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Resumo

A complexidade e diversidade de processamento que se consegue alcançar com sistemas digitais
é consideravelmente maior que aquele que se consegue obter com sistemas puramente analógicos.
O elevado grau de integração que as tecnologias CMOS permitem, bem como o baixo tempo de
resposta, tem motivado uma cada vez maior migração de processamento de sinal para o domínio
digital, mesmo em funções que até há pouco se consideravam circunscritas ao domínio analógico.
Um exemplo típico é a tentativa de processar digitalmente todos os elementos associados à mod-
ulação e desmodulação de sinal em comunicações sem fios. Tal procedimento coloca, no entanto,
uma pressão elevada nas interfaces com o mundo físico que é por natureza analógico.

Cada vez mais se exigem conversores A/D a funcionar em regime de frequência RF para
cumprir o desígnio de um total processamento digital. O presente documento centra-se neste as-
peto fundamental de conversão A/D em RF, tendo como objetivo fornecer ao leitor um suporte
teórico, conceptual e de estados da arte que permitam entender as escolhas tomadas no desen-
volvimento desta tese que propõe um conversor A/D baseada na arquitetura Σ∆ (Sigma-Delta)
para aplicações de comunicação móvel na banda LTE. O circuito foi implementado usando uma
tecnologia de 28 nm CMOS com uma frequência de amostragem de 1.6 GHz e IF a 700 MHz.
Partindo de uma alimentação de 1.8 V, obteve-se um SNDR de 56 dB, considerando uma banda
de 100 MHz e medido por simulação, em circuito ao nível do transístor.
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Abstract

The complexity and diversity of processing that can be achieved with digital systems is consider-
ably larger than that achieved with purely analogue systems. The high degree of integration that
CMOS technologies allow, as well as the low response time, has motivated an increasing migration
of signal processing to the digital domain, even in functions that until recently were considered
circumscribed to the analogue domain. A typical example is the attempt to digitally process all
elements associated with signal modulation and demodulation of signals in wireless communica-
tions. Such a procedure, however, places a high pressure on the interfaces with the physical world,
which is, by nature, analogue.

More than ever are A/D converters required to operate at RF frequency to fulfil the design of a
total digital processing. This document focuses on this fundamental aspect of RF A/D conversion,
aiming to provide the reader with theoretical and conceptual supporting components and the state-
of-the-art that justify the choices taken during the development of the thesis work, which proposes
an A/D converter based on a Σ∆ (Sigma-Delta) architecture for mobile communication in the LTE
band. The circuit was implemented in a 28 nm CMOS technology using 1.6 GHz sampling rate
and 700 MHz IF. With a 1.8 V power supply, 56 dB SNDR is achieved over a 100 MHz bandwidth.
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Chapter 1

Introduction

1.1 Motivation

Analogue-to-digital conversion plays an increasingly important role in modern electronic systems.

The Analogue-to-Digital Converter (ADC), together with the DAC (digital to analogue converter),

is the electronic building block that actually bridges the digital domain with the real world. Such

components are needed to process analogue signals and, more particularly, to support base-band

modulation for data transmission through radio links with high debits. In fact, digital systems

are the ticking clock of modern smart systems. Being universal machines, the possibilities are

endless. This is something not possible (at least not yet) to accomplish with analogue systems.

Although they have many advantages that should not be overlooked, such as power efficiency and

inherent parallel computing, analogue solutions that can match the processing power found with

digital systems is yet to be found. There are good indications that, eventually, such trend will

change when new computation paradigms arrive, namely those inspired in biological systems.

Nevertheless, the pressure to accomplish faster processing and interaction with the end user is

still, and will be in the times to come, the driving force of modern technology development and

of consumer electronics. It is supported on digital computational paradigms, which, by far, are

the most substantial part of the overall processing. However, faster interaction, together with

remote and intense data exchange, pays a toll on communication spectrum usage. Modulations

that improve spectral efficiency are then of surmount importance. The so called "software defined

radio" and "cognitive radio" are paradigms that try to solve this problem. In principle, a full radio

could become totally digital. Such system demands ADCs that are capable of very high data-rate

conversion, in the RF range and with sufficient bit resolution so that the analogue elements in the

system are almost nonexistence, perhaps just reduced to the LNA (low noise amplifier) and the

inherent analogue processing associated with the ADC itself. This is the motto behind the work

reported here.
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1.2 Challenges in Deep-Submicron Analogue Design

ADC applications stretch from sensors, audio and data acquisition systems, to video, radar and

communications interfaces. The most demanding systems, requiring the highest sampling fre-

quencies, are found in RF communication.

The increasing pressure to decrease chip sizes makes the design of analogue circuits evermore

challenging. Consequences of miniaturisation are the decrease in working voltages, the limited

signal-to-noise ratio due to lower headroom, and lower intrinsic transistor gains, resulting from

the short channel lengths. Higher data-rates and small power budgets demand higher sample-rates,

bandwidth and lower power dissipation for ADCs. Although the scaling of CMOS technologies

has increased the performance of processing units, analogue circuits have not closely followed the

same trend.

In light of these difficulties, new techniques and methods need to be developed in order to

cope with the limitations imposed by lower size technologies, but also that take advantage of ever

faster and more compact circuitry. One possibility is to abandon encoding the information in the

amplitude/time domain and translate it just in time, such that instead of the original signal, only the

voltage difference between samples is transmitted. This signal is then converted into digital codes

for further, more efficient, digital processing. The challenge is now to perform a conversion with

good linearity and time resolution, such that the signal can be recovered back with a sufficiently

high number of effective bits.

There are several ways to accomplish this conversion. One off the best is the Σ∆ modulator

that, using a low bit resolution ADC (as low as 1-bit), can accomplish very high resolution, as

high as 12 bits. The modulator works by shaping the quantisation noise through a low-pass filter,

thus moving it to higher frequencies, away from the signal bandwidth. This method, however, is

not appropriate for high frequency signals, in the RF region. A band-pass modulator is required,

where the central frequency is shifted away from DC to the desired carrier. Now the quantisation

noise is shifted above and below the passing band of the signal, thus achieving similar results to

the low-pass case.

1.3 Problem and Goals

In light of these challenges, this dissertation presents a new architecture and design of a band-pass

Σ∆ converter to operate at a sampling frequency of 1.6 GHz, with the intermediate frequency lying

in the RF frequency range of 700 MHz. The employed technology is a 28 nm CMOS fabrication

process. Low-power consumption, low-area usage and good FOM values are targeted, making

the converter suitable for portable devices and capable of competing with current state-of-the-art

solutions. The concrete application is focused on conceiving an ADC that is capable of achieving a

direct A/D conversion of radio signals, specifically those in the lower-end of the UMTS spectrum,

associated with network protocols such as LTE. A possible LTE-Advance solution, with the full

aggregated bandwidth of 100 MHz can also be envisioned, as long as a down conversion is first
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accomplished to the lower 700 MHz band at the receiver or a undersampling technique is used.

An SNR in the order of 40 dB was expected, achieving approximately seven bit conversion.

1.4 Document Structure

This document is divided into six chapters, corresponding the first to the present chapter that serves

as an introduction to the developed work and its motivation. A background on the analogue-to-

digital conversion subject matter and its key aspects are given in Chapter 2. In Chapter 3, the

development of Σ∆ converters, and technology until present day, is outlined. A brief historical

introduction is given followed by some theoretical background on Σ∆ modulation. Several imple-

mentation solutions and common problems associated with their design are also discussed. The

chapter concludes with a collection of State-of-the-art Σ∆ ADCs. The proposed ADC architecture

is introduced in Chapter 4. A small motivation for this particular design is given, followed by a

thorough functional analysis in Matlab. Simulation results are given along with several perfor-

mance plots to prove its feasibility. Chapter 5 shifts to the circuit level implementation. Several

design blocks used are discussed and a circuit-level schematic of the converter is presented. The

chapter is concluded with transistor level simulations and with a comparison of results with state-

of-the-art converters. Finally, concluding this document, in Chapter 6, an outlining of the problem

and proposed solution is given as a summary. A retrospective is made concerning the objectives

for this work and achieved goals. The final results are briefly discussed within a real world ap-

plication scenario, ending with future work directions. An appendix is also added, presenting the

relevant Matlab code used in the scope of this work.
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Chapter 2

Fundamentals of Analogue-to-Digital
Conversion

This chapter summarises the fundamental concepts that a reader should understand in order to

comprehend the options taken during the course of work which led to this dissertation. First,

a brief introduction to the topic is given, followed by important aspects and performance speci-

fications of ADCs. Several converter architectures are also discussed. Important reference pub-

lications were followed in the development of this chapter. For more detail on the subject it is

recommend the reading of [2], [5], [6] and [7].

2.1 Analogue-to-Digital Converter

An ideal A/D converter is a device that takes an analogue input (e.g. voltage), a reference voltage

Vref and produces a digital output Bout. The conversion naturally produces an error that is related

with the final finite bit resolution – the quantum Q = 1 LSB = 1/2N , being N the number of bits.

This error is commonly referred as the quantisation error, Vx, defined as:

−1
2

V LSB ≤ V x ≤
1
2

V LSB (2.1)

A/DVin Bout

Vre f

Figure 2.1: ADC typical block.
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VLSB is the voltage difference between adjacent bits (the quantum). The LSB (least significant bit)

is an equivalent measure but it has no units:

V LSB =
Vre f

2N = 1 LSB×Vre f (2.2)

Then the output can easily be calculated with the following expression, where bN is the most

significant binary bit (MSB) and b1 the least (LSB):

V ref (b1 2−1 + · · ·+ bN 2−N) = V in±Vx (2.3)

As Fig. 2.2 shows, there are several input values that can produce one single digital out-

put. This uncertainty is the quantisation error. If transitions are positioned with an offset of

1/2 VLSB, the error has zero mean. All inputs should be kept within the quantisation interval

of
[
−1/2N−1 ·Vre f ,

(
2N−1

)
/2N ·Vre f

]
, otherwise the quantisation error would be larger than

VLSB/2 (overloading).

Bout

Vin

Vre f

1LSB

11

10

01

00
0 1/4 1/2 3/4 1

Figure 2.2: ADC transfer curve.

2.1.1 Digital-to-Analogue Converters

An ideal D/A converter performs the inverse task of the ADC.

D/ABin Vout

Vre f

Figure 2.3: DAC typical block.

The input will be a stream of bits that are converted into analogue outputs. The result can be

calculated as:

V out = V ref (b12−1 + · · ·bN2−N) = V ref Bin (2.4)
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The transfer curve, shown in Fig. 2.4, presents well defined analogue values at the output. This

is a direct result of quantisation since, digitally, we use a finite number of levels to define a signal.

The maximum possible value of Vout is not Vref but (Vref – VLSB).

11100100 (100)
0

1/4

1/2

3/4

1

Bin

Vout

Vre f

Figure 2.4: DAC transfer curve.

2.2 Quantisation

Converting the signal involves quantisation, which is bound to introduce an error, even in ideal

ADCs. The size of the error depends on how large the quantisation intervals are.

An ADC works by taking the voltage on a pin and assigning a digital number to it, depending

on the quantisation law in use. There can only be a limited amount of digital codes in use so there

will always be quantisation errors made. The error will depend on how big the intervals are related

to the signal’s amplitude span. A critical situation is when the signal is too big for the code scale

in place, resulting in a big quantisation error. One should choose the interval layout and maximum

amplitude in such a way that the signal is entirely within its limits, but also that all levels are used,

so that efficiency is at its maximum and the signal does not drown in quantisation noise.

The quantisation error is simply the difference between the output voltage level and the input

one, as illustrated in Fig. 2.5.

A/DVin
V1

VQ

D/A
B

Figure 2.5: Quantisation error.

When there is a high number of quantisation levels and samples, the error can be modelled as

an additive white noise with a uniform probability distribution [5].
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The following Figs. 2.6 and 2.7 show the quantisation error when a ramp signal is applied to

the input.

Vin

V1

time
Figure 2.6: Quantised ramp signal.

time

1/2VLSB

−1/2VLSB

VQ

Figure 2.7: Quantisation error of ramp signal.

In order to calculate the quantisation noise power, one can use a stochastic approach in which

the noise is a random variable uniformly distributed in the interval ± VLSB/2. The probability

density function pe will be a constant value, in an interval, as shown in Fig. 2.8.

1/2VLSB−1/2VLSB

1
VLSB

pe(e)

Figure 2.8: Error probability density function.

Finally, in order to calculate the noise power, and bearing in mind that the average value of the

distribution is null, we calculate the distribution’s variance:

V q
2 =

∫
∞

−∞

x2 pe dx (2.5)

V q
2 =

∫ V LSB

−V LSB
x2 dx (2.6)

V q
2 =

V LSB
2

12
(2.7)

From the previous figures one can verify that, for each additional bit added, the size of VLSB

halves. From the quantisation noise final expression, one can easily see that by adding one bit the

power decreases by a factor of four, or equivalently 6 dB.
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2.3 Specifications

2.3.1 Sampling Performance

In general, an A/D converter has to have the input stable, unchanged, for a minimum period of

time that corresponds to the minimum time needed for converting a voltage to its correct binary

code. Sample and hold circuits are those responsible for sampling and then holding the sampled

value constant during the time necessary for a correct conversion. We assess their performance

using specific parameters, along with ADCs and DACs. It is useful to lay them out before further

discussion.

• Conversion Time is the time taken for the converter to complete a single measurement. It

includes the acquisition time of the input.

• The Sampling Rate is the speed at which samples can be converted. Typically, it is calcu-

lated as the inverse of the conversion time.

• Settling Time is set as the time that it takes for the converter to settle on a specific amount

of the final value.

• Aperture Jitter, Aperture Uncertainty or Sampling Time Uncertainty is the result of the

changing sampling time between samples. This effect is more noticeable with high speed

signals since the input changes more rapidly.

• The Sampling Pedestal or Hold Step is an error that occurs whenever a sample-and-hold

goes from the sample to hold mode. There will always be a small error in the voltage to be

held during this operation change. This error should not only be made as small as possible

but also signal independent, in order to avoid non-linear distortion.

• One other parameter is the measure of isolation of the sample signal from the input during

hold mode. The output voltage should not follow any change of the input. Realistically,

there is always some leakage due to parasitic capacitances.

• The Tracking Speed is the speed at which a sample and hold circuit can track the input

signal. The sample and hold will always have limitations on the input since it introduces a

-3 dB bandwidth and has finite slew rate.

• The Droop Rate consists in the slow change in the output voltage, when in hold mode, due

to leakage currents. This parameter is not relevant for CMOS and high-speed designs since

its effect is rather small in both.

2.3.2 Static Performance

Static performance parameters are measured with low-frequency signals or with an actual DC

input. For A/D converters it is easier to measure transitions rather than midpoint values. Therefore,

all errors will be measured in terms of analogue transition values, Vij.
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• Resolution of a converter is defined as the number of analogue levels that correspond to dis-

tinct digital words. A N-bit resolution converter means that it defines 2N analogue encoding

levels.

• In an A/D converter, the Offset Error is defined as the deviation of V0. . . 01, from 1/2 LSB

or:

Eoff =
V 0. . . 01

V LSB
− 1/2 LSB (2.8)

For a D/A converter, it is defined as the actual input for the input code that should produce

a zero output, or:

Eoff =
V out

V LSB

∣∣∣∣
0...0

(2.9)

• Gain Error is defined as the difference in full-scale values of the ideal and actual curves.

For an A/D converter it can be calculated as:

Egain =

(
V 1. . . 1

V LSB
− V 0. . . 01

V LSB

)
−
(
2N−2

)
(2.10)

Similarly, for a D/A converter:

Egain =

(
Vout

VLSB

∣∣∣∣
1...1
− Vout

VLSB

∣∣∣∣
0...0

)
−
(
2N−1

)
(2.11)

• After the offset and gain errors have been removed, the Integral Non-Linearity (INL) can

be measured as the characteristic’s deviation from a straight line, which can be defined either

as the one that ties the endpoints of the converter’s transfer response or the best-fit straight

line such that the maximum difference is minimized. INL is defined for each digital word.

An example of maximum INL can be observed in Fig. 2.9 (DAC example).

• Differential Non-Linearity (DNL) is defined as the variation in analogue step sizes that

differ from 1 LSB. An ideal converter has the maximum DNL set at 0 for all digital values.

DNL is also defined for each digital word.

• Monotonicity characterises if a converter’s output increases as the input increases as well.

In other words, a converter is monotonic if its transfer slope has only one sign along the

characteristic.

• Missing Codes happen when the DNL is bigger than 1 LSB or the INL is bigger than 0.5

LSB, as shown in Fig. 2.10.
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end point

best f it

Vout

Vre f

Bin
00 01 10 11 (100)

0

1/4

1/2

3/4

1

Figure 2.9: Integral Non-Linearity.

DNL = +1LSB

00

01

10

11

0 1/4 1/2 3/4 1

Bout

Vin

Vre f

Figure 2.10: Differential Non-
Linearity.

2.3.3 Dynamic Performance

• The Dynamic Range is defined as the ratio between the output power of a sinusoidal input,

with a given amplitude, and the output power noise level [1].

• Signal to Noise Ratio (SNR), as the name implies, is the ratio between these two quantities

defined in dBs. Typically, it is defined for a sinusoidal input signal, that varies between 0

and Vref:

SNR = 20log
(

V in(rms)

V Q(rms)

)
= 20log(

V ref/(2
√

2)
(V LSB/(

√
12))

= 20log

(√
3
2

2N

) (2.12)

SNR = 6.02N + 1.76dB (2.13)

As a rule of thumb, each bit added equals 6 dB increase in SNR, and vice-versa.

• Similarly, one can introduce the concept of Effective Number of Bits (Nef). An N-bit

converter may not be able to deliver N data bits at the output. With oversampling, the

exact opposite may occur in which the Nef is bigger than the number of working bits of the

converter.

• Signal to Noise plus Distortion Ratio (SNDR)

This performance measure is similar to SNR except that non-linear distortion, generated

by the converter, are also taken into account. Noise components will be root-mean-square

summed with harmonics. SNDR, also called SINAD, is dependent on both the amplitude

and frequency of the input.
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• Total Harmonic Distortion (THD)

THD is the ratio of the signal power to the total power of the harmonics of the fundamental

signal. The number of harmonics accounted for depends on the manufacturers choice, and

normally follows the IEEE standard [8], which recommends to use up to the tenth harmonic.

• Spurious Free Dynamic Range (SFDR)

SFDR is the ratio between the RMS value of the input amplitude and the RMS value of

the highest spurious spectral component. The SFDR provides information similar to the

total harmonic distortion but focusing on the worst tone. There is dependency on the input

amplitude since large signals give the highest tone, otherwise tones due to the non-linear

nature of the converter become dominant.

• Intermodulation Distortion (IMD)

IMD accounts for tones caused by the mixing modulation between several sine waves in the

input, resulting in spectral components at the sum and difference of frequencies.

2.3.4 Converter Performance Comparison

A Figure of Merit (FOM) was proposed by [9] and adapted by [10] to compare the performance

of different Σ∆ modulators. The formula is as follows:

FOM =
Power(W )

2Resolution(bit)×DOR(S/s)
×1012 (2.14)

Resolution is in fact the effective number of bits and DOR is the Digital Output Rate which

equals the double of the signal’s bandwidth. The FOM translates the amount of energy, in pico-

joules per bit, needed per conversion. Many current papers use the following definition for the

FOM:

FOM =
Power(W )

2ENOB(bit)×2BW (Hz)
(2.15)

Another adaptation of the FOM formula was made by [11] for band-pass converters, since the

previous definition is more suitable to low-pass modulators and having the input signal at the IF

frequency also consumes more power [12]. The formula is the following, where fN corresponds

to the Nyquist rate:

FOMBP =
Power

2ENOB×2BW
(

1+ 3
fIF

fN

) (2.16)

2.4 ADC Architectures

There are two types of ADCs:
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• Nyquist Converters generate outputs that have a single correspondence with the input

value. These converters rarely work at Nyquist rate since aliasing would be extremely hard

to avoid.

• Oversampling Converters operate at much higher frequencies than the Nyquist rate, at

least 20 times. They increase the output’s SNR by trading in samples for effective bits,

since the noise will spread out over a larger bandwidth.

2.4.1 Flash

Flash converters are a good approach for high-speed converters. First, the input signal is applied

to the 2N comparators. Each one of them is connected both to the input voltage and to a node Vri,

which serves as the reference voltage for comparison. During the second step, the comparators’

output is coded and converted into an N bit binary word.

Vre f

R/2

R/2

R

R

R

R

R

R

R

Vr1

Vr2

Vr3

Vr4

Vr5

Vr6

Vr7

Vin

Encoder N bits Digital
Output

Figure 2.11: Flash Converter.

While this topology allows fast conversion, it requires a large number of comparators, which

takes up a lot of area and has a high-power consumption. Other problems that flash converters

present are:

• High Input Capacitive Load because of the high number of comparators. This limits the

conversion’s speed and requires a power-hungry buffer;
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• Comparator Latch-to-Track Delay – a comparator takes some time to come from latch

mode to track mode when the input is of opposite polarity from the previous one;

• Signal and/or Clock Delay – small clock differences at different comparators may cause

noticeable errors;

• Bubble Error – sometimes it may happen that an output bit is set to "1", within a string of

0s due to the comparator’s metastability, noise, cross talk, limited bandwidth, etc.

2.4.2 Two Step Flash

Two Step Flash converters are more popular than normal Flash because they require less silicon

area, dissipate less power, have lower capacitive load and the comparators need to handle less

rigorous voltages, even though a higher latency results.

Vin
ADC

N/2 MSB DAC

N/2 MSB bits

2N/2

N/2 LSB bits

ADC
N/2 LSB

Figure 2.12: 2 Step Flash Converter.

The first step of conversion provides the N/2 most significant bits. This result will be converted

back to analogue and subtracted from the original input signal. The difference is amplified to the

same converting range and fed back to obtain the remaining bits. This topology requires 2(N/2+1)

which is considerably less than the Flash method requires.

2.4.3 1 bit Pipeline

The two-stage architecture can be generalised to multiple ones, each of them providing a single

bit. The first stage finds the most significant bit, and the last one the least significant. To maximise

efficiency a pipeline approach is taken where no 1-bit converter stays idling. This way, after N-

1 clock cycles, a full conversion will be complete every cycle. This approach is advantageous

when small area of implementation is needed. It also presents low offset and gain errors with

high resolution and linearity at the expense of low complexity circuitry. Unfortunately, errors

are propagated through the pipeline process. This means that accuracy is constrained by the first

stages of the pipeline.
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Vin

bi

×2

Vre f /2

Vin+1

Figure 2.13: 1-bit Pipeline Converter.

2.4.4 Double Integration Ramp

In the Double Integration Ramp method, conversion is performed in two steps: first a ramp is

generated during a fixed time, with a slope proportional to the input voltage; the second step will

involve decreasing this value until zero with a constant slope, controlled by a reference voltage,

and measuring the time it takes, which is directly proportional to the input voltage. Time is counted

by a binary counter which outputs the final digital word.

V

T1 T2

constant time
constant slope

time

Figure 2.14: Integrating ramp.

Though this method does not present gain error it can have offset error, however, it can be

removed with a quad-slope conversion. Another disadvantage is the slow speed conversion and

input voltage dependency.

2.4.5 Successive Approximations

Successive Approximations converters have a good compromise balance between conversion time

and circuit complexity. The conversion process uses a set of approximations, from a successive

approximations register (SAR), starting with the most significant bit. After each iteration, different

reference voltages are applied to find out the current bit, from MSB to LSB. This is basically a

binary search algorithm which tries to find the closest digital word that matches the input signal.
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Vin S/H

bits

SAR

DAC
Vre f

Bout

Figure 2.15: Successive approximations converter.

2.4.6 Time Interleaved

A Timer Interleaved conversion makes use of one ADC topology, repeated and connected in par-

allel. The input signal is sampled and then fed to several sample-and-hold circuits that feed their

own ADC. Each stage performs a part of the full conversion which enables for a frequency N times

bigger, with N being the number of parallel ADCs.

S/H

S/H

S/H

S/H

S/H

Vin

Φ0

Φ1

Φ2

Φ3

Φ4

ADC

ADC

ADC

ADC

Mux
Digital
Output

Figure 2.16: Time Interleaved Converter.

Time interleaving is a good option to increase the frequency of conversion but it carries some

constraints in performance. Though each individual S/H is not critical, the first one is, and should

be properly designed. The remaining ones may suffer from a small amount of jitter without com-

promising the final result. Despite this, all channels must be really well matched.



2.5 Oversampling 17

2.5 Oversampling

Oversampling is the process of sampling a signal at much higher frequency than the Nyquist

rate. Although this rate would be theoretically enough for a perfect reconstruction, oversampling

improves typical real world problems such as bad resolution, noise, aliasing and phase distortion.

Oversampling relaxes the requirements on the analogue circuits, at the expense of more com-

plicated digital circuitry. This trade-off becomes more relevant for modern submicron technolo-

gies where complicated high-speed digital circuitry is more easily realised with lesser area. These

technologies also employ low voltage power supplies, which is challenging when designing high-

resolution analogue circuitry.

With oversampling, analogue components do not require so strict matching tolerances and

amplifier gains. Anti-aliasing filters and smoothing filters on D/A conversion also have their re-

quirements simplified. Furthermore, a sample-and-hold is usually not required at the input of such

a converter.

2.5.1 Oversampling Advantage

Oversampling is the process of sampling a signal, which has a limited bandwidth f 0, at a sample

rate higher than the Nyquist or 2 f 0. The oversampling ratio is defined as:

OSR =
f s

2 f 0
(2.17)

Since the signal information resides below the frequency f 0, the sampled quantised output

can be filtered, removing any quantisation noise or interference signals higher than this frequency

threshold.

The spectral density of the quantisation noise is defined as follows:

kx =
VLSB√

12
1√
f s

(2.18)

Oversampling will allow for the quantisation noise to be spread out on a larger bandwidth.

Since the spectral density is constant, the noise power will be lower in the band of interest, as

Fig. 2.17 shows.

− fs/2 fs/2
2 fB

− f ′s/2 f ′s/2

Vq
2

V ′q
2

Figure 2.17: Noise spreading due to oversampling.
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2.5.2 Signal to Noise Ratio

If we consider a sinusoidal input, its maximum value, without the occurrence of clipping, is:(
2N VLSB

)
2

(2.19)

The power of such a signal is:

Ps =
1
2

(
2N VLSB

2

)2

(2.20)

Ps =
22N VLSB

2

8
(2.21)

Now we have to calculate the power of the noise that is present in the bandwidth of interest:

Pe =
∫ f s

2

− f s
2

kx
2 |H ( f )|2 d f (2.22)

Pe =
∫ f 0

− f 0
kx

2d f (2.23)

Pe =
VLSB

2

12
1

OSR
(2.24)

Oversampling has the advantage of decreasing the quantisation noise power in half for each

doubling in the sampling frequency. Remembering our rule of thumb, that equals 0.5 bits, since

doubling the SNR translates into a 3 dB increase.

Knowing the signal and noise power we can now calculate the maximum achievable SNR or,

more correctly defined Signal-to-Quantisation-Noise Ratio (SQNR).

SQNR = 10log
(

Ps

Pe

)
(2.25)

SQNR = 10log
(

3
2

22N
)
+ 10logOSR (2.26)

SQNR = 6.02N + 1.76+ 10logOSR (2.27)

This expression is recognisable has having the same form as equation 2.13, the typical SNR

value of an N-bit quantiser, only added with a term that translates the oversampling advantage.

Here we can more easily see the 3 dB/octave increase in SNR. This happens because, when over-

sampled, the signal’s samples are averaged and added linearly. The noise portion is added as the

square root of the sum of all squared components.

It is worth noting that other forms of noise present in the circuit, such as thermal noise, will

probably also be filtered out. Therefore, expression 2.27 generally holds.



Chapter 3

Sigma-Delta ADC

In this section the State-of-the-Art of Σ∆ modulators will be presented. To develop this chapter

several documents were taken into account. Some references are worth highlighting, such as [13],

[2], [14], [15], [16], [17] and [18]. Some other authors will be cited throughout the chapter.

First, an historical perspective followed by some breakthroughs throughout history will be

given [19]. Afterwards details on how conversion operates with these ADCs will be unfold and its

advantages, along with common problems, will also be described. The chapter will carry on with

different implementations of this particular modulator.

It is worth noting the terms converter and modulator have the same meaning and are used

along this document interchangeably.

3.1 Historical Perspective

Sigma-Delta modulation or, more correctly, Delta-Sigma modulation, was first proposed in [20]

as an alternative to Pulse Code Modulation (PCM) and Delta Modulation (∆M). These schemes

had much higher transmission efficiency than previous techniques because they transmitted only

the value changes (∆) between consecutive samples, instead of the actual sample [21].

Analog Digital

1-bit

Input Output

DAC

Figure 3.1: Delta Modulation Scheme.

In ∆M, as shown in Fig. 3.1, the analogue signal is quantised by a single-bit ADC. The feed-

back loop converts the digital outback to an analogue signal. This is integrated and subtracted

19
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from the input. The digital output can only assume two different values, a “1” or a “0”. These can

be interpreted, respectively, as a positive excursion from the previous sample and a negative one.

If there is no change, the transmitted signal is a pattern of equally alternating “0s” and “1s”.

∆M has no limit on the tracked signal’s amplitude because it is possible to transmit any num-

ber of pulses with the same sign. The problem is that slope clipping exists. If the analogue signal

changes too quickly the quantiser may not be able to keep up the pace. To avoid this, high sam-

pling rates are required, much higher than Nyquist rate. Also, since information is carried in the

differentiation of the signal at the sending end, there has to be integration at the receiving end to

get the signal back, which leads to accumulative errors.

Over the following years concepts such as oversampling and noise shaping were introduced,

which helped achieving higher resolution. The concepts present in the Σ∆ ADC were now almost

all laid out. Digital filtering and decimation were not, since the technology at the time was not

good enough to do so. So, in 1962 the paper [20] was published and in 1963 [22] a second one

gave excellent theoretical background on the concepts of oversampling and noise shaping.

As previously stated, this ADC design offers several advantages over other architectures,

namely for high resolution and low frequency applications. The one-bit ADC is inherently lin-

ear and the low-cost CMOS foundry process can be applied, because of the digital nature present.

Modern CMOS Σ∆ are the first choice of converters for voice and audio applications. Also,

low-frequency Σ∆ ADCs have replaced older integrating converters in precision industrial mea-

surement applications.

3.1.1 Noise Shaping

Though oversampling improves the SNR by reducing the amount of quantisation noise in the

signal’s bandwidth, it is possible to further shape the noise transfer function using a feedback

approach, so that it moves to higher frequencies, further away from the band of interest, as shown

in Fig. 3.2. The dynamic range will be considerably improved compared to no noise shaping at

all. Noise shaping is a corner stone of the Σ∆ converter.

band

noise

f

Figure 3.2: Noise shaping.
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3.2 The Σ∆ Converter

The Σ∆ modulation scheme, as the name suggests, realises two different operations: Σ or inte-

gration and ∆ or difference. Thus, the converter continuously integrates the differences. There is

some discussion in the scientific community on whether it is called Σ∆ or ∆Σ. In this report the

naming Σ∆ will be used, though some references use the other nomenclature.

The following figure is a general representation of a sigma-delta modulator. It comprises a

loop filter and a quantiser, followed by a feedback feeding.

u(n) H(z)
x(n)

quantiser

y(n)

Figure 3.3: Σ∆ converter generic schematic.

The input will be integrated over the loop filter H(z). The quantiser will then produce the

equivalent digital symbol. Depending on whether the quantiser produces a logical or a voltage

value, a DAC maybe required in the feedback loop. The output will be subtracted to the next

sample input and the process repeats. Fig 3.4 provides a visual aid in understanding the internal

workings of the modulator.
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Figure 3.4: Internal signals of a Σ∆ modulator.
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We can also represent a linear model of the modulator, where the quantiser can be modelled

by an additive, input independent noise.

x(n)
H(z)u(n) y(n)

e(n)

Figure 3.5: Σ∆ converter linear noise model

Analysing this linear model, we can deduce the transfer function, taking into account two

independent inputs, the signal input giving rise to the STF and the noise input to the NTF. Note

that considering these inputs independent is an approximation and does not represent reality.

ST F(z) =
Y (z)
U(z)

=
H(z)

(1+H(z))
(3.1)

NT F(z) =
Y (z)
E(z)

=
1

(1+H(z))
(3.2)

The final transfer function of the modulator is:

Y (z) = ST F(z)U(z)+NT F(z)E(z) (3.3)

To help us shape the noise it is useful to note that the poles of the loop filter match the zeros

of the NTF, resulting in it going to zero when the filter goes to infinity. The STF should be

approximately unit over the band of interest. This is achievable by choosing a H(z) that has large

magnitude in this very band. Noise present in higher frequencies will not be affected, however,

one can digitally filter it out.

The user should be aware that, since H(z) has large gain in the bandwidth, the input signal can

easily saturate the filter, x(n). In reality, the input signal should actually be significantly smaller

than the saturation level, in order to meet stability requirements.

3.2.1 Advantage of Single-bit Converters

A common problem in conversion is linearity. Oversampling improves the SNR but does not affect

linearity. As an example, to realise a 8-bit converter using an oversampled 4-bit one, an INL lower

than 1/8 LSB or an accuracy of 1/28 which equals 0.4 %, is required.

Such accuracies may be difficult to achieve. That is why the Σ∆ converter uses a 1-bit quan-

tiser, as it is inherently linear. Since the quantiser only has two output values, the characteristic

curve is a straight line connecting these two points.
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3.2.2 First order Shaping

First-order shaping is the simpler noise shaper that a Σ∆ modulator can realise. To implement it,

it is useful to remember the relation between H(z) and NTF. The noise has to be high-pass filtered.

Thus, its transfer function must have a zero at DC resulting in a
(
1− z−1

)
NTF. This translates

into a pole at DC for the filter’s transfer function H(z):

H(z) =
1

z−1
(3.4)

H(z) should then be a discrete-time integrator. A implementation using only discrete time unit

delay blocks and 1-bit quantisation is suggested in Fig 3.6.

quantiser

u(n) y(n)z−1

Figure 3.6: 1st order low-pass Σ∆ converter

Analysing the overall transfer function of the first-order modulator presented in Fig. 3.6, and

taking into account the linear model shown in Fig. 3.5 we get:

Y (z) = z−1U(z)+
(
1− z−1) E(z) (3.5)

The signal at the output will be a delayed version of the input signal together with a high-

passed noise band.

In order to determine the overall SQNR of this modulator we need to calculate the amount of

noise present in the band of interest. We first analyse the noise transfer function and replace z with

e j2π f/ f s , which leads to:

|NT F( f )|= 2sin
(

π f
f s

)
(3.6)

To calculate the quantisation noise power that falls into the band of interest, 0 to f0, similarly

to 2.22 and 2.23, we do:

Pe =
∫ f 0

− f 0
kx

2 |NTF ( f )|2 d f (3.7)

After some approximations and assuming the input signal power in 2.20, we obtain the maxi-

mum achievable SQNR for this first-order Σ∆ converter:

SQNR = 6.02N + 1.76−5.17+ 30log(OSR) (3.8)
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Comparing to 2.27, we get an SNR improvement of 9 dB, per each doubling in OSR, instead

of 3 dB with no noise shaping. In terms of effective bits, a gain of 1.5 bits/octave is achieved with

first-order noise shaping against 0.5 bit/octave, with no shaping at all.

3.2.3 Second order Shaping

In order to realise a second-order shaping the STF will remain z−1 but the noise transfer function

will be squared:

NT F =
(
1− z−1)2

(3.9)

A schematic of a second-order Σ∆ modulator, realising this NTF is presented in Fig 3.7. Note

that two feedback stages are now necessary, one per each order increase. An implementation using

only discrete time unit delay blocks is suggested in Fig 3.8.

u(n) y(n)
1

1− z−1
z−1

1− z−1

Figure 3.7: 2nd order low-pass Σ∆ converter.

z−1

z−1u(n) y(n)

Figure 3.8: 2nd order low-pass Σ∆ converter.

To determine the maximum SQNR the same procedure as before, in 3.6 and 3.7, is applied.

This leads to the following expression:

SQNR = 6.02N + 1.76−12.9+ 50log(OSR) (3.10)

Now comparing to first-order shaping and its maximum achievable SNR in 3.10, we get 15 dB

and 2.5 bits per octave increases versus 9 dB and 1.5 bits.

3.2.4 Higher Order Shaping

Increasing the noise shaping order allows for higher resolution since more noise power is being

pushed outside the signal’s bandwidth. Higher noise shaping also allows to achieve the same

resolution with lower sampling rate, thus relaxing the requirements on analogue hardware.
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An L order modulator, following the previous implementations, will realise a STF with a unit

delay z−1 while the NTF will contain L zeros at DC,
(
1− z−1

)L [23].

u(n) y(n)
z−1

1− z−1
z−1

1− z−1
z−1

1− z−1

Figure 3.9: Example Lth order low-pass Σ∆ modulator.

Adding further stages to the modulator, performing an Lth order noise shaping, it can be shown

that the maximum achievable SQNR is:

SQNR = 6.02N + 1.76−10log
(

π2L

2L+ 1

)
+(20L+ 10) log(OSR) (3.11)

Thus, the SQNR increases, with each doubling in OSR, by (6L+3) dB or, equivalently, (0.5+L) bits.

Other possible implementations will be discussed in 3.4, such as cascaded topologies, as these

implement both low and band-pass modulators.

3.2.5 MASH Structure

One approach to realise higher order Σ∆ modulators is the Multi-Stage Noise Shaping (MASH)

[24][25]. Fig. 3.10 shows an example of a MASH converter. The quantisation error of each stage

is fed to the next one. With the aid of digital processing it is possible to cancel the noise generated

by quantisation in the previous stage, using the digital output of the current one.

The main advantage of a MASH structure is that stability is guaranteed for the whole system

if each individual stage is stable. First and second-order modulators are unconditionally stable.

Thus, these are common block in the building of MASH structured converters.

u(n) H(z) y(n)

H(z)

Figure 3.10: MASH structure example.
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3.2.6 Multi-bit Converters

Despite their high linearity, or at least their ability to realise highly linear data conversion, 1-bit

converters have disadvantages such as instability, since there is a high nonlinearity in the feedback,

and idle tones. In order to obtain high SNR using a 1-bit quantiser, high order modulation is

needed, which carry difficulties in using high OSR and instability.

The amplifier’s bandwidth must be higher than the clock frequency. This imposes a big con-

straint on speed and power usage, limiting their use to a handful of applications. Due to the high

output swing of op-amps, reference voltages are a fraction of the supply voltage. Thus, using low

voltage supply can make the reference voltage lower than the thermal noise, drowning it. The op-

amp slew rate, together with the reference voltage, limits the maximum usable frequency. For the

1-bit quantiser, the maximum input of the integrator is about 2 Vref. If Vref is too big, the slew rate

must be proportionally lower. Using a multi-bit quantiser lowers the maximum input by lowering

the difference between samples.

Naturally, using a multi-bit quantiser improves the ENOB, but at the expense of more power

consumption. There is a power trade-off between OSR and number of bits in the quantiser.

3.3 Band-pass Σ∆ Converters

Not all signals are suitable for the standard low-pass Σ∆ converter. The low-pass converter has its

signal band between DC and a given frequency, which stands a given ratio below the frequency

sample. But, some signals, for instance, radio signals, have been modulated around a high fre-

quency carrier, though with a smaller or bigger amount of information bandwidth. Therefore, it

would be useful to have a shaping that would remove noise only from this bandwidth. After con-

version, the desired signal could be band-pass filtered, removing any out of the band noise and

adjacent channels. This is where the band-pass Σ∆ converter comes in handy. Instead of hav-

ing the loop filter H(z) with a high DC gain, band-pass Σ∆ modulators shift the high gain to a

frequency fc with a bandwidth fB dependent on the OSR. It should be noted that a second-order

band-pass Σ∆ converter’s dynamic range matches a first-order low-pass one.

3.3.1 Second-order Band-pass Modulator

In order to obtain a second-order modulator, with f c = f s/4, the loop filter must have its poles at

± j which gives a resonator with infinite gain at this frequency:

H(z) =
z

z2 + 1
(3.12)

An implementation of the resonator is suggested in Fig. 3.11. The overall transfer function

will be:

Y (z) =
z

z2 + z+ 1
U(z)+

z2 + 1
z2 + z+ 1

E(z) (3.13)
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u(n) y(n)z−1

z−1

Figure 3.11: 2nd order band-pass Σ∆ converter.

When the input frequency is f 0/4, since z = e j2π f/ f s , z will equal e jπ/2 or ± j. Analysing the

transfer function one can see that, with this input, the STF will be unit and the NTF will be zero.

As mentioned before, the second-order band-pass modulator will match the first-order low-

pass in terms of dynamic range. This is why the SNR will also increase 9 dB/octave. To achieve

the same 15 dB/octave a fourth-order modulator, presented in the next section, has to be used.

3.3.2 Fourth-order Band-pass Modulator

To obtain the equivalent fourth-order band-pass converter, a transformation of z−1 to −z−2 can be

applied to the second-order low-pass converter. An implementation [26] is proposed in Fig. 3.12.

The resulting transfer function is:

Y (z) = −z−2U(z)+
(
1+ z−2)2

E(z) (3.14)

u(n) y(n)
1

1+ z−2
−z−2

1+ z−2

Figure 3.12: 4th order band-pass Σ∆ converter.

The dynamic range increase matches that of the second-order low-pass modulator, that is 15

dB/octave.

3.3.3 Multi Path Architecture

Multi path architecture is much easier to implement in band-pass Σ∆ design, because of multi-

rate processing. The hardware used for a converter is replicated N times and time-interleaved,

allowing each path to work a frequency N times lower than the effective sampling rate. A N-path

architecture works using multi-rate processing as the signal is combined back together at output

to the effective final rate.
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X(z)

Y (z)

H(z)N z−1N

H(z)N Nz−1

H(z)N Nz−1

z−1

... ... ... ...
...

Figure 3.13: N-path converter architecture example.

For the multi-path architecture shown in Fig. 3.13, it can be shown that if the NTF of each

path is 1− z−1, using a N-path architecture it is transformed to:

H(zN) = 1− z−N (3.15)

This technique allows a band-pass Σ∆ modulator to be built using low-pass converters in

each of the paths. Each path works at a rate of 1/N the final effective sampling rate. An adding

multiplexer combines each paths’ output. Ideally the OSR increases in the same ratio as the

effective sampling frequency. Unfortunately, for N > 2 this is not true as some noise shaping is

applied to unnecessary frequency locations.
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Figure 3.14: Multi-path NTF curves for different path numbers.



3.4 Cascaded Implementations 29

Fig. 3.14 shows the noise shaping curves for a 2, 4 and 8 path modulator. One can observe

that there is, respectively, zeros placed at 1, 2 and 4 different locations. This is only useful if one

wants several frequencies to be filtered. Since the two-path architecture is the only one placing a

single zero, it is the most popular choice for multi-path implementations.

3.4 Cascaded Implementations

In this section different cascaded topologies will be discussed [27], using feed-forward and feed-

back loops. Although both techniques provide the same NTF, they present different signal transfer

characteristics and have some performance differences.

3.4.1 Cascade of Integrators with Feedforward

u(n) y(n)
1

z−1
1

z−1
1

z−1

Figure 3.15: CIFF modulator schematic.

The first topology discussed is the CIFF structure. Here, a fraction of the output of each

integrator stage is added to the output of the final stage. The block diagram for this topology is

shown in Fig. 3.15. The STF and NTF are:

ST F =

n

∑
i=1

an-i+1.(z−1)i−1

(z−1)n +
n

∑
i=1

an-i+1.(z−1)i−1
(3.16)

NT F =
(z−1)n

(z−1)n +
n

∑
i=1

an-i+1.(z−1)i−1
(3.17)

One can easily see that the zeros of the NTF are all placed at DC. The drawback of adding

zeros to the STF is the peaking created at certain frequencies due to the filter characteristic, thus

overloading the modulator.

3.4.2 Cascade of Resonators with Feedforward

The CIFF structure places all NTF zeros at DC, which is not desirable since it places some quan-

tisation noise at low frequencies. CRFF modulators can spread zeros along the signal bandwidth.
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u(n) y(n)
1

z−1
1

z−1
1

z−1

Figure 3.16: CRFF modulator schematic.

One can shift the zeros by adding a negative feedback term around pairs of integrators, which

creates resonator stages. The general transfer function of a resonator is:

H(z) =
z

z2 + 1
(3.18)

It is then possible to implement a filter, by picking the desired stop-band frequency. The

schematic for such topology is shown in Fig. 3.16.

3.4.3 Cascade of Integrators with Feedback

u(n) y(n)
1

z−1
1

z−1
1

z−1

Figure 3.17: CIFB modulator schematic.

Now, feedback structures are presented, which implement the zeros of the NTF as before. The

first topology shown in Fig. 3.17 is a CIFB, with each integrator stage receiving a fraction of the

output. The transfer functions are:

ST F =
1

(z−1)n +
n

∑
i=1

ai.(z−1)i−1
(3.19)

NT F =
(z−1)n

(z−1)n +
n

∑
i=1

ai.(z−1)i−1
(3.20)

As before, all zeros of the NTF lie at DC while the STF has no zeros. A downside to this ar-

chitecture is the significant amount of input signal and quantisation noise being outputted by the

integrators.
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u(n) y(n)
1

z−1
1

z−1
1

z−1

Figure 3.18: CIFB with feedforward paths modulator schematic.

In this architecture, the STF is dependent on the NTF. To overcome this, feedforward paths

can be added between the input node and each integrator’s summing node, depicted in Fig. 3.18,

resulting in the transfer functions:

ST F =

n

∑
i=1

bn-i+1.(z−1)i−1

(z−1)n +
n

∑
i=1

ai.(z−1)i−1
(3.21)

NT F =
(z−1)n

(z−1)n +
n

∑
i=1

ai.(z−1)i−1
(3.22)

Note that now the STF is independent from the NTF, by choosing the b coefficients. One can

now choose the zeros of the STF so that they cancel some poles or perform a better filtering of the

desired signal.

3.4.4 Cascade of Resonators with Feedback

Similarly to the CRFF structure, the CRFB uses a CIFB added with resonator stages to shift the

NTF zeros away from DC. The block diagram of this implementation is shown in Fig. 3.19.

u(n) y(n)
1

z−1
1

z−1
1

z−1
1

z−1

Figure 3.19: CRFB modulator schematic.

3.4.5 Comparison between Feedforward and Feedback

Both feedback and feedforward topologies achieve similar results since both are capable of im-

proving the stability of the loop. Despite this, there are differences between them. The feedforward
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approach feeds only the quantisation noise into the loop filter, yielding less power consumption.

The feedback topology feed both quantisation noise and input signal.

As shown in 3.17 the CIFF behaves as a first order low pass filter, because the (n− 1) zeros

cancel the n poles out. The CIFB STF expression shown in 3.19 can be seen as a nth order low-pass

filter. Thus, CIFB has a much better filtering performance over the input signal. The pole to zero

cancellation process in the CIFF is not ideal. Thus, peaks at given frequencies occur. Since the

CIFB’s STF does not present zeros, there is no peaking.

Another advantage of the feedback structure, as previously stated, is the addition of resonator

stages which allows the shifting of zeros away from DC to the signal’s bandwidth, providing better

filtering and band-pass architectures.

3.5 Problems

There are several aspects that have to be taken into consideration when designing a modulator. An

improper implementation would lead to a failing modulator due to one or more of the problems to

be discussed next.

3.5.1 Stability

Feedback systems always have the possibility of becoming unstable. Stability is achieved when-

ever the input of the quantiser does not overload it, resulting in an output that exceeds the quanti-

sation interval of ±∆/2.

For a 1-bit modulator, stability criteria is not well understood. Therefore, several methods are

used to determine stability conditions. A common one is to use extensive simulations to determine

such conditions. A real-time approach can also be done, using circuitry that detects long strings

of 1s or 0s or any other suspicious patterns. This is called resetting of filter states and, when said

patterns are detected, loop filters’ states are set back to zero. A continuous overloading of the

modulator may cause periodic reset events and should also be avoided under normal operating

conditions [28]. Another solution is to simulate the maximum possible input voltage and mon-

itor it in the circuit level. If the limit is exceeded, the converter can be assumed under unstable

conditions.

3.5.2 Linearity

Ideally, a 1-bit converter would be inherently linear, however, they hold some limitations that

affect linearity.

If the transfer characteristic of the converter becomes a function of the low-frequency sig-

nals present in the supplying voltages, distortion will occur. Similar effects happen with clock

feedthrough of the switches or when different amounts of charge are taken for the two different

output bits.
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An important limitation for linearity is when memory exists between output levels. When

using an NRZ modulation scheme the power of each symbol is dependent of the previous. It

is imperative to use an RZ or some other memory free modulation scheme, so all symbols are

transmitted with the same power.

3.5.3 Idle Tones

When a DC level is applied to a 1-bit quantiser, the output will be a periodic sequence of 1s and

0s. For instance, if we apply a level of 1/2 we get the sequence:

y(n) = {1,0,1,0,1,0, ...} (3.23)

This pattern has a period of two cycles and thus its power is around fs/2. If we apply a lower

level of 1/4 we would get a sequence with period fs/4:

y(n) = {1,1,1,0,1,1,1,0, ...} (3.24)

Such high frequencies would be removed by the post processing low-pass filter. But imagine

we have a DC level that produces much lower frequency tones and that the OSR is low. With an

oversampling ratio of 16 and a tone at fs/32, the filter would not remove the tone.

It is worth mentioning that these tones might not lie on a well defined frequency but instead

may vary randomly in a given bandwidth.

3.5.3.1 Dithering

In order to remove any idle tones, it is necessary to perturb any possible cycles, by favouring the

random behaviour. Accordingly, since the cycles are due to correlated behaviours, it is necessary

to use an auxiliary input capable of breaking the cycles. This method is called dithering and the

auxiliary signal is the dither. Obviously the dither must be effective against the tones and should

not alter the signal.

3.5.4 In-band Tones

If the threshold voltages of the two input transistors of the opamp do not match, an offset will incur.

The effect is similar to a voltage mismatch. Thus additional tones will appear in the spectrum.

Other gain mismatches, caused by capacitor mismatch fabrication, will add even more tones

to the spectrum, thus affecting the SNR in the bandwidth of interest. Gain mismatches are relevant

in multi-path architectures as applying different gains to each path results in an extra in-band tone.

Clock skew also generates tones that can easily and severely damage the SNR.
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3.5.5 Opamp Gain

All previous calculations take into account a infinite gain amp-op. A finite gain limits the quanti-

sation noise shaping, since the NTF will not be zero at DC but close, for the low-pass case. The

resulting transfer function, for a switch-capacitor integrator, taking into account the finite gain A,

is:

Vout(Z)
Vin(Z)

= − 1

Z
(

1+
1
A

)
−1

(3.25)

The NTF’s zeros will now be at Z = (1−1/A). The 3 dB break frequency will now be around

1/A rad/sample. The band of interest should be greater than that frequency since quantisation

noise is flat below and noise-shaping is not being used, thus not benefiting from that. We can write

the following requirement:

f0

fs
>

1/A
2π

(3.26)

Since OSR = fs/(2 f0):

A >
OSR

π
(3.27)

As a rule of thumb, designers will ensure that the opamp gain is at least twice the oversampling

ratio.

3.6 Continuous Time Σ∆ Modulators

In discrete time, sampling is done before the modulation while in continuous time sampling is only

done after the loop filter, thus working with an s domain transfer function. Fig. 3.20 illustrates the

internal workings of the modulator in the different time domains.
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Figure 3.20: DT (left) vs CT (right) converter.
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CT modulators can be integrated in any available bipolar technology such as BiCMOS,

whereas DT circuits cannot. In CT, sampling occurs inside the loop which means any non-

idealities are also attenuated, as quantisation noise is. Since, in DT, sampling occurs outside

the loop, sampling non-ideal effects have higher degrading impact on performance.

Because the feedback and input are step signals, a DT converter’s integrator requires a big

slew-rate. In CT, since conversion is distributed over the clock, slew-rate can be lower. This, how-

ever, represents a disadvantage as well. Supply voltages are also lower in CT since DT switching

requires high voltages [29][30].

Since the coefficients in a DT switch-cap approach are set by the ratios between capacitors,

the clock rate can be chosen arbitrarily, taking into account technology limits. In a CT approach

coefficients are determined with ratios between time constants and sampling period, thus fixing the

sampling rate. The STF on a CT converter is not flat while it is for its counter-part. Common-mode

rejection is much bigger in the DT case. Although not properly discussed here, the DAC in the

feedback loop is quite important for CT solutions since its errors affect conversion performance

[31]. This is a big contributor for the main problem of CT modulation, which is the limitation in

linearity.

CT solutions are advantageous for large bandwidth signals and lower power consumption.

Cellphones, for instance, communicate using several protocols, at different carriers. DT ap-

proaches allow for easy frequency tuning, unlike CT converters. One could use fewer converters

in devices by choosing DT converters over CT.

3.7 State-of-the-art of Σ∆ ADCs

Tables 3.1, 3.2 and 3.3 enumerate some recent Sigma Delta Modulators, using continuous and

discrete time approaches. Only band-pass type converters are presented for the CT architecture,

while low and band-pass are shown in the DT case. DT band-pass Σ∆ converters are few compared

to CT, with little to no development over the past ten years.

Several parameters were collected and displayed here. Note that the used FOM expression is

the band-pass adaptation, if the converter is of band-pass type (expression 2.16). Further calcu-

lation was made as not all authors presented the converter’s FOM or the used adaptation. Some

solutions will be discussed in more detail depending on relevance.

Despite continuous-time architectures not being the focus of this dissertation, it is still relevant

to perform a state-of-the-art research on the matter, for a performance comparison. CT approaches

are more commonly used for high sampling frequencies.

The authors in [33] propose a very interesting approach by using under-sampling to lower the

sampling frequency to 3 fs/4, from the usual fs/4 . A signal replica at fs/4 is also considered

usable output because it can be applied to the digital signal processing circuit for down-conversion

and filtering. The used area was 0.27 mm2 with a supply voltage of 1.3 V. The actual sample

frequency is 3.256 GHz and central frequency 2.442 GHz.
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Table 3.1: Current continous time BPSD Converters.

Ref.
FOMBP

(pJ/conv)

fs

(GHz)

fIF

(GHz)

fB

(MHz)

SNDR
(dB)

Power
(mW)

Technology Architecture

[32] 29.6 3.8 0.95 1 59 75
0.25 µm

BiCMOS
4th order, 1-bit

[33] 2.3 3.3 2.4 25 34 26
0.13 µm

CMOS
2nd order, 1-bit

[34] 4.1 3 2.4 60 40 40
90 nm

CMOS
6th order, 1-bit

[35] 0.18 0.8 0.2 25 69 35
65 nm

CMOS
6th order, 17 level

[37] 0.654 4 0.55 100 69 550
65 nm

CMOS
6th order, 17 level

[38] 0.19 3.2 0.8 20 70 20
40 nm

CMOS
6th order, 1-bit

[39] 2.22 0.8 0.2 10 68 160
0.18 µm

CMOS
6th order, 2-bit

[68] 10 8.88 2.22 80 42 164
40 nm

CMOS

4th order,

6×1.5-bit

[69] 0.385 0.8 0.2 24 58 12
65 nm

CMOS
4th order, 9-level

The architectures described in [38] and [68] use 40 nm process. A sixth order architecture with

1 bit quantiser is used [38] in while [68] used an array of 6 TI 1.5 bit quantisers, relaxing clock

requirements, achieving the highest sampling frequency reported so far at 8.88 GHz. [38] used

0.4 mm2 with 1 V supply and 0.4 mm2, with supply at 1.1 V.

In [34], two TI 1-bit quantisers. It also makes use of the under or, here called, sub-sampling

technique. Previous converters have yielded an SFDR, at most, a few dB more than the SNDR.

This work managed to achieve an SFDR of 62 dB and SNDR of 40 dB. Total active area use is

0.8 mm2. A supply voltage of 1 V achieves a power consumption of 40 mW.

The work in [69], better detailed in [67] uses only 12 mW and still achieves good SNDR

values. The low power is due to the introduction of a single-amplifier resonator, which halves

power consumption. The used area was 0.2 mm2 with supply at 1.25 V. It also achieved the lows

FOM at 0.385 pJ/step.

A complex highly tunable structure is presented in [37]. Both low and band-pass structures are

available. IF frequencies vary from 0 to 1 GHz. With IF at 550 MHz, a 100 MHz BW is achieved.

If the IF is placed at 1 GHz, BW is only 35 MHz. The full chip uses 5.5 mm2 area with dual 2.5 V

and 1 V supplies. Power consumption is high at 550 mW but FOM is only 0.654 pJ/step.
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Table 3.2: Current discrete time switch capacitor Bandpass Sigma-Delta Converters.

Ref.
FOM

(pJ/conv)

fs

(MHz)

fIF

(MHz)

fB

(MHz)

SNDR
(dB)

Power
(mW)

Technology Architecture

[41] 8 26 6.5 5 26 2
0.18 µm

CMOS
4th order, 1-bit

[36] 0.25 200 50 10 46 2
0.18 µm

CMOS

4th order, 5×TI,

3-bit

[42] 64.2 40 10.7 0.2 79 208
0.15 µm

CMOS
6th order, 4-bit

[3] 2.22 120 40 2.5 69 150
0.18 µm

CMOS

6th order, 3-stage

MASH, 5-level

[46] 20 80 20 2.5 61 44
0.18 µm

CMOS
6th order, 3-bit

[11] 1.8 120 40 1 65 16
0.18 µm

CMOS

4th order, 2-path

TI, 4-bit

One can easily see that switch capacitor converters are more suitable for lower frequency uses.

The lowest power consumption examples are [41] and [45], using only 2 mW, something quite

valuable for mobile applications. There are significantly fewer discrete-time converters than their

continuous-time counterparts. No band-pass DT converters have been published in recent years.

Existing converters of this type have low sampling rates, no more than a few hundred MHz.

In [46], a tunable band-pass modulator is introduced with noise-coupling to increase the effec-

tive order of the modulator by two, from 4th to 6th order shaping, retaining the power consumption

of the former. Unfortunately the noise shaping is not the most efficient one as there are three zeros

at different locations, with only one at the IF frequency. No area figures are mentioned.

Fourth order noise shaping is used in [11], again with a two-path architecture but with a

second-order modulator in each path. Noise cross-coupling between both paths is also imple-

mented. The NTF zeros are intentionally split apart so the bandwidth is increased. Therefore two

close notches can be observed in the band of interest, close to each other. The chip consumed an

area of 0.44 mm2. One can observe that chip sizes are relatively similar throughout the presented

state-of-the-art converters, despite the different technology sizes in use.

A simple two-path with noise cross-coupling and a low-pass modulator on each path is used

in [3], thus achieving 2nd order band-pass noise shaping, at fs/3. This converter is then applied

to a 3-stage MASH structure in order to achieve an overall 6th order noise shaping. Compared

with other cross-coupling approaches, this one achieved the highest SNDR at 72 dB but with high

power consumption, 150 mW. There was no optimisation made in this matter though. Despite the

complex MASH structure, each stage is composed by a simple and straightforward architecture.

A direct comparison between band and low-pass converters is not fair. Despite this, a brief

research on low-pass converters is still pertinent. Discrete-time converters of low-pass type are
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shown in Table 3.3.

Table 3.3: Current discrete time switch capacitor Lowpass Sigma-Delta Converters.

Ref.
FOM

(pJ/conv)

fs

(MHz)

fB

(MHz)

SNDR
(dB)

Power
(mW)

Technology Architecture

[40] 1.03 450 25 63 56.7
0.13 µm

CMOS

3rd order, varying

bit number

[43] 0.07 240 5 77 4.2
65 nm

CMOS

3rd order, 2-1

MASH, 4-bit

[44] 0.75 120 2 53 1.56
90 nm

CMOS

2nd order, 9-level,

2-path TI

[45] 0.75 120 2 56 1.56
90 nm

CMOS

2nd order, 3-bit,

2-path TI

[47] 0.09 240 5 71 12
0.13 µm

CMOS

3rd order, 2-path

TI, 9-level

[48] 0.26 240 15 66 12.7
22 nm

CMOS
2nd order, 8-bit

[49] 0.6 400 20 64 34.7
0.13 µm

CMOS
3rd order, 3.5-bit

The work in [40] has a complex architecture, making use of a multi-level quantiser that

changes the number of levels depending on the chosen bandwidth. This allows for high recon-

figurability. The sampling frequency is the highest amongst the presented converters.

The approach in [48] is interesting regarding the scope of this dissertation. It is implemented

using Intel’s 22 nm Tri-gate technology. It occupies an area of only 0.04 mm2 while retaining a

complex topology.

Two similar converters are described in [44] and [45] using a two-path, noise-couple, low-

pass architecture. A PhD thesis better reports the circuit [50]. The first one presents a SNDR

of 53 dB against the 56 dB of the second. Despite this, the latter uses one comparator less in the

quantiser. This is quite an interesting approach since by simply feeding the quantisation noise of

one path to the other, one can significantly improve the noise shaping and thus the in-band SNR.

This architecture also shares the opamp so that only one is used for both paths, since each path

only uses it half the time. This does require for it to run at full clock rate instead of the usual

half-rate. No area figures are mentioned.

Although the work in [43] presents the lowest FOM, it is accomplished with quite complex

circuitry, using two-stage MASH structure with one stage of 2nd and the other of 1st order. Used

area is only 0.066 mm2.

Another use of the two-path with noise cross-coupling is in [47], thus increasing the noise

shaping to third order. It achieved the lowest FOM value of only 90 fJ/conversion. Area usage is

0.328 mm2.
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The converters in [44] and [45] make use of the two-path TI structure with noise-cross cou-

pling, only achieving a low-pass noise modulation instead of band-pass in [3]. One can see that

noise-coupling has been an active topic of research in recent years and in the field of Σ∆ modula-

tion. For the band-pass topology it is quite useful as one can reduce complexity by simply using

low-pass filters in each path. The converter used in each of the stages in [3] is quite simple and

robust and also achieving good results. Since a dissertation document is available, a more detailed

explanation of the implementation is accessible which is of high value in understanding how to

implement this particular converter. As this converter will be the basis of this dissertation work,

the details of the achieved performance and implementation will be discussed in more detail. No

28 nm converters are presented as none were found. This technology is still not being actively

deployed in the field of Σ∆ conversion thus proving its state-of-the-art status.

3.8 Cross-Coupled Two-Path Bandpass Σ∆ Modulator

The work reported in [3] was later detailed in the PhD dissertation [4]. It proposed a two path

time-interleaved Σ∆ modulator, with cross-coupling of the noise terms between the two paths,

shifting the notch position from the regular fs/4 to fs/3. This relaxes requirements on hardware by

avoiding tones present at fs/4, caused by either path gain mismatch or opamp offset, as shown in

Fig. 3.21.
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Figure 3.21: Example of the path-mismatch and opamp offset tones present in the signal band.

Each path makes use of a highpass modulator (1+ z−1), with a zero at fs/2. It is implemented

by modulating the input and output of the low-pass modulator with a 1, -1, 1, -1 sequence, resulting

in a z→−z transformation. This technique is called chopping.
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1
1− z−1

1,-1,1,-1... 1,-1,1,-1...

X(z) Y (z)

1
1+ z−1X(z) Y (z)

Figure 3.22: Lowpass to highpass transformation.

The NTF for a standard 2nd order Σ∆ converter is 1+ z−2, which fixes the NTF zero at fs/4.

The second order transformation, z→ z2, is done according to the multi-rate theorem described in

Section 3.3.3. The notch is shifted to fs/3 by introducing an extra z−1 term, using cross-coupling of

the noise terms between the two paths. This is an efficient design as the the cross-coupling paths

barely add any hardware cost on the converter, while relaxing requirements on several composing

blocks of the modulator. The block diagram can be seen in Fig. 3.23. By analysing the block

diagram, the overall transfer function can be calculated [4]:

Y = X z−3 +(1+ z−1 + z−2)E (3.28)

X(z)

Y (z)

z−2 1
1+ z−2

2 z−2

z−1

2

z−2 1
1+ z−2

22

z−2

z−0

E1

E2

Figure 3.23: Block diagram of the converter proposed in [3][4].
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The complexity of this design is very similar to the low-pass case. This modulator is later

used in a 3 stage MASH structure, achieving 6th order noise shaping. Though, ideally, the MASH

structure should be stable, as the only requisite is that each stage is itself stable for global stability,

the overall converter had issues regarding this matter. It would be interesting to improve the

single stage modulator, without adding too much complexity, by further noise shaping using cross-

coupling of the quantisation noise.

The circuit was implemented on 0.18 µm, using 1.1 mm2 of area. The effective sampling

frequency is 60 MHz, with IF at 40 MHz, BW of 2.5 MHz and 72 dB SNR, consuming 150 mW.



42 Sigma-Delta ADC



Chapter 4

CMOS RF Σ∆ Converter

4.1 Architecture definition

The architecture that is studied in this dissertation is inspired in the work reported in [4], it actually

forms the grounds for the proposal that is reported next. As discussed before, this converter placed

the notch frequency at fs/3 instead of the usual fs/4, thus avoiding two common problems: the

operational amplifier offset and the gain mismatch image caused by unbalanced paths in the time-

interleaved scheme. Consequently, a higher frequency notch allows lower sampling rate.

Since the targeted sampling rate for this dissertation is 1.6 GHz, there is a big gap to [4]’s

120 MHz, by a factor of around 13. The used technology was 0.18 µm, thus 28 nm should enable

most of the rate boosting needed. As mentioned in Chapter 1, the end goal of this work targets

mobile applications, which require low power consumption. The reported work in [4] consumed

150 mW but no optimisation for any particular application was made.

The topology used in [4] involved the MASH structure, cascading three 2nd order converters

to achieve a 6th order one. This severely complicates the circuit which has many particular aspects

that can easily cause the modulator to fail. Considering the promising results, mainly regarding

the SNDR, it would be interesting to replicate them using less complex architectures.

Finally, [4] achieved the reported performance for a 2.5 MHz bandwidth and current mobile

communication standards transmit 5 to 100 MHz bandwidths.

4.2 Proposal

In [4] is concluded that it was impossible to remove all inband tone causing imperfections with, at

the time, present technology. The traditional architecture, with NTF (1+z−2), has unwanted tones

in the signal band. This was the authors’ motivation to extend the function to (1+ z−1 + z−2). By

43
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replacing z with e jω/ fs we calculate the zeros’ placement:

|1+ e− jω/ fs + e− j2ω/ fs |= 0

= 1+ 2cosω/ fs

(4.1)

The zero is achieved for ω/ fs = 2π/3, or f0 = fs/3.

The problem now is that we do not want to increase the system complexity, yet, for better

results, one would have to resort to higher-order modulation. To avoid complexity, one can add

a single zero thus having a highpass behaviour or, a pseudo 3rd order band-pass converter. If

the second zero is placed after the initial one, this means that the signal’s band is increased, by

creating a flatter noise curve. This way, it is possible to tune different bandwidths with quite

similar performance.
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Figure 4.1: Pole-zero plot of the proposed transfer function.

The second zero can be added by multiplying the previous NTF by (1+ z−1) resulting in (1+

2z−1 +2z−2 + z−3). This fixes the second zero at fs/2 or Nyquist, which is the only place where a

zero can be added with 3rd order. Fig. 4.1 shows the pole-zero diagram of the proposed NTF. The

second zero is too far away from the first one, thus no advantage is achieved. The only solution is

to shift the first closer to Nyquist. A tunable notch is achieved with NTF (1+az−1+az−2+ z−3),

where a is the notch tuning gain. With a = 2 the fs/3 notch is achieved and right shifting with

increasing a. Applying the same process as in Eq. (4.1) a precise relationship between notch

frequency and parameter can be calculated:

a = 1−2cos
(

2π
fnotch

fs

)
(4.2)
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It is known how to generate the (1+ z−1 + z−2) noise transfer function. Now, it is necessary

to determine how to modify the schematic and add the desired gains along with the extra z−3 term.

4.3 3rd Order Bandpass Σ∆ Converter

The original design [4] implements a 2nd order converter. 3rd order band-pass loop filters do not

exist. Since the z−1 term was added by the cross coupling of the noise terms, this reasoning can

be extended to introduce the extra z−3. Simply adding an extra noise coupling path, but with two

extra delays, one can achieve the desired result.

Adjusting the z−1 term gain is straightforward as this is achieved by directly introducing an

amplifier on the cross coupling path. The z−2 term is generated by the loop filter and thus requires

a modification to it. A 1/(1+az−2) filter has to be introduced along with a feedback gain of a to

cancel out the delayed output feedback term. The final proposed converter is shown in Fig. 4.2.
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Figure 4.2: Block diagram of the proposed 3rd order BP Σ∆ converter.

The overall transfer function of the schematic presented in Fig. 4.2 is now deduced. The first

path’s output is:

[
(X1 + aY1) z−2 +E2

(
a+ z−2)] 1

1+ az−2 +E1 = Y1 (4.3)
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Y1 = X1z−2 +E2
(
a+ z−2)+E1

(
1+ az−2) (4.4)

The output of the second path is:

Y2 = X2z−2 +E1
(
az−2 + z−4)+E2

(
1+ az−2) (4.5)

After up-sampling, both outputs are combined by adding Y2 to a unit delayed version of Y1:

Y = Y1z−1 +Y2

= (X1 +X2z) z−3 + z−1 (1+ az−1 + az−2 + z−3)E1 +
(
1+ az−1 + az−2 + z−3)E2

= Xz−3 +
(
1+ az−1 + az−2 + z−3)E

(4.6)

As demonstrated, the desired noise transfer function
(
1+ az−1 + az−2 + z−3

)
is achieved.

4.4 Stability

Stability is a critical property of Σ∆ converter design due to the non-linear feedback control sys-

tem. If unstable, the system’s output may be unbounded for certain inputs. Often, in the Σ∆
converter, integrator stability is critical for zero input and a DC stimuli. Each path is a first order

Σ∆ modulator, which is unconditionally stable [51][28]. Despite this, introducing cross-coupling

noise terms challenge stability as does the use of an unstable integrator
(
1/
(
1+ az−2

))
. A deeper

analysis will be done.

Despite the integrator having its poles outside the unit circle, thus making it unstable, the

overall modulator is not as feedback moves them back into the unit circle. One can perform a

time-domain analysis of one path. From Fig. 4.2 the integrator’s output u for the first path is:

u1 [n] = x1 [n−1]+ ay1 [n−1]+ ae2 [n]+ e2 [n−1]−au1 [n−1]

= x1 [n−1]+ ae2 [n]+ e2 [n−1]+ ae1 [n−1]
(4.7)

Ideally, the quantisation errors are bounded. Assuming the same for input, the integrator’s

output will be stable. Under normal operation conditions, the input will be bounded to operating

voltages. But, if by any reason, it is not, or if there is a high voltage injected somewhere in the

circuit, the quantiser will be saturated and the quantisation error will no longer be bounded. For a

standard integrator this would not be a problem [4] but the used one imposes a multiplying a term

on previous errors. Under these conditions, the modulator is unstable. Since the opamp’s output

saturates to the quantiser’s input range, instability is never actually achieved. The simulated output

of one of the converter’s integrators can be seen in Fig. 4.3.
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Figure 4.3: Output of the converter’s integrator.

4.5 Simulation Results

The system was simulated using Mathwork’s tools MATLAB and Simulink Toolbox. Fig. 4.4

shows the implemented Simulink model of the proposed converter. This model is launched from

a configurable MATLAB script for quick programmable simulation. This is useful to promptly

benchmark performance measures for circuit level simulations.
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Figure 4.4: Simulink model diagram of the proposed converter.

Non-idealities are introduced in the system, as described in [52]. Clock jitter and thermal noise

are modelled as additive white noise. The op-amp offset is introduced as a fs/4 pulse. The integra-

tor model takes into account op-amp finite gain, slew rate and settling. Some modifications had

to be done to [52], as the latter used a standard integrator model, not suitable for this application.

The gain mismatch between both paths is achieved applying a different gain for each one. The

ADC uses 4 bits in quantisation and the DAC simulates capacitor mismatching. The output data

is fed back to the MATLAB workspace for further processing. The output spectrum is plotted, the
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achieved SNR is calculated and compared against theoretical values.

10 20 30 40 50 60 70 80 90 100

BW [MHz]

55

60

65

70

75

80

85

90

S
N

R
 [d

B
]

SNR vs BW

a=2.85
a=2.80
a=2.75
a=2.70
a=2.65
6th order
4th order
2nd order

Figure 4.5: Theoretical SNR for different bandwidths and notch frequencies.

Fig. 4.5 shows a plot of theoretical SNR values versus bandwidth, for several notch positions,

controlled by the a parameter, and also the [4]’s results in a 2nd, 4th and 6th order extrapolation.

The curves are generated using the noise power calculated from the integral in expression 3.7. A

4 bit quantiser and full-scale input are assumed. One can see the increase in SNR with increasing

notch frequency. Depending on the chosen notch position and bandwidths, one can surpass the

results achieved by the 2nd and 4th and also get close to the 6th order converter. As one can observe,

the SNR curve for the proposed converter gets much flatter with increasing bandwidth.

Normally the measured bandwidth is centred around the notch’s frequency. Since this con-

verter makes use of a second zero at Nyquist, there is an asymmetry in the noise shaping curve.

This implies that the optimal centre for the bandwidth or f0 is not coincident with the tuned zero’s

frequency. From simulation it was concluded that the bandwidth centre is at 1.04 fIF .

For a = 2.85, which corresponds to a 700 MHz notch, one can expect SNR of 86 dB, 77 dB

and 69 dB for BW of 20 MHz, 40 MHz and 100 MHz respectively. The input saturation limits

were simulated to be around −4 dB. This will be discussed further on.
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Figure 4.6: Matlab simulated output power density spectrum.

690 700 710 720 730 740 750 760 770 780

Frequency [MHz]

-140

-120

-100

-80

-60

-40

-20

0

P
ow

er
 [d

B
]

Figure 4.7: Matlab simulated spectrum in the signal band.
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The power spectrum of the converter’s output is shown in Fig. 4.6 and a bandwidth zoom in

Fig. 4.7. Each path operates at half of the effective clock rate, so 800 MHz each. The zero was

chosen to be at 0.46 fs or 736 MHz, because of LTE standards [53], which forces a = 2.85. One

can tune it to any desired position but closer to Nyquist rate achieves higher SNR. The second

zero is inherently fixed at Nyquist rate by the architecture design. This design requires strict AA

(anti-aliasing) filters. One has to leave a big enough safety margin from Nyquist so the image

spectrum can be safely removed and no aliasing occurs, but also no attenuation affects the signal.

With this setup, for bandwidths of 20 MHz, 40 MHz and 100 MHz, SNR of 76 dB, 70 dB and

64 dB are achieved respectively. Even with path gain mismatch, clock skew and opamp offset

added in the simulation, no parasite tones are observed in the band of interest, as one expected,

and overall results are close to theoretical values. This forms a proof of concept for the extra noise

coupling term added by performing the 1+ 2.85z−1 + 2.85z−2 + z−3 noise transfer function.
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Figure 4.8: Simulation of achieved SNR versus input power.

In order to understand the limits of the input signal which saturate the converter, the input

power was swept. The SNR was calculated using both the real and ideal models of the converter.

An OSR of 8 was used, corresponding to the 100 MHz bandwidth. Results are shown in Fig. 4.8.

They are plotted against theoretical values, represented with a dashed line. In the range of −50 dB

to −2 dB input, the results are close to theoretical calculations, while with inputs bigger than −2 dB

saturation occurs and the SNR quickly drops to zero.
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A sweeping of the bandwidth was made using the Matlab model of the converter, which took

into account real non-idealities. The results are plotted in Fig. 4.9 against the theoretical values,

with a dashed line. Real life limitations were taken into account such as a 70 dB opamp DC gain,

16 GHz GBW, opamp offset, path mismatch, jitter, kTC noise and opamp limited output swing.

Results are in average about 5 dB apart from theory.
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Figure 4.9: 3rd order converter Matlab simulated SNR values.

The DC gain and GBW requirements on the opamp were tested by sweeping these parameters

and calculating the achieved SNR values. Fig. 4.10 plots simulated SNR values versus the opamp’s

DC gain. The three curves represent three different OSR values. One can see that the SNR

saturates to about the open loop DC gain of the opamp. Thus, if a 70 dB SNR is desired, the DC

gain should also be the same value and similarly for any other desired SNR. A GBW of 16 GHz,

or 10 times the sampling frequency, was concluded to meet the specifications.
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Figure 4.10: Matlab simulation plot of SNR vs op-amp DC gain.



Chapter 5

Circuit Implementation

This chapter describes the implementation at circuit-level of the proposed converter. The soft-

ware used for the IC design was Cadence. References [54], [55] and [56] provided fundamental

knowledge in electronics and circuit design as well as transistor layout design and problems.

5.1 Sampling Circuitry

Any switch-cap circuit requires sampling of the input signals. A voltage is applied to the sam-

pling capacitors and the resulting charge will be later transferred between the circuits’ capacitors.

This requires the use of switches, which are implemented using MOS transistors. Two main prob-

lems they present are charge injection and clock feedthrough, capable of destroying the overall

performance.

A transistor works as a switch by applying a voltage at the gate, thus allowing or not the

flow of current from drain to source. Charge injection occurs when the parasitic capacitance

connected to the gate discharges to the sampling capacitor, thus inducing an error, after sampling

is completed and the switch is turned off. This effect has the added disadvantage of having a

non-linear dependency on the input signal.

Bottom-plate sampling [57] can attenuate the charge injection effect. It consists on switching

the bottom-plate of the sampling capacitor from ground slightly sooner than the input switch,

leaving a floating capacitor with no more charge being accumulated. A constant offset will appear

due to the earlier switching. It is often tolerable or even easily removed. Since the used circuitry

is fully-differential, the offset will be removed at the output. Since bottom-plate sampling is

widely used in the design of switched-cap circuits, and it is of most convenience to be used in the

development of the present proposal, it will not be explicitly refereed throughout the dissertation,

though it is always employed where it is convinient.

53



54 Circuit Implementation
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Figure 5.1: Bottom-plate switching.

5.2 Integrator

The integrator is the central block of the Σ∆ converter. It is the main block responsible for the

noise shaping. The used switch-cap integrator’s circuit diagram is shown in Fig. 5.2. In phase φ1

the input and output signals are sampled using capacitors Cs1 and Cs2 , respectively. During the

next phase φ2, both sampling capacitors are connected to the input of the opamp thus transferring

the stored charges to the feedback capacitor Cf. This phase completes the integration process.

Vi
φ1 φ2

C fCs1

Cs2

φ2

φ2

φ1

Vo

φ1

Figure 5.2: Circuit schematic of the deployed integrator.
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Analysing the circuit we verify that the charge at the end of phases φ1 and φ2 are:

Qφ1 = −vi[n−1]Cs1− vo[n−1]Cs2− vo[n−1]C f (5.1)

Qφ2 = −vo[n−1/2]C f (5.2)

Taking into account that vo[n] = vo[n−1/2] the final transfer function can be written as:

H(Z) =
Cs1

C f

z−1

1− (Cs2 /C f + 1) z−1 (5.3)

Thus a = (Cs2 /C f + 1). Cs2 must be 1.85 times bigger than Cf so a = 2.85.

In reality, a fully-differential integrator is used. This is done by mirroring the circuit, us-

ing both inputs of the opamp and a differential output as well. Two advantages of using fully-

differential architecture is doubling the output swing and better rejection of the common-mode.

Also, a unipolar supply can be used, i.e. VDD and GND, with a VCM centred signal.

5.3 Converter

The circuit diagram for one path of the converter can be seen in Fig. 5.3. The integrator presented

before is used. To change the transfer function from 1− z−1 to 1+ z−1 the input signal must be

multiplied with a sequence of alternating 1 and -1. This achieved by feeding input the positive and

negative signals alternately.

During φ2 the feedback is integrated together with both noise cross-couplings. The non-

delayed version is feed through a capacitor with a ·Cu capacity, performing the necessary gain.

The delayed version of the cross-coupling is more complicated. The output of the other path’s

integrator must be stored and only integrated during the next sample. To realise this, there are two

capacitors that sample and inject this signal in alternating φ2 phases, realising a full z−1 delay.

Unlike the block diagram, the other path is symmetrical except it uses complementary clocks.

One other exception is the polarity of the cross-coupling. Since the input is modulated with a

1,-1 sequence, both paths are working with different polarities at any given instance. Thus the

cross-coupling on the other path is fed with symmetric signal.

The circuit can be optimised by reusing some capacitors to inject different signals. This way,

area is saved and the feedback factor is reduced from 1/(3a+ 2) to 1/(2a+ 1). For a = 2.85

this is an improvement from 1/10.55 to 1/6.7. The resulting circuit diagram is shown in Fig. 5.4.

The result is achieved by simply rearranging the injection point of all signals. This optimisation

not only saves area through less capacitors being used but also uses five switches fewer.

As this arrangement proved to require high swings at the output’s integrator, one could apply

a feedforward technique to relax requirements on that specific hardware. Using this technique

the loop filter needs only to process the quantisation noise. This allows more efficient opamp

architectures and relaxes linearity requirements [58].
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Figure 5.3: 3rd order band-pass Σ∆ converter schematic.
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Figure 5.4: 3rd order band-pass Σ∆ converter optimised schematic.
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Figure 5.5: 3rd order band-pass Σ∆ converter full schematic.
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5.4 Switches

The switch technologies used are: NMOS switch, CMOS transmission gate and Bootstrap switch.

A CMOS gate, Fig. 5.6 consists of a PMOS and NMOS transistors in parallel. Since a single

NMOS or PMOS transistor’s impedance is input dependent, one suitable for high input while

the other for low, one can achieve a flat characteristic by combining both, each working under

conditions that are favourable to itself.

The Bootstrap switch [59][60][61][62] shown in Fig. 5.7 tries to maintain a constant on-

resistance by fixing the gate-source voltage, even with varying input. This example represents

the basic concept of this switch architecture. During phase φ2 the bootstraping capacitor Cb is

connected to VDD and GND. In φ1 the capacitor is connected between the input and the transistor

gate, imposing a constant VGS.

Vi Vo

CLK

CLK

Figure 5.6: CMOS transmission gate.

Vin

GND

V DD

GND

Cs

Cb

φ2
φ1

φ1 φ2

φ2

Figure 5.7: Bootstrap switch.

The implemented bootstrap switch is shown in Fig. 5.8. NMOS is used for the ground con-

nections while PMOS is used for the VDD. The transistor M5, connected to the top plate of Cb

capacitor, must be a PMOS since this is a high voltage point. M2 senses the input in sampling

mode and therefore must be an NMOS as M1 is. M6 limits the voltage at M7 so it does not rise

above VDD. Since M2 can present high resistance for high input values we also bootstrap it. Nat-

urally, hold mode begins at rising edge of φ2 while sampling is done during φ1. The complete

description of the workings for this circuit are detailed in [59]. Only the driving main transistor,

M1 has a significant large width, required for a high speed design. The remaining do not bear such

strict requirements and have only about 1/10 the width. The bootstraping capacitor is chosen to be

the same size of the sampling one.

The bootstrap switch is used for the input signal and the integrator’s output. A disadvantage is

the complexity of the architecture since each switch requires the use of seven transistors, including

PMOS and NMOS. The CMOS gate is used for the feedback DAC and also for the bottom plate

sampling of all but one specific signal. The bottom-plate sampling switch connects all capacitors

to VCM demanding a high performance. NMOS switches are only used for the bottom plate

sampling of delayed cross-coupled integrator output.
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Figure 5.8: Implemented bootstrap switch schematic.

5.5 Switch Noise

Noise is a big contribution to the performance limits of Σ∆ converters. A big source is the thermal

noise which is due to thermal motion of the charge carriers in the channel of the device, caus-

ing random fluctuation in the drain current [64]. Switches’ transistors operate in triode region,

behaving as resistors. The noise can be modelled by a voltage source in series with the device’s

resistance.

φ

Vin Vin

V 2
R RON

Figure 5.9: Switch thermal noise model.

It is therefore important to calculate the required sampling capacitor size needed to achieve

the desired SNR. With input at −4 dB, the signal power can be calculated as:

v2
s =

1
2
(0.7V)2

2
= 0.1225V2 (5.4)

For 60 dB SNR, we should achieve −69 dB thermal noise, so at most 1 dB is lost overall, with

in-band noise at 1.54×10−8 V2. The final acceptable noise value is:

v2
n = v2

n,in−band×OSR (5.5)



60 Circuit Implementation

For a 100 MHz bandwidth, OSR equal to 8, the total acceptable noise value is 1.23×10−7 V2.

Since there are several input capacitors, one calculate the unit sampling capacitor size, taking into

account the noise contribution of all but the feeedback capacitor, since this is noise shaped. From

Fig. 5.4, two input capacitors are unit size while two other are (a−1) times the unit size.

Cu =
4kT

v2
n

(
2+

2
a−1

)
(5.6)

The required unit capacitor size is calculated to be 750 fF. This number is indicative and

further simulation should be carried out to determine the noise limit. One has to bear in mind a

noise of −69 dB is considered for a full-scale 0 dB input. In the Matlab simulations, a lower input

is used because of quantiser saturation levels. Therefore, in this case, one can think a −65 dB noise

is the actual limit. These limits have to be studied in the circuit level. If the input swing cannot be

increased, and the thermal noise is the SNR bottleneck, higher bit quantiser should be considered,

in order to reduce the noise contribution in the output swing, thus enabling bigger input swings.

The actual resolution of the quantiser needs not to be increased.

5.6 Operational Amplifier

Due to time limitations it was not possible to fully develop all the blocks of this converter. For this

particular task, there are some high requirements on the opamp such as 60 dB gain, 16 GHz GBW

and a high output swing, all difficult using the 28 nm technology. The used operational amplifier

was developed by Frank, a PhD student within the AMSV laboratory, who kindly agreed to cede

the project.

The actual amplifier has a 85 dB gain and 18 GHz bandwidth, while consuming about 9 mW

of power. It consists of a telescopic OTA design, using an 1.8 V power supply, achieving an 1.4 V

output swing. More details are not disclosed as it was the author’s wish. Since this converter’s

design is of switch-capacitor type, the common-mode feedback circuit had to be redesigned, as

per a switched capacitor type, as in Fig. 5.10.
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Figure 5.10: Common-mode Feedback Circuit [63].
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Although high performance, this opamp is not the most suitable for this converter as it has

output load limitations and also imposes noise bottlenecks. The design was slightly modified to

tailor this converter’s requirements, but this is still insufficient for an optimal implementation.

The original gain was lowered a bit by shrinking transistor size which decreased the parasitic

capacitance. These are in the same order of the sampling capacitors, which naturally entangles

high performance. To compensate this, the biasing current was also increased, with the side effect

of higher power consumption. The total power usage of one opamp is now roughly 14 mW. Since

this design requires high slew, one could also use the slew-rate booster technique to improve power

consumption without sacrificing any high slew capabilities [65][66].

5.7 Quantiser

5.7.1 Comparator

The comparator is the building block of the quantiser. It is responsible to compare the input

voltage with the given reference and produce a digital output bit. The implemented comparator,

Fig. 5.11 is composed by a switched cap circuit that calculates the output logic level, a dynamic

latch comparator [76][77][78][79][81], a buffer and a final D-type latch [80].
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Vi+
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Cu
φ1

Latch

Latch

φ2

φ1

φ2

Buffer DLatch

φ1

Vi−
φ2

Cu

φ1
Vre f−

bout

Figure 5.11: Comparator.

During φ1 the capacitor is charged to the reference voltage. In φ2 the capacitor is connected

to the input of the dynamic latch and the signal input voltage thus feeding the difference between

these two. The Latch signal triggers the comparison just before φ1, so the result is available at that

time. At the output, a VDD or GND signal will be produced according to the previous voltage

difference, during φ1, and VDD during reset at φ2. Afterwards, the differential signal is fed to

a buffer that balances the load of the previous latch and serves as a differential to single output

block. At the very end there is a D-type latch that holds the logic value for a full clock cycle.

The dynamic latch in Fig.5.12 was proposed by [81]. It featured reset and a tracking phases.

When the clock signal is low, the output is reset to VDD. During the track phase, comparison is

made and the differential output will go to VDD or GND according to the differential input.
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Figure 5.12: Comparator latch schematic.

The output buffer, 5.13 is composed by two inverters, with one providing output and the other

connected to an inverter that drives both inverters, thus enabling a more precise result. This buffer

allows for an even output load on the comparator.

Vi+ Vi−Vout

V DD

Figure 5.13: Buffer schematic.
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The D Latch, 5.14, creates a perfect binary value by keeping the logic value until the next

clock cycle appears. It is composed of two inverters connected with a positive feedback loop. By

using a switch, the output can be isolated from the input.

V DD

Vin

CLK

Vout

Figure 5.14: Dlatch schematic.

Extensive simulation was carried out. The most critical aspect of the comparator is the voltage

offset. Through Matlab simulation it was determined that a random offset across all comparators,

following a normal distribution, with a standard deviation of 30 mV would not hurt the SNR

performance. The work reported in [82] describes a method on how to measure this parameter

using simulation on the circuit level. The results showed a standard deviation offset of around

19 mV. Thus, the requirements set by Matlab simulation are met on the circuit level.

5.7.2 Flash ADC

In this design, a 16 level flash quantiser is used, using an array of 15 switched capacitor fully dif-

ferential comparators, as shown in Fig. 5.15. The threshold voltages are derived from the resistor

ladder. In fact, Fig. 5.15 shows two resistor ladders, since two different comparison voltages are

needed for the differential input. This was only done for a better schematic representation. In

reality, only one ladder is needed, with the appropriate routing. The size of the resistors are all

equal and must be dimensioned according to the power/speed trade-off.

The output of the comparator array can be used to drive the feedback DAC. Despite this, a true

binary signal is still needed at the output, for post-processing. This demands a thermometer-to-

binary encoder, which was described using Verilog-A HDL [83].
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Figure 5.15: Flash ADC schematic.
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5.8 Feedback DAC

The feedback DAC is composed of 16 capacitors, 1/16th the size of the feedback capacitor. Either

one is connected to the positive or negative reference in order to feed the desired voltage levels.

The 16th capacitor is connected only to VCM, thus charged to neutral. Though the DAC needs only

15 capacitors, 16 are used because of other signals, sharing them, need the full Cu capacitance.

Cu

Vo+

Cu

Vo−

Vre f+

Vre f−

Cu/16

Vre f+

Vre f−

Cu/16

Vre f+

Vre f−

Cu/16

Vre f+

Vre f−

Cu/16

Cu/16

Vre f+

Vre f−

Cu/16

Vre f+

Vre f−

Cu/16

Vre f+

Vre f−

Cu/16

Vre f+

Vre f−

Cu/16

VCM

VCM

Cu/16

Figure 5.16: Feedback DAC.
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5.9 Simulation Results

Transistor level simulations are done using Cadence IC design software. The circuit is imple-

mented using 28 nm technology. In order to plot the output spectrum of the converter, 1024

samples, each one clock cycle apart, are captured out of 1250 generated. The signal is digitally

reconstructed in Matlab, as chopping must be made.

5.9.1 Transient Noise

Cadence allows for the injection of transient noise in the circuit [75], thus simulating the thermal

noise effect of the switches. From simulation it was concluded that a 100 fF was the maximum

value without imposing a bottleneck, due to high load. This value does limit the overall SNDR

performance to about 56 dB, due to thermal noise. Thus, one should bear this limit in mind or

design a new opamp and increase the sampling capacitor size for a future tape-out.

5.9.2 Power Consumption

Power consumption is an important aspect for portable device applications. The individual blocks

were tested and the used power was measured. Results are shown in Table 5.1. The opamp has

the highest power usage and this design requires two. The remaining components represent only

a small fraction of the total power, with the Flash ADC being the second most power-hungry

component, though still under the milliwatt range. The total power is 30 mW.

Table 5.1: Power consumption by block.

Component Power

Opamp 14 mW

Flash ADC 0.6 mW

Comparator 2 µW

Arm-Latch 1 µW

Buffer 0.2 µW

D-Latch 0.2 µW

Bootstrap switch 24 µW

CMOS Switch 1 µW

5.9.3 Performance Results

The power output spectrum of the transistor level simulation is shown in Figures 5.17 and 5.18.

One can observe the tone at 400 MHz, or fs/4, due to the opamp offset. This has no effect in the

overall SNDR which is of 61 dB. The measured bandwidth is centred at 736 MHz or 0.46 fs and

ranges 100 MHz for an OSR of 8. For the bandwidths of 40 MHz and 20 MHz SNDRs of 67.5 dB

and 72.7 dB were, respectively, achieved.



5.9 Simulation Results 67

0 1 2 3 4 5 6 7 8

x 10
8

−120

−100

−80

−60

−40

−20

0

Frequency(Hz)

P
ow

er
(d

B
)

Cadence PSD

Figure 5.17: Cadence simulation output PSD.
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Figure 5.18: In-band zoom of the output PSD.
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The small tone observed at 400 MHz is due to the slight asymmetry introduced between both

paths. This proves that the circuit is tolerant to path mismatch, as the result tone is outside of the

signal spectrum.

As discussed before, the overall limitation of the converter is thermal noise which limits the

maximum performance to 56 dB. A high sampling capacitor is required but opamp limitations

makes this impossible. One possible solution is to increase the number of bits used in quantisation

so that the error is made smaller and the input signal can be increased without saturating the

quantiser. The quantiser needs not complicated matching techniques as the design is still tolerant

to offsets and they are noise-shaped, as they are inside the loop. For the achieved SNDR of 61 dB

or 9.85 bits ENOB, a FOM of 0.043 pJ/conv is achieved. The overall results are summarised in

table 5.2 against state-of-the-art works.

Table 5.2: Summary of the measured results from this design and references.

[37] [68] [34] This Work

RF 0.55 2.2 2.4 0.736 GHz

Sampling Rate 4 8.88 3 1.6 GHz

Signal Bandwidth 100 80 60 100 MHz

Oversampling Ratio 20 55.5 40 8
SNDR 69 42 40 56 dB

ENOB 11.17 6.68 6.35 9 bits

Power Consumption 550 164 40 30 mW

FOM 0.654 10 4.1 0.077 pJ/conv

Power Supply 1/±2.5 1.5 1 1.8 V

Technology 65 40 90 28 nm

Architecture CT CT CT DT
Order 6th 4th 6th 2nd



Chapter 6

Conclusion

6.1 Summary

Current wireless communication standards are suffering a fast and increasing growth. Mobile

communication standards like LTE are already using signal bands of 20, 40 all the way up to

100 MHz, with experiments pushing wider. 5G standards have already been in development for

some time and the wider-band trend is ongoing. The presence of multiple standards, demanding

a variety of signal specifications, pressures the IC industry for wideband tunable designs. At

the same time, miniaturisation is ever trending while power efficiency, size and cost goals are

increasingly more demanding. Current mobile phone devices work with a wide variety of wireless

protocols, including 3 generations (4 in the near future) of mobile communication standards, Wi-

Fi, Bluetooth, GPS and NFC, and in due time GALILEO and GLONASS navigation systems.

Flexible and versatile receivers are in demand.

Band-pass Σ∆ converters are an attractive ADC architecture for RF receivers as they shape the

noise away from the RF. They also allow more efficient design by shifting some of the effort from

the analogue to the digital domain, which CMOS technologies are increasingly more suitable for.

Unfortunately, band-pass Σ∆ converters have not been an active topic of research in present years

and available designs do not suit the industry’s demands.

A 3rd order band-pass Σ∆ Time-Interleaved A/D converter using cross-coupled quantisation

noise terms was presented. The proposed architecture uses 1st order modulators since the shaping

order is doubled by the cross-coupling between the two paths. The third-order term is also intro-

duced by adding another cross-coupling term, which imposes a fixed zero at Nyquist rate. The

extra zero allows for a more wideband noise shaping with low OSR applications.

Compared to the standard 2-path TI Σ∆ converter proposed in [3], this dissertation’s proposal

is able to increase the achieved SNDR for lower OSR. The extra zero is introduced at very little

hardware cost, as only one extra noise-coupling connection is needed. This work’s converter has

also achieved considerably higher speed, thus being suited for state-of-the-art applications such as

LTE.
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The new band-pass Σ∆ converter was implemented using a 28 nm CMOS technology. A 1.8 V

power supply is used. The effective sampling rate is 1.6 GHz, as each path operates at half of

it. For a 100 MHz bandwidth, not including thermal noise, 61 dB SNDR was measured (56 with

thermal noise), while 72.7 dB and 67.5 dB were achieved for 20 MHz and 40 MHz signal bands.

6.2 Applications

The converter developed in the scope of this dissertation focuses in providing the industry with

a wideband, low-power and simple architecture converter design, suitable for a wide variety of

wireless communication standards, used by mobile devices. This proposal is of discrete-time type

which allows high tunability.

Considering the LTE communication standard, there are established protocols operating in the

700 MHz region. Table 6.1 shows some operating bands currently in use [70].

Table 6.1: LTE operating bands.

E-UTRA Band
Uplink Band

(MHz)

Downlink Band
(MHz)

3 1710 - 1755 2210 - 2155

5 824 - 849 869 - 894

6 830 - 840 875 - 885

8 880 - 915 925 - 960

12 699 - 716 729 - 746

13 777 - 787 746 - 756

14 788 - 798 758 - 768

17 704 - 716 734 - 746

18 815 - 830 860 - 875

19 830 - 845 875 - 890

20 832 - 862 791 - 821

40 2300 - 2400 2300 - 2400

41 2496 - 2690 2496 - 2690

LTE is still an important topic of research despite the ongoing development of 5G technologies

[71]. LTE deployed standards commonly used transmission bandwidths of 10 and 20 MHz. LTE-

Advanced is still in development and the latest Release 10 is capable of aggregating 5 different

channels for a total of 100 MHz, achieving data-rates of up to 3 Gbps on the downlink [72][73].

None of the 700 to 800 MHz bands shown are capable of 100 MHz bandwidths. At best an aggre-

gation of bands 18, 19 and 20 would result in a total bandwidth of 47 MHz. LTE-Advanced is still

not actively deployed and currently the only bands capable of full 100 MHz duplex signal band

are in the 2 to 3 GHz range. Undersampling [33] could be used to bring the signal down to the

desired range.
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Other possible applications may include land, maritime and aeronautical military systems or

wireless audio. With further improvement, new technologies such as Galileo and GLONASS

navigation systems can also be targeted [74].

6.3 Future Work

The proposed converter has promising performance results. Thus, further research is worthwhile

in order to improve its specifications and develop a final industry usable product. First of all, a

new op-amp should be designed to better suit the purposes of the present design. Nevertheless, the

op-amp kindly provided by the student at the AMSV lab allowed to understand well the limitations

of design. A layout design and tape-out is the natural step towards the silicon proof of the concept

proposed in this document.

One possible future course of research would be to implement a MASH structure, aggregating

two 3rd order converters, resulting in a 6th order NTF. From theoretical calculation a 35 dB im-

provement is seen, thus it is fair to conclude one could expect roughly 90 dB over the 100 MHz

bandwidth, instead of 60 dB. There are no converters achieving such results. Current state-of-

the-art modulators, achieving wide bands use complex high order structures. This proposal would

imply a 6th order NTF but with 4th order effort. Fig. 6.1 shows the theoretical noise transfer func-

tions for both 3rd and 6th order modulation, along with Ying’s[3] work, for the 3 different orders.

Fig. 6.2 shows expected SNR values for the several architectures, on an ideal level. A clear ad-

vantage for the proposed MASH structure can be observed, surpassing the performance of the

standard cross-coupled design with the 3 stage MASH structure.

Despite the limited study carried out in this dissertation work, the promising results ensue

more effort in the development of this concept. A solid ground work was established and a final

simple yet high-performance Σ∆ converter was proven to be feasible.
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Figure 6.1: NTF comparison for different converter schemes.
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Appendix A

Matlab Model

A.1 Simulink Model

The Simulink converter model was already presented and discussed in 4.5. The several non-

idealities were implemented using [52]. KTC noise, jitter and real opamp model are discussed.

Some adaptations were needed to fit the proposed architecture. This section briefly describes them

so the reader better, but summarily understands them. For deeper understanding [52] should be

consulted.

A.1.1 Non-Idealities

The error introduced when a sinusoidal signal is sampled at an instant which is in error by an

amount δ is given by:

x (t + δ )− x(t) ≈ 2π finδAcos(2π fint) = δ
d
dt

x(t) (A.1)

1

YZero-Order
Hold1

Zero-Order
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1
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Figure A.1: Jitter modelling.
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The input signal and its derivative, both continuous-time signals, are sampled by a zero-order

hold. The model implements expression A.1 by assuming the sampling uncertainty to be a Gaus-

sian random process.
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Figure A.2: KTC noise modelling.

The noise generated by the switches and also intrinsic to the opamp can be simulated by means

of a modified noisy integrator with transfer function:

H(z) = b
z−1

1− z−1 (A.2)

The factor b represents the ratio Cs/C f , between the sampling and feedback capacitors. The

kT/C Noise block multiplies the input by b. The total noise power sampled to Cs with a switch,

with finite impedance Ron, is given by:

e2
T =

∫
∞

0

4kT Ron

1+(2π f RonCs)
2 d f =

kT
Cs

(A.3)

The noise voltage eT is now added to the input voltage x(t):

y(t) = [x(t)+ eT (t)]b

=

[
x(t)+

√
kT
Cs

n(t)

]
b

(A.4)

where n(t) denotes a Gaussian random process with unit standard deviation, while b =Cs/C f

is the integrator’s coefficient.
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A.1.2 The Integrator

The integrator’s Simulink model is depicted in Fig. A.3. This model makes use of a single unit

delay feedback, with loop gain equal to the product of the parameter a by the finite DC gain

coefficient α , to implement the desired integrator function. Besides the finite gain of the opamp,

other included non-idealities are the output saturation levels and an input block that simulates

the GBW and slew-rate imposed by the opamp. This function was modified to include the non-

standard "unstable" integrator used in this dissertation’s proposed converter.

1
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1
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1

IN
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MATLAB Fcn
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Figure A.3: Matlab model of the integrator.

For any integrator, a limited opamp loop gain will result in only a fraction α of the previous

output being added to the next one. The transfer function taking into account this leakage is given

by:

H(z) =
z−1

1−αz−1 (A.5)

The DC gain is then 1/(1−α). The implemented SC integrator was already shown in Fig.

5.2. A standard integrator does not include the extra capacitor which samples the previous output.

[52] took into account the standard integrator and wrote the output voltage expression as:

vo(t) = vo(nTs−Ts)+αVin(nTs−Ts/2)
(

1− e−t/τ

)
, 0 < t <

Ts

2
(A.6)

This formula does not take into account the extra capacitor charge. The extra term must added

thus the resulting expression is:

vo(t) = vo(nTs−Ts)+α [vin(nTs−Ts/2)+ avo(nTs−Ts/2)]
(

1− e−t/τ

)
(A.7)

The Matlab function implemented by the slewRate block in Fig. A.3 is called slew and takes

into account expression A.7. This models the output of the ideal integrator with finite DC gain,

slew-rate and bandwidth.
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Listing A.1: Integrator slew function.

1 function out = slew(in,alfa,sr,GBW,Ts,notch,out1)

2 % Models the operational amplifier finite bandwidth and slew rate

3 % for a discrete time integrator (by S. Brigati, P. Malcovati)

4 % (adapted by luis.brochado@fe.up.pt)

5 %

6 %

7 % in: Input signal amplitude

8 % alfa: Effect of finite gain (ideal amplifier alfa=1)

9 % sr: Slew rate in V/s

10 % GBW: Gain−bandwidth product of the integrator loop gain in Hz

11 % Ts: Sample time in s

12 % out: Output signal amplitude

13

14 tau=1/(2*pi*GBW); % Time constant of the integrator

15 Tmax = Ts/2;

16

17 slope=alfa*abs(in)/tau + alfa*abs(out1)*(notch−1)/tau;
18

19 if slope > sr % Op−amp in slewing

20 tsl = ((abs(out1)*(notch−1)+abs(in))*alfa)/sr − tau; % Slewing time

21 if tsl >= Tmax

22 error_in = abs(in) − sr*Tmax;

23 error_out1 = abs(out1) − sr*Tmax;

24 else

25 texp = Tmax − tsl;

26 error_in = ((abs(in))*(1−alfa)) + (abs(in)*alfa − sr*tsl) *

exp(−texp/tau);
27 error_out1 = ((abs(out1)*(notch−1))*(1−alfa)) + (((abs(out1)*(notch

−1))*alfa) − sr*tsl) * exp(−texp/tau);
28 end

29 else % Op−amp in linear region

30 texp = Tmax;

31 error_in = ((abs(in))*(1−alfa)) + alfa*(abs(in)) * exp(−texp/tau);
32 error_out1 = ((abs(out1)*(notch−1))*(1−alfa)) + alfa*(abs(out1)*(notch

−1)) * exp(−texp/tau);
33 end

34

35 out = in − sign(in)*error_in + sign(out1)*error_out1;
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A.2 Matlab Setup Code

The following code snippets are important blocks used in this dissertation work, responsible for

the SNR calculations of all simulations. Other simpler scripts or functions are not transcribed.

These include a launcher for the Simulink model, enabling quick setup, and some other scripts

which were used for the plotting of some figures in previous chapters.

Listing A.2: Calculation of the achieved SNR.

1 function [snrdB,ptotdB] = calcSNR(vout,f,f0,fB,w,N,Vref)

2 % SNR calculation in the time domain (P. Malcovati, S. Brigati)

3 % vout: Sigma−Delta bit−stream taken at the modulator output

4 % f: Normalized signal frequency (fs −> 1)

5 % fB: Base−band frequency bins

6 % w: windowing vector

7 % N: samples number

8 % snrdB: SNR in dB

9 % ptotdB: Bit−stream power spectral density (vector)

10 fB=ceil(fB);

11 signal=(N/sum(w))*sinusx(vout(1:N).*w,f0,N); % Extracts sinusoidal signal

12 noise=vout(1:N)−signal; % Extracts noise components

13 stot=((abs(fft((vout(1:N).*w)'))).^2); % Bit−stream PSD

14 ssignal=(abs(fft((signal(1:N).*w)'))).^2; % Signal PSD

15 snoise=(abs(fft((noise(1:N).*w)'))).^2; % Noise PSD

16 pwsignal=sum(ssignal(f−fB/2:f+fB/2)); % Signal power

17 pwnoise=sum(snoise(f−fB/2:f+fB/2)); % Noise power

18 snr=pwsignal/pwnoise;

19 snrdB=dbp(snr);

20 norm=sum(stot)/Vref^2; % PSD normalization

21 if nargout > 1

22 ptot=stot/norm;

23 ptotdB=dbp(ptot);

24 end

25 if nargout > 2

26 psig=ssignal/norm;

27 psigdB=dbp(psig);

28 end

29 if nargout > 3

30 pnoise=snoise/norm;

31 pnoisedB=dbp(pnoise);

32 end
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Listing A.3: Function sinusx.

1 function outx = sinusx(in,f,n)

2 % Extracts of a sinusoidal signal (S. Brigati, P. Malcovati)

3 %

4 % in: Input data vector

5 % f: Normalized input signal frequency

6 % n: Number of simulation points

7 %

8 % outx: Sinusoidal signal

9 %

10

11 sinx=sin(2*pi*f*[1:n]);

12 cosx=cos(2*pi*f*[1:n]);

13 in=in(1:n);

14 a1=2*sinx.*in;

15 a=sum(a1)/n;

16 b1=2*cosx.*in;

17 b=sum(b1)/n;

18 outx=a.*sinx + b.*cosx;

Listing A.4: Function dbp.

1 function y = dbp(x)

2 % Calculates the input value in dB dbp(x) = 10*log10(x)

3 % (by S. Brigati, P. Malcovati)

4 %

5 % x: Input

6 %

7 % y: Output in dB

8 %

9

10 y = −Inf*ones(size(x));
11 nonzero = x~=0;

12 y(nonzero) = 10*log10(abs(x(nonzero)));
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Listing A.5: Calculation of the theoretical SNR for the 3rd order Σ∆ converter.

1 function [SNR] = theory_SNR(OSR,f0,fs,N,a)

2 % 3rd order modulator theoretical SNR (luis.brochado@fe.up.pt)

3 %

4 % OSR: Oversampling ratio

5 % f0: Central frequency

6 % fs: Sampling frequency

7 % N: Quantiser bit number

8 % a: Notch parameter

9

10 fB = fs / (2 * OSR);

11 ps = 10*log10 ((2^(2*N))/8); % Calculate Signal Power

12

13 X = (f0*fs−fB/2):0.1:(f0*fs+fB/2); % Integration range vector

14 Y = (a*(exp(1j*2*pi*X/fs).^(−1))+a*(exp(1j*2*pi*X/fs).^(−2))+(exp(1j*2*pi*X/
fs).^(−3))+1); % NTF expression

15

16 pe = 10*log10(trapz(X,(abs(Y).^2)) / (12 * fs)); % Noise calculation

17 SNR = ps − pe;
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