
FPGA Implementation of Autonomous Navigation Algorithm
with Dynamic Adaptation of Quality of Service

José Carlos Sá
Faculdade de Engenharia

Universidade do Porto
ee06028@fe.up.pt

João Canas Ferreira
INESC TEC and

Faculdade de Engenharia
Universidade do Porto

jcf@fe.up.pt

José Carlos Alves
INESC TEC and

Faculdade de Engenharia
Universidade do Porto

jca@fe.up.pt

Abstract

The main goal of this work is to build an hardware-
aided autonomous navigation system based on real-time
stereo images and to study Partial Reconfiguration aspects
applied to the system. The system is built on an recon-
figurable embedded development platform consisting of an
IBM PowerPC 440 processor embedded in a Xilinx Virtex-
5 FPGA to accelerate the most critical task. Three Recon-
figurable Units were incorporated in the designed system
architecture. The dynamic adjustment of system’s quality
of service was achieved by using different reconfiguration
strategies to match vehicle speed. A speedup of 2 times for
the critical task was obtained, compared with a software-
only version. For larger images, the same implementation
would achieve an estimated speedup of 2.5 times.

1. Introduction

The performance expected from complex real-time em-
bedded systems has been increasing more and more. The
application presented in this work is a good example of
such a system. It uses a complex autonomous navigation
algorithm for guiding a small robot using information ob-
tained from a pair of cameras. Since the computational ef-
fort is significant for an embedded system, a previous soft-
ware/hardware partitioning step identified the critical task
and proposed its implementation in hardware.

Modern platform FPGAs like the Virtex-5 (from Xilinx)
can combine the flexibility of software running on an em-
bedded processor (a PowerPC processor in this case) with
the performance of dedicated hardware support. The main
objectives of the work described here are to evaluate the
application of dynamic partial reconfiguration (DPR) [1]
by designing and building and assessing a prototype. This
subject is one of the case studies proposed by the Euro-
pean consortium REFLECT project, which also provided
the original application software written in C language.

The paper is organized as follows: Section 2 briefly pro-
vides some background information, while Sect. 3 gives
an overview on the application under study. Section 4 de-
scribes the structure of the critical task to be accelerated.
The system and strategies used for the evaluation of DPR

are described in Sect. 5, while Sect. 6 discusses the results.
Section 7 concludes the paper.

2. Background

Reconfigurable systems combine two main key con-
cepts in embedded technology: Parallelism, which is the
biggest advantage of hardware computing, as provided by
Application-Specific Integrated Circuits (ASICs), and flex-
ibility, the main reason for the success of software applica-
tions run by General Propose Processors (GPPs).

The concept of reconfigurable system is breaking the
barrier between these two types of devices. This allowed
the combination of the particularities of both and elevate
the concept of embedded system to a new level, creating
new types of compromise between the software and the
hardware infrastructure. A reconfigurable embedded sys-
tem allows portions of the system’s hardware to be modi-
fied, thereby changing system’s hardware-accelerated fea-
tures depending on the need of the application executed by
the GPP. This feature offers a new degree of flexibility to
the embedded system, where the execution of more tasks in
hardware provides a multi-level acceleration that is difficult
to obtain by a fixed-functionality circuit.

The state of the art reconfiguration technology, the Dy-
namic Partial Reconfiguration, allows FPGA regions to be
changed at run-time, without interrupting the GPP, or rest
of the hardware execution. Fig. 1 shows an example of a
partial reconfiguration system, where the hardware part of
the system is composed of four modules that execute HW-
accelerated tasks. In this example, two of them are remain
fixed, executing functions that requires permanent avail-
ability, whereas the remaining blocks are reconfigurable
modules. For the example, function C can the exchanged
with function D, since the have been designed to use the
same reconfigurable region; the same applies to functions
E and F, but for a different reconfigurable region.

The compliance with this technology has some costs.
For instance, the design flow for reconfigurable systems
followed by the Xilinx EDK1 [2] requires some effort to
design compatible interfaces between reconfigurable mod-
ules for a particular region.

The major drawback of dynamic reconfiguration is the
1EDK - Embedded Development Kit.

ISBN: 978-972-8822-27-9 REC 2013 111

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143410804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

GPP

Fixed
Function A

Hardware

Reconfigurable
Function E

Reconfigurable
Function C

Fixed
Function B

Reconfigurable
Function D

Reconfigurable
Function F

Figure 1. Dynamic Partial Reconfiguration System.

reconfiguration time, which directly depends on partial bit-
stream2 data transfer time. Since the bitstream size is pro-
portional to the FPGA area to be configured, it is important
to keep it as small as possible for minimum impact on the
system’s performance. Other aspects like task scheduling
or reconfigurable strategies have to be taken into consider-
ation when using DPR.

An analysis of the use cases applicable to assembly of
a reconfigurable system for implementation of a Software
Defined Radio is made by [3], where several reconfigura-
tion strategies are evaluated. The study shows that total
flexibility of reconfiguration is achieved with a reasonable
implementation complexity.

In [4] dynamic reconfiguration is applied to two differ-
ent types of navigation systems, and an analysis of the use
cases is also made. Several techniques dealing with dy-
namic reconfiguration of software for robots are discussed
and implemented. The results shows that the system effi-
ciency is very intertwined with the techniques of interaction
between processing objects.

3. Embedded Application

The Stereo Navigation application used in this work
supports localization mechanisms like Global Navigation
Satellite Systems (GNSS) in vehicles where this service is
temporarily unavailable. Two cameras pointed in the same
direction capture the scenery ahead of the vehicle at the
same instant, forming a stereo image. From the process-
ing of stereo images in consecutive instants, the embedded
system can determine vehicle rotation and translation ma-
trices.

The main loop of the Stereo Navigation algorithm com-
prises the following steps:

Image rectification Eliminates image distortions caused
by the lens surface.

Feature extraction Detects characteristics of a given im-
age using the Harris Corner Detector algorithm [5].

Feature matching Searches correspondences between the
features of the stereo image belonging to consecutive
instants.

2Bitstream - Stream of data containing information of FPGA internal
logic cells end routing configuration.

1x11

1x11

Horizontal
Filter

Vertical
Filter

Horizontal
Filter

Vertical
Filter

ConvConst
1

()²

ConvRepl1
2

ConvRepl2
3

ConvRepl2
8

ConvRepl1
7

x

ConvRepl2
6

ConvRepl1
5

()²

ConvConst
4

3x3 3x3

96x96
Image

Section

Figure 2. Operation Flow for Harris Corner Detector
Algorithm

3D Reprojection Analytically calculates the three-
dimensional coordinates of a point from two-
dimensional images.

Robust pose estimation - Runs the RANSAC algorithm
[6] to separate relevant inlier image features from out-
liers. In each loop iteration a Singular Vector Decom-
position (SVD) algorithm computes a vehicle rotation
matrix and a translation vector.

4. Critical Task: Feature Extraction

From the analysis of the run-time behavior of the ap-
plication, combined with the information provided in pre-
vious works [7, 8], it follows that feature extraction is the
most time consuming processing task. This task is respon-
sible for detecting relevant image features using the Harris
Corner Detector algorithm and is executed once for each
96× 96 pixel block of both left and right images. Twelve
blocks are processed per image, 24 for the stereo image.

4.1. Computation Flow

As shown in Fig. 2, each execution of the algo-
rithm comprises eight 2-D convolution operations: 2 ×
ConvConst, 3×ConvRepl1 and 3×ConvRepl2.

All the convolution operations are based on Eq. 1, where
the result of multiply-accumulate (MAC) operations be-
tween matrix filter h (size 3×3) and each input element
present in array u (of size 96×96) is stored in the output
matrix y (also of size 96×96).

accn = u[i]×h[j]+accn−1 (1)

112 REC 2013 ISBN: 978-972-8822-27-9

ConvConst This procedure convolves the frame with a
3×3 horizontal (Eq. 2) and a vertical (Eq. 3) Prewitt filter.
This function receives and produces only integer values.

H =




1 1 1
0 0 0
-1 -1 -1



 (2)

V =




1 0 -1
1 0 -1
1 0 -1



 (3)

ConvRepl1 This procedure computes a convolution be-
tween the result of ConvConst and a 1 × 11 horizontal
Gaussian filter. This function receives only integer values,
but produces single-precision floating-point values.

ConvRepl2 The procedure computes a convolution be-
tween the result from ConvRepl1 and a 11 × 1 vertical
Gaussian filter. This function receives and produces only
floating-point values.

4.2. Hardware Implementation

To quickly implement each critical subtask in hardware,
we used the academic version of the high-level synthesis
tool Catapult C, which synthesizes C code to RTL-level de-
scriptions (in Verilog). However, this tool is unable to gen-
erate hardware blocks for floating-point arithmetic (only
fixed-point versions can be synthesized, but no data range
analysis is performed).

To solve this issue, two possible solutions were consid-
ered: synthesizing SoftFloat routines [9], or usinh a fixed-
point equivalent version. Both alternatives employ 32-bit
data types. The first one is a faithful software implemen-
tation of the floating-point data-type defined by the IEEE-
754 standard [10]. Its hardware implementation running at
100 MHz resulted in an execution time improvement for
the ConvRepl1 and ConvRepl2 functions of just 8 % when
compared to the original versions in software (running on
the embedded PowerPC with a Floating-Point Unit (FPU)).

The second solution is a specially crafted design, which
combines hardware and software fixed-point adjustments
to minimize precision loss. Data validation of this approach
was carried out for the worst case scenario. Running at
the same frequency of 100 MHz, this solution resulted in
a execution time improvement by a factor of 4 for each of
the three functions, as shown on Fig. 3. This solution was
adopted for the final implementation.

The hardware implementation process comprised sev-
eral software tool flows and methodologies. After using
Catapult C to create the Verilog files, these were synthe-
sized using XST (from Xilinx). The first step involves the
synthesis of the system’s static part, which includes user
peripherals with black-box modules that match the inter-
face of the reconfigurable modules (RM). (This step is car-
ried out with Xilinx XPS). The other step involves the the
individual synthesis of the RMs directly with Xilinx ISE.

Figure 3. Critical task hardware acceleration (hand-
crafted solution)

(Interfaces only)

Timing control logic and data transfer

reconfig_unit.vhd

Interrupt
Service

Soft-reset

PLB
Interface

user_logic.v

TDP_89x32.v

TDP_9216x32.v

reconfig_module.v

TDP_9216x32.v

Figure 4. Reconfigurable unit peripheral

The synthesis steps produce gate-level netlists in NGC
format (a Xilinx native format) for the static part of the
design and each reconfigurable module, respectively. Fi-
nally the hardware implementation is completed with Xil-
inx PlanAhead tool, which is used for the physical defini-
tion of the reconfigurable areas and to manage the physical
synthesis process. Each hardware accelerator must be un-
dergo physical synthesis for each reconfigurable area where
it may be used.

5. Reconfigurable System Design

5.1. Reconfigurable Unit

The Reconfigurable Unit is the peripheral designed to
provide to the system the ability to change hardware func-
tionality at run-time. It was created to host any of the mod-
ules created by Catapult C. The Reconfigurable Unit (RU)
shown in Fig. 4 includes Block RAMs memory for U , H
and Y matrix storage, processor local bus (PLB) connectiv-
ity, support for services such as system interrupt and burst
data transfer, and the area for one Reconfigurable Module
(RM).

5.2. System Architecture

A reconfigurable embedded system was designed with
the architecture shown in Fig. 5. In addition to the proces-
sor and system RAM memory, it also contains: FPU for
software acceleration; SysAce controller to load bitstreams

ISBN: 978-972-8822-27-9 REC 2013 113

Table 1. Resource usage for reconfigurable modules

Function
LUTs CLBs FF-D DSP48E
(%) (%) (%) (%)

ConvConst 2.77 2.77 2.58 2.34
ConvRepl1 1.77 1.95 1.94 3.12
ConvRepl2 2.59 2.60 2.17 3.12

D
D

R
2

(2
56

M
B)

PPC 440

FPU

INTC

Central
DMA

UART

SysACE

MPMC

PL
B

v4
.6

HwICAP
ICAP

BRAM
H

BRAM
U

BRAM
Y

Reconfigurable Unit 0

Reconfigurable
Module

BRAM
H

BRAM
U

BRAM
Y

Reconfigurable Unit 1

Reconfigurable
Module

BRAM
H

BRAM
U

BRAM
Y

Reconfigurable Unit 2

Reconfigurable
Module

Figure 5. Implemented System Architecture.

from CompactFlash card; UART controller for terminal ac-
cess; Central DMA to handle data transfer tasks; System
Interrupt controller for event notification; HWICAP con-
troller for partial bitstream download; three reconfigurable
units, each with one RM. Each RM area uses 13 Virtex-5
frames of a single clock region. The total bistream size is
about 74 KB. The resource usage for one RM is presented
in Tab. 1.

5.3. Reconfiguration Strategies

Given the number of RUs in the system, three types
of reconfiguration strategies where considered, each using
one, two or three RUs, and associated with different speed
requirement.

One RU For this strategy, the system uses just one RU.
Each RM has to be sequentially configured with one of the
accelerators as shown in Fig. 6. White blocks correspond
to the execution of each convolution task, while the darker
blocks correspond to the reconfiguration operations. The
arrows indicate data flow dependencies.

Two RUs In this case, the system uses two RUs in a ping-
pong fashion, as presented inn Fig. 7. When an accelerator
is executing in one of the RUs, the other RU is simultane-
ously being configured with another accelerator.

ConvConst1.

2.

3.

4.

5.

6.

7.

8.

ConvConst config.

ConvRepl1 config.

ConvRepl2 config.

ConvConst config.

ConvRepl1 config

ConvRepl2 config

ConvRepl1 config

ConvRepl2 config

ConvRepl1

ConvRepl2

ConvConst

ConvRepl1

ConvRepl2

ConvRepl1

ConvRepl2

Consecutive
processing

Figure 6. Single RU strategy.

ConvRe…
Conf...ConvConst

Reconfig. Unit

ConvConst
Config.

ConvRepl1ConvRepl1
Config.1

0
t

ConvRepl2ConvRepl2
Config.

ConvConst
Config. ConvCo...

Figure 7. Ping-pong strategy (two RUs)

Three RUs Employing this strategy, each subtask (accel-
erator) is configured once in each individual RU, then ex-
ecuted in a sequential fixed fashion. This strategy has the
ability to dramatically reduce the number of reconfigura-
tions, as shown on Fig. 8. After feature extraction is com-
plete, the RUs can be reused for other purposes, if neces-
sary.

Three RUs – Pipelined Execution This is a pipelined
version of High Speed strategy. Fig. 9 shows that this tech-
nique is able to reduce the number of steps required for
task execution from 8 to 5. Note that the convolutions re-
sults data flow is the same as in the original version shown
in Fig. 2.

6. Discussion and Analysis

The collected measurements show that each HW recon-
figuration operation takes 5.37 ms, 4.5 times longer than
any executed function module. Due to this fact, only strate-
gies using three RUs could produce overall time execution
benefits, as shown on Fig. 10. This figure presents the rela-

ConvConst

Reconfig. Unit

ConvConst
Config.

ConvRepl1ConvRepl1
Config.

2

1

0
t

Co...ConvRepl2ConvRepl2
Config.

ConvConst

ConvRepl1

Figure 8. Scheduling with three RUs.

114 REC 2013 ISBN: 978-972-8822-27-9

St
ep

1

ConvRepl2
3

ConvRepl1
2

ConvConst
1

ConvConst
4

ConvRepl1
7

ConvRepl2
8

ConvRepl2
6

()²

()²

ConvRepl1
5

x

St
ep

2
St

ep
3

St
ep

4
St

ep
5

Figure 9. Task-level pipelining with three RUs

Figure 10. Number of clock cycles (relative to soft-
ware execution)

tive execution time of Feature Extraction task for each im-
plemented strategy as compared to the original software ex-
ecution time. Time measurements were obtained by calcu-
lating the difference between time stamps created right be-
fore and after running the feature extraction task. The time
stamps are provided by an internal timer/counter (T/C) de-
vice, which is incremented on every processor clock tick
(2.5 ns).

Each read/write operation of 9216 32-bit words from/to
the U/Y BRAMs takes 0.52 ms. For the fastest configura-
tion, a maximum speed-up of 2 times was measured for the
feature extraction task.

Fig. 11 shows the global frame rate improvements con-
sidering the full processing time of each pair of stereo im-
ages. Not all the strategies can execute faster than the origi-
nal software. In fact, only strategies that use a fixed version
of each hardware module can accelerate the application ex-
ecution. The same figure shows that the software version
can process 0.5 stereo frames per second (SFPS), i.e., one
stereo image per two seconds. For each DPR strategy, the
table also shows the SFPS rate and the relative improve-
ment versus the original software version. The best DPR
strategy results show that the image rate can be increased
to 0.6 SFPS.

Table 2 shows in more detail the best obtained results

Figure 11. Rating of Stereo-FPS (SFPS).

Table 2. Original Software version vs. Best Hardware
Strategy (SFPS: stereo frames per second)

Analysed Section Original ver. Super Speed ver.
(SW exec.) (3 HW RUs)

Feature Extraction ∼650 ms
∼475 ms

Execution Task (-26.7%)
Stereo Image ∼2018 ms

∼1680 ms
Process Time (-16.7%)
Stereo Image ∼0.50 SFPS

∼0.60 SFPS
Rate (+20%)

using hardware DPR compared with original software-
only execution times. In software, feature extraction
takes 650 ms; the best version with hardware support runs
in 475 ms, which correspond to a reduction of 26.7 %
(speedup of 1.37). This task reduction fraction translates
to a global execution time decrease for the whole aplica-
tion of 16.7 % from 2018 ms to 1680 ms (a speedup of 1.2).
This time corresponds to the stereo image processing rate
of Fig. 11.

The speedup obtained when operating over bigger im-
ages was also estimated. The original embedded applica-
tion operated only over images with 320×240 pixels. For
this resolution, the duration of every reconfiguration oper-
ation, data transfer and computation involved in the feature
extraction task was measured. These values were used to-
gether with data from the desktop version of the application
to estimate the speedup that would be obtained by the em-
bedded version for images of size 640×480 was estimated.
The desktop version takes 4.54 times longer on the larger
images than on the smaller ones. Combining this informa-
tion, we estimated the speedup of the embedded DPR sys-
tem on larger images to be 2.5 (for the feature extraction
task).

7. Conclusions

The design and implementation of a DPR embedded
system has been successfully completed. The implementa-
tion of an FPGA-autonomous navigation algorithm which
dynamically adapts to system requirements was success-
fully achieved. Using DPR techniques, an effective exe-
cution time improvement of the Stereo Navigation applica-
tion was achieved. The experience acquired in modifying

ISBN: 978-972-8822-27-9 REC 2013 115

the application for dynamic reconfiguration will be used to
devise automatic methods for carrying them out using the
LARA toolchain [11].

The tradeoff between bitstream size and number of re-
configuration operations is the critical aspect of reconfig-
urable real-time embedded systems. Lowering both can of-
fer great acceleration solutions, but this might not always
be possible. The study of the application of DPR strategies
to the feature extraction task shows that the nature of this
particular task is not the most appropriate for reconfigura-
tion, because each hardware-accelerated subtask has a sig-
nificant reconfiguration time (proportional to the bitstream
size). In addition, the number of sub-task executions per
image is high, leading to a high number of reconfigura-
tions when using one or two RUs. Enhancing the recon-
figuration process, particularly the HwICAP communica-
tion interface, together with a more optimized synthesis of
the reconfigurable modules to obtain resulting smaller bit-
streams, has the potential to offer even better system per-
formance.

Acknowledgments This work was partially funded by the
European Regional Development Fund through the COMPETE
Programme (Operational Programme for Competitiveness) and
by national funds from the FCT–Fundação para a Ciência e a
Tecnologia (Portuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-022701. The authors
are thankful for support from the European Community’s Frame-
work Programme 7 under contract No. 248976.

References

[1] Pao-Ann Hsiung, Marco D. Santambrogio, and Chun-Hsian
Huang. Reconfigurable System Design and Verification.
CRC Press, February 2009.

[2] Xilinx. PlanAhead Software Tutorial, Design Analysis And
Floorplanning for Performance. Xilinx Inc, September
2010.

[3] J.P. Delahaye, C. Moy, P. Leray, and J. Palicot. Managing
Dynamic Partial Reconfiguration on Heterogeneous SDR
Platforms. In SDR Forum Technical Conference, volume 5,
2005.

[4] Z. Yu, I. Warren, and B. MacDonald. Dynamic Reconfigu-
ration for Robot Software. In 2006 IEEE International Con-
ference on Automation Science and Engineering. CASE’06.,
pages 292–297. IEEE, 2006.

[5] C. Harris and M. Stephens. A Combined Corner and Edge
detector. In Alvey vision conference, volume 15, page 50,
1988.

[6] Martin A. Fischler and Robert C. Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM,
24(6):381–395, June 1981.

[7] João Teixeira. Acceleration of a Stereo Navigation Applica-
tion for Autonomous Vehicles. Master’s thesis, Faculdade
de Engenharia da Universidade do Porto, 2011.

[8] REFLECT consortium. Deliverable 1.2 - Technical report
of applications delivered by Honeywell. Technical report,
REFLECT Project, October 2009.

[9] John Hauser. SoftFloat, June 2010. http://www.
jhauser.us/arithmetic/SoftFloat.html.

[10] IEEE Standard for Floating-Point Arithmetic, 2008.
[11] J.M.P. Cardoso, T. Carvalho, J.G Coutinho, W. Luk, R. No-

bre, P.C. Diniz, and Z. Petrov. LARA: An aspect-
oriented programming language for embedded systems. In
Proc. Int. Conf. on Aspect-Oriented Software Development
(AOSD’12), pages 179–190, March 2012.

116 REC 2013 ISBN: 978-972-8822-27-9

