
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Simulation and Management of
Environmental Disturbances in Flight

Simulator X

João Fernando de Sousa Almeida

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Daniel Castro Silva

September 22, 2017

Simulation and Management of Environmental
Disturbances in Flight Simulator X

João Fernando de Sousa Almeida

Mestrado Integrado em Engenharia Informática e Computação

September 22, 2017

Abstract

The frequency of natural and man-made disasters which affect the environment has been rising
in recent years. In order to comprehend, examine, and even combat these occurrences, various
vehicles are utilized on missions: aircraft, ships and automobiles represent the majority. Such ve-
hicles may be manned, remote-controlled, or even fully autonomous; the latter being increasingly
common.

As to provide a way of simulating cooperative multi-vehicle missions, a platform was de-
veloped at the Artificial Intelligence and Computer Science Laboratory (Faculty of Engineering,
University of Porto) using Microsoft’s Flight Simulator X (FSX) as its core and simulation engine.
Despite being centered on a flight simulator, it supports vehicles beyond aircraft.

The Platform includes a control panel, which allows for the specification of each mission;
an agent to manage traffic; a vehicle control agent; performance analysis; and the basis for a
disturbances management tool. The Platform enables the specification and deployment of a wide
variety of missions using multiple vehicle types on various simulations. While still technically in
prototype stage, the Platform is currently at a fairly advanced level.

Is it possible to create an environmental disturbances manager, and effectively integrate it
within the existing platform? Is it feasible to introduce a generic interface for external disaster
simulators into the system? The former research questions represent the focus of the research and
development work at hand. A positive answer would be an excellent sign that the Platform was
effectively improved, and that it became more suitable for a real world application. A neutral or
even negative answer may be undesired, however it may still provide a good insight on what is
achievable on a similar architecture, and provide the researcher with the knowledge to apply on
improving current or future solutions to similar problems.

The Disturbances Manager is responsible for the simulation of environmental anomalies -
which may require the intervention of vehicle teams, or have an impact on unrelated vehicular
missions; it is launched through the Platform’s Control Panel, communicates with FSX and with
the Vehicle Control Agents - as to relay the corresponding sensor readings (e.g. an automobile
being driven in the vicinity of a burning building will get higher temperature and carbon dioxide
readings).

The Control Panel allows for the specification of disturbances using a graphical interface, as
well as saving and loading of the resulting XML files. After the mentioned steps, the Disturbances
Manager is launched to handle the Disturbances at hand - handling their position, space and time
evolutions, generated sensor readings, and more.

Given that the Disturbances Manager was fully integrated into a distributed simulation plat-
form, similar architectures were studied and taken into consideration on how to perform said
integration.

A fire may be spreading on a mountain range, which needs to be located; a hurricane may
occur in the set course for an upcoming flight. The Disturbances Manager aims to facilitate the
simulation of such events, among others.

i

The main objective for this dissertation was the development the disturbances management
component of the mentioned platform, with simulates objective of simulating a wide array of dis-
turbances, such as fires, pollution, storms, volcanic eruptions and chemical spills. The simulation
of such disturbances allows the posterior automatic adapting of vehicular missions according to
the placement, evolution, and sensor readings related to the disturbances at hand (e.g. to avoid a
low-visibility area in a commercial flight or to locate the center of a forest fire, in the case of aerial
firefighting).

The Disturbances Manager was implemented within The Platform, achieving the core objec-
tive of the dissertation. A battery of tests was performed in order to validate its functionalities and
understand its limitations. It was verified that the sensor readings are sent to the vehicles once
they reach the affected area; the readings are higher at the center of the disturbances; the time
evolutions of the emitted readings occur as planned; the spacial growth of the disturbances’ areas
also performs as expected.

Keywords: simulation, environmental, disturbances, flight, multi-vehicle, missions

ii

Resumo

A frequência de desastres que afectam o ambiente, tanto naturais como originados pelo Homem,
tem vindo a aumentar. De modo a compreender, examinar, e até combater estas ocorrências, vários
veículos são utilizados em missões: aeronaves, navios e automóveis representando a maioria. Tais
veículos podem conter um condutor humano, podem ser controlados remotamente, ou até ser
completamente autónomos, com esta alternativa a tornar-se cada vez mais comum.

De modo a providenciar uma forma de simular missões cooperativas multi-veículo, uma plata-
forma foi desenvolvida utilizando o Flight Simulator X da Microsoft (FSX) como o correspondente
núcleo e motor de simulação. Apesar de ser centrada num simulador de vôo, a plataforma suporta
veículos para além de aeronaves.

A Plataforma inclui um painel de controlo, que permite a especificação de cada missão; um
agente para gerir o tráfego; um agente de controlo de veículos; análise de desempenho; e a base
para uma plataforma de gestão de distúrbios. A Plataforma permite a especificação e execução de
uma abrangente variedade de missões utilizando múltiplos tipos de veículos em várias simulações.
Apesar de ainda tecnicamente em fase de protótipo, A Plataforma encontra-se numa fase bastante
avançada.

Será possível criar um gestor de distúrbios ambientais, e integrá-lo eficazmente na plataforma
existente? É exequível introduzir uma interface genérica para simulações externas de desastres
no sistema? As questões apresentadas representam o foco da tarefa de investigação e desenvolvi-
mento em questão. Uma resposta positiva para estas questões seria ser um excelente sinal de que
a Plataforma foi melhorada eficazmente, e que essa se tornou mais adequada para aplicações no
mundo real. Uma resposta neutra ou até negativa pode ser indesejada, no entanto providencia-
ria também uma boa perspectiva sobre o que pode ser alcançado em arquiteturas semelhantes, e
fornecer ao investigador conhecimento a ser aplicado no sentido a melhorar soluções atuais ou
futuras para problemas semelhantes.

O Gestor de Distúrbios é responsável pela simulação de anomalias ambientais - que podem re-
querer a intervenção de equipas veículares, ou ter impacto em missões veículares não relacionadas;
este é lançado através do Painel de Controlo da Plataforma, comunicando com o FSX e com os
Agentes de Controlo de Veículos - de modo a transmitir aos mesmos as leituras dos sensores cor-
respondentes (e.g. um automóvel a ser conduzido na vizinhança de um edifício em chamas obterá
leituras de temperatura e de dióxido de carbono acima da norma).

O Painel de Controlo permite a especificação de distúrbios através de uma interface gráfica, tal
como guardar e carregar os ficheiros XML resultantes. Após os passos mencionados, o Gestor de
Distúrbios é lançado para processar os mesmos - gerindo a respetiva posição, evoluções temporal
e espacial, leituras de sensores geradas, e mais.

Sendo que o Gestor de Distúrbios foi integrado numa plataforma de simulação distribuída,
arquiteturas semelhantes foram tidas em consideração no que toca a como realizar a integração
mencionada.

iii

Um incêndio pode estar a propagar-se numa serra, sendo necessário localizá-lo; um furacão
pode ocorrer no trajeto planeado para um vôo prestes a descolar. O objectivo do Gestor de Distúr-
bios é facilitar a simulações de eventos desse tipo, entre outros.

O objetivo principal desta dissertação foi o desenvolvimento do componente de gestão de dis-
túrbios da plataforma mencionada, com o propósito de simular uma vasta gama de distúrbios, tais
como incêndios, poluição, tempestades, erupções vulcânicas e derrames químicos. A simulação
de tais distúrbios permite a posterior adaptação automática de missões veiculares de acordo com a
localização, evolução e leituras de sensores relacionadas com os distúrbios em questão (e.g. para
evitar uma área de baixa visibilidade num vôo comercial ou de modo a localizar o centro de um
fogo florestal, no caso de combate aéreo a incêndios).

O Gestor de Distúrbios foi implementado n’A Plataforma, atingindo o objectivo principal da
dissertação. Um conjunto de testes foi realizado de modo a validar as respectivas funcionalidades
e entender as suas limitações. Foi verificado que as leituras de sensores são enviadas para os
veículos assim que estes atingem a área afectada; as leituras são mais elevadas no centro dos
distúrbios; as evoluções temporais das leituras emitidas ocorrem como planeado; o crescimento
espacial das áreas dos distúrbios também ocorre como esperado.

Palavras-chave: simulação, ambiental, distúrbios, vôo, multi-veículo, missões

iv

Acknowledgements

I would like to start this section by stating my gratitude to my supervisor, Daniel Silva. He was not
only the proponent for this dissertation and the creator of The Platform, but also an invaluable and
ever-present source of knowledge, advice and meaningful discussions. I am also thankful toward
Álvaro Câmara, who is a part of the project and provided many helpful comments, and Vasco
Gonçalves, my friend and colleague who helped me review the document.

I would also like to thank all my friends, colleagues and teachers who worked with me and
helped me throughout my academic path.

Finally, and most importantly, I would like to give thanks to my dear family and beloved
girlfriend for withstanding my frequent absences and, above all, for the unconditional support
throughout this journey.

Dedicated to my late father, Fernando Almeida, who passed on too soon.

João Almeida

v

vi

“And once the storm is over, you won’t remember how you made it through,
how you managed to survive.

You won’t even be sure, whether the storm is really over.
But one thing is certain.

When you come out of the storm, you won’t be the same person who walked in.
That’s what this storm’s all about.”

Haruki Murakami

vii

viii

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Main Goals & Research Questions . 2
1.3 Document Structure . 3

2 State of the Art 5
2.1 Disturbances - Environmental and Beyond . 5

2.1.1 Environmental Disturbance Simulators 8
2.1.2 Forest Fire Simulators . 10
2.1.3 Meteorology APIs . 12
2.1.4 Disturbance Representation in FSX . 14

2.2 Architectures with Co-Simulators - HLA . 16
2.3 Summary/Conclusions . 16

3 Planning & Methodology 19
3.1 Work Plan . 19
3.2 Final Work Overview . 21
3.3 Risk Management . 23
3.4 Work Strategy . 23
3.5 Technologies and Platforms . 24

3.5.1 The Platform . 24
3.5.2 Programming Languages . 25
3.5.3 AgentService . 25
3.5.4 Flight Simulator X . 25

4 The Disturbance Manager 27
4.1 The Platform’s Architecture . 27
4.2 The Disturbances Manager . 28
4.3 Disturbance Description Language (DDL) . 29
4.4 Teams Description Language (TDL) . 30
4.5 Disturbance Database . 30
4.6 High-Level Description . 31
4.7 Core . 31

4.7.1 GUI . 32
4.7.2 Space and Time Evolution of a Disturbance 33

4.8 Vehicle Sensor Readings . 34
4.9 Communication with The Platform . 35

4.9.1 FSX - SimConnect . 35

ix

CONTENTS

4.9.2 AgentService . 35
4.9.3 Control Panel . 35

4.10 Summary / Conclusions . 36

5 Testing & Results 41
5.1 Core Test . 42

5.1.1 Vehicle Position & Sensor Readings . 42
5.1.2 Higher Readings in The Center . 42
5.1.3 Readings Time Evolution . 43
5.1.4 Disturbance Components Space Evolution 44

5.2 AgentService Stress Test . 45
5.3 AgentService Endurance Tests . 53

6 Conclusions & Future Work 57
6.1 Limitations . 58
6.2 Future Work . 58

Bibliography 59

A DDL XML File 63
A.1 Sample Disturbance Specification File . 63

B TDL XML File 67
B.1 Sample Section of a Team Specification File . 67

C XML Databases 71
C.1 Disturbances . 71
C.2 Sensors . 75

D XSD Additions 77
D.1 DDL . 77
D.2 TDL . 78

x

List of Figures

2.1 ForeFire . 11
2.2 Wildfire Analyst . 11

3.1 Work Plan Gantt Diagram . 19
3.2 The Platform’s Initial Architecture . 24
3.3 Flight Simulator X . 26

4.1 The Platform’s New Architecture . 28
4.2 The Disturbance Manager’s Internal Structure 29
4.3 DDL Schema Diagram . 37
4.4 TDL Schema Diagram . 38
4.5 The DM’s GUI . 38
4.6 Sensor Readings Sequence Diagram . 39
4.7 Distance to Center of Disturbance . 39
4.8 The DM’s Data Flow . 39
4.9 Control Panel (GUI) . 40

5.1 Vehicle Position & Sensor Readings Test - (1/2) 43
5.2 Vehicle Position & Sensor Readings Test - (2/2) 44
5.3 Higher Readings in The Center Test - (1/2) . 45
5.4 Higher Readings in The Center Test - (2/2) . 46
5.5 Readings Time Evolution Test - (1/2) . 47
5.6 Readings Time Evolution Test - (2/2) . 48
5.7 Disturbance Components Space Evolution Test - (1/2) 50
5.8 Disturbance Components Space Evolution Test - (2/2) 52
5.9 Difference Between Expected Message Rate and Effective Message Rate 53
5.10 Time per Test . 54
5.11 Difference Between Expected Message Rate and Effective Message Rate 55
5.12 Time per Test . 55

xi

LIST OF FIGURES

xii

List of Tables

2.1 Land Disturbances . 6
2.2 Sea Disturbances . 7
2.3 Storm Disturbances . 7
2.4 General Disturbances . 7
2.5 Environmental Disturbance APIs Comparison 9
2.6 Fire Simulators Comparison . 12
2.7 Meteorology APIs Comparison . 13

3.1 Risk Table . 24

5.1 AgentService One Minute Stress Tests . 49
5.2 AgentService Five Minute Stress Tests . 49
5.3 AgentService Ten Minute Stress Tests . 50
5.4 AgentService One Minute Stress Tests (Optimized) 51
5.5 AgentService Five Minute Stress Tests (Optimized) 51
5.6 AgentService Ten Minute Tests (Optimized) . 52
5.7 AgentService Endurance Test . 53

xiii

LIST OF TABLES

xiv

Abbreviations

API Application Programming Interface
ATC Air Traffic Controller
CSV Comma Separated Values
CPM Counts Per Minute
CPU Central Processing Unit
DDL Disturbances Description Language
DM Disturbances Manager
ED Environmental Disturbance
HDD Hard Disk Drive
FIPA Foundation for Intelligent Physical Agents
GUI Graphical User Interface
FSX Flight Simulator X
HLA High Level Architecture
IP Internet Protocol
JSON JavaScript Object Notation
OS Operating System
RAM Random Access Memory
RPM Rotations Per Minute
SATA Serial AT Attachment
SDK Software Development Kit
TDL Teams Description Language
UI User Interface
XML eXtensible Markup Language
XSD XML Schema Definition

xv

Chapter 1

Introduction

In the present chapter, an overview of the thesis at hand is provided. At first, the context in which

the project is inserted is presented, as well as the motivation behind it; then, the main goals and

research questions are described; followed by the problems being approached; next, the chosen

methodology to do so; and finally an outline of this document’s structure.

1.1 Context and Motivation

Considering the increase in the frequency of climatic disasters [CRED, 2015], it is becoming more

relevant to develop methods of studying them. In the real world, multiple types of vehicles are

utilized on missions related to environmental disasters: from cars to aircraft. As to provide a means

of simulating such missions, a platform was developed [Silva, 2011] centered on Microsoft’s Flight

Simulator X. The Platform is the basis for the work at hand.

Multiple vehicle missions can be simulated through The Platform, such as searching for a spe-

cific terrain type, drop missions (e.g. dropping water over an area supposedly on fire or dropping

a food crate over an area with a rough terrain) and tracking and escorting an airplane.

One of the original purposes for The Platform is the automation of specific tests and tasks. As

an example, at The Platform’s initial state, in order to simulate the dropping of water on burning

terrain, the user must decide on which area he considers "on fire" (since the platform didn’t simu-

late fires). After such decision, the user should check whether the helicopter travels to the correct

location (not identified on the map), and if the drop occurs on the right spot. The described inter-

action requires user intervention and supervision on many levels. If there were a way to simulate

environmental disturbances and programatically deploy them at set times, that would allow for the

posterior full automation of such missions - thereby achieving one of The Platform’s objectives.

Later, a layer of automated testing could be introduced.

The Platform was developed at the Faculty of Engineering of the University of Porto, at the

Artificial Intelligence and Computer Science Laboratory. It has been the focus of one Ph.D.

1

Introduction

thesis[Silva, 2011] and four completed Masters’ theses [Camara, 2013][Sousa, 2010][Santos,

2010][Silva, 2008]; and is currently the basis for one ongoing Ph.D. thesis and three Master’s

theses. A few articles have also been written around The Platform [Sousa et al., 2010][Câmara

et al., 2014][Rodrigues et al., 2015].

The Disturbances Manager aims to add a disturbance simulation component to The Platform,

allowing the vehicles therein to become aware of ongoing disturbances near their location. When

completed, the DM should be a significant contribution toward not only The Platform’s feature

set, but also toward its potential regarding future functionalities.

1.2 Main Goals & Research Questions

The primary objective for this dissertation is to implement the component of the mentioned plat-

form responsible for the simulation of multiple types of disturbances (environmental and more) -

e.g. forest fires, floods, oil spills or lost people. Attaining the goal of a functional Disturbances

Manager (DM) enables the posterior adapting of vehicular missions to specific disturbances. As

an example: if an aircraft can get carbon dioxide sensor readings regarding an ongoing forest fire,

it may adjust its course as to minimize such readings, or even survey the area as to locate the center

of the fire - therefore allowing the testing of multiple search algorithms to find their time efficiency

at locating (i.e. putting out) fires. While forest fires were used as an example, the same may be

said for analogous disturbances.

The secondary objective is the implementation of a generic interface to be used between the

DM and external disaster simulators. If a user wishes to simulate, say, an earthquake using a 3rd-

party earthquake simulator, he should be able to use his desired simulator on The Platform through

this interface. Instead of the intensity, position, and progression of the earthquake being processed

by the DM, these (possibly among other) aspects would be provided to the DM through a software

layer which would inform the DM of the required data. This should be a means of programatically

inject information from an external simulator into the DM.

The focal points of the developed thesis work can be exposed in the form of the following

research questions:

• Is it possible to create an environmental disturbances manager, and effectively integrate it

within the existing platform?

• Is it feasible to introduce a generic interface for external disaster simulators into the system?

The first question represents the implementation of the DM on the platform. "Effectively" is

used as a key word, since even if the DM is implemented with a wide array of useful function-

alities, if it significantly impacts the real-time performance of the platform, it would not be of

use. The second question regards the aforementioned secondary objective, with "feasible" being a

meaningful term - because if the implementation were to generate a delay in the processing time

to the degree of impeding real-time performance, it would also not be useful.

2

Introduction

The Platform’s performance is considered significantly negatively impacted if it becomes un-

able to run not only real-time simulations, but also simulations at double or even four times the

real-time simulation speed. On Chapter 5, several methods were used in order to validate the

performance with a running DM.

Many components of the DM would be sufficiently complex as to warrant multiple dissertation

topics by themselves, such as the time evolution of the disturbances, their spacial dispersion,

how and when they should occur, and so on. Taking this into consideration, the project at hand

will not provide an accurate representation for each possible disturbance type; instead, the aim

is to provide a Disturbances Manager as proof of concept - that it is possible to integrate such

simulations into the Platform. The inclusion of an optional external disturbance-specific simulator

aims to ameliorate the limitations derived from the genericity of this approach.

With the exception of the external co-simulator (more details on Final Work Overview), all

the planned objectives were obtained. Validation corresponding to the main aspects of the imple-

mented functionalities was also performed, as detailed on Testing & Results.

1.3 Document Structure

The remaining sections of this document are structured as follows:

Chapter 2 consists of a summary of the state of the art and key concepts required to fully

understand this dissertation’s subject matter, including what is considered a disturbance and a dis-

aster simulator, in the context of the project at hand; what is a flight simulator; and what composes

an architecture with co-simulators.

Chapter 3 exposes the chosen methodology regarding the developed work, including plan-

ning, risk management, the chosen strategy, and technological choices - such as programming

languages.

Chapter 4 lists how the solution fits into the existing architecture, namely by expanding upon

The Platform’s enhanced architecture, the Disturbance Description Language (DDL) and the Dis-

turbance Database. It also includes a description of the Disturbances Manager’s functionalities.

The chapter also contains details regarding the implemented Disturbances Manager, including the

initial prototype, the vehicles’ sensor readings and communication with the corresponding ele-

ments of the Platform’s architecture.

The 5th chapter includes information on the creation of the performed tests, and the matching

results.

Finally, chapter 6 consists of the conclusions reached throughout the project and includes some

possibilities for future work

3

Introduction

4

Chapter 2

State of the Art

This chapter consists of a listing of the key concepts involved in the project, as well as a sum-

mary of the researched state of the art on the related subjects. It starts with the adopted definition

for the term disturbance, followed by a listing and comparison of several types of environmen-

tal disturbance-related simulators. An interesting researched architecture for systems with co-

simulators is also presented.

2.1 Disturbances - Environmental and Beyond

An Environmental Disaster is an event which negatively impacts the natural environment, often

with a high and/or long-lasting impact on the ecosystem in question. Occasionally, only occur-

rences resulting from human activity are considered environmental disasters - using the concept

of natural disaster for incidents which occur without human intervention. Throughout this doc-

ument, the expression Environmental Disturbance will encompass both concepts.

Throughout the research process, multiple sources were useful in providing information and

statistics on specific environmental disasters:

1. Government entities from the United States of America proved to be a valuable source

of data. Not only on finding the most serious [NOAA, 2017b] (in terms of lives taken

and financial damage) but also on finding statistics on the increase in yearly occurrences

[NOAA, 2017a];

2. Certain websites on the topic of disaster preparedness were also useful since they often

include listings on not only natural but also man-made disasters [IEDC, 2016];

3. An Indian government entity was also a good source on not only the types of existing dis-

turbances and their details, but also on their potential impact: with examples of the most

noteworthy disasters [NIDM, 2014];

5

State of the Art

4. A paper was found on the future prospects for disturbances [Quarantelli, 1992] which proved

to be rather insightful on the subject of what can be expected, and what can be done regard-

ing future disasters;

5. How should one study environmental disasters? At the early stages of the research work at

hand, there was some difficulty in researching and quantifying knowledge on the subject.

A research article provided valuable input on the subject [Drabek, 1970], and brought upon

the idea of introducing the Seriousness Degree on the specification of disturbances, and also

on defining the level of abstraction which was adopted on the listing and specification of the

disturbances chosen.

Furthermore, considering that there is no restriction on what a Disturbance may be, it was de-

cided to include non-environmental situations to the list of cases that are intended to be simulated

- such as car and train accidents, missing people and oil spills. Onward, the term Disturbance
will encompass all those listed in Tables 2.1 through 2.4). The following paragraphs include a

description on the rationale behind the grouping of the disturbances, as well as some details on

them.

The Land Disturbance category encompasses all the considered disturbances which occur on

land, both literally (landslides, earthquakes and volcanoes) and not (e.g. floods, accidents). These

are listed on Table 2.1.

Table 2.1: Land Disturbances

Seriousness Growth
Name Origin Sensor Types Degree Rate

Landslide Natural CameraIntensity; Microphone yes yes
Earthquake Natural CameraIntensity; Microphone yes yes

Flood Natural CameraIntensity yes yes

Volcano Natural
CameraIntensity; IRCameraIntensity;

yes yes
Temperature; Microphone

Car Accident ManMade CameraBinary yes no
Train Accident ManMade CameraBinary yes no
Fleeing Person ManMade CameraBinary; Microphone yes no
Lost Animal ManMade CameraBinary; Microphone yes no
Forest Fire Any CameraIntensity; IRCameraIntensity; CO2; Temperature yes yes

Building Fire ManMade CameraIntensity; IRCameraIntensity; Temperature; CO2 yes yes

The Sea Disturbance category aggregates all the selected disturbances which take place at

sea. From tsunami to chemical spills, many were considered relevant to include on The Platform.

These are listed on Table 2.1.

The Storm Disturbance category accumulates the chosen disturbances which are related to

storms that were not listed under Land or Sea disturbances, since they can occur both on land and

at sea. The category was detailed on Table 2.3.

The General Disturbances category includes those which would not be considered good fits

for the previous categories (Land, Sea or Storm). The General Disturbances are listed in Table 2.4.

The sensors indicated in tables 2.1, 2.2, 2.3 and 2.4 are the following:

6

State of the Art

Table 2.2: Sea Disturbances

Seriousness Growth
Name Origin Sensor Types Degree Rate

Strong Waves Natural CameraIntensity; Microphone yes yes
Tsunami Natural CameraIntensity; Microphone yes yes
Oil Spill ManMade CameraIntensity yes no

Chemical Spill ManMade CameraIntensity ; Chemical yes yes
Boat Accident ManMade CameraBinary yes no

Hydrothermal Vent Natural CameraIntensity; Temperature; Microphone yes yes

Submarine Volcano Natural
CameraIntensity; Temperature; Chemical;

yes yes
Microphone

Schooling Fish1 Natural CameraIntensity yes yes
1 A large aggregation of fish, relevant to submarines and boats

Table 2.3: Storm Disturbances

Seriousness Growth
Name Origin Sensor Types Degree Rate

Heavy Rain Natural CameraIntensity; HumiditySensor; AirPressure; yes yes
WindSpeed; Microphone

Thunderstorm Natural
CameraIntensity; HumiditySensor; AirPressure

yes yes
WindSpeed; ElectricField; MagneticField; Microphone

Hurricane Natural CameraIntensity; AirPressure; WindSpeed; Microphone yes yes

Table 2.4: General Disturbances

Seriousness Growth
Name Origin Sensor Types Degree Rate

Bug Infestation Natural CameraIntensity yes yes
Extreme Temperature Natural Temperature yes yes

Cold Wave Natural Temperature yes yes
Heat Wave Natural Temperature yes yes

Chemical Contamination ManMade Chemical yes yes
Chemical Cloud ManMade Chemical yes yes

Radiation ManMade GeigerCounter yes yes
Under Fire ManMade CameraIntensity; Microphone yes yes

Buildings In Ruins ManMade CameraBinary yes no

7

State of the Art

• Airpressure - A sensor for air pressure, which typically displays readings in the atm unit;

• CameraBinary - A camera, which reads true or false, according to whether the disturbance

in question can be observed;

• CameraIntensity - A camera, which reads an observed disaster intensity;

• Chemical - A generic chemical sensor, which may convey readings in a specified unit;

• CO2 - A Carbon Dioxide sensor, which reads the concentration of the chemical in the air;

• ElectricField - Measures the intensity of affecting electric fields, typically in newtons per

coulomb (N/C);

• GeigerCounter - Indicates radiation intensity, measured in counts per minute (CPM);

• HumiditySensor - Measures the humidity of the air, typically indicated in grams of water

vapor per cubic meter of air;

• IRCameraIntensity - An infrared camera, which reads an observed disaster intensity;

• MagneticField - Measures the intensity of affecting electric fields, typically in Teslas (T);

• Microphone - Reads the surrounding sound intensity;

• Temperature - A thermometer, which reads given ambient temperature;

• WindSpeed - Obtains the speed of the wind.

The seriousnessDegreee indicates whether a degree of seriousness is applicable to the distur-

bance in question, and similarly the growthRate indicates whether a rate of growth is applicable

for the disturbance at hand (e.g. a "missing person" can not grow in intensity but can grow in

seriousness; however a chemical spill may increase in both intensity, i.e. how much chemical is

being spilled, and seriousness, given the region to which it may be moving).

2.1.1 Environmental Disturbance Simulators

At the initial stage of the research regarding Environmental Disturbance Simulators, the scope was

too broad, as the search was performed in order to find simulators for any type of disturbance.

Many of the encountered applications were too simplistic, e.g. taking form as children’s in-

formative games such as Hurricane Simulation1; while others were far too complex to consider,

resulting in more computationally expensive simulations, and all the intrinsic detail being of no

potential use to the DM.

Before deciding on narrowing the scope of the search (see below: Forest Fire Simulators),

three simulators stood out among the research results - these are detailed and compared in the

following paragraphs, as well as in Table 2.5.

1Available at http://scijinks.gov/hurricane-simulation/

8

http://scijinks.gov/hurricane-simulation/

State of the Art

Virtual Quake2 is a simulation program which models the fault3 system in California. Several

geological details regarding the region’s characteristics are used to simulate an earthquake. Vir-

tual Quake claims a design which allows for the fast execution of the thousands of small events

involved in the calculations. Its execution results in a detailed dataset, which may be used to study

several aspects of the simulation. The application offers the option of outputting the simulation

results in an HDF5 file4, allowing for posterior processing and analysis of the data.

F5Data5 is mainly a weather simulator and forecasting program. It simulates numerous

weather aspects, from sea surface temperatures to wind flow. Despite it’s wide array of fea-

tures, including a hurricane component, the program was not considered a strong applicant for

the planned co-simulation for its merely superficial approach to environmental disturbances, and

only offering the option to save data as an image. It is also not open-source software an does not

provide a good manual or documentation.

NERIES ELER V3.16 is perhaps the most complete of the gathered simulation programs. It

estimates the propagation of the seismic waves through the earth from a given epicenter and mag-

nitude value, offering the option of including additional geological data regarding the region at

hand to improve the accuracy of the results. The tool also computes an estimation of building and

human physical damage on the affected region. It was developed using the MATLAB7 program-

ming environment, and uses MATLAB to display the results, but also offers the option of exporting

data to popular GIS programs8. Since this tool does not export the simulation results to a common

format such as XML (Extensible Markup Language) or JSON (JavaScript Object Notation), the

mentioned GIS exporting functionality requires further investigation as to assert the feasibility of

utilizing ELER as a co-simulator on The Platform.

Table 2.5 provides a summary of the mentioned simulators, namely the respective names,

whether they are free, open-source and the perceived quality of the documentation (1 being the

lowest, including only a few code examples; 2 as the intermediate level, with better code exam-

ples or tutorial videos; and 3 as the highest quality, corresponding to a detailed and well-written

documentation).

Table 2.5: Environmental Disturbance APIs Comparison

Name Free Open-Source Documentation (1-3)

Virtual Quake Yes Yes 2
F5Data Yes No 1

NERIES ELER Yes No 3

2Available at https://geodynamics.org/cig/software/vq/
3A fault zone is a zone where small earth dislocations have occurred [Brodie et al., 2007]
4Hierarchical Data Format 5 - a file format designed for storage of large amounts of data
5Available at http://www.f5data.com/
6Available at http://www.koeri.boun.edu.tr/Haberler/NERIES%20ELER%20V3.1_6_176.depmuh
7Available at https://www.mathworks.com/products/matlab.html
8"A geographic information system (GIS) is a computer system for capturing, storing, checking, and displaying

data related to positions on Earth’s surface. GIS can show many different kinds of data on one map, such as streets,
buildings, and vegetation." [NG, 2017]

9

https://geodynamics.org/cig/software/vq/
http://www.f5data.com/
http://www.koeri.boun.edu.tr/Haberler/NERIES%20ELER%20V3.1_6_176.depmuh
https://www.mathworks.com/products/matlab.html

State of the Art

2.1.2 Forest Fire Simulators

Computer simulations of forest fires have been performed for over 40 years [Stevenson et al.,

1975]. These simulations can be highly complex, and many mathematical methods are applied in

order to perform the matching calculations, from probability spread calculations [Ivanilova, 1985]

to multiplex networks [Buscarino et al., 2015]. These types of simulations are widely used across

several entities, such as the U.S. Forest Service and the U.S. National Park Service [USDA, 2015].

Considering the wide variety of existing environmental disturbances, many corresponding

software simulators exist. It was decided on narrowing the scope of this component of the re-

search to a specific type of disturbance.

Portugal has an immense risk of forest fires [NICIF and Lourenço, 1994], mainly on account

of its geographic characteristics. As such, tens of thousands of hectares of forest burn on a yearly

basis [MAMAOT, 2015]. Taking these facts into consideration, the decision was made to focus

the research regarding environmental disaster simulators to simulators of fires - specifically forest

fires. Another advantage of the simulation of fires, is that they can be very representative of a

simulator’s capacities: from simple aspects such as higher temperatures to more complex cases

such as the spreading patterns of smoke.

FlamMap9 is program which maps and computes fire behavior, including spread rate and in-

tensity. It is developed by U.S. Forest Service, which belongs to the United State Department of

Agriculture; free to use, yet not open source. The software is not a complete fire growth simula-

tion model, focusing on calculating fire behavior characteristics for specific sets of environmental

conditions. The functional principle of the program is the creation of raster maps of the terrain,

with each pixel potentially containing certain fire behavior details and other aspects such as wind

speeds - this is performed over a FARSITE (detailed below) landscape [A. Finney, 2006]. These

raster maps can be visualised within FlamMap or exported in other formats. It does not provide

an API.

FARSITE10 is similar to FlamMap, and also developed by the U.S. Forest Service, yet focuses

on the behavior of fires throughout long time periods and across multiple terrain types; using mul-

tiple popular fire behavior models, such as Rothermel’s [Wells, 2008] surface fire spread model.

FARSITE aggregates existing models of surface fire using a vector propagation technique [Finney

and Station-Ogden, 1998]. The software is used across many institutions in the United States of

America, such as the National Park Service[USDA, 2015]. It does not provide an API.

ForeFire11 is an open-source simulation engine designed for large scale fire simulation which

takes standard landscape data as input. It includes numerous bindings for different programming

languages (such as Java and Python), as to provide easy integration in other projects. Its goal is to

provide a set of open simulation tools and a Javascript API. ForeFire is based on the propagation

speed model of Balbi et al. [Henri Balbi et al., 2009][Filippi et al., 2011].

9Available at https://www.firelab.org/project/flammap
10Available at https://www.firelab.org/project/farsite
11Available at http://forefire.univ-corse.fr/sim/dev

10

https://www.firelab.org/project/flammap
https://www.firelab.org/project/farsite
http://forefire.univ-corse.fr/sim/dev

State of the Art

Figure 2.1: ForeFire

Capaware12 is an open-source framework which provides real-time forecasting of the evo-

lution of fires, developed in the Technological Institute of the Canary Islands. The program is

focused on data visualization, and offers a free API as to facilitate the development of new appli-

cations around it. However, the corresponding documentation appears lacking.

Wildfire Analyst13 provides real-time (i.e. one second of simulation time corresponds to one

second in what would happen in real life) simulation and analysis of the spreading of wildfire (fire

within an region of combustible vegetation). Provides a wide range of output data and a fully

featured API. Regarding the set of features, Wildfire Analyst appears to be one of the best options

encountered. However, it is not free to use.

Figure 2.2: Wildfire Analyst

Table 2.8 provides a summary of the mentioned fire simulators, namely the respective names,

whether they are free, open-source and the perceived quality of the documentation (1 being the
12Available at http://www.capaware.org
13Available at http://wildfireanalyst.com/

11

http://www.capaware.org
http://wildfireanalyst.com/

State of the Art

lowest, including only a few code examples; 2 as the intermediate level, with better code exam-

ples or tutorial videos; and 3 as the highest quality, corresponding to a detailed and well-written

documentation).

Table 2.6: Fire Simulators Comparison

Name Free Open-Source Provides API Documentation (1-3)

Capaware Yes Yes Yes 2
Farsite Yes No No 1
Forefire Yes No Yes 2

FlamMap Yes No No 1
Wildfire Analyst No No Yes 3

Pondering over the considered platform, Capaware was considered the best candidate for inte-

gration with The Platform. However lacking in documentation, being the only one both free and

providing an API makes it the preferred choice. If there were the possibility of obtaining a free or

academic license for Wildfire Analyst, it would also be a good choice - not being open-source, it

could make up for it by the quality of the documentation provided.

2.1.3 Meteorology APIs

Since the recent boom of open data [Gewin, 2016], a wide array of weather-related APIs also

became freely available [Santos, 2012]. The original intent of using a co-simulator was to allow a

more lifelike representation of environmental disturbances, by providing them with more accurate

behaviours, not limited by the standardized models within The Platform. Given that the result

of the Environmental Disturbance Simulators research returned a relatively reduced number of

simulators, it was considered relevant to investigate Meteorology API’s as to use real disturbance

data instead of simulated data.

Real-life data is, by definition, more reliable than any simulation. Therefore the data from one

of the gathered APIs could be utilized to provide a specific disturbance’s behaviour and evolution,

emulating a simulator by processing and transferring the information to The Platform in real time,

as if the registered event was happening again. However this would not invalidate the need for a

simulator, given that one might wish to see the results of a specific disturbance had, for example,

the weather conditions been different. One might also wish to change other parameters of a sim-

ulation, in order to simulate disturbances like none that ever existed - i.e. with no real-life data

available on it.

Multiple APIs were found which not only provide the typical weather related information (e.g.

temperature, wind and humidity) but also have a component regarding environmental disturbances.

Most of them are free to use - however subject to daily request limits - and not open-source,

however there are some exceptions.

Given that the studied APIs are considerably similar, they have been included in Table 2.7

as to provide a simpler overview on all. The noted differentiation factor for each API was also

included.

12

State of the Art

Table 2.7: Meteorology APIs Comparison

Name Free Open-Source Documentation (1-3)
Accuweathera Freeb No 3
OpenWeatherMapc Freed No 3
Baron Velocity Weathere Free No 2
Aerisweatherf Freeg No 2
USGS Earthquakeh Free No 3
Dark Skyi Freej No 3
Weather Undergroundk Freel No 3
NOAAm Free No 3

aAccuweather’s API is available at https://apidev.accuweather.com/developers
bFree to use up to the set daily/monthly request limit
cThe OpenWeatherMap API is available at http://www.openweathermap.com/current
dSee footnote (b)
eThe Baron Velocity Weather API is available at https://www.velocityweather.com/products/

weather-data-api
fThe Aerisweather API is available at http://www.aerisweather.com/support/docs/api/
gSee footnote (b)
hThe United States Geological Survey Earthquake Catalog API is available at https://earthquake.usgs.

gov/fdsnws/event/1/
iThe Dark Sky API is available at https://darksky.net/dev/
jSee footnote (b)
kThe Weather Underground API is available at https://www.wunderground.com/weather/api/
lSee footnote (b)

mNational Oceanic and Atmospheric Administration’s Weather and Climate Toolkit is available at https://www.
ncdc.noaa.gov/wct/

• Accuweather was found to be highly regarded, given it’s accuracy;

• OpenWeatherMap includes UV index, air pollution, and tornadoes;

• Baron Velocity Weather’s provides tornado tracking;

• Aerisweather supports thunderstorms and volcanic ash (harmful for airplanes [USGS, 2016]).

• USGS works with both real-time and archived earthquakes;

• Dark Sky supports real-time disaster warnings, which could be used to trigger disasters

in-simulation. However only includes a superficial disaster component;

• Weather Underground supports real-time disaster warnings, which could be used to trigger

disasters in-simulation. Provides movement data of active hurricanes;

• NOAA allows for the exporting of data in a wide array of data formats. Supports thunder-

storms, tornadoes and blizzards.

After considering all the mentioned Meteorology APIs, Weather Underground’s API was

deemed the best option therein - being free to use, providing thorough documentation and sup-

porting real-time disaster warnings. Ergo, the API should be a good contender to simulate the role

of co-simulator.

13

https://apidev.accuweather.com/developers
http://www.openweathermap.com/current
https://www.velocityweather.com/products/weather-data-api
https://www.velocityweather.com/products/weather-data-api
http://www.aerisweather.com/support/docs/api/
https://earthquake.usgs.gov/fdsnws/event/1/
https://earthquake.usgs.gov/fdsnws/event/1/
https://darksky.net/dev/
https://www.wunderground.com/weather/api/
https://www.ncdc.noaa.gov/wct/
https://www.ncdc.noaa.gov/wct/

State of the Art

2.1.4 Disturbance Representation in FSX

Given the popularity of the flight simulator, a wide community was formed around it. With thou-

sands of active members, many tools and add-ons were created for the game.

While not the focus of the dissertation at hand, having some kind of in-game representation of

the disturbances would be an interesting and visually appealing addition to the project. Multiple

tools which enable the representation of various weather effects in the game were studied as to

find an acceptable way of achieving the in-game representation of environmental disturbances.

Besides the potential in achieving a visually appealing solution, it could also become possible

to have the vehicles obtain specific readings from the simulator itself - thereby reducing the need

for processing and information transferring from outside FSX.

2.1.4.1 Mission Creation

The SDK (Source Development Kit) for Flight Simulator X includes a Mission Creation compo-

nent [Microsoft, 2008a]. By creating missions, through the editing of XML files or via a graphical

interface, one can set up various activities for the player - which can be associated via triggers to

in-game visual effects, e.g. smoke or fire, which could be used for the desired purpose.

However versatile in the possibilities for in-game disturbance representation, FSX’s missions

pose a great disadvantage: they require compiling and posterior loading at the start of the simula-

tion; this does not agree with the objective of deploying disturbances mid-simulation. Thereby, the

Mission Creator was set aside. However, as an alternative, the Mission Creator could be utilized

by having the missions created and compiled at the start of the simulation. This would provide

the desired results, with the restriction of the creation of the disturbances only at the start of the

simulation.

2.1.4.2 Special Effects Tool

FSX’s SDK also includes a Special Effects Tool [Microsoft, 2008c]. The major advantage of the

tool in the context of representing disturbances on-screen would be that it allows for a special effect

(e.g. fire) to have specific movements and dispersion patterns, as is expected of the DM. However,

the special effects can also only be used through generating the file, compiling and loading it

before the simulation starts. This is a restriction of the game’s core engine, therefore unavoidable;

as such, the Special Effects Tool was also put aside. As with the Mission Creation, one could

circumvent this limitation by specifying the disturbances, generating the matching Special Effects

files and compiling them before the start of the simulation.

2.1.4.3 SimConnect

SimConnect [Microsoft, 2008b] is the core of FSX’s SDK, allowing several types of information

exchange between the Simulator and external programs. While not offering many options regard-

ing visual effects, SimConnect’s foremost advantage is the fact that ir runs in real-time during the

14

State of the Art

simulation.

SimConnect’s features were studied with focus on finding a way to make use of it as to show

an in-game indication of environmental disturbances. Through combining its ability of loading

aircraft models and the possibility of activating specific events within the aircraft (e.g. turning on

lights or retracting/expanding landing gear) the researcher arrived upon the possibility of deploy-

ing an airplane at the center of the disturbances, as to later enable their smoke emission engine -

signaling, for example, a fire at the same location. Considering that the deployed airplane itself

was just a means to achieving the possibility of showing smoke, and as to not add unnecessary

visual elements to the simulation, the aircraft chosen to show the smoke can be made invisible

through the editing of aircraft configuration files. Later, it was discovered that the aircraft’s emis-

sion can be changed from smoke to a different effect such as water, fire, or even fireworks, which

allows for a more diverse in-game visual representation of disturbances.

The mentioned limitation of SimConnect was surpassed in SimConnect Version 4 for Lock-

heed Martin’s Prepar3D simulation software [Martin, 2017], which allows the creation of Special

Effects in runtime. The latest SimConnect is unfortunately not available for FSX.

2.1.4.4 Weather Engines

In the context of FSX, weather engines focus on enhancing in-game weather effects: most com-

monly through not only enhancing the visual fidelity of clouds and other aspects, but also by

changing the in-game weather to match what is happening in real-life. In the search for maximum

in-game visual fidelity, many weather engines were developed for the game by various parties.

Through research, many appeared interesting and potentially useful for the project.

Amongst all the encountered weather engines, the following were the most noteworthy on

account of their feature sets

• FSXWX14

• FSrealWX15

• AS1616

• OpusFSI17

• Weather Architect18

All of which, being weather engines, are focused on injecting weather into the simulation: not

only with more accurate behaviour than default (as in matching real-world weather in terms of

real-time updates and location), but also - and above all - looking more lifelike. Unfortunately,

14Available at http://www.plane-pics.de/fsxwx/home.htm
15Available at http://www.fsrealwx.net/
16Available at http://hifisimtech.com/as16/
17Available at http://www.opussoftware.co.uk/opusfsi.htm
18Available at http://www.rexsimulations.com/weatherarchitect.html

15

http://www.plane-pics.de/fsxwx/home.htm
http://www.fsrealwx.net/
http://hifisimtech.com/as16/
http://www.opussoftware.co.uk/opusfsi.htm
http://www.rexsimulations.com/weatherarchitect.html

State of the Art

only AS16 provides an API, and even that does not allow for the injection of weather occurrences

in real time onto the simulation. Besides, all these weather engines rely on stopping the simulation

for a significant amount of time as to process all the data at hand. It was during this research that

game engine’s limitation mentioned in the Special Effects section above was discovered.

2.2 Architectures with Co-Simulators - HLA

In order to achieve a better understanding of what is typically involved in and required for an

architecture with a co-simulator, it was decided to research the HLA architecture.

The High Level Architecture (HLA) is an IEEE standard [IEE, 2010] to specify distributed

computer simulation systems. Unfortunately, the official IEEE document was not freely available

at the time of research, so alternate documents [Reid and Powers, 2000][Dahmann et al., 1998]

were utilized in order to comprehend the HLA.

One of the core purposes of the HLA is "the continuous reuse and interoperation of simu-

lations" [Dahmann et al., 1998]. The main advantage of using an HLA is that one can "reduce

software costs by facilitating the reuse of simulation components and by providing a runtime in-

frastructure to manage the simulations." [Reid and Powers, 2000] In summary, the Architecture

allows the user to save resources by managing the simulations through a specific infrastructure -

which allows for the communication and synchronization of actions between different simulations.

HLA has a specific terminology:

• A Federate is an HLA-compliant simulation entity;

• A Federation is a set of connected simulations;

• An Object is a set of data transferred between simulations. Conceptually, an Object is an

entity being modeled by the simulation;

• An Interaction is a message that any Federate within the execution can transfer or receive;

• The Runtime Infrastructure is the simulation itself, i.e. the core software;

• An Object Model Template is what defines the format for the data being transferred during

the simulations.

HLA’s rules describe how the Federates and Federations act, and has the goal of allowing

simulation applications to be structured as a set of smaller simulations - which allows for the

re-utilization of specific "sub-simulation" results, therefore saving resources.

2.3 Summary/Conclusions

Regarding the Disaster Simulators and the meteorology API, it is considered that the acquired

information will be of great value to the development of the intended solution. With a wide array

16

State of the Art

of options, there are many fail-safe alternatives - in case one or more of the mentioned tools

somehow does not work as expected during the implementation stage.

Regarding the in-game representation of the disturbances, along with the decided focus on

simulating forest fires, the three listed options were analyzed as to elect the best option for the

implementation, weighing their pros and cons. It was decided to use the SimConnect approach

- by combining the smoke (or other effects) emission from an invisible airplane spawned at the

center of the disturbances. This provides a simple and time-effective way of achieving the desired

result of a visual representation in FSX.

On the subject of fire simulators and meteorology APIs, many interesting options were ana-

lyzed, with Capaware and Weather Underground’s API being regarded as the prime candidates for

integration in The Platform.

As to the HLA architecture, it proved to be an interesting approach to the structuring and orga-

nization of simulation systems, and will be taken into consideration throughout the development

of the solution and its integration into The Platform.

17

State of the Art

18

Chapter 3

Planning & Methodology

This chapter introduces the preliminary decisions related to all the planning, practical and research

work at hand. First, each of the main work stages is elaborated upon; second, the risk management

is detailed; third, the planned methodology is briefly explained; and finally, the technological

choices related to the implementation are described.

3.1 Work Plan

The following section of the document includes the summary of the work plan elaborated in order

to specify all the time and task management regarding the project at hand. Each of the stages on

the plan is also included in the Gantt Diagram on Fig. 3.1 - which includes the start and end dates

for each stage.

Figure 3.1: Work Plan Gantt Diagram

1. Familiarization with the existing platform - the goal of this task is to become acquainted with

The Platform. This involves the necessary setup, running it, performing some experiments

19

Planning & Methodology

and analyzing the existing code. Since the Platform is of a considerable dimension, this

phase is essential to the start of the project

2. Research

(a) Which types of environmental disturbances should be included? At this stage, a list

should be created to provide a summary of all the disturbances to be simulated. As well

as a list of the main sensors necessary to acquire readings related to the disturbances

at hand;

(b) What types of readings would they generate on an approximating vehicle? Follow-

ing the previously mentioned lists, each disturbance should be assigned at least one

reading - to be generated on a specific sensor;

(c) State of the art: Environmental Disturbance Simulators. At this point, the most rel-

evant, potentially useful, and most modern simulators of environmental disturbances

should be researched and catalogued, specifically to help make the decision of the

external co-simulator which should become an optional element of the Platform;

(d) State of the art: Architectures with Co-Simulators. Software architectures incorporat-

ing co-simulators should be analyzed as to acquire the knowledge necessary for the

development of the project: it will allow for the researcher to become familiarized

with the industry standards; to know the existing alternatives; and to avoid building an

architecture from the start when existing and proven architectures exist - which can be

considered as good examples.

3. Design and specification of solution

(a) Schema definition for the disturbances. Based upon the information gathered on the

types of disturbances and related readings, the Platform’s existing XML Schema for

disturbances should be altered as to allow for the inclusion of the required elements

not previously specified.

4. Implementation

(a) Directly on The Platform - the first stage of implementation is related to the starting of

the DM itself. After the updating of the aforementioned schemas, the related C# class

files should be updated as to allow for the correct reading and saving of XML files,

as well as their de-serialization into Objects. The DM should be launched through the

Control Panel and handle the loaded disturbances by managing their location, deploy-

ment, evolution, and most importantly sending the sensor readings to the vehicles;

(b) Communication with the Vehicle Agents - as mentioned before, the DM will commu-

nicate with the vehicles to provide them with sensor reading information. As a means

to achieve this communication, AgentService (introduced in 3.5.3) will be used. A

message structure should be specified; the messages should be generated, sent, re-

ceived and processed by each agent - which save a log file with the received readings;

20

Planning & Methodology

(c) Using the optional co-simulator - the interface between the DM and an external dis-

turbance simulator should be developed as to allow the DM to process specific distur-

bances more accurately by gathering instructions on their behavior (i.e. intensity and

dispersion patterns, among other aspects) from the external simulator. The interface

should be sufficiently generic as to allow for easy adaptation of any simulator which

provides an API;

(d) System testing and optimization - this stage, which occurs after the development itself,

concerns the optimization and testing of the developed components. A set of tests

should be specified and performed on The Platform, with the results being registered

and analyzed. Throughout this stage, if any functionality of the software is found to

be excessively slow, it should be altered as to maximize performance.

5. Writing

(a) Thesis - the thesis, despite being the final aspect of the work to be delivered, should

be advanced throughout the entire work period. This allows for an iterative approach,

with feedback from the supervisor and constant updating;

(b) Scientific Article - by the end of the work period, a scientific article is to be written,

summarizing the performed work and achieved results, with the goal of being submit-

ted and later presented on a conference.

This section, along with Fig. 3.1, provides information on the work plan which was devel-

oped at the start of the dissertation planing stage. Before mentioning the risk management aspects

regarding the project, the actual - as was completed - work schedule is included in the next sub-

section.

3.2 Final Work Overview

In this section, all the points of the work plan will be scanned, providing details on how the

performed tasks matched the work schedule; as well as mentioning the related Risk Management

items.

1. Familiarization with the existing platform - This stage of the work plan was executed

as expected, with no significant difficulties other than fully grasping the intricacies of each

of the architecture’s components. Being a considerably large project, some difficulty was

expected; however, with the aid of the supervisor in clarifying some of the components’

functionalities, the familiarization was performed successfully. As a result, the first potential

risk (i.e. the first entry in the Risk Management subsection below) was successfully avoided.

2. Research

(a) Which types of environmental disturbances should be included and what types
of readings would they generate on an approximating vehicle? - As mentioned

21

Planning & Methodology

in section 2.1, through research and common knowledge, four lists of disturbances

were created for the following categories: Land, Storm and General. Work went as

expected, and while gathering each disturbance type, the corresponding possible origin

(Natural or Man-Made) was specified, as well as the matching vehicle sensor types.

Lastly, for each of the listed disturbances, it was decided whether they should have

an associated seriousnessDegree and a growthRate - for example, it is obvious that a

forest fire should have a specific growth rate, while it does not make sense to have a

growth rate for a lost person (the person is either lost or not lost, it’s not considered

that someone could become somehow "more" lost). This work stage took the expected

amount of time, and was performed without difficulties.

(b) State of the art: Environmental Disturbance Simulators - As described in Chapter

2, at first, the spectrum of the research was excessively wide. This resulted in a fair

amount of time being spent on researching simulators for various types of disturbances

before the scope was narrowed to fire simulators. The possibility for this delay was

considered in the second item of the Risk Management subsection - as planned, the

work schedule was appropriately restructured and advice was taken from the supervi-

sor.

(c) State of the art: Additional Work - While not considered in the original work plan,

as it was considered an interesting addition to the project, several options to obtain

in-game representation of the disturbances’ effects were analyzed (subsection 2.1.4).

Given the vast amount of options encountered, a significant amount of time was allo-

cated to this task. This relates to the third entry in the Risk Management section - the

unveiling of unexpected tasks, and was handled accordingly.

(d) State of the art: Architectures with Co-Simulators - This section of the research

was completed without delays. The supervisor suggested the research of the HLA,

which was investigated.

3. Design and specification of solution

(a) Schema definition for the disturbances - This stage was performed in a small amount

of time; however the initial specification was not final, as a few additions were per-

formed during the DM implementation stage, when it became apparent that they were

necessary. Therefore this stage of the project was performed somewhat iteratively,

throughout more time than what was initially expected, however did not exceed the

planned time.

4. Implementation

(a) Directly on The Platform - As planned, this was the most prolonged stage of the entire

project. Due to multiple unexpected obstacles amid the development, the mitigation

strategy for the second risk management item was utilized - thereby re-allocating the

available work time and taking advice from the supervisor.

22

Planning & Methodology

(b) Communication with the Vehicle Agents - Considering that other components of The

Platform (i.e. the ATC agent) perform comparable message exchanges with Vehicle

Agents, a significant amount of the existing code could be taken as an example; as

such, by performing a few alterations and additions, the communication between the

DM and the Vehicle Agents was achieved.

(c) System testing and optimization.

5. Writing

(a) Thesis - The dissertation should be written iteratively from the start. This should allow

for an iterative approach, adding content as the implementation are completed.

(b) Scientific Article - The planned scientific article is currently being developed, and

will be completed as to be sumitted in a relevant conference.

Considering the risk mitigation strategies, namely the allocation of additional time to the tasks

above, a fair amount of available work time was reduced. Therefore, it was decided to exclude the

optional co-simulator from the development plan. While not the least meaningful element of the

project (which would be the visual representation of the disturbances), it was a stage which could

be removed without affecting the work performed thus far.

3.3 Risk Management

The following represent the most significant risks regarding the project at hand, as well as the

corresponding risk mitigation strategies.

• Risk 1: failure to grasp the scope of the Platform. Mitigation: early and frequent meetings

with the supervisor to clear any existing questions; allocation of sufficient time to explore

the Platform and read about it.

• Risk 2: one or more of the implementation stages sustaining significant delay, or simply

taking longer than planned. Mitigation: re-structuring of the work plan; allocating more

time to the task at hand; taking advice from the supervisor.

• Risk 3: the necessity to perform unexpected tasks. Mitigation: similarly to the previous

point, the re-structuring of the work plan and allocated times, as well as considering input

from the supervisor.

The listed risks have been assigned impact and probability values in Table 3.1.

3.4 Work Strategy

Throughout the development of the remaining aspects of the project, indicated in the Work Plan,

the following iterative strategy was adopted: individual work, followed by a meeting with the

Supervisor. This was repeated on a weekly basis throughout the entire development process.

23

Planning & Methodology

Table 3.1: Risk Table

Probability

Low Medium High

Impact
High

Medium R1 R2
Low R3

3.5 Technologies and Platforms

In the following section, the main technologies related to the work at hand will be described.

Considering that the project in question fits within an existing system, the technologies mentioned

had already been established, therefore they will not be significantly compared to others.

3.5.1 The Platform

The Platform’s initial architecture is illustrated on Fig. 3.2.

Figure 3.2: The Platform’s Initial Architecture

This subsection includes a description of the platform around which the project at hand is

centered. It is developed using the C# programming language.

24

Planning & Methodology

The Platform includes a control panel, which allows for the specification of each mission; an

agent to manage traffic (Air Traffic Control, or ATC, Agent); a vehicle control agent; performance

analysis; and the basis for a disturbance management tool. The Platform enables the specification

and deployment of a wide variety of missions using multiple vehicle types on various simulations.

While still technically in prototype stage, the Platform is currently at a fairly advanced level.

The Disturbances Manager is responsible for the simulation of environmental anomalies -

which may require the intervention of vehicle teams, or have an impact on unrelated vehicular

missions; it communicates with the Platform’s Control Panel, vehicle agents, FSX, and optionally

with external disturbance-specific simulators (e.g. if one were to use an external tornado simu-

lator as to obtain a more rigorous behavior for such disaster, one could interconnect it with the

Disturbances Manager).

At its state by the start of the thesis work, the Control Panel allowed for the basic specification

of disturbances using a graphical interface. The disturbances are stored as XML files for the DM

to subsequently process; this specification is to be further developed, as to encompass the details of

all the disturbances to be considered. Given that the DM is to be fully integrated into a distributed

simulation platform, similar architectures [Pereira and Rossetti, 2012][Chen et al., 2006] have

been studied and taken into consideration on how to perform said integration.

3.5.2 Programming Languages

Given that C# is the focal programming language of The Platform, with the purpose of facilitating

the integration of this dissertation’s practical work therein, C# will be used to implement all the

required DM components.

The DM’s graphical interface includes an embedded Google Maps window. Through Javascript,
the disturbances’ affected areas, as well as the vehicles’ trajectories, are drawn over the map itself.

3.5.3 AgentService

AgentService 1 is a programing framework for the development of multi-agent systems. The

framework is based on the Common Language Interface2 (CLI) and C#. Provided by the Lab-

oratory of Informatics of the Department of Communication Computer and System Sciences of

the University of Genoa, the framework handles the communication between the agents on the

Platform. AgentService is FIPA(Foundation for Intelligent Physical Agents)-compliant.

3.5.4 Flight Simulator X

A Flight Simulator [Wong, 1998] is a type of virtual reality environment where the user pilots

a virtual airplane - usually matching an existing model and simulating its cockpit, dimensions

and flight behaviour. They are used for training of prospective pilots and within the context of

video-games, with varying degrees of realism.

1Available at http://www.agentservice.it/
2More details at https://www.iso.org/standard/42927.html

25

http://www.agentservice.it/
https://www.iso.org/standard/42927.html

Planning & Methodology

Figure 3.3: Flight Simulator X

Microsoft’s Flight Simulator X, originally released in 2006, is a flight simulation video game

for Microsoft Windows operating systems. It is the tenth version of the popular "flight sim". The

inclusion of a wide array of playable aircraft, all with a detailed, realistic and interactive cockpit;

thousands of real-world airports; weather effects; support for other (i.e. land and water) vehicles;

compatibility with varied joysticks and other controllers.

FSX is not only a popular video game and simulation platform, but also a good basis for

research projects: it provides a solid simulation platform, very complete and well documented

API and SDK, capability to simulate specific failures in the vehicles, multiple vehicle types, and

more. A screenshot of the game’s interface can be seen on Fig. 3.3.

26

Chapter 4

The Disturbance Manager

The present chapter includes a description of The Platform’s Architecture and how the DM fits

into it, and the functionalities of the Disturbances Manager. Furthermore, the additions to the

Disturbance Description language and the Teams Description Language - used to specify details

of the team such as the types of vehicles and which sensors they carry - are also expressed.

The current chapter is also used to provide details on the several facets of the DM, specifically

on its implementation process. Firstly, a high-level description on the major steps performed by

the DM, followed by the technical aspects: the core, the generation of the sensor readings for the

vehicles and communication with the remaining components of the platform.

4.1 The Platform’s Architecture

This section aims to illustrate the expansion of the initial system architecture by the addition

of the components necessary to the successful implementation of the project at hand. Namely

the aforementioned optional and external co-simulator, to be used by someone who wishes to

use an external disturbances manager as a way to achieve a more accurate representation of the

disturbance in question.

In order to facilitate an approach which allows for compatibility with as many as possible

possible external, an interface will be developed. The technical details have not been decided,

however the HLA architectural specification shows great potential for this type of application - as

described in section 2.2. Fig. 4.1 illustrates the expected final architecture for The Platform.

In Fig. 4.1, the External Disturbance Simulator is illustrated, being part of the planned archi-

tecture. Several options regarding external simulators were studied in Environmental Disturbance

Simulators, however, due to reasons detailed on Final Work Overview, this element was not im-

plemented.

27

The Disturbance Manager

Figure 4.1: The Platform’s New Architecture

4.2 The Disturbances Manager

The internal structure of the Disturbances Manager is illustrated in Fig. 4.2. The Platform Com-

munication section (in section 4.9) encompasses the modules responsible for the communication

with the other components of The Platform, namely the SimConnect Module (communication with

FSX; see subsection 4.9.1) and the AgentService Module (used to communicate with the Vehicle

Agents; see subsection 4.9.2). The Core (see section 4.7) components are the DistrubancesMan-

ager class, which contains the configuration data transferred from the Control Panel (see section

4.9.3) and the DeployedDisturbance class, which refers to a Disturbance that is being simulated -

containing data not only on the disturbance at hand but also on its evolution.

The main function of the Disturbances Manager is to simulate each disturbance selected by

the user of The Platform. The simulation consists on several aspects, including managing the area

being affected by the disturbance and communicating the sensor readings to each vehicle (through

the corresponding Vehicle Agent); computing the evolution of the disturbance through both time -

it may be constant, or evolve as specified by a given function (e.g. exponential, linear, logarithmic)

- and space, since it may also increase in size and move through the map. The Disturbances

Manager is launched through The Platform’s Control Panel, as illustrated in Fig. 4.9, on which the

specification of the several aspects for the disturbances are selected by the user, before the actual

simulation or deployment occurs. At the time of the instantiating of the DM, it receives input data

28

The Disturbance Manager

Figure 4.2: The Disturbance Manager’s Internal Structure

from the Control Panel - as illustrated in Fig. 4.1 and detailed on subsection 4.9.3.

4.3 Disturbance Description Language (DDL)

The DDL is used to specify disturbances, including their descriptions, areas of effect, type of

evolution, and more. An XSD (XML Schema Definition) file formally describes the DDL, which

had already been [Silva et al., 2016] prior to the start of the project in progress, however some

additions were made as to achieve the planned solution.

The seriousness value is an optional integer, ranging from 0 to 5, indicating the degree of

severity of the disturbance in question. The origin value is a string which carries one of three

possible values: Natural, ManMade and Any - relating to the possible origins of the disturbance

being specified. For example, an oil spill is an occurrence inherently related to human activities,

therefore ManMade; while a forest fire may also have (albeit less frequently) a natural origin,

therefore Any.

The additions to the pre-existing DDL schema are highlighted on Fig. 4.3 (for clarity reasons

and size constraints, not all branches of the diagram have been fully expanded) and the following

enumeraton includes a short description for each field.

1. disturbanceTypeGroup/disturbanceType - This field is used to indicate the type of the dis-

turbance, among those indicated in the tables on 2.1;

2. distOriginGroup/seriousness - This field is used to specify the Seriousness Degree of each

disturbance, as seen in section 2.1;

3. distOriginGroup/origin - As with the previous entry, this correlates to the origin of the

disturbances, indicated in Disturbances - Environmental and Beyond;

4. generatedReading/type - The type of the generated sensor reading at hand, e.g. a floating

point number;

5. generatedReading/startValue - The starting value of the emmitted sensor readings;

29

The Disturbance Manager

6. generatedReading/minLimitValue - The minimum limit value for the generated readings,

even if the growth function returns a lower value;

7. generatedReading/maxLimitValue - Analogous to the previous entry, however refers to the

maximum limit;

8. growthFunctionGroup_optional/growthFunction - along with functionVariable, this optional

field is used to specify the growth function followed by a specific disturbance component.

It is optional because a constant component does not have an associated growth.

An example DDL XML file is included in Appendix A.

Regarding the sensors illustrated on Chapter 2 (Tables 2.1, 2.2, 2.3 and 2.4), the original (i.e.

existing before the start of the project at hand) common.xsd schema included a few sensors -

however more were introduced as to cover all of them. The additions to the XSD file are included

in XSD Additions.

4.4 Teams Description Language (TDL)

The TDL indicates information about a vehicle team on the platform: which vehicles it contains,

restrictions such as no-fly areas, among other details. An XSD file formally describes the TDL,

which - as with the DDL - had already been specified [Silva et al., 2017] prior to the start of the

project in progress, however some additions were made as to achieve the planned solution - adding

details to the sensors on the team’s vehicles.

The fields added to the TDL are the following:

1. sensorReadingType/type - Refers to the type of reading generated by the sensor at hand. E.g.

a CO2 sensor will generate numeric readings;

2. sensorReadingType/unit - Refers to the unit of the generated readings. For example a CO2

sensor may generate grams/m3 readings.

These additions to the previously-existing TDL schema are highlighted on Fig. 4.4 (for clarity

reasons and size constraints, the remainder of diagram is not shown). An excerpt of an XML TDL

file is included in Appendix B.

4.5 Disturbance Database

Besides the tables in chapter 2, it was decided to portray the same information in a more "machine-

friendly" manner, therefore two small XML databases were created: one for the disturbances and

one for the sensors. The main purpose being the posterior auto-completion of the Control Panel’s

GUI (Graphical User Interface) - once someone selects a specific disturbance name from the menu,

the remainder of the specification (i.e. origin, sensorType, seriousnessDegree and growthRate)

30

The Disturbance Manager

should be automatically filled with the corresponding values. This way, the user will have the

freedom to change the preset values, but won’t be affected by the inconvenience of manually

setting every aspect of the disturbance to be deployed. The mentioned databases are included in

XML Databases.

4.6 High-Level Description

What follows is an enumeration of the main steps needed to use the DM and performed by it.

The section is meant to be understandable by someone with no Computer Engineering knowledge,

therefore technical terms are purposefully avoided and simpler vocabulary is put to use.

1. The user launches Flight Simulator X and The Platform;

2. The user utilizes the Control Panel of The Platform to define a specific disturbance (for

example a fire): where it starts, how large it is and how it grows;

3. The Control Panel checks if all the data was introduced with no errors;

4. The Control Panel saves that information and launches the Disturbances Manager, transmit-

ting to it the information regarding the fire;

5. The Disturbances Manager opens a window which shows the map and all the active vehicles

(both on the map and on a table);

6. The Disturbance Manager "informs" the vehicles within the areas affected by the distur-

bance of the sensor readings they are receiving (Carbon Dioxide and Temperature, for ex-

ample);

7. The vehicles receive the information and save it on a text file.

4.7 Core

When launched, the DM performs the following key actions:

• A series of initializations, both regarding the GUI elements, the embedded Google Maps

window and the connection data required to connect to FSX through SimConnect and to

AgentService;

• Loads the disturbances file transferred by the Control Panel and validates it against the

corresponding XSD schema;

• Loads the active team configuration file, in order to load the vehicles therein to the GUI and

reads each of their sensors in order to later create the column headers on the table identified

with (H) on Fig. 4.5;

31

The Disturbance Manager

• Dynamically creates the table identified with (H) in Fig. 4.5: a column for the vehicle name;

another for indicating whether it’s active (a vehicle may be on the team but not deployed);

the "Affected?" column - which indicates whether a vehicle is under the influence of at least

one disturbance; and finally one column for each of the sensors at hand: the ones mentioned

in the active team configuration file, as mentioned above, and those listed in the affected

sensor types for each of the loaded disturbances’ components;

• The disturbances and their components are loaded onto table (C) in Fig. 4.5;

• Through SimConnect, an invisible smoke-emitting airplane is spawned in-game at the center

of each of the affected areas by the deployed disturbances. The reasoning for this step is

justified in the conclusion of chapter 2, and the details of the matching implementation can

be read below, on subsection 4.9.1;

• Each time the active vehicle data (table (I)) is updated from FSX through SimConnect (de-

tails on 4.9.1)

– Table (I) is updated with details on the vehicles active in the simulation (mainly lati-

tude, longitude, altitude, heading and speed);

– The new vehicles’ positions are matched against the areas covered by the disturbances’

components (illustrated as the rectangle and the circle in Fig. 4.5-(F)): if the vehicles

are in the affected area, the Affected? value is updated accordingly (Fig. 4.5-(H))

and the sensor reading messages are sent to the vehicles (more details in the sections

below);

– The active vehicle’s position is updated on the Google Maps window (Fig. 4.5 - (F))

by drawing its trajectory as a red line on the map.

4.7.1 GUI

The DM’s GUI was built iteratively, with its components being added throughout the development

of its features. Illustrated in Fig. 4.5, it is composed of several components listed below.

The DM is launched through the Control Panel; after that, the user should click to connect (if in

test mode, otherwise the connection is performed automatically) to FSX through SimConnect and

to AgentService. Then, the loaded Disturbances are deployed, either automatically or by pressing

the Deploy button (test mode).

(A) AgentService Connection - Includes text fields which indicate the details for the connection

with AgentService. The fields are auto-filled with the data which the Control Panel obtains

from The Platform’s data on Windows’ registry, if available. The connection is performed

after the user clicks on the Connect button;

32

The Disturbance Manager

(B) SimConnect Connection - Utilized for the specification of the IP (Internet Protocol) ad-

dress of the machine running FSX to which the connection is intended and buttons to con-

nect and disconnect from it. As with the AgentService region, the default IP address is

loaded from a Windows registry key;

(C) Active Disturbance Table - Indicates the designation of the active disturbances, as well

as that of each of their components. Also shows the vehicle sensors affected by the listed

components;

(D) Center on Disturbances Button - This button centers the Google Maps window (F) on the

center of the disturbance being simulated;

(E) Deploy Button - Used only in test mode, activates the disturbance loaded from the Control

Panel to the DM, initiating the simulation. While not in test mode, the disturbances run

automatically;

(F) Google Maps Window - This region of the UI contains an embedded Google Maps page,

on which several overlays are created: geometric shapes regarding the affected areas of the

disturbances (such as the blue circle and rectangle in Fig. 4.5) and red lines for the trajectory

of the vehicles;

(G) Sensor Readings Message Log - This region encloses a log of all the sensor readings sent

through AgentService throughout the simulation. Each entry includes the identifier for the

receiving agent, the message structure, the sensorid (identifying the affected sensor) and the

reading value;

(H) Team Vehicle Sensor Table - This table is dynamically generated, which means that instead

of having fixed columns with set names, the columns are generated on runtime (the process

is described in section 4.7). Includes an identifier for each vehicle in the team, a Yes or No

value on wether it is deployed in the current simulation, and the latest sensor readings for

each of the available sensors;

(I) Active Vehicle Table - The final table includes the data obtained from FSX through Sim-

Connect (see subsection 4.9.1), namely the vehicle’s name, model, ID and several other

details, such as position and speed.

4.7.2 Space and Time Evolution of a Disturbance

On the disturbances’ XML files, the growth functions are specified along with a startValue, a min-

LimitValue and maxLimitValue, and a growthFunction. In order to demonstrate how the evolution

processing is handled, the linear type of growthFunction with a specific coefficient will be used

as an example. At each time the update occurs, the following operation is performed for each

component of the active disturbances:

33

The Disturbance Manager

currentValue = startValue+ coe f f icient ∗ (stopwatch.ElapsedMilliseconds/timeScale)

i f (currentValue < minLimitValue)currentValue = minLimitValue

i f (currentValue > maxLimitValue)currentValue = maxLimitValue

The indicated operations allow for the evolution of the disturbance reading emission values

through the linear function with the specified coefficient, within the range delimited by the min-

LimitValue and maxLimitValue values.

4.8 Vehicle Sensor Readings

The sensor readings, which are sent to the corresponding vehicle agents through AgentService

(subsection 4.9.2 for details on the transmission of the message), are calculated through the fol-

lowing formulae:

reading = EmmitedReading∗ (1− distanceFromCenterO f Disturbance
MaxDistanceFromCenterO f Disturbance

) (4.1)

transmittedReading =

minLimitValue, if reading < minLimitValue

maxLimitValue, if reading > maxLimitValue
(4.2)

On the first formula, the fraction generates a linear decrease in the reading value, as the dis-

tance from the center of the disturbance increases. Which means that if such distance is null, then

the reading value will be the same as EmmitedReading; when the distanceFromCenterOfDistur-

bance is at its maximum value, the fraction will equate to 1, as such the EmmitedReading value

will be null.

Each disturbance’s component, on the disturbances XML file, includes a startValue, minLim-

itValue, maxLimitValue, growthFunction and one or more coefficients.

EmmitedReading matches the reading which is emmited at the center of the disturbance, where

the vehicles receive the highest readings. When the vehicles get farther from the center, the read-

ings they receive are lower.

DistanceFromCenterOfDisturbance refers to the distance from the vehicle to the center of the

disturbance’s component which affects it. MaxDistanceFromCenterOfDisturbance is the maxi-

mum possible distance from a vehicle to the center of the disturbance: if the shape is circular,

the value will be the radius; in case of a rectangular region, the value will be half of its diagonal

length.

The mentioned reading values are sent to each Vehicle Agent that possesses the corresponding

sensor and is contained in the affected area. The Vehicle Agents generate a log, which includes the

time when the simulation started, and the received messages in CSV (Comma Separated Values)

format.

The interaction regarding the dispatching of the sensor readings is illustrated through the Se-

quence Diagram in Fig. 4.6.

34

The Disturbance Manager

4.9 Communication with The Platform

The present section includes the details on the communication between the DM and other com-

ponents of The Platform, namely FSX through SimConnect and the Vehicle Agents through

AgentService.

4.9.1 FSX - SimConnect

The DM connects with FSX through SimConnect with two purposes:

• Acquiring information regarding which vehicles are currently deployed;

• Deploying the invisible airplane in the center of the disturbance-affected areas, as to show

smoke or other effects which are emitted from the aircraft.

Since other Platform components, such as the ATC Agent, already connected to FSX through

SimConnect, the corresponding code was adapted to perform the DM’s connection - thereby saving

a significant amount of time. A sample project provided in FSX’s SDK to obtain details on the

position and speed of aircraft also proved useful for the task at hand.

4.9.2 AgentService

The DM connects to the AgentService with the objective of sending sensor readings to the de-

ployed Vehicle Agents. As with SimConnect, the ATC Agent also performs an equivalent con-

nection. Thereby the corresponding code was adapted to perform the DM’s connection to the

AgentService.

After both connections are complete (SimConnect and AgentService), the obtained informa-

tion is cross-referenced as to match SimConnect data with AgentService data. This allows for the

adding of the AgentService identifier and the SimConnect identifier to the internal data structure

used to enclose the vehicle data, such as position and speed.

4.9.3 Control Panel

As the user defines a disturbance through the Disturbance Configuration tab on the Control Panel,

or loads one from an XML file to the GUI, and clicks "Launch", the Control Panel does as follows:

1. Saves the Disturbance specified in the GUI, validating it in the process;

2. Attaches the path to the saved Disturbance (XML) file to an Application Configuration

(AppConfig) structure;

3. Attaches to the same AppConfig file the information required for the DM to use the AgentSer-

vice, i.e. User Name and Password;

4. Launches the DM agent with the complete AppConfig file as a parameter.

35

The Disturbance Manager

4.10 Summary / Conclusions

This chapter detailed the performed development as to achieve a functional Disturbances Manager.

A high-level description of the component was presented; followed by the core functions of the

DM; the GUI; the processing of space and time evolutions of disturbances; the generation of the

sensor readings for the vehicles; the communication with the FSX, AgentService, Control Panel

and the Vehicle Agents.

Several aspects were considered throughout the development, from the code to the user inter-

face. These include the usage of relevant comments detailing each function, explicit function and

argument names, consistent indentation and appropriate partitioning of code in several files. This

should provide future users of The Platform with the means of easily understanding the internal

functionality of the DM, as well as the capacity to add features and integrate the DM into future

projects.

Overall, the development stage of the Disturbances Manager is considered successful, and was

conducted according to the work plan.

36

The Disturbance Manager

Figure 4.3: DDL Schema Diagram

37

The Disturbance Manager

Figure 4.4: TDL Schema Diagram

Figure 4.5: The DM’s GUI

38

The Disturbance Manager

Figure 4.6: Sensor Readings Sequence Diagram

Figure 4.7: Distance to Center of Disturbance (retrieved from [Silva, 2011])

Figure 4.8: The DM’s Data Flow (adapted from [Silva, 2011])

39

The Disturbance Manager

Figure 4.9: Control Panel (GUI)

40

Chapter 5

Testing & Results

The chapter at hand includes information about the creation and performance of the tests developed

around the DM and AgentService.

In order to validate the work developed, it is essential to develop a way to test and evaluate its

performance. With that objective in mind, the following tests were specified:

1. Core test - the following compose the primary validation for the DM’s functionalities. The

objective is to verify that all the components are working as intended. Therefore, the fol-

lowing tests will be performed:

(a) Vehicle Position & Sensor Readings - the most significant test of the DM, meant to

verify whether the DM correctly detects if the vehicles are within areas affected by

components of disturbances, and if the sensor readings are sent to the corresponding

vehicles;

(b) Higher Readings in The Center - all disturbance components have a center where the

intensity for sensor readings is meant to be higher. This test aims to certify if the

sensor readings sent to the Vehicle Agents match this aspect;

(c) Readings Time Evolution - generated sensor readings for the components of distur-

bances may have an evolution function (linear, polynomial, exponential, etc.). This

test’s goal is to demonstrate, via matching the sensor readings sent to vehicles, that the

mentioned evolution occurs as specified;

(d) Disturbance Components Space Evolution - the components of disturbances can be

static or have specific spacial evolutions. This test aims to corroborate this evolution.

2. AgentService Stress Test - the objective for this test is to find how much of a potential

bottleneck AgentService poses to the DM’s performance, in terms of messages per agent

per second.

41

Testing & Results

3. AgentService Endurance Test - after the conclusion of the AgentService Frequency Stress

Test and finding the maximum message rate for AgentService, another test will be run - to

find the maximum message rate that AgentService can reliably maintain over an indefinite

amount of time.

For all the performed tests, only aircraft vehicles were deployed because these are the focus of

The Platform and allow for higher speeds - therefore quicker tests.

5.1 Core Test

5.1.1 Vehicle Position & Sensor Readings

The test at hand, despite being the most significant for the DM, is very straight-forward. In order to

validate whether the DM is correctly checking the vehicles’ positions, and thereby sending sensor

readings to vehicles within affected regions, the following steps will be performed:

1. A randomly-placed disturbance is deployed;

2. The vehicle is initially placed outside the area affected by a specific disturbance;

3. An instruction is given to the vehicle, in order for it to move toward the affected area;

4. Both visually (through the Google Maps window on the DM’s GUI) and manually (through

the debug information on the console, checking the coordinates of the vehicle), the point

after which the vehicle should start to receive sensor readings can be verified;

5. If the vehicle starts to receive and register sensor readings on the mentioned point and stops

doing so after leaving the affected area, the test results are deemed positive.

Confirming what was expected, the vehicle started receiving sensor readings as soon as it

entered the affected area visible on the map. On Fig. 5.1, the airplane is outside the visible

affected regions (green and blue), and the sensor reading log (bottom left area of the image, see

GUI) is empty. On Fig. 5.2 the airplane just entered one of the regions, and began receiving the

matching sensor readings, as expected. The vehicle’s coordinates were also manually checked, in

order to verify whether its coordinates at the time it started receiving messages match those of the

outer region of the disturbance.

5.1.2 Higher Readings in The Center

In order to verify whether the generated sensor readings are higher in the center of the disturbance

components, the listed steps will be executed:

1. A circular component is deployed on the map;

2. The vehicle is initially placed outside the area affected by a specific disturbance;

42

Testing & Results

Figure 5.1: Vehicle Position & Sensor Readings Test - (1/2)

3. An instruction is given to the vehicle, in order for it to move through the center of the

affected area;

4. The vehicle should receive readings while in the affected region, and perform the corre-

sponding text logs;

5. After the vehicle leaves the affected region, the text logs are analyzed as to verify that the

obtained reading values for the sensor in question grow linearly up to a specific value, and

then symmetrically decrease until the vehicle stopped receiving readings. If the vehicle logs

match the expected values, this test is validated.

As expected, while outside the affected area (Fig. 5.3), the vehicle did not receive any readings

(vertical axis on the figure). Entering the disturbance’s region, the sensor readings started to be

transferred to the vehicle via AgentService - having the lowest readings at the outskirts of the

region in question, and higher its center. The vehicle logs its received readings in CSV format,

which enabled straightforward creation of the graph on Fig. 5.3 - which confirms the expected

results.

5.1.3 Readings Time Evolution

As to check whether the disturbances’ sensor readings can evolve as specified, the aftermentioned

steps are to be performed:

1. A disturbance with linear evolution and a specific coefficient is deployed;

43

Testing & Results

Figure 5.2: Vehicle Position & Sensor Readings Test - (2/2)

2. A vehicle is placed within the affected region;

3. The disturbance’s generated readings should evolve according to a linear function with the

specified coefficient and be saved accordingly by the vehicle;

4. The simulation is terminated and the vehicle logs analyzed. If the logged sensor reading

values match the previously specified function, the test’s validity is confirmed.

As to perform the test, a stopped airplane was placed within the rectangular area of effect of

a disturbance, as displayed in Fig. 5.5. The evolution of the readings for that disturbance was

specified as linear, and should have a maximum value of 100.

The received sensor readings of the airplane were converted into a graph and can be observed

in Fig. 5.6. As expected, the sensor readings received by the vehicle used in the test matched the

specified evolution function. The last three values of the graph match the maximum value of 100

reached by the disturbance; however, since the readings are lower as the vehicles increase their

distance to the center of the disturbances, the original value of 100 decreased to around 73.

5.1.4 Disturbance Components Space Evolution

As a means to confirm the spacial evolution of disturbance components, the following steps will

be performed:

1. A circular and growing disturbance is specified and deployed;

2. A static vehicle is placed outside the affected region;

44

Testing & Results

Figure 5.3: Higher Readings in The Center Test - (1/2)

3. The disturbance’s component’s growth is observed through the Google Maps window on

the DM’s GUI, along with the vehicle’s (fixed) position;

4. At the moment the circular component region reaches the vehicle, it should start receiving

sensor reading messages - this is to be verified by noticing if this starts to occur at the

expected time. If it does, and if the received readings increase according to the formulas on

section 4.8 the test is considered covered.

Initially, the disturbance was deployed nearby the placed airplane, as can be observed in Fig.

5.7. As expected, when the circular effect region grew past the airplane’s location, the readings

started to be transmitted (observable in Fig. 5.8) and increasing, since the airplane’s relative

distance to the disturbance’s center decreases.

5.2 AgentService Stress Test

The XML specification of the vehicle teams include specific definitions of the sensors for each

vehicle (as can be seen on the used Team Configuration file on B). This includes several aspects,

such as the working temperature and humidity ranges of the sensors, as well as their mass. Another

setting that would be an interesting addition to the sensors would be the frequency with which

they obtain readings. At the current stage of the DM, the sensor readings are sent to the matching

vehicles each time their positions are updated - i.e. at each time the SimConnect information is

updated. The current SimConnect refresh rate is around two times per second. Considering the

real-life characteristics of sensors, which can vary in terms of refresh rate (slower sensors will

45

Testing & Results

Figure 5.4: Higher Readings in The Center Test - (2/2)

not obtain readings as quickly as a faster sensor), it becomes relevant to take into consideration

different refresh rates.

AgentService is software responsible for the transferring of messages from the DM to the Ve-

hicle Agents (see The Disturbance Manager’s Internal Structure). As such, it represents a possible

bottleneck in terms of the message frequency. Therefore it was considered relevant to perform

tests in order to perceive what were AgentService’s limits: how many reading messages can be

sent per second, and to how many agents. As such, a small script was created in order to simulate

specific message frequencies, and find the limit. It is not only relevant to find the limit up to which

AgentService is able to run without errors, but also to find the message frequencies that cause

delays in the performance of The Platform - i.e. if the messages, meant to be processed in real-

time (simulation time) are received without significant delays. However interesting and useful to

know how many messages per second AgentService can handle in short bursts, the end-goal of the

following tests is to discover a message frequency, for specific numbers of active Vehicle Agents,

which can be processed indefinitely in an efficient manner.

The test script is run through the DM, after it connects to FSX and AgentService. The required

number of Vehicle Agents are launched through the Control Panel. The simulation variables of

the tests are as follows:

• nMinutes - the duration of the tests, in minutes

• messagesPerSecond - the message frequency, in messages per second

The resulting elements of the tests are the following:

• Effective Number of Messages/second/agent - corresponds to the number of messages being

sent per second for each agent. It can differ from the messagesPerSecond value as, with high

46

Testing & Results

Figure 5.5: Readings Time Evolution Test - (1/2)

values, AgentService will originate delays in their transferring; therefore, the messagesPer-

Second value is the desired message frequency, while the Effective Messages/second/agent

value represents the real frequency obtained in the tests, which include AgentService’s de-

lays;

• Errors - Some tests generated AgentService related errors, and were only successful after

a certain number of runs. The number of failed test runs before the achieved results for a

specific test is represented in Errors.

The developed test script is detailed in the following steps:

1. The time to wait between sending each message is calculated through the following self-

explanatory formula: secondsBetweenMessages = 1/messagesPerSecond

2. A stopwatch is started

3. A random value for the simulated sensor reading is calculated

4. A sensor reading message is sent to each of the active Vehicle Agents, containing the ran-

domly generated reading value

5. Waiting for the amount of time calculated in step 1

The script then repeats the loop of generating a random reading value, sending the message

and waiting for the number of iterations calculated through the following formula, which equates

to the total number of messages sent to each agent:

47

Testing & Results

Figure 5.6: Readings Time Evolution Test - (2/2)

nIterations = nMinutes∗60∗messagesPerSecond

Multiple test scenarios were performed, and the corresponding results are displayed in Tables

5.1, 5.2 and 5.3, where the scenarios which did not achieve a successful test run after 5+ tries were

marked with ERROR.

Analyzing the obtained results, Figs. 5.9 and 5.10 were generated, and it became apparent that

the test time was largely exceeding the expected time, especially with high message frequencies

combined with a high number of Vehicle Agents, e.g. in the Five Minute Stress Test (which should,

as the name implies, last five minutes) with 8 agents and 2 messages per second, the elapsed test

time was over five minutes. This situation represents a very significant delay, as such the present

test method should be optimized.

After some consideration, it was decided to change the way the secondsBetweenMessages

value was calculated. The current formula, calculating the inverse of the desired message fre-

quency, is only applicable if each message is handled instantly. Since this is not the case, the

effective delay will be the sum of the secondsBetweenMessages value and the delay inherent to

AgentService’s processing. As the latter can not be changed, the secondsBetweenMessages value

obviously required some adapting. As such, the following optimization was performed to the test

script, every two seconds:

1. Calculate the effective rate of messages being transferred;

2. If the value is lower than messagesPerSecond, the secondsBetweenMessages delay is re-

duced

3. Otherwise, if the value is higher, the secondsBetweenMessages delay is increased

-

48

Testing & Results

Table 5.1: AgentService One Minute Stress Tests

nAgents nMessages Messages/second Errors Time (minutes)
Effective

Messages/second Effective
/agent messages/second

1 600 10 0 1,003 9,974 9,974
1 1200 20 0 1,012 19,759 19,759
1 2400 40 1 1,157 34,569 34,569
1 3600 60 1 1,208 49,673 49,673
1 4800 80 1 1,759 45,493 45,493
1 6000 100 0 1,410 70,933 70,933
1 7200 120 0 2,098 57,193 57,193
1 8400 140 2 1,529 91,540 91,540
1 9600 160 3 1,630 98,150 98,150
1 10800 180 1 1,854 97,067 97,067
1 12000 200 2 1,875 106,662 106,662
1 13200 220 1 2,184 100,750 100,750
1 14400 240 1 2,437 98,493 98,493
1 15600 160 1 2,457 105,819 105,819
1 16800 280 2 2,669 104,901 104,901
1 18000 300 2 2,930 102,398 102,398
1 19200 320 0 3,247 98,564 98,564
2 6000 100 0 1,096 91,228 182,455
2 7200 120 1 1,305 91,935 183,869
4 4800 80 0 2,859 27,981 111,923
4 6000 100 1 2,766 36,152 144,608
8 4200 70 0 4,372 16,009 128,073
8 4800 80 1 5,683 14,077 112,620

Table 5.2: AgentService Five Minute Stress Tests

nAgents nMessages Messages/second Errors Time (minutes)
Effective

Messages/second Effective
/agent messages/second

1 3000 10 0 5,208 9,600 9,600
1 4500 15 0 5,253 14,277 14,277
1 4800 16 0 5,461 14,649 14,649
1 5100 17 1 ERROR ERROR ERROR
2 3000 5 0 5,201 9,613 19,226
2 6000 10 ERROR ERROR ERROR ERROR
4 1500 5 1 5,370 4,656 18,622
4 3000 10 0 5,942 8,415 33,660
8 600 2 0 5,477 1,826 14,607
8 900 3 1 5,767 2,601 20,809
8 1500 5 ERROR ERROR ERROR ERROR
8 3000 10 ERROR ERROR ERROR ERROR

49

Testing & Results

Figure 5.7: Disturbance Components Space Evolution Test - (1/2)

This optimization allows for the dynamic adaptation of the delay introduced between mes-

sages. Since AgentService’s delays increase with the number of agents and message frequency,

the updated test script will adapt and assumingly provide better results. It should be noted that,

once the secondsBetweenMessages delay is reduced as much as it can (zero seconds), it means

that the overhead originated through AgentService is fully responsible for the occurring delays.

The optimized test process was run for each test of the previous test scenarios, in order to

compare results (listed in tables 5.4, 5.5 and 5.6).

The obtained results were highly improved, as can be seen in Tables 5.4, 5.5 and 5.6 and Figs.

5.11 and 5.12. The difference between the expected and obtained message frequencies (Fig. 5.11)

decreased significantly, generally becoming much closer to the desired null value - which occurred

Table 5.3: AgentService Ten Minute Stress Tests

nAgents nMessages Messages/second Errors Time (minutes)
Effective

Messages/second Effective
/agent messages/second

1 6000 10 0 10,0932183 9,90764252 9,908
1 12000 20 ERROR ERROR ERROR ERROR
2 6000 10 0 10,49796551 9,525655095 19,051
2 12000 20 ERROR ERROR ERROR ERROR
4 6000 10 0 12,05686293 8,294031365 33,176
4 12000 20 ERROR ERROR ERROR ERROR
8 6000 10 0 14,99001083 6,671109195 53,369
8 12000 20 0 19,85166051 10,07472391 80,598
8 18000 30 ERROR ERROR ERROR ERROR

50

Testing & Results

Table 5.4: AgentService One Minute Stress Tests (Optimized)

nAgents nMessages Messages/second Errors Time (minutes)
Effective

Messages/second Effective
/agent messages/second

1 600 10 0 0,965 10,368 10,368
1 1200 20 0 1,002 19,969 19,969
1 2400 40 0 1,014 39,447 39,447
1 3600 60 0 1,004 59,749 59,749
1 4800 80 0 1,008 79,388 79,388
1 6000 100 0 1,021 97,977 97,977
1 7200 120 0 1,037 115,703 115,703
1 8400 140 5 ERROR ERROR ERROR
1 9600 160 5 ERROR ERROR ERROR
1 10800 180 5 ERROR ERROR ERROR
1 12000 200 5 ERROR ERROR ERROR
1 13200 220 5 ERROR ERROR ERROR
1 14400 240 5 ERROR ERROR ERROR
1 15600 160 5 ERROR ERROR ERROR
1 16800 280 5 ERROR ERROR ERROR
1 18000 300 5 ERROR ERROR ERROR
1 19200 320 5 ERROR ERROR ERROR
2 6000 100 1 1,059 94,435 188,871
2 7200 120 0 1,170 102,576 205,152
4 4800 80 0 1,441 55,506 222,023
4 6000 100 0 1,768 56,577 226,307
8 4200 70 0 5,400 12,964 103,713
8 4800 80 0 5,822 13,741 109,929

Table 5.5: AgentService Five Minute Stress Tests (Optimized)

nAgents nMessages Messages/second Errors Time (minutes)
Effective

Messages/second Effective
/agent messages/second

1 3000 10 0 4,901 10,201 10,201
1 4500 15 0 4,902 15,300 15,300
1 4800 16 2 5,176 15,455 15,455
1 5100 17 1 4,746 17,911 17,911
2 3000 5 1 4,961 5,039 10,079
2 6000 10 0 4,933 10,135 20,270
4 1500 5 0 4,947 5,054 20,215
4 3000 10 0 4,971 10,058 40,233
8 600 2 0 4,943 2,023 16,185
8 900 3 0 4,965 3,021 24,170
8 1500 5 0 4,967 5,033 40,266
8 3000 10 0 4,998 10,003 80,025

51

Testing & Results

Figure 5.8: Disturbance Components Space Evolution Test - (2/2)

for lower message frequencies, as expected on account of the smaller overhead due to a lower rate

of messages.

The information provided thus far represents the conclusion of AgentService’s stress testing.

The results were not as good as expected, since many errors occurred when trying to raise the rate

of the messages. Another negative aspect was the inconsistent occurrence of errors, since many

tests only performed successfully after a few attempts.

Table 5.6: AgentService Ten Minute Tests (Optimized)

nAgents nMessages Messages/second Errors Time (minutes)
Effective

Messages/second Effective
/agent messages/second

1 6000 10 0 9,700 10,309 10,309
1 12000 20 0 9,412 21,250 21,250
2 6000 10 0 9,822 10,181 20,361
2 12000 20 1 9,736 20,541 41,083
4 6000 10 0 9,921 10,079 40,317
4 12000 20 0 9,814 9,814 39,255
8 6000 10 0 10,074 9,926 79,411
8 12000 20 0 12,869 15,541 124,332
8 18000 30 0 18,134 16,544 132,350

52

Testing & Results

Figure 5.9: Difference Between Expected Message Rate and Effective Message Rate

5.3 AgentService Endurance Tests

For any number of agents (one to eight being the most typical uses of The Platform), the maximum

message rate that enables error-free performance of the DM in The Platform would be defined as

one which could be used without errors, at the first try and for an indefinite amount of time. As

so, an additional set of tests were performed in order to find said value. Considering that it should

be a single value for one to eight agents, it makes sense to perform these tests with eight agents -

which represent the highest load on AgentService. Considering the results obtained in Table 5.6,

it was decided to start the tests at 10 messages per second. The ideal frequency should not only

allow for the continuous use without errors but also not represent significant overhead in terms of

processing time, i.e. five minutes of messages should be handled in not more than five minutes.

The results of these tests are detailed in Table 5.7:

Table 5.7: AgentService Endurance Test

nAgents nMessages Messages/second Errors Time (minutes)
Effective

Messages/second Effective
/agent messages/second

8 18000 10 0 29,38282557 10,21004595 81,68036759
8 21600 12 0 30,0314826 11,98742013 95,89936105
8 23400 13 0 29,98079165 13,00832892 104,0666314
8 25200 14 0 30,43242599 13,80106861 110,4085489
8 27000 15 ERROR ERROR ERROR ERROR

Considering the obtained results, regarding the maximum frequency of messages to be used

on the DM with any number of airplanes, it was concluded that 10 messages per second is a

safe choice. The tests with 11 through 14 messages per second were also successful, however

considering that the test with 15 messages per second was unsuccessful, the value 10 represents a

53

Testing & Results

Figure 5.10: Time per Test

valid option with a reasonable margin of error. Besides, with 14 messages per second, the effective

rate of messages was 13.801, which is slightly lower than 14, meaning that the processing overhead

starts to become too high. As expected, the chosen value of 10 messages per second per agent,

which translates to 80 global messages per second is close to the maximum message rate obtained

in Table 5.4 for one agent, meaning that the number of agents doesn’t have significant impact over

AgentService’s maximum capability - i.e. it is roughly the same to send 10 messages to one agent

as it would be to send 1 message to ten agents. Unlike in the previous tables, the final entry was

marked with ERROR after a single failed attempt - considering that this test was meant to find

reliable message frequencies, additional test runs were not performed in order to achieve the rate

of 15 messages/second/agent.

All the AgentService tests were performed on a machine with the following specifications:

• CPU: Intel Core i5 650 @ 3.20 GHz

• RAM: 8GB Single-Channel DDR3 @ 1333 MHz

• HDD: 7200RPM Seagate SATA

• OS: Windows 7 Professional 64-bit Service Pack 1

54

Testing & Results

Figure 5.11: Difference Between Expected Message Rate and Effective Message Rate

Figure 5.12: Time per Test

55

Testing & Results

56

Chapter 6

Conclusions & Future Work

The chapter at hand includes a summary of the results and conclusions achieved throughout the

development of this thesis, as well as the importance of the produced work, limitations of the DM

and possibilities for future work.

In Main Goals & Research Questions, two research questions are stated, regarding the work

which was planned ahead. At the present stage, they can be answered: Is it possible to cre-
ate an environmental disturbances manager, and effectively integrate it within the existing
platform? Yes. The Environmental Disturbances Manager was implemented and effectively inte-

grated within The Platform, including the main features which were planned.

Is it feasible to introduce a generic interface for external disaster simulators into the sys-
tem? Unfortunately, due to alterations in the Work Plan, this question can’t be given an absolute

answer since such interface was not developed (details in Final Work Overview). However, due to

the modular structure and current feature set of the DM, it is considered most likely possible.

With the completion of the Disturbances Manager, The Platform became even more intricate.

Future users will be able to take advantage of the DM in order to develop more realistic and

complex vehicular missions, for example regarding the testing of search methods for the center of

a forest fire - allowing for the acquisition of knowledge which could be directly applied in real-

world firefighting. The possibilities for uses of The Platform were quite broad before the DM,

which added an extra layer of potential to it.

It was found that FSX is indeed a very complete simulator, and serves as a solid basis for The

Platform. Despite its age, it shows remarkable potential for additions, modifications and upgrades

through its extensively-documented SDK. However complete, the documentation isn’t the most

user-friendly, which originated some difficulty throughout the development of the DM’s features.

The Platform was also rather interesting to work with; having multiple and diverse components,

the understanding of its global set of functionalities took some time, but proved useful in the

integration of the DM therein.

57

Conclusions & Future Work

From the beginning to the end of the development of this thesis, many hardships arose and were

overcome. The developed work is considered successful and proved to be rather challenging, yet

rewarding.

6.1 Limitations

The limitation of the implemented Disturbances Manager which is considered most significant

refers to AgentService and its modest capacity to handle large loads, in terms of the rate of mes-

sages. This reflects upon the Disturbances Manager as a limitation to potential future work - the

implementation of different update frequencies of the vehicles’ sensors, as described in AgentSer-

vice Stress Test.

6.2 Future Work

Multiple extensions and improvements to the developed Disturbances Manager were considered

throughout the development of the dissertation at hand:

• Implementation of a generic interface for external co-simulators, as was initially planned,

and mentioned in Work Plan;

• Possibility for changing the specification of disturbances during simulation - besides the

specification of the disturbances previous to their deployment, it would be a welcome addi-

tion to change the details of disturbances while they are being simulated. As an example, it

could be useful to move an active disturbance to a different area of the map;

• More time and space evolution functions could be implemented, as to provide the means for

simulating more diverse disturbances;

• The introduction of specific update rates for each sensor;

• More detailed in-game representation of disturbances. As described in SimConnect, the

version of SimConnect does not allow for the programmatic deployment of Special Effects

in the simulation. By migrating The Platform to Prepar3D, it would become possible to use

this feature of the updated SimConnect, among others.

58

Bibliography

[IEE, 2010] (2010). IEEE standard for modeling and simulation (M&S) high level architecture

(HLA)– framework and rules. IEEE Std 1516-2010 (Revision of IEEE Std 1516-2000), pages

1–38.

[A. Finney, 2006] A. Finney, M. (2006). An overview of flammap fire modeling capabilities. In

Fuels Management-How to Measure Success: Conference Proceedings.

[Brodie et al., 2007] Brodie, K., Fettes, D., Harte, B., and Schmid, R. (2007). Structural terms

including fault rock terms. Recommendations by the IUGS Subcommission.

[Buscarino et al., 2015] Buscarino, A., Famoso, C., Fortuna, L., Frasca, M., and Xibilia, M. G.

(2015). Complexity in forest fires: From simple experiments to nonlinear networked models.

Communications in Nonlinear Science and Numerical Simulation, 22(1-3):660–675.

[Camara, 2013] Camara, Á. (2013). Controlo de tráfego aéreo usando o microsoft flight simulator

x. Master’s thesis, Department of Informatics Engineering, University of Coimbra, Coimbra,

Portugal.

[Câmara et al., 2014] Câmara, Á., Silva, D. C., Abreu, P. H., and Oliveira, E. (2014). Comparing

a centralized and decentralized multi-agent approaches to air traffic control. In Proceedings of

the 28th European Simulation and Modelling Conference (ESM’2014), October 22-24, 2014,

Porto, Portugal, pages 189–193.

[Chen et al., 2006] Chen, D., Turner, S. J., and Cai, W. (2006). A framework for robust hla-

based distributed simulations. In 20th Workshop on Principles of Advanced and Distributed

Simulation (PADS’06), pages 183–192.

[CRED, 2015] CRED (2015). The Human Cost of Natural Disasters 2015: Global Perspective.

Technical report, Centre for Research on the Epidemology of Disasters (CRED).

[Dahmann et al., 1998] Dahmann, J. S., Kuhl, F., and Weatherly, R. (1998). Standards for Simu-

lation: As Simple As Possible But Not Simpler The High Level Architecture For Simulation.

SIMULATION, 71(6):378–387.

[Drabek, 1970] Drabek, T. E. (1970). Methodology of studying disasters. American Behavioral

Scientist, 13(3):331–343.

59

BIBLIOGRAPHY

[Filippi et al., 2011] Filippi, J.-B., Bosseur, F., Pialat, X., Santoni, P.-A., Strada, S., and Mari,

C. (2011). Simulation of Coupled Fire/Atmosphere Interaction with the MesoNH-ForeFire

Models. Journal of Combustion, 2011:1–13.

[Finney and Station-Ogden, 1998] Finney, M. and Station-Ogden, R. M. R. (1998). FARSITE,

Fire Area Simulator–model development and evaluation. Number no. 4 in Research paper

RMRS. U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Research Station.

[Gewin, 2016] Gewin, V. (2016). Data sharing: An open mind on open data. Nature,

529(7584):117–119.

[Henri Balbi et al., 2009] Henri Balbi, J., Morandini, F., Silvani, X., Filippi, J. B., and Rinieri, F.

(2009). A Physical Model for Wildland Fires. Combustion and Flame, 156(12):2217–2230.

[IEDC, 2016] IEDC (2016). Types of disasters. Last Accessed on 2016-11; Avail-

able online at http://restoreyoureconomy.org/disaster-overview/

types-of-disasters/.

[Ivanilova, 1985] Ivanilova, T. (1985). Set probability identification in forest fire simulation. An-

nual Review in Automatic Programming, 12(Part 2):185 – 188. Systems Analysis and Simula-

tion 1985.

[MAMAOT, 2015] MAMAOT (2015). Áreas ardidas anuais por tipo de ocupação do solo. Last

Accessed on 2016-11; Available online at http://www.icnf.pt/portal/florestas/

dfci/Resource/doc/estat/area-ardida-1996-a-2014.

[Martin, 2017] Martin, L. (2017). PREPAR3D SDK Overview. Last Accessed on 2017-05-20;

Available online at http://www.prepar3d.com/SDKv4/sdk/sdk_overview.html.

[Microsoft, 2008a] Microsoft (2008a). Mission creation. Last Accessed on 2017-06; Available

online at https://msdn.microsoft.com/en-us/library/cc526963.aspx.

[Microsoft, 2008b] Microsoft (2008b). Simconnect. Last Accessed on 2017-06; Available online

at https://msdn.microsoft.com/en-us/library/cc526983.aspx.

[Microsoft, 2008c] Microsoft (2008c). Special effects tool. Last Accessed on 2017-02; Available

online at https://msdn.microsoft.com/en-us/library/cc526969.aspx.

[NG, 2017] NG (2017). GIS (geographic information system) - National Geographic Soci-

ety. Last Accessed on 2017-01; Available online at http://www.nationalgeographic.

org/encyclopedia/geographic-information-system-gis/.

[NICIF and Lourenço, 1994] NICIF and Lourenço, L. (1994). Risco de incêndio florestal em

Portugal Continental. Colectâneas Cindínicas, 1.

60

http://restoreyoureconomy.org/disaster-overview/types-of-disasters/
http://restoreyoureconomy.org/disaster-overview/types-of-disasters/
http://www.icnf.pt/portal/florestas/dfci/Resource/doc/estat/area-ardida-1996-a-2014
http://www.icnf.pt/portal/florestas/dfci/Resource/doc/estat/area-ardida-1996-a-2014
http://www.prepar3d.com/SDKv4/sdk/sdk_overview.html
https://msdn.microsoft.com/en-us/library/cc526963.aspx
https://msdn.microsoft.com/en-us/library/cc526983.aspx
https://msdn.microsoft.com/en-us/library/cc526969.aspx
http://www.nationalgeographic.org/encyclopedia/geographic-information-system-gis/
http://www.nationalgeographic.org/encyclopedia/geographic-information-system-gis/

BIBLIOGRAPHY

[NIDM, 2014] NIDM (2014). Types of environmental disasters. Last Accessed on 2016-11;

Available online at http://nidm.gov.in/easindia2014/err/pdf/themes_issue/

env/types.pdf.

[NOAA, 2017a] NOAA (2017a). Billion-dollar weather and climate disasters. Last Accessed on

2016-11; Available online at https://www.ncdc.noaa.gov/billions.

[NOAA, 2017b] NOAA (2017b). Billion-dollar weather and climate disasters: Table of

events. Last Accessed on 2016-11; Available online at https://www.ncdc.noaa.gov/

billions/events/US/1980-2017.

[Pereira and Rossetti, 2012] Pereira, J. L. F. and Rossetti, R. J. F. (2012). An integrated architec-

ture for autonomous vehicles simulation. In Proceedings of the 27th Annual ACM Symposium

on Applied Computing, SAC ’12. ACM.

[Quarantelli, 1992] Quarantelli, E. L. (1992). The environmental disasters of the future will be

more and worse but the prospects is not hopeless. Technical report.

[Reid and Powers, 2000] Reid, M. R. and Powers, E. I. (2000). An Evaluation of the High Level

Architecture (HLA) as a Framework for NASA Modeling and Simulation.

[Rodrigues et al., 2015] Rodrigues, C., Silva, D. C., Rossetti, R. J. F., and Oliveira, E. (2015).

Distributed flight simulation environment using flight simulator x. In Proceedings of the 10th

Iberian Conference on Information Systems and Technologies, June 17-20 2015, Águeda, Por-

tugal, pages 1293–1297.

[Santos, 2010] Santos, A. (2010). Autonomous Intelligent Vehicle Adaptation and Performance

Analysis in Flight Simulator X. Master’s thesis, Faculty of Engineering, University of Porto,

Porto, Portugal.

[Santos, 2012] Santos, W. (2012). 26 Weather APIs, 12 Support JSON | ProgrammableWeb. Last

Accessed on 2017-02; Available online at https://www.programmableweb.com/news/

26-weather-apis-12-support-json/2012/01/11.

[Silva, 2011] Silva, D. C. (2011). Cooperative Multi-Robot Missions: Development of a Platform

and a Specification Language. PhD thesis, Faculty of Engineering, University of Porto, Porto,

Portugal.

[Silva et al., 2017] Silva, D. C., Abreu, P. H., Reis, L. P., and Oliveira, E. (2017). Development

of Flexible Languages for Scenario and Team Description in Multi-Robot Missions. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, 31(1):69–86.

[Silva et al., 2016] Silva, D. C., Reis, P. H. A. L. P., and Oliveira, E. (2016). Development of a

Flexible Language for Disturbance Description for Multi-Robot Missions. Journal of Simula-

tion, 10(3):166–181.

61

http://nidm.gov.in/easindia2014/err/pdf/themes_issue/env/types.pdf
http://nidm.gov.in/easindia2014/err/pdf/themes_issue/env/types.pdf
https://www.ncdc.noaa.gov/billions
https://www.ncdc.noaa.gov/billions/events/US/1980-2017
https://www.ncdc.noaa.gov/billions/events/US/1980-2017
https://www.programmableweb.com/news/26-weather-apis-12-support-json/2012/01/11
https://www.programmableweb.com/news/26-weather-apis-12-support-json/2012/01/11

BIBLIOGRAPHY

[Silva, 2008] Silva, R. (2008). Communication Layer in an Aviation Simulator. Master’s thesis,

Faculty of Engineering, University of Porto, Porto, Portugal.

[Sousa, 2010] Sousa, P. D. (2010). Autonomous Air Traffic Control for Intelligent Vehicles using

Microsoft Flight Simulator X. Master’s thesis, Faculty of Engineering, University of Porto,

Porto, Portugal.

[Sousa et al., 2010] Sousa, P. D., Silva, D. C., and Reis, L. P. (2010). Air Traffic Control with Mi-

crosoft Flight Simulator X. In Álvaro Rocha, Sexto, C. F., Reis, L. P., and Cota, M. P., editors,

Actas de la 5a Conferencia Ibérica de Sistemas y Tecnologías de Información (CISTI 2010),

June 16–19 2010, Santiago de Compostela, Spain, pages 378–383. in Portuguese (original

title: Controlo de Tráfego Aéreo com o Microsoft Flight Simulator X).

[Stevenson et al., 1975] Stevenson, A., Schermerhorn, D., and Miller, S. (1975). Simulation of

southern california forest fires. Symposium (International) on Combustion, 15(1):147–155.

[USDA, 2015] USDA (2015). FARSITE. Last Accessed on 2017-03; Available online at https:

//www.firelab.org/project/farsite.

[USGS, 2016] USGS (2016). USGS: Volcano Hazards Program. Last Accessed on 2017-02;

Available online at https://volcanoes.usgs.gov/vhp/hazards.html.

[Wells, 2008] Wells, G. (2008). The rothermel Fire-Spread Model: Still running Like a champ.

[Wong, 1998] Wong, V. (1998). Flight Simulation (Department of Computing | Imperial College

London).

62

https://www.firelab.org/project/farsite
https://www.firelab.org/project/farsite
https://volcanoes.usgs.gov/vhp/hazards.html

Appendix A

DDL XML File

A.1 Sample Disturbance Specification File

1 <?xml version="1.0" encoding="UTF-8"?>

2 <disturbances xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="dcs:disturbance disturbances_joao.xsd" xmlns="

dcs:disturbance">

3 <disturbance id="d0" disturbanceType="hurricane" origin="ManMade" seriousness="2"

>

4 <denomination>Fire Number One</denomination>

5 <distLocation placing="random">

6 <area id="l1">

7 <denomination>Forest Area</denomination>

8 <medium air="false" land="true" water="false" underwater="false" />

9 <availability available="always" />

10 <circle>

11 <minAlt measured="agl" lengthUnit="Foot">0</minAlt>

12 <maxAlt measured="agl" lengthUnit="Foot">1</maxAlt>

13 <center>

14 <latitude>48o 21’ 0.50’’ N</latitude>

15 <longitude>122o 40’ 18.91’’ W</longitude>

16 </center>

17 <radius lengthUnit="Foot">1500</radius>

18 </circle>

19 </area>

20 </distLocation>

21 <distAvailability start="scheduled" end="unspecified">

22 <starting>

23 <timePoint countingFrom="simulationStart">

24 <after>PT0H00M20S</after>

25 </timePoint>

26 </starting>

27 </distAvailability>

28 <distMobility mobilityType="Stationary" constrainedToArea="false">

63

DDL XML File

29 </distMobility>

30 <component name="Fire0">

31 <medium air="true" land="false" water="false" underwater="false" />

32 <distSize growthType="fixed">

33 <initialSize shape="paralelogram">

34 <dimensions>

35 <width lengthUnit="Foot">16000</width>

36 <length lengthUnit="Foot">25000</length>

37 <height lengthUnit="Foot">30</height>

38 </dimensions>

39 </initialSize>

40 </distSize>

41 <distDetection>

42 <sense sensorType="CO2"/>

43 <generatedReading type="Float" startValue="50" minLimitValue="0"

maxLimitValue="100" growthFunction="linear"/>

44 <coefficient>5</coefficient>

45 </distDetection>

46 </component>

47 </disturbance>

48 <disturbance id="d1" disturbanceType="forestFire" origin="ManMade" seriousness="2

">

49 <denomination>Fire Number Two</denomination>

50 <distLocation placing="random">

51 <area id="l1">

52 <denomination>Forest Area</denomination>

53 <medium air="false" land="true" water="false" underwater="false" />

54 <availability available="always" />

55 <circle>

56 <minAlt measured="agl" lengthUnit="Foot">0</minAlt>

57 <maxAlt measured="agl" lengthUnit="Foot">1</maxAlt>

58 <center>

59 <latitude>48o 21’ 0.50’’ N</latitude>

60 <longitude>122o 45’ 18.91’’ W</longitude>

61 </center>

62 <radius lengthUnit="Foot">1500</radius>

63 </circle>

64 </area>

65 </distLocation>

66 <distAvailability start="scheduled" end="unspecified">

67 <starting>

68 <timePoint countingFrom="simulationStart">

69 <after>PT0H10M0S</after>

70 </timePoint>

71 </starting>

72 </distAvailability>

73 <distMobility mobilityType="Stationary" constrainedToArea="false">

74 </distMobility>

75 <component name="Fire1">

64

DDL XML File

76 <medium air="true" land="false" water="false" underwater="false" />

77 <distSize growthType="grow">

78 <initialSize shape="sphere">

79 <dimensions>

80 <width lengthUnit="Foot">8000</width>

81 <length lengthUnit="Foot">8000</length>

82 <height lengthUnit="Foot">15</height>

83 </dimensions>

84 </initialSize>

85 </distSize>

86 <distDetection>

87 <sense sensorType="CO2"/>

88 <generatedReading type="Float" startValue="10.0" minLimitValue="0.0"

maxLimitValue="100.0" growthFunction="constant"/>

89 <coefficient>0</coefficient>

90 </distDetection>

91 </component>

92 </disturbance>

93 </disturbances>

65

DDL XML File

66

Appendix B

TDL XML File

B.1 Sample Section of a Team Specification File

1 <agent id="a1" agentTypeID="y1">

2 <name>Lusitania</name>

3 <description>Primeiro agente a voar</description>

4 <initialLocation baseID="b1" locationID="p01">

5 <heading headingType="True">180</heading>

6 </initialLocation>

7 <state>

8 <fuel volumeUnit="Litre">2.5</fuel>

9 <lights cabin="false" logo="false" wing="false" recognition="false" panel="

false" strobe="false" taxi="false" landing="false" beacon="false" nav="

false" />

10 <doorsOpen>false</doorsOpen>

11 <gearDown>true</gearDown>

12 <flapsHandlePosition>3</flapsHandlePosition>

13 <rudder>-0.01334</rudder>

14 <aileron>-0.1213</aileron>

15 <elevator>0.01223</elevator>

16 </state>

17 <simulatedAgent>

18 <tailNumber>DCS01</tailNumber>

19 </simulatedAgent>

20 <realAgent>

21 <communication>

22 <controlFrequency frequencyUnit="MegaHertz">1245.75</controlFrequency>

23 <activeFrequency frequencyUnit="MegaHertz">121.2</activeFrequency>

24 <standByFrequency frequencyUnit="MegaHertz">124.5</standByFrequency>

25 </communication>

26 <ATC>

27 <callSign>Air One</callSign>

28 <tailNumber>NLS01</tailNumber>

29 <name>Lusitania</name>

67

TDL XML File

30 </ATC>

31 </realAgent>

32 <payloads>

33 <payload name="PayloadCenter">

34 <sensors>

35 <sensor sensorType="CO2" id="s1_a1">

36 <dimensions>

37 <width lengthUnit="Centimeter">20</width>

38 <length lengthUnit="Centimeter">18</length>

39 <height lengthUnit="Centimeter">14</height>

40 </dimensions>

41 <weight massUnit="Kilogram">4</weight>

42 <operatingRequirements>

43 <temperature>-40oC - 75oC</temperature>

44 <humidity>0 - 99%</humidity>

45 <voltage>3 - 5.5 vdc</voltage>

46 <current>10 mA</current>

47 <powerConsumption><100mW</powerConsumption>

48 </operatingRequirements>

49 <specifications>

50 <specification name="Detects">CO2</specification>

51 <specification name="Method">Infrared</specification>

52 <specification name="Range">0-2000ppm</specification>

53 <specification name="Accuracy">5%</specification>

54 <specification name="Resolution">10ppm</specification>

55 <specification name="Output Range">0-22 mA</specification>

56 <specification name="Response Time">5 ms</specification>

57 </specifications>

58 <sensorReadingType type="numeric" unit="ppmv"/>

59 </sensor>

60 <sensor sensorType="IRCameraIntensity" id="s2_a1">

61 <dimensions>

62 <width lengthUnit="Centimeter">30</width>

63 <length lengthUnit="Centimeter">35</length>

64 <height lengthUnit="Centimeter">30</height>

65 </dimensions>

66 <weight massUnit="Kilogram">2</weight>

67 <operatingRequirements>

68 <temperature>-15oC - 90oC</temperature>

69 <humidity>0 - 99%</humidity>

70 <voltage>3 - 5.5 vdc</voltage>

71 <current>25 mA</current>

72 <powerConsumption><125mW</powerConsumption>

73 </operatingRequirements>

74 <specifications>

75 <specification name="Detects">Generic</specification>

76 </specifications>

77 <sensorReadingType type="numeric" unit="X"/>

78 </sensor>

68

TDL XML File

79 </sensors>

80 <cargo type="water" quantity="180"/>

81 </payload>

82 </payloads>

83 </agent>

69

TDL XML File

70

Appendix C

XML Databases

C.1 Disturbances

1 <disturbances>

2 <disturbanceCategory id="C01" name="Land">

3 <disturbance id="L01" name="landslide" origin="Natural">

4 <sense sensorType="CameraIntensity"/>

5 <sense sensorType="Microphone"/>

6 <seriousnessDegree applicable="1"/>

7 <growthRate applicable="1"/>

8 </disturbance>

9 <disturbance id="L02" name="earthquake" origin="Natural">

10 <sense sensorType="CameraIntensity"/>

11 <seriousnessDegree applicable="1"/>

12 <growthRate applicable="1"/>

13 </disturbance>

14 <disturbance id="L03" name="flood" origin="Natural">

15 <sense sensorType="CameraIntensity"/>

16 <seriousnessDegree applicable="1"/>

17 <growthRate applicable="1"/>

18 </disturbance>

19 <disturbance id="L04" name="volcano" origin="Natural">

20 <sense sensorType="CameraIntensity"/>

21 <sense sensorType="IRCameraIntensity"/>

22 <sense sensorType="Temperature">

23 <emitsReading type="float" startValue="X" minValue="Y" maxValue="Z"/>

24 </sense>

25 <sense sensorType="Microphone"/>

26 <seriousnessDegree applicable="1"/>

27 <growthRate applicable="1"/>

28 </disturbance>

29 <disturbance id="L06" name="carAccident" origin="ManMade">

30 <sense sensorType="CameraBinary"/>

31 <seriousnessDegree applicable="1"/>

71

XML Databases

32 <growthRate applicable="0"/>

33 </disturbance>

34 <disturbance id="L07" name="trainAccident" origin="ManMade">

35 <sense sensorType="CameraBinary"/>

36 <seriousnessDegree applicable="1"/>

37 <growthRate applicable="0"/>

38 </disturbance>

39 <disturbance id="L08" name="fleeingPerson" origin="ManMade">

40 <sense sensorType="CameraBinary"/>

41 <sense sensorType="Microphone"/>

42 <seriousnessDegree applicable="1"/>

43 <growthRate applicable="0"/>

44 </disturbance>

45 <disturbance id="L09" name="lostAnimal" origin="ManMade">

46 <sense sensorType="CameraBinary"/>

47 <sense sensorType="Microphone"/>

48 <seriousnessDegree applicable="1"/>

49 <growthRate applicable="0"/>

50 </disturbance>

51 </disturbanceCategory>

52 <disturbanceCategory id="C02" name="Sea">

53 <disturbance id="S01" name="strongWaves" origin="Natural">

54 <sense sensorType="CameraIntensity"/>

55 <sense sensorType="Microphone"/>

56 <seriousnessDegree applicable="1"/>

57 <growthRate applicable="1"/>

58 </disturbance>

59 <disturbance id="S02" name="tsunami" origin="Natural">

60 <sense sensorType="CameraIntensity"/>

61 <sense sensorType="Microphone"/>

62 <seriousnessDegree applicable="1"/>

63 <growthRate applicable="1"/>

64 </disturbance>

65 <disturbance id="S03" name="oilSpill" origin="ManMade">

66 <sense sensorType="CameraIntensity"/>

67 <seriousnessDegree applicable="1"/>

68 <growthRate applicable="0"/>

69 </disturbance>

70 <disturbance id="S04" name="chemicalSpill" origin="ManMade">

71 <sense sensorType="CameraIntensity"/>

72 <sense sensorType="Chemical"/>

73 <seriousnessDegree applicable="1"/>

74 <growthRate applicable="0"/>

75 </disturbance>

76 <disturbance id="S05" name="boatAccident" origin="ManMade">

77 <sense sensorType="CameraBinary"/>

78 <seriousnessDegree applicable="1"/>

79 <growthRate applicable="0"/>

80 </disturbance>

72

XML Databases

81 <disturbance id="S06" name="lostPerson" origin="ManMade">

82 <sense sensorType="CameraBinary"/>

83 <seriousnessDegree applicable="1"/>

84 <growthRate applicable="0"/>

85 </disturbance>

86 <disturbance id="S07" name="hydrothermalVent" origin="Natural">

87 <sense sensorType="CameraIntensity"/>

88 <sense sensorType="Temperature"/>

89 <sense sensorType="Microphone"/>

90 <seriousnessDegree applicable="1"/>

91 <growthRate applicable="0"/>

92 </disturbance>

93 <disturbance id="S08" name="schoolingFish" origin="Natural">

94 <sense sensorType="CameraIntensity"/>

95 <sense sensorType="Chemical"/>

96 <seriousnessDegree applicable="1"/>

97 <growthRate applicable="0"/>

98 </disturbance>

99 </disturbanceCategory>

100 <disturbanceCategory id="C03" name="Fire">

101 <disturbance id="F01" name="forestFire" origin="Any">

102 <sense sensorType="CameraIntensity"/>

103 <sense sensorType="IRCameraIntensity"/>

104 <sense sensorType="Temperature">

105 <emitsReading type="float" startValue="X" minValue="Y" maxValue="Z"/>

106 </sense>

107 <sense sensorType="CO2"/>

108 <seriousnessDegree applicable="1"/>

109 <growthRate applicable="1"/>

110 </disturbance>

111 <disturbance id="F02" name="buildingsFire" origin="ManMade">

112 <sense sensorType="CameraIntensity"/>

113 <sense sensorType="IRCameraIntensity"/>

114 <sense sensorType="Temperature">

115 <emitsReading type="float" startValue="X" minValue="Y" maxValue="Z"/>

116 </sense>

117 <sense sensorType="CO2"/>

118 <seriousnessDegree applicable="1"/>

119 <growthRate applicable="1"/>

120 </disturbance>

121 </disturbanceCategory>

122 <disturbanceCategory id="C04" name="Storm">

123 <disturbance id="S01" name="heavyRain" origin="Natural">

124 <sense sensorType="CameraIntensity"/>

125 <sense sensorType="HumiditySensor"/>

126 <sense sensorType="AirPressure"/>

127 <sense sensorType="WindSpeed"/>

128 <sense sensorType="Microphone"/>

129 <seriousnessDegree applicable="1"/>

73

XML Databases

130 <growthRate applicable="1"/>

131 </disturbance>

132 <disturbance id="S02" name="thunderstorm" origin="Natural">

133 <sense sensorType="CameraIntensity"/>

134 <sense sensorType="HumiditySensor"/>

135 <sense sensorType="AirPressure"/>

136 <sense sensorType="WindSpeed"/>

137 <sense sensorType="Microphone"/>

138 <sense sensorType="ElectricField"/>

139 <sense sensorType="MagneticField"/>

140 <seriousnessDegree applicable="1"/>

141 <growthRate applicable="1"/>

142 </disturbance>

143 <disturbance id="S03" name="hurricane" origin="Natural">

144 <sense sensorType="CameraIntensity"/>

145 <sense sensorType="AirPressure"/>

146 <sense sensorType="WindSpeed"/>

147 <sense sensorType="Microphone"/>

148 <seriousnessDegree applicable="1"/>

149 <growthRate applicable="1"/>

150 </disturbance>

151 </disturbanceCategory>

152 <disturbanceCategory id="C05" name="General">

153 <disturbance id="G01" name="bugInfestation" origin="Natural">

154 <sense sensorType="CameraIntensity"/>

155 <seriousnessDegree applicable="1"/>

156 <growthRate applicable="1"/>

157 </disturbance>

158 <disturbance id="G02" name="extremeTemperature" origin="Natural">

159 <sense sensorType="Temperature">

160 <emitsReading type="float" startValue="X" minValue="Y" maxValue="Z"/>

161 </sense>

162 <seriousnessDegree applicable="1"/>

163 <growthRate applicable="1"/>

164 </disturbance>

165 <disturbance id="G03" name="coldWave" origin="Natural">

166 <sense sensorType="Temperature">

167 <emitsReading type="float" startValue="X" minValue="Y" maxValue="Z"/>

168 </sense>

169 <seriousnessDegree applicable="1"/>

170 <growthRate applicable="1"/>

171 </disturbance>

172 <disturbance id="G04" name="heatWave" origin="Natural">

173 <sense sensorType="Temperature"/>

174 <emitsReading type="float" startValue="X" minValue="Y" maxValue="Z"/>

175 <seriousnessDegree applicable="1"/>

176 <growthRate applicable="1"/>

177 </disturbance>

178 <disturbance id="G05" name="chemicalContamination" origin="ManMade">

74

XML Databases

179 <sense sensorType="ChemicalSensor"/>

180 <seriousnessDegree applicable="1"/>

181 <growthRate applicable="1"/>

182 </disturbance>

183 <disturbance id="G06" name="chemicalCloud" origin="ManMade">

184 <sense sensorType="ChemicalSensor"/>

185 <seriousnessDegree applicable="1"/>

186 <growthRate applicable="1"/>

187 </disturbance>

188 <disturbance id="G07" name="underFire" origin="ManMade">

189 <sense sensorType="CameraIntensity"/>

190 <seriousnessDegree applicable="1"/>

191 <growthRate applicable="1"/>

192 </disturbance>

193 <disturbance id="G08" name="buildingsInRuins" origin="ManMade">

194 <sense sensorType="CameraBinary"/>

195 <seriousnessDegree applicable="1"/>

196 <growthRate applicable="0"/>

197 </disturbance>

198 <disturbance id="G09" name="radiation" origin="ManMade">

199 <sense sensorType="GeigerCounter"/>

200 <seriousnessDegree applicable="1"/>

201 <growthRate applicable="0"/>

202 </disturbance>

203 <disturbance id="G10" name="underFire" origin="ManMade">

204 <sense sensorType="CameraIntensity"/>

205 <sense sensorType="Microphone"/>

206 <seriousnessDegree applicable="1"/>

207 <growthRate applicable="0"/>

208 </disturbance>

209 </disturbanceCategory>

210 </disturbances>

C.2 Sensors

1 <sensors>

2 <sensor name="Temperature" readingType="numeric" unit="degreeCelcius"/>

3 <sensor name="CO2" readingType="numeric" unit="ppmv"/>

4 <sensor name="CO" readingType="numeric" unit="ppmv"/>

5 <sensor name="CameraBinary" readingType="boolean"/>

6 <sensor name="CameraIntensity" readingType="seriousness"/>

7 <sensor name="IRCameraIntensity" readingType="seriousness"/>

8 <sensor name="ChemicalSensor" readingType="numeric" unit="genericFloat"/>

9 <sensor name="Microphone" readingType="numeric" unit="genericFloat"/>

10 <sensor name="Chemical" readingType="numeric" unit="genericFloat"/>

11 <sensor name="AirPressure" readingType="numeric" unit="genericFloat"/>

75

XML Databases

12 <sensor name="WindSpeed" readingType="numeric" unit="genericFloat"/>

13 <sensor name="GeigerCounter" readingType="numeric" unit="genericFloat"/>

14 <sensor name="ElectricField" readingType="numeric" unit="genericFloat"/>

15 <sensor name="MagneticField" readingType="numeric" unit="genericFloat"/>

16 </sensors>

76

Appendix D

XSD Additions

D.1 DDL

1 <xs:attributeGroup name="distOriginGroup">

2 <xs:attribute name="seriousness">

3 <xs:simpleType>

4 <xs:restriction base="xs:integer">

5 <xs:minInclusive value="0"/>

6 <xs:maxInclusive value="5"/>

7 </xs:restriction>

8 </xs:simpleType>

9 </xs:attribute>

10

11 <xs:attribute name="origin" use="required">

12 <xs:simpleType>

13 <xs:restriction base="xs:string">

14 <xs:enumeration value="Natural"/>

15 <xs:enumeration value="ManMade"/>

16 <xs:enumeration value="Any"/>

17 </xs:restriction>

18 </xs:simpleType>

19 </xs:attribute>

20

21 <xs:attribute name="growthFunction" use="optional">

22 <xs:simpleType>

23 <xs:restriction base="xs:string">

24 <xs:enumeration value="linear"/>

25 <xs:enumeration value="polynomial"/>

26 <xs:enumeration value="exponential"/>

27 <xs:enumeration value="logarithmic"/>

28 <xs:enumeration value="root"/>

29 <xs:enumeration value="sinusoid"/>

30 <xs:enumeration value="custom"/>

31 </xs:restriction>

77

XSD Additions

32 </xs:simpleType>

33 </xs:attribute>

34

35 <xs:element name="distDetection">

36 <xs:complexType>

37 <xs:sequence>

38 <xs:element ref="sense" maxOccurs="unbounded"/>

39 <xs:element ref="generatedReading" minOccurs="1" maxOccurs="1"/>

40 <xs:sequence>

41 <xs:element ref="coefficient" maxOccurs="unbounded"/>

42 </xs:sequence>

43 </xs:sequence>

44 </xs:complexType>

45 </xs:element>

46

47 <xs:element name="generatedReading">

48 <xs:complexType>

49 <xs:attributeGroup ref="generatedReadingAttributes"/>

50 <xs:attributeGroup ref="growthFunctionGroup_optional"/>

51 <xs:attributeGroup ref="functionVariableGroup"/>

52 </xs:complexType>

53 </xs:element>

54

55 <xs:attributeGroup name="generatedReadingAttributes">

56 <xs:attribute name="type" use="required">

57 <xs:simpleType>

58 <xs:restriction base="xs:string">

59 <xs:enumeration value="Binary"/>

60 <xs:enumeration value="Float"/>

61 </xs:restriction>

62 </xs:simpleType>

63 </xs:attribute>

64 <xs:attribute name="startValue" type="xs:string" use="optional"/>

65 <xs:attribute name="minLimitValue" type="xs:string" use="optional"/>

66 <xs:attribute name="maxLimitValue" type="xs:string" use="optional"/>

67 </xs:attributeGroup>

D.2 TDL

1 <xs:element name="sensorReadingType">

2 <xs:complexType>

3 <xs:simpleContent>

4 <xs:extension base="xs:string">

5 <xs:attribute name="type" type="xs:string" use="required"/>

6 <xs:attribute name="unit" type="xs:string" use="required"/>

7 </xs:extension>

78

XSD Additions

8 </xs:simpleContent>

9 </xs:complexType>

10 </xs:element>

79

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Main Goals & Research Questions
	1.3 Document Structure

	2 State of the Art
	2.1 Disturbances - Environmental and Beyond
	2.1.1 Environmental Disturbance Simulators
	2.1.2 Forest Fire Simulators
	2.1.3 Meteorology APIs
	2.1.4 Disturbance Representation in FSX

	2.2 Architectures with Co-Simulators - HLA
	2.3 Summary/Conclusions

	3 Planning & Methodology
	3.1 Work Plan
	3.2 Final Work Overview
	3.3 Risk Management
	3.4 Work Strategy
	3.5 Technologies and Platforms
	3.5.1 The Platform
	3.5.2 Programming Languages
	3.5.3 AgentService
	3.5.4 Flight Simulator X

	4 The Disturbance Manager
	4.1 The Platform's Architecture
	4.2 The Disturbances Manager
	4.3 Disturbance Description Language (DDL)
	4.4 Teams Description Language (TDL)
	4.5 Disturbance Database
	4.6 High-Level Description
	4.7 Core
	4.7.1 GUI
	4.7.2 Space and Time Evolution of a Disturbance

	4.8 Vehicle Sensor Readings
	4.9 Communication with The Platform
	4.9.1 FSX - SimConnect
	4.9.2 AgentService
	4.9.3 Control Panel

	4.10 Summary / Conclusions

	5 Testing & Results
	5.1 Core Test
	5.1.1 Vehicle Position & Sensor Readings
	5.1.2 Higher Readings in The Center
	5.1.3 Readings Time Evolution
	5.1.4 Disturbance Components Space Evolution

	5.2 AgentService Stress Test
	5.3 AgentService Endurance Tests

	6 Conclusions & Future Work
	6.1 Limitations
	6.2 Future Work

	Bibliography
	A DDL XML File
	A.1 Sample Disturbance Specification File

	B TDL XML File
	B.1 Sample Section of a Team Specification File

	C XML Databases
	C.1 Disturbances
	C.2 Sensors

	D XSD Additions
	D.1 DDL
	D.2 TDL

