
RELATIVE STABILITY OF LINEAR SYSTEMS
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Abstract: In this paper we analyze the evolution of the relative error in the state of
linear systems subject to perturbations. For this purpose we introduce the property
of relative stability. The relevance of this property is illustrated by means of a case
study, namely the computation of the Erlang-B function, which is well-known in
the context of Queueing Theory.
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1. INTRODUCTION

The stability properties of a dynamical system
reflect, in a certain sense, the sensitivity of the
system to small perturbations in the initial con-
ditions. For a system with trajectories x(., x(0)),
where x(0) denotes the initial condition, the sensi-
tivity to an error e(0) is measured in terms of the
absolute error ‖x(., x(0)+ e(0))−x(., x(0))‖. This
issue has been widely studied and the obtained
results both for linear and nonlinear systems are
nowadays classical in the theory of dynamical
and control systems, (Kailath, 1980), (Hirsch et
al., 2004). However, for numerical purposes it
makes often more sense consider the relative error,
rather than the absolute one.

In this paper we consider linear time-varying state
space systems and analyze the evolution of the
relative error when the initial condition is subject
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to perturbations. Unlike what happens for the
classical stability property (to which we shall often
refer as absolute stability) we allow the input to
be nonzero. If, for a given input u, the relative
error remains bounded, we say that the system
is relatively stable with respect to the input u.
In case, additionally, the relative error tends to
zero in time we say that the system is relatively
asymptotically stable.

Although our purpose is not to present a detailed
analysis of this property, we obtain some prelimi-
nary results concerning scalar systems and higher
dimensional systems with sufficient excitation (a
property of the input that we shall clarify later
on). It turns out that scalar linear systems are
always relatively stable, but not relatively asymp-
totically stable, with respect to the zero input.
On the other hand, higher dimensional systems
that are absolutely asymptotically stable are also
relatively asymptotically stable with respect to
sufficiently exciting inputs.

An interesting situation even in case a system is
only relatively asymptotically stable, is when the
relative error is strongly attenuated in time with
respect to the initial one. This situation is illus-
trated with the case study of the computation of
the Erlang-B function in the context of Teletraffic
Theory.
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2. RELATIVE STABILITY

Let Σ be a system described by the time-varying
state space equations

{
x(k + 1) = A(k)x(k) + u(k)
y(k) = x(k) (1)

where, for k = 0, 1, . . ., A(k) ∈ Rn×n, and
u(k), x(k), y(k) ∈ Rn.

As is well-known, the state trajectory generated
by an input u(.) and an initial condition x(0) can
be written as

x(k, x(0), u) = xfree(k, x(0)) + xforced(k, u),

where the free response xfree(., x(0)) and the
forced response xforced(., u) are respectively given
by

xfree(k, x(0)) = A(k − 1) · · ·A(0)x(0) (2)

and

xforced(k, u) =
k−2∑

j=0

A(k − 1) · · ·A(j + 1)B(j)u(j)

+B(k − 1)u(k − 1).
(3)

Suppose now that the initial condition x(0) is
affected by an error e(0). Then, the corresponding
solution x(., x̂(0), u), with x̂(0) = x(0) + e(0),
becomes

x(k, x̂(0), u) = xfree(k, x̂(0)) + xforced(k, u)

and hence the error e(.) .= x(., x̂(0), u)−x(., x(0), u)
is given by

e(k) = xfree(k, x̂(0))− xfree(k, x(0))
= xfree(k, x̂(0)− x(0))
= A(k − 1) · · ·A(0)e(0).

Under the assumption that the state vector x(k)
never becomes null, we may define the relative
error ε(.) by means of ε(k) = e(k)

‖x(k)‖ . Thus,

ε(k) =
A(k − 1) · · ·A(0)e(0)

‖A(k − 1) · · ·A(0)x(0) + xforced(k, u)‖ .

(4)

Definition 1.

• The system Σ described by (1) is said to
be relatively stable with respect to the input
u, or to have a relatively stable response to
the input u, if there exists a positive real
number L such that, for all x(0), e(0) ∈ Rn,
‖ε(k)‖ < L‖ε(0)‖.

• The system Σ described by (1) is said to be
relatively asymptotically stable with respect
to the input u, or to have a relatively asymp-
totically stable response to the input u, if, in
addition to the previous property of relative
stability it satisfies the condition that, for all
x(0), e(0) ∈ Rn, limk→∞ ε(k) = 0. 2

Note that when the input is zero, i.e., u(k) =
0, k = 0, 1, . . ., then

ε(k) =
A(k − 1) · · ·A(0)e(0)
‖A(k − 1) · · ·A(0)x(0)‖ .

In the particular case of scalar systems, i.e, for
n = 1, this implies that

‖ε(k)‖ =
‖e(0)‖
‖x(0)‖ = ‖ε(0)‖,

showing that the relative error remains constant.
Hence, the free response of a scalar system is
relatively stable (but not relatively asymptotically
stable) no matter what its the (absolute) stability
properties are.

However the situation is different for the vector
case, as shown in the following example.

Example 1. Let Σ be a system described by (1),
with

A(k) =
[

λ1 0
0 λ2

]
,

for all k.

For the initial condition x(0) = [0 1]T and the
initial error e(0) = [1 0]T , we have

‖ε(k)‖ =
∣∣∣∣
λ1

λ2

∣∣∣∣
k

.

Clearly, if |λ1| > |λ2|, then ‖ε(k)‖ → ∞.

On the other hand, for the initial condition x(0) =
[1 0]T and the initial error e(0) = [0 1]T , we have

‖ε(k)‖ =
∣∣∣∣
λ2

λ1

∣∣∣∣
k

and therefore if |λ2| > |λ1|, then we also have that
‖ε(k)‖ → ∞.

So, the system will be relatively unstable if |λ1| 6=
|λ2|. Moreover, it is not difficult to show that if
|λ1| = |λ2| the system is relatively stable. 2

A detailed analysis of the relative stability of
the free response of a system will be carried
out elsewhere. We now turn to the study of the
relative stability of the response to a non-zero
input, which is more directly connected to the case
study presented in Section 3.

For this purpose, rewrite (4) as

ε(k) =
A(k − 1) · · ·A(0)ε(0)

‖A(k − 1) · · ·A(0) x(0)
‖x(0)‖ + xforced(k,u)

‖x(0)‖ ‖
.

If the system is (absolutely) asymptotically stable,
then

lim
k→∞

A(k − 1) · · ·A(0)ε(0) = 0 ∈ Rn

and

lim
k→∞

A(k − 1) · · ·A(0)
x(0)
‖x(0)‖ = 0 ∈ Rn.



Thus, ε(k) will tend to zero if xforced(k, u) does
not go to zero as k goes to infinity. The fact that
the forced response to the input u does not go to
zero can be interpreted, in a certain sense, as the
ability that this input has to excite the system.

In this way, speaking in very loose terms, we may
say that an (absolutely) asymptotically stable sys-
tem has relatively asymptotically stable responses
to inputs that are sufficiently exciting.

Let us consider once more the scalar case (n = 1).
Now (4) takes the form

|ε(k)| =
|a(k − 1) · · · a(0)e(0)|

|a(k − 1) · · · a(0)x(0) + xforced(k, u)|
=

|ε(0)|
|1 + xforced(k,u)

a(k−1)···a(0)x(0) |
by (3)︷︸︸︷

=
|ε(0)|

|1 +
∑k−1

j=0
u(j)

a(j)···a(0)x(0) |
(5)

where the low case a(j) are used instead of the
capitals A(j).

A particularly interesting situation for our case
study is when u(j) = 1, j = 0, 1, . . ., i.e., when
the input is a step. In this case it follows from (5)
that

|ε(k)| = 1
|1 + S(k)| |ε(0)|, (6)

with S(k) .=
∑k−1

j=0
1

a(j)···a(0)x(0) .

Once more, it is easily seen that if the sys-
tem is (absolutely) asymptotically stable, then
xfree(j, x(0)) → 0 as j → ∞ and consequently
S(k) →∞. This implies that |ε(k)| → 0, meaning
that the system is relatively asymptotically stable
with respect to the step input.

If, on the contrary, xfree(j, x(0)) has a quick
growth, so that S(k) converges to a value S ∈ R,
then

|ε(k)| → 1
|1 + S| |ε(0)|.

If S(k) takes on large values, the relative error will
be attenuated with respect to its initial value after
k time units. As we shall see in the next section,
this fact can be used in order to increase the
computational efficiency in certain procedures.

3. CASE STUDY — COMPUTATION OF THE
ERLANG-B FUNCTION

The Erlang B and C formulas are true probability
classics. Indeed, much of the theory was developed
by A. K. Erlang (Erlang, 1909; Erlang, 1917)
and his colleagues prior to 1925 (Brockmeyer et
al., 1948). The subject has been extensively stud-
ied and applied by telecommunications engineers

and mathematicians ever since. A nice introduc-
tory account, including some of the telecommuni-
cations subtleties, is provided by (Cooper, 1981).

The Erlang B (or loss) formula gives the (steady-
state) blocking probability in the Erlang loss
model, i.e., in the M/M/s/0 model. This model
has s homogeneous servers working in parallel and
no extra waiting space. Customers arriving when
all s servers are busy are blocked (lost) without af-
fecting future arrivals; e.g., there are no customer
retrials. This model has a Poisson arrival process
and IID (independent and identically distributed)
service times (which are also independent of the
arrival process) with an exponential distribution
having finite mean. (The two M’s in M/M/s/0
are for Markov, referring to the “lack-of-memory”
property of the exponential distribution. Both the
interarrival times and the service times have ex-
ponential distributions.)

Following convention, let the arrival rate be de-
noted by λ and let the mean service time be de-
noted by 1/µ. Thus, the (individual) service rate is
µ. Since at most s customers can be in the system
at any time, the stochastic process representing
the number of busy servers as a function of time
has a proper steady-state distribution for all (posi-
tive) values of the parameters λ and µ. The Erlang
loss model has an insensitivity property implying
that the blocking probability is independent of the
service-time distribution beyond its mean.

The steady-state distribution of the number of
busy servers also does not depend on the units
we use to measure time. Thus the blocking proba-
bility depends on the arrival rate λ and the service
rate µ only through their ratio, the offered load,

a
.= λ/µ. (7)

As indicated above, the Erlang B formula gives
the steady-state blocking probability of a typical
arrival, and is given by (see for example (Cooper,
1981, pp. 5 and 79)):

Ba(s) .=
as/s!∑s

j=0 aj/j!
, s ∈ N0, a ∈ R+. (8)

The numerical studies regarding this formula
are usually based on its analytical continuation,
ascribed to R. Fortet (Sysky, 1960, pag.602)
(Jagerman, 1974):

Ba(s) .=
(

a

∫ +∞

0

e−az (1 + z)s dz

)−1

, (9)

which is valid for traffic offered a ∈ R+ and
s ∈ R+

0 servers. An important related quantity
(because it tends to be easier to analyze) is the
reciprocal, or the inverse probability of blocking :

Ia(s) .=
1

Ba(s)
. (10)



A major known result, due to D. L. Jager-
man (Jagerman, 1984), is the following recursion
obtained by partial integration of (9):

Ia(s + 1) =
s + 1

a
Ia(s) + 1, s ∈ R+

0 , (11)

Since Ba(0) = Ia(0) = 1 for all a ∈ R+, Ia(s) may
be calculated by recursion (11) for any positive
integer s.

The analysis of the propagation of the error as-
sociated with the initial value, throughout the
proposed iterative procedure, is a key question for
evaluating the effectiveness of the method and will
be dealt with in this section. Some related numer-
ical methods (including for calculating derivatives
of the Erlang B function) have been presented in
previous works (Esteves et al., 1995; Esteves et
al., 1997).

It will be assumed that even Ia(s) which is an
exact value for s = 0 (Ia(0) = 1) may have
an associated error. This will enable to obtain
perfectly general results, namely for situations
where the initial values are not established for
s = 0. This happens, for example, if we want to
analyze the effect of perturbations at a generic
point s ∈ R+

0 .

Moreover, it will be assumed that the rounding
errors inherent to the recursive calculation (11)
are disregardable. As a result of the error associ-
ated with the initial value the value calculated for
Ia(s) will be denoted by Ĩa(s) such that e(s) is
the corresponding error:

Ĩa(s) = Ia(s) + e(s) . (12)

The relative error is ε(s):

Ĩa(s) = [ 1 + ε(s) ] Ia(s) . (13)

After calculating an approximation Ĩa(s) with
relative error ε(s) it is possible to compute an
approximation B̃a(s) of Ba(s):

B̃a(s) =
1

Ĩa(s)

B̃a(s) =
1

[1 + ε(s)]Ia(s)

B̃a(s) =
1

1 + ε(s)
Ba(s)

Using the binomial expansion (1+ v)−1 = 1− v +
v2 − v3 + v4 + · · · (convergent if |v| < 1), it may
be written for small ε(s) (good approximations):

B̃a(s) =
[
1− ε(s) + [ε(s)]2 − [ε(s)]3 + · · · ] Ba(s)

B̃a(s)≈ [1− ε(s)] Ba(s). (14)

From (14), it follows that the absolute value of
relative error of B̃a(s) is also nearly equal to |ε(s)|.

Thence, it may be said that the calculation of
approximations of the values of the Erlang B func-
tion is made with an accuracy of the same order
of the calculations of its reverse Ia(s). This fact
justifies that in the following our only objective is
to analyze the propagation of the relative error ε(.)
of the inverse probability Ia(.) along the recursive
procedure (11).

We shall concentrate on the computation of Ia(s)
for integer values of s and replace the variable
s by the variable k used in the previous section
to denote the discrete time instants. With this
change of notation we obtain:

Ia(k + 1) =
k + 1

a
Ia(k) + 1, k = 0, 1, 2, . . . ,

with initial condition Ia(0) = 1. Note that this
is precisely a state space system of the form (1),
with state Ia (instead of x), input u(.) ≡ 1, and
scalar A(k) = k+1

a .

Thus, applying (6), and taking into account that
1 + S(k) is in our case always positive, we can
write, after some simple computations:

ε(k) =
1

1 + S(k)
ε(0),

with

S(k) =
k−1∑

j=0

aj+1

(j + 1)!
.

This leads to the following result.

Theorem 1. If the recursive relation (11) is used
to calculate approximations to Ia(s), s = 1, 2, 3, . . .,
then:

lim
s→∞

ε(s) = e−a ε(0) .

Thus, although the system is not relatively asymp-
totically stable, it is relatively stable and the rel-
ative error is attenuated in time.

In fact, for a and s sufficiently high, Ba(s) may be
calculated with great accuracy even if the initial
value of the iteration is a very rough estimate. The
following example will illustrate this in a perhaps
surprising manner. If recursion (11) is used to
calculate B100(100) by starting, as usual, with the
initial value I100(0) = 1, one obtains (using double
precision arithmetic):

[I100(100)]−1 = 0.075 700 452 710 860 97 (15)

Considering now absurd initial values, such as
1027 or −1027, the result obtained after 100 re-
cursive steps is exactly the same as (15).

In the sequel we study how the relative error is
propagated throughout a finite number of suc-
cessive steps of the recursion, and show that the
attenuation of the relative error does not only
happen from s = 0 to s = k, but also from



an arbitrary step s to step s + l. This study is
the starting point for establishing a method that
allows a fast computation with good accuracy.

In particular, good bounding techniques are needed
to obtain an efficient process of calculating ade-
quate bounds for the relative error. The proposed
approach is based on the following two prepara-
tory lemmas.

Lemma 1. If |ε(s)| ≤ ξ and l ≥ 1, then

|ε(s + l)| ≤ ξ

l∏

j=1

s + j

a
.

Proof: Ba(s) is a decreasing function in s, thus
Ia(s+1) > Ia(s) for all x ∈ R+

0 .The result follows
from the fact that ε(s + 1) = (s+1)Ia(s)

aIa(s+1) ε(s). 2

Since it is trivial that |ε(s+ l)| < ξ, Lemma 1 will
be used only in cases such that s+ l ≤ a. In other
words, we are only able to quantify the decay of
the relative error in this situation.

The following inequality allows an important sim-
plification in the expressions for the bound of the
relative error. Note that the given expression is
specially simple, since it is a quadratic function of
l.

Lemma 2. If a ∈ R+, s ∈ R+
0 and l ≥ n, then:

ln




l∏

j=n

s + j

a


 ≤ − 2 (a− s)− l − n

2a
(l−n+1).

Proof: Applying the arithmetic-geometric mean
inequality, we obtain:

P =
l∏

j=n

s + j

a
≤


 1

a(l − n + 1)

l∑

j=n

(s + j)




l−n+1

.

Since
∑l

j=n (s + j) is the sum of (l−n + 1) terms
of an arithmetic progression, it follows that:

ln P ≤ (l − n + 1) ln
(

2s + n + l

2a

)
.

The result follows applying the known inequality
ln z ≤ z − 1, z > 0 . 2

For easily estimating the number of correct digits
of the approximation Ĩa(s + l) it is important
to establish an efficient process for calculating a
bound for ln |ε(s + l)|. The next lemma suggests
a simple analytic expression, which gives an ade-
quate bound for the intended purpose.

Lemma 3. If |ε(s)| ≤ ξ and l ≥ 1, s ≥ 0, then

ln |ε(s + l)| ≤ − 2(a− s)− l − 1
2a

l + ln ξ .

Proof: Applying Lemma 1, and Lemma 2 the
result is easily proved. 2

Note now that in order to compute Ia(s∗), with
s∗ = s∗0 + l and s∗0 having the same fractional
part as s∗, one may proceed as follows. Take the
(crude) approximation Ia(s∗0) ≈ 0. Then

ε(s∗0) =
0 − Ia(s∗0)

Ia(s∗0)
= −1 .

In other words, zero is an approximation of any
positive quantity with exactly 100% of error, that
is |ε(s∗0)| = ξ = 1.

Recall that, from Lemma 3, after l recursive steps
we have calculated an approximation of Ia(s + l)
with precision |ε(s + l)| such that:

ln |ε(s + l)| ≤ − 2(a− s)− l − 1
2a

l . (16)

Thus if a >> s this approximation is very accu-
rate. Additionally, we can guarantee that any per-
turbation introduced in the values of the recursive
calculations decreases rapidly.

This procedure obviously decreases the compu-
tational burden, since it reduces the number of
iterations, maintaining a good accuracy.

4. CONCLUSION

We have introduced the concept of relative stabil-
ity to study the evolution of the relative error of
the state trajectory of a linear system when the
initial condition is subject to perturbations. This
issue has been analyzed for the recursive compu-
tation of the Erlang-B function, in the context of
Teletraffic Theory. It turns out that in this case
the relative error is strongly attenuated in a small
number of steps, enabling the use of an efficient
computational method.
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