
Faculdade de Engenharia da Universidade do Porto

A link level simulation framework for Machine
Type Communication towards 5G

Rui Nunes

V.1.1

Dissertação realizada no âmbito do
Mestrado Integrado em Engenharia Electrotécnica e de Computadores

Major Telecomunicações

Orientador: Professor Ricardo Morla

14 de Julho de 2017

ii

© Rui Nunes, 2017

iv

Abstract

5G is currently being standardized, and many aspects of the physical layer are yet to be

decided, particularly related to Machine Type Communication (MTC). Building upon the 3GPP

release 13 specifications for MTC, this thesis presents a link level simulation framework,

allowing for quick prototyping of ideas and concepts towards 5G.

Throughout this work, the architecture and main building blocks of the simulation

framework are described, and implementation and configuration concepts are presented. The

support for both standard and non-standard 3GPP configurations is illustrated, including

OFDM numerology, pilot configuration and channel masking options. Simulation results are

then presented, specifically targeting coverage enhancements topics for MTC. Different

combining strategies are explored, followed by an investigation showing the importance of

minimizing overhead for MTC applications.

vi

Acknowledgments

I would like to thank all those who made this work possible. At FEUP, Professor Ricardo

Morla for accepting to supervise this thesis, and for the invaluable support and guidance. At

Sony Mobile, Hares Mawlayi and Peter Karlsson for the opportunity, Basuki Priyanto for the

expertise, insight, time and patience, Göran Ekberg and Abbas Sandouk for doing magic in

scheduling.

Finally, a special thanks to Marta Jani, for the constant support and motivation during

this period.

viii

Contents

Abstract .. iv

Acknowledgments .. vi

Contents .. viii

List of figures .. xi

List of tables ... xiii

Abbreviations and Acronyms .. xv

Chapter 1 ...1

Introduction ... 1
1.1 - Overview of the physical layer aspects and MTC ... 1
1.1.1. An overview of the Physical Layer evolution towards 5G 1
1.1.2. Machine Type Communication within LTE .. 2
1.2 - An overview of related simulation environments in Matlab 2
1.3 - Motivation and contents .. 3

Chapter 2 ...4

The Simulation Framework overview ... 4
2.1- Requirements, architecture and basic building blocks 4
2.1.1. The test script ... 6
2.1.2. The simulation manager .. 6
2.1.3. The simulator .. 8
2.2- Data structures and the pre-defined configuration modules 8
2.2.1. The config data structure .. 9
2.2.2. The system data structure ... 9
2.2.3. The link data structure ... 13
2.2.4. The UE data structure .. 14
2.2.5. The run data structure ... 15
2.2.6. Configuration examples .. 15

Chapter 3 ... 17

The Simulation Framework implementation ... 17
3.1- Transport channel processing ... 17
3.1.1. The channel coding and decoding blocks ... 18
3.1.2. The Rate Matching transmitter and receiver blocks 19
3.1.3. The symbol mapping and de-mapping modules 20
3.1.4. The OFDM encoder and decoder block .. 21
3.2- HARQ and repetitions ... 23
3.3- The scheduler, channel masking and timing ... 25
3.3.1. OFDM grid Initialization and channel masking 25
3.3.2. OFDM grid Initialization example for LTE ... 26
3.3.3. Transport channel resource allocation .. 28

Chapter 4 ... 30

Simulation results .. 30

4.1 - Module validation ... 30
4.1.1. Un-coded and coded performance evaluation 30
4.2 - HARQ .. 31
4.2.1. Overview .. 31
4.2.2. Incremental redundancy vs chase combining 32
4.2.3. Bit level vs Symbol level chase combining .. 34
4.3 - Repetitions ... 35
4.3.1. Overview .. 35
4.3.2. Repetitions with different redundancy versions 37
4.4 - Frequency hopping ... 38
4.5 - Coverage Enhancement improvements for eMTC 40
4.5.1. The importance of small code block sizes ... 40
4.5.2. Turbo coding vs convolutional coding .. 43

Chapter 5 .. 46

Conclusion .. 46
5.1- Limitations and future work ... 47

Annex A .. 48
A.1 - APIs accessed by the script ... 48
A.1.1. systemConfig() ... 48
A.1.2. UEConfig() ... 49
A.1.3. linkConfig() ... 49
A.1.4. simulatorManager() .. 49
A.2 - APIs accessed by the simulator... 50
A.2.1. antennaMapping () ... 50
A.2.2. awgnChannel () ... 50
A.2.3. channelCoding() .. 51
A.2.4. channelDecoding() ... 51
A.2.5. chEstimation() .. 51
A.2.6. CRC_attachment() ... 52
A.2.7. CRC_check() .. 52
A.2.8. demapping() .. 52
A.2.9. equalization () .. 53
A.2.10. fadingChannel () .. 53
A.2.11. getNewTB () ... 53
A.2.12. OFDM_demod_tti () .. 54
A.2.13. OFDM_mod_tti () ... 54
A.2.14. QAM_demod () .. 54
A.2.15. QAM_mod () ... 55
A.2.16. rateMatchingRX () .. 55
A.2.17. rateMatchingTX () .. 55
A.2.18. reTxCombiner () .. 56
A.2.19. scheduler () .. 56
A.2.20. snrCompensation () .. 57
A.2.21. symbolMapping () ... 57
A.2.22. updateTiming () ... 57
A.3 - APIs accessed by the simulation manager .. 58
A.3.1. simulator () ... 58
A.4 - Data structures .. 58
A.4.1. system ... 58
A.4.2. link ... 59
A.4.3. UE ... 59
A.4.4. config .. 59
A.4.5. run .. 60
A.4.6. status... 60
A.5 - Test script example .. 60

Annex B .. 62

x

B.1 - Performance overview .. 62

Annex C ... 63
C.1 - MATLAB Communications System Objects uses ... 63

Annex D ... 64
D.1 - Functional Blocks not described in 4.1- .. 64
D.1.1. The CRC attachment and CRC check blocks .. 64
D.1.2. The Code block segmentation and concatenation blocks 65
D.1.3. The modulator and demodulator blocks ... 65
D.1.4. The Antenna mapping module .. 66
D.1.5. The fading channel block .. 67
D.1.6. The AWGN channel module .. 69
D.1.7. Channel estimation ... 69
D.1.8. Equalization block ... 70

References .. 71

List of figures

Figure 2.1 – Framework architecture overview .. 5

Figure 2.2 – Typical test script overview ... 6

Figure 2.3 – Simulator manager overview .. 7

Figure 2.4 – Simulator processing overview .. 8

Figure 2.5 – Configuration data structures ... 9

Figure 2.6 – System information printed to the console when starting the simulation.
Example of a 20 MHz LTE system configuration with normal cyclic prefix and two
transmit antennas. .. 15

Figure 2.7 – System information printed to the console of a hypothetical system with 120
MHz bandwidth, 100 KHz subcarrier spacing, nine symbols per RB and a CP of ~1us
per OFDM symbol. ... 16

Figure 3.1 – Channel coding (right) and decoding (left). ... 18

Figure 3.2 – Rate Matching transmitter (left) and receiver (right) 19

Figure 3.3 – Rate Matching detail, transmitter. .. 20

Figure 3.4 – Symbol mapper (left) and de-mapper (right) .. 21

Figure 3.5 – OFDM encoder ... 22

Figure 3.6 – OFDM encoder (left) and decoder (right) .. 22

Figure 3.7 – Combining methods at the receiver ... 24

Figure 3.8 – RV period concept .. 24

Figure 3.9 – The scheduler module ... 25

Figure 3.10 – OFDM grid initialization for next TTI. ... 26

Figure 3.11 – Channel masking example ... 27

Figure 3.12 – Channel masking timing. ... 28

Figure 4.1 Un-coded QPSK/16QAM (left) and coded 1/3 convolutions code (right). 31

Figure 4.2 Simulation of different repetitions and HARQ effect. 32

Figure 4.3 Chase combining vs Incremental redundancy, QPSK, 0.6 code rate................... 33

Figure 4.4 Chase combining vs Incremental redundancy, QPSK, 0.2 code rate................... 33

Figure 4.5 Chase combining vs Incremental redundancy, 16QAM, 0.2 code rate. 34

xii

Figure 4.6 Bit level vs symbol level Chase Combining, QPSK, 0.6 code rate. 35

Figure 4.7 Bit level vs symbol level Chase Combining, 16QAM, 0.6 code rate. 35

Figure 4.8 Repetitions with QPSK and symbol combining, code rate 0.2, and perfect
synchronization and channel estimation ... 36

Figure 4.9 SNR gain with increasing number of repetitions, at 10% BLER 37

Figure 4.10 Repetitions patterns (8,2) and (8,8) .. 38

Figure 4.11 Repetitions with different RV vs. no repetitions with RV, at code rate 0.6 38

Figure 4.12 Simulation of different scheduling algorithms with 5MHz bandwidth on EPA-5
channel. .. 39

Figure 4.13 Simulation of different scheduling algorithms with 20MHz bandwidth on EPA-
5. .. 39

Figure 4.14 – Required SNR for different code block sizes, given a fixed allocation of 1440
channel bits. ... 41

Figure 4.15 - Required SNR for different code block sizes, given a fixed allocation of 1440
channel bits and a target BLER of 10% and 1%. .. 41

Figure 4.16 – Required Eb/N0 for different code block sizes, given a fixed allocation of
1440 channel bits. .. 42

Figure 4.17 Simulation results of 1/3 Turbo coding vs 1/3 Tail-biting convolutional code
for code block sizes: 40, 56, 80, 112, 144, 176, 232, 280, 352, 432, 528, 624, 736,
832, 960 bits, over AWGN. .. 44

Figure 4.18 Simulation results of 1/3 Turbo coding vs 1/3 Tail-biting convolutional code
for different block sizes and for a BLER of 10% over AWGN channel. 44

Figure 4.19 Simulation results of 1/3 Turbo coding vs 1/3 Tail-biting convolutional code
for different block sizes over EPA-1 channel. ... 45

Figure D.1 – CRC attachment block. ... 64

Figure D.2 – QAM Modulator ... 65

Figure D.3 – QAM Demodulator .. 66

Figure D.4 – Antenna mapper ... 67

Figure D.5 – Fading channel ... 68

Figure D.6 – AWGN channel .. 69

Figure D.7 – Channel estimation channel ... 70

Figure D.8 – Channel equalization .. 70

List of tables

Table 2.1 – Resource Block definition .. 10

Table 2.2 – OFDM subcarrier spacing ... 10

Table 2.3 – Bandwidth definition ... 10

Table 2.4 – Sampling information ... 11

Table 2.5 – Cyclic prefix definition ... 11

Table 2.6 – Number of downlink transmit antennas ... 11

Table 2.7 – Pilot definition ... 12

Table 2.8 – Channel masking definition .. 12

Table 2.9 – System timing definition ... 12

Table 2.10 – CRC configuration .. 13

Table 2.11 – Channel coding configuration .. 13

Table 2.12 – Modulation configuration ... 13

Table 2.13 – TTI configuration ... 14

Table 2.14 – Initial Redundancy Version configuration .. 14

Table 2.15 – Code Block size configuration ... 14

Table 2.16 – Channel size configuration ... 14

Table 4.1 — Simulator configuration for module validation example 30

Table 4.2 — Simulator configuration for HARQ validation .. 32

Table 4.3 — Simulator configuration for bit and symbol level combining 34

Table 4.4 — Simulator configuration for repetition ... 36

Table 4.5 — Simulator configuration for RV pattern cycling ... 37

Table 4.6 — Simulator configuration for frequency hopping ... 39

Table 4.7 — Simulator configuration for block size comparision 40

Table 4.8 — Impact of a 40 byte overhead for different code block sizes on EPA-1 channel .. 43

Table B.1 — Top 3 processing modules with highest processing time, AWGN 62

xiv

Table B.2 — Top 3 processing modules with highest processing time, fading 62

Table C.3 — MATLAB System Objects used.. 63

Abbreviations and Acronyms

3G 3rd Generation

3GPP Third Generation Partnership Project

4G 4th Generation

5G 5th Generation

ARQ Automatic Repeat Request

AWGN Additive White Gaussian Noise

BCH Broadcast Channel

BER Bit Error Rate

BLER Block Error Rate

CAT-0 3GPP category 0 device

CAT-M1 3GPP Category M1 device

CB Code Block

CC Chase Combining

CFO Carrier Frequency Offset

CRC Cyclic Redundancy Check

CRS Cell-specific Reference Signals

eMTC enhanced Machine-Type Communication

EPA Extended Pedestrian A model

EVA Extended Vehicular A model

ETU Extended Typical Urban model

FDD Frequency Division Duplex

FFT Fast Fourier Transform

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

HARQ Hybrid Automatic Repeat Request

HSDPA High-Speed Downlink Packet Access

HSUPA High-Speed Uplink Packet Access

IR Incremental Redundancy

LLR Log-Likelihood Ratio

LTE Long Term Evolution

MIB Master Information Block

MRC Maximum-Ratio Combining

MTC Machine-Type Communication

NR New Radio

OFDM Orthogonal Frequency-Division Multiplexing

xvi

OFDMA Orthogonal Frequency-Division Multiple Access

PCFICH Physical Control Format Indicator Channel

PHICH Physical Hybrid-ARQ Indicator Chanel

PDCCH Physical Downlink Control Channel

PDSCH Physical Downlink Shared Channel

PRB Physical Resource Block

PSS Primary Synchronization Channel

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase-Shift Keying

RB Resource Block

RBn Resource Block number

RV Redundancy Version

RX Receiver

SFN System Frame Number

SNR Signal-to-Noise Ration

SSS Secondary Synchronization Channel

TB Transport Block

TDD Time Division Duplex

TTI Transmission Time Interval

TX Transmitter

UE User Equipment

UMTS Universal Mobile Telecommunications System

1

Chapter 1

Introduction

This chapter introduces the scope of the dissertation, presenting the assumptions and

motivations for this work. The structure of the thesis is detailed at the end of the chapter.

1.1 - Overview of the physical layer aspects and MTC

1.1.1. An overview of the Physical Layer evolution towards 5G

Even though markedly designed for voice services, the early second generation GSM

standards included already support for transparent, and non-transparent data services over the

circuit-switched network, with a Radio Link Protocol supporting reliable communication over

the air interface [20]. The introduction of General Packet Radio Service (GPRS), in 2000,

brought the packet based concept to the second generation cellular network, backed by a new

radio protocol stack and a new packet switched core network [18]. However, relying on the

same GSM physical layer technology, optimized for circuit switched voice services, GPRS was a

compromise between backwards compatibility and service flexibility.

The third generation, UMTS, started deployment end of 2003 building upon the same GPRS

core network infrastructure, but with a radically new air interface approach. The physical layer

architecture was designed to be flexible, to accommodate a number of different services, at

different quality of services, and for data rates up to 384 Kbit/s. The core of this flexibility lies

on the new transport channel processing architecture introduced in the physical layer [21]. It

became possible, not only to design services with different channel coding algorithms, different

coding rates and different transmission time intervals, but these services could also be

multiplexed and used simultaneously.

The UMTS physical layer flexibility was further improved with the introduction of HSDPA in

2006 and later HSUPA. While the initial releases of UMTS relied on a relatively slow higher layer

based, and mostly static block size allocation, HSDPA introduced new physical layer signaling

channels, allowing for much faster allocation times. Transport block sizes and modulation could

now be changed dynamically, effectively matching the link to the channel conditions at much

higher rates than before. Additionally, a new retransmission scheme, HARQ, was introduced,

2

providing fast retransmission times, and improved decoding with soft combining of all

retransmissions, at the receiver [22].

The physical layer of the 4th generation, Long Term Evolution (LTE), built largely on the

concepts op HSDPA. While the access technology changed from CDMA to OFDMA, the transport

channel processing architecture, inherited most of the concepts from the previous generation,

even though enhanced by the extra flexibility provided by OFDMA [1].

The physical layer of the 5th generation New Radio (NR) is expected to be largely based on

the current LTE generation’s architecture, possibly more than in any previous iteration. And

while there are important changes, namely new algorithms for channel coding, new antenna

related technologies and larger bandwidth, scalable transmission times and OFDM numerologies

are expected to be key components in allowing the support for the three target 5G use cases:

enhanced mobile broadband, ultra-high reliability & low latency and Massive IoT [17][24].

1.1.2. Machine Type Communication within LTE

Wireless connectivity of devices, without human intervention is referred within 3GPP as

Machine Type Communication (MTC). As we have seen, data services have been possible

throughout the different generations of cellular networks, enabling already many possible MTC

application. However, the number of connected devices over cellular networks is expected to

grow massively over the next few years [58][27], especially within the class of devices including

sensors and actuators, typically associated with low cost and long battery life, often located in

places with poor cellular coverage.

In order to accommodate these devices, 3GPP have standardized new User Equipment (UE)

categories for LTE, namely category-0 (CAT-0), in release 12, and category-M1 (CAT-M1) in

release 13. CAT-M1 devices are expected to support a coverage gain of up to 21 dB relative to

legacy LTE devices [41], and at a fraction of the cost, due to relaxed requirements on

bandwidth, transmit power, and antenna configuration [3].

1.2 - An overview of related simulation environments in Matlab

 A number of LTE link-level simulators have been developed over the years, both

commercial and open-source.

In [61], a commercial LTE MATLAB based link level simulator is available, supporting

physical layer implementation of up to release 10 of the 3GPP specifications.

In [60], LTE link-level simulators for both uplink and downlink have been developed in

MATLAB, with a free license for academic and non-commercial use. It contains a vast amount

of features, including several multi-antenna configurations, a variety of fading profiles, and

channel estimation and equalization methods. Even though no release compliance is clearly

stated, the user manual suggests a pre-release 12 3GPP compliance due to lack of 256QAM

support [59].

Several additional open source simulations and frameworks have been presented over the

years, as [63] or [64], however, none has been updated to 3GPP release 13.

MATLAB provides an LTE specific toolbox under the name of LTE System Toolbox [62]. It

contains uplink and downlink processing chains and all standardized physical channels and

signals, as well as all multi-antenna transmission schemes up to release 12 of the 3GPP

specifications. The toolbox has recently been updated to include 5G channel models as per

[23]. While including a rich set of tools, this cannot be seen as a finished link-level simulator

of framework.

Even though there are a number of available simulation environments, to the best of our

knowledge, there is no available release 13 3GPP compliant solution. Also, within the most

updated environments, as in [60], the design goal was clearly to implement LTE specific

features, timing and OFDM numerologies, so that the flexibility to prototype non-standard

solutions, including different OFDM numerologies, was not an intention [59]. By presenting a

framework able to implement the MTC relevant 3GPP release 13 features, and by including an

open frame structure and OFDM numerology, this work is expected to be a valuable tool in

prototyping new ideas towards 5G.

1.3 - Motivation and contents

The main contribution of this thesis is the development of a link-level simulation

framework, capable of prototyping ideas and concepts for MTC devices, specifically in areas of

coverage enhancement and power consumption. While having CAT-M1 devices, as a starting

point, the aim is to develop a framework capable of adapting to the evolving 3GPP

standardization towards 5G, by implementing a flexible timing and OFDM numerology, an open

modular approach, as well as a fully configurable system.

This thesis was sponsored by the Research & Standardization Organization at Sony Mobile,

in Lund, Sweden.

This thesis is organized as follows:

 Chapter 2 gives an overview of the framework requirements, architecture and

main data structures.

 Chapter 3 describes the implementation details of key modules within the

framework.

 Chapter 4 presents simulation results, illustrating the framework flexibility,

and validating key components with published results.

 Chapter 5 concludes this thesis with a critical analysis on main contribution as

well as suggestions for future improvements.

4

Chapter 2

The Simulation Framework overview

This chapter provides an overview of the simulation framework. It starts by describing the

high level requirements and basic building blocks, in section 2.1- , followed by an overview of

the main data structures used, in section 2.2- .

2.1- Requirements, architecture and basic building blocks

The simulation framework was developed to prototype Machine Type Communication

(MTC), with the LTE release 13 of the 3GPP specifications as baseline. The aim is to be able to

accommodate future releases, including the next generation New Radio, currently being

defined. The framework was written in MATLAB, reusing, as much as possible, the MATLAB

system objects. The framework was developed with the following design goals:

- Fast prototyping of new ideas and concepts.

- Target MTC devices.

- Support LTE FDD PDSCH and devices with category M1, as a starting point.

- Modular, with clear interfaces for easy maintenance.

- Easy addition of new modules.

- Generic, to accommodate a growing number of algorithms.

- Reconfigurable, for simple operation from a main script, including disabling or bypassing

functions.

- Easy comparison of different simulation configurations.

- Possibility to stop and resume simulations from the last simulation point.

- Possibility to store the simulation results and related configuration for further data

analysis.

- Accessible through one single API.

- Written in MATLAB.

A high level architecture overview of the framework is presented in Figure 2.1. The

framework provides one basic service. Having received a given configuration and a target SNR

range, the framework runs the requested simulation, returning the resulting BER and BLER

performance values for the each point in the provided SNR range. For the purposes of this

framework, each SNR point within a configuration is called a sub-instance, while a particular

configuration is called an instance.

Figure 2.1 – Framework architecture overview

Typically, the framework will be requested to run sequentially through several

configuration instances, each with several sub-instance.

Each configuration instance is defined by a new config data structure containing the entire

desired framework parametrization, including a number of target SNR points to be simulated,

the sub-instances.

Information exchange between the test script and the simulation framework is done

through one single data structure containing a collection of all individual configuration

6

instances to be simulated. This is the run data structure. These data structures are detailed in

section 2.2-

There are three main entities within the framework, the test script, the simulation manager

and the simulator. These will be described next.

2.1.1. The test script

The task of the test script is to populate the run data structure with all required

configuration instances. This can be done with the support of predefined configurations. Having

all configurations defined, the script then makes one single call to the framework by calling

the simulationManager API with the run structure as argument.

Once the simulation on all configuration instances is over, the framework returns the

simulation results for further post processing by the script.

An overview of a typical test script is shown in Figure 2.2, and an example script is provided

in Annex A.5 - .

Figure 2.2 – Typical test script overview

2.1.2. The simulation manager

The simulation manager handles the interface towards the test script and simulator. Having

been invoked by a test script, the simulation manager will sequentially step through all

configuration instances, calling the simulator for each particular sub-instance. This allows

immediate access to every finished simulated SNR point.

Additionally the simulation manager stores the run data structure, together with the latest

results from the simulator in the file system. This has two purposes, allow access to the very

latest simulated results, on a sub-instance level, and allow for the simulation to be terminated

and resumed from the last sub-instance. The processing flow overview of the simulation

manager is shown in Figure 2.3.

Figure 2.3 – Simulator manager overview

8

2.1.3. The simulator

The simulator.m module is the core of the framework. Detailed description of the different

modules used by the simulator will be provided in Chapter 3. The processing flow of the

simulator is shown in Figure 2.4.

Figure 2.4 – Simulator processing overview

The simulator will receive a configuration instance and sub-instance from the simulator

manager. The simulator will loop through its processing chain until one of the defined exit

criteria is met. The exit criteria are part of the configuration defined by the script, and may

be based on target amount of traffic or errors. Having reached one of the exit criteria, the

simulator returns the requested simulation results, as well as additional statistics.

2.2- Data structures and the pre-defined configuration

modules

The details of the framework data structures are described next. Focus will be on the most

relevant members. The complete list is provided in Annex A.4 - .

2.2.1. The config data structure

The fields in the config data structure are organized in a logical arrangement. In order to

minimize the number of available configuration options to a regular user, the config structure

is further subdivided into three additional logical data structures, the system, the link and the

UE data structures. These structures are available through predefined modules as shown in

Figure 2.5.

Additionally, the config data structure contains a number fields for high level

configurations. These are to be initialized by the test script and define the general simulation

environment, including the modules to be enabled, the SNR range, and some specific algorithm

selections.

Figure 2.5 – Configuration data structures

The system, link and UE part of the config data structure are defined in the following

subsections. The remaining config fields will be covered in the relevant modules. A full list of

config fields is provided in Annex A.4 - , and a script example in Annex A.5 - .

2.2.2. The system data structure

The system data structure is responsible for the entire lower level physical channel

configuration, including OFDM frame structure in time and frequency domain, cyclic-prefix

configuration, pilot structure, channel masking, resource block configuration, FFT size and

bandwidth configuration. The system configuration is not limited in any way to the LTE

standardized configuration. This is the key to making the framework flexible to accommodate

the new 5G OFDM configurations.

The system structure can be configured by calling the systemConfig function in the

systemConfig.m module, pointing to a predefined configuration. The contents of the system

structure are explained next.

The Resource Block definition (RB) is the basic building block of the system configuration.

The RB is a structure containing two fields, the number of subcarriers and the number of OFDM

symbols, as shown in Table 2.1. This defines the minimum OFDM resource allocation size in the

frequency and time domain. The entire system bandwidth, timing and scheduling of the system

will be reference to this RB definition. Time measures will be based on units of RB duration,

10

defined by system.RB.nsymbol, and frequency measures will be given in given in multiples of

system.RB.nSC.

For FDD LTE, system.RB.nsymbol defines one slot duration and is defined by either 6 or 7

OFDM symbols, depending on the usage of extended or normal cyclic prefix, respectively. In

LTE, system.RB.nSC is fixed to 12 subcarriers.

Table 2.1 – Resource Block definition

Field Description LTE example

system.RB.nSC Number of subcarriers per resource block 12

system.RB.nsymbol Number of OFDM symbols per resource block 7*

* Normal cyclic prefix case. This defines the RB period as having 7 OFDM symbols, or 0.5 ms, a slot
duration in LTE.

The subcarrier spacing is an important OFDM design parameter, directly impacting the

performance of an OFDM system on particular channel conditions. It implicitly defines the OFDM

symbol duration. This is defined with the field System.SCspacing as shown in Table 2.2. For

LTE, subcarrier spacing is 15 KHz.

Table 2.2 – OFDM subcarrier spacing

Field Description LTE example

system.SCspacing Subcarrier spacing in Hz 15000

The system bandwidth and FFT size are defined next. There are two bandwidth related

fields, the transmission bandwidth and the channel bandwidth. The transmission bandwidth is

the scheduled bandwidth and defined in number of Resource Blocks. The channel bandwidth is

the total used system bandwidth. For LTE this information is given in [10]. The FFT size is

related to the transmission bandwidth and needs to be higher than the maximum number of

subcarriers. These fields are described in Table 2.3.

Table 2.3 – Bandwidth definition

Field Description LTE example

system.nRB Available transmission bandwidth in number of RBs 50*

system.BW Channel bandwidth in MHz 10

system.NFFT FFT size for OFDM 1024*

* For 10 MHz bandwidth there are 600 subcarriers

The information defined so far in the system structure allows the calculation of additional

information that is added to the system structure for easy reference by various framework

modules. Calculation is done as shown in Table 2.4.

Table 2.4 – Sampling information

Field Calculation Description

system.TsOFDM 1/system.SCspacing OFDM symbol duration

system.Ts system.TsOFDM/system.NFFT Sampling period

system.Fs 1/system.Ts Sampling frequency

The Cyclic Prefix (CP) configuration is also referenced to the RB definition, namely with

the number of OFDM symbols to be used. Each symbol in the RB definition will have its own CP

definition, allowing full flexibility in order to have different CP durations on different OFDM

symbols. The only assumption is that the pattern repeats with each new RB. The configuration

is made with the field system.cpNSamples, defining an array with size system.RB.nsymbol,

where each entry represents the number of samples used for the CP for each OFDM symbol as

shown in Table 2.5.

Table 2.5 – Cyclic prefix definition

Field Description LTE example

system.cpNSamples[]
Number of samples per

cyclic prefix for each OFDM symbol

[80 72 72 72 72 72 72]*

* LTE with Normal cyclic prefix and FFT size of 1024

The number of transmit antennas is defined in system.nTx as shown in Table 2.6.

Table 2.6 – Number of downlink transmit antennas

Field Description LTE example

system.nTx Number of TX antennas 2

The pilot configuration is defined with a new structure containing the pilot indexes for

each antenna port, for the entire transmission bandwidth, and for one RB duration. This allows

for a fully flexible pilot arrangements, including the LTE-like hexagon pattern, comb type,

block type and others [30]. For LTE this defines the Cell Specific Reference Signals, CRS [11].

12

Table 2.7 – Pilot definition

Field Description LTE example

system.pilot.idx[] pilot pattern for each antenna port *

system.pilot.PowerBoost Power boost for pilot symbols 1

* Example shown in the scheduler description

Having defined the basis of the OFDM configuration, it is possible to define additional

channel masks occupying some of the OFDM resources. This is typically the case for physical

layer signaling channels. Each channel may be configured with specific timing information

including timing of first transmission as well as period of subsequent transmissions. This

information will be used by the scheduler when building the OFDM grid and assigning user

resources on a particular transmission time. The channels are defined as MATLAB cells with

structures, where each channel is defined by a structure within a cell, as shown in Table 2.8.

Table 2.8 – Channel masking definition

Field Description LTE example

system.channels{}.id tag identifying the channel PSS/SSS

system.channels{}.idx indexes if used resources in the OFDM grid *

system.channels{}.start 1st channel transmission in number of RB 0

system.channels{}.RBrep period of transmission in number of RB 10**

* Example shown in the scheduler description

** In LTE, the synchronization channels are repeated every 5 ms, this is 10 slot periods

For high level timing alignment, a timing structure is added containing the System Frame

Number duration (SFN), defined in terms of RB duration as shown in Table 2.9. The maximum

SFN (sfnMax) defines the SFN value at which the counting is wrapped.

Table 2.9 – System timing definition

Field Description LTE example

system.timing.sfn duration of SFN in RB periods 20*

system.timing.sfnMax Maximum SFN in SFN periods 1024

* In LTE 1 SFN = 1ms, this is 20 slot periods

2.2.3. The link data structure

The link data structure holds the details of transport channel processing configuration,

including channel coding type, CRC size, modulation order, TTI size, as well as rate matching

specific parameters. Some of the fields are updated by the framework.

The CRC definition is made through a cell containing 2 fields, the CRC size and a type.

This allows for a particular CRC size to be associated with several different CRC polynomials.

This is the case in LTE for the 24 bit CRC case, where two different polynomials are defined for

the initial CRC attachment block and for the code block segmentation block [1]. The CRC type

is a tag recognized by the CRC encoder/decoder. All LTE standardized CRC configurations with

24 bit, 16 bit and 8 bit, are supported [1].

Table 2.10 – CRC configuration

Field Description LTE example

link.CRCtype{ } Cell containing CRC size and type {24,24a}

The channel coding algorithm is a major block in the transport channel processing chain

and is chosen with the link.coding field. By selecting a particular channel coding algorithm, the

associated rate matching algorithm is implicitly also chosen.

The framework currently support 1/3 Turbo Coding and 1/3 tail-biting convolutional

coding, as standardized for LTE [1].

Table 2.11 – Channel coding configuration

Field Description LTE example

link.coding Channel coding algorithm ‘turbo’

Modulation is defined by means of the modulation order. The supported modulations are

QPSK and 16QAM, with modulation order 4 and 16, respectively.

Table 2.12 – Modulation configuration

Field Description LTE example

link.ModOrder Modulation order 4

Transmission Time Interval, TTI is an important link design parameter and defines the

time duration of a packet transmission. The configuration is given in multiples of RB duration,

system.RB.nsymbol, defined in the system data structure. For the LTE PDSCH, the TTI is 1 ms,

and lasts for the duration of two consecutive RBs, so that this value needs to be set to two.

14

Table 2.13 – TTI configuration

Field Description LTE example

link.tti TTI in multiples of RB period 2*

* In LTE, for the PDSCH the TTI = 1 ms, this is 2 slot periods

The initial HARQ redundancy version to be used by the rate matching block is defined by

the rv field. The meaning of this field depends on the rate matching implementation.

Table 2.14 – Initial Redundancy Version configuration

Field Description LTE example

link.rv Initial redundancy version 0

The code block size to be used, may be explicitly defined, or left for empty for the

framework to calculate, based on a pre-defined target code rate. If explicitly defined, it must

be a valid block size, within the allowed restrictions of the channel coder.

Table 2.15 – Code Block size configuration

Field Description LTE example

link.CBsize Code block size (bits) 528

The total number of available channel bits is calculated at run time by the scheduler,

based on the scheduling configuration, pilot configuration and channel masks on the used TTI.

Table 2.16 – Channel size configuration

Field Description LTE example

link.G Channel size (bits) 1440*

*For an allocation of 72 subcarrier, 2 TX antennas and a control region of 3 OFDM symbols

2.2.4. The UE data structure

The UE data structure contains the UE specific configuration options, including the ones

typically associated with the UE category: number of soft bits, maximum number of HARQ

processes, and number or receive antennas. Currently only one receive antenna is supported.

Annex A.4.3 provides the contents of the UE data structure.

2.2.5. The run data structure

The run data structure contains the collection of all configuration instances to be

simulated. Annex A.4.5 provides the detailed contents of the run data structure.

2.2.6. Configuration examples

Whenever the framework is initiated, a validity check will be performed on the

consistency of the system configuration. If allowed by the print level, the simulation manager

will print a summary of the system information to the console with potential warnings or errors.

Figure 2.6 shows the system configuration summary for an LTE configuration with 20 MHz, two

transmit antennas and normal cyclic prefix. Figure 2.7 shows the configuration of a

hypothetical system with 120MHz bandwidth, 100 KHz subcarrier spacing, one transmit

antenna, nine OFDM symbols per RB for a total RB duration of 100ms, and a very short cyclic

prefix duration of approximately 1 us. This illustrates the flexibility of the framework in

supporting a vast number of OFDM numerology.

Figure 2.6 – System information printed to the console when starting the simulation. Example of a 20

MHz LTE system configuration with normal cyclic prefix and two transmit antennas.

16

Figure 2.7 – System information printed to the console of a hypothetical system with 120 MHz

bandwidth, 100 KHz subcarrier spacing, nine symbols per RB and a CP of ~1us per OFDM symbol.

Adding a new configuration to the framework, is done in the systemConfig.m module with

an appropriate tag associated to the configuration. The script can then invoke this system

configuration by calling the systemConfig API with the matching tag. LTE FDD configurations

with all supported bandwidths, with normal and extended cyclic prefix, and with one and two

transmit antennas are already preconfigured.

17

Chapter 3

The Simulation Framework
implementation

The previous chapter provided an overview of the framework entities and most important

data structures. This chapter focuses on the implementation aspects of the main building blocks

of the simulator entity. Section 3.1- focuses on the transport channel processing related blocks.

Section 3.2- presents the implementation overview for HARQ and repetition handling, while

section 3.3- focuses on the scheduler.

3.1- Transport channel processing

The physical layer, having received a transport channel from the MAC layer, will process

that transport channel through a series of steps, at baseband level, before sending it over the

air. This is called the transport channel processing chain. Typically, the specifications will only

standardize the transmitter chain, while imposing performance requirements on receiver

chain.

This section describes the implementation of four different transport channel related

modules. The remaining modules are described in Annex D.1 - . In this treatment, transmit and

receive modules, are described in conjunction, whenever possible. Channel model related

blocks are explained in D.1.5 and D.1.6, including the method for perfect channel estimation

derivation.

The framework was implemented using MATLAB, a commercial simulation environment.

MATLAB supports a large number of communication related algorithms, specifically within the

Communications System toolbox package. These algorithms are tested and optimized for the

MATLAB environment. Whenever possible, the framework makes use of system objects. In these

cases, a wrapper module is created handling the configuration and communication with the

relevant system object. Annex B.1 - provides a lists of all MATLAB Communications system

objects used and the relevant modules.

18

3.1.1. The channel coding and decoding blocks

The channelCoding.m module receives a block of size n and outputs a block with a size m

x n + t, where 1/m is the native code rate of the channel coder, and t is the number of tail

bits. This module does not actually implement the channel encoding. Instead, and based on

the input parameter config.link.coding, it will instantiate the relevant module registered to do

the requested encoding operation. As illustrated on the left side of Figure 3.1, the framework

includes modules for 1/3 turbo coding and 1/3 tail-biting convolutional coding as defined in

[1]. Adding additional channel coding algorithms to the framework, requires the development

of the coding/decoding module and registering it on channelCoding.m module. The second

input parameter, config.enableCofing, allows bypassing the channel coding operation.

 The turbo encoder is implemented on ch_turboCoding.m and is based on the MATLAB

system object comm.TurboEncoder. The system object is configured with the polynomials and

internal interleaver indices according to the LTE turbo code definitions [1]. The size of the

input block is within the range of 40 to 6144 bits. However, the LTE turbo code internal

interleaver, being optimized for parallelized decoding [31], only allows a subset of blocks sizes

within this interval, with the granularity increasing progressively from 8 bit to 64 bit. The traffic

generation module, getNewTB.m, will consider these size limitations when allocating a new

block for turbo coding. The turbo encoder has a code rate of 1/3 and 12 tail bits, so that m is

3 and t is 12.

Figure 3.1 – Channel coding (right) and decoding (left).

The tail-biting convolutional code allows for an efficient tail-free encoding operation and

a code rate of 1/3, thus m is 3 and t is 0. It is implemented on the convEncodeTB.m module,

based on the MATLAB system object comm.ConvolutionalEncoder, with the LTE polynomials

defined in [1]. To implement the tail-biting operation, the initial state of the encoder is

initialized to the last 6 bits of the code block [33].

 The channel decoding operation is implemented with the same concept as the encoder.

The module channelDecoding.m, calls the relevant registered channel codding module for the

decoding operation, based on the config.link.coding input parameter, as shown on the right

side of Figure 3.1.

 The turbo decoding in ch_turbodecoding.m relies on the MATLAB system object

comm.TurboDecoder, with the same base configuration as the encoder. For maximum decoding

performance, the decoding algorithm is set to true a posteriori probability decoding. The

MATLAB implementation does not support early termination check, always using the fixed

number of configured iterations. The number of decoding iterations is set to six.

The tail-biting convolutional decoding is performed in convDecodeTB.m based on the

MATLAB system object comm.ViterbiDecoder with the same polynomials configuration as the

encoder. Additionally, the input is configured for soft-bit input with the tail truncated. The

comm.ViterbiDecoder system object has no native support for the tail-biting decoding

operation. The decoding was implemented using the suboptimal decoding scheme approach

defined in [32]. The simulated decoding performance can be found in Chapter 4.

3.1.2. The Rate Matching transmitter and receiver blocks

The rate matching stage is a fundamental block in the transport channel processing chain,

matching the rate from the channel encoder to the actual channel rate available for

transmission. Most common than not, these rates will be different, requiring either puncturing,

when the channel rate is smaller than the coding rate, or repetition, otherwise. This is shown

on the left side of Figure 3.2, where an input coded block of size n is adapted to have an output

size G. The available channel size G, is calculated at run time by the scheduler and updated in

the config data structure, on the config.link.G field.

Two additional major functions of the rate matcher are the operations of interleaving

and redundancy version selection, when applicable.

Figure 3.2 – Rate Matching transmitter (left) and receiver (right)

The framework supports the LTE rate matching blocks for turbo coding and 1/3 tail-biting

convolutional code as defined in [1]. A particular rate matching implementation is likely to be

optimized for a particular channel encoding scheme. Therefore, adding support for an

additional channel coding algorithm, requires, in most cases, the addition of a related

optimized rate matching module.

The rate matching transmitter operation for the turbo encoder is implemented in the

rateMatcherTurboTx.m module with support of two additional modules

rateMatcherTurboCommon.m and rateMatcherTurboInterleaver.m. Bypassing of rate matching

is possible through the input parameter config.enableRateMatching.

20

Figure 3.3 shows an overview of the implementation. The incoming bit sequence, being

turbo encoded, is composed by a sequence of triplets with one systematic bit s, followed by

two parity bits, p0 and p1. The bits are separated into sub-blocks of the same type and

interleaved according to a predefined permutation pattern. The output from the sub-block

interleavers are then placed in a circular buffer, starting with the systematic bits, and followed

by an interlaced sequence of parity bits. The output sequence is read from the circular buffer

starting from one of four fixed positions defined by the redundancy version field, config.link.rv.

For the initial transmission, the redundancy version is set to zero so that the output includes

as many systematic bits as possible. Depending on the size of the output block G, the readout

from the circular buffer may not contain all bits. The excluded bits are punctured. For eMTC

devices, it is expected to often work with low spectral efficiency, so that G is often larger than

the circular buffer size. In this case, the readout will include the same bit positions more than

once.

Figure 3.3 – Rate Matching detail, transmitter.

The rate matching for the convolutional coding has a similar architecture as for the turbo

coding, but with some important differences. Since there are no systematic bits in the output

from the convolutional coder, there is no differentiation between the three systematic output

streams. Each group of bits is interleaved and place in sequence into the circular buffer. The

readout is perform from the initial position, as it does not support different redundancy

versions.

The receiver rate matching operation is handled by the rateMatchingRx.m module,

selecting the correct module for the decoding algorithm, as shown on the right side of Figure

3.2.

 The receiver performs the reverse operation, as described for the transmitter, rebuilding

the circular buffer with the correct size, populating it with the G income bits, de-interlacing

the different streams, to finally rebuild the block for channel decoding.

One difference to the transmitter, where the entire operation is performed with hard bits,

at the receiver, the input block is composed of G soft-bits, representing the Log-likelihood

ratio (LLR) output from the demodulator. This is an important aspect when the input block

contains repetitions, since the rate matching operation can combine the repeated soft-bits

while populating the circular buffer, thus increasing the received bit energy. The framework

support both hard and soft-bit operation, depending on the modulator configuration.

3.1.3. The symbol mapping and de-mapping modules

The symbol mapping function populates the OFDM grid, by placing the data into the

allocated OFDM resources. It also populates the pilot masks and all the allocated channels.

Implementation is done in the symbolMapping.m module, and an overview is shown on the left

side of Figure 3.4.

An empty OFDM grid is initialized for each antenna port with the time and frequency

dimensions defined in the system and link data structures. For the transport channel, the

mapping is based on the scheduling input parameter containing the allocation mask for each

antenna port. Placement is performed on resource block basis on the increasing order of

subcarrier, followed by increasing order of OFDM symbol [11].

Figure 3.4 – Symbol mapper (left) and de-mapper (right)

 The OFDM masks for pilot symbols are contained in the grid structure received from

the scheduler, as described in 3.3.1. The symbol mapper will generate random QPSK modulated

sequence for both pilots and all additional masked channels. For the masked channels, the pilot

is divided across transmit antennas. The pilot sequence is returned by the module to allow pilot

based channels estimation.

The demapper.m module removes the transport channel symbols from the OFDM grid, as

per scheduling allocation, performing the reverse operation as the symbol mapper. The pilot

sequence is also retrieved and the de-mapped pilot sequence is returned.

This module is disabled when OFDM is disabled in config.enableOFDM.

3.1.4. The OFDM encoder and decoder block

The OFDM encoder receives one OFDM grid for each transmit antenna and outputs the time

domain encoded signal. The encoder is implemented in OFDM_mod_tti.m module as illustrated

in Figure 3.5.

22

Figure 3.5 – OFDM encoder

The received grid has the number of OFDM symbols corresponding to one entire TTI, as per

config.link.tti and config.system.RB. The encoding operation is performed on an OFDM symbol

basis, and is performed in three steps, as illustrated on the left side of Figure 3.6. On a first

step the k subcarriers within the symbol are re-arranged for the complex iFFT operation, a zero

DC sub-carrier is added and finally, zero padding on the non-used external sub-carriers is

added, in order to match to the chosen NFFT size, as given by config.system.NFFT. The second

step is the iFFT operation outputting a time-domain OFDM signal with NFFT complex samples.

The last step adds a cyclic-prefix, by copying the last i samples from the time-domain OFDM

signal, and appending them to be beginning. The size of i is given by config.system.cpNSamples,

and may be different across OFDM symbols.

Figure 3.6 – OFDM encoder (left) and decoder (right)

 The OFDM decoding operation performs the reverse operation, as illustrated on the

right side of Figure 3.6. The cyclic prefix is first removed, the FFT operation converts the signal

to the frequency domain, and finally, the signal is filtered to the k center subcarriers and the

DC carrier is removed.

3.2- HARQ and repetitions

Repetition and retransmission of packets is extensively used in the physical layer of LTE,

therefore requiring efficient combining methods. This is especially true for 3GPP release 13

eMTC devices operating in coverage enhancement mode, where a high repetition count, of up

to 2048, is possible [2].

Analysis of the different implementations as well as simulation results are presented in

sections 4.2 - and 4.3 - . This section presents the framework implementation of the supported

combining options. Figure 3.7 illustrates part of the receiver chain, showing the different stages

where combining may be implemented. There are two main combining options, bit-level and

symbol-level combining. While symbol-level combining can be done earlier within the receiver

chain, requiring less processing power, bit-level combining is required when the packets have

different redundancy versions (RV).

Bit level combining happens in two stages, during and after the receive rate matching

operation. In those cases where the code rate of the transmitted packet is lower than the

native channel encoder code rate, each packet will already contain repeated bits. These are

combined by the rate matching receiver, as described in section 3.1.2. Combining of repeated

blocks is performed after rate matching by adding the corresponding soft bits.

Symbol level combining, can be done at different levels. The post-equalization method

allows for Maximum Ratio Combining (MRC), where the channel gains can be used as weighting

factors, therefore maximizing SNR [43]. The framework implements this option by setting

config.CombinePreEq to 0. The channel weight for each repetition is calculated based on the

average channel gain on allocated resources.

The second symbol level combining method, post-FFT and pre-equalization method, allows

for a simpler implementation, with the combining weight being equal for all repetitions. The

framework performs this combining method by setting config.CombinePreEq to 1.

The third option listed in Figure 3.7, of combining prior to OFDM demodulation, is not

currently implemented. This option, by combing the time domain signals, requires only one

FFT operation for the combined set, as opposed to the other combining methods, requiring one

FFT operation per repetition [43].

24

Figure 3.7 – Combining methods at the receiver

Both HARQ and repetition functionality may be enabled or disabled as per configuration of

the Boolean settings config.enableHARQ and config.enableRepetition, respectively. The

maximum number of repetitions and retransmissions are defined by the settings

config.maxRepetitions and config.maxHarqRetx.

When repetition is enabled, it is possible to configure an RV period so that consecutive

repetitions within this period have the same RV, as illustrated in Figure 3.8. This allows for

symbol level combining, during the RV period, followed by bit level combining, at the end of

each RV period. The RV period is configurable through the parameter config.RVperiod.

Figure 3.8 – RV period concept

While keeping the RV pattern, it is also possible to enforce the same RV on all RV periods,

without changing the combining methods, by setting the input config parameter

config.forceHarqChaseComb to true.

3.3- The scheduler, channel masking and timing

The scheduler is an important module in the framework. It is responsible for managing all

OFDM resources on a TTI basis. This includes mapping of all masked channels to a particular

location in the OFDM grid, and assigning resourced to the transport channel. The scheduler

does not populate the grid with any data, it will rather provide the allocations mask for each

channel to be included on the next scheduling period. The scheduler is implemented in the

scheduler.m module.

Figure 3.9 – The scheduler module

3.3.1. OFDM grid Initialization and channel masking

As discussed in section 2.2.2, the system data structure allows for a fully flexible OFDM

configuration. This includes, not only the OFDM numerology, but also the minimum resource

block allocation configuration, pilot structure configuration as well as channel masking for any

number of channels. It is also possible to associate each channel to a particular time pattern.

The configurability of the Transmission Time Interval (TTI) in config.link.tti, described in 2.2.3,

adds further flexibility to the framework.

All this information is used by the scheduler when initializing the OFDM resources. The

scheduler is started in the beginning of every new TTI, and immediately after the timing module

has updated the RB counter, RBn. The initialization principles are based on the flow chart

shown in Figure 3.10. The scheduler starts by building one OFDM grid for each antenna port,

for the entire system bandwidth, and for the duration of one TTI. Next, the pilot positions are

defined. The pilot symbol indexes from config.system.pilot.idx, defined for one Resource Block

(RB) period, need to be repeated for the entire TTI and for each of the antenna ports. The pilot

positions on any antenna port will mask the relevant Resource Element (RE) for all antenna

ports. This is crucial to allow channel estimation across multiple antennas.

The next step is to iterate through the configured channels in config.system.channels, and

evaluate if, based on the channel timing configuration, config.system.channels{}.RBrep and

system.channels{}.start, it should be included for scheduling on the next TTI. The channels

selected for allocation, will be added sequentially based on the defined OFDM mapping

config.system.channels{}.idx. To simplify the channel masking configuration, the allocation is

defined, not accounting for any pilot symbols. It is the task of the scheduler to mask out the

pilot positions, when overlapping with any channel.

26

Having mapped all pilots and valid channels, the remaining resources are available for the

channel being handled by the transport processing chain. These are resources that the

scheduler can now allocate based on the chosen bandwidth and scheduling strategy. The entire

resource allocation is kept in the grid data structure.

Figure 3.10 – OFDM grid initialization for next TTI.

 The channel masking is a flexible configuration tool and may be used for other purposes

than signaling physical channel masking. It may also be used to create particular traffic patterns

masks in order to mimic a certain load scenario in the user plane.

3.3.2. OFDM grid Initialization example for LTE

An example of an OFDM grid mapping is shown in Figure 3.11 based on an LTE configuration

with normal cyclic prefix (14 OFDM symbols per TTI), 3 MHz bandwidth and two transmit

antennas. The framework includes a module, plotOFDMgrid.m, for plotting the allocated

resources to each channel, on a TTI basis, as shown in Figure 3.11.

The pilot symbols, in LTE called Cell-specific Reference Signals (CRS), are configured, on

OFDM symbols zero, four, seven and eleven, with a hexagon pattern. The pattern is shifted by

three subcarriers between the two antennas [11].

Three additional channel masks are configured in the config.system.channels in order to

mimic the typical signaling overhead of an LTE cell. The first mask contains the three physical

channels that are part of the, so called, control region. The control region is typically spanning

the first two or three OFDM symbols on every TTI, and the entire system bandwidth. In the

example from Figure 3.11, the size of control region is set to three OFDM symbols. The channels

included in this mask are the following:

 The Physical Control Format Indicator Channel (PCFICH), a very low bit rate

channel indicating the size, in OFDM symbols, of the control region [11].

 The Physical Hybrid-ARQ Indicator Channel (PHICH), used to carry the downlink

HARQ acknowledgement messages for received uplink transmissions [11].

 The Physical Downlink Control Channel (PDCCH), used to carry the scheduling

commands to the terminals [11].

For 3GPP release 13 compliant category M1 eMTC devices, the receiver bandwidth is

limited to 1.4 MHz, thus, the control region cannot be decoded by these devices. Nevertheless,

in order to serve all other devices, the control region persists and needs to be taken into

account when simulator M1 devices.

Figure 3.11 – Channel masking example

The second mask contains the Primary and Secondary Synchronization Signals, PSS

and SSS [11]. These are used for frame synchronization, support in detecting the physical cell

identity of the cell, and the duplex operation mode, TDD or FDD. PSS is sent on the 6th OFDM

symbol, and SSS on the 7th, and they span the center 72 subcarriers. PSS and SSS are

transmitted with a period of five TTIs.

The third and last mask contains the Broadcast Channel (BCH) [11], carrying part of

higher layer System Information. Only a limited subset of system information, the Master

System Information (MIB), is sent though the BCH, with the largest part being sent over the

user plane [12]. The MIB contains information on system timing, frequency bandwidth and

number of transmit antennas configured. The BCH is sent with a period of 20 RBn, on the 1st

four OFDM symbols, starting from the 2nd RBn. Just as the PSS and SSS, it spans the center 72

subcarriers.

Figure 3.12 illustrates the OFDM grid allocations on antenna port 1, following the scheduler

initialization process for the configured LTE system on three different TTIs.

28

Figure 3.12 – Channel masking timing.

The white area in Figure 3.11, represents the available resources for user data

scheduling. Assigning user data resources is the next task of the scheduler.

3.3.3. Transport channel resource allocation

After the OFDM initialization process, the scheduler is aware of the total available resources

for transport channel allocation. The next step is to allocate a subset of these resources to the

target transport channel.

The total available bandwidth is divided into contiguous frequency slots, each with the size

of one RB, system.RB.nSC. The selection of the exact frequency slots to allocate is based on

the chosen scheduling algorithms defined by the property config.schedulingType. The

framework currently supports three algorithms:

 ‘Fixed-localized’, where the scheduler allocates a fixed amount of contiguous

resources on a precise frequency location, given by the properties

scheduledRBStart and config.scheduledNumRB. These properties specify the

beginning and size of allocation in number of RBs.

 'Fixed-hopping', where a fixed amount of contiguous resources, defined by

config.scheduledNumRB are allocated randomly by the scheduler at each

scheduling interval. The location of the allocated resources will hop across

randomly selected frequency slots in an attempt to provide frequency

diversity between successive scheduling intervals. Especially for slow varying

channels.

 'Fixed-hopping-hmax', where the scheduler attempts to allocate a fixed

amount of contiguous resources, defined by config.scheduledNumRB, on the

slots with highest downlink channel gains. To do this, the scheduler is

assumed to have knowledge of the downlink channel gains from previous

transmissions. The channel gains are averaged across antennas and across

frequency slots, and each possible allocation interval of size

config.scheduledNumRB, is given a corresponding channel weight. The

scheduler then assigns the allocation with highest weight. Depending on the

downlink channel rate change, consecutive scheduling intervals, may

therefore have the same of different allocations.

The effective allocated resources are returned by the scheduler.m module in the scheduling

parameter. Additionally, the scheduler will also update the allocated channel size in

config.link.G. This will be used by the rate matching block to calculate the amount of

puncturing or repetition needed.

Simulation results for the different algorithms are presented in 4.4 - .

30

Chapter 4

Simulation results

This chapter presents some simulation results in an attempt to illustrate the framework

flexibility, as well as to validate key components within the framework, both against

theoretical results, as well as results published by other sources.

4.1 - Module validation

4.1.1. Un-coded and coded performance evaluation

The framework offers the possibility to bypass particular modules, thus, allowing evaluation

of specific components, as well as simplifying the introduction of additional modules. Table

4.1 lists a configuration used to evaluate performance of un-coded modulation signals over

OFDM. The configuration bypasses the modulator and associated rate-matching modules, forces

a fixed code rate of 1, and finally instruct the modulator to provide hard-bit outputs. The

results for un-coded 16QAM and QPSK are shown in the left chart of Figure 4.1 compared to the

theoretical results [42].

Table 4.1 — Simulator configuration for module validation example

Parameter Value

config.enableCoding false

config.enableModulation true

config.enableSoftDemodOut false

config.enableRateMatching false

config.enableFixedCodeRate 1

Figure 4.1 Un-coded QPSK/16QAM (left) and coded 1/3 convolutions code (right).

The simulation results match the expected theoretical results.

 Similarly, evaluation of channel decoding is possible for both hard and soft-bit inputs,

if supported by the decoder. This can be done on any configuration by toggling the configuration

setting config.enableSoftDemodOut. This is illustrated in the right chart in Figure 4.1 where

1/3 Tail-biting convolutional decoder performance is compared to the theoretical results. This

can be done on any configuration

4.2 - HARQ

This section investigates the principles of Hybrid Automatic Repeat Request (HARQ),

analysing the performance and impact of different combining strategies through simulation

results.

4.2.1. Overview

HARQ is an effective way to improve link performance, by enabling the transmitter to

quickly resend badly received packet, allowing the receiver to combine several packets before

channel decoding, thus improving the decoding performance [38]. This requires that both the

transmitter and receiver need to be able to buffer the packet, the transmitter, typically at

MAC layer, the receiver at the physical layer, before channel decoding. For every sent packet,

HARQ relies on a fast acknowledgment from the receiver in order to decide if a retransmission

is needed. To avoid any lag while waiting for the acknowledgment, several parallel HARQ

instances, called HARQ processes, may be configured, so that on successive transmission times,

different HARQ processes may be used. The framework currently supports one single HARQ

process, thus modeling an instant feedback, at the transmitter.

Considering the simulation configuration in Table 4.2, the simulation results are shown in

Figure 4.2, illustrating the typical BLER curve for a simulated HARQ process [36].

32

Table 4.2 — Simulator configuration for HARQ validation

Parameter Value

System bandwidth (MHz) 5

Allocation size (#PRBs) 6

Modulation QPSK

Channel Model AWGN

HARQ IR

Effective code rate 1/3

Channel coding turbo

For large SNR values, where one unique transmission can be correctly decode, HARQ has

obviously no effect. As SNR decreases, a single transmission would lead to a BLER close to 100%.

However, combining the initial transmission with a second retransmission provides the channel

decoder with a better input, enough to successfully decode the packet. With two retransmission

needed to successfully decode a packet, the effective BLER is 50%.

As SNR decreases even further, more re-transmissions are needed in order to successfully

decode received packets. The overall BLER, and consequently the effective code rate, spectral

efficiency, and ultimately the data rate, will decrease with increasing number of re-

transmissions.

Figure 4.2 Simulation of different repetitions and HARQ effect.

4.2.2. Incremental redundancy vs chase combining

In a HARQ implementation, there are two possible main strategies, based on the contents

of the retransmitted packet, Chase Combining (CC) and Incremental redundancy (IR). In Chase

Combining, all retransmissions are exactly the same, allowing for simpler combining

implementations, typically at symbol level, and prior to demodulation. On the other hand,

with Incremental redundancy, each transmission contains a different version of original

packet, typically different puncturing patterns, for higher code rates. Implementation is more

complex, typically requiring bit level combining in order to reconstruct the puncturing

pattern. The rate matching stage implemented in the framework for the turbo code supports

both IR and CC. The convolution implementation supports only supports CC.

IR has an advantage over CC, but only for higher code rates [37], where a higher level of

puncturing is present. This is confirmed by the simulation results in Figure 4.3 and Figure 4.4.

The simulation was run with the same configuration from Table 4.2, for both CC and IR, but

with a code rate of 0.6 and 0.2, respectively.

While at the lower code rate of 0.2, IR and CC are indistinguishable, at the higher code

rate there is a gain of approximately 0.6 dB with IR on the 1st retransmission, and close to 1

dB on the 2nd retransmission.

Figure 4.3 Chase combining vs Incremental redundancy, QPSK, 0.6 code rate.

Figure 4.4 Chase combining vs Incremental redundancy, QPSK, 0.2 code rate.

Figure 4.5 shows an additional simulation results using the same configuration from Figure

4.4, but with 16QAM instead of QPSK. The results show that for higher order modulations,

even at low code rates, IR has advantages over CC [37].

34

Figure 4.5 Chase combining vs Incremental redundancy, 16QAM, 0.2 code rate.

4.2.3. Bit level vs Symbol level chase combining

When combining packets with the same redundancy version (CC), the receiver has the

option to perform the combining either at bit level or symbol level. Both options are

supported by the framework as illustrated next.

The same base simulator configuration from Table 4.2, with the changes listed in Table

4.3, is used to simulate the combining of eight packets with the same RV. Using the parameter

config.RVperiod set to the extreme values of 1 and 8 enforces bit level combining and symbol

level combining, respectively.

Table 4.3 — Simulator configuration for bit and symbol level combining

Parameter Value

config.maxRepetitions 8

config.RVperiod 1 and 8

config.forceHarqChaseComb true

Modulation QPSK and 16QAM

Code rate 0.6

Figure 4.6 shows that, for QPSK, there is no difference between the combining methods.

However, when 16QAM is used, there is a considerable degrade, especially for higher number

of repetitions, as shown in Figure 4.7. This is in line with the results in [40].

Figure 4.6 Bit level vs symbol level Chase Combining, QPSK, 0.6 code rate.

Figure 4.7 Bit level vs symbol level Chase Combining, 16QAM, 0.6 code rate.

4.3 - Repetitions

This section continues the analysis initiated in the previous section on HARQ, extending it

to the case where a large number of repetition bundling is needed. Unlike HARQ, where a

retransmission is based on the receiver feedback, with repetitions, a predefined number of

transmissions is sent for the same packet. The receiver combines all the different repetitions,

thus improving the effective SNR.

4.3.1. Overview

In order to meet the target coverage enhancements required for eMTC devices, release 13

of 3GPP specifications added support for repetition. The impact and benefit was studied in [3].

The obvious consequence is that coverage enhancement is done at the expense of spectral

efficiency.

In ideal conditions the gain in SNR is linear, improving SNR by 3 dB with every doubling in

the number of repetitions, but in practice, channel estimation reliability will limit these gains

for increasing number of repetitions [41].

Considering a 5 MHz LTE cell over a non-faded AWGN as per configuration given in Table

4.4, the simulated SNR curves are shown tor the initial transmission and for a number of

repetitions, 2,4,8,16,32,64 and 128. All repetition are sent with the same redundancy version.

The gain in SNR, as expected, is approximately 3 dB per doubling in number of repetitions, as

shown in Figure 4.8.

36

Table 4.4 — Simulator configuration for repetition

Parameter Value

System bandwidth (MHz) 5

Allocation size (#PRBs) 6

Modulation QPSK

Channel Model AWGN

Effective code rate 1/5

Channel coding 1/3 turbo

Figure 4.8 Repetitions with QPSK and symbol combining, code rate 0.2, and perfect synchronization

and channel estimation

In these ideal conditions, for a number of repetitions, r, the overall SNR gain, G in

dB, can be given by:

3n G , (5.1)

where n represents the number of times repetitions, r, were doubled, and can be given by:

rn 2log . (5.2)

The required number of repetitions to obtain a target gain G, can then be given as:

 3

G

2 r , (5.3)

showing the exponential relation between gain and required repetitions. This relation is

illustrated in Figure 4.9, together with the points from Figure 4.8, having 10% BLER. For high

target gains, a significant number of repetitions is needed for only a modest improvement in

SNR.

Figure 4.9 SNR gain with increasing number of repetitions, at 10% BLER

In practice, channel estimation reliability and Carrier Frequency Offset (CFO) will

limit these gains for increasing number of repetitions [41] as shown in [65][9]. Having only

perfect channel estimation and synchronization, the framework can currently not validate

the repetition at high target gains.

4.3.2. Repetitions with different redundancy versions

Similarly to the HARQ concept, different repetitions of the same packet, may be sent

with different Redundancy Versions (RV). It is possible to define a redundancy version period,

so that, consecutive repetitions within the same period, all have the same RV. This is

especially advantageous for high code rates with high level of puncturing.

A simulation investigating this effect is shown in Figure 4.11. The simulation is based

on Table 4.4, with the changes described in Table 4.5.

Table 4.5 — Simulator configuration for RV pattern cycling

Parameter Value

Repetitions 8

RV period 2 and 8

RV pattern 0,1,2,3

Code rate 0.6 and 0.2

 The simulation compares two different RV period patterns, with a fixed number of 8

repetitions as illustrated in Figure 4.10. On pattern a), the RV period is two, so that every

two consecutive repetitions have the same RV. On pattern b), the RV period is the same as

the total number of repetitions, therefore all repetitions have the same RV. These patterns

are tested with code rates of 1/5, with no puncturing, and 3/5, requiring a high level of

38

puncturing. The simulation results are presented in Figure 4.11, showing approximately 1 dB

gain when pattern a) on the high code rate scenario. There is only a marginal gain with the

low code rate of 1/5.

Figure 4.10 Repetitions patterns (8,2) and (8,8)

Figure 4.11 Repetitions with different RV vs. no repetitions with RV, at code rate 0.6

As mentioned in section 4.2 - , combining packets with different RVs, requires

reconstruction of the puncturing or repetition pattern, thus, requiring bit level combining,

after demodulation. However, for coverage enhancement where low coding rates are used,

there is no expected performance improvement [15].

4.4 - Frequency hopping

This section presents a comparison of the different hopping algorithms, as described

in 3.3.3. Table 4.6 describes the simulator configuration.

The configuration with no hoping, corresponding to the ‘fixed-localized’ scheduling

option, is configured at the lower edge of the available bandwidth. The simulation results for

the 5MHz and 20 MHz simulation are shown in Figure 4.12 and Figure 4.13, respectively. As

expected, the benefit of frequency hopping increases with the system bandwidth, allowing a

higher degree of frequency diversity. The ‘fixed-hopping’, algorithm, blindly allocating a

random frequency slot, performs only modestly, when compared to the ‘fixed-hopping-hmax’

algorithm which allocates resources on the frequency slot with highest channel gain. In

practice, the downlink channel conditions on non-allocated resource is difficult to predict,

especially in FDD systems, but it shows that any downlink channel knowledge, may effectively

be used by the scheduler.

Table 4.6 — Simulator configuration for frequency hopping

Parameter Value

System bandwidth (MHz) 5/20

Allocation size (#PRBs) 6

Modulation QPSK

Antenna Configuration 2x1

Antenna correlation low

Channel Model EPA-5

Figure 4.12 Simulation of different scheduling algorithms with 5MHz bandwidth on EPA-5 channel.

Figure 4.13 Simulation of different scheduling algorithms with 20MHz bandwidth on EPA-5.

40

4.5 - Coverage Enhancement improvements for eMTC

This section analysis strategies to enhance downlink coverage for eMTC devices based

on the framework simulation results.

4.5.1. The importance of small code block sizes

Considering a 10 MHz LTE FDD configuration with a static allocation of 6 PRBs, QPSK

modulation, 2 TX antennas and a control region of 3 OFDM symbols, the number of available

channel bits per 1ms TTI is 1440 bits. The base simulator configuration is given in Table 4.7.

Table 4.7 — Simulator configuration for block size comparision

Parameter Value

System bandwidth (MHz) 10

Allocation size (#PRBs) 6

Modulation QPSK

Antenna Configuration 2x1

Antenna correlation low

Channel Model EPA

Doppler spread (Hz) 1

HARQ Off

Frequency hopping Off

Size of PDCCH region 3

With the fixed static channel allocation, the size of the code block will define the effective

code rate. Figure 4.14 illustrates the simulated BLER versus SNR curves for a number of

different code block sizes from 40 to 960 bits, representing effective coding rate from

approximately 0.028 to 0.667.

For any given BLER, smaller block sizes require lower SNR than larger ones. It is also obvious

that the gap between SNR curves increases as code block sizes get smaller hinting to the non-

linear relation between SNR and code block size, for small block sizes. On current 3GPP

releases, the very low block sizes, even though allowed by the Turbo coder block, are not

allowed to be scheduled for larger allocation sizes [2]. Assigning small blocks has an obvious

negative impact on spectral efficiency, however, for eMTC devices, spectral efficiency needs

to be sacrificed in order to meet the target receiver cost and coverage improvements [3].

Figure 4.14 – Required SNR for different code block sizes, given a fixed allocation of 1440 channel bits.

Figure 4.15 - Required SNR for different code block sizes, given a fixed allocation of 1440 channel bits
and a target BLER of 10% and 1%.

Further treatment of the data from Figure 4.14 is shown in Figure 4.15, considering only

the points with BLER of 1% and 10%. The resulting curves of BLER versus code block size show

two distinct regions: for code blocks above 350 bits, the SNR changes linearly with an increase

of the block size and at a rate of approximately 1 dBs per 100 bits. On the other hand, for block

sizes below 350 bits, any changes in the code block size has a more dramatic impact in the

SNR.

Generically, the relation between SNR and Eb/N0 for a given data rate can be given by

[26]:

42

0

b

N

E
 SNR , (5.4)

where

 is the spectral efficiency measured in bits/second/Hz. Assuming that the coding and

rate matching stages would lead to the same Eb/N0 performance, and noting that in our

simulation scenario the spectral efficiency is only depending on the code block sizes, then, the

gain in SNR in dB, nmSNR
, between any two block sizes Cn, Cm can be given by:

m

n

C

C
log10log10

m

n
nm

SNR

SNR
SNR , (5.5)

Figure 4.16 includes the SNR curve, referenced to Cn = 232 bits. It shows that the

simulated SNR largely matches the SNR , especially for smaller block sizes. In practice,

however, Eb/N0 for a particular BLER is not constant across all block sizes. This is shown in

Figure 4.16 where, for 10% BLER, a fairly constant Eb/N0 is reached for code rates below 1/3,

but, due to puncturing on larger blocks, there is a degradation in Eb/N0 performance as code

rates increases. For a target BLER of 1%, also the smaller blocks start to experience a

degradation in Eb/N0 performance due to the low turbo coding performance at these very small

code blocks sizes.

Figure 4.16 – Required Eb/N0 for different code block sizes, given a fixed allocation of 1440 channel
bits.

Figure 4.15 shows the importance of reducing any overhead, including those introduced by

higher layers. This is especially the case if smaller code block sizes are to be used, as it is

expected to be the case for many eMTC applications.

Considering an eMTC smart metering application based on a command-response traffic

model [3] with downlink commands of 20 bytes, the overhead introduced by E-UTRAN is

typically 48 bits with 24bit for CRC, 16 bits for RLC header and 8 bits for MAC header. The total

code block size becomes 26 bytes or 208 bits. From Figure 4.15, the impact of adding an IPV6

header of 40 bytes has a cost of approximately 4.3dB in SNR. For smaller optimized commands

of 10 bytes and 5 bytes, the impact would increase to approximately 5.5 dB and 6.7 dB

respectively. For code blocks larger than 350 bits, the impact is constant and around 3dB. The

results are summarized in Table 4.8.

Table 4.8 — Impact of a 40 byte overhead for different code block sizes on EPA-1 channel

RLC SDU size

(bytes)

Code block size

(bits)*

Impact in SNR of an additional

40 byte overhead (dB)

5 88 ~6.7 dB

10 128 ~5.5 dB

20 208 ~4.3 dB

> 38 bytes > 352 bits ~3 dB

* Assuming a fixed overhead of 48 bits accounting for RLC/MAC header + CRC

These results illustrate that coverage enhancement for eMTC calls for a highly efficient

protocol stack with minimum overhead.

Non-IP access was partially introduced by 3GPP in release 13 [4] and can be an important

coverage enhancement tool. The current 3GPP restriction in using the very low block sizes [2]

may, however, limit some of the benefits of a highly optimized application.

4.5.2. Turbo coding vs convolutional coding

The discussion in the previous section enhances the non-linear relation between SNR and

code block size at low spectral efficiencies. In terms of coverage enhancement, smaller code

blocks are clearly preferable over larger ones. However, from a transport block point of view,

having very small transport blocks has an extra negative effect in spectral efficiency due to the

fixed overhead introduced by the CRC block, as well as the RLC and MAC headers [6].

A further investigation is now done regarding the channel coding performance. While turbo

coding is a capacity approaching code [29], its high performance comes from the use of a large

internal interleaver, which requires the use of a large code block sizes. On very smaller code

block sizes, the BER/BLER performance of the turbo coder is highly degraded.

On the other hand, while the BER performance of tail-biting convolutional codes is mostly

independent on the block size [32], the BLER performance degrades with increasing code block

sizes. This is an intuitive result as for a given BER, larger blocks will likely have more errors

than smaller ones.

In Figure 4.17, the simulated turbo coding BLER performance, at the native rate of 1/3 is

compared to the 1/3 tail-biting convolutional code over AWGN channel with QPSK modulation.

The used code block sizes include a 24 bit CRC for BLER evaluation. The results confirm that,

as the block size decreases, the BLER performance also decreases for turbo coding, while

increasing for convolutional coding.

44

Figure 4.17 Simulation results of 1/3 Turbo coding vs 1/3 Tail-biting convolutional code for code block

sizes: 40, 56, 80, 112, 144, 176, 232, 280, 352, 432, 528, 624, 736, 832, 960 bits, over AWGN.

Further treatment of these results, for the points with 10% BLER, is shown in Figure 4.18.

For small code block sizes, the convolutional code approaches the performance achieved by

the turbo coding, outperforming it for code block sizes approximately below 80 bits.

Figure 4.18 Simulation results of 1/3 Turbo coding vs 1/3 Tail-biting convolutional code for different

block sizes and for a BLER of 10% over AWGN channel.

The simulation configuration in Table 4.7 is reused to simulate five small code block sizes

approximately matching the use case scenarios listed in Table 4.8. The simulation is performed

for tail-biting convolutional coding and the results are compared to the turbo coding figures.

As shown in Figure 4.19, the performance degradation by using the convolutional code is, at

most, 0.8 dB at 10% BLER for the largest block size of 232 bit.

Figure 4.19 Simulation results of 1/3 Turbo coding vs 1/3 Tail-biting convolutional code for different

block sizes over EPA-1 channel.

For small transport block sizes, a less power-hungry channel coding may nearly match the

performance of computational intensive Turbo coding. Using convolutional coding, can further

help in reducing the terminal power consumption, memory requirements and cost for specific

eMTC related applications.

46

Chapter 5

Conclusion

The main contribution of this thesis is the development of a link-level simulation framework

capable of prototyping and investigating concepts related to MTC devices.

Throughout this text, the flexibility of the framework has been illustrated in a number of

examples and simulations. Section 2.2- presented the system data structure as a major

contribution to the framework flexibility, both in terms of OFDM numerology configuration, as

well as pilot pattern definitions. An example of a hypothetical, non-LTE configuration is given

2.2.6.

The possibilities added by the channel masking concept is explained in section 3.3- , and

explorer further in the example of section 3.3.2.

The possibilities allowed by the different combining options for HARQ and repetitions are

initially explored in section 3.2- . Sections 4.2 - and 4.3 - investigated these topic further on a

variety of configurations, illustrating, on one hand, that the simulated results are aligned with

the published results, and, on the other hand, that the configuration flexibility, allows also for

non-standard configurations.

Section 4.5 - presented an investigation on the impact of code block sizes on the DL SNR

performance. This was done also for sizes not allowed by the current 3GPP standards for the

simulated context. The results illustrated how an efficient and light protocol stack, with

minimum overhead, may be a valuable asset to enhance coverage of particular low bit rate

application, like smart metering. It was shown that IPV6 header alone has an impact of

approximately 3 dB in SNR for large code block sizes, and up to 6.7 dB in highly optimized

applications with small code block sizes.

The investigation was further developed to show that, for small block sizes, the use of

convolutional code for the DL PDSCH may be beneficial in terms of device complexity, power

consumption and cost, when compared to the standardized more complex turbo codes.

5.1- Limitations and future work

While providing a rich set of feature and configuration options, it is important to understand

the limitations of the current framework and areas to be considered for future improvements.

Realistic, pilot-base channel estimation is among the first candidates for future

improvements. The current implementation supports perfect channel estimation only,

therefore providing an upper performance bound. A channel estimation module, as described

in Annex D.1.7, is already available to accommodate a future implementation. A realistic

channel estimation implementation would allow a more accurate study of the real impact of a

particular change.

The current implementation does not introduce any synchronization issues, modeling

therefore perfectly synchronized transceivers. Among these issues, Carrier Frequency Offset

(CFO), is likely the 1st implementation choice. This would allow for possibilities in studying

ways to contract CFO.

The current equalization is based on a single tap and zero forcing algorithm, as detailed in

D.1.8. More advanced equalization may be needed, particularly in conjunction with realistic

channel estimation, and eventually fast-varying channels.

While the framework only implements the downlink, it may easily be extended for UL, by

adapting the lower stages of the physical layer.

From a usability point of view, it may be beneficial to add additional return data from the

framework, including throughput analysis, as well as additional print levels for debugging

purposes. Inclusion of confidence intervals to the simulated points may help to interpret results

across different runs. Finally, while the code was written with the goal of easy maintenance,

rather than performance, it is surely possible and desirable to optimize the code to increase

performance.

48

Annex A

This Annex lists the framework APIs accessed by the main modules, the relevant data

structure, and a test script example.

A.1 - APIs accessed by the script

A.1.1. systemConfig()

Loads a predefined system configuration into the system data structure.

Prototype
system

systemConfig(typeConfig)

Parameters
typeConfig: a tag linked to a predefined system configuration. The currently pre-
defined configurations are the following:

'LTE_normalCP-1.4Mhz_1Tx'

'LTE_normalCP-1.4Mhz_2Tx'

'LTE_normalCP-3Mhz_1Tx'

'LTE_normalCP-3Mhz_2Tx'

'LTE_normalCP-5Mhz_1Tx'

'LTE_normalCP-5Mhz_2Tx'

'LTE_normalCP-10Mhz_1Tx'

'LTE_normalCP-10Mhz_2Tx'

'LTE_normalCP-15Mhz_1Tx'

'LTE_normalCP-15Mhz_2Tx'

'LTE_normalCP-20Mhz_1Tx'

'LTE_normalCP-20Mhz_2Tx'

'LTE_extendedCP-20Mhz_1Tx'

'LTE_extendedCP-20Mhz_2Tx'

'LTE_extendedCP-5Mhz_1Tx'

'LTE_extendedCP-5Mhz_2Tx'

Return
system: the populated system data structure.

A.1.2. UEConfig()

Loads a predefined UE configuration into the UE data structure.

Prototype
UE

UEConfig(typeConfig)

Parameters
typeConfig: a tag linked to a predefined UE configuration. The currently pre-defined
configurations are the following:

'cat-6_1RX'

'cat-M1_1RX'

Return
UE: the populated UE data structure.

A.1.3. linkConfig()

Loads a predefined link configuration into the link data structure.

Prototype
link

phyChannelConfig(typeConfig, CBsize);

Parameters
typeConfig: a tag linked to a predefined link configuration. The currently pre-defined
configurations are the following:

'CRC24_16QAM'

'CRC24_QPSK'

'CRC24_QPSK_conv1/3'

'CRC24_16QAM_conv1/3'

CBsize: Optional parameter to configure the link with a specific code block size.

Return
link: the populated link data structure.

A.1.4. simulatorManager()

Initiates a new simulation run, or resumes a previously interrupted simulation.

Prototype
outcome, status

simulatorManager(run, fullpath)

Parameters
run: run data structure, containing all configuration instances to be simulated.

fullpath: full path to the test script calling this function. Typically set to

mfilename('fullpath').

50

Return
outcome: the run data structure populated with the simulation outcomes.

status: flag indicating the validity of the simulation results:

0: success
1: failure

A.2 - APIs accessed by the simulator

A.2.1. antennaMapping ()

Performs antenna mapping and precoding, depending on antenna configuration. Current
configurations include SISO and 2 transmit antennas with transmit diversity, according to
36.211 section 6.3.3.3/ 6.3.4.3.

Prototype
out

antennaMapping(in, config)

Parameters
in: input vector of complex modulated symbols.

config: config data structure.

Return
out: output vector of complex modulated symbols. Extra dimension is added in MISO
case.

A.2.2. awgnChannel ()

Adds Additive white Gaussian Noise to the input signal.

Prototype
out,noisePowerdB

awgnChannel(in, snr, config)

Parameters
in: input vector of complex modulated symbols.

snr: the target Signal-to-Noise Ratio

config: the config data structure.

Return
out: output vector of complex modulated symbols with added AWGN.

noisePowerdB: Noise power in dB, added by the AWGN block.

A.2.3. channelCoding()

Applies channel coding on the input data.

Prototype
out, codeRate

channelCoding(in, config)

Parameters
in: input vector of bits.

config: the config data structure.

Return
out: vector of coded bits.

codeRate: the effective code rate used.

A.2.4. channelDecoding()

Applies channel decoding on the input data.

Prototype
out

channelCoding(in, config)

Parameters
in: input vector of hard or soft-bits.

config: the config data structure.

Return
out: vector of decoded bits.

A.2.5. chEstimation()

Performs channel estimation on the input data grid.

Prototype
out

chEstimation(in, Hperfect, pilotSeq, config)

Parameters
in: matrix of complex elements, representing the received OFDM grid.

config: the config data structure.

Return
out: matrix of complex elements, representing the channel gains on the OFDM grid. A
dimension is added with a size equal to the number of transmit antennas.

52

A.2.6. CRC_attachment()

Add a CRC tail to the input vector.

Prototype
out

CRC_attachment(in, config)

Parameters
in: vector, representing a block of bits.

config: the config data structure.

Return
out: vector, representing a block of bits. Same as input with extra CRC tail.

A.2.7. CRC_check()

Performs the CRC check on the input block for bits.

Prototype
Out, error

CRC_check(in, config)

Parameters
in: vector, representing a block of bits with CRC tail.

config: the config data structure.

Return
out: vector, representing a block of bits with the CRC removed.

error: flag indicating the outcome of the CRC check:

0: success
1: failure

A.2.8. demapping()

Retrieves the data from the OFDM grid, based on the scheduling map.

Prototype
rxData, rxPilot

demapping(in, config, scheduling)

Parameters
in: matrix of complex elements, representing the received OFDM grid.

config: the config data structure.

scheduling: matrix of complex elements, representing the scheduled resources on the
OFDM grid.

Return
rxData: vector, representing a block of de-mapped data symbols.

rxPilot: vector, representing a block of de-mapped pilot symbols.

A.2.9. equalization ()

Retrieves the data from the OFDM grid, based on the scheduling map.

Prototype
out

equalization(in, h, SNR, config, scheduling)

Parameters
in: vector of complex elements.

h: channel estimation matrix covering the entire OFDM grid and for all TX antennas.

snr: Signal-to-Noise Ratio estimation

config: the config data structure.

scheduling: matrix of complex elements, representing the scheduled resources on the
OFDM grid.

Return
out: vector, representing a block of equalized data symbols.

A.2.10. fadingChannel ()

Filters the input signal with a fading equivalent channel.

Prototype
out, Hperfect

fadingChannel(in, config)

Parameters
in: vector of complex elements.

config: the config data structure.

Return
out: vector of complex elements, representing the faded signal.

Hperfect: perfect channel estimation matrix covering the entire OFDM grid and for all
TX antennas.

A.2.11. getNewTB ()

Retrieves a new transport block.

54

Prototype
out, config

getNewTB(config)

Parameters
config: the config data structure.

Return
out: a vector with a sequence of bits representing a transport channel.
config: the updated config data structure.

A.2.12. OFDM_demod_tti ()

Performs OFDM demodulation on an input signal.

Prototype
out

OFDM_demod_tti(in, config)

Parameters
in: vector of complex elements, representing the received time domain signal.

config: the config data structure.

Return
out: matrix of complex elements, representing the received OFDM grid.

A.2.13. OFDM_mod_tti ()

Performs OFDM modulation on an input signal.

Prototype
out

OFDM_mod_tti(in, config)

Parameters
in: matrix of complex elements, representing the received OFDM grid

config: the config data structure.

Return
out: vector of complex elements, representing the time domain signal.

A.2.14. QAM_demod ()

Performs QAM de-modulation of an input signal.

Prototype
out

QAM_demod(in, Nvar, config)

Parameters
in: vector of complex elements, representing the modulated signal

Nvar: estimated noise variance, representing the modulated signal

config: the config data structure.

Return
out: vector, representing the demodulated signal in bits of soft-bits.

A.2.15. QAM_mod ()

Performs QAM modulation of an input signal.

Prototype
out

QAM_mod(in, config)

Parameters
in: vector, representing the input bit signal

config: the config data structure.

Return
out: vector of complex symbols, representing the modulated signal.

A.2.16. rateMatchingRX ()

Performs the reverse rate-matching operation.

Prototype
out

rateMatchingRx(in, config)

Parameters
in: vector, representing the input bit signal

config: the config data structure.

Return
out: vector, representing the output bit signal

A.2.17. rateMatchingTX ()

Performs the rate-matching operation.

Prototype
out

rateMatchingTx(in, config)

Parameters
in: vector, representing the input bit signal

config: the config data structure.

56

Return
out: vector, representing the output bit signal

A.2.18. reTxCombiner ()

Performs the symbol level combining operation.

Prototype
out

reTxCombiner(in, h, config, scheduling, type)

Parameters
in: vector of complex symbols.

h: channel estimation matrix covering the entire OFDM grid and for all TX antennas.

config: the config data structure.

scheduling: matrix of complex elements, representing the scheduled resources on the
OFDM grid.

type: buffer operation, combine or reset:

'updateBuffer'

'initBuffer'

Return
out: vector of complex symbols, representing the result of the combining operation.

A.2.19. scheduler ()

Performs the scheduling of OFDM resources among all registered channels.

Prototype
scheduling, grid, config

scheduler(config, rbn, h)

Parameters
config: the config data structure.

rbn: an integer containing the current RBn.

h: channel estimation matrix covering the entire OFDM grid and for all TX antennas.

Return
scheduling: matrix of complex elements, representing the scheduled data resources
on the OFDM grid.

grid: the grid data structure, containing the allocated resources for the selected
channels and pilots. All not allocated resources are free for data scheduling.

config: the updated config data structure.

A.2.20. snrCompensation ()

Calculated the relation SNR/EbNo. Used when the subInstance is defined in EbNo and AWGN is
added based on SNR.

Prototype
out

snrCompensation(config, codeRate)

Parameters
config: the config data structure.

codeRata: the effective codeRate at the channel coding stage.

Return
out: the amount of SNR compensation needed, in dB, to scale SNR from EbNo.

A.2.21. symbolMapping ()

For each of the configured channels and pilots, performs the mapping to the allocated OFDM
resources.

Prototype
out, pilotSeq

symbolMapping(in, config, grid, scheduling)

Parameters
in: vector of complex elements. It has 2 dimensions in case of multiple transmit
antennas.

config: the config data structure.

grid: the grid data structure, containing the allocated resources for the selected
channels and pilots. All not allocated resources are free for data scheduling.

scheduling: matrix of complex elements, representing the scheduled data resources
on the OFDM grid.

Return
out: matrix of complex elements, representing the mapped symbols into the OFDM
grid. There is one grid per antenna port, therefore the matrix may have 2 or 3
dimensions.

pilotSeq: vector of complex elements containing the pilot sequence used.

A.2.22. updateTiming ()

Updates the counters associated with the system timing.

Prototype
rbnNext, sfnNext

updateTiming(config, rbnLast)

Parameters

58

config: the config data structure.

rbnLast: the previous RBn value.

Return
rbnNext: the next RBn value.

sfnNext: the next SFN value.

A.3 - APIs accessed by the simulation manager

A.3.1. simulator ()

Updates the counters associated with the system timing.

Prototype
results, stats

simulator(config, subInstance)

Parameters
config: the config data structure.

subInstance: integer identifying the intended subInstance of the configuration to be
run.

Return
Results: structure containing the simulation results

stats: structure containing additional statistics on the simulation run.

A.4 - Data structures

A.4.1. system

system.BW : system total BW (MHz)

system.SCspacing : SC spacing (Hz)

system.nTx : Number Tx antennas

system.timing.sfn : SFN duration (in #RB duration)

system.timing.sfnMax : SFN maximum before wrapping

system.nRB : effective BW (in #RB BW)

system.NFFT : NFFT size used

system.RB.nSC : #SC in a Resource Block

system.RB.nsymbol : #OFDM symbols in a Resource Block

system.cpNSamples(system.RB.nsymbol) : CP length of each OFDM symbol in the RB

system.TsOFDM : OFDM symbol duration (seconds)

system.Ts : base time unit (seconds)

system.Fs : sampling freq (Hz)

system.nSC : effective BW (in #SC)

system.pilot.idx(system.nTx) : pilot grid on each Tx antenna

system.pilot.PowerBoost : pilot power boost

system.channels{n}.id : channel id/name

system.channels{n}.idx : channel grid mapping

system.channels{n}.start : timming of 1st transmisson (in #RB)

system.channels{n}.RBrep : repetition interval (in #RB)

A.4.2. link

link. : CRC size/type

link.ModOrder : Modulation order

link.Qm : bits/symbol

link.rv : redundancy version

link.CBsize : codeblock size

link.tti : TTI duration in #RB duration

link.G : channel size in # channel bits for one tti

link.coding : channel coding to be used

A.4.3. UE

UE_capability.Nsoft : Total # soft bits.

UE_capability.Mdl_harq : # of Harq processes. Not yet used

UE_capability.nRx : # receive antennas. Not yet used

A.4.4. config

config.system : the system data structure

config.UE : the UE data structure

config.link : the link data structure

config.enableCRC : enables/disables CRC related blocks

config.enableCoding : enables/disables coding related blocks

config.enableModulation : enables/disables modulation related blocks

config.enableSoftDemodOut : enables/disables soft-bit demodulation

config.enableRateMatching : enables/disables rateMatching blocks

config.enableHARQ : enables/disables HARQ functionality

config.enableRepetitions : enables/disables repetition functionality

config.enableFixedCodeRate : enables/disables fix code rate allocation

config.enableOFDM : enables/disables OFDM related functions

config.enableAwgn : enables/disables AWGN channel

config.enableFading : enables/disables fading channel

config.typeFading : selects fading channel, if enabled

config.maxRepetitions : maximum number of repetitions (if enabled)

config.RVperiod : consecutive repetitions with same RV

config.maxHarqRetx : maximum number of HARQ reTx (if enabled)

config.forceHarqChaseComb : disables RV change for HARQ/repetitions

config.retxCombineMethod : repetition combining method

config.schedulingType : scheduling algorithm

config.scheduledNumRB : scheduling size in RBs

config.scheduledRBStart : scheduling start (localized case)

config.coderateTarget : target code rate if fixed code rate is enabled

config.txAntannaCorrelation : antenna correlation

config.chEstimationType : type of channel estimation to be used

config.equalizationType : type of equalization to be used

config.sim.ebnoRange : vector with all subInstances (EbNo in dB)

config.sim.targetNumErrors : target number of bit errors

config.sim.maxTxBits : target number of transmitted bits

config.sim.targetTxTTI : target number of TTIs (total transmission time)

config.sim.BLERtarget : target BLER

config.fadingRandomSeed : fading random seed

config.printLevel : print level to the console during simulation

60

A.4.5. run

run{}.config : config struct

run{}.results.berRange() : ber results for all subInstances

run{}.results.blerRange() : bler results for all subInstances

run{}.results.snrRange() : subInstances in terms of snr

run{}.results.ebnoRange() : subInstances in terms of ebno

run{}.completedRangeIdx : last completed subInstance

run{}.status : simulation status (started/terminated)

run{}.timeLastRun : datetime of last run

run{}.singlPointSimTime : simulation time for last subInstance

A.4.6. status

status.script : script name

status.state : simulation state

status.path : script full path

A.5 - Test script example

Script example for the simulation configuration Table 4.7 with the outcome shown in Figure

4.14.

%% ***

%

% script to investigate BLER vs SNR/EbNo with different CB sizes

%

%

%% ***

clear all;

%% initialize global config struct with relevant simulation data

config.system = systemConfig('LTE_normalCP-10Mhz_2Tx');

config.UE = UEConfig('cat-6_1RX');

config.link = phyChannelConfig('CRC24_QPSK', 0);

config.enableCRC = true;

config.enableCoding = true;

config.enableModulation = true;

config.enableSoftDemodOut = true;

config.enableRateMatching = true;

config.enableHARQ = false;

config.enableRepetitions = false;

config.enableFixedCodeRate = false;

config.enableOFDM = true;

config.enableAwgn = true;

config.enableFading = true;

config.typeFading = 'EPA-1';

config.schedulingType = 'fixed-localized';

config.scheduledNumRB = 6;

config.scheduledRBStart = 2;

config.txAntannaCorrelation = 'low';

config.chEstimationType = 'perfect';

config.equalizationType = 'zf';

config.CombinePreEq = 0;

config.sim.ebnoRange = 0:0.2:8;

config.sim.targetNumErrors = 1e8;

config.sim.maxTxBits = 1e8;

config.sim.targetTxTTI = 100;

config.sim.BLERtarget = 0.01;

config.fadingRandomSeed = 124;

config.printLevel = 2;

%% other initializations

CBsize = [40 56 80 112 144 176 232 280 352 432 528 624 736 112 960];

endRun = length(CBsize);

run = cell(1,endRun);

%% configure the simulation runs

for instance = 1:endRun

 % update CBsize for next run

 config.link.CBsize = CBsize(instance);

 run{instance}.config = config;

end

%% run the simulator

[outcome, status] = simulatorManager(run, mfilename('fullpath'));

if ~status

 fprintf('\nError running the simulator.\n');

 return

end

%% plot the results

figure

for instance = 1:endRun

 instResults = outcome{instance}.results;

 instConfig = outcome{instance}.config;

 semilogy(instResults.snrRange, instResults.blerRange, ’black’);

 hold on

end

grid on;

title('BLER vs SNR for different code block sizes(EPA-1)');

xlabel('SNR(dB)');

ylabel('BLER');

62

Annex B

This Annex presents framework profiling data, identifying the key bottlenecks modules in

terms of simulation performance.

B.1 - Performance overview

The following performance figures were obtained using the MATLAB profiling tools. While

Turbo Decoding is clearly the bottleneck on AWGN environments, when fading is used, the

fading channel (including the perfect channel estimation function) accounts for nearly half

of the total processing time.

Table B.1 — Top 3 processing modules with highest processing time, AWGN

Parameter % processing time

Turbo Decoding 24%

OFDM encoder 12%

Scheduler 8%

Table B.2 — Top 3 processing modules with highest processing time, fading

Parameter % processing time

Fading Channel 46%

Turbo Decoding 6%

OFDM encoder
3%

63

Annex C

This Annex presents the MATLAB System Objects used from the Communications System

toolbox.

C.1 - MATLAB Communications System Objects uses

Table C.3 — MATLAB System Objects used

Function MATLAB system object

AWGN channel comm.AWGNChannel* [53]

Fading channel comm.MIMOChannel* [54]

CRC attachment comm.CRCGenerator* [49]

1/3 Turbo Coding comm.TurboEncoder* [48]

1/3 tail-biting convolutional code comm.ConvolutionalEncoder* [51]

Modulation comm.RectangularQAMModulator* [46]

CRC check comm.CRCDetector* [50]

1/3 Turbo decoding comm.TurboDecoder* [47]

1/3 tail-biting convolutional code comm.ViterbiDecoder* [52]

Demodulation
comm.RectangularQAMDemodulator* [45]

* From the MATLAB Communications System toolbox

64

Annex D

This Annex presents implementation details for the relevant blocks accessed by the

simulator, and that were not included in section 3.1- .

D.1 - Functional Blocks not described in 3.1-

D.1.1. The CRC attachment and CRC check blocks

The CRC attachment block adds a CRC of size m to a block of size n. This is the first

user plane processing step within the physical layer. In the framework this is implemented on

the CRC_attachment.m module using the MATLAB comm.CRCGenerator system object.

The behavior of this module is controlled by two input parameters as shown in Figure

D.1. The config.link.CRCtype allows the selection of a predefined cyclic generator

polynomials identified by a tag. Currently the module implements the LTE standardized

polynomials [1] for 8bit, 16bit, and the two 24 bit versions. The second parameter,

config.enableCRC, allows bypassing the CRC operation, so that no CRC is attached.

The CRC check module, receives a block of size n+m and performs a CRC check based

on the last m bits of the block. A Boolean output returns the CRC check result. The

implementation is based on the MATLAB comm.CRCDetector and the configuration is, in all

aspects the same as for the CRC attachment case. This module may be disabled with the

Boolean parameter config.enableCRC, so that no error check is performed, and the output

becomes the same as the input.

Figure D.1 – CRC attachment block.

D.1.2. The Code block segmentation and concatenation blocks

Code block segmentation is included in the LTE specification for block sizes above

6144 bit. With eMTC devices in mind, where block sizes are expected to smaller than 1000

bit, code block segmentation, as standardized in [1] is not expected to ever be used. The

framework therefore does not implement code block segmentation.

D.1.3. The modulator and demodulator blocks

The modulator performs the constellation mapping of the incoming bit sequence of

size n, according to the selected modulation. The output is a block of complex modulated

symbols as illustrated in Figure D.2. The framework currently supports the 3GPP standardized

modulations for category M1 devices, QPSK and 16QAM. The implementation is based on

MATLAB’s comm.RectangularQAMModulator system object, configured to perform the 3GPP

symbol mapping as per [11].

Figure D.2 – QAM Modulator

In the standard configuration, the demodulator receives a sequence of symbols and

performs the demodulation operation, providing at the output a sequence of soft-bit in the

form of log-likelihood ratio (LLR) [44], as shown in Figure D.3. The number of output symbols

is given by n/k, where k is the number of bits per symbol, computed from

config.link.ModOrder.

It is possible, however, to enforce hard-bit detection by setting the

config.enableSoftDemodOut to true. The implementation is based on MATLAB’s

comm.RectangularQAMDemodulator system object.

66

Figure D.3 – QAM Demodulator

It is possible to bypass the modulation and demodulation operation with the setting

config.enableModulation.

D.1.4. The Antenna mapping module

The framework supports several transmit antennas from a system configuration point

of view. However, the only multi-antenna scheme currently implemented is transmit diversity

with two antennas, using a variant of the Alamouti scheme [56], the Space Frequency-Block

Coding (SFBC) approach, as defined for LTE in [11]. Implementation is based on the generic

two-step multi-antenna processing stage defined for LTE. The incoming block of symbols are

first mapped to two different layers, corresponding to the two antenna ports. The mapping

can be seen as a simple serial to parallel conversion, where all incoming even and odd

symbols are mapped to the layers corresponding to antenna port0 and antenna port1,

respectively. The second step is the precoding phase in which each layer is mapped to the

actual antenna port by the following precoding operation:

)Im(

)Im(

)Re(

)Re(

001

010

010

001

2

1

)1(

)0(

)1(

)0(

)1(

12

)0(

12

)1(

2

)0(

2

i

i

i

i

i

i

i

i

x

x

x

x

j

j

j

j

y

y

y

y

, (D.1)

Where
)(p

ix represent the ith symbol on layer p, and
)(p

jy represent the jth symbol on

antenna port p, with p {0,1}.

 The overall process is effectively dividing the power among the two antennas,

replicating the input symbols into antenna port0, while operating on consecutive pair of

symbols for antenna port1, as shown in Figure D.4.

Figure D.4 – Antenna mapper

Since transmit diversity relies on the assumption that the channel is unchanged

between the pair of symbols sent, some care must be taken if attempting to use the current

transmit diversity implementation for other non-LTE OFDM configurations, especially due to

pilot configuration. The LTE pilot configuration ensures that two data symbols are always

adjacent in the frequency domain, with no pilot in between.

Adding support for additional multi-antenna schemes requires implementation of the

corresponding layer mapping and precoding operations. An additional field to the config

structure is required to identify the scheme to be used.

D.1.5. The fading channel block

The modeling of multi-path fading propagation is a crucial component of any wireless

simulation environment. The framework relies on a statistical multi-path channel model

implemented by the MATLAB comm.MIMOChannel system object. This system object is a

generic implementation of Multiple-Input Multiple-Output (MIMO) multipath fading channel,

supporting both Rayleigh and Rician fading, Doppler spectrum and maximum Doppler shift

configuration, as well as antenna correlation definition [54]. The different paths are modeled

using a delay profile in the form of a Tapped Delay-Line (TDL), containing the relative path

delays and gains of the resolvable paths.

LTE defines a set of channel models, representing low, medium and high delay spread

environments [13]. Each channel model may be associated with a particular maximum

Doppler frequency. The framework supports all these channel models at various Doppler

shifts, selectable in config.typeFading.

The framework currently supports only one receive antenna, in line with 3gpp CAT-M1

devices. The comm.MIMOChannel system object is, therefore, defined either as Multi-Input

Single-Output (MISO), or Single-Input Single-Output (SISO), depending on the number of

68

configured transmit antennas. In case of more than one transmit antenna, the amount of

antenna correlation is defined by a correlation matrix for low, medium and high correlation,

as specified in [13]. These are configurable with config.txAntennaCorrelation.

An overview of the fading channel block is shown in Figure D.5. The module will

receive one transmission block per active antenna, as configured though the

config.system.nTx field. The module will then instantiate the comm.MIMOChannel system

object in order to apply the selected fading model, outputting one single filtered block with

the same size as the input blocks.

Figure D.5 – Fading channel

A second output from the fadingChannel.m module is the perfect frequency based

channel estimation. The channel estimate is provided for each element in the OFDM grid, and

for each of the transmit antennas. The calculation is based on the channel path gains

returned by the comm.MIMOChannel system object. For each time-domain sample i, and for

each transmit antenna, the comm.MIMOChannel system object returns an n element row

vector containing the channel gains for each of the n channel taps configured. The samples

corresponding to the cyclic prefix are discarded, and all vectors, corresponding to NFFT

consecutive samples, are averaged, obtaining the mean channel gains over each of the k

OFDM symbols. In order to obtain the time domain channel response, the n average tap gains

are time scaled according to their corresponding delay profile configuration. However, the

sampling rate resolution is too low for accurate magnitude frequency response estimation,

especially at low values of NFTT. Therefore an oversampling factor of 20 is used (100 for 128

point FFT cases). The time-scaled version of is then converted to the frequency domain by

means of the FFT of size k.NFFT, where k is the oversampling factor. In the frequency

domain the signal is down sampled and filtered to the matching OFDM grid bandwidth size.

The fading module may be disabled either by the config.enableOFDM or

config.enableFading. If fading is disable, all the incoming blocks, corresponding to different

antenna ports are simply added to generate the output block. It is also possible to configure

an initial random seed, config.FadingRansomSeed.

D.1.6. The AWGN channel module

The AWGN channel module is implemented in awgnChannel.m, based on MATLAB’s

comm.AWGNChannel system object.

 The module adds Additive White Gaussian Noise (AWGN) to the complex input

sequence based on the parameted targetSNR. The module calculates and returns the added

noise power in noisePowerdB.

Figure D.6 – AWGN channel

D.1.7. Channel estimation

Channel estimation is a major function within the receiver structure, with direct

impact of the overall performance. Currently, the framework only supports perfect channel

estimation, calculated in fadingChannel.m as described in D.1.5. This can be seen as

providing an upper bound on performance. Also, realistic pilot-based channel estimation, is

tightly connected to the actual pilot layout, and therefore difficult to generalize [30].

 The module chEstimation.m is a placeholder for realistic pilot-based channel

estimation implementations. The module is to perform the estimation on the received OFDM

grid based on the pilot sequence, pilot positions, and number of antennas ports, given as

arguments. The current output is a copy of the input matrix Hperfect.

70

Figure D.7 – Channel estimation channel

D.1.8. Equalization block

The channel equalization receives the de-mapped symbols and performs equalization

based on the channel estimation, received as input arguments, and the selected algorithm.

Currently only the one tap, Zero Forcing (ZF) algorithm is implemented [30], however,

SNRestimation is provided as an argument for more advanced implementations, like the

Minimum Mean Squared Error (MMSE) equalizer.

Figure D.8 – Channel equalization

In case of transmit diversity scenarios, the classical linear combining method as

presented in [55] is used, adapted for SFBC, and with channel estimation on each antenna

averaged over two consecutive data subcarriers.

The equalizer block is disabled if config.enableOFDM is set to false.

71

References

[1] 3GPP TS 36.212: "Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and

channel coding".

[2] 3GPP TS 36.213: "Physical layer procedures". v13.3.0.

[3] 3GPP TR 36.888: " Study on provision of low-cost Machine-Type Communications (MTC)

User Equipments (UEs) based on LTE ". v12.0.0.

[4] 3GPP TR 23.720 “Study on architecture enhancements for Cellular Internet of Things”.

v13.3.0

[5] 3GPP TR 23.720 “Study on architecture enhancements for Cellular Internet of Things”.

v13.3.0

[6] 3GPP R1-155034 Ericsson, “PUSCH transmission for MTC”

[7] 3GPP R1-154845 Sony, “Summary of Simulation Results for M-PDCCH”

[8] 3GPP R1-154211 Sony, “Cross PRB Channel Estimation for M-PDCCH”

[9] 3GPP R1-151214 Ericsson, “PDSCH link performance for MTC”

[10] 3GPP TS 36.101, “User Equipment (UE) radio transmission and reception”

[11] 3GPP TS 36.211, “Physical channels and modulation”

[12] 3GPP TS 36.331, “Radio Resource Control (RRC); Protocol specification”, v13.3.0

[13] 3GPP TS 36.101, “User Equipment (UE) radio transmission and reception”, v13.5.0

[14] 3GPP R1-157179, Sierra Wireless, “PUSCH RV Cycle Performance and Discussion”

[15] 3GPP R1-151588, Samsung, “Incremental Redundancy vs. Chase Combining for PDSCH

Transmissions”

[16] 3GPP R1-151216, Ericsson, “PUSCH channel estimation aspects for MTC”

[17] 3GPP TR 38.912 "Study on New Radio (NR) access technology", V14.0.0

[18] ETSI GSM 03.60 “General Packet Radio Service (GPRS); Service description”, v7.4.1

[19] ETSI GSM 03.10 “GSM PLMN Connection Types”, version 3.3.0

[20] ETSI GSM 04.22 "Radio Link Protocol (RLP) for data and telematic services on the Mobile

Station - Base Station System (MS-BSS) interface and the Base Station System - Mobile

Services Switching Centre (BSS-MSC) interface"

[21] 3GPP 25.212 "Multiplexing and channel coding (FDD), (Release 1999)", V3.11.0

[22] 3GPP 25.212 "Multiplexing and channel coding (FDD), (Release 1999)", V5.10.0

[23] 3GPP TR 38.900 "Study on channel model for frequency spectrum above 6 GHz", v14.3.0

[24] 3GPP TR 38.804 "Study on New Radio Access Technology; Radio Interface Protocol

Aspects (Release 14)", V14.0.0

[25] Stefania Sesia, Issam Toufik, Matthew Baker, “LTE, The UMTS Long Term Evolution, from

theory to practice”, Wiley, 2nd Edition, 2011

72

[26] Bernard Sklar, “Digital Communications, Fundamentals and Applications”, Prentice Hall,

2nd Edition, 2001

[27] Erik Dahlman , Stefan Parkvall, Johan Sköld, “4G LTE-Advanced Pro and the Road to 5G”,

Academic press, 3rd Edition, 2016

[28] Jung-Fu Cheng, Havish Koorapaty, “Error Detection Reliability of LTE CRC Coding”, 2008

IEEE 68th Vehicular Technology Conference

[29] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon Limit Error Correcting

Coding and Decoding: Turbo Codes", in IEEE International Conference on Coniniunications

(ICC'93), vol. 213, pp. 1064-1071, May 1993

[30] Tzi-Dar Chiueh, Pei-Yun Tsai, “OFDM Baseband Receiver Design for Wireless

Communications”, John Willey and Sons, 2007

[31] A. Nimbalker, Y. Blankenship, B.Classon, T. Blankenship “ARP and QPP Interleavers for

LTE Turbo Coding”, Wireless Communications and Networking Conference, 2008. WCNC

2008. IEEE

[32] Yi-Pin Eric Wang, R. Ramésh, “To Bite or Not to Bite - A Study of Tail Bits versus Tail-

Biting”, Personal, Indoor and Mobile Radio Communications, 1996. PIMRC'96., Seventh

IEEE International Symposium

[33] Howard H.Ma, Jack K.Wolf, “On Tail Biting Convolutional Codes”, IEEE Transactions on

communications, Vol. com-34, No. 2, February 1986

[34] https://www.mathworks.com/help/comm/examples/tail-biting-convolutional-

coding.html

[35] Tse.D, Viswanath.P “Fundamentals of wireless communication”, Cambridge University

press, 2005

[36] Josep Colom Ikuno, Martin Wrulich, Markus Rupp, “Performance and Modeling of LTE H-

ARQ”, https://publik.tuwien.ac.at/files/PubDat_173876.pdf

[37] Ericsson, “Performance Comparison of Chase Combining and Incremental Redundancy for

HSDPA”, TSG-RAN Working Group 1 meeting #17

[38] David Chase, “Code Combining-A Maximum-Likelihood Decoding

[39] Approach for Combining an Arbitrary Number of Noisy packets”, IEEE TRANSACTIONS ON

COMMUNICATIONS, VOL. COM-33, NO. 5, MAY 1985

[40] R1-01-0472 Texas Instruments “Bit level and symbol level Chase combining”, TSG-RAN

Working Group 1 meeting #20

[41] “Coverage Analysis of LTE-M Category-M1”, white paper. https://altair-semi.com/wp-

content/uploads/2017/02/Coverage-Analysis-of-LTE-CAT-M1-White-Paper.pdf

[42] Proakis, John G, Salehi, Masoud, “Digital Communications”, McGraw-Hill, 5th edition

[43] M. Okada, S. Komaki: Pre-DFT Combining Space Diversity Assisted COFDM, IEEE

Transactions on Vehicular Technology, Volume 50, Issue 2, March 2001

[44] MATLAB, Exact LLR Algorithm, https://www.mathworks.com/help/comm/ug/digital-

modulation.html#brc6yjx

[45] MATLAB, comm.RectangularQAMDemodulator System object,

https://www.mathworks.com/help/comm/ref/comm.rectangularqamdemodulator-

class.html

[46] MATLAB, comm.RectangularQAMModulator System object,

https://www.mathworks.com/help/comm/ref/comm.rectangularqammodulator-c

lass.html

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4656831
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4656831
https://www.mathworks.com/help/comm/examples/tail-biting-convolutional-coding.html
https://www.mathworks.com/help/comm/examples/tail-biting-convolutional-coding.html
https://publik.tuwien.ac.at/files/PubDat_173876.pdf
https://altair-semi.com/wp-content/uploads/2017/02/Coverage-Analysis-of-LTE-CAT-M1-White-Paper.pdf
https://altair-semi.com/wp-content/uploads/2017/02/Coverage-Analysis-of-LTE-CAT-M1-White-Paper.pdf
https://www.mathworks.com/help/comm/ug/digital-modulation.html#brc6yjx
https://www.mathworks.com/help/comm/ug/digital-modulation.html#brc6yjx
https://www.mathworks.com/help/comm/ref/comm.rectangularqamdemodulator-class.html
https://www.mathworks.com/help/comm/ref/comm.rectangularqamdemodulator-class.html
https://www.mathworks.com/help/comm/ref/comm.rectangularqammodulator-class.html
https://www.mathworks.com/help/comm/ref/comm.rectangularqammodulator-class.html

[47] MATLAB, comm.TurboDecoder System object,

https://www.mathworks.com/help/comm/ref/comm.turbodecoder-class.html

[48] MATLAB, comm.TurboEncoder System object,

https://www.mathworks.com/help/comm/ref/comm.turboencoder-class.html

[49] MATLAB, comm.CRCGenerator System object,

https://www.mathworks.com/help/comm/ref/comm.crcgenerator-class.html

[50] MATLAB, comm.CRCDetector System object,

https://www.mathworks.com/help/comm/ref/comm.crcdetector-class.html

[51] MATLAB, comm.ConvolutionalEncoder System object,

https://www.mathworks.com/help/comm/ref/comm.convolutionalencoder-class.html

[52] MATLAB, comm.ViterbiDecoder System object,

https://www.mathworks.com/help/comm/ref/comm.viterbidecoder-class.html

[53] MATLAB, comm.AWGNChannel System object,

https://www.mathworks.com/help/comm/ref/comm.awgnchannel-class.html

[54] MATLAB, comm.MIMOChannel System object,

https://www.mathworks.com/help/comm/ref/comm.mimochannel-class.html

[55] Goldsmith.A, “Wireless Communications”, Cambridge University Press, 2005

[56] Siavash M. Alamouti , “A Simple Transmit Diversity Technique for Wireless

Communications”, IEEE Journal on selected areas in communications, Vol. 16, No. 8,

October 1998

[57] Qualcomm, “Accelerating 5G NR for Enhanced Mobile Broadband”,

https://www.google.se/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&v

ed=0ahUKEwih_pvQ59PUAhXKa5oKHRHSBq4QFgg3MAI&url=https%3A%2F%2Fwww.qualcom

m.com%2Finvention%2Ftechnologies%2F5g-nr&usg=AFQjCNEhsxBoB9jIjygC9IsO8i7QRM57uw

[58] Ericsson, " Internet of Things forecast”, https://www.ericsson.com/en/mobility-

report/internet-of-things-forecast

[59] Institute of TelecommunicationsVienna University of Technology, “Vienna LTE Simulators

LTE-A Link Level Simulator Documentation, v1.4Q2-2016”

https://owncloud.nt.tuwien.ac.at/index.php/s/2Xh3pF5ltjYCnI6#pdfviewer

[60] https://www.nt.tuwien.ac.at/research/mobile-communications/vccs/vienna-lte-a-

simulators/

[61] LTE-PHY Lab https://www.is-wireless.com/5g-toolset/lte-phy-lab/

[62] MATLAB LTE System Toolbox, https://www.mathworks.com/products/lte-system.html

[63] Piro, G., Grieco, L.A., Boggia, G., Capozzi, F., Camarda, P., “Simulating LTE Cellular

Systems: an Open Source Framework”, IEEE Transactions on Vehicular Technology, Vol.

60, No. 2, Feb. 2011

[64] M.Kima1, C.Gussen1, B.Espindola, T.Ferreira, W.Martins, P.Diniz, "OPEN-SOURCE

PHYSICAL-LAYER SIMULATOR FOR LTE SYSTEMS", Speech and Signal Processing (ICASSP),

2012 IEEE International Conference on Acoustics, March 2012

[65] R1-151662, Panasonic, “Evaluation on PDSCH repetition in CE MTC”

https://www.mathworks.com/help/comm/ref/comm.turbodecoder-class.html
https://www.mathworks.com/help/comm/ref/comm.turboencoder-class.html
https://www.mathworks.com/help/comm/ref/comm.crcgenerator-class.html
https://www.mathworks.com/help/comm/ref/comm.crcdetector-class.html
https://www.mathworks.com/help/comm/ref/comm.convolutionalencoder-class.html
https://www.mathworks.com/help/comm/ref/comm.viterbidecoder-class.html
https://www.mathworks.com/help/comm/ref/comm.awgnchannel-class.html
https://www.mathworks.com/help/comm/ref/comm.mimochannel-class.html
https://www.google.se/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwih_pvQ59PUAhXKa5oKHRHSBq4QFgg3MAI&url=https%3A%2F%2Fwww.qualcomm.com%2Finvention%2Ftechnologies%2F5g-nr&usg=AFQjCNEhsxBoB9jIjygC9IsO8i7QRM57uw
https://www.google.se/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwih_pvQ59PUAhXKa5oKHRHSBq4QFgg3MAI&url=https%3A%2F%2Fwww.qualcomm.com%2Finvention%2Ftechnologies%2F5g-nr&usg=AFQjCNEhsxBoB9jIjygC9IsO8i7QRM57uw
https://www.google.se/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwih_pvQ59PUAhXKa5oKHRHSBq4QFgg3MAI&url=https%3A%2F%2Fwww.qualcomm.com%2Finvention%2Ftechnologies%2F5g-nr&usg=AFQjCNEhsxBoB9jIjygC9IsO8i7QRM57uw
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://owncloud.nt.tuwien.ac.at/index.php/s/2Xh3pF5ltjYCnI6#pdfviewer
https://www.nt.tuwien.ac.at/research/mobile-communications/vccs/vienna-lte-a-simulators/
https://www.nt.tuwien.ac.at/research/mobile-communications/vccs/vienna-lte-a-simulators/
https://www.is-wireless.com/5g-toolset/lte-phy-lab/
https://www.mathworks.com/products/lte-system.html

