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Abstract—Developing computer programs that play Poker at 

human level is considered to be challenge to the A.I. research 

community, due to its incomplete information and stochastic 

nature. Due to these characteristics of the game, a competitive 

agent must manage luck and use opponent modeling to be 

successful at short term and therefore be profitable. In this paper 

we propose the creation of No Limit Hold’em Poker agents by 

copying strategies of the best human players, by analyzing past 

games between them. To accomplish this goal, first we determine 

the best players on a set of game logs by determining which ones 

have higher winning expectation. Next, we define a classification 

problem to represent the player strategy, by associating a game 

state with the performed action. To validate and test the defined 

player model, the HoldemML framework was created. This 

framework generates agents by classifying the data present on 

the game logs with the goal to copy the best human player tactics. 

The created agents approximately follow the tactics from the 

counterpart human player, thus validating the defined player 

model. However, this approach proved to be insufficient to create 

a competitive agent, since the generated strategies were static, 

which means that they are easy prey to opponents that can 

perform opponent modeling. This issue can be solved by 

combining multiple tactics from different players. This way, the 

agent switches the tactic from time to time, using a simple 

heuristic, in order to confuse the opponent modeling mechanisms. 

Poker; Data Mining; Machine Learning; Opponent Modeling; 

Artificial Intelligence (Keywords) 

I.  INTRODUCTION 

Poker is a game that is increasingly becoming a field of 
interest for the AI research community on the last decade. The 
way to develop agents for Poker is rather different than 
developing for games like chess or checkers – complete 
information games. In these games, most methods are based on 
decision trees (e.g. minimax) in combination with heuristics to 
score each decision. Notable results in complete information 
games were achieved in the past. For instance, one of the most 
famous cases of success was the computer Deep Blue [1], 
which was the first A.I. to beat a Chess champion in a series of 
games. 

Unlike Chess, Poker is an incomplete information game, 
because each player can only see its cards or the community 
cards. For this reason, the decision trees in Poker are 

probabilistic, which means that each branch of the tree has a 
probability of occurring, considering the type of opponent. 
Therefore, a competitive agent must model the opponents, to 
identify the probability of each possible action. By identifying 
the opponents playing style, it is possible to predict their 
possible actions and therefore make a decision that has better 
probability of success [2, 3]. 

The main goal of this work is to determine on how 
strategies used in the past by good human players can be used 
to support the creation of Poker agents. This work is distributed 
in the subsequent steps: 

 Extract a good amount of games between good human 
players; 

 Determine the best players present on the database; 

 Define a classification problem: game state variables 
that can influence player’s decision and the possible 
outcomes; 

 Create a strategy by classifying game state instances; 

 Create a framework that facilitates the replication of 
the above steps; 

 Create and test generated agents. 

The rest of the paper is structured as follows. Section II 
briefly describes Texas Hold’em Poker. Section III describes 
related work about approaches followed earlier to create Poker 
agents. Section IV describes the characteristics of the dataset 
that was used in this work. Section V presents the classification 
problem and the comparison of the machine learning 
algorithms that were used to solve it. Section VI describes the 
architecture of the HoldemML framework that was created to 
generate agents from game logs as well as some details about 
the implementation of the agent. Section VII describes tests 
and results of the games played by the produced agents. 
Finally, the section VIII presents the paper main conclusions 
and some pointers for future work. 

II. TEXAS HOLD’EM POKER 

Poker is a generic name for literally hundreds of games, but 
they all fall within a few interrelated types [4]. It is a card game 
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in which players bet that their hand is stronger than the hands 
of their opponents. All bets go into the pot and at the end of the 
game, the player with the best hand wins. Other way of 
winning is forcing all opponents to forfeit the hand, by raising 
the current bet. This work is focused on No Limit Texas 
Hold’em Poker, the most popular Poker variant nowadays. 

A. Hand Ranking 

A poker hand is a set of five cards that identifies the 
strength of a player in a game of poker. The hand is composed 
by the player pocket cards and the community cards – cards 
that belong to all players. Joining the pocket and community 
cards, if there are more than 5 cards, the hand rank is the best 
possible rank of all 5 card combinations. 

The possible hand ranks are (stronger ranks first): Royal 
Flush (top sequence of same suit), Straight Flush (sequence of 
same suit), Four of a Kind (4 cards with same rank), Full 
House (Three of a Kind + Pair), Straight (sequence of cards), 
Three of a Kind (3 cards of the same rank), Two Pair, One Pair 
(2 cards with same rank) and Highest Card (when does not 
qualify to any other ranks). 

B. No Limit Texas Hold’em 

No Limit Texas Hold’em is a Poker variation that uses 
community cards. At the beginning of every game, two cards 
are dealt for each player. A dealer player is assigned and 
marked with a dealer button. The dealer position rotates 
clockwise from game to game. After that, the two players to 
the left of dealer post the blind bets. The first player is called 
small blind, and the next one is called big blind. They 
respectively post half of minimum and the minimum bets. The 
player that starts the game is the one on the left of the big blind. 

After configuring the table, the game begins. The game is 
composed by four rounds of betting (Pre-Flop, Flop, Turn, 
River). In each round, in its turn, the player can perform the 
following actions: Bet, Call, Raise, Check, Fold or All-In. 

In any game round, the last standing player wins the game 
and therefore the pot. If the River round reaches the end, the 
winner is the one with the highest ranked hand. 

This variation of Poker is No Limit, which means that at 
any round of the game everyone is allowed to bet any amount 
above the minimum bet. 

III. RELATED WORK 

Most noticeable achievements in Computer Poker are from 
the Computer Poker Research Group (CPRG) [5] from 
University of Alberta, mostly in the variant Limit Texas 
Hold’em. One of the most renowned publication of the group is 
[6] where is described a complete analysis of the evolution of 
artificial poker agent architectures, demonstrating strengths and 
weaknesses of each architecture both in theory and in practice. 
Another significant publication is [7] where a perfect strategy 
was defined for a very simple variant of Poker (Rhode Island). 
Another near-perfect strategy was achieved in [8] for Heads-
Up No Limit variant, using the Nash Equilibrium Theory. 
More recently, it should be emphasized the article [9], which 
describes a new and more effective technique for building 

counter strategies based on Restricted Nash Response. Some 
achievements were also made using data mining classifiers like 
in [10] where were studied evolutionary methods to classify in 
game actions. 

Despite all the breakthroughs achieved by known research 
groups and individuals, no artificial poker playing agent is 
presently known capable of beating the best human players. 

A. Opponent Modeling in Poker 

A large number of opponent modeling techniques are based 
on real professional poker players' strategies, such as David 
Sklansky, who published one of the most renowned books on 
poker strategy [4].  

One possible classification is tightness and aggressiveness 
of the players. A player is tight if he plays 28% or less hands, 
and loose if he plays more than 28% of the times. With regard 
to aggressiveness, the player is aggressive if he has an 
aggression factor (Equation 1) over 1.0; otherwise it is a 
passive player. 

Calls ofNumber 

Raises ofNumber 
FactorAgression    (1) 

B. Poker Hand Rank Evaluation 

Hand rank evaluation consists in checking if a given Poker 
hand is better than another. Usually, the Hand Rank Evaluator 
takes a poker hand and maps it to a unique integer which is the 
score of the hand. Hands with equivalent rank have the same 
score and ands with lesser rank have a lower score. For poker 
AI, it is absolutely critical to have the fastest hand evaluators 
possible [11]. Any poker agent may have to evaluate thousands 
of hands for each action it will take. The fastest known 
evaluator is TwoPlusTwo Evaluator [12], which can evaluate 
about 15 millions of hands per second. 

C. Odds Calculation 

Evaluating the rank of the hand is giving a score to a set of 
cards. A Poker AI normally uses hand rank formulas to 
determine the hand odds. Hand odds measure the strength or 
the potential strength of a hand. This can be done by comparing 
the hand with the possible opponents’ hands. This prediction is 
used to help measuring the risk of an action. 

There are various known ways to determine the odds of a 
hand: 

 Chen Formula [13]: this formula can determine the 
relative value of a 2 card hand. 

 Hand Strength [6, 11, 14]: determines how many hands 
are ahead of ours, only taking into account the current 
available community cards. 

 Hand Potential [6, 11, 14]: The hand potential is an 
algorithm that calculates PPOT and NPOT. The PPOT 
is the chance that a hand that is not currently the best 
improves to win at the showdown. The NPOT is the 
chance that a currently leading hand ends up losing. 
Therefore, they are used to estimate the flow of the 
game. 



 Effective Hand Strength [6, 11, 14]: Combines the 
hand strength and the hand potential formulas in an 
unique measure. 

D. Agent development tools 

There are some software tools that can aid the development 
of a Poker agent. Most notable is the Meerkat API [11] that 
easily allows the creation of Poker agents. The Meerkat agents 
can be tested using game simulators that support this API. The 
original simulator is Poker Academy [15], but there are other 
open source solutions like Open Meerkat Test Bed [16]. 

IV. POKER DATA EXTRACTION AND ANALYSIS 

To create player models from past human games we 
required a great amount of Poker games to analyze. The 
selected data source is composed of game logs from online 
casinos. The Poker game logs represent the list of actions of the 
players during the games on a given Poker table. These files 
don’t represent the state of the game. So, to analyze the game it 
is necessary to replay the game with the same actions and card 
distribution. For each action, the game state and the action is 
stored in a database. 

Obtaining information from these documents is difficult 
since these files typically do not contain an organized structure, 
making it difficult to parse the information. Moreover, there is 
no standard to represent game movements: each online casino 
has its own representation of logs. For this reason, to combine 
data from multiple sources, a new parser is needed for each 
game log format. The logs were converted to a common format 
that is presented in section VI. 

The package of game logs that was used in this work can be 
found here [17]. Some characteristics of the game logs can be 
found on table 1. 

TABLE I.  GAME LOGS CHARACTERISTICS 

Characteristic Value 

Number of games 51.377.820 

Number of players 158.035 

Number of showdowns 2.323.538 

Number of players with 500 or 

more showdowns 
183 

 

To characterize a game state, from the standpoint of the 
player, in order to learn his tactic, it is necessary to know 
which cards the player had. As it can be seen on table 1, the 
percentage of games in which card exposal occurs is very 
reduced, and only 183 players showed their cards more than 
500 times. These were the players that were selected for this 
work. 

After obtaining the game data, we selected the best players 
available in order to learn the best tactics. For this task, a 
player list was generated containing some information about 
each player. The criteria used to choose a good player was its 

earnings as, for instance, a player with high negative earnings 
probably doesn’t have a good tactic. 

TABLE II.  CHARACTERISTICS OF THE EXTRACTED PLAYERS 

Name 
Game 

Count 

Number of 

shows 
Earnings 

Winning 

expectation 

John 15.763 638 1.003$ + 0.06$ 

Kevin 20.660 838 30$ + 0.00$ 

David 77.598 2.103 14.142$ + 0.18$ 

Jeff 33.257 882 -4.945$ - 0.15$ 

 

The table II presents the players that were analyzed on this 
paper. Players with different expectations (average money per 
game) were chosen, to conclude if players that won more 
money on the past generate agents with better game 
performance. It should be noted that a player with negative 
earnings was included (Jeff). This served for testing purposes, 
to check if a tactic generated from a theoretical bad player loses 
against a tactic from a theoretical good player. 

V. LEARNING POKER STRATEGIES 

To learn the tactics of the players, we used supervised 
learning algorithms. To facilitate both the learning process and 
the implementation of the agent, WEKA [18] software was 
used. For each player it was obtained an ARFF file with all 
game states, of the chosen players, in games with showdown. 
The characteristics used to classify the players’ tactics were the 
ones that might influence the players’ decisions during the 
game: position in table, money, last opponent’s action, 
Sklansky classification of last opponent. 

@relation poker 

@attribute positionScore numeric 

@attribute effectiveHandStrength numeric 

@attribute percentageMoneyToBet numeric 

@attribute percentageMoneyOnTable numeric 

@attribute possibleWins numeric 

@attribute lastOpponentAction {call,raise} 

@attribute isLastPlyrAggres {true, false} 

@attribute isLastPlyrTight {true, false} 

@attribute action {call, raise5, raise10, 

raise15, raise20…} 

The position score attribute represents the value of the 
position of the player on the table. The value is greater if the 
player is closer to the dealer. When the player is the dealer, the 
position score value is 1. The effective hand strength [6, 11, 
14] attribute characterizes the odds of the player winning the 
round with the current cards. The percentage of money to bet 
represents the percentage of the player’s chip amount that he 
has to put on the table to call the hand. The percentage of 
money on table defines the percentage of chips that the player 
has already put on the table, in the current game. The possible 
wins attribute represents how much chips the player can win 
comparatively to his own stack. Next, we have the last 
opponent action (call or raise) and the Sklansky classification 



of the last opponent: aggressive or passive (equation 1) and 
tight or loose [4]. 

The last attribute is nominal and it represents the player’s 
action, being, for that reason, the class attribute. Another 
important fact to note is that each player has four ARFF files 
associated with it, each one representing a game round (Pre-
Flop, Flop, Turn, River) . This is because tactics used during 
the game tend to be different in each game round, due to 
factors such as the varying number of community cards 
available. 

Different classifiers were tested to build this model. The 
classifiers that obtained a smaller average error (using tenfold 
cross validation) were search trees, more particularly Random 
Forest Trees (Figure 1). The errors were relative high as was 
expected as players tend to change tactic during the game, 
making it difficult to find a consistent pattern.  

 

Figure 1.  Average classifier error rate. 

The classifiers error rate was also analyzed per round 
(Figure 2). It can be observed that the error is much higher in 
Flop and Turn rounds than in Pre Flop and River rounds. This 
was expected for Pre Flop round, since there are no 
communities cards, the tactics tend to be simpler. As for River 
round, this can be explained by the lower number of players 
that reach this round. 

 

Figure 2.  Average classifier error per round 

VI. HOLDEMML FRAMEWORK 

The HoldemML Framework global architecture can be 
seen in Figure 3. Initially we have different data sources that 
contain poker game data. Since each data source can represent 
the data in a different way, we must convert the data into a 
common format in order to combine the information from 

different logs, because the same player might play in different 
online casinos. 

 

Figure 3.  HoldemML Framework 

The role of converting data into a common format is played 
by HoldemML Converter. The output files are in XML 
format and follow the following tree scheme (Figure 4). 

 

Figure 4.  HoldemML XML Schema 

It is also possible to verify whether the documents from 
data sources are already in the format set as default, using the 
HoldemML Validator module.  

Having the data ready to process, the next step was to 
extract the game variables that define the game state and the 
action performed by the players to use as training set for the 
classifier. The module that extracts the game variables is 
HoldemML Stats Extractor, generating a game stats file. 
HoldemML Stats Extractor requires as input the games logs 
and a player list. The player list is created by HoldemML 
Player List Extractor and it contains the list of all players 
present on the set of game logs as well as information about the 
player performance in the games that it participated. The player 
list is also used to determine players with little game 



participation which, for that reason, should not be used to train 
the classifiers. 

After generating the game stats file and the player list file, 
they are used by HoldemML Strategy Generator to create a 
strategy file. The game stats file is the main source of 
information to generate a strategy, but the player list is also 
useful to give information about opponents.  

After generating the player models, it is possible to use the 
HoldemML Strategy Generator to create an agent, by 
choosing the tactics by which the strategy of the agent to be 
generated is composed and the heuristic that changes the tactic 
through the game. Three simple heuristics were included: 
random tactic change; time to time tactic change; change tactic 
when the agent is losing money with the current one.  

The generated agents use the Meerkat API [11]. The 
agent’s strategy is described in Figure 5. The agent contains 
various tactics and a tactic chooser module. The tactic chooser 
module recovers information about the events that occur on the 
game table and when is called for action it chooses one of the 
tactics to determine the action. 

 

Figure 5.  HoldemML agent behaviour 

One potential problem with this player model is that the 
agent never folds its hands, since these actions weren’t 
considered on the training set because the players don’t show 
their cards when they fold. To solve this problem, a criterion 
was defined to fold some hands. The defined criterion was that 
if the hand strength [6] is below 50%, than the agent has a 
probability of folding equal to its tightness level. The agent 
also folds when it can’t find any class with high significance 
level. 

VII. TESTS AND RESULTS 

After the implementation of the framework, four types of 
tests were used to validate this approach: behavior tests, tests 
between generated tactics, tests against other agents previously 
developed and strategy tests. All tests were made using the 
Open Meerkat Test Bed, with 1.000 cash games per test and 
table seat permutation. The players used on the test are 
described on table II. The behavior tests are presented on table 
III. As it can be observed, the agent approximately conserved 
the real player Sklansky’s classification. 

TABLE III.  AGENT BEHAVIOUR TESTING 

Name 
Agent 

AF 

Real 

player 

AF 

Agent 

tightness 

Real 

player 

tightness 

Agent 

classif. 

Real 

player 

classif. 

John 4,77 5,12 0,32 0,31 L.Agg. L.Agg. 

Kevin 1,55 1,49 0,25 0,23 T.Agg. T.Agg. 

David 16,04 13,22 0,19 0,19 T.Agg. T.Agg. 

Jeff 9,42 8,40 0,44 0,33 L.Agg. L.Agg. 

 

In Figure 6 it is presented the bankroll evolution in a series 
of games between HoldemML agents. The humans that won 
more money in real life generated a better agent. 

 

 

Figure 6.  Games between HoldemML agents 

Next, we tested HoldemML John agent against HSB Bot 
(Figure 7) which is an agent that chooses his actions based on 
its effective hand strength [6]. HoldemML John clearly won 
the match by a large margin of 1.677, 30$. HoldemML John 
was also tested against an agent that always calls its hands, 
achieving similar results. 

 

 

Figure 7.  Games between HoldemML John and Hand Strength Bot 

Finally, we tested HoldemML John agent against MCTS 
Bot [19]. The HoldemML agent was totally defeated (Figure 
8), because the MCTS Bot is capable of opponent modeling.  



 

Figure 8.  Games between HoldemML John and MCTS Bot[19] 

The results improved a lot by using a strategy that 
combines multiple tactics of generated agents (Figure 9). The 
tactic changes when the agent is losing money, therefore it 
confuses the opponent modeling mechanisms of MCTS Bot. 
We can observe some cycles on the chart due to this fact. 
When the agent starts losing money, it changes its tactic, and 
after a little while it starts winning again, until the moment that 
the MCTS Bot discovers the new tactic. 

 

Figure 9.  Games between HoldemML MegaBot and MCTS Bot [19] 

VIII. CONCLUSIONS AND FUTURE WORK 

There is still a long way to go to create an agent that plays 
poker at the level of the best human players. This research 
presented an approach based on supervised learning 
methodologies, where the agent relies on pre learned tactics 
based on past human experience to decide upon its actions. The 
created agents are not competitive against good poker players 
that are capable of opponent modeling. However the results 
greatly improved after combining various tactics, which means 
that an agent should not use a static tactic in a game like Poker. 

This approach can be promising for good human players, 
since they can create an agent based on their logs that will play 
like for them, autonomously. Plus, since these players have 
access to their own logs, they have much more information to 
create more representative player models. 

The generated agents could be improved in the future, by 
defining a more complex player model or by specifying better 
heuristics to change tactic along the game. 
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