

Abstract — Embedded test within integrated systems allows to

overcome some of the difficulties found when testing using only

an external tester. The work presented herein addresses the high

level generation of specific programmable processors for testing

different blocks in integrated systems, taking advantage of

existing programmable resources.

This paper proposes a methodology to develop the processor's

architecture from high level descriptions, and presents results

on the application of this procedure to generate embedded tests

for an A/D converter integrated into a mixed-signal application

system.

Index Terms—Embedded analogue test, SoC test, test

processor.

I. INTRODUCTION

HE progress attained in successive generations of

electronic integrated systems (IS), either system-on-chip

(SoCs), system in package (SiP), multi chip modules (MCM),

and other implementation technologies, has created a new

range of innovative and affordable consumer products. Blocks

such as digital and analogue I/O interfaces, complex

communication sub-systems (including optical and radio-

frequency circuits), power management, and multiple

processors (including the respective software) are now being

integrated in ever shrinking single substrates.

Significant work has been done in the digital SoC testing

domain, but, so far, the test of analogue and mixed-signal

(AMS) cores has not been addressed by the IEEE 1500

workgroup due to its complexity and specificities [1 - 3].

The use of embedded processors to perform in-situ test

operations has already been proposed. These operations

include self-testing, memory tests, and the entire test of a SoC

[4 - 9]. Both dedicated hardware and software facilities can be

provided in these processors, such as boundary-scan

The work presented herein has been partly supported by the Portuguese

government, Agência de Inovação, and carried-out under the framework of

projects ASSOCIATE (A503 - MEDEA+) and NanoTEST (2A702 -

MEDEA+, phase 2).

F. X. Duarte and Gabriel A. Pinho are with Universidade do Porto,

Faculdade de Engenharia, and INESC Porto, Campus FEUP, Rª Dr. Roberto

Frias nº 378, 4200-465, Porto, Portugal (phone: +351225081327; fax:

+351225081443; e-mail: {fduarte,Gabriel}@fe.up.pt).

J. C. Alves, J. Machado da Silva, and J. S. Matos are with Universidade do

Porto, Faculdade de Engenharia, and INESC Porto, Campus FEUP, Rª Dr.

Roberto Frias nº 378, 4200-465, Porto, Portugal (phone: +351225081400;

fax: +351225081443; e-mail: {jca, jms, jsm}@fe.up.pt).

controllers, LFSR and MISR registers, and programs for local

test vector compression and decompression. A test support

processor placed near the DUT (device under test) allows

overcoming the effects of transmission lines at very high

frequencies by reducing the effective distance between ATE

pin electronics and the DUT [10]. In [11] an embedded AMS

test controller is proposed which makes use of the IEEE

1149.4 standard [14] and utilizes the embedded memory to

support test operations.

The recent advances in FPGA devices have been enabling

the increasing use of this technology in complex AMS

systems. The ability to accommodate several different

functionalities backed-up in low-cost off-chip memory

systems, the capability to support hardware upgrades and the

performance afforded by dedicated digital systems are proven

arguments favouring this trend. This has been observed during

the past few years in PCB-assembled systems that include

more and more FPGA devices; next years will certainly assist

to a further integration of FPGA blocks, processors, as well as,

analogue and mixed-signal cores into a single package.

Such uncommitted implementation area for custom logic

within an AMS system is a very attractive resource, from the

system test point of view. With the support for dedicated test-

specific signals and buses, the same physical implementation

area can host a variety of different circuits, each one specially

designed to carry-out test tasks for the other blocks in the

system [12].

Having a programmable processor running a stored program

dedicated to this task has several advantages, when compared

to test-specific circuits with fixed functionality. First, a stored-

program processor offers some degree of flexibility because

the overall operation is dictated by a sequence of instructions

(software) and changes still supported by the instruction set do

not impose a new hardware design cycle. Second, a common

processor core can be surrounded by specific peripheral blocks

supported by high-level instructions, to satisfy tight time

requisites that may be imposed by some test operations.

Examples of such blocks are test stimuli generators, data pre-

processing, signature compaction, and test infrastructure

controller. Finally, the always constrained implementation

space of a reconfigurable block can be conveniently traded-off

among processing power, flexibility of programming and the

amount of data to be transferred to external equipment (this

impacts significantly the testing time).

However, generating several different specific processor

architectures and test programmes is a time consuming and

errorprone task, when done from scratch at the RTL level, for

A High Level Test Processor and

Test Program Generator

Francisco X. Duarte, José C. Alves, José Machado da Silva, Gabriel Pinho, and José S. Matos

T

Administrator
Aceite para apresentação na XX Conference on Design of Circuits and Integrated Systems, Lisboa, Novembro 2005

each new system or test operation [7].

The work presented herein addresses the automatic

generation of dedicated custom processor architectures for

specific test operations, as well as the corresponding test

programs. This facility can be seen as disposing of a highly

flexible and optimised embedded tester, supplied as an

intellectual property (IP) module and its software. The

approach being proposed is based in the implementation of a

test processor as an Application Specific Instruction-Set

Processor (ASIP), whose set of conventional and dedicated

instructions are automatically derived from a software

specification of the test operation to be implemented.

The rest of the paper describes, in section II, the motivation

and the basic functionalities being proposed for the test

processor, and in section III the synthesis procedure to

automate the generation of custom test processors. Section IV

presents the first experiments of the application of this

approach to an industrial AMS system, with particular

emphasis on the test of an ADC integrated circuit. Finally, the

main conclusions are highlighted in section V.

II. FUNCTIONALITIES OF A TEST PROCESSOR

The main operations to be performed by a generic tester

(irrespective of the circuit under test) are:

- test pattern/stimuli generation

- test infrastructure control

- configuration of test modes and propagation of test patterns

and responses

- capture and evaluation of responses

Generation, transport, and capture of analogue signals are

critical aspects in AMS test. On-chip stimuli generation and

response evaluation are operations which can avoid the

necessity for complex AMS testers, and may contribute to

prevent performance degradation due to extra circuitry. If

stimuli have to be generated externally, the test infrastructure

has to be controlled accordingly.

Modular testing of embedded cores can simplify test access

and application. Within modular testing an embedded core is

isolated from surrounding logic using a wrapper, while a test

access mechanism (TAM) provides test data delivery from I/O

pins [2]. Besides partitioning provided by the test

infrastructure, reconfigurable logic can also be explored to

promote modularity. This allows creating modules within

cores not provided with a test infrastructure or whose

dimension would not recommend its inclusion. In the end,

modularity facilitates the reuse of pre-computed tests for

individual cores or SOC partitions.

Another aspect concerns time control and the

synchronization of analogue and digital events. Time is a

critical aspect in SoC testing, and can be reduced by

performing parallel testing. Often, different frequencies are

required for different cores and thus simultaneously driving

different channels at different data rates is a highly desirable

function. Even if tests are run under the control of the external

tester, an embedded test processor may help increase the

number of cores tested in parallel, at each proper clock

frequencies.

Self-testing implemented with the aid of the test processor,

offers the ability to apply and analyze test signals at-speed on

chip. This, in general, provides greater accuracy and shorter

test time.

Other non conventional test operations may also be carried-

out in-circuit, taking advantage of the processing facilities

provided by the processor.

To reduce testing time, a test operation comprising the

capture of a number of samples from an analogue module may

be interrupted whenever a totally unexpected sequence of

response values is captured. Although this is expected to be an

unusual situation, it can avoid subsequent and not necessary

test operations.

Τs

Faulty

samples

∆V

Fig. 1 — Pre-screening of faulty samples.

For the case the test stimuli is a sine wave, the test interrupt

criterion may be based on the detection of N consecutive data

samples, whose differences (∆V) among them are, for example

S

I

f

fA
VVVorV

π2
:2,0 maxmax

×
=∆∆×≥∆=∆ (1)

where A is the test signal peak amplitude, fI the input

frequency, and fS the sampling frequency. This establishes a

pre-screening criterion based on the fact that, being the input

signal a sinewave, the slope of N consecutive samples cannot

be neither 0 nor higher than 2 times the maximum slope of the

input sinusoid (Fig. 1). Detecting a sequence of samples

presenting these characteristics is considered as a catastrophic

fault has occurred, and thus it is not worth to capture the full

specified sequence of samples, required, e.g., to compute a

functional parameter.

Fig. 2 — Block diagram of the test processor infrastructure.

Taking advantage of the reconfigurable block, all these

operations can be reused, and even updated with more efficient

algorithms, during all system’s life-time cycle, with no need

for any hardware changes.

Figure 2 illustrates a simple block diagram of a possible test

processor. It includes a programmable processor core

surrounded with specific functional blocks, which may be

included or not, depending on the type of test operations to be

performed.

The base processor core supports a complete set of

conventional instructions, plus high-level dedicated

instructions that control the specific functional blocks placed

around the core. The blocks diagram shown in figure 2 are:

− BSctrl is a boundary-scan controller implementing the

IEEE 1149.1/4 standard protocol, used to control the

existing test infrastructure

− TSctrl is a dedicated analogue stimulus generator

comprising a DDS (Direct Digital Synthesiser) and a

digital to analogue converter (a first-order Σ∆ modulator)

− DUVctrl is a module responsible for controlling the

operation of the CUT

− TrespAnal evaluates the validity of the samples being

captured to early detect abnormal responses

The actual configuration of the test processor is determined

by the type of instructions the test designer uses in the test

program. The processor’s instruction set is configured

automatically from the source code of the program to be run,

in order to include only the exact instructions required for that

task. For example, if the processor's registers and the ALU

operations are not referred in the program to be executed,

these elements do not need to be included in the processor's

datapath and control path; also, if a sinewave is needed as a

stimulus, a special instruction must be used that will attach to

the processor core the block to handle this function (the TSctrl

block in the diagram of figure 2)

Although this strategy creates programmable processors that

do not exhibit a high degree of flexibility because they just

include the resources that meet the needs of one particular

program, it is an efficient way to create dedicated controllers

optimized in area for each particular test task. Besides, any test

programs that use the same set of instructions can still be

implemented without requiring the synthesis of a different

processor.

III. AUTOMATIC GENERATION OF SPECIFIC TEST PROCESSORS

The generation of a test processor starts with a software

specification of the test operation to be performed (figure 3).

Presently, this specification is done using an assembly level

language whose instruction set comprises all the core

instructions supported by the processor, plus an extra set of

complex instructions that are responsible for the operation of

the peripheral specific blocks. From this specification, a

custom programmable processor is generated as a set of

synthesisable HDL modules, including the identification of

peripheral blocks associated to specific instructions, and the

set of constrains and assignments required to instantiate and

Fig.3 – Fluxogram of the test processor generation process.

map these modules onto the FPGA. These descriptions are

then forwarded to the specific FPGA technology mapping and

implementation tools (the Foundation suite), to create an

application-specific processor that includes only the

instructions referred in the source code. The program to be

downloaded onto the program memory is another output from

the processor optimization process.

For example, the complex instruction TSTIMULUS

generates an analogue test stimulus whose configuration

(waveform, sampling frequency and amplitude) is specified by

its operands. If this instruction is used in the test programme,

the stimulus generation block (TSctrl in figure 2) is attached to

the processor core, with the corresponding decoding and

processing control states.

In a similar way, the basic processing and control flow

instructions supported by the core processor are also included

or not, depending whether they are referrenced or not in the

source programme. This involves the customization of the

processor’s control unit and datapath: type of operations

implemented in the arithmetic and logic unit, number of

general purpose registers and memory addressing modes.

Instead of growing up the processor with the appropriate

hardware support for the required instructions, the

configuration process works, actually, in the oposite direction

(figure 4). The starting point is a digital model of the full

processor that supports the complete instruction set. By

performing a single scan of the test programme, a list of the

non-used instructions (either basic and complex), ALU

operations, registers and memory addressing modes is

constructed.

These unnecessary resources are then removed from the

processor’s model in two phases. First, the datapath is

simplified by deleting all the blocks that will not be used by

that particular instance of the test programme. Then, the

control path is optimised by eliminating all the states

responsible for the control of the non-used instructions and

adjusting the size and encoding of the control states.

Figure 4 – Configuration of test-specific programmable processors.

The user can, if necessary, generate new instructions and/or

peripheral blocks. This process starts with the specification of

the new instruction’s opcode and attributes (e.g. no. of

operands and clock cycles), and with the identification of the

interface with the core processor. This is carried-out using Perl

data structures, one to describe the new instruction and another

to describe the new block. The following Perl script shows the

description of the DUVctrl block.

Core interfacing signals
//ctrlunit_interface
 eofduvtest, enduvtest,
//ctrlunit_interface_end

output port
//ctrlunit_output_port
output enduvtest;
 reg enduvtest;
//ctrlunit_output_port_end

input port
//ctrlunit_input_port
input eofduvtest; //DUVctrl inport
//ctrlunit_input_port_end

New core required logic
//ctrlunit_input_event
 eofduvtest or
//ctrlunit_input_event_end

Initialization of type reg signals
//ctrlunit_output_init
 enduvtest = 0;
//ctrlunit_output_init_end

Inter-operability with the TEST_DUV instruction
//ctrlunit_testop
 4'b0011: begin
 enduvtest = 1;
 if (eofduvtest)
 nextstate = INITIAL;
 else
 nextstate = DECODE;
 end
//ctrlunit_testop_end

External interfacing signals
//mc_interface
 sclk, lrck, mclk, sinput,
//mc_interface_end

//mc_output_port
output mclk;

//mc_output_port_end

//mc_input_port
input sinput, sclk, lrck;
//mc_input_port_end

Instantiation of the block within the processor
//mc_surround_blocks
wire enladseg_duv, rstladseg_duv, enradseg_duv, rstradseg_duv,
eofduvtest, enduvtest;
wire [7:0] duvdata;

assign mclk = enduvtest ? clock : 0;

DUVctrl_cs5330A duvcrtl(.outsample(duvdata), .eofs2p(eofduvtest),
 .mem_we(mem_we_duv),
 .enladseg(enladseg_duv), .enradseg(enradseg_duv),
 .en_dataaddr(endsaddr_duv), .sels2p(selS2P),
 .mclk(clock), .sclk(sclk), .lrck(lrck), .reset(reset),
 .ens2p(enduvtest), .sdata(sinput), .endds(endds));
//mc_surround_blocks_end

Interfacing with the core processor
//mc_core_interface
 .eofduvtest(eofduvtest), .enduvtest(enduvtest),
//mc_core_interface_end

I. EXPERIMENTAL RESULTS

Fig. 5 – Diagram of the prototype system under evaluation.

Figure 5 illustrates the prototype system being used as a

validation vehicle. This is the front-end conditioning circuit of

the signals acquired from the voltage and current sensors of a

digital energy meter. The test scheme being proposed here

aims to provide an on-system self-test procedure to verify the

functionality of the ADC and the analogue front-end circuitry.

This system includes a two-input sigma-delta ADC, and

two input filtering and impedance adapter circuits. The ADC

interfaces with the systems’s FPGA through 3 clock and one

serial data digital signals. A memory block already existing in

the system (not shown) and used by the application is also

connected to the FPGA and is used by the test processor to

store the responses acquired during the test operation.

An IEEE 1149.4 test bus [13] is used to gain access to

selected analogue test nodes. The test bus is implemented by

two 1149.4 compliant chips (SCANSTA400), which are

controlled by a dedicated control block placed in the FPGA.

These interface chips were inserted between the two primary

analogue inputs and at the two ADC inputs, to provide

analogue controllability at these nodes. These cells allow to

select between mission signals and test stimuli generated by

the stimuli generator included into the FPGA.

In this system the ADC digital interface signals are directly

connected to the FPGA, and thus it is not actually necessary to

switch them between mission and test modes, as both

functionalities are controlled from the FPGA. Would this not

be the case, specific digital wrapper cells would have to be

inserted to switch between normal operation (mission signals)

and the test specific stimuli. The analogue test cells

implemented with the STA400 chips were inserted to allow

performing the test of two signal paths per channel, i. e.:

- each ADC channel individually

- the input adapter and the ADC in a single path

Performing first the test of the ADC one can check its

functionality before testing also the input adapters. The test

can be stopped after each one of these operations if faults are

found, to reduce total testing time.

The maximum allowable measurement error of the energy

meter is 2%. This requires the maximum allowable

measurement error per channel to be at most 1%. The

performance of the test setup affects itself directly the test

accuracy results. The final error measurement is determined by

different error sources, such as:

- stimulus harmonic distortion

- stimulus amplitude and phase noise

- CUT’s harmonic distortion

- number of samples acquired to calculate the parameters

- gain and offset deviations

- clock jitter

The overall contribution of these error sources determines

the test tolerance band, and thus should not be higher than the

maximum admissible error per channel. If the error sources are

not correlated the total error becomes:

22
2

2
1max ...

E
εεεε +++= (2)

where E is the number of errors being considered. In our case

E can be reduced to 4, because of:

- stimulus and CUT’s harmonic distortion can be joined

together as a single harmonic distortion source

- stimulus phase noise is more critical than clock jitter

- the CUT ADC included presents a high-pass behaviour

which eliminates analogue offset

- in the measuring process the noisy lowest significant bits

can be omitted, and correlation provides also random

noise filtering.

Taking this into consideration, the only error sources to be

considered are stimulus phase noise, harmonic distortion, gain

error, and the number of samples. Assuming equal

contributions for the four sources, each one should be made

lower than -52 dB from the fundamental signal amplitude, per

channel. Concerning only harmonic distortion, and considering

that this is due mainly to the first 4 harmonics, in the worst

case – i.e., all have the same amplitude – each one of these

should not be higher that -64dB. As an ADC with very low

THD is used, the harmonic distortion required for the test

stimulus can be determined by the maximum allowed error

rather than by the CUT itself, and this allows to alleviate the

test circuitry performance requirements.

A prototype of the test processor was implemented to

support the test of this circuit, based on the computation of the

cross-correlation between the circuit responses and the stimuli

applied, to estimate the amplitude if the harmonics and derive

the total harmonic distorsion (THD).

The circuit was synthesised for the system’s FPGA

(XC4013E-4 PG223 [15]), occupying 85% of the CLBs and

meeting the 8MHz target clock frequency. This

implementation runs a very simple programme that configures

the analogue bus through the JTAG interface to apply the

analogue stimulus to the ADC inputs, activates the sine wave

generator and captures a set of 16384 samples at a sampling

frequency of 25.6KHz, storing them into the system’s memory.

Fig. 6 – Stimulus’s spectrum at the Σ∆ output.

The stimulus generator produces a 50Hz sine wave with 12

bit samples at a sampling frequency of 25.6KHz. Figure 6

illustrates the stimulus’s distortion obtained from the logic

values captured at the sigma-delta output. It can be seen that

the first four harmonics of interest present amplitudes below

-88dBc.

The spectrum measured after the external filter (figure 7)

shows a low-frequency distortion which do not satisfies the

condition stated above to guarantee the 2% maximum error in

the energy measurement (each one of the first 4 harmonics

below -64dB). This distortion was found to be due to

interference from the mains supply and could be removed even

with low cut-off frequency filters.

The results obtained performing on-chip cross-correlation

confirm the this spectrum, giving average values of -52 dBc

for the 2
nd

 harmonic, -58dBc for the 3
rd

 harmonic, and -73dBc

for the 4
th

 one.

Fig. 7 – Stimulus’s spectrum at the filter output.

The cross-correlation is evaluated by a dedicated module

associated to the core processor that processes data samples on

the fly and that do not requires additional memory to store the

captured samples.

V CONCLUSIONS

This paper proposes a design methodology to build application

specific programmable processors to support the test of

analogue and mixed signal blocks. Such test processor reuses a

FPGA-like block that is now being a common place in AMS

system boards, and will sonner or later move into more

integrated tecnologies like SiP and SoC. A fully automated

procedure is being implemented that generates synthesisable

HDL models of a highly customised test processor, starting

from a test programme specification.

 The test of the analogue front-end of a digital power meter

being used as test vehicle was presented. The necessity to

optimize the tests to be performed for area, power

consumption and time duration, lead to different optimization

goals that are being considered during the test generation.

ACKNOWLEDGMENT

Authors are thankful to TECMIC for valuable support.

REFERENCES

[1] E. J. Marinissen, R. Kapur, M. Lousberg, T. McLaurin, M.

Ricchetti, Y. Zorian, “On IEEE P1500’s Standard for Embedded

Core Test”, Journal of Electronic Testing – Theory and

Applications, Vol. 18, No. 4/5, Aug./Oct. 2002.

[2] IEEE P1500 Web Site, http://grouper.ieee.org/groups/1500

[3] A. Sehgal, S. Ozev, and K. Chakrabarty, “TAM optimization for

Mixed-Signal SOCs using Analogue Test Wrappers”,

Proceedings of the IEEE International Conference on Computer

Aided Design, San Jose, November, 2003.

[4] C. Galke, M. Pflanz, and H. T. Vierhaus, “A Test Processor

Concept for Systems-on-a-Chip”, Proceedings of the IEEE

International Conference on Computer Design: VLSI in

Computers and Processors (ICCD’02), Germany, September

2002.

[5] Abhijit Jas and Nur A. Touba, “Deterministic Test Vector

Compression/Decompression for Systems-on-a-Chip Using an

Embedded Processor”, Journal of Electronic Testing – Theory

and Applications, Special Issue on SOC (System-on-a-chip)

Testing for Plug and Play Test Automation, Vol. 18, No. 4/5,

August/October 2002.

[6] Lai, W. -C. and Cheng, K. T., “Instruction-Level DFT for Testing

Processor and IP Cores in System-on-a-Chip,” Proceedings of the

37th Design Automation Conference, pp. 58-64, 2001.

[7] O. Goloubeva, M. Sonza Reorda, M. Violante, "High-level test

generation for hardware testing and software validation",

HLDVT2003: IEEE International Workshop on High Level

Design Validation and Test, pp- 143-148, 2003.

[8] F. Corno, M. Sonza Reorda, G. Squillero, M. Violante, “On the

Test of Microprocessor IP Cores”, Proceedings of the IEEE

Design Automation and Test in Europe Conference, pp. 209-213,

2001.

[9] R. Rajsuman, “Testing a System-on-a-Chip with Embedded

Microprocessor”, in Proceedings of the International Test

Conference, pp. 499-508, 1999.

[10] D.C. Keezer, Q. Zhou, “Test Support Processors for Enhanced

Testability of High Performance Circuits”, Proceedings of the

International Test Conference, pp. 801-809, October 1999.

[11] M. AbdEl-Halim, “An Analogue Mixed-Signal Test

Controller”, Proceedings of the IEEE Midwest Symposium on

Circuits and Systems, Oklahoma, 2002.

[12] M. Abramovici, C. Stroud, M. Emmert, “Using Embedded

FPGAs for SoC Yield Improvement”, Proceedings of the Design

Automation Conference, June 2002.

[13] IEEE 1149.4 - Standard for a mixed-signal test bus, Test

Technology Technical Committee of the IEEE Computer Society,

June 1999.

[14] SCANSTA400 – IEEE 1149.4 Analogue Test Access Device,

National Semiconductor.

[15] Xilinx web site: http.//www.xilinx.com

