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Abstract 

5G is currently being standardized, and many aspects of the physical layer are yet to be 

decided, particularly related to Machine Type Communication (MTC). Building upon the 3GPP 

release 13 specifications for MTC, this thesis presents a link level simulation framework, 

allowing for quick prototyping of ideas and concepts towards 5G.  

Throughout this work, the architecture and main building blocks of the simulation 

framework are described, and implementation and configuration concepts are presented. The 

support for both standard and non-standard 3GPP configurations is illustrated, including 

OFDM numerology, pilot configuration and channel masking options. Simulation results are 

then presented, specifically targeting coverage enhancements topics for MTC. Different 

combining strategies are explored, followed by an investigation showing the importance of 

minimizing overhead for MTC applications.  
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Chapter 1  

Introduction 

This chapter introduces the scope of the dissertation, presenting the assumptions and 

motivations for this work. The structure of the thesis is detailed at the end of the chapter. 

1.1 - Overview of the physical layer aspects and MTC 

1.1.1. An overview of the Physical Layer evolution towards 5G  

 

Even though markedly designed for voice services, the early second generation GSM 

standards included already support for transparent, and non-transparent data services over the 

circuit-switched network, with a Radio Link Protocol supporting reliable communication over 

the air interface [20]. The introduction of General Packet Radio Service (GPRS), in 2000, 

brought the packet based concept to the second generation cellular network, backed by a new 

radio protocol stack and a new packet switched core network [18]. However, relying on the 

same GSM physical layer technology, optimized for circuit switched voice services, GPRS was a 

compromise between backwards compatibility and service flexibility. 

The third generation, UMTS, started deployment end of 2003 building upon the same GPRS 

core network infrastructure, but with a radically new air interface approach. The physical layer 

architecture was designed to be flexible, to accommodate a number of different services, at 

different quality of services, and for data rates up to 384 Kbit/s. The core of this flexibility lies 

on the new transport channel processing architecture introduced in the physical layer [21]. It 

became possible, not only to design services with different channel coding algorithms, different 

coding rates and different transmission time intervals, but these services could also be 

multiplexed and used simultaneously. 

The UMTS physical layer flexibility was further improved with the introduction of HSDPA in 

2006 and later HSUPA. While the initial releases of UMTS relied on a relatively slow higher layer 

based, and mostly static block size allocation, HSDPA introduced new physical layer signaling 

channels, allowing for much faster allocation times. Transport block sizes and modulation could 

now be changed dynamically, effectively matching the link to the channel conditions at much 

higher rates than before. Additionally, a new retransmission scheme, HARQ, was introduced, 
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providing fast retransmission times, and improved decoding with soft combining of all 

retransmissions, at the receiver [22]. 

The physical layer of the 4th generation, Long Term Evolution (LTE), built largely on the 

concepts op HSDPA. While the access technology changed from CDMA to OFDMA, the transport 

channel processing architecture, inherited most of the concepts from the previous generation, 

even though enhanced by the extra flexibility provided by OFDMA [1]. 

The physical layer of the 5th generation New Radio (NR) is expected to be largely based on 

the current LTE generation’s architecture, possibly more than in any previous iteration. And 

while there are important changes, namely new algorithms for channel coding, new antenna 

related technologies and larger bandwidth, scalable transmission times and OFDM numerologies 

are expected to be key components in allowing the support for the three target 5G use cases: 

enhanced mobile broadband, ultra-high reliability & low latency and Massive IoT [17][24]. 

 

1.1.2. Machine Type Communication within LTE 

 

Wireless connectivity of devices, without human intervention is referred within 3GPP as 

Machine Type Communication (MTC). As we have seen, data services have been possible 

throughout the different generations of cellular networks, enabling already many possible MTC 

application. However, the number of connected devices over cellular networks is expected to 

grow massively over the next few years [58][27], especially within the class of devices including 

sensors and actuators, typically associated with low cost and long battery life, often located in 

places with poor cellular coverage.  

In order to accommodate these devices, 3GPP have standardized new User Equipment (UE) 

categories for LTE, namely category-0 (CAT-0), in release 12, and category-M1 (CAT-M1) in 

release 13. CAT-M1 devices are expected to support a coverage gain of up to 21 dB relative to 

legacy LTE devices [41], and at a fraction of the cost, due to relaxed requirements on 

bandwidth, transmit power, and antenna configuration [3]. 

1.2 - An overview of related simulation environments in Matlab  

 A number of LTE link-level simulators have been developed over the years, both 

commercial and open-source.  

In [61], a commercial LTE MATLAB based link level simulator is available, supporting 

physical layer implementation of up to release 10 of the 3GPP specifications. 

In [60], LTE link-level simulators for both uplink and downlink have been developed in 

MATLAB, with a free license for academic and non-commercial use. It contains a vast amount 

of features, including several multi-antenna configurations, a variety of fading profiles, and 

channel estimation and equalization methods. Even though no release compliance is clearly 

stated, the user manual suggests a pre-release 12 3GPP compliance due to lack of 256QAM 

support [59]. 

Several additional open source simulations and frameworks have been presented over the 

years, as [63] or [64], however, none has been updated to 3GPP release 13. 

MATLAB provides an LTE specific toolbox under the name of LTE System Toolbox [62]. It 

contains uplink and downlink processing chains and all standardized physical channels and 

signals, as well as all multi-antenna transmission schemes up to release 12 of the 3GPP 



specifications. The toolbox has recently been updated to include 5G channel models as per 

[23]. While including a rich set of tools, this cannot be seen as a finished link-level simulator 

of framework. 

 

Even though there are a number of available simulation environments, to the best of our 

knowledge, there is no available release 13 3GPP compliant solution. Also, within the most 

updated environments, as in [60], the design goal was clearly to implement LTE specific 

features, timing and OFDM numerologies, so that the flexibility to prototype non-standard 

solutions, including different OFDM numerologies, was not an intention [59]. By presenting a 

framework able to implement the MTC relevant 3GPP release 13 features, and by including an 

open frame structure and OFDM numerology, this work is expected to be a valuable tool in 

prototyping new ideas towards 5G. 

 

1.3 - Motivation and contents 

The main contribution of this thesis is the development of a link-level simulation 

framework, capable of prototyping ideas and concepts for MTC devices, specifically in areas of 

coverage enhancement and power consumption. While having CAT-M1 devices, as a starting 

point, the aim is to develop a framework capable of adapting to the evolving 3GPP 

standardization towards 5G, by implementing a flexible timing and OFDM numerology, an open 

modular approach, as well as a fully configurable system. 

 

This thesis was sponsored by the Research & Standardization Organization at Sony Mobile, 

in Lund, Sweden. 

 

This thesis is organized as follows: 

 Chapter 2 gives an overview of the framework requirements, architecture and 

main data structures. 

 Chapter 3 describes the implementation details of key modules within the 

framework. 

 Chapter 4 presents simulation results, illustrating the framework flexibility, 

and validating key components with published results. 

 Chapter 5 concludes this thesis with a critical analysis on main contribution as 

well as suggestions for future improvements. 
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Chapter 2   

The Simulation Framework overview 

This chapter provides an overview of the simulation framework. It starts by describing the 

high level requirements and basic building blocks, in section 2.1- , followed by an overview of 

the main data structures used, in section 2.2- . 

2.1- Requirements, architecture and basic building blocks 

The simulation framework was developed to prototype Machine Type Communication 

(MTC), with the LTE release 13 of the 3GPP specifications as baseline. The aim is to be able to 

accommodate future releases, including the next generation New Radio, currently being 

defined. The framework was written in MATLAB, reusing, as much as possible, the MATLAB 

system objects. The framework was developed with the following design goals: 

 

- Fast prototyping of new ideas and concepts. 

- Target MTC devices. 

- Support LTE FDD PDSCH and devices with category M1, as a starting point. 

- Modular, with clear interfaces for easy maintenance. 

- Easy addition of new modules. 

- Generic, to accommodate a growing number of algorithms. 

- Reconfigurable, for simple operation from a main script, including disabling or bypassing 

functions. 

- Easy comparison of different simulation configurations. 

- Possibility to stop and resume simulations from the last simulation point. 

- Possibility to store the simulation results and related configuration for further data 

analysis. 

- Accessible through one single API. 

- Written in MATLAB. 

 

A high level architecture overview of the framework is presented in Figure 2.1. The 

framework provides one basic service. Having received a given configuration and a target SNR 

range, the framework runs the requested simulation, returning the resulting BER and BLER 



performance values for the each point in the provided SNR range. For the purposes of this 

framework, each SNR point within a configuration is called a sub-instance, while a particular 

configuration is called an instance. 

 

 

 
Figure 2.1 – Framework architecture overview 

 

 

Typically, the framework will be requested to run sequentially through several 

configuration instances, each with several sub-instance. 

Each configuration instance is defined by a new config data structure containing the entire 

desired framework parametrization, including a number of target SNR points to be simulated, 

the sub-instances. 

Information exchange between the test script and the simulation framework is done 

through one single data structure containing a collection of all individual configuration 
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instances to be simulated. This is the run data structure. These data structures are detailed in 

section 2.2-  

There are three main entities within the framework, the test script, the simulation manager 

and the simulator. These will be described next. 

 

2.1.1. The test script 

 

The task of the test script is to populate the run data structure with all required 

configuration instances. This can be done with the support of predefined configurations. Having 

all configurations defined, the script then makes one single call to the framework by calling 

the simulationManager API with the run structure as argument.  

Once the simulation on all configuration instances is over, the framework returns the 

simulation results for further post processing by the script.  

An overview of a typical test script is shown in Figure 2.2, and an example script is provided 

in Annex A.5 - . 

 

 

 
Figure 2.2 – Typical test script overview 

 

 

2.1.2. The simulation manager 

 

The simulation manager handles the interface towards the test script and simulator. Having 

been invoked by a test script, the simulation manager will sequentially step through all 



configuration instances, calling the simulator for each particular sub-instance. This allows 

immediate access to every finished simulated SNR point. 

Additionally the simulation manager stores the run data structure, together with the latest 

results from the simulator in the file system. This has two purposes, allow access to the very 

latest simulated results, on a sub-instance level, and allow for the simulation to be terminated 

and resumed from the last sub-instance. The processing flow overview of the simulation 

manager is shown in Figure 2.3.   

 

 

 
Figure 2.3 – Simulator manager overview 
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2.1.3. The simulator  

 

The simulator.m module is the core of the framework. Detailed description of the different 

modules used by the simulator will be provided in Chapter 3. The processing flow of the 

simulator is shown in Figure 2.4. 

 

 

 
Figure 2.4 – Simulator processing overview 

 

 

The simulator will receive a configuration instance and sub-instance from the simulator 

manager. The simulator will loop through its processing chain until one of the defined exit 

criteria is met. The exit criteria are part of the configuration defined by the script, and may 

be based on target amount of traffic or errors. Having reached one of the exit criteria, the 

simulator returns the requested simulation results, as well as additional statistics. 

2.2- Data structures and the pre-defined configuration 

modules 

 

The details of the framework data structures are described next. Focus will be on the most 

relevant members. The complete list is provided in Annex A.4 - . 

 



2.2.1. The config data structure 

 

The fields in the config data structure are organized in a logical arrangement. In order to 

minimize the number of available configuration options to a regular user, the config structure 

is further subdivided into three additional logical data structures, the system, the link and the 

UE data structures. These structures are available through predefined modules as shown in 

Figure 2.5. 

Additionally, the config data structure contains a number fields for high level 

configurations. These are to be initialized by the test script and define the general simulation 

environment, including the modules to be enabled, the SNR range, and some specific algorithm 

selections. 

 

 

 
Figure 2.5 – Configuration data structures 

 

The system, link and UE part of the config data structure are defined in the following 

subsections. The remaining config fields will be covered in the relevant modules.  A full list of 

config fields is provided in Annex A.4 - , and a script example in Annex A.5 - . 

 

2.2.2. The system data structure 

 

The system data structure is responsible for the entire lower level physical channel 

configuration, including OFDM frame structure in time and frequency domain, cyclic-prefix 

configuration, pilot structure, channel masking, resource block configuration, FFT size and 

bandwidth configuration. The system configuration is not limited in any way to the LTE 

standardized configuration. This is the key to making the framework flexible to accommodate 

the new 5G OFDM configurations. 

The system structure can be configured by calling the systemConfig function in the 

systemConfig.m module, pointing to a predefined configuration. The contents of the system 

structure are explained next. 

 

The Resource Block definition (RB) is the basic building block of the system configuration. 

The RB is a structure containing two fields, the number of subcarriers and the number of OFDM 

symbols, as shown in Table 2.1. This defines the minimum OFDM resource allocation size in the 

frequency and time domain. The entire system bandwidth, timing and scheduling of the system 

will be reference to this RB definition. Time measures will be based on units of RB duration, 
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defined by system.RB.nsymbol, and frequency measures will be given in given in multiples of 

system.RB.nSC. 

For FDD LTE, system.RB.nsymbol defines one slot duration and is defined by either 6 or 7 

OFDM symbols, depending on the usage of extended or normal cyclic prefix, respectively. In 

LTE, system.RB.nSC is fixed to 12 subcarriers. 

 

 

Table 2.1 – Resource Block definition 

Field Description LTE example 

system.RB.nSC            Number of subcarriers per resource block 12 

system.RB.nsymbol        Number of OFDM symbols per resource block 7* 

* Normal cyclic prefix case. This defines the RB period as having 7 OFDM symbols, or 0.5 ms, a slot 
duration in LTE. 

 

The subcarrier spacing is an important OFDM design parameter, directly impacting the 

performance of an OFDM system on particular channel conditions. It implicitly defines the OFDM 

symbol duration. This is defined with the field System.SCspacing as shown in Table 2.2. For 

LTE, subcarrier spacing is 15 KHz. 

 

Table 2.2 – OFDM subcarrier spacing 

Field Description LTE example 

system.SCspacing Subcarrier spacing in Hz 15000 

 

 

 

The system bandwidth and FFT size are defined next. There are two bandwidth related 

fields, the transmission bandwidth and the channel bandwidth. The transmission bandwidth is 

the scheduled bandwidth and defined in number of Resource Blocks. The channel bandwidth is 

the total used system bandwidth. For LTE this information is given in [10]. The FFT size is 

related to the transmission bandwidth and needs to be higher than the maximum number of 

subcarriers. These fields are described in Table 2.3. 

 

 

Table 2.3 – Bandwidth definition 

Field Description LTE example 

system.nRB Available transmission bandwidth in number of RBs 50* 

system.BW Channel bandwidth in MHz 10 

system.NFFT FFT size for OFDM 1024* 

* For 10 MHz bandwidth there are 600 subcarriers 

 



The information defined so far in the system structure allows the calculation of additional 

information that is added to the system structure for easy reference by various framework 

modules. Calculation is done as shown in Table 2.4. 

 
 

Table 2.4 – Sampling information 

Field Calculation Description 

system.TsOFDM 1/system.SCspacing          OFDM symbol duration 

system.Ts system.TsOFDM/system.NFFT     Sampling period 

system.Fs 1/system.Ts                   Sampling frequency 

 

 

 

The Cyclic Prefix (CP) configuration is also referenced to the RB definition, namely with 

the number of OFDM symbols to be used. Each symbol in the RB definition will have its own CP 

definition, allowing full flexibility in order to have different CP durations on different OFDM 

symbols. The only assumption is that the pattern repeats with each new RB. The configuration 

is made with the field system.cpNSamples, defining an array with size system.RB.nsymbol, 

where each entry represents the number of samples used for the CP for each OFDM symbol as 

shown in Table 2.5.  

 

 

Table 2.5 – Cyclic prefix definition 

Field Description LTE example 

system.cpNSamples[] 
Number of samples per 

cyclic prefix for each OFDM symbol 

[80 72 72 72 72 72 72]* 

* LTE with Normal cyclic prefix and FFT size of 1024 

 

 

The number of transmit antennas is defined in system.nTx as shown in Table 2.6. 

 

 

Table 2.6 – Number of downlink transmit antennas 

Field Description LTE example 

system.nTx Number of TX antennas 2 

 

 

The pilot configuration is defined with a new structure containing the pilot indexes for 

each antenna port, for the entire transmission bandwidth, and for one RB duration. This allows 

for a fully flexible pilot arrangements, including the LTE-like hexagon pattern, comb type, 

block type and others [30]. For LTE this defines the Cell Specific Reference Signals, CRS [11].  
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Table 2.7 – Pilot definition 

Field Description LTE example 

system.pilot.idx[] pilot pattern for each antenna port * 

system.pilot.PowerBoost Power boost for pilot symbols 1 

* Example shown in the scheduler description  

 

 

Having defined the basis of the OFDM configuration, it is possible to define additional 

channel masks occupying some of the OFDM resources. This is typically the case for physical 

layer signaling channels. Each channel may be configured with specific timing information 

including timing of first transmission as well as period of subsequent transmissions. This 

information will be used by the scheduler when building the OFDM grid and assigning user 

resources on a particular transmission time. The channels are defined as MATLAB cells with 

structures, where each channel is defined by a structure within a cell, as shown in Table 2.8. 

 

Table 2.8 – Channel masking definition 

Field Description LTE example 

system.channels{}.id tag identifying the channel PSS/SSS 

system.channels{}.idx indexes if used resources in the OFDM grid * 

system.channels{}.start 1st channel transmission in number of RB 0 

system.channels{}.RBrep period of transmission in number of RB 10** 

* Example shown in the scheduler description 

** In LTE, the synchronization channels are repeated every 5 ms, this is 10 slot periods 

 

 

For high level timing alignment, a timing structure is added containing the System Frame 

Number duration (SFN), defined in terms of RB duration as shown in Table 2.9. The maximum 

SFN (sfnMax) defines the SFN value at which the counting is wrapped.  

 

 

Table 2.9 – System timing definition 

Field Description LTE example 

system.timing.sfn duration of SFN in RB periods 20* 

system.timing.sfnMax Maximum SFN in SFN periods 1024 

* In LTE 1 SFN = 1ms, this is 20 slot periods 

 

 



2.2.3. The link data structure 

 

The link data structure holds the details of transport channel processing configuration, 

including channel coding type, CRC size, modulation order, TTI size, as well as rate matching 

specific parameters. Some of the fields are updated by the framework. 

The CRC definition is made through a cell containing 2 fields, the CRC size and a type. 

This allows for a particular CRC size to be associated with several different CRC polynomials. 

This is the case in LTE for the 24 bit CRC case, where two different polynomials are defined for 

the initial CRC attachment block and for the code block segmentation block [1]. The CRC type 

is a tag recognized by the CRC encoder/decoder. All LTE standardized CRC configurations with 

24 bit, 16 bit and 8 bit, are supported [1]. 

 

 

Table 2.10 – CRC configuration 

Field Description LTE example 

link.CRCtype{ } Cell containing CRC size and type {24,24a} 

 

 

The channel coding algorithm is a major block in the transport channel processing chain 

and is chosen with the link.coding field. By selecting a particular channel coding algorithm, the 

associated rate matching algorithm is implicitly also chosen. 

The framework currently support 1/3 Turbo Coding and 1/3 tail-biting convolutional 

coding, as standardized for LTE [1]. 

 

 

Table 2.11 – Channel coding configuration 

Field Description LTE example 

link.coding Channel coding algorithm ‘turbo’ 

 

 

 

Modulation is defined by means of the modulation order. The supported modulations are 

QPSK and 16QAM, with modulation order 4 and 16, respectively.  

 

Table 2.12 – Modulation configuration 

Field Description LTE example 

link.ModOrder Modulation order 4 

 

 

Transmission Time Interval, TTI is an important link design parameter and defines the 

time duration of a packet transmission. The configuration is given in multiples of RB duration, 

system.RB.nsymbol, defined in the system data structure. For the LTE PDSCH, the TTI is 1 ms, 

and lasts for the duration of two consecutive RBs, so that this value needs to be set to two. 
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Table 2.13 – TTI configuration 

Field Description LTE example 

link.tti TTI in multiples of RB period 2* 

* In LTE, for the PDSCH the TTI = 1 ms, this is 2 slot periods 

 

 

The initial HARQ redundancy version to be used by the rate matching block is defined by 

the rv field. The meaning of this field depends on the rate matching implementation. 

 

Table 2.14 – Initial Redundancy Version configuration 

Field Description LTE example 

link.rv Initial redundancy version 0 

 

 

The code block size to be used, may be explicitly defined, or left for empty for the 

framework to calculate, based on a pre-defined target code rate. If explicitly defined, it must 

be a valid block size, within the allowed restrictions of the channel coder. 

 

Table 2.15 – Code Block size configuration 

Field Description LTE example 

link.CBsize Code block size (bits) 528 

 

 

The total number of available channel bits is calculated at run time by the scheduler, 

based on the scheduling configuration, pilot configuration and channel masks on the used TTI. 

 

 

Table 2.16 – Channel size configuration 

Field Description LTE example 

link.G Channel size (bits) 1440* 

*For an allocation of 72 subcarrier, 2 TX antennas and a control region of 3 OFDM symbols 

 

 

2.2.4. The UE data structure 

 

The UE data structure contains the UE specific configuration options, including the ones 

typically associated with the UE category: number of soft bits, maximum number of HARQ 

processes, and number or receive antennas.  Currently only one receive antenna is supported. 

Annex A.4.3 provides the contents of the UE data structure. 

 



2.2.5. The run data structure 

 

The run data structure contains the collection of all configuration instances to be 

simulated. Annex A.4.5 provides the detailed contents of the run data structure. 

 

2.2.6. Configuration examples 

 

Whenever the framework is initiated, a validity check will be performed on the 

consistency of the system configuration. If allowed by the print level, the simulation manager 

will print a summary of the system information to the console with potential warnings or errors. 

Figure 2.6 shows the system configuration summary for an LTE configuration with 20 MHz, two 

transmit antennas and normal cyclic prefix. Figure 2.7 shows the configuration of a 

hypothetical system with 120MHz bandwidth, 100 KHz subcarrier spacing, one transmit 

antenna, nine OFDM symbols per RB for a total RB duration of 100ms, and a very short cyclic 

prefix duration of approximately 1 us. This illustrates the flexibility of the framework in 

supporting a vast number of OFDM numerology. 

 

 

 
Figure 2.6 – System information printed to the console when starting the simulation. Example of a 20 

MHz LTE system configuration with normal cyclic prefix and two transmit antennas. 
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Figure 2.7 – System information printed to the console of a hypothetical system with 120 MHz 

bandwidth, 100 KHz subcarrier spacing, nine symbols per RB and a CP of ~1us per OFDM symbol. 

 

Adding a new configuration to the framework, is done in the systemConfig.m module with 

an appropriate tag associated to the configuration. The script can then invoke this system 

configuration by calling the systemConfig API with the matching tag. LTE FDD configurations 

with all supported bandwidths, with normal and extended cyclic prefix, and with one and two 

transmit antennas are already preconfigured.
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Chapter 3   

The Simulation Framework 
implementation 

The previous chapter provided an overview of the framework entities and most important 

data structures. This chapter focuses on the implementation aspects of the main building blocks 

of the simulator entity. Section 3.1- focuses on the transport channel processing related blocks. 

Section 3.2- presents the implementation overview for HARQ and repetition handling, while 

section 3.3- focuses on the scheduler.  

3.1- Transport channel processing 

The physical layer, having received a transport channel from the MAC layer, will process 

that transport channel through a series of steps, at baseband level, before sending it over the 

air. This is called the transport channel processing chain. Typically, the specifications will only 

standardize the transmitter chain, while imposing performance requirements on receiver 

chain. 

This section describes the implementation of four different transport channel related 

modules. The remaining modules are described in Annex D.1 - . In this treatment, transmit and 

receive modules, are described in conjunction, whenever possible. Channel model related 

blocks are explained in D.1.5 and D.1.6, including the method for perfect channel estimation 

derivation. 

The framework was implemented using MATLAB, a commercial simulation environment. 

MATLAB supports a large number of communication related algorithms, specifically within the 

Communications System toolbox package. These algorithms are tested and optimized for the 

MATLAB environment. Whenever possible, the framework makes use of system objects. In these 

cases, a wrapper module is created handling the configuration and communication with the 

relevant system object. Annex B.1 - provides a lists of all MATLAB Communications system 

objects used and the relevant modules. 
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3.1.1. The channel coding and decoding blocks 

 

The channelCoding.m module receives a block of size n and outputs a block with a size m 

x n + t, where 1/m is the native code rate of the channel coder, and t is the number of tail 

bits. This module does not actually implement the channel encoding. Instead, and based on 

the input parameter config.link.coding, it will instantiate the relevant module registered to do 

the requested encoding operation. As illustrated on the left side of Figure 3.1, the framework 

includes modules for 1/3 turbo coding and 1/3 tail-biting convolutional coding as defined in 

[1]. Adding additional channel coding algorithms to the framework, requires the development 

of the coding/decoding module and registering it on channelCoding.m module. The second 

input parameter, config.enableCofing, allows bypassing the channel coding operation. 

 

 The turbo encoder is implemented on ch_turboCoding.m and is based on the MATLAB 

system object comm.TurboEncoder. The system object is configured with the polynomials and 

internal interleaver indices according to the LTE turbo code definitions [1]. The size of the 

input block is within the range of 40 to 6144 bits. However, the LTE turbo code internal 

interleaver, being optimized for parallelized decoding [31], only allows a subset of blocks sizes 

within this interval, with the granularity increasing progressively from 8 bit to 64 bit. The traffic 

generation module, getNewTB.m, will consider these size limitations when allocating a new 

block for turbo coding. The turbo encoder has a code rate of 1/3 and 12 tail bits, so that m is 

3 and t is 12. 

 

 
Figure 3.1 – Channel coding (right) and decoding (left). 

 

The tail-biting convolutional code allows for an efficient tail-free encoding operation and 

a code rate of 1/3, thus m is 3 and t is 0. It is implemented on the convEncodeTB.m module, 

based on the MATLAB system object comm.ConvolutionalEncoder, with the LTE polynomials 

defined in [1]. To implement the tail-biting operation, the initial state of the encoder is 

initialized to the last 6 bits of the code block [33].  

 

  The channel decoding operation is implemented with the same concept as the encoder. 

The module channelDecoding.m, calls the relevant registered channel codding module for the 

decoding operation, based on the config.link.coding input parameter, as shown on the right 

side of Figure 3.1. 

 

 



 The turbo decoding in ch_turbodecoding.m relies on the MATLAB system object 

comm.TurboDecoder, with the same base configuration as the encoder. For maximum decoding 

performance, the decoding algorithm is set to true a posteriori probability decoding. The 

MATLAB implementation does not support early termination check, always using the fixed 

number of configured iterations. The number of decoding iterations is set to six. 

The tail-biting convolutional decoding is performed in convDecodeTB.m based on the 

MATLAB system object comm.ViterbiDecoder with the same polynomials configuration as the 

encoder. Additionally, the input is configured for soft-bit input with the tail truncated. The 

comm.ViterbiDecoder system object has no native support for the tail-biting decoding 

operation. The decoding was implemented using the suboptimal decoding scheme approach 

defined in [32]. The simulated decoding performance can be found in Chapter 4. 

 

3.1.2. The Rate Matching transmitter and receiver blocks 

 

The rate matching stage is a fundamental block in the transport channel processing chain, 

matching the rate from the channel encoder to the actual channel rate available for 

transmission. Most common than not, these rates will be different, requiring either puncturing, 

when the channel rate is smaller than the coding rate, or repetition, otherwise. This is shown 

on the left side of Figure 3.2, where an input coded block of size n is adapted to have an output 

size G. The available channel size G, is calculated at run time by the scheduler and updated in 

the config data structure, on the config.link.G field. 

Two additional major functions of the rate matcher are the operations of interleaving 

and redundancy version selection, when applicable.  

 

 

 
Figure 3.2 – Rate Matching transmitter (left) and receiver (right) 

 

The framework supports the LTE rate matching blocks for turbo coding and 1/3 tail-biting 

convolutional code as defined in [1]. A particular rate matching implementation is likely to be 

optimized for a particular channel encoding scheme. Therefore, adding support for an 

additional channel coding algorithm, requires, in most cases, the addition of a related 

optimized rate matching module. 

The rate matching transmitter operation for the turbo encoder is implemented in the 

rateMatcherTurboTx.m module with support of two additional modules 

rateMatcherTurboCommon.m and rateMatcherTurboInterleaver.m. Bypassing of rate matching 

is possible through the input parameter config.enableRateMatching. 
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Figure 3.3 shows an overview of the implementation. The incoming bit sequence, being 

turbo encoded, is composed by a sequence of triplets with one systematic bit s, followed by 

two parity bits, p0 and p1. The bits are separated into sub-blocks of the same type and 

interleaved according to a predefined permutation pattern. The output from the sub-block 

interleavers are then placed in a circular buffer, starting with the systematic bits, and followed 

by an interlaced sequence of parity bits. The output sequence is read from the circular buffer 

starting from one of four fixed positions defined by the redundancy version field, config.link.rv. 

For the initial transmission, the redundancy version is set to zero so that the output includes 

as many systematic bits as possible. Depending on the size of the output block G, the readout 

from the circular buffer may not contain all bits. The excluded bits are punctured. For eMTC 

devices, it is expected to often work with low spectral efficiency, so that G is often larger than 

the circular buffer size. In this case, the readout will include the same bit positions more than 

once.  

 

 
Figure 3.3 – Rate Matching detail, transmitter. 

 

The rate matching for the convolutional coding has a similar architecture as for the turbo 

coding, but with some important differences. Since there are no systematic bits in the output 

from the convolutional coder, there is no differentiation between the three systematic output 

streams. Each group of bits is interleaved and place in sequence into the circular buffer. The 

readout is perform from the initial position, as it does not support different redundancy 

versions. 

The receiver rate matching operation is handled by the rateMatchingRx.m module, 

selecting the correct module for the decoding algorithm, as shown on the right side of Figure 

3.2. 

 The receiver performs the reverse operation, as described for the transmitter, rebuilding 

the circular buffer with the correct size, populating it with the G income bits, de-interlacing 

the different streams, to finally rebuild the block for channel decoding.  

One difference to the transmitter, where the entire operation is performed with hard bits, 

at the receiver, the input block is composed of G soft-bits, representing the Log-likelihood 

ratio (LLR) output from the demodulator. This is an important aspect when the input block 

contains repetitions, since the rate matching operation can combine the repeated soft-bits 

while populating the circular buffer, thus increasing the received bit energy. The framework 

support both hard and soft-bit operation, depending on the modulator configuration.  

 

3.1.3. The symbol mapping and de-mapping modules 

 



The symbol mapping function populates the OFDM grid, by placing the data into the 

allocated OFDM resources. It also populates the pilot masks and all the allocated channels. 

Implementation is done in the symbolMapping.m module, and an overview is shown on the left 

side of Figure 3.4. 

An empty OFDM grid is initialized for each antenna port with the time and frequency 

dimensions defined in the system and link data structures. For the transport channel, the 

mapping is based on the scheduling input parameter containing the allocation mask for each 

antenna port. Placement is performed on resource block basis on the increasing order of 

subcarrier, followed by increasing order of OFDM symbol [11]. 

  

 
Figure 3.4 – Symbol mapper (left) and de-mapper (right) 

 

 The OFDM masks for pilot symbols are contained in the grid structure received from 

the scheduler, as described in 3.3.1. The symbol mapper will generate random QPSK modulated 

sequence for both pilots and all additional masked channels. For the masked channels, the pilot 

is divided across transmit antennas. The pilot sequence is returned by the module to allow pilot 

based channels estimation. 

 

The demapper.m module removes the transport channel symbols from the OFDM grid, as 

per scheduling allocation, performing the reverse operation as the symbol mapper. The pilot 

sequence is also retrieved and the de-mapped pilot sequence is returned.  

This module is disabled when OFDM is disabled in config.enableOFDM. 

  

3.1.4. The OFDM encoder and decoder block 

 

The OFDM encoder receives one OFDM grid for each transmit antenna and outputs the time 

domain encoded signal. The encoder is implemented in OFDM_mod_tti.m module as illustrated 

in Figure 3.5. 
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Figure 3.5 – OFDM encoder 

 

The received grid has the number of OFDM symbols corresponding to one entire TTI, as per 

config.link.tti and config.system.RB. The encoding operation is performed on an OFDM symbol 

basis, and is performed in three steps, as illustrated on the left side of Figure 3.6. On a first 

step the k subcarriers within the symbol are re-arranged for the complex iFFT operation, a zero 

DC sub-carrier is added and finally, zero padding on the non-used external sub-carriers is 

added, in order to match to the chosen NFFT size, as given by config.system.NFFT. The second 

step is the iFFT operation outputting a time-domain OFDM signal with NFFT complex samples. 

The last step adds a cyclic-prefix, by copying the last i samples from the time-domain OFDM 

signal, and appending them to be beginning. The size of i is given by config.system.cpNSamples, 

and may be different across OFDM symbols. 

 

 

 
Figure 3.6 – OFDM encoder (left) and decoder (right) 

 

 The OFDM decoding operation performs the reverse operation, as illustrated on the 

right side of Figure 3.6. The cyclic prefix is first removed, the FFT operation converts the signal 

to the frequency domain, and finally, the signal is filtered to the k center subcarriers and the 

DC carrier is removed. 



3.2- HARQ and repetitions 

Repetition and retransmission of packets is extensively used in the physical layer of LTE, 

therefore requiring efficient combining methods. This is especially true for 3GPP release 13 

eMTC devices operating in coverage enhancement mode, where a high repetition count, of up 

to 2048, is possible [2]. 

Analysis of the different implementations as well as simulation results are presented in 

sections 4.2 - and 4.3 - . This section presents the framework implementation of the supported 

combining options. Figure 3.7 illustrates part of the receiver chain, showing the different stages 

where combining may be implemented. There are two main combining options, bit-level and 

symbol-level combining. While symbol-level combining can be done earlier within the receiver 

chain, requiring less processing power, bit-level combining is required when the packets have 

different redundancy versions (RV). 

Bit level combining happens in two stages, during and after the receive rate matching 

operation. In those cases where the code rate of the transmitted packet is lower than the 

native channel encoder code rate, each packet will already contain repeated bits. These are 

combined by the rate matching receiver, as described in section 3.1.2. Combining of repeated 

blocks is performed after rate matching by adding the corresponding soft bits. 

Symbol level combining, can be done at different levels. The post-equalization method 

allows for Maximum Ratio Combining (MRC), where the channel gains can be used as weighting 

factors, therefore maximizing SNR [43]. The framework implements this option by setting 

config.CombinePreEq to 0. The channel weight for each repetition is calculated based on the 

average channel gain on allocated resources. 

The second symbol level combining method, post-FFT and pre-equalization method, allows 

for a simpler implementation, with the combining weight being equal for all repetitions. The 

framework performs this combining method by setting config.CombinePreEq to 1.  

The third option listed in Figure 3.7, of combining prior to OFDM demodulation, is not 

currently implemented. This option, by combing the time domain signals, requires only one 

FFT operation for the combined set, as opposed to the other combining methods, requiring one 

FFT operation per repetition [43]. 
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Figure 3.7 – Combining methods at the receiver 

 

 

Both HARQ and repetition functionality may be enabled or disabled as per configuration of 

the Boolean settings config.enableHARQ and config.enableRepetition, respectively. The 

maximum number of repetitions and retransmissions are defined by the settings 

config.maxRepetitions and config.maxHarqRetx. 

 

When repetition is enabled, it is possible to configure an RV period so that consecutive 

repetitions within this period have the same RV, as illustrated in Figure 3.8. This allows for 

symbol level combining, during the RV period, followed by bit level combining, at the end of 

each RV period. The RV period is configurable through the parameter config.RVperiod. 

 

 

 
Figure 3.8 – RV period concept 

  

While keeping the RV pattern, it is also possible to enforce the same RV on all RV periods, 

without changing the combining methods, by setting the input config parameter 

config.forceHarqChaseComb to true. 



3.3- The scheduler, channel masking and timing 

The scheduler is an important module in the framework. It is responsible for managing all 

OFDM resources on a TTI basis. This includes mapping of all masked channels to a particular 

location in the OFDM grid, and assigning resourced to the transport channel. The scheduler 

does not populate the grid with any data, it will rather provide the allocations mask for each 

channel to be included on the next scheduling period. The scheduler is implemented in the 

scheduler.m module. 

 

 
Figure 3.9 – The scheduler module 

 

3.3.1. OFDM grid Initialization and channel masking 

 

As discussed in section 2.2.2, the system data structure allows for a fully flexible OFDM 

configuration. This includes, not only the OFDM numerology, but also the minimum resource 

block allocation configuration, pilot structure configuration as well as channel masking for any 

number of channels. It is also possible to associate each channel to a particular time pattern. 

The configurability of the Transmission Time Interval (TTI) in config.link.tti, described in 2.2.3, 

adds further flexibility to the framework. 

All this information is used by the scheduler when initializing the OFDM resources. The 

scheduler is started in the beginning of every new TTI, and immediately after the timing module 

has updated the RB counter, RBn. The initialization principles are based on the flow chart 

shown in Figure 3.10. The scheduler starts by building one OFDM grid for each antenna port, 

for the entire system bandwidth, and for the duration of one TTI. Next, the pilot positions are 

defined. The pilot symbol indexes from config.system.pilot.idx, defined for one Resource Block 

(RB) period, need to be repeated for the entire TTI and for each of the antenna ports. The pilot 

positions on any antenna port will mask the relevant Resource Element (RE) for all antenna 

ports. This is crucial to allow channel estimation across multiple antennas. 

The next step is to iterate through the configured channels in config.system.channels, and 

evaluate if, based on the channel timing configuration, config.system.channels{}.RBrep and  

system.channels{}.start, it should be included for scheduling on the next TTI. The channels 

selected for allocation, will be added sequentially based on the defined OFDM mapping 

config.system.channels{}.idx. To simplify the channel masking configuration, the allocation is 

defined, not accounting for any pilot symbols. It is the task of the scheduler to mask out the 

pilot positions, when overlapping with any channel. 
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Having mapped all pilots and valid channels, the remaining resources are available for the 

channel being handled by the transport processing chain. These are resources that the 

scheduler can now allocate based on the chosen bandwidth and scheduling strategy. The entire 

resource allocation is kept in the grid data structure.  

 

 

 
Figure 3.10 – OFDM grid initialization for next TTI. 

 

 The channel masking is a flexible configuration tool and may be used for other purposes 

than signaling physical channel masking. It may also be used to create particular traffic patterns 

masks in order to mimic a certain load scenario in the user plane. 

 

3.3.2. OFDM grid Initialization example for LTE 

 

An example of an OFDM grid mapping is shown in Figure 3.11 based on an LTE configuration 

with normal cyclic prefix (14 OFDM symbols per TTI), 3 MHz bandwidth and two transmit 

antennas. The framework includes a module, plotOFDMgrid.m, for plotting the allocated 

resources to each channel, on a TTI basis, as shown in Figure 3.11. 

The pilot symbols, in LTE called Cell-specific Reference Signals (CRS), are configured, on 

OFDM symbols zero, four, seven and eleven, with a hexagon pattern. The pattern is shifted by 

three subcarriers between the two antennas [11]. 

Three additional channel masks are configured in the config.system.channels in order to 

mimic the typical signaling overhead of an LTE cell. The first mask contains the three physical 

channels that are part of the, so called, control region. The control region is typically spanning 



the first two or three OFDM symbols on every TTI, and the entire system bandwidth. In the 

example from Figure 3.11, the size of control region is set to three OFDM symbols. The channels 

included in this mask are the following: 

 The Physical Control Format Indicator Channel (PCFICH), a very low bit rate 

channel indicating the size, in OFDM symbols, of the control region [11].  

 The Physical Hybrid-ARQ Indicator Channel (PHICH), used to carry the downlink 

HARQ acknowledgement messages for received uplink transmissions [11]. 

 The Physical Downlink Control Channel (PDCCH), used to carry the scheduling 

commands to the terminals [11]. 

 

For 3GPP release 13 compliant category M1 eMTC devices, the receiver bandwidth is 

limited to 1.4 MHz, thus, the control region cannot be decoded by these devices. Nevertheless, 

in order to serve all other devices, the control region persists and needs to be taken into 

account when simulator M1 devices. 

 

 

 
Figure 3.11 – Channel masking example 

 

The second mask contains the Primary and Secondary Synchronization Signals, PSS 

and SSS [11]. These are used for frame synchronization, support in detecting the physical cell 

identity of the cell, and the duplex operation mode, TDD or FDD. PSS is sent on the 6th OFDM 

symbol, and SSS on the 7th, and they span the center 72 subcarriers. PSS and SSS are 

transmitted with a period of five TTIs. 

The third and last mask contains the Broadcast Channel (BCH) [11], carrying part of 

higher layer System Information. Only a limited subset of system information, the Master 

System Information (MIB), is sent though the BCH, with the largest part being sent over the 

user plane [12]. The MIB contains information on system timing, frequency bandwidth and 

number of transmit antennas configured. The BCH is sent with a period of 20 RBn, on the 1st 

four OFDM symbols, starting from the 2nd RBn. Just as the PSS and SSS, it spans the center 72 

subcarriers. 

Figure 3.12 illustrates the OFDM grid allocations on antenna port 1, following the scheduler 

initialization process for the configured LTE system on three different TTIs.  
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Figure 3.12 – Channel masking timing. 

 

The white area in Figure 3.11, represents the available resources for user data 

scheduling. Assigning user data resources is the next task of the scheduler. 

 

 

3.3.3. Transport channel resource allocation 

 

After the OFDM initialization process, the scheduler is aware of the total available resources 

for transport channel allocation. The next step is to allocate a subset of these resources to the 

target transport channel.  

The total available bandwidth is divided into contiguous frequency slots, each with the size 

of one RB, system.RB.nSC. The selection of the exact frequency slots to allocate is based on 

the chosen scheduling algorithms defined by the property config.schedulingType. The 

framework currently supports three algorithms: 

 ‘Fixed-localized’, where the scheduler allocates a fixed amount of contiguous 

resources on a precise frequency location, given by the properties 

scheduledRBStart and config.scheduledNumRB. These properties specify the 

beginning and size of allocation in number of RBs. 

 'Fixed-hopping', where a fixed amount of contiguous resources, defined by 

config.scheduledNumRB are allocated randomly by the scheduler at each 

scheduling interval. The location of the allocated resources will hop across 

randomly selected frequency slots in an attempt to provide frequency 

diversity between successive scheduling intervals. Especially for slow varying 

channels. 

 'Fixed-hopping-hmax', where the scheduler attempts to allocate a fixed 

amount of contiguous resources, defined by config.scheduledNumRB, on the 



slots with highest downlink channel gains. To do this, the scheduler is 

assumed to have knowledge of the downlink channel gains from previous 

transmissions. The channel gains are averaged across antennas and across 

frequency slots, and each possible allocation interval of size 

config.scheduledNumRB, is given a corresponding channel weight. The 

scheduler then assigns the allocation with highest weight. Depending on the 

downlink channel rate change, consecutive scheduling intervals, may 

therefore have the same of different allocations. 

 

The effective allocated resources are returned by the scheduler.m module in the scheduling 

parameter. Additionally, the scheduler will also update the allocated channel size in 

config.link.G. This will be used by the rate matching block to calculate the amount of 

puncturing or repetition needed. 

 

Simulation results for the different algorithms are presented in 4.4 - . 
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Chapter 4   

Simulation results 

This chapter presents some simulation results in an attempt to illustrate the framework 

flexibility, as well as to validate key components within the framework, both against 

theoretical results, as well as results published by other sources. 

4.1 - Module validation 

4.1.1. Un-coded and coded performance evaluation 

 

The framework offers the possibility to bypass particular modules, thus, allowing evaluation 

of specific components, as well as simplifying the introduction of additional modules. Table 

4.1 lists a configuration used to evaluate performance of un-coded modulation signals over 

OFDM. The configuration bypasses the modulator and associated rate-matching modules, forces 

a fixed code rate of 1, and finally instruct the modulator to provide hard-bit outputs. The 

results for un-coded 16QAM and QPSK are shown in the left chart of Figure 4.1 compared to the 

theoretical results [42]. 

 

 

Table 4.1 — Simulator configuration for module validation example 

Parameter Value 

config.enableCoding          false 

config.enableModulation      true 

config.enableSoftDemodOut    false 

config.enableRateMatching    false 

config.enableFixedCodeRate   1 

 

 



 

Figure 4.1 Un-coded QPSK/16QAM (left) and coded 1/3 convolutions code (right). 

The simulation results match the expected theoretical results. 

 

 Similarly, evaluation of channel decoding is possible for both hard and soft-bit inputs, 

if supported by the decoder. This can be done on any configuration by toggling the configuration 

setting config.enableSoftDemodOut. This is illustrated in the right chart in Figure 4.1 where 

1/3 Tail-biting convolutional decoder performance is compared to the theoretical results. This 

can be done on any configuration  

 

4.2 - HARQ 

This section investigates the principles of Hybrid Automatic Repeat Request (HARQ), 

analysing the performance and impact of different combining strategies through simulation 

results. 

 

4.2.1. Overview 

 

HARQ is an effective way to improve link performance, by enabling the transmitter to 

quickly resend badly received packet, allowing the receiver to combine several packets before 

channel decoding, thus improving the decoding performance [38]. This requires that both the 

transmitter and receiver need to be able to buffer the packet, the transmitter, typically at 

MAC layer, the receiver at the physical layer, before channel decoding. For every sent packet, 

HARQ relies on a fast acknowledgment from the receiver in order to decide if a retransmission 

is needed. To avoid any lag while waiting for the acknowledgment, several parallel HARQ 

instances, called HARQ processes, may be configured, so that on successive transmission times, 

different HARQ processes may be used. The framework currently supports one single HARQ 

process, thus modeling an instant feedback, at the transmitter. 

 

Considering the simulation configuration in Table 4.2, the simulation results are shown in 

Figure 4.2, illustrating the typical BLER curve for a simulated HARQ process [36]. 
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Table 4.2 — Simulator configuration for HARQ validation 

Parameter Value 

System bandwidth (MHz) 5 

Allocation size (#PRBs) 6 

Modulation QPSK 

Channel Model AWGN 

HARQ IR 

Effective code rate 1/3 

Channel coding turbo 

 

 

For large SNR values, where one unique transmission can be correctly decode, HARQ has 

obviously no effect. As SNR decreases, a single transmission would lead to a BLER close to 100%. 

However, combining the initial transmission with a second retransmission provides the channel 

decoder with a better input, enough to successfully decode the packet. With two retransmission 

needed to successfully decode a packet, the effective BLER is 50%. 

As SNR decreases even further, more re-transmissions are needed in order to successfully 

decode received packets. The overall BLER, and consequently the effective code rate, spectral 

efficiency, and ultimately the data rate, will decrease with increasing number of re-

transmissions.  

 

 

Figure 4.2 Simulation of different repetitions and HARQ effect. 

 

4.2.2. Incremental redundancy vs chase combining 

 

In a HARQ implementation, there are two possible main strategies, based on the contents 

of the retransmitted packet, Chase Combining (CC) and Incremental redundancy (IR). In Chase 

Combining, all retransmissions are exactly the same, allowing for simpler combining 

implementations, typically at symbol level, and prior to demodulation. On the other hand, 

with Incremental redundancy, each transmission contains a different version of original 

packet, typically different puncturing patterns, for higher code rates. Implementation is more 



complex, typically requiring bit level combining in order to reconstruct the puncturing 

pattern. The rate matching stage implemented in the framework for the turbo code supports 

both IR and CC. The convolution implementation supports only supports CC. 

IR has an advantage over CC, but only for higher code rates [37], where a higher level of 

puncturing is present. This is confirmed by the simulation results in Figure 4.3 and Figure 4.4. 

The simulation was run with the same configuration from Table 4.2, for both CC and IR, but 

with a code rate of 0.6 and 0.2, respectively. 

While at the lower code rate of 0.2, IR and CC are indistinguishable, at the higher code 

rate there is a gain of approximately 0.6 dB with IR on the 1st retransmission, and close to 1 

dB on the 2nd retransmission. 

 

 

 

Figure 4.3 Chase combining vs Incremental redundancy, QPSK, 0.6 code rate. 

 

 

Figure 4.4 Chase combining vs Incremental redundancy, QPSK, 0.2 code rate. 

 

Figure 4.5 shows an additional simulation results using the same configuration from Figure 

4.4, but with 16QAM instead of QPSK. The results show that for higher order modulations, 

even at low code rates, IR has advantages over CC [37].  
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Figure 4.5 Chase combining vs Incremental redundancy, 16QAM, 0.2 code rate. 

 

4.2.3. Bit level vs Symbol level chase combining 

 

When combining packets with the same redundancy version (CC), the receiver has the 

option to perform the combining either at bit level or symbol level. Both options are 

supported by the framework as illustrated next. 

The same base simulator configuration from Table 4.2, with the changes listed in Table 

4.3, is used to simulate the combining of eight packets with the same RV. Using the parameter 

config.RVperiod set to the extreme values of 1 and 8 enforces bit level combining and symbol 

level combining, respectively. 

 

 

Table 4.3 — Simulator configuration for bit and symbol level combining 

Parameter Value 

config.maxRepetitions 8 

config.RVperiod 1 and 8 

config.forceHarqChaseComb true 

Modulation QPSK and 16QAM 

Code rate 0.6 

 

 

Figure 4.6 shows that, for QPSK, there is no difference between the combining methods. 

However, when 16QAM is used, there is a considerable degrade, especially for higher number 

of repetitions, as shown in Figure 4.7. This is in line with the results in [40].   

 

 



 
Figure 4.6 Bit level vs symbol level Chase Combining, QPSK, 0.6 code rate. 

 

 

Figure 4.7 Bit level vs symbol level Chase Combining, 16QAM, 0.6 code rate. 

 

4.3 - Repetitions 

This section continues the analysis initiated in the previous section on HARQ, extending it 

to the case where a large number of repetition bundling is needed. Unlike HARQ, where a 

retransmission is based on the receiver feedback, with repetitions, a predefined number of 

transmissions is sent for the same packet. The receiver combines all the different repetitions, 

thus improving the effective SNR. 

 

4.3.1. Overview 

 

In order to meet the target coverage enhancements required for eMTC devices, release 13 

of 3GPP specifications added support for repetition. The impact and benefit was studied in [3]. 

The obvious consequence is that coverage enhancement is done at the expense of spectral 

efficiency.  

In ideal conditions the gain in SNR is linear, improving SNR by 3 dB with every doubling in 

the number of repetitions, but in practice, channel estimation reliability will limit these gains 

for increasing number of repetitions [41]. 

Considering a 5 MHz LTE cell over a non-faded AWGN as per configuration given in Table 

4.4, the simulated SNR curves are shown tor the initial transmission and for a number of 

repetitions, 2,4,8,16,32,64 and 128. All repetition are sent with the same redundancy version. 

The gain in SNR, as expected, is approximately 3 dB per doubling in number of repetitions, as 

shown in Figure 4.8. 
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Table 4.4 — Simulator configuration for repetition 

Parameter Value 

System bandwidth (MHz) 5 

Allocation size (#PRBs) 6 

Modulation QPSK 

Channel Model AWGN 

Effective code rate 1/5 

Channel coding 1/3 turbo 

 

 

 

Figure 4.8 Repetitions with QPSK and symbol combining, code rate 0.2, and perfect synchronization 

and channel estimation 

In these ideal conditions, for a number of repetitions, r, the overall SNR gain, G in 

dB, can be given by: 

3n  G ,     (5.1) 

where n represents the number of times repetitions, r, were doubled, and can be given by: 

rn 2log   .                  (5.2) 

The required number of repetitions to obtain a target gain G, can then be given as: 










 3

G

2  r ,                   (5.3) 

showing the exponential relation between gain and required repetitions. This relation is 

illustrated in Figure 4.9, together with the points from Figure 4.8, having 10% BLER. For high 

target gains, a significant number of repetitions is needed for only a modest improvement in 

SNR.  



 

 

Figure 4.9 SNR gain with increasing number of repetitions, at 10% BLER 

 

In practice, channel estimation reliability and Carrier Frequency Offset (CFO) will 

limit these gains for increasing number of repetitions [41] as shown in [65][9]. Having only 

perfect channel estimation and synchronization, the framework can currently not validate 

the repetition at high target gains. 

 

4.3.2. Repetitions with different redundancy versions 

 

Similarly to the HARQ concept, different repetitions of the same packet, may be sent 

with different Redundancy Versions (RV). It is possible to define a redundancy version period, 

so that, consecutive repetitions within the same period, all have the same RV. This is 

especially advantageous for high code rates with high level of puncturing. 

A simulation investigating this effect is shown in Figure 4.11. The simulation is based 

on Table 4.4, with the changes described in Table 4.5. 

 

 
Table 4.5 — Simulator configuration for RV pattern cycling 

Parameter Value 

Repetitions 8 

RV period 2 and 8 

RV pattern 0,1,2,3 

Code rate 0.6 and 0.2 

 

 The simulation compares two different RV period patterns, with a fixed number of 8 

repetitions as illustrated in Figure 4.10. On pattern a), the RV period is two, so that every 

two consecutive repetitions have the same RV. On pattern b), the RV period is the same as 

the total number of repetitions, therefore all repetitions have the same RV. These patterns 

are tested with code rates of 1/5, with no puncturing, and 3/5, requiring a high level of 
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puncturing. The simulation results are presented in Figure 4.11, showing approximately 1 dB 

gain when pattern a) on the high code rate scenario. There is only a marginal gain with the 

low code rate of 1/5. 

 

 

Figure 4.10 Repetitions patterns (8,2) and (8,8) 

 

 

Figure 4.11 Repetitions with different RV vs. no repetitions with RV, at code rate 0.6 

 

As mentioned in section 4.2 - , combining packets with different RVs, requires 

reconstruction of the puncturing or repetition pattern, thus, requiring bit level combining, 

after demodulation. However, for coverage enhancement where low coding rates are used, 

there is no expected performance improvement [15]. 

 

4.4 - Frequency hopping 

 

This section presents a comparison of the different hopping algorithms, as described 

in 3.3.3. Table 4.6 describes the simulator configuration. 

The configuration with no hoping, corresponding to the ‘fixed-localized’ scheduling 

option, is configured at the lower edge of the available bandwidth. The simulation results for 

the 5MHz and 20 MHz simulation are shown in Figure 4.12 and Figure 4.13, respectively. As 

expected, the benefit of frequency hopping increases with the system bandwidth, allowing a 

higher degree of frequency diversity. The ‘fixed-hopping’, algorithm, blindly allocating a 

random frequency slot, performs only modestly, when compared to the ‘fixed-hopping-hmax’ 



algorithm which allocates resources on the frequency slot with highest channel gain. In 

practice, the downlink channel conditions on non-allocated resource is difficult to predict, 

especially in FDD systems, but it shows that any downlink channel knowledge, may effectively 

be used by the scheduler. 

 

 

Table 4.6 — Simulator configuration for frequency hopping 

Parameter Value 

System bandwidth (MHz) 5/20 

Allocation size (#PRBs) 6 

Modulation QPSK 

Antenna Configuration 2x1 

Antenna correlation low 

Channel Model EPA-5 

 

 

 

 

Figure 4.12 Simulation of different scheduling algorithms with 5MHz bandwidth on EPA-5 channel. 

 

 

Figure 4.13 Simulation of different scheduling algorithms with 20MHz bandwidth on EPA-5. 
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4.5 - Coverage Enhancement improvements for eMTC 

This section analysis strategies to enhance downlink coverage for eMTC devices based 

on the framework simulation results. 

 

4.5.1. The importance of small code block sizes 

 

Considering a 10 MHz LTE FDD configuration with a static allocation of 6 PRBs, QPSK 

modulation, 2 TX antennas and a control region of 3 OFDM symbols, the number of available 

channel bits per 1ms TTI is 1440 bits. The base simulator configuration is given in Table 4.7.  

 

 
Table 4.7 — Simulator configuration for block size comparision 

Parameter Value 

System bandwidth (MHz) 10 

Allocation size (#PRBs) 6 

Modulation QPSK 

Antenna Configuration 2x1 

Antenna correlation low 

Channel Model EPA 

Doppler spread (Hz) 1 

HARQ Off 

Frequency hopping Off 

Size of PDCCH region 3 

 

 

With the fixed static channel allocation, the size of the code block will define the effective 

code rate. Figure 4.14 illustrates the simulated BLER versus SNR curves for a number of 

different code block sizes from 40 to 960 bits, representing effective coding rate from 

approximately 0.028 to 0.667. 

For any given BLER, smaller block sizes require lower SNR than larger ones. It is also obvious 

that the gap between SNR curves increases as code block sizes get smaller hinting to the non-

linear relation between SNR and code block size, for small block sizes. On current 3GPP 

releases, the very low block sizes, even though allowed by the Turbo coder block, are not 

allowed to be scheduled for larger allocation sizes [2]. Assigning small blocks has an obvious 



negative impact on spectral efficiency, however, for eMTC devices, spectral efficiency needs 

to be sacrificed in order to meet the target receiver cost and coverage improvements [3].  

 

 
Figure 4.14 – Required SNR for different code block sizes, given a fixed allocation of 1440 channel bits. 

 

 

 
Figure 4.15 - Required SNR for different code block sizes, given a fixed allocation of 1440 channel bits 
and a target BLER of 10% and 1%. 

 

Further treatment of the data from Figure 4.14 is shown in Figure 4.15, considering only 

the points with BLER of 1% and 10%. The resulting curves of BLER versus code block size show 

two distinct regions: for code blocks above 350 bits, the SNR changes linearly with an increase 

of the block size and at a rate of approximately 1 dBs per 100 bits. On the other hand, for block 

sizes below 350 bits, any changes in the code block size has a more dramatic impact in the 

SNR.  

Generically, the relation between SNR and Eb/N0 for a given data rate can be given by 

[26]: 
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where 


 is the spectral efficiency measured in bits/second/Hz. Assuming that the coding and 

rate matching stages would lead to the same Eb/N0 performance, and noting that in our 

simulation scenario the spectral efficiency is only depending on the code block sizes, then, the 

gain in SNR in dB, nmSNR
, between any two block sizes Cn, Cm can be given by: 
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Figure 4.16 includes the SNR curve, referenced to Cn = 232 bits. It shows that the 

simulated SNR largely matches the SNR , especially for smaller block sizes. In practice, 

however, Eb/N0 for a particular BLER is not constant across all block sizes. This is shown in 

Figure 4.16 where, for 10% BLER, a fairly constant Eb/N0 is reached for code rates below 1/3, 

but, due to puncturing on larger blocks, there is a degradation in Eb/N0 performance as code 

rates increases. For a target BLER of 1%, also the smaller blocks start to experience a 

degradation in Eb/N0 performance due to the low turbo coding performance at these very small 

code blocks sizes. 

 

 
 

Figure 4.16 – Required Eb/N0 for different code block sizes, given a fixed allocation of 1440 channel 
bits. 

 

Figure 4.15 shows the importance of reducing any overhead, including those introduced by 

higher layers. This is especially the case if smaller code block sizes are to be used, as it is 

expected to be the case for many eMTC applications. 

Considering an eMTC smart metering application based on a command-response traffic 

model [3] with downlink commands of 20 bytes, the overhead introduced by E-UTRAN is 

typically 48 bits with 24bit for CRC, 16 bits for RLC header and 8 bits for MAC header. The total 

code block size becomes 26 bytes or 208 bits. From Figure 4.15, the impact of adding an IPV6 

header of 40 bytes has a cost of approximately 4.3dB in SNR. For smaller optimized commands 

of 10 bytes and 5 bytes, the impact would increase to approximately 5.5 dB and 6.7 dB 

respectively. For code blocks larger than 350 bits, the impact is constant and around 3dB. The 

results are summarized in Table 4.8. 



 

 

 

Table 4.8 — Impact of a 40 byte overhead for different code block sizes on EPA-1 channel 

RLC SDU size 

(bytes) 

Code block size 

(bits)* 

Impact in SNR of an additional 

40 byte overhead (dB) 

5 88 ~6.7 dB 

10 128 ~5.5 dB 

20 208 ~4.3 dB 

> 38 bytes > 352 bits ~3 dB 

* Assuming a fixed overhead of 48 bits accounting for RLC/MAC header + CRC 

 

These results illustrate that coverage enhancement for eMTC calls for a highly efficient 

protocol stack with minimum overhead. 

Non-IP access was partially introduced by 3GPP in release 13 [4] and can be an important 

coverage enhancement tool. The current 3GPP restriction in using the very low block sizes [2] 

may, however, limit some of the benefits of a highly optimized application. 

 

4.5.2. Turbo coding vs convolutional coding 

 

The discussion in the previous section enhances the non-linear relation between SNR and 

code block size at low spectral efficiencies. In terms of coverage enhancement, smaller code 

blocks are clearly preferable over larger ones. However, from a transport block point of view, 

having very small transport blocks has an extra negative effect in spectral efficiency due to the 

fixed overhead introduced by the CRC block, as well as the RLC and MAC headers [6]. 

 

A further investigation is now done regarding the channel coding performance. While turbo 

coding is a capacity approaching code [29], its high performance comes from the use of a large 

internal interleaver, which requires the use of a large code block sizes. On very smaller code 

block sizes, the BER/BLER performance of the turbo coder is highly degraded. 

On the other hand, while the BER performance of tail-biting convolutional codes is mostly 

independent on the block size [32], the BLER performance degrades with increasing code block 

sizes. This is an intuitive result as for a given BER, larger blocks will likely have more errors 

than smaller ones. 

 

In Figure 4.17, the simulated turbo coding BLER performance, at the native rate of 1/3 is 

compared to the 1/3 tail-biting convolutional code over AWGN channel with QPSK modulation. 

The used code block sizes include a 24 bit CRC for BLER evaluation. The results confirm that, 

as the block size decreases, the BLER performance also decreases for turbo coding, while 

increasing for convolutional coding. 
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Figure 4.17 Simulation results of 1/3 Turbo coding vs 1/3 Tail-biting convolutional code for code block 

sizes: 40, 56, 80, 112, 144, 176, 232, 280, 352, 432, 528, 624, 736, 832, 960 bits, over AWGN. 

Further treatment of these results, for the points with 10% BLER, is shown in Figure 4.18. 

For small code block sizes, the convolutional code approaches the performance achieved by 

the turbo coding, outperforming it for code block sizes approximately below 80 bits. 

 

 

 

Figure 4.18 Simulation results of 1/3 Turbo coding vs 1/3 Tail-biting convolutional code for different 

block sizes and for a BLER of 10% over AWGN channel. 

 

The simulation configuration in Table 4.7 is reused to simulate five small code block sizes 

approximately matching the use case scenarios listed in Table 4.8. The simulation is performed 

for tail-biting convolutional coding and the results are compared to the turbo coding figures. 

As shown in Figure 4.19, the performance degradation by using the convolutional code is, at 

most, 0.8 dB at 10% BLER for the largest block size of 232 bit. 

 

 



 

Figure 4.19 Simulation results of 1/3 Turbo coding vs 1/3 Tail-biting convolutional code for different 

block sizes over EPA-1 channel. 

 

For small transport block sizes, a less power-hungry channel coding may nearly match the 

performance of computational intensive Turbo coding. Using convolutional coding, can further 

help in reducing the terminal power consumption, memory requirements and cost for specific 

eMTC related applications.
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Chapter 5  

 

Conclusion 

The main contribution of this thesis is the development of a link-level simulation framework 

capable of prototyping and investigating concepts related to MTC devices. 

 

Throughout this text, the flexibility of the framework has been illustrated in a number of 

examples and simulations. Section 2.2-  presented the system data structure as a major 

contribution to the framework flexibility, both in terms of OFDM numerology configuration, as 

well as pilot pattern definitions. An example of a hypothetical, non-LTE configuration is given 

2.2.6. 

 

The possibilities added by the channel masking concept is explained in section 3.3- , and 

explorer further in the example of section 3.3.2. 

 

The possibilities allowed by the different combining options for HARQ and repetitions are 

initially explored in section 3.2- . Sections 4.2 - and 4.3 - investigated these topic further on a 

variety of configurations, illustrating, on one hand, that the simulated results are aligned with 

the published results, and, on the other hand, that the configuration flexibility, allows also for 

non-standard configurations. 

 

Section 4.5 - presented an investigation on the impact of code block sizes on the DL SNR 

performance. This was done also for sizes not allowed by the current 3GPP standards for the 

simulated context. The results illustrated how an efficient and light protocol stack, with 

minimum overhead, may be a valuable asset to enhance coverage of particular low bit rate 

application, like smart metering. It was shown that IPV6 header alone has an impact of 

approximately 3 dB in SNR for large code block sizes, and up to 6.7 dB in highly optimized 

applications with small code block sizes. 

The investigation was further developed to show that, for small block sizes, the use of 

convolutional code for the DL PDSCH may be beneficial in terms of device complexity, power 

consumption and cost, when compared to the standardized more complex turbo codes. 



5.1- Limitations and future work 

 

While providing a rich set of feature and configuration options, it is important to understand 

the limitations of the current framework and areas to be considered for future improvements. 

 

Realistic, pilot-base channel estimation is among the first candidates for future 

improvements. The current implementation supports perfect channel estimation only, 

therefore providing an upper performance bound. A channel estimation module, as described 

in Annex D.1.7, is already available to accommodate a future implementation. A realistic 

channel estimation implementation would allow a more accurate study of the real impact of a 

particular change. 

 

The current implementation does not introduce any synchronization issues, modeling 

therefore perfectly synchronized transceivers. Among these issues, Carrier Frequency Offset 

(CFO), is likely the 1st implementation choice. This would allow for possibilities in studying 

ways to contract CFO. 

 

The current equalization is based on a single tap and zero forcing algorithm, as detailed in 

D.1.8. More advanced equalization may be needed, particularly in conjunction with realistic 

channel estimation, and eventually fast-varying channels. 

 

While the framework only implements the downlink, it may easily be extended for UL, by 

adapting the lower stages of the physical layer. 

 

From a usability point of view, it may be beneficial to add additional return data from the 

framework, including throughput analysis, as well as additional print levels for debugging 

purposes. Inclusion of confidence intervals to the simulated points may help to interpret results 

across different runs. Finally, while the code was written with the goal of easy maintenance, 

rather than performance, it is surely possible and desirable to optimize the code to increase 

performance. 
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Annex A 

This Annex lists the framework APIs accessed by the main modules, the relevant data 

structure, and a test script example. 

A.1 - APIs accessed by the script 

A.1.1. systemConfig() 

 

Loads a predefined system configuration into the system data structure. 

 
Prototype 
system 

systemConfig( typeConfig ) 

 

Parameters 
typeConfig: a tag linked to a predefined system configuration. The currently pre-
defined configurations are the following: 
 

'LTE_normalCP-1.4Mhz_1Tx' 

'LTE_normalCP-1.4Mhz_2Tx' 

'LTE_normalCP-3Mhz_1Tx' 

'LTE_normalCP-3Mhz_2Tx' 

'LTE_normalCP-5Mhz_1Tx' 

'LTE_normalCP-5Mhz_2Tx' 

'LTE_normalCP-10Mhz_1Tx' 

'LTE_normalCP-10Mhz_2Tx' 

'LTE_normalCP-15Mhz_1Tx' 

'LTE_normalCP-15Mhz_2Tx' 

'LTE_normalCP-20Mhz_1Tx' 

'LTE_normalCP-20Mhz_2Tx' 

'LTE_extendedCP-20Mhz_1Tx' 

'LTE_extendedCP-20Mhz_2Tx' 

'LTE_extendedCP-5Mhz_1Tx' 

'LTE_extendedCP-5Mhz_2Tx' 

 

Return 
system: the populated system data structure. 
 
 



A.1.2. UEConfig() 
 

Loads a predefined UE configuration into the UE data structure. 

 
Prototype 
UE 

UEConfig( typeConfig ) 

 

Parameters 
typeConfig: a tag linked to a predefined UE configuration. The currently pre-defined 
configurations are the following: 
 

'cat-6_1RX' 

'cat-M1_1RX' 

 

Return 
UE: the populated UE data structure. 
 
 

A.1.3. linkConfig() 
 

Loads a predefined link configuration into the link data structure. 

 
Prototype 
link 

phyChannelConfig( typeConfig, CBsize); 

 

Parameters 
typeConfig: a tag linked to a predefined link configuration. The currently pre-defined 
configurations are the following: 
 

'CRC24_16QAM' 

'CRC24_QPSK' 

'CRC24_QPSK_conv1/3' 

'CRC24_16QAM_conv1/3' 

 

CBsize: Optional parameter to configure the link with a specific code block size. 
 

Return 
link: the populated link data structure. 
 
 

A.1.4. simulatorManager() 
 

Initiates a new simulation run, or resumes a previously interrupted simulation.  

 
Prototype 
outcome, status 

simulatorManager(run, fullpath) 

 

Parameters 
run: run data structure, containing all configuration instances to be simulated. 
 
fullpath: full path to the test script calling this function. Typically set to 

mfilename('fullpath'). 
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Return 
outcome: the run data structure populated with the simulation outcomes. 
 
status: flag indicating the validity of the simulation results: 
 
0: success 
1: failure 
 
 

A.2 - APIs accessed by the simulator 

 

A.2.1. antennaMapping () 
 

Performs antenna mapping and precoding, depending on antenna configuration. Current 
configurations include SISO and 2 transmit antennas with transmit diversity, according to 
36.211 section 6.3.3.3/ 6.3.4.3. 

 
Prototype 
out 

antennaMapping(in, config) 

 

Parameters 
in: input vector of complex modulated symbols. 
 
config: config data structure. 

 

Return 
out: output vector of complex modulated symbols. Extra dimension is added in MISO 
case. 
 
 

A.2.2. awgnChannel () 
 

Adds Additive white Gaussian Noise to the input signal. 

 
Prototype 
out,noisePowerdB 

awgnChannel(in, snr, config) 

 

Parameters 
in: input vector of complex modulated symbols. 
 
snr: the target Signal-to-Noise Ratio 
 
config: the config data structure. 
 
Return 
out: output vector of complex modulated symbols with added AWGN.  
 
noisePowerdB: Noise power in dB, added by the AWGN block.  



 
 

A.2.3. channelCoding() 
 

Applies channel coding on the input data. 

 
Prototype 
out, codeRate 

channelCoding(in, config) 

 

Parameters 
in: input vector of bits. 
 
config: the config data structure. 

 

Return 
out: vector of coded bits. 
 
codeRate: the effective code rate used. 
 
 

A.2.4. channelDecoding() 
 

Applies channel decoding on the input data. 

 
Prototype 
out 

channelCoding(in, config) 

 

Parameters 
in: input vector of hard or soft-bits. 
 
config: the config data structure. 

 

Return 
out: vector of decoded bits. 
 
 

A.2.5. chEstimation()  
 

Performs channel estimation on the input data grid. 

 
Prototype 
out 

chEstimation(in, Hperfect, pilotSeq, config) 

 

Parameters 
in: matrix of complex elements, representing the received OFDM grid. 
 
config: the config data structure. 
 

 

Return 
out: matrix of complex elements, representing the channel gains on the OFDM grid. A 
dimension is added with a size equal to the number of transmit antennas. 
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A.2.6. CRC_attachment()  
 

Add a CRC tail to the input vector. 

 
Prototype 
out 

CRC_attachment(in, config) 

 

Parameters 
in: vector, representing a block of bits. 
 
config: the config data structure. 
 

 

Return 
out: vector, representing a block of bits. Same as input with extra CRC tail. 
 
 

A.2.7. CRC_check()  
 

Performs the CRC check on the input block for bits. 

 
Prototype 
Out, error 

CRC_check(in, config) 

 

Parameters 
in: vector, representing a block of bits with CRC tail. 
 
config: the config data structure. 
 

 

Return 
out: vector, representing a block of bits with the CRC removed. 
 
error: flag indicating the outcome of the CRC check: 
 
0: success 
1: failure 
 
 

A.2.8. demapping()  
 

Retrieves the data from the OFDM grid, based on the scheduling map. 

 
Prototype 
rxData, rxPilot 

demapping(in, config, scheduling) 

 

Parameters 
in: matrix of complex elements, representing the received OFDM grid. 
 
config: the config data structure. 
 
scheduling: matrix of complex elements, representing the scheduled resources on the 
OFDM grid. 
 



 

Return 
rxData: vector, representing a block of de-mapped data symbols. 
 
rxPilot: vector, representing a block of de-mapped pilot symbols. 
 
 

A.2.9. equalization ()  
 

Retrieves the data from the OFDM grid, based on the scheduling map. 

 
Prototype 
out 

equalization(in, h, SNR, config, scheduling) 

 

Parameters 
in: vector of complex elements. 
 
h: channel estimation matrix covering the entire OFDM grid and for all TX antennas. 
 
snr: Signal-to-Noise Ratio estimation 
 
config: the config data structure. 
 
scheduling: matrix of complex elements, representing the scheduled resources on the 
OFDM grid. 
 

 

Return 
out: vector, representing a block of equalized data symbols. 
 
 

A.2.10. fadingChannel ()  
 

Filters the input signal with a fading equivalent channel. 

 
Prototype 
out, Hperfect 

fadingChannel(in, config) 

 

 

Parameters 
in: vector of complex elements. 
 
config: the config data structure. 

 

Return 
out: vector of complex elements, representing the faded signal. 
 
Hperfect: perfect channel estimation matrix covering the entire OFDM grid and for all 
TX antennas. 
 
 

A.2.11. getNewTB ()  
 

Retrieves a new transport block. 
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Prototype 
out, config 

getNewTB(config) 

 

 

Parameters 
config: the config data structure. 

 

Return 
out: a vector with a sequence of bits representing a transport channel. 
config: the updated config data structure. 
 
 

A.2.12. OFDM_demod_tti ()  
 

Performs OFDM demodulation on an input signal. 

 
Prototype 
out 

OFDM_demod_tti(in, config) 

 

Parameters 
in: vector of complex elements, representing the received time domain signal. 
 
config: the config data structure. 

 

Return 
out: matrix of complex elements, representing the received OFDM grid. 
 
 

A.2.13. OFDM_mod_tti ()  
 

Performs OFDM modulation on an input signal. 

 
Prototype 
out 

OFDM_mod_tti(in, config) 

 

Parameters 
in: matrix of complex elements, representing the received OFDM grid 
 
config: the config data structure. 

 

Return 
out: vector of complex elements, representing the time domain signal. 
 
 

A.2.14. QAM_demod ()  
 

Performs QAM de-modulation of an input signal. 

 
Prototype 
out 

QAM_demod(in, Nvar, config) 

 

Parameters 
in: vector of complex elements, representing the modulated signal 



 
Nvar: estimated noise variance, representing the modulated signal 
 
 
config: the config data structure. 

 

Return 
out: vector, representing the demodulated signal in bits of soft-bits. 
 
 

A.2.15. QAM_mod ()  
 

Performs QAM modulation of an input signal. 

 
Prototype 
out 

QAM_mod(in, config) 

 

Parameters 
in: vector, representing the input bit signal 
 
config: the config data structure. 

 

Return 
out: vector of complex symbols, representing the modulated signal. 
 
 

A.2.16. rateMatchingRX ()  
 

Performs the reverse rate-matching operation. 

 
Prototype 
out 

rateMatchingRx(in, config) 

 

Parameters 
in: vector, representing the input bit signal 
 
config: the config data structure. 

 

Return 
out: vector, representing the output bit signal 
 
 

A.2.17. rateMatchingTX ()  
 

Performs the rate-matching operation. 

 
Prototype 
out 

rateMatchingTx(in, config) 

 

Parameters 
in: vector, representing the input bit signal 
 
config: the config data structure. 
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Return 
out: vector, representing the output bit signal 
 
 

A.2.18. reTxCombiner ()  
 

Performs the symbol level combining operation. 

 
Prototype 
out 

reTxCombiner(in, h, config, scheduling, type) 

 

Parameters 
in: vector of complex symbols. 
 
h: channel estimation matrix covering the entire OFDM grid and for all TX antennas. 
 
config: the config data structure. 
 
scheduling: matrix of complex elements, representing the scheduled resources on the 
OFDM grid. 
 
type: buffer operation, combine or reset: 
 

'updateBuffer' 

'initBuffer' 

 
 

Return 
out: vector of complex symbols, representing the result of the combining operation. 
 
 

A.2.19. scheduler ()  
 

Performs the scheduling of OFDM resources among all registered channels. 

 
Prototype 
scheduling, grid, config 

scheduler(config, rbn, h) 

 

Parameters 
config: the config data structure. 
 
rbn: an integer containing the current RBn. 
 
h: channel estimation matrix covering the entire OFDM grid and for all TX antennas. 

 

Return 
scheduling: matrix of complex elements, representing the scheduled data resources 
on the OFDM grid. 
 
grid: the grid data structure, containing the allocated resources for the selected 
channels and pilots. All not allocated resources are free for data scheduling. 
 
config: the updated config data structure. 
 
 



A.2.20. snrCompensation ()  
 

Calculated the relation SNR/EbNo. Used when the subInstance is defined in EbNo and AWGN is 
added based on SNR.  

 
Prototype 
out 

snrCompensation(config, codeRate) 

 

Parameters 
config: the config data structure. 
 
codeRata: the effective codeRate at the channel coding stage. 
 
Return 
out: the amount of SNR compensation needed, in dB, to scale SNR from EbNo. 
 
 

A.2.21. symbolMapping ()  
 

For each of the configured channels and pilots, performs the mapping to the allocated OFDM 
resources. 

 
Prototype 
out, pilotSeq  

symbolMapping(in, config, grid, scheduling) 

 

Parameters 
in: vector of complex elements. It has 2 dimensions in case of multiple transmit 
antennas. 
 
config: the config data structure. 
 
grid: the grid data structure, containing the allocated resources for the selected 
channels and pilots. All not allocated resources are free for data scheduling. 
 
scheduling: matrix of complex elements, representing the scheduled data resources 
on the OFDM grid. 
 
Return 
out: matrix of complex elements, representing the mapped symbols into the OFDM 
grid. There is one grid per antenna port, therefore the matrix may have 2 or 3 
dimensions. 
 
pilotSeq: vector of complex elements containing the pilot sequence used. 
 
 

A.2.22. updateTiming ()  
 

Updates the counters associated with the system timing. 

 
Prototype 
rbnNext, sfnNext 

updateTiming(config, rbnLast) 

 

 

Parameters 
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config: the config data structure. 
 
rbnLast: the previous RBn value. 
 
Return 
rbnNext: the next RBn value. 
 
sfnNext: the next SFN value. 
 
 

A.3 - APIs accessed by the simulation manager 

A.3.1. simulator ()  
 

Updates the counters associated with the system timing. 

 
Prototype 
results, stats  

simulator(config, subInstance) 
 

 

Parameters 
config: the config data structure. 
 
subInstance: integer identifying the intended subInstance of the configuration to be 
run. 
 
Return 
Results: structure containing the simulation results 
 
stats: structure containing additional statistics on the simulation run. 

A.4 - Data structures 

A.4.1. system 

 
system.BW                             : system total BW (MHz) 

system.SCspacing                      : SC spacing (Hz) 

system.nTx                            : Number Tx antennas 

system.timing.sfn                     : SFN duration (in #RB duration) 

system.timing.sfnMax                  : SFN maximum before wrapping 

system.nRB                            : effective BW (in #RB BW)  

system.NFFT                           : NFFT size used 

system.RB.nSC                         : #SC in a Resource Block 

system.RB.nsymbol                     : #OFDM symbols in a Resource Block 

system.cpNSamples(system.RB.nsymbol)  : CP length of each OFDM symbol in the RB 

system.TsOFDM                         : OFDM symbol duration (seconds) 

system.Ts                             : base time unit (seconds) 

system.Fs                             : sampling freq (Hz) 

system.nSC                            : effective BW (in #SC) 

system.pilot.idx(system.nTx)          : pilot grid on each Tx antenna 

system.pilot.PowerBoost               : pilot power boost 

system.channels{n}.id                 : channel id/name 

system.channels{n}.idx                : channel grid mapping 

system.channels{n}.start              : timming of 1st transmisson (in #RB) 

system.channels{n}.RBrep              : repetition interval (in #RB) 

 



A.4.2. link 
 

link.     : CRC size/type 

link.ModOrder    : Modulation order 

link.Qm     : bits/symbol  

link.rv                        : redundancy version 

link.CBsize     : codeblock size 

link.tti     : TTI duration in #RB duration 

link.G     : channel size in # channel bits for one tti 

link.coding    : channel coding to be used 

 

A.4.3. UE 
 

UE_capability.Nsoft    : Total # soft bits.                        

UE_capability.Mdl_harq   : # of Harq processes. Not yet used 

UE_capability.nRx   : # receive antennas. Not yet used 

 
 

A.4.4. config 

 
config.system         : the system data structure  

config.UE    : the UE data structure 

config.link    : the link data structure 

 

config.enableCRC              : enables/disables CRC related blocks 

config.enableCoding           : enables/disables coding related blocks 

config.enableModulation       : enables/disables modulation related blocks 

config.enableSoftDemodOut     : enables/disables soft-bit demodulation 

config.enableRateMatching     : enables/disables rateMatching blocks 

config.enableHARQ             : enables/disables HARQ functionality 

config.enableRepetitions      : enables/disables repetition functionality 

config.enableFixedCodeRate    : enables/disables fix code rate allocation 

config.enableOFDM             : enables/disables OFDM related functions 

  

config.enableAwgn             : enables/disables AWGN channel 

config.enableFading           : enables/disables fading channel 

config.typeFading             : selects fading channel, if enabled 

  

config.maxRepetitions         : maximum number of repetitions (if enabled) 

config.RVperiod               : consecutive repetitions with same RV 

config.maxHarqRetx            : maximum number of HARQ reTx (if enabled) 

config.forceHarqChaseComb     : disables RV change for HARQ/repetitions 

config.retxCombineMethod      : repetition combining method 

config.schedulingType         : scheduling algorithm 

config.scheduledNumRB         : scheduling size in RBs 

config.scheduledRBStart       : scheduling start (localized case) 

config.coderateTarget         : target code rate if fixed code rate is enabled 

config.txAntannaCorrelation   : antenna correlation 

config.chEstimationType       : type of channel estimation to be used 

config.equalizationType   : type of equalization to be used 

  

config.sim.ebnoRange          : vector with all subInstances (EbNo in dB) 

config.sim.targetNumErrors    : target number of bit errors 

config.sim.maxTxBits          : target number of transmitted bits 

config.sim.targetTxTTI        : target number of TTIs (total transmission time) 

config.sim.BLERtarget         : target BLER 

config.fadingRandomSeed       : fading random seed 

config.printLevel             : print level to the console during simulation 
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A.4.5. run 

 
run{}.config        : config struct 

run{}.results.berRange()       : ber results for all subInstances 

run{}.results.blerRange()      : bler results for all subInstances 

run{}.results.snrRange()       : subInstances in terms of snr 

run{}.results.ebnoRange()      : subInstances in terms of ebno 

run{}.completedRangeIdx   : last completed subInstance 

run{}.status     : simulation status (started/terminated)                    

run{}.timeLastRun   : datetime of last run 

run{}.singlPointSimTime  : simulation time for last subInstance 

 

A.4.6. status 
 

status.script     : script name 

status.state     : simulation state 

status.path     : script full path 

 

A.5 - Test script example 

Script example for the simulation configuration Table 4.7 with the outcome shown in Figure 

4.14. 

 
%% *********************************************************************** 

% 

%   script to investigate BLER vs SNR/EbNo with different CB sizes 

%    

% 

%% *********************************************************************** 

clear all; 

 

%% initialize global config struct with relevant simulation data 

config.system   = systemConfig('LTE_normalCP-10Mhz_2Tx'); 

config.UE             = UEConfig('cat-6_1RX'); 

config.link           = phyChannelConfig('CRC24_QPSK', 0); 

  

config.enableCRC             = true; 

config.enableCoding          = true; 

config.enableModulation      = true; 

config.enableSoftDemodOut    = true; 

config.enableRateMatching    = true; 

config.enableHARQ            = false; 

config.enableRepetitions     = false; 

config.enableFixedCodeRate   = false; 

config.enableOFDM            = true; 

  

config.enableAwgn            = true; 

config.enableFading          = true; 

config.typeFading            = 'EPA-1'; 

  

config.schedulingType        = 'fixed-localized'; 

config.scheduledNumRB        = 6; 

config.scheduledRBStart      = 2; 

config.txAntannaCorrelation  = 'low'; 

config.chEstimationType      = 'perfect'; 

config.equalizationType      = 'zf'; 

config.CombinePreEq  = 0; 

  

config.sim.ebnoRange         = 0:0.2:8; 

config.sim.targetNumErrors   = 1e8; 

config.sim.maxTxBits         = 1e8; 

config.sim.targetTxTTI       = 100; 

config.sim.BLERtarget        = 0.01; 

config.fadingRandomSeed      = 124; 

config.printLevel            = 2; 



  

%% other initializations 

CBsize = [40 56 80 112 144 176 232 280 352 432 528 624 736 112 960]; 

endRun = length(CBsize); 

run = cell(1,endRun); 

  

%% configure the simulation runs 

for instance = 1:endRun 

     

    % update CBsize for next run 

    config.link.CBsize = CBsize(instance);      

    run{instance}.config = config; 

end 

  

%% run the simulator 

[outcome, status] = simulatorManager(run, mfilename('fullpath')); 

if ~status 

    fprintf('\nError running the simulator.\n'); 

    return 

end 

  

%% plot the results 

figure 

for instance = 1:endRun 

    instResults = outcome{instance}.results; 

    instConfig = outcome{instance}.config; 

    semilogy(instResults.snrRange, instResults.blerRange, ’black’); 

    hold on 

end 

grid on; 

title('BLER vs SNR for different code block sizes(EPA-1)'); 

xlabel('SNR(dB)'); 

ylabel('BLER');
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Annex B 

This Annex presents framework profiling data, identifying the key bottlenecks modules in 

terms of simulation performance. 

B.1 - Performance overview 

The following performance figures were obtained using the MATLAB profiling tools. While 

Turbo Decoding is clearly the bottleneck on AWGN environments, when fading is used, the 

fading channel (including the perfect channel estimation function) accounts for nearly half 

of the total processing time. 

 

 

Table B.1 — Top 3 processing modules with highest processing time, AWGN 

Parameter % processing time 

Turbo Decoding 24% 

OFDM encoder 12% 

Scheduler 8% 

 

 

 

Table B.2 — Top 3 processing modules with highest processing time, fading 

Parameter % processing time 

Fading Channel 46% 

Turbo Decoding 6% 

OFDM encoder 
3% 
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Annex C 

This Annex presents the MATLAB System Objects used from the Communications System 

toolbox. 

C.1 - MATLAB Communications System Objects uses 

 

 

 

Table C.3 — MATLAB System Objects used 

Function MATLAB system object 

AWGN channel comm.AWGNChannel* [53] 

Fading channel comm.MIMOChannel* [54] 

CRC attachment comm.CRCGenerator* [49] 

1/3 Turbo Coding comm.TurboEncoder* [48] 

1/3 tail-biting convolutional code comm.ConvolutionalEncoder* [51] 

Modulation comm.RectangularQAMModulator* [46] 

CRC check comm.CRCDetector* [50] 

1/3 Turbo decoding comm.TurboDecoder* [47] 

1/3 tail-biting convolutional code comm.ViterbiDecoder* [52] 

Demodulation 
comm.RectangularQAMDemodulator* [45] 

* From the MATLAB Communications System toolbox
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Annex D 

This Annex presents implementation details for the relevant blocks accessed by the 

simulator, and that were not included in section 3.1- . 

D.1 - Functional Blocks not described in 3.1-  

 

D.1.1. The CRC attachment and CRC check blocks 

 

The CRC attachment block adds a CRC of size m to a block of size n. This is the first 

user plane processing step within the physical layer. In the framework this is implemented on 

the CRC_attachment.m module using the MATLAB comm.CRCGenerator system object. 

The behavior of this module is controlled by two input parameters as shown in Figure 

D.1. The config.link.CRCtype allows the selection of a predefined cyclic generator 

polynomials identified by a tag. Currently the module implements the LTE standardized 

polynomials [1] for 8bit, 16bit, and the two 24 bit versions. The second parameter, 

config.enableCRC, allows bypassing the CRC operation, so that no CRC is attached. 

The CRC check module, receives a block of size n+m and performs a CRC check based 

on the last m bits of the block. A Boolean output returns the CRC check result. The 

implementation is based on the MATLAB comm.CRCDetector and the configuration is, in all 

aspects the same as for the CRC attachment case. This module may be disabled with the 

Boolean parameter config.enableCRC, so that no error check is performed, and the output 

becomes the same as the input. 

 

 
Figure D.1 – CRC attachment block. 



D.1.2. The Code block segmentation and concatenation blocks 

 

Code block segmentation is included in the LTE specification for block sizes above 

6144 bit. With eMTC devices in mind, where block sizes are expected to smaller than 1000 

bit, code block segmentation, as standardized in [1] is not expected to ever be used. The 

framework therefore does not implement code block segmentation.  

 

D.1.3. The modulator and demodulator blocks 

 

The modulator performs the constellation mapping of the incoming bit sequence of 

size n, according to the selected modulation. The output is a block of complex modulated 

symbols as illustrated in Figure D.2. The framework currently supports the 3GPP standardized 

modulations for category M1 devices, QPSK and 16QAM. The implementation is based on 

MATLAB’s comm.RectangularQAMModulator system object, configured to perform the 3GPP 

symbol mapping as per [11]. 

 

 
Figure D.2 – QAM Modulator 

 

In the standard configuration, the demodulator receives a sequence of symbols and 

performs the demodulation operation, providing at the output a sequence of soft-bit in the 

form of log-likelihood ratio (LLR) [44], as shown in Figure D.3. The number of output symbols 

is given by n/k, where k is the number of bits per symbol, computed from 

config.link.ModOrder. 

It is possible, however, to enforce hard-bit detection by setting the 

config.enableSoftDemodOut to true. The implementation is based on MATLAB’s 

comm.RectangularQAMDemodulator system object. 
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Figure D.3 – QAM Demodulator 

 

It is possible to bypass the modulation and demodulation operation with the setting 

config.enableModulation. 

 

D.1.4. The Antenna mapping module 

 

The framework supports several transmit antennas from a system configuration point 

of view. However, the only multi-antenna scheme currently implemented is transmit diversity 

with two antennas, using a variant of the Alamouti scheme [56], the Space Frequency-Block 

Coding (SFBC) approach, as defined for LTE in [11].  Implementation is based on the generic 

two-step multi-antenna processing stage defined for LTE. The incoming block of symbols are 

first mapped to two different layers, corresponding to the two antenna ports. The mapping 

can be seen as a simple serial to parallel conversion, where all incoming even and odd 

symbols are mapped to the layers corresponding to antenna port0 and antenna port1, 

respectively. The second step is the precoding phase in which each layer is mapped to the 

actual antenna port by the following precoding operation: 
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Where 
)( p

ix  represent the ith symbol on layer p, and 
)( p

jy  represent the jth symbol on 

antenna port p, with p  {0,1}.  

 The overall process is effectively dividing the power among the two antennas, 

replicating the input symbols into antenna port0, while operating on consecutive pair of 

symbols for antenna port1, as shown in Figure D.4.  

 



 
Figure D.4 – Antenna mapper 

 

Since transmit diversity relies on the assumption that the channel is unchanged 

between the pair of symbols sent, some care must be taken if attempting to use the current 

transmit diversity implementation for other non-LTE OFDM configurations, especially due to 

pilot configuration. The LTE pilot configuration ensures that two data symbols are always 

adjacent in the frequency domain, with no pilot in between. 

Adding support for additional multi-antenna schemes requires implementation of the 

corresponding layer mapping and precoding operations. An additional field to the config 

structure is required to identify the scheme to be used. 

 

 

D.1.5. The fading channel block 

 

The modeling of multi-path fading propagation is a crucial component of any wireless 

simulation environment. The framework relies on a statistical multi-path channel model 

implemented by the MATLAB comm.MIMOChannel system object. This system object is a 

generic implementation of Multiple-Input Multiple-Output (MIMO) multipath fading channel, 

supporting both Rayleigh and Rician fading, Doppler spectrum and maximum Doppler shift 

configuration, as well as antenna correlation definition [54]. The different paths are modeled 

using a delay profile in the form of a Tapped Delay-Line (TDL), containing the relative path 

delays and gains of the resolvable paths. 

LTE defines a set of channel models, representing low, medium and high delay spread 

environments [13]. Each channel model may be associated with a particular maximum 

Doppler frequency. The framework supports all these channel models at various Doppler 

shifts, selectable in config.typeFading. 

 

The framework currently supports only one receive antenna, in line with 3gpp CAT-M1 

devices. The comm.MIMOChannel system object is, therefore, defined either as Multi-Input 

Single-Output (MISO), or Single-Input Single-Output (SISO), depending on the number of 
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configured transmit antennas. In case of more than one transmit antenna, the amount of 

antenna correlation is defined by a correlation matrix for low, medium and high correlation, 

as specified in [13]. These are configurable with config.txAntennaCorrelation. 

 

An overview of the fading channel block is shown in Figure D.5. The module will 

receive one transmission block per active antenna, as configured though the 

config.system.nTx field. The module will then instantiate the comm.MIMOChannel system 

object in order to apply the selected fading model, outputting one single filtered block with 

the same size as the input blocks. 

 

 
Figure D.5 – Fading channel 

 

A second output from the fadingChannel.m module is the perfect frequency based 

channel estimation. The channel estimate is provided for each element in the OFDM grid, and 

for each of the transmit antennas. The calculation is based on the channel path gains 

returned by the comm.MIMOChannel system object. For each time-domain sample i, and for 

each transmit antenna, the comm.MIMOChannel system object returns an n element row 

vector containing the channel gains for each of the n channel taps configured. The samples 

corresponding to the cyclic prefix are discarded, and all vectors, corresponding to NFFT 

consecutive samples, are averaged, obtaining the mean channel gains over each of the k 

OFDM symbols. In order to obtain the time domain channel response, the n average tap gains 

are time scaled according to their corresponding delay profile configuration. However, the 

sampling rate resolution is too low for accurate magnitude frequency response estimation, 

especially at low values of NFTT. Therefore an oversampling factor of 20 is used (100 for 128 

point FFT cases). The time-scaled version of is then converted to the frequency domain by 

means of the FFT of size k.NFFT, where k is the oversampling factor.  In the frequency 

domain the signal is down sampled and filtered to the matching OFDM grid bandwidth size. 

The fading module may be disabled either by the config.enableOFDM or 

config.enableFading. If fading is disable, all the incoming blocks, corresponding to different 

antenna ports are simply added to generate the output block. It is also possible to configure 

an initial random seed, config.FadingRansomSeed. 



 

D.1.6. The AWGN channel module 

 

The AWGN channel module is implemented in awgnChannel.m, based on MATLAB’s 

comm.AWGNChannel system object. 

 The module adds Additive White Gaussian Noise (AWGN) to the complex input 

sequence based on the parameted targetSNR. The module calculates and returns the added 

noise power in noisePowerdB. 

 

 

 
Figure D.6 – AWGN channel 

 

D.1.7. Channel estimation 

 

Channel estimation is a major function within the receiver structure, with direct 

impact of the overall performance. Currently, the framework only supports perfect channel 

estimation, calculated in fadingChannel.m as described in D.1.5. This can be seen as 

providing an upper bound on performance. Also, realistic pilot-based channel estimation, is 

tightly connected to the actual pilot layout, and therefore difficult to generalize [30]. 

  The module chEstimation.m is a placeholder for realistic pilot-based channel 

estimation implementations. The module is to perform the estimation on the received OFDM 

grid based on the pilot sequence, pilot positions, and number of antennas ports, given as 

arguments. The current output is a copy of the input matrix Hperfect. 
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Figure D.7 – Channel estimation channel 

 

 

D.1.8. Equalization block 

 

The channel equalization receives the de-mapped symbols and performs equalization 

based on the channel estimation, received as input arguments, and the selected algorithm. 

Currently only the one tap, Zero Forcing (ZF) algorithm is implemented [30], however, 

SNRestimation is provided as an argument for more advanced implementations, like the 

Minimum Mean Squared Error (MMSE) equalizer. 

 

 
Figure D.8 – Channel equalization 

 

In case of transmit diversity scenarios, the classical linear combining method as 

presented in [55] is used, adapted for SFBC, and with channel estimation on each antenna 

averaged over two consecutive data subcarriers. 

The equalizer block is disabled if config.enableOFDM is set to false. 
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