
 

   

Abstract — Embedded test within integrated systems allows to 

overcome some of the difficulties found when testing using only 

an external tester.  The work presented herein addresses the high 

level generation of specific programmable processors for testing 

different blocks in integrated systems, taking advantage of 

existing programmable resources.  

This paper proposes a methodology to develop the processor's 

architecture from high level descriptions, and presents results 

on the application of this procedure to generate embedded tests 

for an A/D converter integrated into a mixed-signal application 

system. 

 
Index Terms—Embedded analogue test, SoC test, test 

processor. 

I. INTRODUCTION 

HE progress attained in successive generations of 

electronic integrated systems (IS), either system-on-chip 

(SoCs), system in package (SiP), multi chip modules (MCM), 

and other implementation technologies, has created a new 

range of innovative and affordable consumer products. Blocks 

such as digital and analogue I/O interfaces, complex 

communication sub-systems (including optical and radio-

frequency circuits), power management, and multiple 

processors (including the respective software) are now being 

integrated in ever shrinking single substrates.  

Significant work has been done in the digital SoC testing 

domain, but, so far, the test of analogue and mixed-signal 

(AMS) cores has not been addressed by the IEEE 1500 

workgroup due to its complexity and specificities [1 - 3]. 

The use of embedded processors to perform in-situ test 

operations has already been proposed. These operations 

include self-testing, memory tests, and the entire test of a SoC 

[4 - 9]. Both dedicated hardware and software facilities can be 

provided in these processors, such as boundary-scan 
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controllers, LFSR and MISR registers, and programs for local 

test vector compression and decompression. A test support 

processor placed near the DUT (device under test) allows 

overcoming the effects of transmission lines at very high 

frequencies by reducing the effective distance between ATE 

pin electronics and the DUT [10]. In [11] an embedded AMS 

test controller is proposed which makes use of the IEEE 

1149.4 standard [14] and utilizes the embedded memory to 

support test operations. 

The recent advances in FPGA devices have been enabling 

the increasing use of this technology in complex AMS 

systems. The ability to accommodate several different 

functionalities backed-up in low-cost off-chip memory 

systems, the capability to support hardware upgrades and the 

performance afforded by dedicated digital systems are proven 

arguments favouring this trend. This has been observed during 

the past few years in PCB-assembled systems that include 

more and more FPGA devices; next years will certainly assist 

to a further integration of FPGA blocks, processors, as well as, 

analogue and mixed-signal cores into a single package.  

Such uncommitted implementation area for custom logic 

within an AMS system is a very attractive resource, from the 

system test point of view. With the support for dedicated test-

specific signals and buses, the same physical implementation 

area can host a variety of different circuits, each one specially 

designed to carry-out test tasks for the other blocks in the 

system [12].  

Having a programmable processor running a stored program 

dedicated to this task has several advantages, when compared 

to test-specific circuits with fixed functionality. First, a stored-

program processor offers some degree of flexibility because 

the overall operation is dictated by a sequence of instructions 

(software) and changes still supported by the instruction set do 

not impose a new hardware design cycle. Second, a common 

processor core can be surrounded by specific peripheral blocks 

supported by high-level instructions, to satisfy tight time 

requisites that may be imposed by some test operations. 

Examples of such blocks are test stimuli generators, data pre-

processing, signature compaction, and test infrastructure 

controller. Finally, the always constrained implementation 

space of a reconfigurable block can be conveniently traded-off 

among processing power, flexibility of programming and the 

amount of data to be transferred to external equipment (this 

impacts significantly the testing time). 

However, generating several different specific processor 

architectures and test programmes is a time consuming and 

errorprone task, when done from scratch at the RTL level, for 
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each new system or test operation [7].  

The work presented herein addresses the automatic 

generation of dedicated custom processor architectures for 

specific test operations, as well as the corresponding test 

programs. This facility can be seen as disposing of a highly 

flexible and optimised embedded tester, supplied as an 

intellectual property (IP) module and its software. The 

approach being proposed is based in the implementation of a 

test processor as an Application Specific Instruction-Set 

Processor (ASIP), whose set of conventional and dedicated 

instructions are automatically derived from a software 

specification of the test operation to be implemented. 

The rest of the paper describes, in section II, the motivation 

and the basic functionalities being proposed for the test 

processor, and in section III the synthesis procedure to 

automate the generation of custom test processors. Section IV 

presents the first experiments of the application of this 

approach to an industrial AMS system, with particular 

emphasis on the test of an ADC integrated circuit. Finally, the 

main conclusions are highlighted in section V. 

II. FUNCTIONALITIES OF A TEST PROCESSOR 

The main operations to be performed by a generic tester 

(irrespective of the circuit under test) are:  

- test pattern/stimuli generation 

- test infrastructure control 

- configuration of test modes and propagation of test patterns 

and responses  

- capture and evaluation of responses  

Generation, transport, and capture of analogue signals are 

critical aspects in AMS test. On-chip stimuli generation and 

response evaluation are operations which can avoid the 

necessity for complex AMS testers, and may contribute to 

prevent performance degradation due to extra circuitry. If 

stimuli have to be generated externally, the test infrastructure 

has to be controlled accordingly.  

Modular testing of embedded cores can simplify test access 

and application. Within modular testing an embedded core is 

isolated from surrounding logic using a wrapper, while a test 

access mechanism (TAM) provides test data delivery from I/O 

pins [2]. Besides partitioning provided by the test 

infrastructure, reconfigurable logic can also be explored to 

promote modularity. This allows creating modules within 

cores not provided with a test infrastructure or whose 

dimension would not recommend its inclusion. In the end, 

modularity facilitates the reuse of pre-computed tests for 

individual cores or SOC partitions. 

Another aspect concerns time control and the 

synchronization of analogue and digital events. Time is a 

critical aspect in SoC testing, and can be reduced by 

performing parallel testing. Often, different frequencies are 

required for different cores and thus simultaneously driving 

different channels at different data rates is a highly desirable 

function. Even if tests are run under the control of the external 

tester, an embedded test processor may help increase the 

number of cores tested in parallel, at each proper clock 

frequencies.  

Self-testing implemented with the aid of the test processor, 

offers the ability to apply and analyze test signals at-speed on 

chip. This, in general, provides greater accuracy and shorter 

test time. 

Other non conventional test operations may also be carried-

out in-circuit, taking advantage of the processing facilities 

provided by the processor. 

To reduce testing time, a test operation comprising the 

capture of a number of samples from an analogue module may 

be interrupted whenever a totally unexpected sequence of 

response values is captured. Although this is expected to be an 

unusual situation, it can avoid subsequent and not necessary 

test operations. 
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Fig. 1 — Pre-screening of faulty samples. 

For the case the test stimuli is a sine wave, the test interrupt 

criterion may be based on the detection of N consecutive data 

samples, whose differences (∆V) among them are, for example  

S

I

f

fA
VVVorV

π2
:2,0 maxmax

×
=∆∆×≥∆=∆    (1) 

where A is the test signal peak amplitude, fI the input 

frequency, and fS the sampling frequency. This establishes a 

pre-screening criterion based on the fact that, being the input 

signal a sinewave, the slope of N consecutive samples cannot 

be neither 0 nor higher than 2 times the maximum slope of the 

input sinusoid (Fig. 1). Detecting a sequence of samples 

presenting these characteristics is considered as a catastrophic 

fault has occurred, and thus it is not worth to capture the full 

specified sequence of samples, required, e.g., to compute a 

functional parameter. 

 

 
 

Fig. 2 — Block diagram of the test processor infrastructure. 



 

  

Taking advantage of the reconfigurable block, all these 

operations can be reused, and even updated with more efficient 

algorithms, during all system’s life-time cycle, with no need 

for any hardware changes.  

Figure 2 illustrates a simple block diagram of a possible test 

processor. It includes a programmable processor core 

surrounded with specific functional blocks, which may be 

included or not, depending on the type of test operations to be 

performed. 

The base processor core supports a complete set of 

conventional instructions, plus high-level dedicated 

instructions that control the specific functional blocks placed 

around the core. The blocks diagram shown in figure 2 are: 

− BSctrl is a boundary-scan controller implementing the 

IEEE 1149.1/4 standard protocol, used to control the 

existing test infrastructure  

− TSctrl is a dedicated analogue stimulus generator 

comprising a DDS (Direct Digital Synthesiser) and a 

digital to analogue converter (a first-order Σ∆ modulator) 

− DUVctrl is a module responsible for controlling the 

operation of the CUT 

− TrespAnal evaluates the validity of the samples being 

captured to early detect abnormal responses 

 

The actual configuration of the test processor is determined 

by the type of instructions the test designer uses in the test 

program. The processor’s instruction set is configured 

automatically from the source code of the program to be run, 

in order to include only the exact instructions required for that 

task. For example, if the processor's registers and the ALU 

operations are not referred in the program to be executed, 

these elements do not need to be included in the processor's 

datapath and control path; also, if a sinewave is needed as a 

stimulus, a special instruction must be used that will attach to 

the processor core the block to handle this function (the TSctrl 

block in the diagram of figure 2) 

Although this strategy creates programmable processors that 

do not exhibit a high degree of flexibility because they just 

include the resources that meet the needs of one particular 

program, it is an efficient way to create dedicated controllers 

optimized in area for each particular test task. Besides, any test 

programs that use the same set of instructions can still be 

implemented without requiring the synthesis of a different 

processor. 

III. AUTOMATIC GENERATION OF SPECIFIC TEST PROCESSORS 

The generation of a test processor starts with a software 

specification of the test operation to be performed (figure 3). 

Presently, this specification is done using an assembly level 

language whose instruction set comprises all the core 

instructions supported by the processor, plus an extra set of 

complex instructions that are responsible for the operation of 

the peripheral specific blocks. From this specification, a 

custom programmable processor is generated as a set of 

synthesisable HDL modules, including the identification of 

peripheral blocks associated to specific instructions, and the 

set of constrains and assignments required to instantiate and  

 
Fig.3 – Fluxogram of the test processor generation process. 

 

map these modules onto the FPGA. These descriptions are 

then forwarded to the specific FPGA technology mapping and 

implementation tools (the Foundation suite), to create an 

application-specific processor that includes only the 

instructions referred in the source code. The program to be 

downloaded onto the program memory is another output from 

the processor optimization process.   

For example, the complex instruction TSTIMULUS 

generates an analogue test stimulus whose configuration 

(waveform, sampling frequency and amplitude) is specified by 

its operands. If this instruction is used in the test programme, 

the stimulus generation block (TSctrl in figure 2) is attached to 

the processor core, with the corresponding decoding and 

processing control states.  

In a similar way, the basic processing and control flow 

instructions supported by the core processor are also included 

or not, depending whether they are referrenced or not in the 

source programme. This involves the customization of the 

processor’s control unit and datapath: type of operations 

implemented in the arithmetic and logic unit, number of 

general purpose registers and memory addressing modes. 

Instead of growing up the processor with the appropriate 

hardware support for the required instructions, the 

configuration process works, actually, in the oposite direction 

(figure 4). The starting point is a digital model of the full 

processor that supports the complete instruction set. By 

performing a single scan of the test programme, a list of the 

non-used instructions (either basic and complex), ALU 

operations, registers and memory addressing modes is 

constructed.  

These unnecessary resources are then removed from the 

processor’s model in two phases. First, the datapath is 

simplified by deleting all the blocks that will not be used by 

that particular instance of the test programme. Then, the 

control path is optimised by eliminating all the states 

responsible for the control of the non-used instructions and 

adjusting the size and encoding of the control states. 



 

 

 
 

Figure 4 – Configuration of test-specific programmable processors. 

 

The user can, if necessary, generate new instructions and/or 

peripheral blocks. This process starts with the specification of 

the new instruction’s opcode and attributes (e.g. no. of 

operands and clock cycles), and with the identification of the 

interface with the core processor. This is carried-out using Perl 

data structures, one to describe the new instruction and another 

to describe the new block. The following Perl script shows the 

description of the DUVctrl block.  

 
# Core interfacing signals 
//ctrlunit_interface 
   eofduvtest, enduvtest,  
//ctrlunit_interface_end 
 
#  output port 
//ctrlunit_output_port 
output enduvtest;  
   reg enduvtest; 
//ctrlunit_output_port_end 
 
# input port 
//ctrlunit_input_port 
input eofduvtest; //DUVctrl inport 
//ctrlunit_input_port_end 
 
# New core required logic 
//ctrlunit_input_event 
  eofduvtest or  
//ctrlunit_input_event_end 
 
# Initialization of type reg signals 
//ctrlunit_output_init 
  enduvtest = 0;  
//ctrlunit_output_init_end 
 
# Inter-operability with the TEST_DUV instruction 
//ctrlunit_testop 
                   4'b0011: begin   
        enduvtest = 1;    
          if ( eofduvtest )   
           nextstate = INITIAL;  
          else     
           nextstate = DECODE; 
                end      
//ctrlunit_testop_end 
 
# External interfacing signals 
//mc_interface 
   sclk, lrck, mclk, sinput,  
//mc_interface_end 
 
//mc_output_port 
output mclk; 

//mc_output_port_end 
 
//mc_input_port 
input sinput, sclk, lrck; 
//mc_input_port_end 
 
# Instantiation of the block within the processor 
//mc_surround_blocks 
wire enladseg_duv, rstladseg_duv, enradseg_duv, rstradseg_duv, 
eofduvtest, enduvtest; 
wire [7:0] duvdata; 
 
assign mclk = enduvtest ? clock : 0; 
 
DUVctrl_cs5330A duvcrtl( .outsample(duvdata), .eofs2p(eofduvtest), 
                                         .mem_we(mem_we_duv),  
    .enladseg(enladseg_duv), .enradseg(enradseg_duv),  
    .en_dataaddr(endsaddr_duv), .sels2p(selS2P), 
    .mclk(clock), .sclk(sclk), .lrck(lrck), .reset(reset), 
    .ens2p(enduvtest), .sdata(sinput), .endds(endds)   ); 
//mc_surround_blocks_end 
 
# Interfacing with the core processor 
//mc_core_interface 
           .eofduvtest(eofduvtest), .enduvtest(enduvtest), 
//mc_core_interface_end 

I. EXPERIMENTAL RESULTS 

 
 

Fig. 5 – Diagram of the prototype system under evaluation. 

 

Figure 5 illustrates the prototype system being used as a 

validation vehicle. This is the front-end conditioning circuit of 



 

the signals acquired from the voltage and current sensors of a 

digital energy meter. The test scheme being proposed here 

aims to provide an on-system self-test procedure to verify the 

functionality of the ADC and the analogue front-end circuitry.  

This system includes a two-input sigma-delta ADC, and 

two input filtering and impedance adapter circuits. The ADC 

interfaces with the systems’s FPGA through 3 clock and one 

serial data digital signals. A memory block already existing in 

the system (not shown) and used by the application is also 

connected to the FPGA and is used by the test processor to 

store the responses acquired during the test operation. 

An IEEE 1149.4 test bus [13] is used to gain access to 

selected analogue test nodes. The test bus is implemented by 

two 1149.4 compliant chips (SCANSTA400), which are 

controlled by a dedicated control block placed in the FPGA. 

These interface chips were inserted between the two primary 

analogue inputs and at the two ADC inputs, to provide 

analogue controllability at these nodes. These cells allow to 

select between mission signals and test stimuli generated by 

the stimuli generator included into the FPGA. 

In this system the ADC digital interface signals are directly 

connected to the FPGA, and thus it is not actually necessary to 

switch them between mission and test modes, as both 

functionalities are controlled from the FPGA. Would this not 

be the case, specific digital wrapper cells would have to be 

inserted to switch between normal operation (mission signals) 

and the test specific stimuli. The analogue test cells 

implemented with the STA400 chips were inserted to allow 

performing the test of two signal paths per channel, i. e.: 

- each ADC channel individually 

- the input adapter and the ADC in a single path 

Performing first the test of the ADC one can check its 

functionality before testing also the input adapters. The test 

can be stopped after each one of these operations if faults are 

found, to reduce total testing time.  

The maximum allowable measurement error of the energy 

meter is 2%. This requires the maximum allowable 

measurement error per channel to be at most 1%. The 

performance of the test setup affects itself directly the test 

accuracy results. The final error measurement is determined by 

different error sources, such as: 

- stimulus harmonic distortion  

- stimulus amplitude and phase noise 

- CUT’s harmonic distortion 

- number of samples acquired to calculate the parameters 

- gain and offset deviations 

- clock jitter 

The overall contribution of these error sources determines 

the test tolerance band, and thus should not be higher than the 

maximum admissible error per channel. If the error sources are 

not correlated the total error becomes: 
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where E is the number of errors being considered. In our case 

E can be reduced to 4, because of: 

-  stimulus and CUT’s harmonic distortion can be joined 

together as a single harmonic distortion source 

-  stimulus phase noise is more critical than clock jitter 

-  the CUT ADC included presents a high-pass behaviour 

which eliminates analogue offset 

-  in the measuring process the noisy lowest significant bits 

can be omitted, and correlation provides also random 

noise filtering.  

 

Taking this into consideration, the only error sources to be 

considered are stimulus phase noise, harmonic distortion, gain 

error, and the number of samples. Assuming equal 

contributions for the four sources, each one should be made 

lower than -52 dB from the fundamental signal amplitude, per 

channel. Concerning only harmonic distortion, and considering 

that this is due mainly to the first 4 harmonics, in the worst 

case – i.e., all have the same amplitude – each one of these 

should not be higher that -64dB. As an ADC with very low 

THD is used, the harmonic distortion required for the test 

stimulus can be determined by the maximum allowed error 

rather than by the CUT itself, and this allows to alleviate the 

test circuitry performance requirements. 

A prototype of the test processor was implemented to 

support the test of this circuit, based on the computation of the 

cross-correlation between the circuit responses and the stimuli 

applied, to estimate the amplitude if the harmonics and derive 

the total harmonic distorsion (THD). 

The circuit was synthesised for the system’s FPGA 

(XC4013E-4 PG223 [15]), occupying 85% of the CLBs and 

meeting the 8MHz target clock frequency. This 

implementation runs a very simple programme that configures 

the analogue bus through the JTAG interface to apply the 

analogue stimulus to the ADC inputs, activates the sine wave 

generator and captures a set of 16384 samples at a sampling 

frequency of 25.6KHz, storing them into the system’s memory. 

 

 
Fig. 6 – Stimulus’s spectrum at the Σ∆ output. 

 

The stimulus generator produces a 50Hz sine wave with 12 



 

bit samples at a sampling frequency of 25.6KHz.  Figure 6 

illustrates the stimulus’s distortion obtained from the logic 

values captured at the sigma-delta output. It can be seen that 

the  first  four  harmonics of interest present amplitudes below 

-88dBc.   

The spectrum measured after the external filter (figure 7) 

shows a low-frequency distortion which do not satisfies the 

condition stated above to guarantee the 2% maximum error in 

the energy measurement (each one of the first 4 harmonics 

below -64dB). This distortion was found to be due to 

interference from the mains supply and could be removed even 

with low cut-off frequency filters. 

The results obtained performing on-chip cross-correlation 

confirm the this spectrum, giving average values of -52 dBc 

for the 2
nd

 harmonic, -58dBc for the 3
rd

 harmonic, and -73dBc 

for the 4
th

 one.  

 

 
 

Fig. 7 – Stimulus’s spectrum at the filter output. 

 

The cross-correlation is evaluated by a dedicated module 

associated to the core processor that processes data samples on 

the fly and that do not requires additional memory to store the 

captured samples. 

V  CONCLUSIONS 

This paper proposes a design methodology to build application 

specific programmable processors to support the test of 

analogue and mixed signal blocks. Such test processor reuses a 

FPGA-like block that is now being a common place in AMS 

system boards, and will sonner or later move into more 

integrated tecnologies like SiP and SoC. A fully automated 

procedure is being implemented that generates synthesisable 

HDL models of a highly customised test processor, starting 

from a test programme specification.  

 The test of the analogue front-end of a digital power meter 

being used as test vehicle was presented. The necessity to 

optimize the tests to be performed for area, power 

consumption and time duration, lead to different optimization 

goals that are being considered during the test generation.  
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