
Universal Disjunctive Concatenation and Star

Nelma Moreira1, Giovanni Pighizzini2, Rogério Reis1

1 Centro de Matemática e Faculdade de Ciências da Universidade do Porto, Portugal
{nam,rvr}@dcc.fc.up.pt?

2 Dipartimento di Informatica, Università degli Studi di Milano, Italy
pighizzini@di.unimi.it??

Abstract. Two language operations that can be expressed by suitably
combining complement with concatenation and star, respectively, are in-
troduced. The state complexity of those operations on regular languages
is investigated. In the deterministic case, optimal exponential state gaps
are proved for both operations. In the nondeterministic case, for one op-
eration an optimal exponential gap is also proved, while for the other
operation an exponential upper bound is obtained.

1 Introduction

In a recent paper, we investigated automata with partially specified behaviors,
shortly called don’t care automata (dcFA) [?]. These devices are defined as stan-
dard nondeterministic finite state automata, with the only difference that they
have two sets of final states: the set of accepting states and the set of rejecting
states. In this way, a dcFA A defines two languages: the accepted language L⊕(A)
and the rejected language L	(A). It is required that these two languages are dis-
joint.

Don’t care automata can be interesting in situations where it is not necessary
to fix the behavior on each possible string, because, for instance, some strings
will never be received by the automaton (e.g., when the input of the automaton
is generated by a source which produces strings in a certain format), or because
for other reasons the answer of the automaton on some strings is not interesting.
In the same paper, we studied the optimal reductions, in terms of states, of such
devices to compatible deterministic automata; namely to standard deterministic
automata which “agree” with the behavior of the given don’t care automata.

Triggered by a paper published in 1994 [?], a lot of work has been con-
ducted in the last 20 years to study the state complexity of operations on finite
automata. Inspired by this research, we started to investigate how standard
operations (boolean, concatenation and Kleene star) could be extended to dc-
FAs. An obvious requirement is that an operation extended to dcFAs matches

? Authors partially funded by the European Regional Development Fund through the
programme COMPETE and by the Portuguese Government through the FCT under
project UID/MAT/00144/2013.

?? Author partially supported by MIUR under the project PRIN “Automi e Linguaggi
Formali: Aspetti Matematici e Applicativi”, code H41J12000190001.

2 Nelma Moreira, Giovanni Pighizzini, Rogério Reis

the original operation, if the behavior of the automaton is fully specified. For
instance, considering union, a string should be accepted when it is accepted
by at least one of the two given automata and should be rejected when it is
rejected by both automata. Considering don’t care values, it is quite obvious
how to extend this behavior, as depicted in the table to the
right, where yes and no represent acceptance and rejection,
respectively, and ? represents an unspecified behavior. Sim-
ilar tables can be filled in for intersection and complement.
Notice that this is related to three-valued logic [?].

no ? yes

no no ? yes

? ? ? yes

yes yes yes yes

For the other regular operations, concatenation and star, the situation is
slightly more complicated and, probably, more interesting. Let us consider two
dcFAs A and B on the same input alphabet Σ that have completely specified
behaviors, i.e., L⊕(A) ∪ L	(A) = L⊕(B) ∪ L	(B) = Σ?. A dcFA C for con-
catenation should accept all the strings which can be obtained by concatenating
strings accepted by A and B, i.e., L⊕(C) = L⊕(A)L⊕(B), and should reject all
the strings which cannot be obtained in this way; namely, all the strings w such
that for each factorization w = uv either u /∈ L⊕(A) or v /∈ L⊕(B). Since in this
case L	(A) and L	(B) are the complement of L⊕(A) and L⊕(B), respectively,
this is equivalent to saying that for each factorization w = uv either u ∈ L	(A)
or v ∈ L	(B).

This leads to consider a new language operation, that we call universal dis-
junctive concatenation and, in a similar way, starting from the star, another new
operation called universal disjunctive star. This paper is devoted to investigating
the state complexity of these two operations in both deterministic and nonde-
terministic cases. Using the fact that these two operations can be expressed by
combining complement with concatenation and star, respectively, we prove that
in the deterministic case their state complexity is exponential.

We deepen this investigation by considering the nondeterministic case. We
prove that given two nondeterministic automata (NFAs) A and B with m and n
states, there exists an NFA accepting the universal disjunctive concatenation of
the languages accepted by A and B, with at most 2m+n states. Furthermore,
the exponential gap cannot be reduced in the worst case.

We also prove that for each NFA A with n states there exists an NFA with
no more than 2n states accepting the universal disjunctive star of L(A).

In the final part of the paper, we shortly discuss the state complexity of
operations on don’t care automata.

2 Universal Disjunctive Concatenation

Given a language L over an alphabet Σ, let us denote by pref(L) the language
consisting of all prefixes of strings in L. The set of all nonempty prefixes of L,
i.e., pref(L) \ {ε}, is denoted by pref+(L). By p(L) we denote the prefix-closed
interior of L; namely the largest subset of L which is prefix closed.

Similar definitions can be given by considering suffixes. Hence, we let suff(L)
denote the set of all suffixes of strings in L, suff+(L) denote the set suff(L) \ {ε},

Universal Disjunctive Concatenation and Star 3

and s(L) denote the suffix-closed interior of L, namely the largest subset of L
which is suffix closed.

The complement of L will be denoted by L.

Definition 1. Let L1 and L2 be languages over an alphabet Σ. The universal
disjunctive concatenation of L1 and L2 is the language L1 } L2 defined as

L1 } L2 = {w ∈ Σ? | ∀x1, x2, w = x1x2 ⇒ (x1 ∈ L1 ∨ x2 ∈ L2)}.

Example 2. Given Σ = {a, b}, consider L1 the set of all strings containing an
even number of occurrences of a and L2 = a(a+ b)?. Then, L1 }L2 = (aa+ b)?.
Given a string w, let us number the occurrences of the letter a in w, starting
from 1. Each prefix of w containing an even number of a’s belongs to L1. If a
prefix ends with an odd numbered a then it does not belong to L1. Thus, in
order to have w ∈ L1 } L2, the remaining suffix should belong to L2; hence,
it should start with an a. Hence each odd numbered a should be immediately
followed by another a.

We point out the role of the alphabet Σ we are considering in the definition
of the operation }. For instance, given L = a?, if Σ = {a} then L}L = a? = L.
However, if the alphabet we are considering is Σ = {a, b}, then L } L = a? +
a?ba?; namely, L is the set of all strings which contain at most one occurrence of
the letter b. This is due to the fact that this operation involves, in some sense,
complementation, as we will explain below. We can observe that, for Σ = {a, b},
L is the set of strings that contain at least one occurrence of the letter b and,
hence, LL is the set of all strings that contain at least two occurrences of b.
Thus, its complement coincides with L} L.

Actually, this is a general property. In fact, just by using the definition of },
we can observe that given two languages L1 and L2, w /∈ L1 } L2 if and only if
there are two strings u, v such that w = uv, u /∈ L1, and v /∈ L2. Thus,

L1 } L2 = L1 L2 . (1)

As a consequence, the operation } preserves regularity; namely, if L1 and L2

are regular, then L1 } L2 is regular too. A special case of this operation when
L1 = ∅ was studied by Birget [?]. We now study some basic properties of the }
operation.

Proposition 3. The operation } is associative, i.e., L1 } (L2 } L3) = (L1 }
L2) } L3, for all languages L1, L2, L3.

Because } is associative it makes sense to write L1 } L2 } L3 and it is not
difficult to realize that

L1 } L2 } L3 = {w | ∀x, y, z, w = xyz ⇒ x ∈ L1 ∨ y ∈ L2 ∨ z ∈ L3} .

Proposition 4. The } operation has an identity element. For any language L,
Σ+ } L = L}Σ+ = L.

4 Nelma Moreira, Giovanni Pighizzini, Rogério Reis

Proof. Immediate consequence of Equation (1), observing that Σ+ = {ε}. ut

We note there are no languages L1, L2, apart from Σ+, such that L1 }L2 =
Σ+, i.e. } has no nontrivial inverses. In general, it is easy to see that

Proposition 5. Let L1, L2 be languages. If ε /∈ L1, then L1 } L2 ⊆ L2 and
L2 } L1 ⊆ L2.

Proposition 6. Let L be a language. Then ∅} L = s(L) and L} ∅ = p(L).

Proof. From the definition of }, it easily follows that a string w belongs to ∅}L
only if each suffix of w belongs to L. Hence, ∅}L ⊆ s(L). Conversely, if w ∈ s(L)
then each suffix of w belongs to L, which would imply that w ∈ ∅}L. In a similar
way, it can be proved that L} ∅ = p(L). ut

Proposition 7. Let L,X ⊆ Σ? be languages.

(a) If L is prefix closed then L ⊆ L}X.
(b) pref(L) ⊆ pref(L) } L.
(c) If ε /∈ L then pref(L) } L = pref(L).
(d) pref+(L) } L = L.

Proof. (a) is trivial.
(b) immediately follows from (a).
(c) Since w = wε and ε /∈ L, from w ∈ pref(L) } L, we obtain w ∈ pref(L).

Hence pref(L) } L ⊆ pref(L). The converse inclusion is given in (b).
(d) Let w ∈ L, then for every x, y such that xy = w, x ∈ pref+(L) unless

x = ε, but in that case y = w ∈ L. On the other hand, if w ∈ pref+(L)}L then,
as εw = w, necessarily w ∈ L. ut

Notice that if ε ∈ L then pref(L)}L could differ from both L and pref(L). For
instance, given Σ = {a}, for L = {ε, aa}, we have pref(L) } L = {ε, a, aa, aaa}.

We can prove properties similar to those in Proposition 7, considering suffixes:

Proposition 8. Let L,X ⊆ Σ∗ be languages.

(a) If L is suffix closed then L ⊆ X } L.
(b) suff(L) ⊆ L} suff(L).
(c) If ε /∈ L then L} suff(L) = suff(L).
(d) L} suff+(L) = L.

Proposition 9. If L1 is prefix closed and L2 is suffix closed, then L1L2 ⊆
L1 } L2.

Proof. Suppose w ∈ L1L2. Let x ∈ L1 and y ∈ L2 be such that w = xy. Then
for all strings u, v verifying w = uv either u is a prefix of x, thus implying
u ∈ L1, or v is a suffix of y, thus implying v ∈ L2. This allows to conclude
that w ∈ L1 } L2. ut

Universal Disjunctive Concatenation and Star 5

Our previous example with Σ = {a, b} and L1 = L2 = a? shows that the
inclusion proved in Proposition 9 can be proper.

Now we are going to study the state complexity of the operation }. First of all,
by using results on the state complexity of concatenation [?], we can obtain the
following bound:

Theorem 10. For all integers m,n ≥ 2, let A′ be an m-state DFA and A′′ an
n-state DFA. Then any DFA that accepts L(A′) } L(A′′) needs at most m2n −
(m − f)2n−1 states, where f is the number of final states of A′. Futhermore,
this bound is tight.

Proof. It follows immediately from Equation (1) that the state complexity of }
coincides with the state complexity of concatenation because the state complex-
ity of the complement of a language L coincides with the state complexity of L.
Hence, the upper bound follows from Theorem 2.3 in [?], after switching the role
of final and nonfinal states in the automaton A′, due to the complementation.
The lower bound also derives from a result in the same paper (Theorem 2.1). ut

The investigation of the state complexity of } is now deepened by proving that
the bound in Theorem 10 cannot be reduced if we allow the resulting automaton
to be nondeterministic. To this aim, for each integer n ≥ 1, let us consider the
following language over Σ = {a, b}:

Ln = (a(a+ b)n−1)?(ε+ a(a+ b)<n) + (b(a+ b)n−1)?(ε+ b(a+ b)<n) , (2)

where (a+b)<n denotes less than n repetitions of a+b. In other words, a string w
belongs to Ln if and only if the same symbol occurs in all positions in+ 1 of w,
with i ≥ 0 and in+ 1 ≤ |w|.

Theorem 11. Let Ln be the language defined in (2). Then:

(a) The minimum DFA accepting Ln has 2n+ 2 states.
(b) s(Ln) = {xky | for some x ∈ {a, b}n, k ≥ 0, y ∈ pref(x)}.
(c) Each NFA accepting s(Ln) requires at least 2n states.

Proof. (a) A DFA accepting Ln is depicted in Fig. 1. By a standard distin-
guishability argument, it can be proved that it is minimal.

(b) From the definition of Ln, we can observe that a string w ∈ s(Ln) if and only
if each two symbols of w at distance n, i.e., with n− 1 symbols in between,
are equal. This implies that w consists of a prefix x of length n which is
repeated a certain number of times and a suffix y of length < n, which is a
prefix of x.

(c) Consider the set S = {(x, x) | x ∈ {a, b}n}. From (b), it follows that for
x, y ∈ {a, b}n, xx ∈ s(Ln) and xy /∈ s(Ln). Hence, S is a fooling set for s(Ln)
and each NFA accepting it requires at least #S states [?]. ut

As a consequence of Theorem 11 we can now conclude that the exponen-
tial upper bound given in Theorem 10 cannot be reduced, even if the resulting
automaton is nondeterministic.

6 Nelma Moreira, Giovanni Pighizzini, Rogério Reis

· · ·

· · ·

a

b

a, b

a, b

a, b

a, b

b

a a

b

a, b

Fig. 1. The minimum DFA accepting Ln.

Theorem 12. Let A be the 1-state automaton accepting the empty language.
For each integer n there exists an n-state DFA B accepting a language defined
over a binary alphabet such that each NFA accepting L(A) } L(B) requires at
least 2b(n−2)/2c states.

Proof. Given k = b(n−2)/2c, consider the language Lk, defined according to (2).
If n is even, we choose as DFA B the minimum automaton accepting Lk. If n is
odd, we obtain B by splitting the trap state of the minimum automaton accept-
ing Lk in two states (this can be done with a simple change in the transition
graph in Figure 1). This adds one extra state, without changing the accepted
language.

In both cases, the DFA B has n states and recognizes Lb(n−2)/2c = Lk. From
Proposition 6, it turns out that ∅ } Lk = s(Lk). Hence, by Theorem 11, each
NFA accepting ∅} Lk requires 2k states. ut

We point out that Theorem 12 improves a similar gap proved in [?], by
considering a three-letter alphabet.

Now, we further investigate the nondeterministic case, by studying the state
complexity of } in the case of nondeterministic automata. The upper bound in
Theorem 10 is derived from (1) which uses a double complementation. This leads
to a double exponential upper bound on the state complexity, when the given
automata are nondeterministic. However, it produces a deterministic automaton.
It could be interesting to see if the state complexity can be reduced, if we want
to derive a nondeterministic automaton. This could be done using alternating
automata [?]. However, in the next result we present a direct construction.

Theorem 13. For each integers m,n ≥ 1, let A′ be an m-state NFA and A′′

an n-state NFA, then there is an NFA that accepts L(A′) } L(A′′) with at most
2m+n states.

Proof. Let A′ = 〈Q′, Σ, δ′, I ′, F ′〉, A′′ = 〈Q′′, Σ, δ′′, I ′′, F ′′〉, L′ = L(A′), and
L′′ = L(A′′). We define an NFA A = 〈Q,Σ, δ, i, F 〉 which accepts the language
L′ } L′′. First we informally explain how A works, in the case the two given
automata A′ and A′′ are deterministic. Let i′ and i′′ be their initial states.
Given a string w ∈ Σ?, in order to test if w ∈ L′ } L′′, the automaton A has to
check that for each prefix of w which is rejected by A′ the corresponding suffix
is accepted by A′′. To this aim, while reading w, A simulates the deterministic

Universal Disjunctive Concatenation and Star 7

control of A′. Each time that in the simulation A′ reaches a nonfinal state —
namely the prefix read so far does not belong to L′ — the automaton A starts the
simulation of a computation of A′′ to check if the remaining suffix belongs to L′′.
In this way, A works by simulating in parallel a computation of A′ on the given
input and, for each suffix corresponding to a prefix not in L′, one computation
of A′′. At the end, A must verify that all the computations are accepting.

The automaton A is implemented using states (q, α) where q ∈ Q′ and α ⊆
Q′′. The first component is used for the simulation of A′, the second one keeps
track of the states reached by A′′ on the suffixes under examination. So, if the
initial state i′ of A′ is final, then A starts its computation in (i′, ∅). Otherwise,
since ε /∈ L′, A needs to verify that all the input belongs to L′′ and hence it
starts the computation in (i′, {i′′}). When in the state (q, α) the automaton A
reads a symbol σ, it moves to the state (p, β) where p = δ′(q, σ) and β contains
all the states that are reached by states in α reading σ. In this way, the second
component continues the inspection of input suffixes. However, if p /∈ F ′ then A
needs to simulate A′′ on the incoming input suffix. To this aim, in this case, β
also contains the state i′′. At the end of the computation, A has to verify that
all the suffixes under examination are accepted by A′′. Hence, if (q, α) is the
state reached at the end of the computation, all states in α should belong to F ′′.
However, since we also have to verify that either the input w belongs to L′ or
ε ∈ L′′, we should additionally ask if either q ∈ F ′ or i′′ ∈ F ′′. Notice that
the resulting automaton A is deterministic. The resulting DFA A is formally
defined with Q = Q′ × 2Q

′′
; i = (i′, ∅) if i′ ∈ F ′ and i = (i′, {i′′}) otherwise;

F = {(q, α) | α ⊆ F ′′ ∧ (q ∈ F ′ ∨ i′′ ∈ F ′′)} and

δ((q, α), σ) =

{
(δ′(q, σ), δ′′(α, σ)), if δ′(q, σ) ∈ F ′;
(δ′(q, σ), δ′′(α, σ) ∪ {i′′}), otherwise.

Furthermore, in the construction above, we can observe that all the states (q, α)
with q /∈ F ′ and i′′ /∈ α are not reachable in A. Then the total number of states
of A is at most m2n − (m− f)2n−1, where f is the number of final states of A′,
which is exactly the same number derived in Theorem 10.

When A′′ is nondeterministic, the construction is slightly more complicated.
In fact, on each suffix we could have different computations. We need to verify
that at least one of them is accepting. To do that, we simply use nondetermin-
istic choices. Hence, when in the state (q, α) the automaton reads a symbol σ,
each possible next state (p, β) is obtained by taking p = δ′(q, σ) and by non-
deterministically choosing a state s ∈ δ′′(r, σ) to be in β for each state r ∈ α.
When p /∈ F ′, the automaton A needs to start a computation of A′′ on the incom-
ing suffix. Hence, a nondeterministically chosen state i′′ ∈ I ′′ is added to β. The
formal definition of A, in the case of A′ deterministic and A′′ nondeterministic
is the following:

– Q = Q′ × 2Q
′′
,

– I =

{
{(i′, ∅)}, if i′ ∈ F ′;
{(i′, {i′′}) | i′′ ∈ I ′′}, otherwise;

8 Nelma Moreira, Giovanni Pighizzini, Rogério Reis

– for (q, α) ∈ Q′ × 2Q
′′
, σ ∈ Σ, let us consider the following set

next(α, σ) = {γ ∈ 2Q
′′
| ∃f : α→ γ s.t. f is surjective and

f(r) = s⇒ s ∈ δ′′(r, σ)} ,

the set δ((q, α), σ) contains all the states (p, β) ∈ Q′ × 2Q
′′

such that

p = δ′(q, σ) and β =

{
γ, if p ∈ F ′;
γ ∪ {i′′}, otherwise;

for some γ ∈ next(α, σ), i′′ ∈ I ′′,

– F =

{
{(q, α) | q ∈ F ′, α ⊆ F ′′}, if I ′′ ∩ F ′′ = ∅;
{(q, α) | q ∈ Q′, α ⊆ F ′′}, otherwise.

Finally, when even A′ is nondeterministic, we can preliminary convert it into
an equivalent DFA applying the subset construction, and then proceed as above
described. In this case, the set of states of the resulting automaton is a subset
of 2Q

′ × 2Q
′′
. Hence, its cardinality is bounded by 2m+n. ut

From Theorem 12, it follows that the exponential upper bound in Theorem 13
cannot be reduced.

3 Universal Disjunctive Star

In this section we study the other operation we are interested in, the universal
disjunctive star, defined in the following way:

Definition 14. Let L ⊆ Σ? be a language. Let L}0 = Σ+ and L}k = L}k−1 }
L, for each integer k > 0. Then we define the universal disjunctive star as

L~ =
⋂
k≥0

L}k.

Notice that by this definition, it turns out that a string w ∈ L~ if and only if
for each factorization of w as w = x1x2 · · ·xk, with k ≥ 1, at least one factor xi
belongs to the language L. We now show that we can restrict our attention to the
nonempty factors. Due to space limitations, we omit the proof of the following
propositions.

Proposition 15. For each integer i ≥ 0:

(a) If ε ∈ L, then Σ<i ⊆ L}i.
(b) If w ∈ Σ?, |w| = i, and w ∈ L}i, then for each j > i, w ∈ L}j.
(c) If ε /∈ L and |w| = i, w ∈ L}i if and only if for each j > i, w ∈ L}j.

As a consequence we obtain:

Proposition 16. Given L ⊆ Σ? and w ∈ Σ?, w ∈ L~ if and only if, for each
0 ≤ i ≤ |w|, w ∈ L}i.

Universal Disjunctive Concatenation and Star 9

As a consequence of the previous proposition, we get that a string w ∈ L~

if and only if for each decomposition of w in at most |w| factors, at least one of
them belongs to L. Hence, we can express L~ as:

L~ = {w ∈ Σ? | ∀k ≤ |w| ∀x1, . . . , xk ∈ Σ+, w = x1 · · ·xk,∃i ≤ k xi ∈ L}. (3)

We can also observe that

L~ = (L)? (4)

that implies that the class of regular languages is closed under of this operation.
Considering Equation (4), ~ is exactly the Kleene interior studied by Brzozowski
et al. [?] when characterising the number of different languages that can occur
by successive application of star and complement to a given regular language.
Furthermore, using the results about the state complexity of the star [?, Cor. 3.2,
Th. 3.3], we immediately obtain the following result:

Theorem 17. For any n-state DFA A, n ≥ 1, there exists a DFA A′ of at most
2n−1 + 2n−2 states such that L(A′) = (L(A))~. Furthermore, this bound cannot
be reduced in the worst case.

We now consider the state complexity of ~ in the nondeterministic case. We
prove that the upper bound remains exponential.

Theorem 18. For any n-state NFA A, n ≥ 1, there exists an NFA A′ with at
most 2n states such that L(A′) = (L(A))~.

Proof. To make clearer the main argument used to define A′ from A, first we
discuss the construction for the deterministic case. Subsequently, we will describe
the generalization to the nondeterministic case.

Let us start by supposing A = 〈Q,Σ, δ, I, F 〉, with I = {i}, is deterministic.
We also suppose that ε /∈ L, i.e., i /∈ F . We describe a DFA A′ = 〈Q′, Σ, δ′, I ′, F ′〉
which accepts the language L~.

First of all, we remind the reader that, by definition, ε /∈ L~. So let us
consider an input w ∈ Σ+. The automaton A′ has to verify that for each fac-
torization of w in k ≥ 1 nonempty factors, at least one of them belongs to the
language L. In the following, a factorization satisfying such a property will be
said to be accepted.

A′ works by exploring all input factorizations in parallel computation branches
that are generated while reading the input in the following way. Suppose that
a string u has been read and consider a computation branch corresponding to
a factorization u = u1u2 · · ·uh of the input in h ≥ 1 nonempty strings. Be-
fore reading the next input symbol γ, the computation branch is split into two
branches according to the following possible factorizations of wγ:

(a) u1, . . . , uhγ; namely, γ will be considered as a further symbol of the hth
factor,

(b) u1, . . . , uh, γ; namely, γ will be considered as a new factor.

10 Nelma Moreira, Giovanni Pighizzini, Rogério Reis

Now suppose that the string u is the prefix of the input w that has been read
so far, namely, w = uv, for some v ∈ Σ?. Let w = w1 · · ·wk be a factorization
of w in a computation branch which is obtained, after inspecting the suffix v,
from the computation branch on the factorization u = u1 · · ·uh. Then, wj = uj
for j = 1, . . . , h− 1 (however uh could be a proper prefix of wh).

Suppose uj ∈ L, for some j < h. In this case, the factorization of w is
accepted regardless the suffix v and all factors uj′ , with j′ > j, namely, each
input factorization which begins by u1, . . . , uj is accepted and, thus, the input
symbols after the factor uj do not need to be inspected.

On the other hand, if uj /∈ L for each j < h, then the computation branch
has to test the membership to L of the factor uh. To do this, it remembers the
state q = δ(i, uh). We observed that before reading the next input symbol, the
computation branch is split in two. In the computation branch corresponding
to (a), the simulation of A is continued from the state q. For (b) there are two
possibilities. If q ∈ F , i.e., uh ∈ L, then all factorizations beginning by u1, . . . , uh
are accepted and A′ does not need to consider the remaining part of the input.
Thus, the second computation branch is not needed. Otherwise a computation
branch corresponding to (b) is generated in order to inspect, from the initial
state, a factor which begins with the next input symbol.

The automaton has to accept when each computation branch discovers that
its corresponding factorization is accepted. This can happen either by testing
during the computation that a factor is in L or at the end of the input by
reaching a final state, so proving that the last factor is in L.

For each computation branch, the automaton A′ needs only to remember the
current state. This allows to implement A′ by keeping in its finite state control
the set of states which are reached by computation branches. More precisely, the
formal definition of A′ = 〈Q′, Σ, δ′, i′, F ′〉 is as follows

– Q′ = 2Q,
– i′ = {i},

– for α ∈ Q′, σ ∈ Σ, δ′(α, σ) =

{
δ(α, σ), if δ(α, σ) ⊆ F ;
δ(α, σ) ∪ {i}, otherwise;

– F ′ = {α ∈ Q′ | α ⊆ F}.

In particular, in the definition of δ′(α, σ), the part δ(α, σ) corresponds to the
computation branch (a), while the part {i} corresponds to (b) and it is not added
when after reading a symbol σ all the states are final, namely, all factors that
end in σ (after the already inspected input prefix) are in L. See Figure 2.

Now, we switch to the nondeterministic case supposing thatA = 〈Q,Σ, δ, I, F 〉
is nondeterministic, where I = {i} with i /∈ F . We build an NFA A′ which ac-
cepts the language L~. The general working strategy of A′ is similar to that
described for the deterministic case: in parallel computation branches, A′ in-
spects all different factorizations of the input. However, in this case A′ needs
also to simulate the nondeterministic choices of A.

In the construction for the operation }, the purpose of the nondeterministic
simulation was to check the membership of an input suffix to the language L′′.
In this construction the situation is more delicate, because we have to check

Universal Disjunctive Concatenation and Star 11

q0 q1 q2

q3

a

b

b

a
a, b

a, b

q0 q1 q0 q2

q3 q1 q3
q0 q2
q3

a

b

b

a a
b

a, b
a

b

a

b

Fig. 2. Let Σ = {a, b} and L = Σ? \{ab}. The DFA depicted on the left recognizes L\
{ε}. Applying to it the construction presented in the proof of Thm. 18, the DFA
depicted on the right is obtained, which accepts L~ = Σ? \ {(ab)?}.

input factors instead of suffixes. For the initial state there is only one choice.
However, from a state r we can have a nondeterministic choice which leads to
the acceptance of a certain factor x and to the rejection of another factor y, and
a different choice which leads to reject x and to accept y. Since A′ has to inspect
all different factorizations, both choices have to be considered. Thus, each time
A′ needs to simulate a transition from a state r on a symbol σ, a nonempty set
of transitions from r on σ is nondeterministically selected, guessing that this set
will lead to test that each factorization inspected in computation branches that
visit the state r at that point is accepted.

The formal definition of A′ = 〈Q′, Σ, δ′, I ′, F ′〉, obtained along these lines, is
the following:

– Q′ = 2Q,
– I ′ = I = {i},
– for α ∈ Q, σ ∈ Σ, let us consider the following set:

next(α, σ) = {γ ∈ 2Q | ∃f : α→ 2γ s.t. γ =
⋃
r∈α

f(r)∧

∧ ∀r ∈ α(∅ 6= f(r) ⊆ δ(r, σ))}; (5)

the set δ′(α, σ) contains all β ∈ 2Q such that β =

{
γ, if γ ⊆ F ;
γ ∪ {i}, otherwise;

for some γ ∈ next(α, σ),
– F ′ = {α ∈ Q′ | α ⊆ F}.

Finally, we study an upper bound on the state complexity. Given an NFA with n
states accepting a language L, by adding one more state i, we can obtain an
NFA A in the form required by our last construction, accepting the language L\
{ε}. Notice that L~ = (L \ {ε})~. Thus, the number of states of the resulting
automaton A′ is at most 2n+1. However, inspecting the construction, we can see
that only at most one-half of them can be reached. In fact, from the definition
of δ′ we observe that each state β in the range of δ′ is defined by a subset γ ⊆
Q\{i}, taking β = γ when all the states in γ are final, and β = γ∪{i} otherwise.
This gives 2n possibilities. However, γ = ∅ should not be considered because it
is not reachable (see the definition of next(α, σ)) and, on the other hand, the

12 Nelma Moreira, Giovanni Pighizzini, Rogério Reis

state {i} does not belong the range of δ′ but it is used at the beginning of the
computation. Hence, we conclude that the total number of reachable states is at
most 2n. ut

4 Conclusion

As mentioned in the Introduction, the investigation of universal disjunctive con-
catenation and star was initially motivated by the study of state costs of boolean
and regular operations on dcFAs. To this respect, we now sketch some results
that can be easily derived. All automata we consider in this discussion are non-
deterministic.

First of all, the complementation of a dcFA can be trivially done, without
increasing the number of its states, just switching the set of accepting states
with the set of rejecting states. For the other operations, we can proceed as
follows. From each dcFA A, we can get two NFAs A⊕ and A	 with at most
the same number of states as A, recognizing the languages L⊕(A) and L	(A).
Hence, given two dcFAs A and B we can easily build a dcFA C, corresponding
to the union, by combining A⊕ and B⊕, according to the standard construction
for the union, and A	 and B	, according to the standard construction for the
intersection. The number of states of C is polynomial with respect to those of A
and B. We can proceed in a similar way for the intersection.

In the case of the concatenation, the accepting part of C is obtained by
combining A⊕ and B⊕, as in the standard construction for the concatenation.
Since we are interested in a nondeterministic automaton, this uses a number of
states which is bounded by the sum of the states in A and B. The rejecting
part of C should recognize the language A	}B	, so according to Theorems 12
and 13, it uses an exponential number of states. In a similar way, for the star we
have a polynomial number of states for the accepting part, but an exponential
upper bound for the rejecting part, according to Theorem 18.

