46. The trivial detector’s P̄err curve (denoted by ’TRIVIAL’ in the legend’) is close to the flip

probability curve with P̄err = 0.44 at ε = 0.09.

Now, even in this hostile regime with weak network effect (θ = 0.1), we see that the approx-

imate MAP detector of (5.29) (denoted by ’MAP-Taylor’ in the legend’) provides a near 13%

improvement over the trivial detector and achieves an error rate of 0.32 which is admirable bear-

ing in mind that we fed in the observations emanating from BSCs with bit flip probability of

nearly 0.5. This in turn motivates the claim that the underlying network, even when homoge-

neously parameterized with a weak global θ = 0.1, still propels network aided detection leading
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Figure 5.3: Probability of error comparison between the ML (trivial) and the approximate MAP

detectors for the 1001 node lollipop graph with θ = 0.1 and fixed ε across the nodes.

to some reasonably useful inference in scenarios where the GIGO (Garbage In, Garbage Out)

paradigm [148] is expected to hold sway.

5.5.2 Network prior with varying εi

For the second scenario where ε i varies across the nodes (according to (5.31)), and the ML detector

has exact knowledge of these ε i and can weigh the observations according to (5.30), the question

remains if the network-effect term added in (5.28) makes any difference to the error rate obtained.

With respect to Figure 5.4, we see that the network-effect term does indeed makes a difference with

the approximate MAP detector (which is also linear in y like the ML) comfortably outperforming

the ML detector with a improvement of nearly 7.5% when εavg = 0.03.
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Figure 5.4: Probability of error comparison between the Trivial, ML and the approximate MAP

detectors for the 1001 node lollipop graph with θ = 0.1 and ε i = εavg × log(∆i + 1).

5.6 Alternate HT expansion expression with appended pseudo-node

model

As evinced in related machine literature ( [149], [114]), it is often beneficial to rewrite the Ising

energy function

{
∑

(i,j)∈E
θijxixj + ∑

(i)∈V
θixi

}
over n binary variables into its equivalent strictly

edge-wise Ising energy function of the form

{
∑

(i,j)∈E′
θ
′
ijxixj

}
by introducing an extra clamped

pseudo-node which connects to all the existent n nodes and serves to convert the node-potentials

into edge-potentials on the new edges thus formed.

In this section, we re-derive the HT spanning subgraphs expression for this modified Ising model,

which in turn, helps in the following four ways. Firstly, it helps convert the double summation

over S and U in (5.15) into a single summation over the modified spanning subgraphs, which

leads to a simpler single summation form of the HT expansion. Secondly, it helps provide an
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elegant geometric interpretation of the Taylor series approximation of the MAP decision statis-

tic derived. Thirdly, the simplified expressions make it easier to apply the HT framework to

derive closed form expressions for the exact probability of error of the trivial detector for vari-

ous topologies. And finally, it helps provide an alternate lattice path sum interpretation of the

subgraph weight contributions in addition to the Super-Catalan number/Krawchuk polynomial

interpretations.

5.6.1 Virtual node appending to absorb the node potentials

To begin with, we eliminate the node-potentials in (5.2) by introducing a virtual-node (labeled 0)

which is clamped at +1 and treating the node potentials (hi) as edge potentials on the virtual

edges connecting this virtual node (′0′) to all the existent nodes.

Let Eext = {(0, i); i ∈ V}, be the set of external (or virtual) edges connecting the nodes in V

with the pseudo-node 0 and the extended edge-set of the pseudo-node appended model be

E′ = E ∪ Eext. Similarly, let us define the extended vertex-set to be V ′ = V ∪ {0}.
The edge-potentials of the appended model would be,

θ
′
ij =





hi if j = 0

hj if i = 0

θij otherwise.

(5.34)

For the appended model, we have the PPF to be,

Z+(θ, h) = ∑
x∈X (n+1)

0,+

exp



 ∑

(i,j)∈E′
θ
′
ijxixj



, (5.35)

where X (n+1)
0,+ =

{
x : x ∈ {−1, +1}n+1, x0 = 1,

n
∑

i=1
xi > 0

}
.

This appending is as shown in Figure 5.5.

The following proposition presents the HT spanning sub-graphs world representation of the

PPF with the appended pseudo-node .

Proposition 5.6.1. For the Ising model defined in (5.2), the HT expansion expression for the PPF, as
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Figure 5.5: Handling the external fields by using a clamped pseudo node

defined in (5.8), is given by,

Z+(θ, h) = c(θ, h)

Z′︷ ︸︸ ︷

∑
S′⊆E′





 ∏

(i,j)∈S′
λij



ω(n, n− |Vodd(S′)|)


 . (5.36)

Here, S′ ⊆ E′ is the edge-set of the spanning sub-graph G(V ′, E′), λij = tanh(θij), Vodd(S′) ⊆ V is the

subset of odd-degreed nodes in V (not counting the pseudo-node) in the spanning sub-graph G(V ′, S′) and

ω(., .) is as defined in (5.19).

Proof. The proof for this proposition entails using the same code-puncturing based procedure

with some simple algebraic manipulations as for the proof of Theorem-1 and requires no new

theoretical techniques or ideas.

Now, combining (5.19) with the high-temperature spanning subgraphs expansion based ex-

pression for the PPF in (5.36), we have,
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l(y,θ, εεε) =
Z+(θ,εεε ◦ y)

Z+(θ,−εεε ◦ y)
=

∑
S′⊆E′

[{
∏

(i,j)∈S′
λ+

ij

}
ω (n, n− |Vodd ( S′)|)

]

∑
S′⊆E′

[{
∏

(i,j)∈S′
λ−ij

}
ω (n, n− |Vodd ( S′)|)

] . (5.37)

Here,

λ+
ij =





tanh(ε iyi) if j = 0

tanh(ε jyj) if i = 0

tanh(θ) otherwise

(5.38)

and

λ−ij =





−tanh(ε iyi) if j = 0

−tanh(ε jyj) if i = 0

tanh(θ) otherwise

. (5.39)

5.7 Applications of the HT expansion of the PPF

5.7.1 Application 1: Geometric interpretation of the approximate MAP detection

From (5.37), we gather that computing l(y,θ, εεε) requires computing Z′, which is the hard part.

So, in this section we approximate Z′ in two stages. In the first stage, we split Z′ into two

summations, termed internal and external and then look at ways to approximate each of the two.

Splitting Z′ into internal and external summations

To begin with, let us write down the expression for Z′,

Z′ = ∑
S′⊆E′





 ∏

(i,j)∈S′
λij



ω

(
n, n−

∣∣Vodd
(

S′
)∣∣)

. (5.40)

Let Sext ⊆ Eext denote an edge sub-set of the set of external edges, Eext. The summation in (5.40)

over 2M+n spanning subsets of the appended graph, G(V ∪ {0}, E ∪ Eext), can be split into two
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summations as follows.

Z′ =

Zint︷ ︸︸ ︷
∑

S⊆E

[
λ|S|ω (n, n− |Vodd ( S)|)

]
+

Zext︷ ︸︸ ︷

∑
Sext⊆Eext

[
λ|Sint|

{
∏

(0,i)∈Sext

µi

}
ω (n, n− |Vodd ( Sext)|)

]
, (5.41)

where λ = tanh(θ) and µi = tanh(hi).

Thus, from (5.41), it is straightforward to see that,

l (y, θ, εεε) =
(Zint + Zext)
(Zint − Zext)

, . (5.42)

The first term in (5.41), Zint = ∑
S⊆E

[
λ|S|ω (n, n− |Vodd ( S)|)

]
is the summation over the 2M internal

spanning edge subsets of G(V, E), and the second term,

Zext = ∑
Sext⊆Eext

[
λ|Sint|

{
∏

(0,i)∈Sext

µi

}
ω (n, n− |Vodd ( Sext)|)

]
, (5.43)

is a summation defined over the remaining 2M(2n − 1) spanning edge-subsets including edges

from the external edge subset Eext. This is explained in Figure 5.6 where the native graph G(V, E)

is a 3-node chain graph with V = {1, 2, 3} and E = {(1, 2), (2, 3)} and the appended graph being

G(V ∪ {0}, E∪ Eext) with Eext = {(0, 1), (0, 2), (0, 3)}. This appended graph has 25 = 32 spanning

subgraphs split into 3 different boxes as shown. The first box (in the darkest shade) pertains to

the subgraphs consisting strictly of internal edges which maps to Zint. The second and the third

boxes have at-least one external edge included and map to Zext.

Computing Zint

Given that the number of odd-degree nodes in a simple graph is always even [150],|Vodd ( S)| ∈
{0, 2, 4, ..., n− 1}. Let us define N (e, o) to be the number of spanning sub-graphs of the graph G

with e edges and o nodes with odd-degree. Thus, we can write,

Zint = ∑
S⊆E

[
λ|S|ω (n, n− |Vodd ( S)|)

]

=
M

∑
e=0

λe ∑
o∈{0,2,..,n−1}

N (e, o)ω(n, n− o).;
(5.44)
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While N (e, o) can be computed for certain stylized topologies such as chain and the cycle, it is

quite hard to estimate in the general case. In statistical physics, the following formula has been

used to approximate N (e, o) and is known as the binomial approximation formula [151],

N (approx,binom)(e, o) =
(

M
e

)(
n
o

)
2−n+1. (5.45)

Hence, the binomial approximation formula for Zint would be,

Zint,binom =
M

∑
e=0

λe ∑
o∈{0,2,..,n−1}

(
M
e

)(
n
o

)
2−n+1ω(n, n− o). (5.46)

The high noise weak network effect regime

In the NW regime, we can ignore terms involving higher powers (≥ 2) of λ and µi in the PPF

calculations. This renders the approximation of Zint in the NW regime to be,

Zint,nw =
1

∑
e=0

λe ∑
o∈{0,2,..,n−1}

N (e, o)ω(n, n− o). (5.47)

Now, it is straight forward to see that for a simple graph3,

N (0, o) =





1 if o = 0

0 otherwise
(5.48)

and

N (1, o) =





M if o = 2

0 otherwise.
(5.49)

Using substituting (5.48) and (5.49) in (5.47), we have,

Zint,nw = 2n−1 + Mλω(n, n− 2). (5.50)

Now, using (5.76a), we see that ω(n, n− 2) = 0, which renders,

Zint,nw = 2n−1. (5.51)

3A simple graph, also called a strict graph is an unweighted, undirected graph with no graph loops or multiple

edges.

106



Approximating Zext

Now, let us turn our attention towards Zext, which is,

Zext = ∑
Sext⊆Eext

[
λ|Sint|

{
∏

(0,i)∈Sext

µi

}
ω (n, n− |Vodd ( Sext)|)

]
. (5.52)

With regard to Figure 5.6, we see that including only those spanning subsets with just one external

edge in the summation, we have,

Zext,1 =
n

∑
i=1

µi





m

∑
e=0

λe ∑
o∈{0,2,..,n−1}





Nodd(e, o, i)ω(n, n− (o− 1))

+

Neven(e, o, i)ω(n, n− (o + 1))









. (5.53)

Here, Nodd(e, o, i) computes the number of spanning sub-graphs with e edges and o odd-degreed

nodes where the degree of node i is odd and Neven(e, o, i) computes the number of spanning

sub-graphs with e edges and o odd-degreed nodes where the degree of node i is even.

As seen in the case of Zint, in the NW regime, we ignore terms involving higher powers (≥ 2) of

λ and µi in the PPF calculations, resulting in,

Zext,nw =
n

∑
i=1

µi





1

∑
e=0

λe ∑
o∈{0,2,..,n−1}





Nodd(e, o, i)ω(n, n− (o− 1))

+

Neven(e, o, i)ω(n, n− (o + 1))









. (5.54)

Computing Nodd(e, o, i) and Neven(e, o, i) for 0 ≤ e ≤ 1

Firstly, if e = 0, the only sub-graph possible is the empty graph where all the nodes have ∆i = 0

(even). This implies,

Neven(0, o, i) =





1 if o = 0, 1 ≤ i ≤ n

0 otherwise
(5.55)

and

Nodd(0, o, i) = 0, ∀o ∈ {0, 2, .., n− 1}, 1 ≤ i ≤ n. (5.56)

Also, for e = 1, we have M spanning sub-graphs with 1 edge, each containing 2 nodes that

are connected by that sole edge having degree 1 and the rest of the unconnected singleton nodes
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having degree 0. So, a node-i with degree ∆i will appear in ∆i of these spanning-subgraphs

being connected to one of its ∆i neighbors and will appear in the rest of the M − ∆i spanning

sub-graphs unconnected (even degreed). That is,

Nodd(1, o, i) =





∆i if o = 2, 1 ≤ i ≤ n

0 otherwise
(5.57)

and

Neven(1, o, i) =





(M− ∆i) if o = 2, 1 ≤ i ≤ n

0 otherwise
(5.58)

Now substituting (5.56),(5.55),(5.57) and (5.58) in (5.54), we have,

Zext,nw =
n

∑
i=1

µiwi, (5.59)

where the node weights wi, 1 ≤ i ≤ n, is given by,

wi = ω (n, n− 1) + λ {∆iω (n, n− 1) + (M− ∆i)ω (n, n− 3)} ;

= 1 + λ

{
∆i (n− 1)−M

n− 2

}
.

(5.60)

Finally combining (5.51) and (5.59), we have the following expression for the decision statistic

l(y, θ, εεε) in the NW regime,

l (y, θ, εεε) =

(
2n−1 +

n
∑

i=1
µiwi

)

(
2n−1 −

n
∑

i=1
µiwi

) . (5.61)

Now, using (5.61), the approximate MAP detector in the NW regime would be

m̂MAP,nw(y) =





+1 if
n
∑

i=1
µiwi > 0

−1 otherwise
(5.62)

Now, let us look at the decision statistics in (5.62). Using the expression for wi derived in (5.60),

we have,
n

∑
i=1

µiwi =
n

∑
i=1

yiδi, (5.63)
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where

ν
′
i =

Node - effect︷ ︸︸ ︷
tanh(ε i) +

Network - effect︷ ︸︸ ︷
tanh(ε i)λ

{
∆i (n− 1)−M

n− 2

}
. (5.64)

Now, using the approximation tanh(a) ≈ a for tanh(ε i) and λ = tanh(θ) in (5.64), we have,

ν
′
i =

Node - effect︷︸︸︷
(ε i) +

Network - effect︷ ︸︸ ︷
(ε i)θ

{
∆i (n− 1)−M

n− 2

}
. (5.65)

Finally comparing (5.28) and (5.65), we see that the two weights are the same.

5.7.2 Application 2: Extension of the HT framework for the generalized majority

detection problem

In many real world scenarios, such as the cloture rule case of the United States Senate, the

vote/opinion threshold to be achieved for the declaration of majority status is not strictly half, but

some value, σth. In the specific case of the cloture rule XXII, the Senate may limit consideration

of a matter that is currently pending to 30 additional hours if and only if the 60 vote (three-fifths)

majority is in favor [100]. In such scenarios, we have to estimate the probability of super-majority,

Pr(eTx > σth), which under the current set-up is,

Pr(eTx > σth) =
∑

x:eTx>σth

exp

{
∑

(i,j)∈E
θijxixj + ∑

(i)∈V
θixi

}

Z (θ, h)

=
Zσth (θ, h)
Z (θ, h)

,

(5.66)

where the numerator is the Generalized Partial Partition Function (GPPF),

Zσth (θ, h) = ∑
x:eTx>σth

exp



 ∑

(i,j)∈E
θijxixj + ∑

(i)∈V
θixi



 . (5.67)

Now, we generalize the result for the PPF in 5.6.1 via the following lemma.

Lemma 5.7.1. For the Ising model defined in (5.2), the HT expansion expression for the GPPF, as defined

in (5.67), is given by,

Zσth (θ, h) = c(θ, h) ∑
S′⊆E′




 ∏

(i,j)∈S
λij


ωσth

(
n, n− |Vodd(S′)|

)

. (5.68)
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Here, S′ ⊆ E′ is the edge-set of the spanning sub-graph G(V ′, E′), λij = tanh(θij), Vodd(S′) ⊆ V

is the subset of odd-degreed nodes in V (not counting the pseudo-node) in the spanning sub-

graph G(V ′, S′) and

ωσth (n, p) =

⌊
n−σth

2

⌋

∑
i=0

{
(−1)i

aσth(n, p, i)
}

, (5.69)

where,

aσth(n, p, i) =


 n− p

i




⌊
n−σth

2

⌋
−i

∑
k=0


 p

k


. (5.70)

Proof. The proof is presented in Appendix-B. It is again based on the code puncturing idea

developed in the proof for Theorem 5.3.1 in the appendix-A with a small tweak.

Writing Z+(θ, h) in terms of Z(θ, h)

It is noteworthy to observe that the HT expansion for the complete partition function [141] is

given by,

Z(θ, h) = 2nc(θ, h) ∑
S⊆E


 ∏

(i,j)∈S
λij ∏

i∈Vodd(S)
µi


. (5.71)

Now, combining (5.71) and (5.15), we have,

Z+(θ, h) =
1
2

Z(θ, h) + Zδ(θ, h), (5.72)

where Zδ(θ, h) = c(θ, h) ∑
S⊆E

∑
U⊆V

|U|∈{Z+
odd}

(
∏

(i,j)∈S
λij ∏

i∈U
µi

)
w(S, U).

We make two important observations with regard to (5.72). Firstly, in the absence of externals

field, we have, (µi = 0; i ∈ V), which renders Zδ(θ, h) = 0 and Z+(θ, h) = 1
2 Z(θ, h). Secondly,

from eq. (5.76a), we see that Zδ(θ, h) is not necessarily positive.
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5.7.3 Application 3: Relationship between the subgraph weights w(S, U) and Super-

Catalan numbers and Krawchuk polynomials

To begin with, for N ∈ Z+, 0 6 k 6 N, the Krawchuk polynomial [152] in variable ξ is defined

by the following equivalent summations,

K (N, k, ξ) =
k

∑
j=0

(−1)j


 ξ

j




 N − ξ

k− j




=
k

∑
j=0

(−2)j


 N − j

k− j




 ξ

j




=
k

∑
j=0

(−1)j2k−j


 N − k + j

j




 N − ξ

k− j


.

(5.73)

Also, given a, b ∈ {0} ∪Z+, we define Super-Catalan numbers [153], S (a, b) as,

S (a, b) =
(2a)! (2b)!

a! (a + b)!b!
. (5.74)

The Super-catalan numbers and Krawchuk polynomials are related to each other by the following

relationship [154]:

K (2(a + b), a + b, 2a) = (−1)aS (a, b) . (5.75)

We have shown that (refer to the appendix),

ω(n, p) =





(−1)(
n−p−1

2 ) (n− p− 1)! (p)!
( p

2

)
!
(

n−p−1
2

)
!
( n−1

2

)
!

if p is even

2n−1 if p = n

0 otherwise

(5.76a)

(5.76b)

(5.76c)

We observe that as long as p is even, ς = n−p−1
2 ∈ Z+. Now, using the relationship detailed in

(5.75) and (5.76a), we have,

ω (n, p) = K
(

n− 1,
(

n− 1
2

)
, n− p− 1

)
= (−1)ςS

(
ς,
(

n− 1
2

)
− ς

)
, (5.77)

where ς =
(

n−p−1
2

)
.

This result, we believe is, an interesting contribution to the body of mathematical literature sur-

rounding the Krawchuk polynomials and Super-Catalan numbers in the following ways. Firstly,
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the relationship detailed in (5.77) would yield one more computational formula hitherto unseen

for computing Krawchuk polynomials involving partial row sums of the pascal’s triangle. For

a, b ∈ Z+ : a ≥ b, let us define, the pascal’s triangle row sum function, τ(a, b) as,

τ (a, b) =
b

∑
k=0


 a

k


 . (5.78)

As seen, it is simply the sum of elements of the ath row of the pascal’s triangle. It is a well known

result that τ(a, a) = 2a. However, for b < a, we are left with the partial row sum and the sequence

of such partial row sums are known to have interesting properties as detailed in [155].

From (5.19) and (5.77), we have,

K
(

n− 1,
(

n− 1
2

)
, n− p− 1

)
=

n−1
2

∑
i=0



(−1)i


 n− p

i


 τ

(
p,
(

n− 1
2

)
− i
)
. (5.79)

Secondly, (5.77) would also yield an interesting physical interpretation for Super-Catalan num-

bers. There is active research going on regarding physical or geometric interpretation for these

numbers and success has only been achieved thus far for specific values [156, 157]. While there

exists a physical (geometric) interpretation of the related Catalan numbers [156] in terms of the

number of good paths from points (n, n) to (0, 0) on a grid which do not cross the diagonal

line, there is active research underway trying to unearth a similar physical interpretation of the

Super-Catalan numbers and success has only been achieved for certain special cases as detailed

in [156, 157]. We believe that this result in (5.77) contributes an interesting interpretation for

Super-Catalan numbers hitherto unseen in mathematics literature.

5.7.4 Application 4: Error probability of the trivial detector

The total probability theorem renders the probability of error of majority vote detection to be,

perr = perr|m=−1 p (m = −1) + perr|m=+1 p (m = +1) , (5.80)

where the conditional probabilities of error, perr|m=±1, are defined as,

perr|m=±1 = ∑
y

p (y|m = ±1) I [[dec(y) ≶ 1]], (5.81)
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with dec(y) being the decision statistic used by the detector under analysis. Given the symmetry

in the Ising prior without external fields (in (5.2), we have, p(eTx > 0) = p(eTx < 0) = 0.5,

which implies that p(m = −1) = p(m = +1) = 0.5, which in turn renders the probability of

error in (5.80) to be simply,

perr = ∑
y

p (y|m = −1) I [[dec(y) > 1]]. (5.82)

In (5.82) above, the conditional probabilities, p(y|m = ±1) = p(y|eTx ≷ 0), are evaluated by,

p
(

y|eTx ≷ 0
)

= 2p
(

y, eTx ≷ 0
)

= 2 ∑
eTx≷0

p (x, y)

=

2 ∑
eTx≷0

exp

{
θ ∑

(i,j)∈E
xixj +

n
∑

i=1
ε iyixi

}

Z(θ)
(

2n
n
∏
i=1

cosh(ε i)
) =

2Z±(θ, εεε ◦ y)

Z(θ)
(

2n
n
∏
i=1

cosh(ε i)
) .

(5.83)

Now, substituting (5.83) in (5.82), we have,

perr = ∑
y

p (y|m = −1) I [[dec(y) > 1]]

=
2

Z(θ)
(

2n
n
∏
i=1

cosh(ε i)
) ∑

y
Z−(θ, εεε.y)I [[dec(y) ≶ 1]].

(5.84)

Probability of error of the trivial detector with identical ε i across the BSCs

To begin with, we set the bit-flip probability (qi) of all the BSCs to be identical which implies,ε i =

ε; 1 ≤ i ≤ n.

With uniform edge potential θ for the Ising prior and uniform ε for all the BSCs, the joint

distribution of x and y in (5.6) becomes,

p (y, x) = p (x) p (y|x) =
exp

(
θxT Ax + εyTx

)

Z(θ)(2 cosh( ε))n . (5.85)
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For the trivial detector, we see that perr,trivial can be evaluated as,

perr = ∑
y

p
(

y|eTx < 0
)

I
[[(

eTy > 0
)]]

= 2 ∑
y

p
(

y, eTx < 0
)

I
[[(

eTy > 0
)]]

= 2 ∑
x:eTx<0

∑
y:eTy>0

p (y, x)

=
2

Z(θ)(2 cosh( ε))n ∑
x:eTx<0

exp
(

θxT Ax
)


 ∑

y:eTy>0

exp
(

εyTx
)


.

(5.86)

Now, we show that the use of the HT expansion formulation of the PPF allows us to compute the

exact closed form expression of the probability of error for certain topologies such as complete

network, star network as well as the case when the network is absent. This will in fact, help us

showcase that the problem of majority vote detection inherently results in a higher probability of

error compared the classical single channel bit detection problem for the no-network scenario.

Closed form expressions for perr

We derive the closed form expressions in 2 stages. In the first stage, we derive closed-form

expression for the inner summation, ∑
y:eTy>0

exp
(
εyTx

)
and then in the second stage, we focus on

the outer summation.

Lemma 5.7.2. The summation ∑
y:eTy>0

exp
(
εyTx

)
can be computed by the following closed form expres-

sion,

∑
y:eTy>0

exp
(

εyTx
)

= (cosh( ε))n
n

∑
e=0

λeω (n, n− e)
e

∑
k=0

(−1)k
(

nneg(x)
k

)(
n− nneg(x)

e− k

)
, (5.87)

where ω(n, p) is as defined in (5.19) and nneg(x) =
n
∑

i=1
I [[xi = −1]], which basically counts the number

of −1s in the vector x.

Proof. To begin with, we see that the inner summation,

{
∑

y:eTy>0
exp

(
εyTx

)
}

is in fact the positive

part partition function of an empty network with field {εx} which can be re-written as the

positive part partition function of a star network where the central node is the pseudo-node
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(clamped to +1) and the edge-potentials being defined as shown,

∑
y:eTy>0

exp
(

εyTx
)

= Z(star)
+ (θ);

θ = {θi0; i = 1, ..., n : θi0 = εxi} .

(5.88)

Using the high-temperature expansion formula we have developed in (5.15), we see that,

Z(star)
+ (θ) =

n

∏
i=1

cosh(εxi) ∑
S′⊆E′

[
W(S′)

]
= (cosh( ε))n ∑

S′⊆E′

[
W(S′)

]
, (5.89)

where,

W(S′) =

{
∏

(i,0)∈S′
λi0

}
ω
(
n, n− |Vodd

(
S′
)
|
)

. (5.90)

Here, λi0 = tanh (θi0), Vodd(S′) ⊆ V is the subset of odd-degreed nodes in V (not-counting the

pseudo-node) in the spanning sub-graph G(V ∪ {0}, S′) and the function ω(n, p) is as defined in

(5.19). Now, we make the following observations.

1. Observation 1: The number of odd-degreed nodes (not-counting the central pseudo-node) in the

spanning sub-graph S′ of a star-network is the number of edges in the spanning-subgraph itself(

|S′|).
That is,

|Vodd
(

S′
)
| = |S′|. (5.91)

2. Observation 2:Given that the edge-potentials of the star-network under consideration are all of the

same magnitude varying only in signs, for each spanning sub-graph S′, we can write the product{
∏

(i,0)∈S′
λi0

}
to be,

{
∏

(i,0)∈S′
λi0

}
= λ|S

′|(−1)n−(S′), (5.92)

where n− (S′) = ∑
(i,0)∈S′

I [[sign(λi0) = −1]].

Combining the above observations, we have,

W(S′) = λ|S
′|(−1)n−(S′)ω

(
n, n− |S′|

)
. (5.93)
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We see that the contribution by a spanning sub-graph S′ depends on 2 things. The number of

edges in it (which also is the number of odd-degreed non-central nodes in it) and the number of

edges with negative λ as the edge-weight.

Now, let us define,

nneg(x) =
n

∑
i=1

I [[xi = −1]], (5.94)

and npos(x) = n− nneg(x).

Now, consider all spanning sub-graphs with |S′ | edges. There are ( n
|S′ |) = (npos(x)+nneg(x)

|S′| ) of them.

Now, let us assume that are k negative-edges in a given sub-graph with |S′| edges. Using the

Chu-Vandermonde identity, we can write this as a summation over varying number of negative

edges indexed by k as,

(
nneg(x) + npos(x)

|S′|

)
=
|S′|
∑
k=0

(
nneg(x)

k

)(
npos(x)
|S′| − k

)
. (5.95)

The contributions coming from all spanning sub-graphs can be written as a summation over

sub-graphs with |S|′ edges as,

∑
S′⊆E′

[
W(S′)

]
=

n

∑
|S′|=0

|S′|
∑
k=0

(
nneg(x)

k

)(
npos(x)
|S′| − k

)
λ|S

′|(−1)kω
(
n, n− |S′|

)
. (5.96)

Therefore, the positive part partial partition function of the star-network under consideration

would be,

Z(star)
+ (εx) = (cosh( ε))n

n

∑
|S′|=0

|S′|
∑
k=0

(
nneg(x)

k

)(
n− nneg(x)
|S′| − k

)
λ|S

′|(−1)kω
(
n, n− |S′|

)
. (5.97)

As seen, it only depends on ε and number of -1s in x, that is nneg(x).

Now using (5.87) in (5.86), we have the following expression for perr,trivial which would serve

as the starting point to derive exact expressions for the various topologies to follow:

perr,trivial =
1

2n−1Z(θ) ∑
x:eTx<0




exp
(

θxT Ax
)
×

{
n

∑
e=0

λeω (n, n− e)
e

∑
k=0

(−1)k
(

nneg(x)
k

)(
n− nneg(x)

e− k

)}


. (5.98)
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Now, let us focus on the outer-summation (defined over x).

From (5.87), we see that the inner summation (defined over y) depends only on nneg(x). Further,

the constraint eTx < 0 implies that nneg(x) ∈ { n+1
2 , ..., n}. and there are ( n

n−) vectors in the set

{x : eTx < 0} with nneg(x) = n−. If, we can write the quadratic xT Ax as a function of nneg(x), i.e,

xT Ax = g
(
nneg(x)

)
, we can re-write (5.98) as,

perr,trivial =
1

2n−1Z(θ)

n

∑
n−=d n

2 e




(
n

n−

)
exp (θg (n−))×

{
n

∑
e=0

λeω (n, n− e)
e

∑
k=0

(−1)k
(

n−
k

)(
n− n−
e− k

)}


. (5.99)

Eq.(5.99) basically showcases a framework which allows calculation of the closed-form expression

of perr for all network topologies where the quadratic xT Ax can be written as a function of nneg(x),

i.e, xT Ax = g
(
nneg(x)

)
. Now, we will utilize (5.99) to derive closed-form expressions of perr for

various topologies such as the Star and complete network as well as for the empty network case.

No-network (θ = 0) In the no-network scenario, Z(θ) = 2n and xT Ax = 0. Using these results

in (5.99), we have,

p(no−net)
err,trivial =

1
22n−1

n

∑
n−=d n

2 e

{(
n

n−

){ n

∑
e=0

λeω (n, n− e)
e

∑
k=0

(−1)k
(

n−
k

)(
n− n−
e− k

)}}
. (5.100)

Complete network In the case of the complete network, the adjacency matrix is A(complete) =

eneT
n − In, which implies that,

θxT A(complete)x =
θ

2

((
n− 2nneg(x)

)2 − n
)

. (5.101)

Now, using (5.101) in (5.99), we have,

p(complete)
err =

1
2n−1Z(complete)(θ)

n

∑
n−=d n

2 e





(
n

n−

)
exp

(
θ

2

(
(n− 2n−))2 − n

))
×

{
n

∑
e=0

λeω (n, n− e)
e

∑
k=0

(−1)k
(

n−
k

)(
n− n−
e− k

)}





,

(5.102)
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where the (full) partition function, Z(complete)(θ) is given by [139],

Z(complete)(θ) =
n

∑
m=0

{(
n
m

)
exp

(
θ

2

(
(n− 2m))2 − n

))}
. (5.103)

Star network Without loss of generality, Let us fix 1 to be the central hub node and nodes 2

through n be the spoke-nodes. Now, we define νneg(x) as,

νneg(x) =
n

∑
i=2

I [[xi = −1]]. (5.104)

It is straight-forward to see that nneg(x) and νneg(x) are related by,

nneg(x) =





νneg(x) if x1 = +1

νneg(x) + 1 if x1 = −1.
(5.105)

For the star network, the quadratic xT A(star)x can be expressed as a function of νneg(x) dependent

on whether the central hub node is clamped at x1 = +1 or x1 = −1 as,

xT A(star)x =





n− 1− 2νneg(x) if x1 = +1

2νneg(x)− (n− 1) if x1 = −1.
(5.106)

Now, let us define the function f(n, λ, n−) (related to the inner summation in (5.86)) to be,

f (n, λ, n−) =

{
n

∑
e=0

λeω (n, n− e)
e

∑
k=0

(−1)k
(

n−
k

)(
n− n−
e− k

)}
, (5.107)

and the terms T+ and T− to be,

T+ = ∑
x:eTx<0;x1=+1

[
exp

(
θxT Ax

){ n

∑
e=0

λeω (n, n− e)
e

∑
k=0

(−1)k
(

nneg(x)
k

)(
n− nneg(x)

e− k

)}]
,

T− = ∑
x:eTx<0;x1=−1

[
exp

(
θxT Ax

){ n

∑
e=0

λeω (n, n− e)
e

∑
k=0

(−1)k
(

nneg(x)
k

)(
n− nneg(x)

e− k

)}]
.

(5.108)

Observe that, with regard to the summation in (5.98),

T+ + T− = ∑
x:eTx<0

exp
(

θxT Ax
){ n

∑
e=0

λeω (n, n− e)
e

∑
k=0

(−1)k
(

nneg(x)
k

)(
n− nneg(x)

e− k

)}
. (5.109)
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Now, rewriting the terms T+ and T− in (5.108) in terms of f(n, λ, n−) from (5.107), and using

(5.106) and (5.105), we have,

T+ =
n−1

∑
n−= n+1

2

{(
n− 1

n−

)
exp (θ(n− 1− 2n−)) f (n, λ, n−)

}
,

T− =
n−1

∑
ν−= n−1

2

{(
n− 1

ν−

)
exp (−θ(n− 1− 2ν−)) f (n, λ, ν− + 1)

}
.

(5.110)

Finally, using (5.109) and substituting (5.110) in (5.98), we have the following expression for perr

for star topology,

p(star)
err,trivial =

1
2n−1Z(star)(θ)

(T+ + T−) . (5.111)

Curie-Weiss Prior The Curie-Weiss Ising model [112] is basically the Ising model defined on

the complete graph with the difference being that the edge-potential scaled by 1/n. That is, the

prior p(x) becomes,

p (x) =
exp

(
θ
n xT A(complete)x

)

∑
x

exp
(

θ
n xT A(complete)x

) . (5.112)

Using (5.102), we see that,

p(curie−weiss)
err =

1
2n−1Z(complete)(θ)

n

∑
n−=d n

2 e





(
n

n−

)
exp

(
θ

2n

(
(n− 2n−))2 − n

))
×

{
n

∑
e=0

λeω (n, n− e)
e

∑
k=0

(−1)k
(

n−
k

)(
n− n−
e− k

)}





,

(5.113)

where,

Z(curie−weiss)(θ) =
n

∑
m=0

{(
n
m

)
exp

(
θ

2n

(
(n− 2m))2 − n

))}
. (5.114)

Network prior with common ε across the BSCs

Variation of perr with change in network topology In order to understand how perr for the

trivial detector varies with the change in network topology, we plotted the perr,trivial obtained by
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computing the closed-form expressions (5.100), (5.102), (5.111) and (5.113).

Figure 5.7 presents the plot of perr vs q f lip, which is related to ε by, ε = log
√

1−q f lip
q f lip

, with n = 25

and θ being set to 0.1, 0.75, 1 and 2 in the 4 sub-plots respectively. The important observations

are:

1. The curve for the probability of error of majority vote detection for the no-network case

(indicated by ’No net’ in the legend(s)) lies above the q f lip line for 0 < q f lip < 0.5 which

implies that the problem of majority bit detection inherently results in a higher probability

of error when compared to the classical single bit detection problem.

2. The presence of a network prior results in a lower probability of error compared to the

no-network prior scenario. Also, expectedly, the densest network, which is the complete

network, yields the lowest perr.

3. For the star-topology, if the network effect is weak (θ = 0.1 case), the perr,trivial curve lies

above the q f lip line. However, as we increase θ (thereby increasing the network effect), the

perr,trivial curve falls above the q f lip line.

4. The perr,trivial curves pertaining to the Curie-Weiss prior are the most interesting. As seen,

when θ = 0.1, the p(curie−weiss)
err,trivial curve is close to the no-network curve lying above the

pstar
err,trivial curve. But when θ is increased to 0.5, we see that there exists a threshold q f lip

above which the p(curie−weiss)
err,trivial curve falls below the q f lip line.

5. When θ is large (=2.0), the curves for the Curie-Weiss prior, the complete network prior and

the star prior all merge.

5.7.5 Application 5: Lattice path sum interpretation of w(S′)

In this section, we will explore the Lattice path sum interpretation of w(S′) which would be

complementary to the code-puncturing approach.
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Spin-world viewpoint

In the spin-world representation, w(S′) is defined as,

w(S′) = ∑
x∈X (n)

+

∏
i∈Vodd(S′)

xi, (5.115)

where X (n)
+ =

{
x : x ∈ {−1, +1}n, eTx > 0

}
.

Lattice path sum viewpoint

[154] establishes the following expression for super-Catalan numbers,

S (a, b) = (−1)a ∑
P∈Πa+b

(−1)H(2a,P). (5.116)

Here the summation is defined over the set Πa+b of all lattice paths from (0, 0) to (a + b, a + b)

consisting of unit steps taken to the right and up the grid, and H(2a, P) denotes the height of the

path P = (P0; P1; ...; P2(a+b)) ∈ Πa+b after the 2ath step, i.e., the y-coordinate of P2a.

Now, combining (5.116), (5.15) and (5.77), we have for |Vodd(S′)| > 0,

w(S′) = ω
(
n, n− |Vodd(S′)|

)
= ∑

P∈Π( n−1
2 )

(−1)H(|Vodd(S′)|−1,P). (5.117)

The above equation captures the lattice path sum interpretation of w(S′). As seen above, the

summation is defined over the set Π(n−1)/2 of all lattice paths from (0, 0) to ((n− 1)/2, (n− 1)/2)

consisting of unit steps taken to the right and up the grid, and H(|Vodd(S′)| − 1, P) denotes the

height of the path P = (P0; P1; ...; Pn−1) ∈ Π(n−1)/2 after the (|Vodd(S′)| − 1)th step.

5.8 Chapter Summary

In this chapter, we have tackled the problem of majority sentiment detection in social networks.

We began by motivating the use of the ferromagnetic Ising prior for modeling the expressed
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sentiments in a homophilic social network and also proposed using the classical communication

theoretic BSC model to model the noisy estimated sentiments. We then demonstrate the need for

computing the Ising PPF for MAP detection and derived the High Temperature (HT) expansion

formula using a novel code-puncturing based approach. We then derived an approximate MAP

detector for the weak network high noise scenario based on second order Taylor series expansion

and showed the improvement obtained in terms of the probability of error by this approximate

MAP detector via numerical results.

The main contributions of this chapter can be summarized follows.

1. Deriving the HT expansion formula for the PPF using ideas from coding theory, which in

itself is an interesting contribution towards the statistical physics and Machine Learning

literature.

2. Extending the HT expansion formula for computing the GPPF.

3. Exposing an interesting link between the weights contributed by each subgraph configura-

tion in the PPF computation and Super-Catalan numbers/Krawchuk polynomials.

4. Deriving an approximate linear MAP detector that requires just the first order network

information (degree).

5. Providing numerical results that demonstrate the probability of error improvement ob-

tained by harnessing the network prior even in the Weak network Highly noisy labels

regime.

6. Using the HT expansion formula to derive the closed form expression for the error proba-

bility of the trivial detector for certain stylized graph topologies.

This concludes the NAD part of the this thesis.

Now, we move on to the concluding chapter of this thesis where we recap the important contri-

butions and also list out certain interesting avenues for future research in the topics dealt with.
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Figure 5.6: The spanning subsets of an appended 3-node chain graph showcasing the splitting of

Z′ into internal and external summations.
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Chapter 6

Thesis summary and Future Work

6.1 Main Contributions

This thesis makes a case for Network Aided Classification and Detection of data. The results

presented are both experimental as well as theoretical. We were able to experimentally show-

case a series of examples with real world data where Network Aided Classification resulted in

substantial improvements in classification accuracy. In the context of Network Aided Detection,

we were able to provide some theoretical insights into the improvement brought in error rates

by the network priors by means of communication-theory inspired error probability and error

exponent analysis. In doing so, we introduced several classical communication theoretic ideas

and methodologies that pave the way for deeper importing of ideas and proof methodologies

between communications theory and social networks analysis in general.

The main contributions of this thesis can be summarized thus.

1. Introduced a p-value based hypothesis testing framework to validate the homogeneous

ferromagnetic Ising prior for the NAC and NAD models. This also involved showcasing

real world data where the null hypothesis of the data emanating from the i.i.d flat prior

distribution is rejected with high statistical significance in favor of the Ising prior.

2. Showcased a series of examples with real world data where Network Aided Classification

resulted in substantial improvements in classification accuracy in disparate areas such as
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political science (vote prediction), health policy (lung and cancer level detection) and crime

level detection.

3. Introduced the idea of the social network as a weak channel code and used a novel communications-

inspired framework for analyzing probability of error of a trivial latent sentiment detector

in Online Social Networks.

4. Performed error exponent analysis for the trivial latent sentiment detector for standard

graph topologies such as star, chain, wheel and complete graphs.

5. Derived the HT expansion formula for the PPF using ideas from coding theory, which in

itself is an interesting contribution towards the statistical physics and machine learning

literature.

6. Derived an approximate linear MAP detector in the highly pertinent Weak network Highly

noisy labels regime and providing numerical results that demonstrated the probability of

error improvement obtained by using this detector.

7. Used the HT expansion formula to derive the closed form expression for the error proba-

bility of the trivial detector for certain stylized graph topologies.

Now, we conclude this thesis by providing some interesting observation and empirical compar-

isons which we could not translate in to rigorous theoretic results, but ones which we feel might

serve to be a good starting point for further investigation.

6.2 Future work: OSN topology versus inference algorithm

Through the course of the research undertaken, we observed that the classification accuracy ob-

tained on using an underlying graph in the NAC and NAD frameworks described in the thesis,

did depend on the approximate inference algorithm being used. For example, in some cases

when the graph had high local transitivity, it was advisable to use the Mean Field (MF) inference

algorithm over the Loopy Belief Propagation (LBP) algorithm. Also, the execution time for each

of these algorithms varied immensely as shown in the upcoming section.

In this section, we present empirical results relating the classification error rate (within the NAC
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framework) obtained by a certain inference algorithm with the variation in parameters that con-

trol the underlying topology of the graph constructed using two standard synthetic graph models

used heavily in Network Science and SNA literature [14, 15].

In doing so, we hope that these empirical results might serve to be a good starting point for

further research in this area.

We also hope that this section can serve as a repository of empirical guidance which will help a

machine learning practitioner to cherry pick the right inference algorithm based on the topology

of the graph that he is planning to use in the NAC and the NAD frameworks described in the

thesis.

We now begin by briefly describing the two network generation models used in Network Sci-

ences, that is the Barabasi-Albert (BA) model used to generate networks with scale-free degree

distribution and the Watts-Strogatz (WS) model used to generate networks with small-world char-

acteristics.

Before we describe these models, we define a few network-theoretic terms we will be using to

describe our results.

6.2.1 Definitions

Let G(V, E) be an undirected graph. The neighborhood Ni for a node i is defined as the subset

of vertices that it connected to. That is, Ni = {j ∈ V : (i, j) ∈ E}. The degree of the node i is

denoted by ∆i = |Ni|.

Local clustering coefficient of a node i ( Ci)

If a vertex i has ∆i neighbors, a maximum of ∆i(∆i−1)
2 edges could exist among the nodes within

the neighborhood of this node i. The local clustering coefficient for undirected graphs is be

defined as

ci =
2|{(j, k) : j, k ∈ Ni, (j, k) ∈ E}|

∆i(∆i − 1)
.

As seen, it is a measure of the extent to which the nodes of the graph tend to cluster together and

is also termed local transitivity. Having defined the local clustering coefficient for a node i, we

can define the global clustering coefficient in a network (Watts and Strogatz [41]) as the average
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of the local clustering coefficients of all the n vertices,

C =
1
n

n

∑
i=1

ci. (6.1)

This metric has deep significance in SNA as social graphs are expected to have a higher level of

clustering compared to random graphs or even technological graphs based on the principle of

homophily [18].

Average path length

Average path length is defined as the average number of hops (or steps) along the shortest paths

for all possible pairs of graph nodes and is used as a measure of the efficiency of information or

mass flow on a network.

For any given i, j ∈ V, let us denote d(i, j) to be the shortest distance between the nodes i and j

(With the convention that d(i, j) = 0 if the node j cannot be reached from i). Now, the average

path length L is defined as,

L =
1

n · (n− 1)
·∑

i 6=j
d(i, j). (6.2)

Generalized loop of a graph

A generalized loop in a graph G(V, E) is any subgraph C = (V ′, E′), V ′ ⊆ V, E′ ⊆ (V ′ ×V ′))∩ E

such that each node in V ′ has degree two or larger.

Having defined the required terms, we now briefly describe the BA and the WS graph models.

6.2.2 Barabasi-Albert (BA) model

One of the earlier discoveries in the field of network sciences was the wide spread existence

of networks whose degree distributions followed a power-law degree distribution (or scale-free

distributed) in both natural and human-made systems. This included the Internet, the world wide

web (WWW), academic citation networks and social networks [14, 15].

The Barabasi-Albert (BA) model [42] was a simple stochastic model proposed to generate such a

scale-free graph based on a very simple and intuitive preferential attachment concept.
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It entails a discrete time step model and in each time step a single node is introduced to the

graph which makes preferential connections with the already existent nodes of the graph by a

mechanism termed as preferential attachment.

We begin with one node and 0 edges in the first time step. Then one node is appended in each

time step and this newly added node adds some connections (edges) to the pre-existent nodes in

the graph. The number of edges added in each time step is a parameter of the model, denoted by

mba. Now, the preferential attachment mechanism is incorporated via the probability with which a

given pre-existent node, say i, is chosen by the new incoming node and is given,

pchosen(i) ∼ ∆pow
i + p0, (6.3)

where ∆i is the degree of node i in the current time step, pow is the power parameter of the BA

model and p0 is termed as the ’zero appeal’ argument usually set to 1. If pow = 1, it is said to

be a linear-preferential BA model and if pow = 2, we say that the preferential-attachment was

quadratic.

Defining the degree distribution P(∆) of a network to be the fraction of nodes in the network

with degree ∆, it has been shown in [14,15,42], that a graph generated by this linear-preferential

BA model has a degree distribution that is scale free and the degree distribution can be written as

a power law distribution of the form, P (∆) ∼ ∆−3.

Now, as seen in Figure 6.1,(with n = 100 and mba = 2), when the power parameter pow is

increased from 1 to 2, that is we switch from linear preferential attachment to quadratic prefer-

ential attachment, we see two things. Firstly, the topology becomes more hub-centric with a few

important hub nodes connecting to most on account of the fact that these were the initial nodes

that enjoyed the quadratic preferential attachment in their favor as the model evolved through

the discrete time steps. Secondly, we also see that there is a dramatic increase in the mean local

transitivity as defined in (6.1).

6.2.3 Watts-Strogatz (WS) model

The WattsStrogatz (WS) model [41] is another popular stochastic graph generation model that

produces graphs with small-world properties. That is, the graphs produced have small average

path lengths while maintaining high level of clustering or transitivity.
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Figure 6.1: Variation of classification error rate with varying power parameter of the BA model

(with n = 100 and mba = 2) for the 4 inference algorithms considered.
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(b)Rewiring probability=0.1(a)Rewiring probability=0

(c)Rewiring probability=1

Figure 6.2: Figure depicting graphs constructed by using the WS model with differing rewiring

probabilities.

The input parameters in to the model are n (the number of nodes), ∆mean, the mean degree

(which is assumed to be an even integer), and the re-wiring probability parameter pWS, satisfying

0 ≤ pWS ≤ 1 and n� ∆mean � ln(n)� 1. The model outputs an undirected graph with n nodes

and n∆mean
2 edges using the following two step procedure.
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Step 1: Construction of the Regular Lattice

A regular ring lattice graph is constructed with n nodes, with each node connected to ∆mean

neighbors, with ∆mean/2 on each side. This is as shown in Figure 6.2(a) with n = 100 and

∆mean = 4 .

Step 2: Rewiring of the regular lattice

For every node i ∈ V, we take every edge (i, j) with i < j, and rewire it with probability pWS.

This rewiring is done by replacing (i, j) with (i, k) where the new destination node k is chosen with

uniform probability from all possible nodes that avoid self-loops (k 6= i) and link duplication.(That

is, there should exists no edge (i, k′) with k′ = k).

Figure 6.2(b) and (c) showcase graphs with the rewiring probabilities being set at pws = 0.1 and

pWS = 1 respectively. It is to be noted that pWS acts as a control parameter that tunes the random-

ness of the graph topology from zero-randomness (regular lattice) to completely randomness (in

the Erdos-Renyi sense [14]).

The interesting discovery made in [41] is that when the rewiring probability pWS is incrementally

increased in a certain small range (∼ 0.01 to 0.1), we see the average path-length (as defined

in (6.2)) decrease dramatically on account of these long-range shortcut connections emerging

because of the random rewirings, but with the transitivity (defined according to (6.1)) still re-

maining relatively unchanged. In this range of pWS, the graph is said to be a small-world graph

combining the high transitivity characteristic of the lattice graphs with the relatively small aver-

age path length of the ER random graphs. This is as shown in Figure 6.3 where L(pWS) denotes

the average path-length according to (6.2) of the graphs obtained with the rewiring probability

fixed at pWS and C(pWS) denotes the mean global clustering coefficient according to (6.1) of the

graphs obtained with the rewiring probability fixed at pWS.

6.2.4 Empirical Results

The experimental setup used was as follows. To begin with, the stochastic model was chosen (BA

or WS) and the parameters of the model were initialized to the appropriate values and ng graph

instances were derived. Now, each of these ng graph instances were used to specify the Ising prior

132



LBP TRBP MF ICM
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p er
r

WS graph − n=100, p
flip

=0.35,h
max

=0.05,θ=1.00 

 

 p
ws

=0.00 p
ws

=0.01 p
ws

=0.03 p
ws

=0.04 p
ws

=0.10 p
ws

=0.32 p
ws

=1.00

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 g
lo

ba
l p

at
h 

le
ng

th
 a

nd
 tr

an
si

tiv
ity

 

L(pws)/L(0)

C(pws)/C(0)

Small−world networks
High transitivity−Low Path length

10
−3

10
−2

10
−1

10
0

10
72

10
73

10
74

10
75

10
76

10
77

10
78

M
ea

n 
G

ra
ph

 c
om

pl
ex

ity

 pws −Rewiring probability
 pws −Rewiring probability

(a)

(c)

Figure 6.3: Variation of Clustering coefficient and average path length with varying rewiring

probability of the WS model (with n = 100)

in (1.5) along with the chosen θ and ns samples were sampled (via Gibb’s sampling [147]).Then,

these samples were flipped at a rate specified by p f lip (or its equivalent ε) in order to simulate

the noisy labels derived out of a discriminative classifier with symmetric misclassification rate

of p f lip. The noisy labels thus derived were used to specify the node potentials of an RFIM

(See Chapter-3) and MAP-inference was performed using the following 4 approximate inference

algorithms: Loopy Belief propagation (LBP) [158], Tree-Reweighted Belief Propagation (TRBP)

[75], Mean Field (MF) [79] and Iterated Conditional Modes (ICM) [39].

Let x(g,s) denoted the sth Gibbs sample sampled from the Ising prior defined by the gth instance

graph derived from the BA/WS model being used. The error rate (perr) was evaluated according
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to,

perr =

ng

∑
g=1

ns

∑
s=1

d̄H(x(g,s), x̂(g,s))

ng × ns
, (6.4)

where d̄H(x, x̂) is the normalized hamming-distance between the true label x and its estimate, x̂,

defined as,

d̄H(x, x̂) =

n
∑

i=1
I [[xi 6= x̂i]]

n
.

Having described the experimental setup, let us now focus on the results derived.

In Figure 6.1, we plot the variation of perr with respect to the preferential attachment power pa-

rameter (pow) of the BA model. The system parameters were intialized as follows. The number

of nodes, n = 100, the common edge-potential (θ) was set at θ = 1 and the BSC flipping proba-

bility was set at p f lip = 0.35.

We see that when pow is increased from 1 to 2 (linear preferential attachment to quadratic pref-

erential attachment), we see that the mean local clustering increases sharply that results in perr

increasing sharply for the Belief Propagation based algorithms (LBP as well as TRBP) while the

MF and the ICM algorithms’ performance is more robust.

One justification for this degrading of the performance of LBP and TRBP algorithms can be traced

back to the introduction of more loops (closed circuits) or generalized loops in to the underlying

graph structured when pow is increased, which in SNA terms translates as increase in the local

transitivity or clustering levels in the graph. Results in machine learning literature show that BP

based inference is exact in loop free graphs (trees) [20] while the introduction of loops in to the

structure of the underlying graph [159, 160] results in inaccuracies. However, these results are

focused on capturing the deviation of the partition function and not on the resultant hamming

distance between the true MAP configuration and the approximate MAP configuration predicted

by the BP based algorithm. Also, the deviation is captured by a multiplicative factor which is

either in the form of Chertkov and Chernyak loop series expansion [160] or the bi-variate Watanabe

polynomial [159], neither of which have a straightforward interpretation in terms of the global

topological measures such as transitivity and path length used by the SNA community. This

provides for an exciting avenue of research which would target translating some of the machine

learning results (such as those in [159, 160]) in SNA terms.

These results also showcase the fact that it might be better to use simple approximate inference
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algorithms such as MF and ICM instead of the BP variants when it is known that the under-

lying graph has BA type characteristics (scale-free degree distribution) along with high local

transitivity. This is important as the execution time required by the BP based algorithms can be

substantially higher compared to the MF and ICM .In Figure 6.4 we show the variation of decod-

ing time with varying power parameter of the BA model (with n = 100 and mba = 2) for the 4

inference algorithms considered. As seen, TRBP requires the largest execution time followed by

LBP and then MF and ICM.

Now, we turn our attention to empirical results involving the WS graphs. As in the case of BA

graphs, the system parameters were chosen as, n = 100 and p f lip = 0.35. In Figure 6.5, we show

the variation of classification error rate with varying rewiring probability of the WS model for

the 4 inference algorithms considered with Figure 6.5(a) containing results with θ = 0.5 and Fig-

ure 6.5(b) covering the θ = 1 scenario. In each of the two subplots, the rewiring probability pWS

was increased from 0.01 to 1, with pWS ∈ {0.01, 0.05, 0.1} covering the phase where the graph

exhibits small-world characteristics.

As expected, we see a marked improvement in the performance of the BP based algorithms when

pWS was increased which results in the graph becoming more random with lowered local (and

global) transitivity. In the strong network effect regime with θ = 1 (Figure 6.5(b)), we see that

the TRBP gives the best performance amongst all the inference algorithms thus implying that it

might be the inference algorithm of choice when the network effect is strong (large θ) and cluster-

ing is low. The reasoning for this can be traced to the work in [20], where the authors show that

for this case of pure attractive couplings and a 2-D grid topology, the TRBP bound becomes tight

as θ tends to infinity. Also, as seen in the simulation results in [75], TRBP does outperform LBP

and MF (albeit in terms of accuracy of the estimated partition function) when the edge strength

is above a certain threshold value.

It is also interesting to note that the change in performance for both the BP based variants as well

as MF and ICM algorithms was not monotonic with the increase in pWS. This indicates the pres-

ence of an underlying topological characteristic beyond transitivity or path-length that results in

the performance of these algorithms improving when pWS is increased till a certain pWS and the

gradually worsening with increasing pWS. This interesting behavior might well be an avenue of

further investigation.
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Figure 6.4: Variation of decoding time with varying power parameter of the BA model (with

n = 100 and mba = 2) for the 4 inference algorithms considered.
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With these results, we conclude the thesis.
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Appendices

A Proof of Theorem 4.3.1

Following [161], we begin by upper bounding the probability of error in (4.6) by replacing the

indicator function with an exponential. That is, using the result

I[[eTy > 0]] 6 exp
{

beTy
}

for b > 0 in (4.6) leads to,

Pe 6 ∑
y

p(y|t = −1) exp
{

beTy
}

6 2 ∑
y

p(y, t = −1) exp
{

beTy
}

.
(5)

Now, using p(y, t = −1) = ∑
x

p(t = −1, x, y) and substituting the joint pdf for p (t, x, y) from

(1.8) in (5), we have,

Pe 6
1

cnZ (θ, γ) ∑
y

∑
x

exp





θxT Ax− γeTx

+yT(be + εx)





6
1

cnZ (θ, γ) ∑
x





exp
{

θxT Ax− γeTx
}

∑
y

exp
{

yT(be + εx)
}





.

(6)

where Z (θ, γ) = ∑
x

exp
{

θxT Ax + γeTx
}

.

Now, we notice that the summation ∑
y

exp
{

yT(be + εx)
}

is the partition function of an Ising

model with an empty network and can be evaluated by the following closed form expression,

∑
y

exp
{

yT(be + εx)
}

= 2n
n

∏
i=1

cosh(b + εxi).
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Further rewriting the cosh product term as,
n
∏
i=1

cosh(b + εxi) =





(
cosh(2b) + cosh(2ε)

2

)n/2

×
(√

cosh(b + ε)
cosh(b− ε)

)eTx





,

we have,

∑
y

exp
{

yT(be + εx)
}

= 2n×




(
cosh(2b) + cosh(2ε)

2

)n/2

×
(√

cosh(b + ε)
cosh(b− ε)

)eTx





.
(7)

Finally, substituting (7) in (6) and simplifying yields,

Pe ≤
1

Z(θ, γ)(cosh(ε))n min
b

A(b), where,

A(b) =
(

cosh(2b) + cosh(2ε)
2

)n/2

Z(θ, β),

β = γ +
1
2

log
(

cosh(b− ε)
cosh(b + ε)

)
,

Z(θ, β) = ∑
x

exp
{

θxT Ax− βeTx
}

, (8)

which is the RHS of Theorem 4.3.1.

B Proof of Theorem 5.3.1

In this appendix, we prove the HT expansion Theorem 5.3.1. The proof is developed in four

stages.

B.1 Stage 1: Using the high temperature character expansion identity

To begin with, let us define λij = tanh(θij), µi = tanh(hi) and

c(θ, h) =



 ∏

(i,j)∈E
cosh(θij) ∏

i∈V
cosh(hi)



 . (9)
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Now, using the HT (character) expansion identity of ea = cosh(a)(1 + tanh(a)) in (5.8) and

interchanging the order of order of summation, we have,

Z+(θ, h) = ∑
x:eTx>0



 ∏

(i,j)∈E
eθijxixj ∏

i∈V
ehixi





=

c(θ,h)︷ ︸︸ ︷

 ∏

(i,j)∈E
cosh(θij) ∏

i∈V
cosh(hi)



 ∑

x:eTx>0



 ∏

(i,j)∈E

(
1 + λijxixj

)
∏
i∈V

(1 + µixi)





= c(θ, h) ∑
x:eTx>0



∑

S⊆E
∏

(i,j)∈S
λijxixj ∑

U⊆V
∏
i∈U

(µixi)



 .

(10)

Now, defining w(S, U) as,

w (S, U) =


 ∑

x:eTx>0


 ∏

(i,j)∈S
xixj ∏

v∈U
xv




 , (11)

we have,

Z+(θ, h) = c(θ, h) ∑
S⊆E

∑
U⊆V



 ∏

(i,j)∈S
λij ∏

i∈U
µiw (S, U)



. (12)

Now, looking at (12) above, we see that every edge subset-vertex subset combination, (S, U)

contributes a certain weight to the overall partial partition function computation. This weight is

the product of edge-weight contributions and node-weight contributions captured by ( ∏
(i,j)∈S

λij ∏
i∈U

µi),

multiplied by another weight w(S, U) dependent only on the topological artifacts in the (S, U)

combination.

The second stage focuses on evaluating these weights,

w (S, U) =


 ∑

x:eTx>0


 ∏

(i,j)∈S
xixj ∏

v∈U
xv




 . (13)

B.2 Stage 2: Computing the weights - w(U, S) : The binary code puncturing approach

The first step in evaluating w(S, U) is writing edge-wise product ∏
(i,j)∈S

{
xixj

}
in terms of a node-

wise product. Denoting ∆i as the degree of node i and Vodd(S) ⊆ V to be the subset of odd-
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degreed nodes in the graph G(V, S), we have,

∏
(i,j)∈S

xixj = ∏
i∈V

xi
∆i = ∏

i∈Vodd(S)
xi. (14)

We see that the indices pertaining to the even-degree nodes are duly ignored in the product given

that xi ∈ {−1, +1} and (xi)∆i = 1 if ∆i is even.

Thus, we have,

w (S, U) =

[
∑

x:eTx>0

[
∏

i∈Vodd(S)
xi ∏

v∈U
xv

]]
(15)

Now, we see that the product

[
∏

i∈Vodd(S)
xi ∏

v∈U
xv

]
can be written as,

[
∏

i∈Vodd(S)
xi ∏

v∈U
xv

]
=

[
n−p

∏
i=1

xi

]
, (16)

where p denotes the number of nodes that have been punctured out of the product on account of

the fact that there were raised to an even power. Also, we note that the indices of the punctures

vertices (v ∈ V) that were punctured out does not matter and only the number of punctures (p)

is taken into account.

We see that nodes that will be punctured out are those that were either odd-degreed and included

in U (denoted as Uodd(S)) or were even degreed in V −U (denoted as (V −U)even(S)). Thus, we

have,

w (S, U) =

[
∑

x:eTx>0

[
n−p

∏
i=1

xi

]]
, (17)

with p = (|Uodd(S)|+ |(V −U)even(S)|). Also, denoting M(n)
+ to be the n× 2n−1 matrix, whose

columns are the 2n−1 vectors from {x ∈ {−1, +1}n : eTx > 0} , we can extract M(n,p)
+ to be

the (n − p) × 2n−1 sub-matrix of M(n)
+ obtained by deleting the p rows pertaining to the p =

(|Uodd(S)|+ |(V −U)even(S)|) node that were punctured out.

Now, we have,

∑
x:eTx>0

∏
i∈Vodd(S′ )

xi = ∑
x:iscol

(
x,M(n,p)

+

)
=1

n−p

∏
i=1

xi, (18)

where iscol (x, A) is an indicator function that returns 1 if x is a column of the matrix A. In

coding theoretic terms, this matrix represents a punctured codebook with p-punctures.
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Given that xi ∈ {−1, +1}, the product
n−p
∏
i=1

xi can taken values only in {−1, +1}. Simply put, the

product
n−p
∏
i=1

xi just involves checking if the number of of −1s in a given x is even or odd. That is,

n−p

∏
i=1

xi =





+1 if
n−p
∑

i=1
I [[xi = −1]] is even

−1 otherwise
(19)

Also, the summation ∑
x:iscol

(
x,M(n,p)

+

)
=1

n−p
∏
i=1

xi involves counting how many of the x’s had even num-

ber of −1s in them. Therefore,

w(S, U) = ∑
x:iscol

(
x,M(n,p)

+

)
=1

n−p

∏
i=1

xi = N+ − N−, (20)

where, N+ = ∑
x:iscol

(
x,M(n,p)

+

)
=1

I
[[n−p

∏
i=1

xi = +1
]]

; N− = 2(n−1) − N+.

To make things clearer, we switch from the spins notation to the classical binary notation by

defining

C(n,p)
+ =

1−M(n,p)
+

2
(21)

as the binarized punctured codebook matrix. Here, 1 is the (n− p)× 2n−1 matrix of all 1’s. Thus,

in the binary world, we can write,

w(S, U) = Neven −Nodd, (22)

where, Neven = ∑
b:iscol

(
b,C(n,p)

+

)
=1

I [[dH(b) ∈ {2N}]]; Nodd = 2(n−1) −Neven and dH(b) denotes the

hamming weight of the binary vector b.

Now, the problem of calculating w(S, U) can be stated simply as the number of binary vectors

(codewords) in the p-punctured codebook C(n,p)
+ of even weight minus the number of binary vec-

tors of odd weight. Let a+(n, p, i) be a function that evaluates the number of codewords of

hamming weight i in the codebook C(n,p)
+ obtained after p punctures of C(n,0)

+ of length n. Then,

we have,

w(S, U) = Neven −Nodd =
( n−1

2 )
∑
i=0

(−1)i
a+(n, |Uodd(S)|+ |(V −U)even(S)|, i). (23)
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Evaluating a+(n, p, i)

To begin with, let us consider the un-punctured code book C(n,0)
+ ∈ {0, 1}n×2n−1

. It is obtained

by expurgating all codewords of hamming weight greater than n−1
2 from the universal codebook

{0, 1}n and retains the homogeneity property of the universal codebook. Let C(n,p)
+ be the code-

book obtained after p punctures of C(n,0)
+ . ∀0 ≤ j ≤ 2n−1, let b̃(j) be the jth code-word in C(n,p)

+

obtained by the puncturing of b(j) from C(n,0)
+ .

The following theorem provides for a closed form formula to evaluate a+(n, p, i):

Theorem B.1. Let a+(n, p, i) be a function that evaluates the number of codewords of hamming weight i

in the codebook C(n,p)
+ obtained after p punctures of C(n,0)

+ of length n. Then,

a+(n, p, i) =
(

n− p
i

) ( n−1
2 )−i

∑
k=0

(
p
k

)
; i = 0, ...,

n− 1
2

. (24)

Proof. To begin with, we see that,

a+(n, p, i) = Eπ

(
2n−1

∑
j=0

I
[[

dH(b̃(j)) = i
]])

. (25)

Here, the expectation is taken over all possible permutations (π) of the vertices of the graph

(or rows of C(n,0)
+ ) chosen to be punctured. Note that on account of the homogeneity property

of the codebook C(n,0)
+ , the weight distribution of the punctured code a+(n, p, i) is permutation

invariant.

Now, re-writing (25) as a conditional expectation, we have,

a+(n, p, i) =
2n−1

∑
j=0

min(p+i, n−1
2 )

∑
k=i

Eπ

[
I
[[

dH(b̃(j)) = i
]]
|dH(b(j)) = k

]

︸ ︷︷ ︸
P(dH(b̃(j))=i|dH(b(j))=k)

I
[[

dH(b(j)) = k
]]

, (26)

where is the conditional expectation Eπ

[
I
[[

dH(b̃(j)) = i
]]
|dH(b(j)) = k

]
is the conditional prob-

ability,

Eπ

[
I
[[

dH(b̃(j)) = i
]]
|dH(b(j)) = k

]
= P

(
dH(b̃(j)) = i|dH(b(j)) = k

)
. (27)

Figure 6 helps explain how the limits of the inner summation in (26) are obtained. Given that

puncturing only reduces the hamming weight, it is clear that the lower limit should be i. In order
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to obtain the upper limit, we look at the worst-case scenario where we have for some j, a code-

word, b(j), where all of the p-punctures resulted in removal of 1s thus reducing its hamming

weight from p + i to p. Given that the maximum hamming weight in C(n,0)
+ is n−1

2 , we have the

upper-limit of the summation to be min(p + i, n−1
2 ). Now, using combinatorics, we see that the
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Figure 6: Possible range of pre-puncturing hamming weights possible for arriving at a post

p-punctured codeword, b̃, with hamming weight dH(b̃) = i.

conditional probability P
(

dH(b̃(j)) = i|dH(b(j)) = k
)

can be evaluated as,

P
(

dH(b̃(j)) = i|dH(b(j)) = k
)

=
( k

k−i)(
n−k

p−(m−i))

(n
p)

(28)

Now, substituting (28) in (26), we have,

a+(n, p, i) =
2n−1

∑
j=0

min(p+i, n−1
2 )

∑
k=i

( k
k−i)(

n−k
p−(m−i))

(n
p)

I
[[

dH(b(j)) = k
]]

=
min(p+i, n−1

2 )
∑
k=i

{
( k

k−i)(
n−k

p−(m−i))

(n
p)

}
2n−1

∑
j=0

I
[[

dH(b(j)) = k
]]

.;

(29)
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Now, with regard to the un-punctured codebook, C(n,0)
+ , it is straightforward to see that it has (n

k)

codewords of hamming weight k, ∀k ∈ {0, (n− 1)/2}. That is,

2n−1

∑
j=0

I
[[

dH(b(j)) = k
]]

=
(

n
k

)
(30)

Now substituting (30) in (29) and simplifying, we have,

a+(n, p, i) =
min(p+i, n−1

2 )
∑
k=i

{
( k

k−i)(
n−k

p−(m−i))

(n
p)

}(
n
k

)

=
(

n− p
i

)min(p+i, n−1
2 )

∑
k=i

(
p

k− i

)

=
(

n− p
i

)min(p, n−1
2 −i)

∑
k=0

(
p
k

)
.

(31)

In (31), for the binomial coefficient indexed by two nonnegative integers , a and b, that is, (a
b),

assuming that (a
b) = 0 if b > a, we have the simplification of the upper limit of the summation as,

a+(n, p, i) =
(

n− p
i

) n−1
2 −i

∑
k=0

(
p
k

)
(32)

Now, defining the function ω(n, p) as,

ω (n, p) =
n−1

2

∑
i=0

(−1)i


 n− p

i




( n−1
2 )−i

∑
k=0


 p

k


, (33)

and using (32) in (23), we have the following expression for w(S, U),

w (S, U) = ω (n, (|Uodd(S)|+ |(V −U)even(S)|)) . (34)
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B.3 Stage 3: Establishing the Krawchuk Polynomials/Super-catalan number connec-

tion.

For N ∈ Z+, 0 6 k 6 N, the Krawchuk polynomial [152] in a variable ξ is defined by the

following equivalent summations,

K (N, k, ξ) =
k

∑
j=0

(−1)j


 ξ

j




 N − ξ

k− j




=
k

∑
j=0

(−2)j


 N − j

k− j




 ξ

j




=
k

∑
j=0

(−1)j2k−j


 N − k + j

j




 N − ξ

k− j


.

(35)

Given a, b ∈ Z* = {0} ∪Z+, we define Super-Catalan numbers [153], S (a, b) as,

S (a, b) =
(2a)! (2b)!

a! (a + b)!b!
. (36)

The authors in [154] derived an interesting relationship between Super-catalan numbers and

Krawchuk polynomials captured by,

K (2(a + b), a + b, 2a) = (−1)aS (a, b) . (37)

Proposition B.2. The function ω(n, p) as defined in (5.19) can be evaluated as,

ω(n, p) =





(−1)(
n−p−1

2 ) (n− p− 1)! (p)!
( p

2

)
!
(

n−p−1
2

)
!
( n−1

2

)
!

if p is even

2n−1 if p = n

0 otherwise

(38a)

(38b)

(38c)

Proof. Proof for eq. (38a)

To begin with, let us look at (5.19). Using pascal’s rule,

 n− p

i


 =


 n− p− 1

i


+


 n− p− 1

i− 1


 , (39)
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in (5.19) results in,

ω (n, p) =
n−1

2

∑
i=0

( n−1
2 )−i

∑
k=0

(−1)i


 p

k






 n− p− 1

i


+


 n− p− 1

i− 1




 . (40)

Now, splitting the RHS of (40) into 2 summations, we have,

ω (n, p) =
n−1

2

∑
i=0

( n−1
2 )−i

∑
k=0

(−1)i


 n− p− 1

i




 p

k


+

n−1
2

∑
i=0

( n−1
2 )−i

∑
k=0

(−1)i


 n− p− 1

i− 1




 p

k




=
n−1

2

∑
i=0

( n−1
2 )−i

∑
k=0

(−1)i


 n− p− 1

i




 p

k


+

n−1
2

∑
i=1

( n−1
2 )−i

∑
k=0

(−1)i


 n− p− 1

i− 1




 p

k


 .

(41)

Now, consider the first summand, t1,

t1 =
n−1

2

∑
i=0





( n−1
2 )−i

∑
k=0

(−1)i


 n− p− 1

i




 p

k





. (42)

Now, splitting the inner summand of t1 into two parts, the first term for k = (n− 1)/2− i and
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the second for k ∈ {0, 1, ..., (n− 1)/2− i− 1}, we have,

t1 =
n−1

2

∑
i=0





( n−1
2 )−i

∑
k=0

(−1)i


 n− p− 1

i




 p

k







=
n−1

2

∑
i=0



(−1)i


 n− p− 1

i




 p
( n−1

2

)
− i


+

( n−1
2 )−i−1

∑
k=0

(−1)i


 n− p− 1

i




 p

k







=
n−1

2

∑
i=0

(−1)i


 n− p− 1

i




 p
( n−1

2

)
− i


+

( n−1
2 )

∑
i=0

( n−1
2 )−(i+1)

∑
k=0

(−1)i


 n− p− 1

i




 p

k


.

(43)

Now, with regard to the second term on the RHS of (43), we see that for i = n−1
2 , the upper

limit of the inner summation becomes −1. Hence, we can write,
n−1

2

∑
i=0

( n−1
2 )−(i+1)

∑
k=0

(−1)i


 n− p− 1

i




 p

k


 =

( n−1
2 )−1

∑
i=0

( n−1
2 )−(i+1)

∑
k=0

(−1)i


 n− p− 1

i




 p

k


.

(44)

Now, defining a new index, j = i− 1, we have,
n−1

2

∑
i=0

( n−1
2 )−(i+1)

∑
k=0

(−1)i


 n− p− 1

i




 p

k


 = −

( n−1
2 )

∑
j=1

( n−1
2 )−j

∑
k=0

(−1)j


 n− p− 1

j− 1




 p

k


.

(45)

Finally, substituting (43) and (45) into (41), we establish the following result,

n−1
2

∑
i=0

(−1)i


 n− p

i




( n−1
2 )−i

∑
k=0


 p

k


 =

n−1
2

∑
j=0

(−1)j


 n− p− 1

j




 p
( n−1

2

)
− j


 . (46)
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Now, we see that the RHS of (46) can indeed be packaged in the first alternative summation

form of the Krawchuk polynomial in (35). Therefore,

ω (n, p) = K
(

n− 1,
(

n− 1
2

)
, n− p− 1

)
. (47)

Now notice that as long as p is even, ς = n−p−1
2 ∈ Z+ and we can use the relationship detailed

in (37) which connects Krawchuk polynomials to Super-Catalan numbers, and thus we have,

ω (n, p) = K
(

n− 1,
(

n− 1
2

)
, n− p− 1

)
= (−1)ςS

(
ς,
(

n− 1
2

)
− ς

)
, (48)

where ς =
(

n−p−1
2

)
.

Finally, by using the definition of the Super-Catalan numbers in (36), eq. (38a) follows.

Proof for eq. (38b)

By substituting p = n in the third alternative summation form of the Krawchuk polynomial

eq. (38b) follows.

Proof for eq. (38c)

One interesting property of Krawtchouk polynomials is that they satisfy a linear recurrence rela-

tion with linear coefficients in every variable [162]. Specifically, we have,

(N − x)K(N, k, x + 1) = (N − 2k)K(N, k, x)− xK(N, k, x− 1). (49)

Now, substituting N = n− 1, k = n−1
2 and x = n− p− 2 in (49) above, we have,

pK(n− 1,
n− 1

2
, n− p− 1) = −(n− p− 1)K(n− 1,

n− 1
2

, n− (p + 2)− 1). (50)

From (50), we gather that in order to ω(n, p) = 0 for p ∈ {1, 3, 5, ..., n− 2}, it is sufficient to prove

that ω(n, 1) = 0 and use the recurrence relationship to prove eq. (5.76c). Now, we proceed to

prove that ω(n, 1) = 0.

From (47), we see that,

ω (n, p) =
n−1

2

∑
j=0

(−1)j


 n− p− 1

j




 p
( n−1

2

)
− j


 . (51)
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Now, substituting p = 1 in (51) above, we have,

ω (n, 1) =
n−1

2

∑
j=0

(−1)j


 n− 2

j




 1
( n−1

2

)
− j




= (−1)
n−3

2


 n− 2

n−3
2


+ (−1)

n−1
2


 n− 2

n−1
2




= 0.

(52)

Now, using (52) in (50), eq. (38c) follows.

B.4 Stage 4: Simplifications based on oddity of the cardinality of the vertex subset U

1. Scenario 1: |U| is even and U = Vodd(S)

If U = Vodd(S), we see that

[
∏

i∈Vodd(S)
xi ∏

v∈U
xv

]
= 1, which renders,

w (S, U) =

[
∑

x:eTx>0

[
∏

i∈Vodd(S)
xi ∏

v∈U
xv

]]
= 2n−1 (53)

2. Scenario 2: |U| is even and U 6= Vodd(S)

We show that in this scenario p = (|Uodd(S)|+ |(V −U)even(S)|) is always odd irrespective

of whether |Uodd(S)| is odd or even. If |Uodd(S)| odd, given that |Vodd(S)| is always even,

|(V −U)odd(S)| will be odd. This, in turn, renders |(V −U)even(S)| to be even (given that n

is assumed to be odd). Thus, p = (|Uodd(S)|+ |(V −U)even(S)|) is odd.

Similarly, we can argue that if |Uodd(S)| even, given that |Vodd(S)| is always even, |(V −
U)odd(S)| will also be even. This, in turn renders |(V −U)even(S)| to be odd (given that n is

assumed to be odd). Thus,

p = (|Uodd(S)|+ |(V −U)even(S)|) , (54)

is odd is this case too. Now, exploiting eq. (38c), we see that, w (S, U) = 0

3. Scenario 3: |U| is odd

Making similar arguments as above, we see that p = (|Uodd(S)|+ |(V −U)even(S)|) is even

when |U| is odd.
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The above arguments imply that the summation over all (S, U) combinations can be split into

two summations, one adhering to the case that U = Vodd(S) and the other adhering to the case

that |U| is odd. That is,

∑
S⊆E

∑
U⊆V


 ∏

(i,j)∈S
λij ∏

i∈U
µiw (S, U)


 = Z1 + Z2, (55)

where,

Z1 = 2n−1 ∑
S⊆E


 ∏

(i,j)∈S
λij ∏

i∈Vodd(S)
µi


, (56)

and

Z2 = ∑
S⊆E

∑
U⊆V

|U|∈{Z+
odd}


 ∏

(i,j)∈S
λij ∏

i∈U
µi


w(S, U). (57)

Finally, combining (56) and (57), we have,

Z+(θ, h) = c(θ, h) [Z1 + Z2] (58)

Thus the theorem for the PPF stated in (5.15) stands proved.

C Proof of Lemma 5.7.1

The proof for Lemma 5.7.1 entails following the same steps as in the proof for Theorem 5.3.1,

with a minor tweak in the Stage-2 of the proof, which we explain here.

Akin to the proof of Theorem 5.3.1, we begin by considering an un-punctured code book C(n,0)
dHth

which is obtained by expurgating all codewords of hamming weight greater than dHth from

the universal codebook {0, 1}n and which retains the homogeneity property of the universal

codebook. Now, let C(n,p)
dHth

be the codebook obtained after p punctures of this C(n,0)
dHth

.

Figure 7 provides a visualization of these codebook matrices. On the left half of the picture, we

see the codebooks (highlighted in red) for the case studied earlier in the proof for 5.3.1 (covering

the case σth = 0). It is easy to see that the threshold sum in the spins representation, σth, translates
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as the threshold hamming weight,

dHth =
⌊

n− σth

2

⌋
,

in the binary domain.

We note that the parameter dHth (or σth) acts as a slider variable controlling only the width

(number of columns) of the puncture code book C(n,0)
dHth

(colored in green in Figure 7), retaining

only those codewords of length (n− p) whose hamming weights are in the range of 0 to dHth .

:n× 2n−1

M n,p
+

(n− p)× 2n−1

C(n,p)
+ =

1−M(n,p)
+

2

punctured codebook

M(n)
+

C(n,0)
+

{-1,+1}

0
0
0
0
0
0
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1
1
1
1
0
0
0
0
0
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⌊
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⌋
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Figure 7: Visualization of the codebook matrices in the code-puncturing approach

Now, let us define adHth
(n, p, i) as the generalization of the function a+(n, p, i), that evaluates

the number of codewords of hamming weight i in this codebook C(n,p)
dHth

in lieu of C(n,p)
+ . Har-

nessing the same ideas as in Theorem B.1, we see that the closed form expression for adHth
(n, p, i)
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simply entails changing the limit in the summation in order to incorporate the revised threshold

hamming weight, dHth , being set to value other than (n− 1)/2, leading to,

adHth
(n, p, i) =


 n− p

i




dHth−i

∑
k=0


 p

k


. (59)

Now, computing the generalized version of ω(n, p), denoted by ωσth(n, p), is still the difference

in the number of binary vectors (codewords) in the p-punctured codebook C(n,p)
dHth

of even weight

and the number of binary vectors of odd weight. That is, using (59), we get,

ωσth (n, p) =

⌊
n−σth

2

⌋

∑
i=0





(−1)i


 n− p

i




⌊
n−σth

2

⌋
−i

∑
k=0


 p

k








,

which completes the proof.
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