
Proceedings 2nd ISI Regional Statistics Conference, 20-24 March 2017, Indonesia (Session IPS21) 
       

Port Value-At-Risk Estimation Through Generalized Means 
  

M. Ivette Gomes* 

CEAUL and DEIO, FCUL, Universidade de Lisboa, Portugal – ivette.gomes@fc.ul.pt 

 

Fernanda Figueiredo 

Faculdade de Economia, Universidade do Porto and CEAUL, Lisboa, Portugal – otilia@fep.up.pt 

 

Lígia Henriques-Rodrigues 

Universidade de São Paulo, IME, São Paulo, Brasil and CEAUL, Lisboa, Portugal – 

ligiahr@ime.usp.br 

  

Abstract 

In many areas of application, like environment, finance, insurance and statistical quality control, and on 

the basis of a sample of either independent, identically distributed or possibly weakly dependent and 

stationary random variables from an unknown model F, it is a common practice to estimate the value-

at-risk (VaR) at a small level 𝑞, i.e. a high quantile of probability 1 − 𝑞, i.e. a high enough value so that 

the chance of an exceedance of that value is equal to 𝑞, often smaller than 1 𝑛⁄ , where 𝑛 is the size of 

the available sample. The semi-parametric estimation of these high quantiles depends heavily on a 

reliable estimation of the extreme value index (EVI), one of the primary parameters of extreme events, 

related to the heaviness of the right tail of F. It happens that most semi-parametric VaR-estimators 

available in the literature do not enjoy the adequate behaviour, i.e. they do not suffer the appropriate 

linear shift in the presence of linear transformations of the data, as does any theoretical quantile. For 

heavy tails, i.e. for a positive EVI, new VaR-estimators were introduced with such behaviour, the so-

called PORT VaR-estimators, with PORT standing for peaks over a random threshold. Regarding EVI-

estimation, new classes of PORT EVI-estimators, based on powerful generalizations of the Hill EVI-

estimator were recently introduced. Now, also for heavy tails, we discuss the use of new classes of VaR-

estimators with the aforementioned behaviour, using classes of EVI-estimators based on adequate 

generalized means related to the Hill EVI-estimators. 
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1. Introduction 

In many areas of application, it is a common practice to estimate the value at risk at a level 𝑞 (VaR𝑞), a 

value, high enough, so that the chance of an exceedance of that value is equal to 𝑞, small, often smaller 

than 1 𝑛⁄ , with 𝑛 the available sample size. Such a sample is denoted by X𝑛 = (𝑋1, ⋯ , 𝑋𝑛) and their 

members are assumed to be either independent, identically distributed or stationary weakly dependent 

random variables (RVs) from a cumulative distribution function (CDF) F. Let us denote by 𝑋1:𝑛 ≤ ⋯ ≤
𝑋𝑛:𝑛 the associated ascending order statistics (OSs) and assume that there exist sequences of real 

constants {𝑎𝑛 > 0} and {𝑏𝑛 ∈ ℝ } such that the maximum, linearly normalized, i.e. (𝑋𝑛:𝑛 − 𝑏𝑛) 𝑎𝑛⁄  

converges in distribution to a non-degenerate RV. Then (Gnedenko, 1943), the limit CDF is necessarily 

of the type of the general extreme value (EV) CDF, given by 

 (1.1)                         𝐺𝜉(𝑥) = {
exp(−(1 + 𝜉𝑥)−1 𝜉⁄ ), 1 + 𝜉𝑥 > 0,     if   𝜉 ≠ 0,

exp(−exp( − 𝑥)),   𝑥 ∈ ℝ,                       if   𝜉 = 0. 
 

The CDF F is said to belong to the max-domain of attraction of 𝐺𝜉 and we write 𝐹 ∈ 𝒟ℳ(𝐺𝜉). The 

parameter 𝜉 is the extreme value index (EVI), the primary parameter of extreme events. This index 

measures the heaviness of the right-tail function 𝐹(𝑥) ∶= 1 − 𝐹(𝑥), and the heavier the right-tail, the 

larger 𝜉 is. 

We here consider heavy-tailed models, i.e. Pareto-type underlying CDFs, with a positive EVI, working 

thus in 𝒟ℳ
+ ∶= 𝒟ℳ(𝐺𝜉>0). These heavy-tailed models are quite common in many areas of application, 

like biostatistics, computer science, finance, insurance, statistical quality control and 

telecommunications, among others. For heavy-tailed models, the classical EVI-estimators are the Hill 
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(H) estimators (Hill, 1975), which are the average of the log-excesses, 𝑉𝑖𝑘 ∶= ln 𝑋𝑛−𝑖+1:𝑛 − ln 𝑋𝑛−𝑘:𝑛, 

1 ≤ 𝑖 ≤ 𝑘 < 𝑛, i.e. 

(1.2)                            H(𝑘) ≡ H (𝑘;X
𝑛

) ∶=
1

𝑘
∑ ln (

𝑋𝑛−𝑖+1:𝑛

𝑋𝑛−𝑘:𝑛
) ,   1 ≤ 𝑘 < 𝑛

𝑘

𝑖=1

.                

In this article, dealing only with heavy tails, we suggest ways to improve the performance of the existent 

VaR-estimators. High quantiles depend on the EVI, 𝜉 in (1.1), and recently, new classes of reliable EVI-

estimators based on adequate generalized means (GMs) have appeared in the literature, and will be 

introduced in Section 2. But these GM EVI-estimators are NOT location-invariant, contrarily to the 

PORT-GM EVI-estimators, which depend on an extra tuning parameter s, and where PORT stands for 

peaks over a random threshold. The use of the GM EVI-estimators enables us to introduce interesting 

classes of GM VaR-estimators, as can be seen in Section 3. But again, the associated GM VaR-

estimators do not enjoy the adequate behaviour, i.e. they do not suffer the appropriate linear shift in the 

presence of linear transformations of the data, as does any theoretical quantile. We now discuss, also in 

Section 3, the use of new classes of VaR-estimators with the aforementioned behaviour, the so-called 

PORT-GM VaR-estimators, using classes of EVI-estimators based on adequate GMs related to the H 

EVI-estimators, in (1.2). In Section 4 we provide information on the possibly normal asymptotic 

behaviour of the aforementioned classes of EVI and VaR-estimators and on the adaptive choice of the 

most reliable VaR-estimate, jointly with some overall comments. 

 

2. Classes of GM EVI-estimators 

Hölder's mean-of-order-p (MO𝑝) EVI-estimators.  First note that we can write 

H(𝑘) = ∑ ln (
𝑋𝑛−𝑖+1:𝑛

𝑋𝑛−𝑘:𝑛
)

1 𝑘⁄

= ln (∏
𝑋𝑛−𝑖+1:𝑛

𝑋𝑛−𝑘:𝑛

𝑘

𝑖=1

)

1 𝑘⁄

.

𝑘

𝑖=1

 

The H EVI-estimators are thus the logarithm of the geometric mean (or mean-of-order-0) of the statistics 

𝑈𝑖𝑘 ∶= 𝑋𝑛−𝑖+1:𝑛 𝑋𝑛−𝑘:𝑛,⁄  1 ≤ 𝑖 ≤ 𝑘 < 𝑛. Brilhante et al. (2013), and almost simultaneously Paulauskas 

and Vaičiulis (2013), and Beran et al. (2014), considered as basic statistics, the MO𝑝 of 𝑈𝑖𝑘, 1 ≤ 𝑖 ≤

𝑘 < 𝑛, for 𝑝 ≥ 0. More generally, Gomes and Caeiro (2014), and also Caeiro et al. (2016), considered 

those same statistics for any 𝑝 ∈ ℝ and the associated class of MO𝑝 EVI-estimators: 

(2.1)  H𝑝(𝑘) = H𝑝 (𝑘;X
𝑛

) ∶= {
(1 − (1

𝑘
∑ 𝑈𝑖𝑘

𝑝𝑘
𝑖=1 )

−1
) 𝑝⁄ ,     if  𝑝 < 1 𝜉⁄ , 𝑝 ≠ 0,

1

𝑘
∑ ln 𝑈𝑖𝑘 = H(𝑘)𝑘

𝑖=1 ,        if  𝑝 = 0.             
 

Lehmer's mean-of-order-p (L𝑝) EVI-estimators.  Beyond the average, the p-moments of log-excesses, 

i.e. 𝑀𝑘,𝑛
(𝑝)

∶=
1

𝑘
∑ {𝑙𝑛 𝑋𝑛−𝑖+1:𝑛 − 𝑙𝑛 𝑋𝑛−𝑘:𝑛}𝑝𝑘

𝑖=1 , 𝑝 ≥ 1 [𝑀𝑘,𝑛
(1)

= H(k)], introduced in Dekkers et al. 

(1989), have also played a relevant role in the EVI-estimation, and can more generally be parameterized 

in 𝑝 ∈ ℝ\{0}. And another simple generalization of the average is Lehmer's mean-of-order-p: Given a 

set of positive numbers a = (𝑎1, ⋯ , 𝑎𝑘) such a mean generalizes both the arithmetic mean (𝑝 = 1) and 

the harmonic mean (𝑝 = 0). Lehmer's mean-of-order-p is  defined as 

𝐿𝑝(a) ∶= ∑ 𝑎𝑖
𝑝

𝑘

𝑖=1
∑ 𝑎𝑖

𝑝−1
𝑘

𝑖=1
,    𝑝 ∈ ℝ.⁄  

 

The H EVI-estimators can thus be considered as the Lehmer’s mean-of-order-p of the k log-excesses V

∶= (𝑉𝑖𝑘, 1 ≤ 𝑖 ≤ 𝑘 < 𝑛), for 𝑝 = 1. Following Penalva et al. (2016) (see also, Gomes et al., 2016c), 

note now that 𝑉𝑖𝑘 = 𝜉𝐸𝑘−𝑖+1:𝑘(1 + 𝑜𝑝(1)) with 𝐸 denoting a standard exponential RV and the 𝑜𝑝(1)-

term uniform in 𝑖, 1 ≤ 𝑖 ≤ 𝑘. Since 𝔼(𝐸𝑝) = Γ(𝑝 + 1), ∀𝑝 > −1, with Γ(. ) denoting the Gamma 

function, the law of large numbers enables us to say that, as 𝑛 → ∞,
1

𝑘
∑ 𝑉𝑖𝑘

𝑝𝑘
𝑖=1  converges in probability 

to Γ(𝑝 + 1)𝜉𝑝. Hence the reason for the class of L𝑝 EVI-estimators, consistent for all 𝜉 ≥ 0, 𝑝 > 0, and 

given by 
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(2.2)                   L𝑝
(𝑘) ≡ L𝑝 (𝑘; X

𝑛
) ∶=

𝐿𝑝(𝑽)

𝑝
=

1

𝑝

∑ 𝑉𝑖𝑘
𝑝𝑘

𝑖=1

∑ 𝑉𝑖𝑘
𝑝−1𝑘

𝑖=1

=
𝑀𝑘,𝑛

(𝑝)

𝑝𝑀𝑘,𝑛
(𝑝−1)

         [L1 ≡ H(k)]. 

 

Classes of PORT-GM EVI-estimators. The classes of GM EVI-estimators, in (2.1) and (2.2), depend on 

this tuning parameter 𝑝 ∈ ℝ, are highly flexible, but, as often desired, they are not location-invariant, 

depending strongly on possible shifts in the model underlying the data, contrarily to what happens to the 

EVI, which is independent of shifts in the data. It is thus sensible to suggest the use of  the classes of 

PORT-GM EVI-estimators. They are similar in spirit to the PORT-H EVI-estimators, studied in Araújo 

Santos et al. (2006), and further considered in Gomes et al. (2008). Classes of PORT estimators are 

based on a sample of excesses over a random threshold 𝑋𝑛𝑠:𝑛, with  𝑛𝑠 ∶= ⌊𝑛𝑠⌋ + 1, 0 ≤ 𝑠 < 1, 

(2.3)   X
𝑛

(𝑠) ∶= (𝑋𝑛:𝑛 − 𝑋⌊𝑛𝑠⌋+1:𝑛, ⋯ , 𝑋⌊𝑛𝑠⌋+2:𝑛 − 𝑋⌊𝑛𝑠⌋+1:𝑛). 

 

For 0 ≤ 𝑠 < 1 and 𝑘 < 𝑛 − 𝑛𝑠, the PORT-GM class of EVI-estimators has the same functional form of 

the GM class of EVI-estimators, but with X𝑛 = (𝑋1, ⋯ , 𝑋𝑛) replaced by the sample of excesses X𝑛
(𝑠)

, in 

(2.3). With GM denoting either H or L, respectively defined in (2.1) and (2.2), they are thus given by 

GM𝑝
(𝑠)(𝑘) ≡ GM𝑝 (𝑘;X

𝑛

(𝑠)). 

These estimators are now invariant for both changes of scale and location in the data, and depend on the 

extra tuning parameter s, which provides a highly flexible class of EVI-estimators. Indeed, as shown in 

Gomes et al. (2016b), for the MO𝑝 EVI-estimation, these estimators may compare favorably with the 

PORT versions of the second-order minimum-variance reduced-bias (MVRB) EVI-estimators in Caeiro 

et al. (2005), provided that we adequately choose (𝑝, 𝑠). 
 

3. VaR-estimation 

Just as we did before for the EVI-estimation, we are going to base inference on the largest k top OSs. 

Let us denote 𝑈(𝑡) ≔ 𝐹←(1 − 1 𝑡⁄ ) = inf {𝑥: 𝐹(𝑥) ≥ 1 − 1 𝑡⁄ }. Using the notation 𝑎(𝑡)~𝑏(𝑡) if and 

only if lim𝑡→∞  𝑎(𝑡) 𝑏(𝑡) = 1⁄ , most heavy-tailed parents are such that 𝑈(𝑡)~𝐶𝑡𝜉 as 𝑡 → ∞. The, and 

since 𝜒1−𝑞 ≡ VaR𝑞 is such that 1 − 𝐹(VaR𝑞) = 𝑞,  

VaR𝑞 = 𝑈(1 𝑞⁄ )~𝐶𝑞−𝜉, as 𝑞 → 0, 

and an obvious estimator of VaR𝑞 is VaR̂𝑞 = �̂�𝑞−�̂�, with �̂� and 𝜉 any consistent estimators of 𝐶 and 𝜉, 

respectively. Denoting 𝑌 an RV from a standard Pareto model, with CDF 𝐹𝑌(𝑦) = 1 − 1 𝑦⁄ , 𝑦 ≥ 1, 

𝑋𝑛−𝑘:𝑛  𝑈=
𝑑 (𝑌𝑛−𝑘:𝑛)   𝐶𝑌𝑛−𝑘:𝑛 

𝜉
 ~
𝑝   𝐶(𝑛 𝑘)⁄ 𝜉 ,~

𝑝  as 𝑛 → ∞. An obvious estimator of 𝐶 is thus �̂� =

(𝑘 𝑛)⁄ �̂� 𝑋𝑛−𝑘:𝑛, and the obvious VaR𝑞-estimator was introduced in Weissman (1978), being given by 

(3.1)                                              Q
�̂�

(𝑞)
(𝑘) ∶= 𝑋𝑛−𝑘:𝑛(𝑘 (𝑛𝑞))⁄ �̂� . 

For heavy-tailed models, the ‘classical’ EVI-estimators, usually the ones which are plugged in the 

previous formula, are the H EVI-estimators, already defined in (1.2), the average of the log-excesses. 

We thus get the so-called ‘classical’ VaR-estimators, based on the H EVI-estimators, with the obvious 

notation, 𝑄H

(𝑞)
(𝑘). 

 

GM VaR-estimation.  The high asymptotic bias of the H EVI-estimators, for small up to moderate 𝑘-

values, has recently led researchers to consider the possibility of dealing with the bias term in an 

appropriate way, building new estimators, 𝜉𝑅(𝑘) say, the so-called second-order reduced-bias (SORB) 

estimators (see Gomes and Guillou, 2015, for an overview of the topic). Caeiro et al. (2005), considered 

corrected-Hill (CH) MVRB EVI-estimators, 

 (3.2)                                         CH�̂�,�̂�(𝑘) ∶= 𝐻(𝑘) (1 − �̂�(𝑛 𝑘)⁄ �̂� /(1 − �̂�)), 
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with (�̂�, �̂�) adequate consistent estimator of (𝛽, 𝜌), a vector of the second-order parameters, so that the 

asymptotic variance is kept at the same level of the variance of the H EVI-estimators. Gomes and Pestana 

(2007) considered then, as a possible alternative to the classical VaR-estimator, 𝑄H

(𝑞)
(𝑘), the estimator 

in (3.1) based upon the EVI-estimators in (3.2), i.e. 𝑄CH

(𝑞)
(𝑘), a reference for the VaR-estimation. 

 

With GM𝑝 denoting either H𝑝 or L𝑝, respectively given in (2.1) and (2.2), we now think sensible to 

work with the new VaR𝑞-estimators 𝑄GM𝑝

(𝑞)
(𝑘), with the obvious functional form 

Q
GM𝑝

(𝑞) (𝑘) ∶= 𝑋𝑛−𝑘:𝑛(𝑘 (𝑛𝑞))⁄ GM𝑝(𝑘)
. 

The Monte-Carlo simulations in Gomes et al. (2015) show the potentiality of the MO𝑝 VaR𝑞 semi-

parametric estimators, being still under development the study of the L𝑝 VaR𝑞-estimators. 

 

PORT-GM VaR-estimation.  Most of the semi-parametric VaR-estimators in the literature (see the 

functional equation in (3.1), Beirlant et al., 2004, and de Haan and Ferreira, 2006), do not enjoy the 

adequate behaviour in the presence of linear transformations of the data, a behaviour related to the fact 

that for any high-quantile,  

(3.3)                                            VaR𝑞(𝜆 + 𝛿𝑋) = 𝜆 + 𝛿VaR𝑞(𝑋), 

for any model X, real 𝜆 and positive 𝛿. Recently, and for 𝜉 > 0, Araújo Santos et al. (2006) provided 

VaR-estimators with the linear property in (3.3), based on a sample of excesses over the random 

threshold X
𝑛
(𝑠), 𝑛𝑠 ∶= ⌊𝑛𝑠⌋ + 1, 0 ≤ 𝑠 < 1, given in (2.3), being s possibly null only when the underlying 

parent has a finite left endpoint (see Gomes et al., 2008b, for further details on this subject). They were 

named PORT VaR-estimators, and were based on the PORT-H, H(𝑘;X
𝑛

(𝑠)), 𝑘 < 𝑛 − 𝑛𝑠, with H(𝑘;X
𝑛

) 

provided in (1.2). 

Now, we further suggest for an adequate VaR-estimation, the use of the PORT-GM𝑝  EVI-estimators,  

(3.4)                         GM𝑝(𝑘; 𝑠) ∶= GM𝑝(𝑘; X
𝑛

(𝑠)),  𝑘 < 𝑛 − 𝑛𝑠        [GM=H and GM=L], 

with H𝑝, L𝑝 and X
𝑛
(𝑠) respectively given in (2.1), (2.2) and (2.3). Such PORT-GM𝑝 VaR-estimators are 

given by 

VaR̂𝑞(𝑘; 𝑝, 𝑠) ∶= (𝑋𝑛−𝑘:𝑛 − 𝑋𝑛𝑠:𝑛)(𝑘 (𝑛𝑞))⁄ GM𝑝(𝑘,𝑠)
+ 𝑋𝑛𝑠:𝑛. 

 

  

4. Asymptotic behaviour of estimators, adaptive choice of the tuning parameters and overall 

comments 

First and second-order frameworks for heavy tails.  Let ℛa denote the class of regularly varying 

functions with an index of regular variation equal to a ∈ ℝ, i.e. measurable function 𝑔(. ) such that ∀ 𝑥 >
0, 𝑔(𝑡𝑥) 𝑔(𝑡) → 𝑥a,⁄  as 𝑡 → ∞. A model F is said to be heavy-tailed if 𝜉 > 0, in (1.1), and we have the 

first-order condition, 

𝐹 ∈  𝒟ℳ
+    ⟺     𝑈 ∈  ℛ𝜉      ⟺      1 − 𝐹 ∈  ℛ−1 𝜉⁄ . 

 

To obtain information on the non-degenerate normal behaviour of the estimators, it is usual to assume 

the following second-order condition, 

(4.1)  lim
𝑡→∞

(ln 𝑈(𝑡𝑥) − ln 𝑈(𝑡) − 𝜉 ln 𝑥) 𝐴(𝑡) = {
(𝑥𝜌 − 1) 𝜌,       if  𝜌 < 0,   ⁄

 ln 𝑥,                    if  𝜌 = 0,   
⁄  

valid for all 𝑥 > 0, where 𝜌 ≤ 0 is a second-order parameter. Slightly more restrictively, and essentially 

for VaR-estimation, we shall assume to be working in Hall-Welsh class of models (Hall and Welsh, 

1985), where ∃ 𝜉 > 0, 𝜌 < 0, 𝐶 > 0 and 𝛽 ≠ 0 such that  

(4.2)   𝑈(𝑡) = 𝐶𝑡𝜉(1 + 𝜉𝛽 𝑡𝜌 𝜌 + 𝑜(𝑡𝜌)),⁄  as 𝑡 → ∞. 



Proceedings 2nd ISI Regional Statistics Conference, 20-24 March 2017, Indonesia (Session IPS21) 
       

 

Asymptotic behaviour of EVI-estimators.  To have consistency of the aforementioned EVI-estimators in 

all 𝒟ℳ
+ , we need to work with intermediate values of k, i.e. a sequence of positive integers 𝑘 = 𝑘𝑛, 1 ≤

𝑘 < 𝑛, such that 𝑘 = 𝑘𝑛 → ∞ and 𝑘𝑛 = 𝑜(𝑛), as 𝑛 → ∞. Under the aforementioned second-order 

framework in (4.1), the asymptotic behaviour of the H EVI-estimator was derived in de Haan and Peng 

(1998). More generally (Brilhante et al., 2013, and Gomes and Caeiro, 2014, for the H𝑝 EVI-estimators, 

and Penalva et al., 2016, for the L𝑝 EVI-estimators), and again using the notation GM𝑝 for both H𝑝 and 

L𝑝, the asymptotic distributional representation  

GM𝑝(𝑘)  𝜉=
𝑑 +  𝜎GM𝑝

(𝜉)𝑍𝑘

(GM𝑝)
/√𝑘  + 𝑏GM𝑝

(𝜉, 𝜌) 𝐴(𝑛 𝑘) + 𝑜𝑝(𝐴(𝑛 𝑘))⁄⁄  

holds with 𝑍𝑘

(GM𝑝)
 asymptotically standard normal RVs. Then, when √𝑘𝐴(𝑛 𝑘) → 𝜆⁄ , finite, as 𝑛 → ∞, 

√𝑘(GM𝑝(𝑘) − 𝜉) converges in distribution to a 𝒩 (𝜆𝑏GM𝑝
, 𝜎GM𝑝

2 ). 

  

Remark 1. At optimal levels, in the sense of minimal root mean squared error (RMSE), the optimal 

MO𝑝 (OMO𝑝) class, H∗(𝑘) = HpM
(𝑘), outperforms the H EVI-estimator in the whole (𝜉, 𝜌)-plane.  

And, again at optimal levels, the optimal Lehmer EVI-estimator, say L∗, beats on its turn H∗, also in the 

whole (𝜉, 𝜌)-plane. 

 

To derive the asymptotic properties of the PORT-GM EVI-estimators, it is worth noting that since 

𝑋⌊𝑛𝑠⌋+1:𝑛 − 𝑈(1 (1 − 𝑠)) = 𝑂𝑝(1 √𝑛⁄ )⁄ , the EVI-estimator GM𝑝(𝑘, 𝑠), in (3.4), has the same 

asymptotic behaviour of GM̃𝑝(𝑘, 𝑠), defined as GM𝑝(𝑘, 𝑠), but with 𝑋𝑛−𝑖+1:𝑛 replaced everywhere by 

𝑋𝑛−𝑖+1:𝑛 − 𝑈(1 (1 − 𝑠)), 1 ≤ 𝑖 ≤ 𝑛.⁄  
 

The PORT-MO𝑝 EVI-estimators were studied in Gomes et al. (2016b). Similar results, still under 

development, are expected for the PORT-L𝑝 EVI-estimators. The PORT methodology leads to no 

change in the asymptotic variance. There is only a change in the asymptotic bias, no longer ruled by 

A(t), but ruled by  

𝐵(𝑡) = {

𝜉 𝜒𝑠 𝑈0(𝑡),⁄                   if  𝜉 + 𝜌0 < 0 ∧ 𝜒𝑠 ≠ 0,

𝐴0(𝑡) + 𝜉 𝜒𝑠 𝑈0(𝑡)⁄ ,   if  𝜉 + 𝜌0 = 0 ∧ 𝜒𝑠 ≠ 0,

𝐴0(𝑡),                                                  otherwise,

 

where 𝜒𝑠 = 𝐹←(𝑠), and (𝐴0, 𝑈0) are the functions (𝐴, 𝑈) associated with a shift 𝑠 = 0. 
 

Asymptotic behaviour of the VaR-estimators.  For all the aforementioned classes of VaR-estimators, 

generally denoted 𝑄
�̂�

(𝑞)
(𝑘), and with 𝑟𝑛 = 𝑘 (𝑛𝑞),⁄  we can write 

𝑄
�̂�

(𝑞)
(𝑘) − VaR𝑞  ln 𝑟𝑛 VaR𝑞(𝜉 − 𝜉)(1 + 𝑜𝑝(1)),=

𝑑  

whenever working in Hall-Welsh class of models, in (4.2). For intermediate k, and whenever 𝑞 = 𝑞𝑛 →

0, ln(𝑛𝑞𝑛) = 𝑜(√𝑘), and 𝑛𝑞𝑛 = 𝑜(√𝑘), a similar normal behaviour appears for the EVI and associated 

VaR-estimators, but with a rate of convergence which is no longer 1 √𝑘⁄  but 1 (√𝑘  ln 𝑟𝑛  VaR𝑞)⁄ . For 

a PORT VaR-estimation, see Henriques-Rodrigues and Gomes (2009) and Figueiredo et al. (2016). 

 

Adaptive choice.  The adaptive choice of the tuning parameters (𝑘, 𝑝, 𝑠) can be done through heuristic 

sample-path stability algorithms, like the ones in Gomes et al. (2013) and Neves et al. (2015). 

Alternatively, it is also sensible to use a bootstrap algorithm of the type of the ones in Gomes et al. 

(2011; 2012), Brilhante et al. (2013), Caeiro and Gomes (2015) and Gomes et al. (2016a), where R-

scripts are provided. 

 

Overall comments.  For all k, there is a clear reduction in RMSE, as well as in bias, with the attainment 

of estimates closer to the target value 𝜉. At optimal levels, even the PORT-H∗ beats the MVRB 

estimators. Indeed, the PORT-H𝑝, considered as a function of p, can even beat the PORT-MVRB EVI-
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estimators. The patterns of the estimates are always of the same type, in the sense that, for all k, the 

MVRB clearly beat the Hill, the H∗ moderately beat the MVRB, regarding minimal MSE, and adequate 

MO𝑝 and PORT-MO𝑝 strongly beat the MVRB EVI-estimators. 

 

For recent overviews on statistics of univariate extremes, see Beirlant et al. (2012), Scarrot and 

McDonald (2012) and Gomes and Guillou (2015). 
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